1 //===--- Parser.cpp - C Language Family Parser ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Parser interfaces. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/Parse/Parser.h" 14 #include "clang/AST/ASTConsumer.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/ASTLambda.h" 17 #include "clang/AST/DeclTemplate.h" 18 #include "clang/Basic/DiagnosticParse.h" 19 #include "clang/Basic/FileManager.h" 20 #include "clang/Parse/RAIIObjectsForParser.h" 21 #include "clang/Sema/DeclSpec.h" 22 #include "clang/Sema/ParsedTemplate.h" 23 #include "clang/Sema/Scope.h" 24 #include "clang/Sema/SemaCodeCompletion.h" 25 #include "llvm/Support/Path.h" 26 #include "llvm/Support/TimeProfiler.h" 27 using namespace clang; 28 29 30 namespace { 31 /// A comment handler that passes comments found by the preprocessor 32 /// to the parser action. 33 class ActionCommentHandler : public CommentHandler { 34 Sema &S; 35 36 public: 37 explicit ActionCommentHandler(Sema &S) : S(S) { } 38 39 bool HandleComment(Preprocessor &PP, SourceRange Comment) override { 40 S.ActOnComment(Comment); 41 return false; 42 } 43 }; 44 } // end anonymous namespace 45 46 IdentifierInfo *Parser::getSEHExceptKeyword() { 47 // __except is accepted as a (contextual) keyword 48 if (!Ident__except && (getLangOpts().MicrosoftExt || getLangOpts().Borland)) 49 Ident__except = PP.getIdentifierInfo("__except"); 50 51 return Ident__except; 52 } 53 54 Parser::Parser(Preprocessor &pp, Sema &actions, bool skipFunctionBodies) 55 : PP(pp), PreferredType(pp.isCodeCompletionEnabled()), Actions(actions), 56 Diags(PP.getDiagnostics()), GreaterThanIsOperator(true), 57 ColonIsSacred(false), InMessageExpression(false), 58 TemplateParameterDepth(0), ParsingInObjCContainer(false) { 59 SkipFunctionBodies = pp.isCodeCompletionEnabled() || skipFunctionBodies; 60 Tok.startToken(); 61 Tok.setKind(tok::eof); 62 Actions.CurScope = nullptr; 63 NumCachedScopes = 0; 64 CurParsedObjCImpl = nullptr; 65 66 // Add #pragma handlers. These are removed and destroyed in the 67 // destructor. 68 initializePragmaHandlers(); 69 70 CommentSemaHandler.reset(new ActionCommentHandler(actions)); 71 PP.addCommentHandler(CommentSemaHandler.get()); 72 73 PP.setCodeCompletionHandler(*this); 74 75 Actions.ParseTypeFromStringCallback = 76 [this](StringRef TypeStr, StringRef Context, SourceLocation IncludeLoc) { 77 return this->ParseTypeFromString(TypeStr, Context, IncludeLoc); 78 }; 79 } 80 81 DiagnosticBuilder Parser::Diag(SourceLocation Loc, unsigned DiagID) { 82 return Diags.Report(Loc, DiagID); 83 } 84 85 DiagnosticBuilder Parser::Diag(const Token &Tok, unsigned DiagID) { 86 return Diag(Tok.getLocation(), DiagID); 87 } 88 89 /// Emits a diagnostic suggesting parentheses surrounding a 90 /// given range. 91 /// 92 /// \param Loc The location where we'll emit the diagnostic. 93 /// \param DK The kind of diagnostic to emit. 94 /// \param ParenRange Source range enclosing code that should be parenthesized. 95 void Parser::SuggestParentheses(SourceLocation Loc, unsigned DK, 96 SourceRange ParenRange) { 97 SourceLocation EndLoc = PP.getLocForEndOfToken(ParenRange.getEnd()); 98 if (!ParenRange.getEnd().isFileID() || EndLoc.isInvalid()) { 99 // We can't display the parentheses, so just dig the 100 // warning/error and return. 101 Diag(Loc, DK); 102 return; 103 } 104 105 Diag(Loc, DK) 106 << FixItHint::CreateInsertion(ParenRange.getBegin(), "(") 107 << FixItHint::CreateInsertion(EndLoc, ")"); 108 } 109 110 static bool IsCommonTypo(tok::TokenKind ExpectedTok, const Token &Tok) { 111 switch (ExpectedTok) { 112 case tok::semi: 113 return Tok.is(tok::colon) || Tok.is(tok::comma); // : or , for ; 114 default: return false; 115 } 116 } 117 118 bool Parser::ExpectAndConsume(tok::TokenKind ExpectedTok, unsigned DiagID, 119 StringRef Msg) { 120 if (Tok.is(ExpectedTok) || Tok.is(tok::code_completion)) { 121 ConsumeAnyToken(); 122 return false; 123 } 124 125 // Detect common single-character typos and resume. 126 if (IsCommonTypo(ExpectedTok, Tok)) { 127 SourceLocation Loc = Tok.getLocation(); 128 { 129 DiagnosticBuilder DB = Diag(Loc, DiagID); 130 DB << FixItHint::CreateReplacement( 131 SourceRange(Loc), tok::getPunctuatorSpelling(ExpectedTok)); 132 if (DiagID == diag::err_expected) 133 DB << ExpectedTok; 134 else if (DiagID == diag::err_expected_after) 135 DB << Msg << ExpectedTok; 136 else 137 DB << Msg; 138 } 139 140 // Pretend there wasn't a problem. 141 ConsumeAnyToken(); 142 return false; 143 } 144 145 SourceLocation EndLoc = PP.getLocForEndOfToken(PrevTokLocation); 146 const char *Spelling = nullptr; 147 if (EndLoc.isValid()) 148 Spelling = tok::getPunctuatorSpelling(ExpectedTok); 149 150 DiagnosticBuilder DB = 151 Spelling 152 ? Diag(EndLoc, DiagID) << FixItHint::CreateInsertion(EndLoc, Spelling) 153 : Diag(Tok, DiagID); 154 if (DiagID == diag::err_expected) 155 DB << ExpectedTok; 156 else if (DiagID == diag::err_expected_after) 157 DB << Msg << ExpectedTok; 158 else 159 DB << Msg; 160 161 return true; 162 } 163 164 bool Parser::ExpectAndConsumeSemi(unsigned DiagID, StringRef TokenUsed) { 165 if (TryConsumeToken(tok::semi)) 166 return false; 167 168 if (Tok.is(tok::code_completion)) { 169 handleUnexpectedCodeCompletionToken(); 170 return false; 171 } 172 173 if ((Tok.is(tok::r_paren) || Tok.is(tok::r_square)) && 174 NextToken().is(tok::semi)) { 175 Diag(Tok, diag::err_extraneous_token_before_semi) 176 << PP.getSpelling(Tok) 177 << FixItHint::CreateRemoval(Tok.getLocation()); 178 ConsumeAnyToken(); // The ')' or ']'. 179 ConsumeToken(); // The ';'. 180 return false; 181 } 182 183 return ExpectAndConsume(tok::semi, DiagID , TokenUsed); 184 } 185 186 void Parser::ConsumeExtraSemi(ExtraSemiKind Kind, DeclSpec::TST TST) { 187 if (!Tok.is(tok::semi)) return; 188 189 bool HadMultipleSemis = false; 190 SourceLocation StartLoc = Tok.getLocation(); 191 SourceLocation EndLoc = Tok.getLocation(); 192 ConsumeToken(); 193 194 while ((Tok.is(tok::semi) && !Tok.isAtStartOfLine())) { 195 HadMultipleSemis = true; 196 EndLoc = Tok.getLocation(); 197 ConsumeToken(); 198 } 199 200 // C++11 allows extra semicolons at namespace scope, but not in any of the 201 // other contexts. 202 if (Kind == OutsideFunction && getLangOpts().CPlusPlus) { 203 if (getLangOpts().CPlusPlus11) 204 Diag(StartLoc, diag::warn_cxx98_compat_top_level_semi) 205 << FixItHint::CreateRemoval(SourceRange(StartLoc, EndLoc)); 206 else 207 Diag(StartLoc, diag::ext_extra_semi_cxx11) 208 << FixItHint::CreateRemoval(SourceRange(StartLoc, EndLoc)); 209 return; 210 } 211 212 if (Kind != AfterMemberFunctionDefinition || HadMultipleSemis) 213 Diag(StartLoc, diag::ext_extra_semi) 214 << Kind << DeclSpec::getSpecifierName(TST, 215 Actions.getASTContext().getPrintingPolicy()) 216 << FixItHint::CreateRemoval(SourceRange(StartLoc, EndLoc)); 217 else 218 // A single semicolon is valid after a member function definition. 219 Diag(StartLoc, diag::warn_extra_semi_after_mem_fn_def) 220 << FixItHint::CreateRemoval(SourceRange(StartLoc, EndLoc)); 221 } 222 223 bool Parser::expectIdentifier() { 224 if (Tok.is(tok::identifier)) 225 return false; 226 if (const auto *II = Tok.getIdentifierInfo()) { 227 if (II->isCPlusPlusKeyword(getLangOpts())) { 228 Diag(Tok, diag::err_expected_token_instead_of_objcxx_keyword) 229 << tok::identifier << Tok.getIdentifierInfo(); 230 // Objective-C++: Recover by treating this keyword as a valid identifier. 231 return false; 232 } 233 } 234 Diag(Tok, diag::err_expected) << tok::identifier; 235 return true; 236 } 237 238 void Parser::checkCompoundToken(SourceLocation FirstTokLoc, 239 tok::TokenKind FirstTokKind, CompoundToken Op) { 240 if (FirstTokLoc.isInvalid()) 241 return; 242 SourceLocation SecondTokLoc = Tok.getLocation(); 243 244 // If either token is in a macro, we expect both tokens to come from the same 245 // macro expansion. 246 if ((FirstTokLoc.isMacroID() || SecondTokLoc.isMacroID()) && 247 PP.getSourceManager().getFileID(FirstTokLoc) != 248 PP.getSourceManager().getFileID(SecondTokLoc)) { 249 Diag(FirstTokLoc, diag::warn_compound_token_split_by_macro) 250 << (FirstTokKind == Tok.getKind()) << FirstTokKind << Tok.getKind() 251 << static_cast<int>(Op) << SourceRange(FirstTokLoc); 252 Diag(SecondTokLoc, diag::note_compound_token_split_second_token_here) 253 << (FirstTokKind == Tok.getKind()) << Tok.getKind() 254 << SourceRange(SecondTokLoc); 255 return; 256 } 257 258 // We expect the tokens to abut. 259 if (Tok.hasLeadingSpace() || Tok.isAtStartOfLine()) { 260 SourceLocation SpaceLoc = PP.getLocForEndOfToken(FirstTokLoc); 261 if (SpaceLoc.isInvalid()) 262 SpaceLoc = FirstTokLoc; 263 Diag(SpaceLoc, diag::warn_compound_token_split_by_whitespace) 264 << (FirstTokKind == Tok.getKind()) << FirstTokKind << Tok.getKind() 265 << static_cast<int>(Op) << SourceRange(FirstTokLoc, SecondTokLoc); 266 return; 267 } 268 } 269 270 //===----------------------------------------------------------------------===// 271 // Error recovery. 272 //===----------------------------------------------------------------------===// 273 274 static bool HasFlagsSet(Parser::SkipUntilFlags L, Parser::SkipUntilFlags R) { 275 return (static_cast<unsigned>(L) & static_cast<unsigned>(R)) != 0; 276 } 277 278 /// SkipUntil - Read tokens until we get to the specified token, then consume 279 /// it (unless no flag StopBeforeMatch). Because we cannot guarantee that the 280 /// token will ever occur, this skips to the next token, or to some likely 281 /// good stopping point. If StopAtSemi is true, skipping will stop at a ';' 282 /// character. 283 /// 284 /// If SkipUntil finds the specified token, it returns true, otherwise it 285 /// returns false. 286 bool Parser::SkipUntil(ArrayRef<tok::TokenKind> Toks, SkipUntilFlags Flags) { 287 // We always want this function to skip at least one token if the first token 288 // isn't T and if not at EOF. 289 bool isFirstTokenSkipped = true; 290 while (true) { 291 // If we found one of the tokens, stop and return true. 292 for (unsigned i = 0, NumToks = Toks.size(); i != NumToks; ++i) { 293 if (Tok.is(Toks[i])) { 294 if (HasFlagsSet(Flags, StopBeforeMatch)) { 295 // Noop, don't consume the token. 296 } else { 297 ConsumeAnyToken(); 298 } 299 return true; 300 } 301 } 302 303 // Important special case: The caller has given up and just wants us to 304 // skip the rest of the file. Do this without recursing, since we can 305 // get here precisely because the caller detected too much recursion. 306 if (Toks.size() == 1 && Toks[0] == tok::eof && 307 !HasFlagsSet(Flags, StopAtSemi) && 308 !HasFlagsSet(Flags, StopAtCodeCompletion)) { 309 while (Tok.isNot(tok::eof)) 310 ConsumeAnyToken(); 311 return true; 312 } 313 314 switch (Tok.getKind()) { 315 case tok::eof: 316 // Ran out of tokens. 317 return false; 318 319 case tok::annot_pragma_openmp: 320 case tok::annot_attr_openmp: 321 case tok::annot_pragma_openmp_end: 322 // Stop before an OpenMP pragma boundary. 323 if (OpenMPDirectiveParsing) 324 return false; 325 ConsumeAnnotationToken(); 326 break; 327 case tok::annot_pragma_openacc: 328 case tok::annot_pragma_openacc_end: 329 // Stop before an OpenACC pragma boundary. 330 if (OpenACCDirectiveParsing) 331 return false; 332 ConsumeAnnotationToken(); 333 break; 334 case tok::annot_module_begin: 335 case tok::annot_module_end: 336 case tok::annot_module_include: 337 case tok::annot_repl_input_end: 338 // Stop before we change submodules. They generally indicate a "good" 339 // place to pick up parsing again (except in the special case where 340 // we're trying to skip to EOF). 341 return false; 342 343 case tok::code_completion: 344 if (!HasFlagsSet(Flags, StopAtCodeCompletion)) 345 handleUnexpectedCodeCompletionToken(); 346 return false; 347 348 case tok::l_paren: 349 // Recursively skip properly-nested parens. 350 ConsumeParen(); 351 if (HasFlagsSet(Flags, StopAtCodeCompletion)) 352 SkipUntil(tok::r_paren, StopAtCodeCompletion); 353 else 354 SkipUntil(tok::r_paren); 355 break; 356 case tok::l_square: 357 // Recursively skip properly-nested square brackets. 358 ConsumeBracket(); 359 if (HasFlagsSet(Flags, StopAtCodeCompletion)) 360 SkipUntil(tok::r_square, StopAtCodeCompletion); 361 else 362 SkipUntil(tok::r_square); 363 break; 364 case tok::l_brace: 365 // Recursively skip properly-nested braces. 366 ConsumeBrace(); 367 if (HasFlagsSet(Flags, StopAtCodeCompletion)) 368 SkipUntil(tok::r_brace, StopAtCodeCompletion); 369 else 370 SkipUntil(tok::r_brace); 371 break; 372 case tok::question: 373 // Recursively skip ? ... : pairs; these function as brackets. But 374 // still stop at a semicolon if requested. 375 ConsumeToken(); 376 SkipUntil(tok::colon, 377 SkipUntilFlags(unsigned(Flags) & 378 unsigned(StopAtCodeCompletion | StopAtSemi))); 379 break; 380 381 // Okay, we found a ']' or '}' or ')', which we think should be balanced. 382 // Since the user wasn't looking for this token (if they were, it would 383 // already be handled), this isn't balanced. If there is a LHS token at a 384 // higher level, we will assume that this matches the unbalanced token 385 // and return it. Otherwise, this is a spurious RHS token, which we skip. 386 case tok::r_paren: 387 if (ParenCount && !isFirstTokenSkipped) 388 return false; // Matches something. 389 ConsumeParen(); 390 break; 391 case tok::r_square: 392 if (BracketCount && !isFirstTokenSkipped) 393 return false; // Matches something. 394 ConsumeBracket(); 395 break; 396 case tok::r_brace: 397 if (BraceCount && !isFirstTokenSkipped) 398 return false; // Matches something. 399 ConsumeBrace(); 400 break; 401 402 case tok::semi: 403 if (HasFlagsSet(Flags, StopAtSemi)) 404 return false; 405 [[fallthrough]]; 406 default: 407 // Skip this token. 408 ConsumeAnyToken(); 409 break; 410 } 411 isFirstTokenSkipped = false; 412 } 413 } 414 415 //===----------------------------------------------------------------------===// 416 // Scope manipulation 417 //===----------------------------------------------------------------------===// 418 419 /// EnterScope - Start a new scope. 420 void Parser::EnterScope(unsigned ScopeFlags) { 421 if (NumCachedScopes) { 422 Scope *N = ScopeCache[--NumCachedScopes]; 423 N->Init(getCurScope(), ScopeFlags); 424 Actions.CurScope = N; 425 } else { 426 Actions.CurScope = new Scope(getCurScope(), ScopeFlags, Diags); 427 } 428 } 429 430 /// ExitScope - Pop a scope off the scope stack. 431 void Parser::ExitScope() { 432 assert(getCurScope() && "Scope imbalance!"); 433 434 // Inform the actions module that this scope is going away if there are any 435 // decls in it. 436 Actions.ActOnPopScope(Tok.getLocation(), getCurScope()); 437 438 Scope *OldScope = getCurScope(); 439 Actions.CurScope = OldScope->getParent(); 440 441 if (NumCachedScopes == ScopeCacheSize) 442 delete OldScope; 443 else 444 ScopeCache[NumCachedScopes++] = OldScope; 445 } 446 447 /// Set the flags for the current scope to ScopeFlags. If ManageFlags is false, 448 /// this object does nothing. 449 Parser::ParseScopeFlags::ParseScopeFlags(Parser *Self, unsigned ScopeFlags, 450 bool ManageFlags) 451 : CurScope(ManageFlags ? Self->getCurScope() : nullptr) { 452 if (CurScope) { 453 OldFlags = CurScope->getFlags(); 454 CurScope->setFlags(ScopeFlags); 455 } 456 } 457 458 /// Restore the flags for the current scope to what they were before this 459 /// object overrode them. 460 Parser::ParseScopeFlags::~ParseScopeFlags() { 461 if (CurScope) 462 CurScope->setFlags(OldFlags); 463 } 464 465 466 //===----------------------------------------------------------------------===// 467 // C99 6.9: External Definitions. 468 //===----------------------------------------------------------------------===// 469 470 Parser::~Parser() { 471 // If we still have scopes active, delete the scope tree. 472 delete getCurScope(); 473 Actions.CurScope = nullptr; 474 475 // Free the scope cache. 476 for (unsigned i = 0, e = NumCachedScopes; i != e; ++i) 477 delete ScopeCache[i]; 478 479 resetPragmaHandlers(); 480 481 PP.removeCommentHandler(CommentSemaHandler.get()); 482 483 PP.clearCodeCompletionHandler(); 484 485 DestroyTemplateIds(); 486 } 487 488 /// Initialize - Warm up the parser. 489 /// 490 void Parser::Initialize() { 491 // Create the translation unit scope. Install it as the current scope. 492 assert(getCurScope() == nullptr && "A scope is already active?"); 493 EnterScope(Scope::DeclScope); 494 Actions.ActOnTranslationUnitScope(getCurScope()); 495 496 // Initialization for Objective-C context sensitive keywords recognition. 497 // Referenced in Parser::ParseObjCTypeQualifierList. 498 if (getLangOpts().ObjC) { 499 ObjCTypeQuals[objc_in] = &PP.getIdentifierTable().get("in"); 500 ObjCTypeQuals[objc_out] = &PP.getIdentifierTable().get("out"); 501 ObjCTypeQuals[objc_inout] = &PP.getIdentifierTable().get("inout"); 502 ObjCTypeQuals[objc_oneway] = &PP.getIdentifierTable().get("oneway"); 503 ObjCTypeQuals[objc_bycopy] = &PP.getIdentifierTable().get("bycopy"); 504 ObjCTypeQuals[objc_byref] = &PP.getIdentifierTable().get("byref"); 505 ObjCTypeQuals[objc_nonnull] = &PP.getIdentifierTable().get("nonnull"); 506 ObjCTypeQuals[objc_nullable] = &PP.getIdentifierTable().get("nullable"); 507 ObjCTypeQuals[objc_null_unspecified] 508 = &PP.getIdentifierTable().get("null_unspecified"); 509 } 510 511 Ident_instancetype = nullptr; 512 Ident_final = nullptr; 513 Ident_sealed = nullptr; 514 Ident_abstract = nullptr; 515 Ident_override = nullptr; 516 Ident_GNU_final = nullptr; 517 Ident_import = nullptr; 518 Ident_module = nullptr; 519 520 Ident_super = &PP.getIdentifierTable().get("super"); 521 522 Ident_vector = nullptr; 523 Ident_bool = nullptr; 524 Ident_Bool = nullptr; 525 Ident_pixel = nullptr; 526 if (getLangOpts().AltiVec || getLangOpts().ZVector) { 527 Ident_vector = &PP.getIdentifierTable().get("vector"); 528 Ident_bool = &PP.getIdentifierTable().get("bool"); 529 Ident_Bool = &PP.getIdentifierTable().get("_Bool"); 530 } 531 if (getLangOpts().AltiVec) 532 Ident_pixel = &PP.getIdentifierTable().get("pixel"); 533 534 Ident_introduced = nullptr; 535 Ident_deprecated = nullptr; 536 Ident_obsoleted = nullptr; 537 Ident_unavailable = nullptr; 538 Ident_strict = nullptr; 539 Ident_replacement = nullptr; 540 541 Ident_language = Ident_defined_in = Ident_generated_declaration = Ident_USR = 542 nullptr; 543 544 Ident__except = nullptr; 545 546 Ident__exception_code = Ident__exception_info = nullptr; 547 Ident__abnormal_termination = Ident___exception_code = nullptr; 548 Ident___exception_info = Ident___abnormal_termination = nullptr; 549 Ident_GetExceptionCode = Ident_GetExceptionInfo = nullptr; 550 Ident_AbnormalTermination = nullptr; 551 552 if(getLangOpts().Borland) { 553 Ident__exception_info = PP.getIdentifierInfo("_exception_info"); 554 Ident___exception_info = PP.getIdentifierInfo("__exception_info"); 555 Ident_GetExceptionInfo = PP.getIdentifierInfo("GetExceptionInformation"); 556 Ident__exception_code = PP.getIdentifierInfo("_exception_code"); 557 Ident___exception_code = PP.getIdentifierInfo("__exception_code"); 558 Ident_GetExceptionCode = PP.getIdentifierInfo("GetExceptionCode"); 559 Ident__abnormal_termination = PP.getIdentifierInfo("_abnormal_termination"); 560 Ident___abnormal_termination = PP.getIdentifierInfo("__abnormal_termination"); 561 Ident_AbnormalTermination = PP.getIdentifierInfo("AbnormalTermination"); 562 563 PP.SetPoisonReason(Ident__exception_code,diag::err_seh___except_block); 564 PP.SetPoisonReason(Ident___exception_code,diag::err_seh___except_block); 565 PP.SetPoisonReason(Ident_GetExceptionCode,diag::err_seh___except_block); 566 PP.SetPoisonReason(Ident__exception_info,diag::err_seh___except_filter); 567 PP.SetPoisonReason(Ident___exception_info,diag::err_seh___except_filter); 568 PP.SetPoisonReason(Ident_GetExceptionInfo,diag::err_seh___except_filter); 569 PP.SetPoisonReason(Ident__abnormal_termination,diag::err_seh___finally_block); 570 PP.SetPoisonReason(Ident___abnormal_termination,diag::err_seh___finally_block); 571 PP.SetPoisonReason(Ident_AbnormalTermination,diag::err_seh___finally_block); 572 } 573 574 if (getLangOpts().CPlusPlusModules) { 575 Ident_import = PP.getIdentifierInfo("import"); 576 Ident_module = PP.getIdentifierInfo("module"); 577 } 578 579 Actions.Initialize(); 580 581 // Prime the lexer look-ahead. 582 ConsumeToken(); 583 } 584 585 void Parser::DestroyTemplateIds() { 586 for (TemplateIdAnnotation *Id : TemplateIds) 587 Id->Destroy(); 588 TemplateIds.clear(); 589 } 590 591 /// Parse the first top-level declaration in a translation unit. 592 /// 593 /// translation-unit: 594 /// [C] external-declaration 595 /// [C] translation-unit external-declaration 596 /// [C++] top-level-declaration-seq[opt] 597 /// [C++20] global-module-fragment[opt] module-declaration 598 /// top-level-declaration-seq[opt] private-module-fragment[opt] 599 /// 600 /// Note that in C, it is an error if there is no first declaration. 601 bool Parser::ParseFirstTopLevelDecl(DeclGroupPtrTy &Result, 602 Sema::ModuleImportState &ImportState) { 603 Actions.ActOnStartOfTranslationUnit(); 604 605 // For C++20 modules, a module decl must be the first in the TU. We also 606 // need to track module imports. 607 ImportState = Sema::ModuleImportState::FirstDecl; 608 bool NoTopLevelDecls = ParseTopLevelDecl(Result, ImportState); 609 610 // C11 6.9p1 says translation units must have at least one top-level 611 // declaration. C++ doesn't have this restriction. We also don't want to 612 // complain if we have a precompiled header, although technically if the PCH 613 // is empty we should still emit the (pedantic) diagnostic. 614 // If the main file is a header, we're only pretending it's a TU; don't warn. 615 if (NoTopLevelDecls && !Actions.getASTContext().getExternalSource() && 616 !getLangOpts().CPlusPlus && !getLangOpts().IsHeaderFile) 617 Diag(diag::ext_empty_translation_unit); 618 619 return NoTopLevelDecls; 620 } 621 622 /// ParseTopLevelDecl - Parse one top-level declaration, return whatever the 623 /// action tells us to. This returns true if the EOF was encountered. 624 /// 625 /// top-level-declaration: 626 /// declaration 627 /// [C++20] module-import-declaration 628 bool Parser::ParseTopLevelDecl(DeclGroupPtrTy &Result, 629 Sema::ModuleImportState &ImportState) { 630 DestroyTemplateIdAnnotationsRAIIObj CleanupRAII(*this); 631 632 Result = nullptr; 633 switch (Tok.getKind()) { 634 case tok::annot_pragma_unused: 635 HandlePragmaUnused(); 636 return false; 637 638 case tok::kw_export: 639 switch (NextToken().getKind()) { 640 case tok::kw_module: 641 goto module_decl; 642 643 // Note: no need to handle kw_import here. We only form kw_import under 644 // the Standard C++ Modules, and in that case 'export import' is parsed as 645 // an export-declaration containing an import-declaration. 646 647 // Recognize context-sensitive C++20 'export module' and 'export import' 648 // declarations. 649 case tok::identifier: { 650 IdentifierInfo *II = NextToken().getIdentifierInfo(); 651 if ((II == Ident_module || II == Ident_import) && 652 GetLookAheadToken(2).isNot(tok::coloncolon)) { 653 if (II == Ident_module) 654 goto module_decl; 655 else 656 goto import_decl; 657 } 658 break; 659 } 660 661 default: 662 break; 663 } 664 break; 665 666 case tok::kw_module: 667 module_decl: 668 Result = ParseModuleDecl(ImportState); 669 return false; 670 671 case tok::kw_import: 672 import_decl: { 673 Decl *ImportDecl = ParseModuleImport(SourceLocation(), ImportState); 674 Result = Actions.ConvertDeclToDeclGroup(ImportDecl); 675 return false; 676 } 677 678 case tok::annot_module_include: { 679 auto Loc = Tok.getLocation(); 680 Module *Mod = reinterpret_cast<Module *>(Tok.getAnnotationValue()); 681 // FIXME: We need a better way to disambiguate C++ clang modules and 682 // standard C++ modules. 683 if (!getLangOpts().CPlusPlusModules || !Mod->isHeaderUnit()) 684 Actions.ActOnAnnotModuleInclude(Loc, Mod); 685 else { 686 DeclResult Import = 687 Actions.ActOnModuleImport(Loc, SourceLocation(), Loc, Mod); 688 Decl *ImportDecl = Import.isInvalid() ? nullptr : Import.get(); 689 Result = Actions.ConvertDeclToDeclGroup(ImportDecl); 690 } 691 ConsumeAnnotationToken(); 692 return false; 693 } 694 695 case tok::annot_module_begin: 696 Actions.ActOnAnnotModuleBegin( 697 Tok.getLocation(), 698 reinterpret_cast<Module *>(Tok.getAnnotationValue())); 699 ConsumeAnnotationToken(); 700 ImportState = Sema::ModuleImportState::NotACXX20Module; 701 return false; 702 703 case tok::annot_module_end: 704 Actions.ActOnAnnotModuleEnd( 705 Tok.getLocation(), 706 reinterpret_cast<Module *>(Tok.getAnnotationValue())); 707 ConsumeAnnotationToken(); 708 ImportState = Sema::ModuleImportState::NotACXX20Module; 709 return false; 710 711 case tok::eof: 712 case tok::annot_repl_input_end: 713 // Check whether -fmax-tokens= was reached. 714 if (PP.getMaxTokens() != 0 && PP.getTokenCount() > PP.getMaxTokens()) { 715 PP.Diag(Tok.getLocation(), diag::warn_max_tokens_total) 716 << PP.getTokenCount() << PP.getMaxTokens(); 717 SourceLocation OverrideLoc = PP.getMaxTokensOverrideLoc(); 718 if (OverrideLoc.isValid()) { 719 PP.Diag(OverrideLoc, diag::note_max_tokens_total_override); 720 } 721 } 722 723 // Late template parsing can begin. 724 Actions.SetLateTemplateParser(LateTemplateParserCallback, nullptr, this); 725 Actions.ActOnEndOfTranslationUnit(); 726 //else don't tell Sema that we ended parsing: more input might come. 727 return true; 728 729 case tok::identifier: 730 // C++2a [basic.link]p3: 731 // A token sequence beginning with 'export[opt] module' or 732 // 'export[opt] import' and not immediately followed by '::' 733 // is never interpreted as the declaration of a top-level-declaration. 734 if ((Tok.getIdentifierInfo() == Ident_module || 735 Tok.getIdentifierInfo() == Ident_import) && 736 NextToken().isNot(tok::coloncolon)) { 737 if (Tok.getIdentifierInfo() == Ident_module) 738 goto module_decl; 739 else 740 goto import_decl; 741 } 742 break; 743 744 default: 745 break; 746 } 747 748 ParsedAttributes DeclAttrs(AttrFactory); 749 ParsedAttributes DeclSpecAttrs(AttrFactory); 750 // GNU attributes are applied to the declaration specification while the 751 // standard attributes are applied to the declaration. We parse the two 752 // attribute sets into different containters so we can apply them during 753 // the regular parsing process. 754 while (MaybeParseCXX11Attributes(DeclAttrs) || 755 MaybeParseGNUAttributes(DeclSpecAttrs)) 756 ; 757 758 Result = ParseExternalDeclaration(DeclAttrs, DeclSpecAttrs); 759 // An empty Result might mean a line with ';' or some parsing error, ignore 760 // it. 761 if (Result) { 762 if (ImportState == Sema::ModuleImportState::FirstDecl) 763 // First decl was not modular. 764 ImportState = Sema::ModuleImportState::NotACXX20Module; 765 else if (ImportState == Sema::ModuleImportState::ImportAllowed) 766 // Non-imports disallow further imports. 767 ImportState = Sema::ModuleImportState::ImportFinished; 768 else if (ImportState == 769 Sema::ModuleImportState::PrivateFragmentImportAllowed) 770 // Non-imports disallow further imports. 771 ImportState = Sema::ModuleImportState::PrivateFragmentImportFinished; 772 } 773 return false; 774 } 775 776 /// ParseExternalDeclaration: 777 /// 778 /// The `Attrs` that are passed in are C++11 attributes and appertain to the 779 /// declaration. 780 /// 781 /// external-declaration: [C99 6.9], declaration: [C++ dcl.dcl] 782 /// function-definition 783 /// declaration 784 /// [GNU] asm-definition 785 /// [GNU] __extension__ external-declaration 786 /// [OBJC] objc-class-definition 787 /// [OBJC] objc-class-declaration 788 /// [OBJC] objc-alias-declaration 789 /// [OBJC] objc-protocol-definition 790 /// [OBJC] objc-method-definition 791 /// [OBJC] @end 792 /// [C++] linkage-specification 793 /// [GNU] asm-definition: 794 /// simple-asm-expr ';' 795 /// [C++11] empty-declaration 796 /// [C++11] attribute-declaration 797 /// 798 /// [C++11] empty-declaration: 799 /// ';' 800 /// 801 /// [C++0x/GNU] 'extern' 'template' declaration 802 /// 803 /// [C++20] module-import-declaration 804 /// 805 Parser::DeclGroupPtrTy 806 Parser::ParseExternalDeclaration(ParsedAttributes &Attrs, 807 ParsedAttributes &DeclSpecAttrs, 808 ParsingDeclSpec *DS) { 809 DestroyTemplateIdAnnotationsRAIIObj CleanupRAII(*this); 810 ParenBraceBracketBalancer BalancerRAIIObj(*this); 811 812 if (PP.isCodeCompletionReached()) { 813 cutOffParsing(); 814 return nullptr; 815 } 816 817 Decl *SingleDecl = nullptr; 818 switch (Tok.getKind()) { 819 case tok::annot_pragma_vis: 820 HandlePragmaVisibility(); 821 return nullptr; 822 case tok::annot_pragma_pack: 823 HandlePragmaPack(); 824 return nullptr; 825 case tok::annot_pragma_msstruct: 826 HandlePragmaMSStruct(); 827 return nullptr; 828 case tok::annot_pragma_align: 829 HandlePragmaAlign(); 830 return nullptr; 831 case tok::annot_pragma_weak: 832 HandlePragmaWeak(); 833 return nullptr; 834 case tok::annot_pragma_weakalias: 835 HandlePragmaWeakAlias(); 836 return nullptr; 837 case tok::annot_pragma_redefine_extname: 838 HandlePragmaRedefineExtname(); 839 return nullptr; 840 case tok::annot_pragma_fp_contract: 841 HandlePragmaFPContract(); 842 return nullptr; 843 case tok::annot_pragma_fenv_access: 844 case tok::annot_pragma_fenv_access_ms: 845 HandlePragmaFEnvAccess(); 846 return nullptr; 847 case tok::annot_pragma_fenv_round: 848 HandlePragmaFEnvRound(); 849 return nullptr; 850 case tok::annot_pragma_cx_limited_range: 851 HandlePragmaCXLimitedRange(); 852 return nullptr; 853 case tok::annot_pragma_float_control: 854 HandlePragmaFloatControl(); 855 return nullptr; 856 case tok::annot_pragma_fp: 857 HandlePragmaFP(); 858 break; 859 case tok::annot_pragma_opencl_extension: 860 HandlePragmaOpenCLExtension(); 861 return nullptr; 862 case tok::annot_attr_openmp: 863 case tok::annot_pragma_openmp: { 864 AccessSpecifier AS = AS_none; 865 return ParseOpenMPDeclarativeDirectiveWithExtDecl(AS, Attrs); 866 } 867 case tok::annot_pragma_openacc: 868 return ParseOpenACCDirectiveDecl(); 869 case tok::annot_pragma_ms_pointers_to_members: 870 HandlePragmaMSPointersToMembers(); 871 return nullptr; 872 case tok::annot_pragma_ms_vtordisp: 873 HandlePragmaMSVtorDisp(); 874 return nullptr; 875 case tok::annot_pragma_ms_pragma: 876 HandlePragmaMSPragma(); 877 return nullptr; 878 case tok::annot_pragma_dump: 879 HandlePragmaDump(); 880 return nullptr; 881 case tok::annot_pragma_attribute: 882 HandlePragmaAttribute(); 883 return nullptr; 884 case tok::semi: 885 // Either a C++11 empty-declaration or attribute-declaration. 886 SingleDecl = 887 Actions.ActOnEmptyDeclaration(getCurScope(), Attrs, Tok.getLocation()); 888 ConsumeExtraSemi(OutsideFunction); 889 break; 890 case tok::r_brace: 891 Diag(Tok, diag::err_extraneous_closing_brace); 892 ConsumeBrace(); 893 return nullptr; 894 case tok::eof: 895 Diag(Tok, diag::err_expected_external_declaration); 896 return nullptr; 897 case tok::kw___extension__: { 898 // __extension__ silences extension warnings in the subexpression. 899 ExtensionRAIIObject O(Diags); // Use RAII to do this. 900 ConsumeToken(); 901 return ParseExternalDeclaration(Attrs, DeclSpecAttrs); 902 } 903 case tok::kw_asm: { 904 ProhibitAttributes(Attrs); 905 906 SourceLocation StartLoc = Tok.getLocation(); 907 SourceLocation EndLoc; 908 909 ExprResult Result(ParseSimpleAsm(/*ForAsmLabel*/ false, &EndLoc)); 910 911 // Check if GNU-style InlineAsm is disabled. 912 // Empty asm string is allowed because it will not introduce 913 // any assembly code. 914 if (!(getLangOpts().GNUAsm || Result.isInvalid())) { 915 const auto *SL = cast<StringLiteral>(Result.get()); 916 if (!SL->getString().trim().empty()) 917 Diag(StartLoc, diag::err_gnu_inline_asm_disabled); 918 } 919 920 ExpectAndConsume(tok::semi, diag::err_expected_after, 921 "top-level asm block"); 922 923 if (Result.isInvalid()) 924 return nullptr; 925 SingleDecl = Actions.ActOnFileScopeAsmDecl(Result.get(), StartLoc, EndLoc); 926 break; 927 } 928 case tok::at: 929 return ParseObjCAtDirectives(Attrs, DeclSpecAttrs); 930 case tok::minus: 931 case tok::plus: 932 if (!getLangOpts().ObjC) { 933 Diag(Tok, diag::err_expected_external_declaration); 934 ConsumeToken(); 935 return nullptr; 936 } 937 SingleDecl = ParseObjCMethodDefinition(); 938 break; 939 case tok::code_completion: 940 cutOffParsing(); 941 if (CurParsedObjCImpl) { 942 // Code-complete Objective-C methods even without leading '-'/'+' prefix. 943 Actions.CodeCompletion().CodeCompleteObjCMethodDecl( 944 getCurScope(), 945 /*IsInstanceMethod=*/std::nullopt, 946 /*ReturnType=*/nullptr); 947 } 948 949 SemaCodeCompletion::ParserCompletionContext PCC; 950 if (CurParsedObjCImpl) { 951 PCC = SemaCodeCompletion::PCC_ObjCImplementation; 952 } else if (PP.isIncrementalProcessingEnabled()) { 953 PCC = SemaCodeCompletion::PCC_TopLevelOrExpression; 954 } else { 955 PCC = SemaCodeCompletion::PCC_Namespace; 956 }; 957 Actions.CodeCompletion().CodeCompleteOrdinaryName(getCurScope(), PCC); 958 return nullptr; 959 case tok::kw_import: { 960 Sema::ModuleImportState IS = Sema::ModuleImportState::NotACXX20Module; 961 if (getLangOpts().CPlusPlusModules) { 962 llvm_unreachable("not expecting a c++20 import here"); 963 ProhibitAttributes(Attrs); 964 } 965 SingleDecl = ParseModuleImport(SourceLocation(), IS); 966 } break; 967 case tok::kw_export: 968 if (getLangOpts().CPlusPlusModules || getLangOpts().HLSL) { 969 ProhibitAttributes(Attrs); 970 SingleDecl = ParseExportDeclaration(); 971 break; 972 } 973 // This must be 'export template'. Parse it so we can diagnose our lack 974 // of support. 975 [[fallthrough]]; 976 case tok::kw_using: 977 case tok::kw_namespace: 978 case tok::kw_typedef: 979 case tok::kw_template: 980 case tok::kw_static_assert: 981 case tok::kw__Static_assert: 982 // A function definition cannot start with any of these keywords. 983 { 984 SourceLocation DeclEnd; 985 return ParseDeclaration(DeclaratorContext::File, DeclEnd, Attrs, 986 DeclSpecAttrs); 987 } 988 989 case tok::kw_cbuffer: 990 case tok::kw_tbuffer: 991 if (getLangOpts().HLSL) { 992 SourceLocation DeclEnd; 993 return ParseDeclaration(DeclaratorContext::File, DeclEnd, Attrs, 994 DeclSpecAttrs); 995 } 996 goto dont_know; 997 998 case tok::kw_static: 999 // Parse (then ignore) 'static' prior to a template instantiation. This is 1000 // a GCC extension that we intentionally do not support. 1001 if (getLangOpts().CPlusPlus && NextToken().is(tok::kw_template)) { 1002 Diag(ConsumeToken(), diag::warn_static_inline_explicit_inst_ignored) 1003 << 0; 1004 SourceLocation DeclEnd; 1005 return ParseDeclaration(DeclaratorContext::File, DeclEnd, Attrs, 1006 DeclSpecAttrs); 1007 } 1008 goto dont_know; 1009 1010 case tok::kw_inline: 1011 if (getLangOpts().CPlusPlus) { 1012 tok::TokenKind NextKind = NextToken().getKind(); 1013 1014 // Inline namespaces. Allowed as an extension even in C++03. 1015 if (NextKind == tok::kw_namespace) { 1016 SourceLocation DeclEnd; 1017 return ParseDeclaration(DeclaratorContext::File, DeclEnd, Attrs, 1018 DeclSpecAttrs); 1019 } 1020 1021 // Parse (then ignore) 'inline' prior to a template instantiation. This is 1022 // a GCC extension that we intentionally do not support. 1023 if (NextKind == tok::kw_template) { 1024 Diag(ConsumeToken(), diag::warn_static_inline_explicit_inst_ignored) 1025 << 1; 1026 SourceLocation DeclEnd; 1027 return ParseDeclaration(DeclaratorContext::File, DeclEnd, Attrs, 1028 DeclSpecAttrs); 1029 } 1030 } 1031 goto dont_know; 1032 1033 case tok::kw_extern: 1034 if (getLangOpts().CPlusPlus && NextToken().is(tok::kw_template)) { 1035 // Extern templates 1036 SourceLocation ExternLoc = ConsumeToken(); 1037 SourceLocation TemplateLoc = ConsumeToken(); 1038 Diag(ExternLoc, getLangOpts().CPlusPlus11 ? 1039 diag::warn_cxx98_compat_extern_template : 1040 diag::ext_extern_template) << SourceRange(ExternLoc, TemplateLoc); 1041 SourceLocation DeclEnd; 1042 return ParseExplicitInstantiation(DeclaratorContext::File, ExternLoc, 1043 TemplateLoc, DeclEnd, Attrs); 1044 } 1045 goto dont_know; 1046 1047 case tok::kw___if_exists: 1048 case tok::kw___if_not_exists: 1049 ParseMicrosoftIfExistsExternalDeclaration(); 1050 return nullptr; 1051 1052 case tok::kw_module: 1053 Diag(Tok, diag::err_unexpected_module_decl); 1054 SkipUntil(tok::semi); 1055 return nullptr; 1056 1057 default: 1058 dont_know: 1059 if (Tok.isEditorPlaceholder()) { 1060 ConsumeToken(); 1061 return nullptr; 1062 } 1063 if (getLangOpts().IncrementalExtensions && 1064 !isDeclarationStatement(/*DisambiguatingWithExpression=*/true)) 1065 return ParseTopLevelStmtDecl(); 1066 1067 // We can't tell whether this is a function-definition or declaration yet. 1068 if (!SingleDecl) 1069 return ParseDeclarationOrFunctionDefinition(Attrs, DeclSpecAttrs, DS); 1070 } 1071 1072 // This routine returns a DeclGroup, if the thing we parsed only contains a 1073 // single decl, convert it now. 1074 return Actions.ConvertDeclToDeclGroup(SingleDecl); 1075 } 1076 1077 /// Determine whether the current token, if it occurs after a 1078 /// declarator, continues a declaration or declaration list. 1079 bool Parser::isDeclarationAfterDeclarator() { 1080 // Check for '= delete' or '= default' 1081 if (getLangOpts().CPlusPlus && Tok.is(tok::equal)) { 1082 const Token &KW = NextToken(); 1083 if (KW.is(tok::kw_default) || KW.is(tok::kw_delete)) 1084 return false; 1085 } 1086 1087 return Tok.is(tok::equal) || // int X()= -> not a function def 1088 Tok.is(tok::comma) || // int X(), -> not a function def 1089 Tok.is(tok::semi) || // int X(); -> not a function def 1090 Tok.is(tok::kw_asm) || // int X() __asm__ -> not a function def 1091 Tok.is(tok::kw___attribute) || // int X() __attr__ -> not a function def 1092 (getLangOpts().CPlusPlus && 1093 Tok.is(tok::l_paren)); // int X(0) -> not a function def [C++] 1094 } 1095 1096 /// Determine whether the current token, if it occurs after a 1097 /// declarator, indicates the start of a function definition. 1098 bool Parser::isStartOfFunctionDefinition(const ParsingDeclarator &Declarator) { 1099 assert(Declarator.isFunctionDeclarator() && "Isn't a function declarator"); 1100 if (Tok.is(tok::l_brace)) // int X() {} 1101 return true; 1102 1103 // Handle K&R C argument lists: int X(f) int f; {} 1104 if (!getLangOpts().CPlusPlus && 1105 Declarator.getFunctionTypeInfo().isKNRPrototype()) 1106 return isDeclarationSpecifier(ImplicitTypenameContext::No); 1107 1108 if (getLangOpts().CPlusPlus && Tok.is(tok::equal)) { 1109 const Token &KW = NextToken(); 1110 return KW.is(tok::kw_default) || KW.is(tok::kw_delete); 1111 } 1112 1113 return Tok.is(tok::colon) || // X() : Base() {} (used for ctors) 1114 Tok.is(tok::kw_try); // X() try { ... } 1115 } 1116 1117 /// Parse either a function-definition or a declaration. We can't tell which 1118 /// we have until we read up to the compound-statement in function-definition. 1119 /// TemplateParams, if non-NULL, provides the template parameters when we're 1120 /// parsing a C++ template-declaration. 1121 /// 1122 /// function-definition: [C99 6.9.1] 1123 /// decl-specs declarator declaration-list[opt] compound-statement 1124 /// [C90] function-definition: [C99 6.7.1] - implicit int result 1125 /// [C90] decl-specs[opt] declarator declaration-list[opt] compound-statement 1126 /// 1127 /// declaration: [C99 6.7] 1128 /// declaration-specifiers init-declarator-list[opt] ';' 1129 /// [!C99] init-declarator-list ';' [TODO: warn in c99 mode] 1130 /// [OMP] threadprivate-directive 1131 /// [OMP] allocate-directive [TODO] 1132 /// 1133 Parser::DeclGroupPtrTy Parser::ParseDeclOrFunctionDefInternal( 1134 ParsedAttributes &Attrs, ParsedAttributes &DeclSpecAttrs, 1135 ParsingDeclSpec &DS, AccessSpecifier AS) { 1136 // Because we assume that the DeclSpec has not yet been initialised, we simply 1137 // overwrite the source range and attribute the provided leading declspec 1138 // attributes. 1139 assert(DS.getSourceRange().isInvalid() && 1140 "expected uninitialised source range"); 1141 DS.SetRangeStart(DeclSpecAttrs.Range.getBegin()); 1142 DS.SetRangeEnd(DeclSpecAttrs.Range.getEnd()); 1143 DS.takeAttributesFrom(DeclSpecAttrs); 1144 1145 ParsedTemplateInfo TemplateInfo; 1146 MaybeParseMicrosoftAttributes(DS.getAttributes()); 1147 // Parse the common declaration-specifiers piece. 1148 ParseDeclarationSpecifiers(DS, TemplateInfo, AS, 1149 DeclSpecContext::DSC_top_level); 1150 1151 // If we had a free-standing type definition with a missing semicolon, we 1152 // may get this far before the problem becomes obvious. 1153 if (DS.hasTagDefinition() && DiagnoseMissingSemiAfterTagDefinition( 1154 DS, AS, DeclSpecContext::DSC_top_level)) 1155 return nullptr; 1156 1157 // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };" 1158 // declaration-specifiers init-declarator-list[opt] ';' 1159 if (Tok.is(tok::semi)) { 1160 auto LengthOfTSTToken = [](DeclSpec::TST TKind) { 1161 assert(DeclSpec::isDeclRep(TKind)); 1162 switch(TKind) { 1163 case DeclSpec::TST_class: 1164 return 5; 1165 case DeclSpec::TST_struct: 1166 return 6; 1167 case DeclSpec::TST_union: 1168 return 5; 1169 case DeclSpec::TST_enum: 1170 return 4; 1171 case DeclSpec::TST_interface: 1172 return 9; 1173 default: 1174 llvm_unreachable("we only expect to get the length of the class/struct/union/enum"); 1175 } 1176 1177 }; 1178 // Suggest correct location to fix '[[attrib]] struct' to 'struct [[attrib]]' 1179 SourceLocation CorrectLocationForAttributes = 1180 DeclSpec::isDeclRep(DS.getTypeSpecType()) 1181 ? DS.getTypeSpecTypeLoc().getLocWithOffset( 1182 LengthOfTSTToken(DS.getTypeSpecType())) 1183 : SourceLocation(); 1184 ProhibitAttributes(Attrs, CorrectLocationForAttributes); 1185 ConsumeToken(); 1186 RecordDecl *AnonRecord = nullptr; 1187 Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec( 1188 getCurScope(), AS_none, DS, ParsedAttributesView::none(), AnonRecord); 1189 DS.complete(TheDecl); 1190 Actions.ActOnDefinedDeclarationSpecifier(TheDecl); 1191 if (AnonRecord) { 1192 Decl* decls[] = {AnonRecord, TheDecl}; 1193 return Actions.BuildDeclaratorGroup(decls); 1194 } 1195 return Actions.ConvertDeclToDeclGroup(TheDecl); 1196 } 1197 1198 if (DS.hasTagDefinition()) 1199 Actions.ActOnDefinedDeclarationSpecifier(DS.getRepAsDecl()); 1200 1201 // ObjC2 allows prefix attributes on class interfaces and protocols. 1202 // FIXME: This still needs better diagnostics. We should only accept 1203 // attributes here, no types, etc. 1204 if (getLangOpts().ObjC && Tok.is(tok::at)) { 1205 SourceLocation AtLoc = ConsumeToken(); // the "@" 1206 if (!Tok.isObjCAtKeyword(tok::objc_interface) && 1207 !Tok.isObjCAtKeyword(tok::objc_protocol) && 1208 !Tok.isObjCAtKeyword(tok::objc_implementation)) { 1209 Diag(Tok, diag::err_objc_unexpected_attr); 1210 SkipUntil(tok::semi); 1211 return nullptr; 1212 } 1213 1214 DS.abort(); 1215 DS.takeAttributesFrom(Attrs); 1216 1217 const char *PrevSpec = nullptr; 1218 unsigned DiagID; 1219 if (DS.SetTypeSpecType(DeclSpec::TST_unspecified, AtLoc, PrevSpec, DiagID, 1220 Actions.getASTContext().getPrintingPolicy())) 1221 Diag(AtLoc, DiagID) << PrevSpec; 1222 1223 if (Tok.isObjCAtKeyword(tok::objc_protocol)) 1224 return ParseObjCAtProtocolDeclaration(AtLoc, DS.getAttributes()); 1225 1226 if (Tok.isObjCAtKeyword(tok::objc_implementation)) 1227 return ParseObjCAtImplementationDeclaration(AtLoc, DS.getAttributes()); 1228 1229 return Actions.ConvertDeclToDeclGroup( 1230 ParseObjCAtInterfaceDeclaration(AtLoc, DS.getAttributes())); 1231 } 1232 1233 // If the declspec consisted only of 'extern' and we have a string 1234 // literal following it, this must be a C++ linkage specifier like 1235 // 'extern "C"'. 1236 if (getLangOpts().CPlusPlus && isTokenStringLiteral() && 1237 DS.getStorageClassSpec() == DeclSpec::SCS_extern && 1238 DS.getParsedSpecifiers() == DeclSpec::PQ_StorageClassSpecifier) { 1239 ProhibitAttributes(Attrs); 1240 Decl *TheDecl = ParseLinkage(DS, DeclaratorContext::File); 1241 return Actions.ConvertDeclToDeclGroup(TheDecl); 1242 } 1243 1244 return ParseDeclGroup(DS, DeclaratorContext::File, Attrs, TemplateInfo); 1245 } 1246 1247 Parser::DeclGroupPtrTy Parser::ParseDeclarationOrFunctionDefinition( 1248 ParsedAttributes &Attrs, ParsedAttributes &DeclSpecAttrs, 1249 ParsingDeclSpec *DS, AccessSpecifier AS) { 1250 // Add an enclosing time trace scope for a bunch of small scopes with 1251 // "EvaluateAsConstExpr". 1252 llvm::TimeTraceScope TimeScope("ParseDeclarationOrFunctionDefinition", [&]() { 1253 return Tok.getLocation().printToString( 1254 Actions.getASTContext().getSourceManager()); 1255 }); 1256 1257 if (DS) { 1258 return ParseDeclOrFunctionDefInternal(Attrs, DeclSpecAttrs, *DS, AS); 1259 } else { 1260 ParsingDeclSpec PDS(*this); 1261 // Must temporarily exit the objective-c container scope for 1262 // parsing c constructs and re-enter objc container scope 1263 // afterwards. 1264 ObjCDeclContextSwitch ObjCDC(*this); 1265 1266 return ParseDeclOrFunctionDefInternal(Attrs, DeclSpecAttrs, PDS, AS); 1267 } 1268 } 1269 1270 /// ParseFunctionDefinition - We parsed and verified that the specified 1271 /// Declarator is well formed. If this is a K&R-style function, read the 1272 /// parameters declaration-list, then start the compound-statement. 1273 /// 1274 /// function-definition: [C99 6.9.1] 1275 /// decl-specs declarator declaration-list[opt] compound-statement 1276 /// [C90] function-definition: [C99 6.7.1] - implicit int result 1277 /// [C90] decl-specs[opt] declarator declaration-list[opt] compound-statement 1278 /// [C++] function-definition: [C++ 8.4] 1279 /// decl-specifier-seq[opt] declarator ctor-initializer[opt] 1280 /// function-body 1281 /// [C++] function-definition: [C++ 8.4] 1282 /// decl-specifier-seq[opt] declarator function-try-block 1283 /// 1284 Decl *Parser::ParseFunctionDefinition(ParsingDeclarator &D, 1285 const ParsedTemplateInfo &TemplateInfo, 1286 LateParsedAttrList *LateParsedAttrs) { 1287 llvm::TimeTraceScope TimeScope("ParseFunctionDefinition", [&]() { 1288 return Actions.GetNameForDeclarator(D).getName().getAsString(); 1289 }); 1290 1291 // Poison SEH identifiers so they are flagged as illegal in function bodies. 1292 PoisonSEHIdentifiersRAIIObject PoisonSEHIdentifiers(*this, true); 1293 const DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 1294 TemplateParameterDepthRAII CurTemplateDepthTracker(TemplateParameterDepth); 1295 1296 // If this is C89 and the declspecs were completely missing, fudge in an 1297 // implicit int. We do this here because this is the only place where 1298 // declaration-specifiers are completely optional in the grammar. 1299 if (getLangOpts().isImplicitIntRequired() && D.getDeclSpec().isEmpty()) { 1300 Diag(D.getIdentifierLoc(), diag::warn_missing_type_specifier) 1301 << D.getDeclSpec().getSourceRange(); 1302 const char *PrevSpec; 1303 unsigned DiagID; 1304 const PrintingPolicy &Policy = Actions.getASTContext().getPrintingPolicy(); 1305 D.getMutableDeclSpec().SetTypeSpecType(DeclSpec::TST_int, 1306 D.getIdentifierLoc(), 1307 PrevSpec, DiagID, 1308 Policy); 1309 D.SetRangeBegin(D.getDeclSpec().getSourceRange().getBegin()); 1310 } 1311 1312 // If this declaration was formed with a K&R-style identifier list for the 1313 // arguments, parse declarations for all of the args next. 1314 // int foo(a,b) int a; float b; {} 1315 if (FTI.isKNRPrototype()) 1316 ParseKNRParamDeclarations(D); 1317 1318 // We should have either an opening brace or, in a C++ constructor, 1319 // we may have a colon. 1320 if (Tok.isNot(tok::l_brace) && 1321 (!getLangOpts().CPlusPlus || 1322 (Tok.isNot(tok::colon) && Tok.isNot(tok::kw_try) && 1323 Tok.isNot(tok::equal)))) { 1324 Diag(Tok, diag::err_expected_fn_body); 1325 1326 // Skip over garbage, until we get to '{'. Don't eat the '{'. 1327 SkipUntil(tok::l_brace, StopAtSemi | StopBeforeMatch); 1328 1329 // If we didn't find the '{', bail out. 1330 if (Tok.isNot(tok::l_brace)) 1331 return nullptr; 1332 } 1333 1334 // Check to make sure that any normal attributes are allowed to be on 1335 // a definition. Late parsed attributes are checked at the end. 1336 if (Tok.isNot(tok::equal)) { 1337 for (const ParsedAttr &AL : D.getAttributes()) 1338 if (AL.isKnownToGCC() && !AL.isStandardAttributeSyntax()) 1339 Diag(AL.getLoc(), diag::warn_attribute_on_function_definition) << AL; 1340 } 1341 1342 // In delayed template parsing mode, for function template we consume the 1343 // tokens and store them for late parsing at the end of the translation unit. 1344 if (getLangOpts().DelayedTemplateParsing && Tok.isNot(tok::equal) && 1345 TemplateInfo.Kind == ParsedTemplateInfo::Template && 1346 Actions.canDelayFunctionBody(D)) { 1347 MultiTemplateParamsArg TemplateParameterLists(*TemplateInfo.TemplateParams); 1348 1349 ParseScope BodyScope(this, Scope::FnScope | Scope::DeclScope | 1350 Scope::CompoundStmtScope); 1351 Scope *ParentScope = getCurScope()->getParent(); 1352 1353 D.setFunctionDefinitionKind(FunctionDefinitionKind::Definition); 1354 Decl *DP = Actions.HandleDeclarator(ParentScope, D, 1355 TemplateParameterLists); 1356 D.complete(DP); 1357 D.getMutableDeclSpec().abort(); 1358 1359 if (SkipFunctionBodies && (!DP || Actions.canSkipFunctionBody(DP)) && 1360 trySkippingFunctionBody()) { 1361 BodyScope.Exit(); 1362 return Actions.ActOnSkippedFunctionBody(DP); 1363 } 1364 1365 CachedTokens Toks; 1366 LexTemplateFunctionForLateParsing(Toks); 1367 1368 if (DP) { 1369 FunctionDecl *FnD = DP->getAsFunction(); 1370 Actions.CheckForFunctionRedefinition(FnD); 1371 Actions.MarkAsLateParsedTemplate(FnD, DP, Toks); 1372 } 1373 return DP; 1374 } 1375 else if (CurParsedObjCImpl && 1376 !TemplateInfo.TemplateParams && 1377 (Tok.is(tok::l_brace) || Tok.is(tok::kw_try) || 1378 Tok.is(tok::colon)) && 1379 Actions.CurContext->isTranslationUnit()) { 1380 ParseScope BodyScope(this, Scope::FnScope | Scope::DeclScope | 1381 Scope::CompoundStmtScope); 1382 Scope *ParentScope = getCurScope()->getParent(); 1383 1384 D.setFunctionDefinitionKind(FunctionDefinitionKind::Definition); 1385 Decl *FuncDecl = Actions.HandleDeclarator(ParentScope, D, 1386 MultiTemplateParamsArg()); 1387 D.complete(FuncDecl); 1388 D.getMutableDeclSpec().abort(); 1389 if (FuncDecl) { 1390 // Consume the tokens and store them for later parsing. 1391 StashAwayMethodOrFunctionBodyTokens(FuncDecl); 1392 CurParsedObjCImpl->HasCFunction = true; 1393 return FuncDecl; 1394 } 1395 // FIXME: Should we really fall through here? 1396 } 1397 1398 // Enter a scope for the function body. 1399 ParseScope BodyScope(this, Scope::FnScope | Scope::DeclScope | 1400 Scope::CompoundStmtScope); 1401 1402 // Parse function body eagerly if it is either '= delete;' or '= default;' as 1403 // ActOnStartOfFunctionDef needs to know whether the function is deleted. 1404 StringLiteral *DeletedMessage = nullptr; 1405 Sema::FnBodyKind BodyKind = Sema::FnBodyKind::Other; 1406 SourceLocation KWLoc; 1407 if (TryConsumeToken(tok::equal)) { 1408 assert(getLangOpts().CPlusPlus && "Only C++ function definitions have '='"); 1409 1410 if (TryConsumeToken(tok::kw_delete, KWLoc)) { 1411 Diag(KWLoc, getLangOpts().CPlusPlus11 1412 ? diag::warn_cxx98_compat_defaulted_deleted_function 1413 : diag::ext_defaulted_deleted_function) 1414 << 1 /* deleted */; 1415 BodyKind = Sema::FnBodyKind::Delete; 1416 DeletedMessage = ParseCXXDeletedFunctionMessage(); 1417 } else if (TryConsumeToken(tok::kw_default, KWLoc)) { 1418 Diag(KWLoc, getLangOpts().CPlusPlus11 1419 ? diag::warn_cxx98_compat_defaulted_deleted_function 1420 : diag::ext_defaulted_deleted_function) 1421 << 0 /* defaulted */; 1422 BodyKind = Sema::FnBodyKind::Default; 1423 } else { 1424 llvm_unreachable("function definition after = not 'delete' or 'default'"); 1425 } 1426 1427 if (Tok.is(tok::comma)) { 1428 Diag(KWLoc, diag::err_default_delete_in_multiple_declaration) 1429 << (BodyKind == Sema::FnBodyKind::Delete); 1430 SkipUntil(tok::semi); 1431 } else if (ExpectAndConsume(tok::semi, diag::err_expected_after, 1432 BodyKind == Sema::FnBodyKind::Delete 1433 ? "delete" 1434 : "default")) { 1435 SkipUntil(tok::semi); 1436 } 1437 } 1438 1439 Sema::FPFeaturesStateRAII SaveFPFeatures(Actions); 1440 1441 // Tell the actions module that we have entered a function definition with the 1442 // specified Declarator for the function. 1443 SkipBodyInfo SkipBody; 1444 Decl *Res = Actions.ActOnStartOfFunctionDef(getCurScope(), D, 1445 TemplateInfo.TemplateParams 1446 ? *TemplateInfo.TemplateParams 1447 : MultiTemplateParamsArg(), 1448 &SkipBody, BodyKind); 1449 1450 if (SkipBody.ShouldSkip) { 1451 // Do NOT enter SkipFunctionBody if we already consumed the tokens. 1452 if (BodyKind == Sema::FnBodyKind::Other) 1453 SkipFunctionBody(); 1454 1455 // ExpressionEvaluationContext is pushed in ActOnStartOfFunctionDef 1456 // and it would be popped in ActOnFinishFunctionBody. 1457 // We pop it explcitly here since ActOnFinishFunctionBody won't get called. 1458 // 1459 // Do not call PopExpressionEvaluationContext() if it is a lambda because 1460 // one is already popped when finishing the lambda in BuildLambdaExpr(). 1461 // 1462 // FIXME: It looks not easy to balance PushExpressionEvaluationContext() 1463 // and PopExpressionEvaluationContext(). 1464 if (!isLambdaCallOperator(dyn_cast_if_present<FunctionDecl>(Res))) 1465 Actions.PopExpressionEvaluationContext(); 1466 return Res; 1467 } 1468 1469 // Break out of the ParsingDeclarator context before we parse the body. 1470 D.complete(Res); 1471 1472 // Break out of the ParsingDeclSpec context, too. This const_cast is 1473 // safe because we're always the sole owner. 1474 D.getMutableDeclSpec().abort(); 1475 1476 if (BodyKind != Sema::FnBodyKind::Other) { 1477 Actions.SetFunctionBodyKind(Res, KWLoc, BodyKind, DeletedMessage); 1478 Stmt *GeneratedBody = Res ? Res->getBody() : nullptr; 1479 Actions.ActOnFinishFunctionBody(Res, GeneratedBody, false); 1480 return Res; 1481 } 1482 1483 // With abbreviated function templates - we need to explicitly add depth to 1484 // account for the implicit template parameter list induced by the template. 1485 if (const auto *Template = dyn_cast_if_present<FunctionTemplateDecl>(Res); 1486 Template && Template->isAbbreviated() && 1487 Template->getTemplateParameters()->getParam(0)->isImplicit()) 1488 // First template parameter is implicit - meaning no explicit template 1489 // parameter list was specified. 1490 CurTemplateDepthTracker.addDepth(1); 1491 1492 if (SkipFunctionBodies && (!Res || Actions.canSkipFunctionBody(Res)) && 1493 trySkippingFunctionBody()) { 1494 BodyScope.Exit(); 1495 Actions.ActOnSkippedFunctionBody(Res); 1496 return Actions.ActOnFinishFunctionBody(Res, nullptr, false); 1497 } 1498 1499 if (Tok.is(tok::kw_try)) 1500 return ParseFunctionTryBlock(Res, BodyScope); 1501 1502 // If we have a colon, then we're probably parsing a C++ 1503 // ctor-initializer. 1504 if (Tok.is(tok::colon)) { 1505 ParseConstructorInitializer(Res); 1506 1507 // Recover from error. 1508 if (!Tok.is(tok::l_brace)) { 1509 BodyScope.Exit(); 1510 Actions.ActOnFinishFunctionBody(Res, nullptr); 1511 return Res; 1512 } 1513 } else 1514 Actions.ActOnDefaultCtorInitializers(Res); 1515 1516 // Late attributes are parsed in the same scope as the function body. 1517 if (LateParsedAttrs) 1518 ParseLexedAttributeList(*LateParsedAttrs, Res, false, true); 1519 1520 return ParseFunctionStatementBody(Res, BodyScope); 1521 } 1522 1523 void Parser::SkipFunctionBody() { 1524 if (Tok.is(tok::equal)) { 1525 SkipUntil(tok::semi); 1526 return; 1527 } 1528 1529 bool IsFunctionTryBlock = Tok.is(tok::kw_try); 1530 if (IsFunctionTryBlock) 1531 ConsumeToken(); 1532 1533 CachedTokens Skipped; 1534 if (ConsumeAndStoreFunctionPrologue(Skipped)) 1535 SkipMalformedDecl(); 1536 else { 1537 SkipUntil(tok::r_brace); 1538 while (IsFunctionTryBlock && Tok.is(tok::kw_catch)) { 1539 SkipUntil(tok::l_brace); 1540 SkipUntil(tok::r_brace); 1541 } 1542 } 1543 } 1544 1545 /// ParseKNRParamDeclarations - Parse 'declaration-list[opt]' which provides 1546 /// types for a function with a K&R-style identifier list for arguments. 1547 void Parser::ParseKNRParamDeclarations(Declarator &D) { 1548 // We know that the top-level of this declarator is a function. 1549 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 1550 1551 // Enter function-declaration scope, limiting any declarators to the 1552 // function prototype scope, including parameter declarators. 1553 ParseScope PrototypeScope(this, Scope::FunctionPrototypeScope | 1554 Scope::FunctionDeclarationScope | Scope::DeclScope); 1555 1556 // Read all the argument declarations. 1557 while (isDeclarationSpecifier(ImplicitTypenameContext::No)) { 1558 SourceLocation DSStart = Tok.getLocation(); 1559 1560 // Parse the common declaration-specifiers piece. 1561 DeclSpec DS(AttrFactory); 1562 ParsedTemplateInfo TemplateInfo; 1563 ParseDeclarationSpecifiers(DS, TemplateInfo); 1564 1565 // C99 6.9.1p6: 'each declaration in the declaration list shall have at 1566 // least one declarator'. 1567 // NOTE: GCC just makes this an ext-warn. It's not clear what it does with 1568 // the declarations though. It's trivial to ignore them, really hard to do 1569 // anything else with them. 1570 if (TryConsumeToken(tok::semi)) { 1571 Diag(DSStart, diag::err_declaration_does_not_declare_param); 1572 continue; 1573 } 1574 1575 // C99 6.9.1p6: Declarations shall contain no storage-class specifiers other 1576 // than register. 1577 if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified && 1578 DS.getStorageClassSpec() != DeclSpec::SCS_register) { 1579 Diag(DS.getStorageClassSpecLoc(), 1580 diag::err_invalid_storage_class_in_func_decl); 1581 DS.ClearStorageClassSpecs(); 1582 } 1583 if (DS.getThreadStorageClassSpec() != DeclSpec::TSCS_unspecified) { 1584 Diag(DS.getThreadStorageClassSpecLoc(), 1585 diag::err_invalid_storage_class_in_func_decl); 1586 DS.ClearStorageClassSpecs(); 1587 } 1588 1589 // Parse the first declarator attached to this declspec. 1590 Declarator ParmDeclarator(DS, ParsedAttributesView::none(), 1591 DeclaratorContext::KNRTypeList); 1592 ParseDeclarator(ParmDeclarator); 1593 1594 // Handle the full declarator list. 1595 while (true) { 1596 // If attributes are present, parse them. 1597 MaybeParseGNUAttributes(ParmDeclarator); 1598 1599 // Ask the actions module to compute the type for this declarator. 1600 Decl *Param = 1601 Actions.ActOnParamDeclarator(getCurScope(), ParmDeclarator); 1602 1603 if (Param && 1604 // A missing identifier has already been diagnosed. 1605 ParmDeclarator.getIdentifier()) { 1606 1607 // Scan the argument list looking for the correct param to apply this 1608 // type. 1609 for (unsigned i = 0; ; ++i) { 1610 // C99 6.9.1p6: those declarators shall declare only identifiers from 1611 // the identifier list. 1612 if (i == FTI.NumParams) { 1613 Diag(ParmDeclarator.getIdentifierLoc(), diag::err_no_matching_param) 1614 << ParmDeclarator.getIdentifier(); 1615 break; 1616 } 1617 1618 if (FTI.Params[i].Ident == ParmDeclarator.getIdentifier()) { 1619 // Reject redefinitions of parameters. 1620 if (FTI.Params[i].Param) { 1621 Diag(ParmDeclarator.getIdentifierLoc(), 1622 diag::err_param_redefinition) 1623 << ParmDeclarator.getIdentifier(); 1624 } else { 1625 FTI.Params[i].Param = Param; 1626 } 1627 break; 1628 } 1629 } 1630 } 1631 1632 // If we don't have a comma, it is either the end of the list (a ';') or 1633 // an error, bail out. 1634 if (Tok.isNot(tok::comma)) 1635 break; 1636 1637 ParmDeclarator.clear(); 1638 1639 // Consume the comma. 1640 ParmDeclarator.setCommaLoc(ConsumeToken()); 1641 1642 // Parse the next declarator. 1643 ParseDeclarator(ParmDeclarator); 1644 } 1645 1646 // Consume ';' and continue parsing. 1647 if (!ExpectAndConsumeSemi(diag::err_expected_semi_declaration)) 1648 continue; 1649 1650 // Otherwise recover by skipping to next semi or mandatory function body. 1651 if (SkipUntil(tok::l_brace, StopAtSemi | StopBeforeMatch)) 1652 break; 1653 TryConsumeToken(tok::semi); 1654 } 1655 1656 // The actions module must verify that all arguments were declared. 1657 Actions.ActOnFinishKNRParamDeclarations(getCurScope(), D, Tok.getLocation()); 1658 } 1659 1660 1661 /// ParseAsmStringLiteral - This is just a normal string-literal, but is not 1662 /// allowed to be a wide string, and is not subject to character translation. 1663 /// Unlike GCC, we also diagnose an empty string literal when parsing for an 1664 /// asm label as opposed to an asm statement, because such a construct does not 1665 /// behave well. 1666 /// 1667 /// [GNU] asm-string-literal: 1668 /// string-literal 1669 /// 1670 ExprResult Parser::ParseAsmStringLiteral(bool ForAsmLabel) { 1671 if (!isTokenStringLiteral()) { 1672 Diag(Tok, diag::err_expected_string_literal) 1673 << /*Source='in...'*/0 << "'asm'"; 1674 return ExprError(); 1675 } 1676 1677 ExprResult AsmString(ParseStringLiteralExpression()); 1678 if (!AsmString.isInvalid()) { 1679 const auto *SL = cast<StringLiteral>(AsmString.get()); 1680 if (!SL->isOrdinary()) { 1681 Diag(Tok, diag::err_asm_operand_wide_string_literal) 1682 << SL->isWide() 1683 << SL->getSourceRange(); 1684 return ExprError(); 1685 } 1686 if (ForAsmLabel && SL->getString().empty()) { 1687 Diag(Tok, diag::err_asm_operand_wide_string_literal) 1688 << 2 /* an empty */ << SL->getSourceRange(); 1689 return ExprError(); 1690 } 1691 } 1692 return AsmString; 1693 } 1694 1695 /// ParseSimpleAsm 1696 /// 1697 /// [GNU] simple-asm-expr: 1698 /// 'asm' '(' asm-string-literal ')' 1699 /// 1700 ExprResult Parser::ParseSimpleAsm(bool ForAsmLabel, SourceLocation *EndLoc) { 1701 assert(Tok.is(tok::kw_asm) && "Not an asm!"); 1702 SourceLocation Loc = ConsumeToken(); 1703 1704 if (isGNUAsmQualifier(Tok)) { 1705 // Remove from the end of 'asm' to the end of the asm qualifier. 1706 SourceRange RemovalRange(PP.getLocForEndOfToken(Loc), 1707 PP.getLocForEndOfToken(Tok.getLocation())); 1708 Diag(Tok, diag::err_global_asm_qualifier_ignored) 1709 << GNUAsmQualifiers::getQualifierName(getGNUAsmQualifier(Tok)) 1710 << FixItHint::CreateRemoval(RemovalRange); 1711 ConsumeToken(); 1712 } 1713 1714 BalancedDelimiterTracker T(*this, tok::l_paren); 1715 if (T.consumeOpen()) { 1716 Diag(Tok, diag::err_expected_lparen_after) << "asm"; 1717 return ExprError(); 1718 } 1719 1720 ExprResult Result(ParseAsmStringLiteral(ForAsmLabel)); 1721 1722 if (!Result.isInvalid()) { 1723 // Close the paren and get the location of the end bracket 1724 T.consumeClose(); 1725 if (EndLoc) 1726 *EndLoc = T.getCloseLocation(); 1727 } else if (SkipUntil(tok::r_paren, StopAtSemi | StopBeforeMatch)) { 1728 if (EndLoc) 1729 *EndLoc = Tok.getLocation(); 1730 ConsumeParen(); 1731 } 1732 1733 return Result; 1734 } 1735 1736 /// Get the TemplateIdAnnotation from the token and put it in the 1737 /// cleanup pool so that it gets destroyed when parsing the current top level 1738 /// declaration is finished. 1739 TemplateIdAnnotation *Parser::takeTemplateIdAnnotation(const Token &tok) { 1740 assert(tok.is(tok::annot_template_id) && "Expected template-id token"); 1741 TemplateIdAnnotation * 1742 Id = static_cast<TemplateIdAnnotation *>(tok.getAnnotationValue()); 1743 return Id; 1744 } 1745 1746 void Parser::AnnotateScopeToken(CXXScopeSpec &SS, bool IsNewAnnotation) { 1747 // Push the current token back into the token stream (or revert it if it is 1748 // cached) and use an annotation scope token for current token. 1749 if (PP.isBacktrackEnabled()) 1750 PP.RevertCachedTokens(1); 1751 else 1752 PP.EnterToken(Tok, /*IsReinject=*/true); 1753 Tok.setKind(tok::annot_cxxscope); 1754 Tok.setAnnotationValue(Actions.SaveNestedNameSpecifierAnnotation(SS)); 1755 Tok.setAnnotationRange(SS.getRange()); 1756 1757 // In case the tokens were cached, have Preprocessor replace them 1758 // with the annotation token. We don't need to do this if we've 1759 // just reverted back to a prior state. 1760 if (IsNewAnnotation) 1761 PP.AnnotateCachedTokens(Tok); 1762 } 1763 1764 /// Attempt to classify the name at the current token position. This may 1765 /// form a type, scope or primary expression annotation, or replace the token 1766 /// with a typo-corrected keyword. This is only appropriate when the current 1767 /// name must refer to an entity which has already been declared. 1768 /// 1769 /// \param CCC Indicates how to perform typo-correction for this name. If NULL, 1770 /// no typo correction will be performed. 1771 /// \param AllowImplicitTypename Whether we are in a context where a dependent 1772 /// nested-name-specifier without typename is treated as a type (e.g. 1773 /// T::type). 1774 Parser::AnnotatedNameKind 1775 Parser::TryAnnotateName(CorrectionCandidateCallback *CCC, 1776 ImplicitTypenameContext AllowImplicitTypename) { 1777 assert(Tok.is(tok::identifier) || Tok.is(tok::annot_cxxscope)); 1778 1779 const bool EnteringContext = false; 1780 const bool WasScopeAnnotation = Tok.is(tok::annot_cxxscope); 1781 1782 CXXScopeSpec SS; 1783 if (getLangOpts().CPlusPlus && 1784 ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/nullptr, 1785 /*ObjectHasErrors=*/false, 1786 EnteringContext)) 1787 return ANK_Error; 1788 1789 if (Tok.isNot(tok::identifier) || SS.isInvalid()) { 1790 if (TryAnnotateTypeOrScopeTokenAfterScopeSpec(SS, !WasScopeAnnotation, 1791 AllowImplicitTypename)) 1792 return ANK_Error; 1793 return ANK_Unresolved; 1794 } 1795 1796 IdentifierInfo *Name = Tok.getIdentifierInfo(); 1797 SourceLocation NameLoc = Tok.getLocation(); 1798 1799 // FIXME: Move the tentative declaration logic into ClassifyName so we can 1800 // typo-correct to tentatively-declared identifiers. 1801 if (isTentativelyDeclared(Name) && SS.isEmpty()) { 1802 // Identifier has been tentatively declared, and thus cannot be resolved as 1803 // an expression. Fall back to annotating it as a type. 1804 if (TryAnnotateTypeOrScopeTokenAfterScopeSpec(SS, !WasScopeAnnotation, 1805 AllowImplicitTypename)) 1806 return ANK_Error; 1807 return Tok.is(tok::annot_typename) ? ANK_Success : ANK_TentativeDecl; 1808 } 1809 1810 Token Next = NextToken(); 1811 1812 // Look up and classify the identifier. We don't perform any typo-correction 1813 // after a scope specifier, because in general we can't recover from typos 1814 // there (eg, after correcting 'A::template B<X>::C' [sic], we would need to 1815 // jump back into scope specifier parsing). 1816 Sema::NameClassification Classification = Actions.ClassifyName( 1817 getCurScope(), SS, Name, NameLoc, Next, SS.isEmpty() ? CCC : nullptr); 1818 1819 // If name lookup found nothing and we guessed that this was a template name, 1820 // double-check before committing to that interpretation. C++20 requires that 1821 // we interpret this as a template-id if it can be, but if it can't be, then 1822 // this is an error recovery case. 1823 if (Classification.getKind() == Sema::NC_UndeclaredTemplate && 1824 isTemplateArgumentList(1) == TPResult::False) { 1825 // It's not a template-id; re-classify without the '<' as a hint. 1826 Token FakeNext = Next; 1827 FakeNext.setKind(tok::unknown); 1828 Classification = 1829 Actions.ClassifyName(getCurScope(), SS, Name, NameLoc, FakeNext, 1830 SS.isEmpty() ? CCC : nullptr); 1831 } 1832 1833 switch (Classification.getKind()) { 1834 case Sema::NC_Error: 1835 return ANK_Error; 1836 1837 case Sema::NC_Keyword: 1838 // The identifier was typo-corrected to a keyword. 1839 Tok.setIdentifierInfo(Name); 1840 Tok.setKind(Name->getTokenID()); 1841 PP.TypoCorrectToken(Tok); 1842 if (SS.isNotEmpty()) 1843 AnnotateScopeToken(SS, !WasScopeAnnotation); 1844 // We've "annotated" this as a keyword. 1845 return ANK_Success; 1846 1847 case Sema::NC_Unknown: 1848 // It's not something we know about. Leave it unannotated. 1849 break; 1850 1851 case Sema::NC_Type: { 1852 if (TryAltiVecVectorToken()) 1853 // vector has been found as a type id when altivec is enabled but 1854 // this is followed by a declaration specifier so this is really the 1855 // altivec vector token. Leave it unannotated. 1856 break; 1857 SourceLocation BeginLoc = NameLoc; 1858 if (SS.isNotEmpty()) 1859 BeginLoc = SS.getBeginLoc(); 1860 1861 /// An Objective-C object type followed by '<' is a specialization of 1862 /// a parameterized class type or a protocol-qualified type. 1863 ParsedType Ty = Classification.getType(); 1864 if (getLangOpts().ObjC && NextToken().is(tok::less) && 1865 (Ty.get()->isObjCObjectType() || 1866 Ty.get()->isObjCObjectPointerType())) { 1867 // Consume the name. 1868 SourceLocation IdentifierLoc = ConsumeToken(); 1869 SourceLocation NewEndLoc; 1870 TypeResult NewType 1871 = parseObjCTypeArgsAndProtocolQualifiers(IdentifierLoc, Ty, 1872 /*consumeLastToken=*/false, 1873 NewEndLoc); 1874 if (NewType.isUsable()) 1875 Ty = NewType.get(); 1876 else if (Tok.is(tok::eof)) // Nothing to do here, bail out... 1877 return ANK_Error; 1878 } 1879 1880 Tok.setKind(tok::annot_typename); 1881 setTypeAnnotation(Tok, Ty); 1882 Tok.setAnnotationEndLoc(Tok.getLocation()); 1883 Tok.setLocation(BeginLoc); 1884 PP.AnnotateCachedTokens(Tok); 1885 return ANK_Success; 1886 } 1887 1888 case Sema::NC_OverloadSet: 1889 Tok.setKind(tok::annot_overload_set); 1890 setExprAnnotation(Tok, Classification.getExpression()); 1891 Tok.setAnnotationEndLoc(NameLoc); 1892 if (SS.isNotEmpty()) 1893 Tok.setLocation(SS.getBeginLoc()); 1894 PP.AnnotateCachedTokens(Tok); 1895 return ANK_Success; 1896 1897 case Sema::NC_NonType: 1898 if (TryAltiVecVectorToken()) 1899 // vector has been found as a non-type id when altivec is enabled but 1900 // this is followed by a declaration specifier so this is really the 1901 // altivec vector token. Leave it unannotated. 1902 break; 1903 Tok.setKind(tok::annot_non_type); 1904 setNonTypeAnnotation(Tok, Classification.getNonTypeDecl()); 1905 Tok.setLocation(NameLoc); 1906 Tok.setAnnotationEndLoc(NameLoc); 1907 PP.AnnotateCachedTokens(Tok); 1908 if (SS.isNotEmpty()) 1909 AnnotateScopeToken(SS, !WasScopeAnnotation); 1910 return ANK_Success; 1911 1912 case Sema::NC_UndeclaredNonType: 1913 case Sema::NC_DependentNonType: 1914 Tok.setKind(Classification.getKind() == Sema::NC_UndeclaredNonType 1915 ? tok::annot_non_type_undeclared 1916 : tok::annot_non_type_dependent); 1917 setIdentifierAnnotation(Tok, Name); 1918 Tok.setLocation(NameLoc); 1919 Tok.setAnnotationEndLoc(NameLoc); 1920 PP.AnnotateCachedTokens(Tok); 1921 if (SS.isNotEmpty()) 1922 AnnotateScopeToken(SS, !WasScopeAnnotation); 1923 return ANK_Success; 1924 1925 case Sema::NC_TypeTemplate: 1926 if (Next.isNot(tok::less)) { 1927 // This may be a type template being used as a template template argument. 1928 if (SS.isNotEmpty()) 1929 AnnotateScopeToken(SS, !WasScopeAnnotation); 1930 return ANK_TemplateName; 1931 } 1932 [[fallthrough]]; 1933 case Sema::NC_Concept: 1934 case Sema::NC_VarTemplate: 1935 case Sema::NC_FunctionTemplate: 1936 case Sema::NC_UndeclaredTemplate: { 1937 bool IsConceptName = Classification.getKind() == Sema::NC_Concept; 1938 // We have a template name followed by '<'. Consume the identifier token so 1939 // we reach the '<' and annotate it. 1940 if (Next.is(tok::less)) 1941 ConsumeToken(); 1942 UnqualifiedId Id; 1943 Id.setIdentifier(Name, NameLoc); 1944 if (AnnotateTemplateIdToken( 1945 TemplateTy::make(Classification.getTemplateName()), 1946 Classification.getTemplateNameKind(), SS, SourceLocation(), Id, 1947 /*AllowTypeAnnotation=*/!IsConceptName, 1948 /*TypeConstraint=*/IsConceptName)) 1949 return ANK_Error; 1950 if (SS.isNotEmpty()) 1951 AnnotateScopeToken(SS, !WasScopeAnnotation); 1952 return ANK_Success; 1953 } 1954 } 1955 1956 // Unable to classify the name, but maybe we can annotate a scope specifier. 1957 if (SS.isNotEmpty()) 1958 AnnotateScopeToken(SS, !WasScopeAnnotation); 1959 return ANK_Unresolved; 1960 } 1961 1962 bool Parser::TryKeywordIdentFallback(bool DisableKeyword) { 1963 assert(Tok.isNot(tok::identifier)); 1964 Diag(Tok, diag::ext_keyword_as_ident) 1965 << PP.getSpelling(Tok) 1966 << DisableKeyword; 1967 if (DisableKeyword) 1968 Tok.getIdentifierInfo()->revertTokenIDToIdentifier(); 1969 Tok.setKind(tok::identifier); 1970 return true; 1971 } 1972 1973 /// TryAnnotateTypeOrScopeToken - If the current token position is on a 1974 /// typename (possibly qualified in C++) or a C++ scope specifier not followed 1975 /// by a typename, TryAnnotateTypeOrScopeToken will replace one or more tokens 1976 /// with a single annotation token representing the typename or C++ scope 1977 /// respectively. 1978 /// This simplifies handling of C++ scope specifiers and allows efficient 1979 /// backtracking without the need to re-parse and resolve nested-names and 1980 /// typenames. 1981 /// It will mainly be called when we expect to treat identifiers as typenames 1982 /// (if they are typenames). For example, in C we do not expect identifiers 1983 /// inside expressions to be treated as typenames so it will not be called 1984 /// for expressions in C. 1985 /// The benefit for C/ObjC is that a typename will be annotated and 1986 /// Actions.getTypeName will not be needed to be called again (e.g. getTypeName 1987 /// will not be called twice, once to check whether we have a declaration 1988 /// specifier, and another one to get the actual type inside 1989 /// ParseDeclarationSpecifiers). 1990 /// 1991 /// This returns true if an error occurred. 1992 /// 1993 /// Note that this routine emits an error if you call it with ::new or ::delete 1994 /// as the current tokens, so only call it in contexts where these are invalid. 1995 bool Parser::TryAnnotateTypeOrScopeToken( 1996 ImplicitTypenameContext AllowImplicitTypename) { 1997 assert((Tok.is(tok::identifier) || Tok.is(tok::coloncolon) || 1998 Tok.is(tok::kw_typename) || Tok.is(tok::annot_cxxscope) || 1999 Tok.is(tok::kw_decltype) || Tok.is(tok::annot_template_id) || 2000 Tok.is(tok::kw___super) || Tok.is(tok::kw_auto) || 2001 Tok.is(tok::annot_pack_indexing_type)) && 2002 "Cannot be a type or scope token!"); 2003 2004 if (Tok.is(tok::kw_typename)) { 2005 // MSVC lets you do stuff like: 2006 // typename typedef T_::D D; 2007 // 2008 // We will consume the typedef token here and put it back after we have 2009 // parsed the first identifier, transforming it into something more like: 2010 // typename T_::D typedef D; 2011 if (getLangOpts().MSVCCompat && NextToken().is(tok::kw_typedef)) { 2012 Token TypedefToken; 2013 PP.Lex(TypedefToken); 2014 bool Result = TryAnnotateTypeOrScopeToken(AllowImplicitTypename); 2015 PP.EnterToken(Tok, /*IsReinject=*/true); 2016 Tok = TypedefToken; 2017 if (!Result) 2018 Diag(Tok.getLocation(), diag::warn_expected_qualified_after_typename); 2019 return Result; 2020 } 2021 2022 // Parse a C++ typename-specifier, e.g., "typename T::type". 2023 // 2024 // typename-specifier: 2025 // 'typename' '::' [opt] nested-name-specifier identifier 2026 // 'typename' '::' [opt] nested-name-specifier template [opt] 2027 // simple-template-id 2028 SourceLocation TypenameLoc = ConsumeToken(); 2029 CXXScopeSpec SS; 2030 if (ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/nullptr, 2031 /*ObjectHasErrors=*/false, 2032 /*EnteringContext=*/false, nullptr, 2033 /*IsTypename*/ true)) 2034 return true; 2035 if (SS.isEmpty()) { 2036 if (Tok.is(tok::identifier) || Tok.is(tok::annot_template_id) || 2037 Tok.is(tok::annot_decltype)) { 2038 // Attempt to recover by skipping the invalid 'typename' 2039 if (Tok.is(tok::annot_decltype) || 2040 (!TryAnnotateTypeOrScopeToken(AllowImplicitTypename) && 2041 Tok.isAnnotation())) { 2042 unsigned DiagID = diag::err_expected_qualified_after_typename; 2043 // MS compatibility: MSVC permits using known types with typename. 2044 // e.g. "typedef typename T* pointer_type" 2045 if (getLangOpts().MicrosoftExt) 2046 DiagID = diag::warn_expected_qualified_after_typename; 2047 Diag(Tok.getLocation(), DiagID); 2048 return false; 2049 } 2050 } 2051 if (Tok.isEditorPlaceholder()) 2052 return true; 2053 2054 Diag(Tok.getLocation(), diag::err_expected_qualified_after_typename); 2055 return true; 2056 } 2057 2058 bool TemplateKWPresent = false; 2059 if (Tok.is(tok::kw_template)) { 2060 ConsumeToken(); 2061 TemplateKWPresent = true; 2062 } 2063 2064 TypeResult Ty; 2065 if (Tok.is(tok::identifier)) { 2066 if (TemplateKWPresent && NextToken().isNot(tok::less)) { 2067 Diag(Tok.getLocation(), 2068 diag::missing_template_arg_list_after_template_kw); 2069 return true; 2070 } 2071 Ty = Actions.ActOnTypenameType(getCurScope(), TypenameLoc, SS, 2072 *Tok.getIdentifierInfo(), 2073 Tok.getLocation()); 2074 } else if (Tok.is(tok::annot_template_id)) { 2075 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok); 2076 if (!TemplateId->mightBeType()) { 2077 Diag(Tok, diag::err_typename_refers_to_non_type_template) 2078 << Tok.getAnnotationRange(); 2079 return true; 2080 } 2081 2082 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), 2083 TemplateId->NumArgs); 2084 2085 Ty = TemplateId->isInvalid() 2086 ? TypeError() 2087 : Actions.ActOnTypenameType( 2088 getCurScope(), TypenameLoc, SS, TemplateId->TemplateKWLoc, 2089 TemplateId->Template, TemplateId->Name, 2090 TemplateId->TemplateNameLoc, TemplateId->LAngleLoc, 2091 TemplateArgsPtr, TemplateId->RAngleLoc); 2092 } else { 2093 Diag(Tok, diag::err_expected_type_name_after_typename) 2094 << SS.getRange(); 2095 return true; 2096 } 2097 2098 SourceLocation EndLoc = Tok.getLastLoc(); 2099 Tok.setKind(tok::annot_typename); 2100 setTypeAnnotation(Tok, Ty); 2101 Tok.setAnnotationEndLoc(EndLoc); 2102 Tok.setLocation(TypenameLoc); 2103 PP.AnnotateCachedTokens(Tok); 2104 return false; 2105 } 2106 2107 // Remembers whether the token was originally a scope annotation. 2108 bool WasScopeAnnotation = Tok.is(tok::annot_cxxscope); 2109 2110 CXXScopeSpec SS; 2111 if (getLangOpts().CPlusPlus) 2112 if (ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/nullptr, 2113 /*ObjectHasErrors=*/false, 2114 /*EnteringContext*/ false)) 2115 return true; 2116 2117 return TryAnnotateTypeOrScopeTokenAfterScopeSpec(SS, !WasScopeAnnotation, 2118 AllowImplicitTypename); 2119 } 2120 2121 /// Try to annotate a type or scope token, having already parsed an 2122 /// optional scope specifier. \p IsNewScope should be \c true unless the scope 2123 /// specifier was extracted from an existing tok::annot_cxxscope annotation. 2124 bool Parser::TryAnnotateTypeOrScopeTokenAfterScopeSpec( 2125 CXXScopeSpec &SS, bool IsNewScope, 2126 ImplicitTypenameContext AllowImplicitTypename) { 2127 if (Tok.is(tok::identifier)) { 2128 // Determine whether the identifier is a type name. 2129 if (ParsedType Ty = Actions.getTypeName( 2130 *Tok.getIdentifierInfo(), Tok.getLocation(), getCurScope(), &SS, 2131 false, NextToken().is(tok::period), nullptr, 2132 /*IsCtorOrDtorName=*/false, 2133 /*NonTrivialTypeSourceInfo=*/true, 2134 /*IsClassTemplateDeductionContext=*/true, AllowImplicitTypename)) { 2135 SourceLocation BeginLoc = Tok.getLocation(); 2136 if (SS.isNotEmpty()) // it was a C++ qualified type name. 2137 BeginLoc = SS.getBeginLoc(); 2138 2139 /// An Objective-C object type followed by '<' is a specialization of 2140 /// a parameterized class type or a protocol-qualified type. 2141 if (getLangOpts().ObjC && NextToken().is(tok::less) && 2142 (Ty.get()->isObjCObjectType() || 2143 Ty.get()->isObjCObjectPointerType())) { 2144 // Consume the name. 2145 SourceLocation IdentifierLoc = ConsumeToken(); 2146 SourceLocation NewEndLoc; 2147 TypeResult NewType 2148 = parseObjCTypeArgsAndProtocolQualifiers(IdentifierLoc, Ty, 2149 /*consumeLastToken=*/false, 2150 NewEndLoc); 2151 if (NewType.isUsable()) 2152 Ty = NewType.get(); 2153 else if (Tok.is(tok::eof)) // Nothing to do here, bail out... 2154 return false; 2155 } 2156 2157 // This is a typename. Replace the current token in-place with an 2158 // annotation type token. 2159 Tok.setKind(tok::annot_typename); 2160 setTypeAnnotation(Tok, Ty); 2161 Tok.setAnnotationEndLoc(Tok.getLocation()); 2162 Tok.setLocation(BeginLoc); 2163 2164 // In case the tokens were cached, have Preprocessor replace 2165 // them with the annotation token. 2166 PP.AnnotateCachedTokens(Tok); 2167 return false; 2168 } 2169 2170 if (!getLangOpts().CPlusPlus) { 2171 // If we're in C, the only place we can have :: tokens is C23 2172 // attribute which is parsed elsewhere. If the identifier is not a type, 2173 // then it can't be scope either, just early exit. 2174 return false; 2175 } 2176 2177 // If this is a template-id, annotate with a template-id or type token. 2178 // FIXME: This appears to be dead code. We already have formed template-id 2179 // tokens when parsing the scope specifier; this can never form a new one. 2180 if (NextToken().is(tok::less)) { 2181 TemplateTy Template; 2182 UnqualifiedId TemplateName; 2183 TemplateName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation()); 2184 bool MemberOfUnknownSpecialization; 2185 if (TemplateNameKind TNK = Actions.isTemplateName( 2186 getCurScope(), SS, 2187 /*hasTemplateKeyword=*/false, TemplateName, 2188 /*ObjectType=*/nullptr, /*EnteringContext*/false, Template, 2189 MemberOfUnknownSpecialization)) { 2190 // Only annotate an undeclared template name as a template-id if the 2191 // following tokens have the form of a template argument list. 2192 if (TNK != TNK_Undeclared_template || 2193 isTemplateArgumentList(1) != TPResult::False) { 2194 // Consume the identifier. 2195 ConsumeToken(); 2196 if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(), 2197 TemplateName)) { 2198 // If an unrecoverable error occurred, we need to return true here, 2199 // because the token stream is in a damaged state. We may not 2200 // return a valid identifier. 2201 return true; 2202 } 2203 } 2204 } 2205 } 2206 2207 // The current token, which is either an identifier or a 2208 // template-id, is not part of the annotation. Fall through to 2209 // push that token back into the stream and complete the C++ scope 2210 // specifier annotation. 2211 } 2212 2213 if (Tok.is(tok::annot_template_id)) { 2214 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok); 2215 if (TemplateId->Kind == TNK_Type_template) { 2216 // A template-id that refers to a type was parsed into a 2217 // template-id annotation in a context where we weren't allowed 2218 // to produce a type annotation token. Update the template-id 2219 // annotation token to a type annotation token now. 2220 AnnotateTemplateIdTokenAsType(SS, AllowImplicitTypename); 2221 return false; 2222 } 2223 } 2224 2225 if (SS.isEmpty()) { 2226 if (getLangOpts().ObjC && !getLangOpts().CPlusPlus && 2227 Tok.is(tok::coloncolon)) { 2228 // ObjectiveC does not allow :: as as a scope token. 2229 Diag(ConsumeToken(), diag::err_expected_type); 2230 return true; 2231 } 2232 return false; 2233 } 2234 2235 // A C++ scope specifier that isn't followed by a typename. 2236 AnnotateScopeToken(SS, IsNewScope); 2237 return false; 2238 } 2239 2240 /// TryAnnotateScopeToken - Like TryAnnotateTypeOrScopeToken but only 2241 /// annotates C++ scope specifiers and template-ids. This returns 2242 /// true if there was an error that could not be recovered from. 2243 /// 2244 /// Note that this routine emits an error if you call it with ::new or ::delete 2245 /// as the current tokens, so only call it in contexts where these are invalid. 2246 bool Parser::TryAnnotateCXXScopeToken(bool EnteringContext) { 2247 assert(getLangOpts().CPlusPlus && 2248 "Call sites of this function should be guarded by checking for C++"); 2249 assert(MightBeCXXScopeToken() && "Cannot be a type or scope token!"); 2250 2251 CXXScopeSpec SS; 2252 if (ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/nullptr, 2253 /*ObjectHasErrors=*/false, 2254 EnteringContext)) 2255 return true; 2256 if (SS.isEmpty()) 2257 return false; 2258 2259 AnnotateScopeToken(SS, true); 2260 return false; 2261 } 2262 2263 bool Parser::isTokenEqualOrEqualTypo() { 2264 tok::TokenKind Kind = Tok.getKind(); 2265 switch (Kind) { 2266 default: 2267 return false; 2268 case tok::ampequal: // &= 2269 case tok::starequal: // *= 2270 case tok::plusequal: // += 2271 case tok::minusequal: // -= 2272 case tok::exclaimequal: // != 2273 case tok::slashequal: // /= 2274 case tok::percentequal: // %= 2275 case tok::lessequal: // <= 2276 case tok::lesslessequal: // <<= 2277 case tok::greaterequal: // >= 2278 case tok::greatergreaterequal: // >>= 2279 case tok::caretequal: // ^= 2280 case tok::pipeequal: // |= 2281 case tok::equalequal: // == 2282 Diag(Tok, diag::err_invalid_token_after_declarator_suggest_equal) 2283 << Kind 2284 << FixItHint::CreateReplacement(SourceRange(Tok.getLocation()), "="); 2285 [[fallthrough]]; 2286 case tok::equal: 2287 return true; 2288 } 2289 } 2290 2291 SourceLocation Parser::handleUnexpectedCodeCompletionToken() { 2292 assert(Tok.is(tok::code_completion)); 2293 PrevTokLocation = Tok.getLocation(); 2294 2295 for (Scope *S = getCurScope(); S; S = S->getParent()) { 2296 if (S->isFunctionScope()) { 2297 cutOffParsing(); 2298 Actions.CodeCompletion().CodeCompleteOrdinaryName( 2299 getCurScope(), SemaCodeCompletion::PCC_RecoveryInFunction); 2300 return PrevTokLocation; 2301 } 2302 2303 if (S->isClassScope()) { 2304 cutOffParsing(); 2305 Actions.CodeCompletion().CodeCompleteOrdinaryName( 2306 getCurScope(), SemaCodeCompletion::PCC_Class); 2307 return PrevTokLocation; 2308 } 2309 } 2310 2311 cutOffParsing(); 2312 Actions.CodeCompletion().CodeCompleteOrdinaryName( 2313 getCurScope(), SemaCodeCompletion::PCC_Namespace); 2314 return PrevTokLocation; 2315 } 2316 2317 // Code-completion pass-through functions 2318 2319 void Parser::CodeCompleteDirective(bool InConditional) { 2320 Actions.CodeCompletion().CodeCompletePreprocessorDirective(InConditional); 2321 } 2322 2323 void Parser::CodeCompleteInConditionalExclusion() { 2324 Actions.CodeCompletion().CodeCompleteInPreprocessorConditionalExclusion( 2325 getCurScope()); 2326 } 2327 2328 void Parser::CodeCompleteMacroName(bool IsDefinition) { 2329 Actions.CodeCompletion().CodeCompletePreprocessorMacroName(IsDefinition); 2330 } 2331 2332 void Parser::CodeCompletePreprocessorExpression() { 2333 Actions.CodeCompletion().CodeCompletePreprocessorExpression(); 2334 } 2335 2336 void Parser::CodeCompleteMacroArgument(IdentifierInfo *Macro, 2337 MacroInfo *MacroInfo, 2338 unsigned ArgumentIndex) { 2339 Actions.CodeCompletion().CodeCompletePreprocessorMacroArgument( 2340 getCurScope(), Macro, MacroInfo, ArgumentIndex); 2341 } 2342 2343 void Parser::CodeCompleteIncludedFile(llvm::StringRef Dir, bool IsAngled) { 2344 Actions.CodeCompletion().CodeCompleteIncludedFile(Dir, IsAngled); 2345 } 2346 2347 void Parser::CodeCompleteNaturalLanguage() { 2348 Actions.CodeCompletion().CodeCompleteNaturalLanguage(); 2349 } 2350 2351 bool Parser::ParseMicrosoftIfExistsCondition(IfExistsCondition& Result) { 2352 assert((Tok.is(tok::kw___if_exists) || Tok.is(tok::kw___if_not_exists)) && 2353 "Expected '__if_exists' or '__if_not_exists'"); 2354 Result.IsIfExists = Tok.is(tok::kw___if_exists); 2355 Result.KeywordLoc = ConsumeToken(); 2356 2357 BalancedDelimiterTracker T(*this, tok::l_paren); 2358 if (T.consumeOpen()) { 2359 Diag(Tok, diag::err_expected_lparen_after) 2360 << (Result.IsIfExists? "__if_exists" : "__if_not_exists"); 2361 return true; 2362 } 2363 2364 // Parse nested-name-specifier. 2365 if (getLangOpts().CPlusPlus) 2366 ParseOptionalCXXScopeSpecifier(Result.SS, /*ObjectType=*/nullptr, 2367 /*ObjectHasErrors=*/false, 2368 /*EnteringContext=*/false); 2369 2370 // Check nested-name specifier. 2371 if (Result.SS.isInvalid()) { 2372 T.skipToEnd(); 2373 return true; 2374 } 2375 2376 // Parse the unqualified-id. 2377 SourceLocation TemplateKWLoc; // FIXME: parsed, but unused. 2378 if (ParseUnqualifiedId(Result.SS, /*ObjectType=*/nullptr, 2379 /*ObjectHadErrors=*/false, /*EnteringContext*/ false, 2380 /*AllowDestructorName*/ true, 2381 /*AllowConstructorName*/ true, 2382 /*AllowDeductionGuide*/ false, &TemplateKWLoc, 2383 Result.Name)) { 2384 T.skipToEnd(); 2385 return true; 2386 } 2387 2388 if (T.consumeClose()) 2389 return true; 2390 2391 // Check if the symbol exists. 2392 switch (Actions.CheckMicrosoftIfExistsSymbol(getCurScope(), Result.KeywordLoc, 2393 Result.IsIfExists, Result.SS, 2394 Result.Name)) { 2395 case Sema::IER_Exists: 2396 Result.Behavior = Result.IsIfExists ? IEB_Parse : IEB_Skip; 2397 break; 2398 2399 case Sema::IER_DoesNotExist: 2400 Result.Behavior = !Result.IsIfExists ? IEB_Parse : IEB_Skip; 2401 break; 2402 2403 case Sema::IER_Dependent: 2404 Result.Behavior = IEB_Dependent; 2405 break; 2406 2407 case Sema::IER_Error: 2408 return true; 2409 } 2410 2411 return false; 2412 } 2413 2414 void Parser::ParseMicrosoftIfExistsExternalDeclaration() { 2415 IfExistsCondition Result; 2416 if (ParseMicrosoftIfExistsCondition(Result)) 2417 return; 2418 2419 BalancedDelimiterTracker Braces(*this, tok::l_brace); 2420 if (Braces.consumeOpen()) { 2421 Diag(Tok, diag::err_expected) << tok::l_brace; 2422 return; 2423 } 2424 2425 switch (Result.Behavior) { 2426 case IEB_Parse: 2427 // Parse declarations below. 2428 break; 2429 2430 case IEB_Dependent: 2431 llvm_unreachable("Cannot have a dependent external declaration"); 2432 2433 case IEB_Skip: 2434 Braces.skipToEnd(); 2435 return; 2436 } 2437 2438 // Parse the declarations. 2439 // FIXME: Support module import within __if_exists? 2440 while (Tok.isNot(tok::r_brace) && !isEofOrEom()) { 2441 ParsedAttributes Attrs(AttrFactory); 2442 MaybeParseCXX11Attributes(Attrs); 2443 ParsedAttributes EmptyDeclSpecAttrs(AttrFactory); 2444 DeclGroupPtrTy Result = ParseExternalDeclaration(Attrs, EmptyDeclSpecAttrs); 2445 if (Result && !getCurScope()->getParent()) 2446 Actions.getASTConsumer().HandleTopLevelDecl(Result.get()); 2447 } 2448 Braces.consumeClose(); 2449 } 2450 2451 /// Parse a declaration beginning with the 'module' keyword or C++20 2452 /// context-sensitive keyword (optionally preceded by 'export'). 2453 /// 2454 /// module-declaration: [C++20] 2455 /// 'export'[opt] 'module' module-name attribute-specifier-seq[opt] ';' 2456 /// 2457 /// global-module-fragment: [C++2a] 2458 /// 'module' ';' top-level-declaration-seq[opt] 2459 /// module-declaration: [C++2a] 2460 /// 'export'[opt] 'module' module-name module-partition[opt] 2461 /// attribute-specifier-seq[opt] ';' 2462 /// private-module-fragment: [C++2a] 2463 /// 'module' ':' 'private' ';' top-level-declaration-seq[opt] 2464 Parser::DeclGroupPtrTy 2465 Parser::ParseModuleDecl(Sema::ModuleImportState &ImportState) { 2466 SourceLocation StartLoc = Tok.getLocation(); 2467 2468 Sema::ModuleDeclKind MDK = TryConsumeToken(tok::kw_export) 2469 ? Sema::ModuleDeclKind::Interface 2470 : Sema::ModuleDeclKind::Implementation; 2471 2472 assert( 2473 (Tok.is(tok::kw_module) || 2474 (Tok.is(tok::identifier) && Tok.getIdentifierInfo() == Ident_module)) && 2475 "not a module declaration"); 2476 SourceLocation ModuleLoc = ConsumeToken(); 2477 2478 // Attributes appear after the module name, not before. 2479 // FIXME: Suggest moving the attributes later with a fixit. 2480 DiagnoseAndSkipCXX11Attributes(); 2481 2482 // Parse a global-module-fragment, if present. 2483 if (getLangOpts().CPlusPlusModules && Tok.is(tok::semi)) { 2484 SourceLocation SemiLoc = ConsumeToken(); 2485 if (ImportState != Sema::ModuleImportState::FirstDecl) { 2486 Diag(StartLoc, diag::err_global_module_introducer_not_at_start) 2487 << SourceRange(StartLoc, SemiLoc); 2488 return nullptr; 2489 } 2490 if (MDK == Sema::ModuleDeclKind::Interface) { 2491 Diag(StartLoc, diag::err_module_fragment_exported) 2492 << /*global*/0 << FixItHint::CreateRemoval(StartLoc); 2493 } 2494 ImportState = Sema::ModuleImportState::GlobalFragment; 2495 return Actions.ActOnGlobalModuleFragmentDecl(ModuleLoc); 2496 } 2497 2498 // Parse a private-module-fragment, if present. 2499 if (getLangOpts().CPlusPlusModules && Tok.is(tok::colon) && 2500 NextToken().is(tok::kw_private)) { 2501 if (MDK == Sema::ModuleDeclKind::Interface) { 2502 Diag(StartLoc, diag::err_module_fragment_exported) 2503 << /*private*/1 << FixItHint::CreateRemoval(StartLoc); 2504 } 2505 ConsumeToken(); 2506 SourceLocation PrivateLoc = ConsumeToken(); 2507 DiagnoseAndSkipCXX11Attributes(); 2508 ExpectAndConsumeSemi(diag::err_private_module_fragment_expected_semi); 2509 ImportState = ImportState == Sema::ModuleImportState::ImportAllowed 2510 ? Sema::ModuleImportState::PrivateFragmentImportAllowed 2511 : Sema::ModuleImportState::PrivateFragmentImportFinished; 2512 return Actions.ActOnPrivateModuleFragmentDecl(ModuleLoc, PrivateLoc); 2513 } 2514 2515 SmallVector<std::pair<IdentifierInfo *, SourceLocation>, 2> Path; 2516 if (ParseModuleName(ModuleLoc, Path, /*IsImport*/ false)) 2517 return nullptr; 2518 2519 // Parse the optional module-partition. 2520 SmallVector<std::pair<IdentifierInfo *, SourceLocation>, 2> Partition; 2521 if (Tok.is(tok::colon)) { 2522 SourceLocation ColonLoc = ConsumeToken(); 2523 if (!getLangOpts().CPlusPlusModules) 2524 Diag(ColonLoc, diag::err_unsupported_module_partition) 2525 << SourceRange(ColonLoc, Partition.back().second); 2526 // Recover by ignoring the partition name. 2527 else if (ParseModuleName(ModuleLoc, Partition, /*IsImport*/ false)) 2528 return nullptr; 2529 } 2530 2531 // We don't support any module attributes yet; just parse them and diagnose. 2532 ParsedAttributes Attrs(AttrFactory); 2533 MaybeParseCXX11Attributes(Attrs); 2534 ProhibitCXX11Attributes(Attrs, diag::err_attribute_not_module_attr, 2535 diag::err_keyword_not_module_attr, 2536 /*DiagnoseEmptyAttrs=*/false, 2537 /*WarnOnUnknownAttrs=*/true); 2538 2539 ExpectAndConsumeSemi(diag::err_module_expected_semi); 2540 2541 return Actions.ActOnModuleDecl(StartLoc, ModuleLoc, MDK, Path, Partition, 2542 ImportState); 2543 } 2544 2545 /// Parse a module import declaration. This is essentially the same for 2546 /// Objective-C and C++20 except for the leading '@' (in ObjC) and the 2547 /// trailing optional attributes (in C++). 2548 /// 2549 /// [ObjC] @import declaration: 2550 /// '@' 'import' module-name ';' 2551 /// [ModTS] module-import-declaration: 2552 /// 'import' module-name attribute-specifier-seq[opt] ';' 2553 /// [C++20] module-import-declaration: 2554 /// 'export'[opt] 'import' module-name 2555 /// attribute-specifier-seq[opt] ';' 2556 /// 'export'[opt] 'import' module-partition 2557 /// attribute-specifier-seq[opt] ';' 2558 /// 'export'[opt] 'import' header-name 2559 /// attribute-specifier-seq[opt] ';' 2560 Decl *Parser::ParseModuleImport(SourceLocation AtLoc, 2561 Sema::ModuleImportState &ImportState) { 2562 SourceLocation StartLoc = AtLoc.isInvalid() ? Tok.getLocation() : AtLoc; 2563 2564 SourceLocation ExportLoc; 2565 TryConsumeToken(tok::kw_export, ExportLoc); 2566 2567 assert((AtLoc.isInvalid() ? Tok.isOneOf(tok::kw_import, tok::identifier) 2568 : Tok.isObjCAtKeyword(tok::objc_import)) && 2569 "Improper start to module import"); 2570 bool IsObjCAtImport = Tok.isObjCAtKeyword(tok::objc_import); 2571 SourceLocation ImportLoc = ConsumeToken(); 2572 2573 // For C++20 modules, we can have "name" or ":Partition name" as valid input. 2574 SmallVector<std::pair<IdentifierInfo *, SourceLocation>, 2> Path; 2575 bool IsPartition = false; 2576 Module *HeaderUnit = nullptr; 2577 if (Tok.is(tok::header_name)) { 2578 // This is a header import that the preprocessor decided we should skip 2579 // because it was malformed in some way. Parse and ignore it; it's already 2580 // been diagnosed. 2581 ConsumeToken(); 2582 } else if (Tok.is(tok::annot_header_unit)) { 2583 // This is a header import that the preprocessor mapped to a module import. 2584 HeaderUnit = reinterpret_cast<Module *>(Tok.getAnnotationValue()); 2585 ConsumeAnnotationToken(); 2586 } else if (Tok.is(tok::colon)) { 2587 SourceLocation ColonLoc = ConsumeToken(); 2588 if (!getLangOpts().CPlusPlusModules) 2589 Diag(ColonLoc, diag::err_unsupported_module_partition) 2590 << SourceRange(ColonLoc, Path.back().second); 2591 // Recover by leaving partition empty. 2592 else if (ParseModuleName(ColonLoc, Path, /*IsImport*/ true)) 2593 return nullptr; 2594 else 2595 IsPartition = true; 2596 } else { 2597 if (ParseModuleName(ImportLoc, Path, /*IsImport*/ true)) 2598 return nullptr; 2599 } 2600 2601 ParsedAttributes Attrs(AttrFactory); 2602 MaybeParseCXX11Attributes(Attrs); 2603 // We don't support any module import attributes yet. 2604 ProhibitCXX11Attributes(Attrs, diag::err_attribute_not_import_attr, 2605 diag::err_keyword_not_import_attr, 2606 /*DiagnoseEmptyAttrs=*/false, 2607 /*WarnOnUnknownAttrs=*/true); 2608 2609 if (PP.hadModuleLoaderFatalFailure()) { 2610 // With a fatal failure in the module loader, we abort parsing. 2611 cutOffParsing(); 2612 return nullptr; 2613 } 2614 2615 // Diagnose mis-imports. 2616 bool SeenError = true; 2617 switch (ImportState) { 2618 case Sema::ModuleImportState::ImportAllowed: 2619 SeenError = false; 2620 break; 2621 case Sema::ModuleImportState::FirstDecl: 2622 // If we found an import decl as the first declaration, we must be not in 2623 // a C++20 module unit or we are in an invalid state. 2624 ImportState = Sema::ModuleImportState::NotACXX20Module; 2625 [[fallthrough]]; 2626 case Sema::ModuleImportState::NotACXX20Module: 2627 // We can only import a partition within a module purview. 2628 if (IsPartition) 2629 Diag(ImportLoc, diag::err_partition_import_outside_module); 2630 else 2631 SeenError = false; 2632 break; 2633 case Sema::ModuleImportState::GlobalFragment: 2634 case Sema::ModuleImportState::PrivateFragmentImportAllowed: 2635 // We can only have pre-processor directives in the global module fragment 2636 // which allows pp-import, but not of a partition (since the global module 2637 // does not have partitions). 2638 // We cannot import a partition into a private module fragment, since 2639 // [module.private.frag]/1 disallows private module fragments in a multi- 2640 // TU module. 2641 if (IsPartition || (HeaderUnit && HeaderUnit->Kind != 2642 Module::ModuleKind::ModuleHeaderUnit)) 2643 Diag(ImportLoc, diag::err_import_in_wrong_fragment) 2644 << IsPartition 2645 << (ImportState == Sema::ModuleImportState::GlobalFragment ? 0 : 1); 2646 else 2647 SeenError = false; 2648 break; 2649 case Sema::ModuleImportState::ImportFinished: 2650 case Sema::ModuleImportState::PrivateFragmentImportFinished: 2651 if (getLangOpts().CPlusPlusModules) 2652 Diag(ImportLoc, diag::err_import_not_allowed_here); 2653 else 2654 SeenError = false; 2655 break; 2656 } 2657 ExpectAndConsumeSemi(diag::err_module_expected_semi); 2658 2659 if (SeenError) 2660 return nullptr; 2661 2662 DeclResult Import; 2663 if (HeaderUnit) 2664 Import = 2665 Actions.ActOnModuleImport(StartLoc, ExportLoc, ImportLoc, HeaderUnit); 2666 else if (!Path.empty()) 2667 Import = Actions.ActOnModuleImport(StartLoc, ExportLoc, ImportLoc, Path, 2668 IsPartition); 2669 if (Import.isInvalid()) 2670 return nullptr; 2671 2672 // Using '@import' in framework headers requires modules to be enabled so that 2673 // the header is parseable. Emit a warning to make the user aware. 2674 if (IsObjCAtImport && AtLoc.isValid()) { 2675 auto &SrcMgr = PP.getSourceManager(); 2676 auto FE = SrcMgr.getFileEntryRefForID(SrcMgr.getFileID(AtLoc)); 2677 if (FE && llvm::sys::path::parent_path(FE->getDir().getName()) 2678 .ends_with(".framework")) 2679 Diags.Report(AtLoc, diag::warn_atimport_in_framework_header); 2680 } 2681 2682 return Import.get(); 2683 } 2684 2685 /// Parse a C++ / Objective-C module name (both forms use the same 2686 /// grammar). 2687 /// 2688 /// module-name: 2689 /// module-name-qualifier[opt] identifier 2690 /// module-name-qualifier: 2691 /// module-name-qualifier[opt] identifier '.' 2692 bool Parser::ParseModuleName( 2693 SourceLocation UseLoc, 2694 SmallVectorImpl<std::pair<IdentifierInfo *, SourceLocation>> &Path, 2695 bool IsImport) { 2696 // Parse the module path. 2697 while (true) { 2698 if (!Tok.is(tok::identifier)) { 2699 if (Tok.is(tok::code_completion)) { 2700 cutOffParsing(); 2701 Actions.CodeCompletion().CodeCompleteModuleImport(UseLoc, Path); 2702 return true; 2703 } 2704 2705 Diag(Tok, diag::err_module_expected_ident) << IsImport; 2706 SkipUntil(tok::semi); 2707 return true; 2708 } 2709 2710 // Record this part of the module path. 2711 Path.push_back(std::make_pair(Tok.getIdentifierInfo(), Tok.getLocation())); 2712 ConsumeToken(); 2713 2714 if (Tok.isNot(tok::period)) 2715 return false; 2716 2717 ConsumeToken(); 2718 } 2719 } 2720 2721 /// Try recover parser when module annotation appears where it must not 2722 /// be found. 2723 /// \returns false if the recover was successful and parsing may be continued, or 2724 /// true if parser must bail out to top level and handle the token there. 2725 bool Parser::parseMisplacedModuleImport() { 2726 while (true) { 2727 switch (Tok.getKind()) { 2728 case tok::annot_module_end: 2729 // If we recovered from a misplaced module begin, we expect to hit a 2730 // misplaced module end too. Stay in the current context when this 2731 // happens. 2732 if (MisplacedModuleBeginCount) { 2733 --MisplacedModuleBeginCount; 2734 Actions.ActOnAnnotModuleEnd( 2735 Tok.getLocation(), 2736 reinterpret_cast<Module *>(Tok.getAnnotationValue())); 2737 ConsumeAnnotationToken(); 2738 continue; 2739 } 2740 // Inform caller that recovery failed, the error must be handled at upper 2741 // level. This will generate the desired "missing '}' at end of module" 2742 // diagnostics on the way out. 2743 return true; 2744 case tok::annot_module_begin: 2745 // Recover by entering the module (Sema will diagnose). 2746 Actions.ActOnAnnotModuleBegin( 2747 Tok.getLocation(), 2748 reinterpret_cast<Module *>(Tok.getAnnotationValue())); 2749 ConsumeAnnotationToken(); 2750 ++MisplacedModuleBeginCount; 2751 continue; 2752 case tok::annot_module_include: 2753 // Module import found where it should not be, for instance, inside a 2754 // namespace. Recover by importing the module. 2755 Actions.ActOnAnnotModuleInclude( 2756 Tok.getLocation(), 2757 reinterpret_cast<Module *>(Tok.getAnnotationValue())); 2758 ConsumeAnnotationToken(); 2759 // If there is another module import, process it. 2760 continue; 2761 default: 2762 return false; 2763 } 2764 } 2765 return false; 2766 } 2767 2768 void Parser::diagnoseUseOfC11Keyword(const Token &Tok) { 2769 // Warn that this is a C11 extension if in an older mode or if in C++. 2770 // Otherwise, warn that it is incompatible with standards before C11 if in 2771 // C11 or later. 2772 Diag(Tok, getLangOpts().C11 ? diag::warn_c11_compat_keyword 2773 : diag::ext_c11_feature) 2774 << Tok.getName(); 2775 } 2776 2777 bool BalancedDelimiterTracker::diagnoseOverflow() { 2778 P.Diag(P.Tok, diag::err_bracket_depth_exceeded) 2779 << P.getLangOpts().BracketDepth; 2780 P.Diag(P.Tok, diag::note_bracket_depth); 2781 P.cutOffParsing(); 2782 return true; 2783 } 2784 2785 bool BalancedDelimiterTracker::expectAndConsume(unsigned DiagID, 2786 const char *Msg, 2787 tok::TokenKind SkipToTok) { 2788 LOpen = P.Tok.getLocation(); 2789 if (P.ExpectAndConsume(Kind, DiagID, Msg)) { 2790 if (SkipToTok != tok::unknown) 2791 P.SkipUntil(SkipToTok, Parser::StopAtSemi); 2792 return true; 2793 } 2794 2795 if (getDepth() < P.getLangOpts().BracketDepth) 2796 return false; 2797 2798 return diagnoseOverflow(); 2799 } 2800 2801 bool BalancedDelimiterTracker::diagnoseMissingClose() { 2802 assert(!P.Tok.is(Close) && "Should have consumed closing delimiter"); 2803 2804 if (P.Tok.is(tok::annot_module_end)) 2805 P.Diag(P.Tok, diag::err_missing_before_module_end) << Close; 2806 else 2807 P.Diag(P.Tok, diag::err_expected) << Close; 2808 P.Diag(LOpen, diag::note_matching) << Kind; 2809 2810 // If we're not already at some kind of closing bracket, skip to our closing 2811 // token. 2812 if (P.Tok.isNot(tok::r_paren) && P.Tok.isNot(tok::r_brace) && 2813 P.Tok.isNot(tok::r_square) && 2814 P.SkipUntil(Close, FinalToken, 2815 Parser::StopAtSemi | Parser::StopBeforeMatch) && 2816 P.Tok.is(Close)) 2817 LClose = P.ConsumeAnyToken(); 2818 return true; 2819 } 2820 2821 void BalancedDelimiterTracker::skipToEnd() { 2822 P.SkipUntil(Close, Parser::StopBeforeMatch); 2823 consumeClose(); 2824 } 2825