xref: /freebsd-src/contrib/llvm-project/llvm/include/llvm/ADT/PagedVector.h (revision 5f757f3ff9144b609b3c433dfd370cc6bdc191ad)
1 //===- llvm/ADT/PagedVector.h - 'Lazily allocated' vectors --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the PagedVector class.
10 //
11 //===----------------------------------------------------------------------===//
12 #ifndef LLVM_ADT_PAGEDVECTOR_H
13 #define LLVM_ADT_PAGEDVECTOR_H
14 
15 #include "llvm/ADT/PointerIntPair.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/iterator_range.h"
18 #include "llvm/Support/Allocator.h"
19 #include <cassert>
20 #include <vector>
21 
22 namespace llvm {
23 /// A vector that allocates memory in pages.
24 ///
25 /// Order is kept, but memory is allocated only when one element of the page is
26 /// accessed. This introduces a level of indirection, but it is useful when you
27 /// have a sparsely initialised vector where the full size is allocated upfront.
28 ///
29 /// As a side effect the elements are initialised later than in a normal vector.
30 /// On the first access to one of the elements of a given page, all the elements
31 /// of the page are initialised. This also means that the elements of the page
32 /// are initialised beyond the size of the vector.
33 ///
34 /// Similarly on destruction the elements are destroyed only when the page is
35 /// not needed anymore, delaying invoking the destructor of the elements.
36 ///
37 /// Notice that this has iterators only on materialized elements. This
38 /// is deliberately done under the assumption you would dereference the elements
39 /// while iterating, therefore materialising them and losing the gains in terms
40 /// of memory usage this container provides. If you have such a use case, you
41 /// probably want to use a normal std::vector or a llvm::SmallVector.
42 template <typename T, size_t PageSize = 1024 / sizeof(T)> class PagedVector {
43   static_assert(PageSize > 1, "PageSize must be greater than 0. Most likely "
44                               "you want it to be greater than 16.");
45   /// The actual number of elements in the vector which can be accessed.
46   size_t Size = 0;
47 
48   /// The position of the initial element of the page in the Data vector.
49   /// Pages are allocated contiguously in the Data vector.
50   mutable SmallVector<T *, 0> PageToDataPtrs;
51   /// Actual page data. All the page elements are allocated on the
52   /// first access of any of the elements of the page. Elements are default
53   /// constructed and elements of the page are stored contiguously.
54   PointerIntPair<BumpPtrAllocator *, 1, bool> Allocator;
55 
56 public:
57   using value_type = T;
58 
59   /// Default constructor. We build our own allocator and mark it as such with
60   /// `true` in the second pair element.
PagedVector()61   PagedVector() : Allocator(new BumpPtrAllocator, true) {}
PagedVector(BumpPtrAllocator * A)62   explicit PagedVector(BumpPtrAllocator *A) : Allocator(A, false) {
63     assert(A && "Allocator cannot be nullptr");
64   }
65 
~PagedVector()66   ~PagedVector() {
67     clear();
68     // If we own the allocator, delete it.
69     if (Allocator.getInt())
70       delete Allocator.getPointer();
71   }
72 
73   // Forbid copy and move as we do not need them for the current use case.
74   PagedVector(const PagedVector &) = delete;
75   PagedVector(PagedVector &&) = delete;
76   PagedVector &operator=(const PagedVector &) = delete;
77   PagedVector &operator=(PagedVector &&) = delete;
78 
79   /// Look up an element at position `Index`.
80   /// If the associated page is not filled, it will be filled with default
81   /// constructed elements.
82   T &operator[](size_t Index) const {
83     assert(Index < Size);
84     assert(Index / PageSize < PageToDataPtrs.size());
85     T *&PagePtr = PageToDataPtrs[Index / PageSize];
86     // If the page was not yet allocated, allocate it.
87     if (!PagePtr) {
88       PagePtr = Allocator.getPointer()->template Allocate<T>(PageSize);
89       // We need to invoke the default constructor on all the elements of the
90       // page.
91       std::uninitialized_value_construct_n(PagePtr, PageSize);
92     }
93     // Dereference the element in the page.
94     return PagePtr[Index % PageSize];
95   }
96 
97   /// Return the capacity of the vector. I.e. the maximum size it can be
98   /// expanded to with the resize method without allocating more pages.
capacity()99   [[nodiscard]] size_t capacity() const {
100     return PageToDataPtrs.size() * PageSize;
101   }
102 
103   /// Return the size of the vector.
size()104   [[nodiscard]] size_t size() const { return Size; }
105 
106   /// Resize the vector. Notice that the constructor of the elements will not
107   /// be invoked until an element of a given page is accessed, at which point
108   /// all the elements of the page will be constructed.
109   ///
110   /// If the new size is smaller than the current size, the elements of the
111   /// pages that are not needed anymore will be destroyed, however, elements of
112   /// the last page will not be destroyed.
113   ///
114   /// For these reason the usage of this vector is discouraged if you rely
115   /// on the construction / destructor of the elements to be invoked.
resize(size_t NewSize)116   void resize(size_t NewSize) {
117     if (NewSize == 0) {
118       clear();
119       return;
120     }
121     // Handle shrink case: destroy the elements in the pages that are not
122     // needed any more and deallocate the pages.
123     //
124     // On the other hand, we do not destroy the extra elements in the last page,
125     // because we might need them later and the logic is simpler if we do not
126     // destroy them. This means that elements are only destroyed when the
127     // page they belong to is destroyed. This is similar to what happens on
128     // access of the elements of a page, where all the elements of the page are
129     // constructed not only the one effectively needed.
130     size_t NewLastPage = (NewSize - 1) / PageSize;
131     if (NewSize < Size) {
132       for (size_t I = NewLastPage + 1, N = PageToDataPtrs.size(); I < N; ++I) {
133         T *Page = PageToDataPtrs[I];
134         if (!Page)
135           continue;
136         // We need to invoke the destructor on all the elements of the page.
137         std::destroy_n(Page, PageSize);
138         Allocator.getPointer()->Deallocate(Page);
139       }
140     }
141 
142     Size = NewSize;
143     PageToDataPtrs.resize(NewLastPage + 1);
144   }
145 
empty()146   [[nodiscard]] bool empty() const { return Size == 0; }
147 
148   /// Clear the vector, i.e. clear the allocated pages, the whole page
149   /// lookup index and reset the size.
clear()150   void clear() {
151     Size = 0;
152     for (T *Page : PageToDataPtrs) {
153       if (Page == nullptr)
154         continue;
155       std::destroy_n(Page, PageSize);
156       // If we do not own the allocator, deallocate the pages one by one.
157       if (!Allocator.getInt())
158         Allocator.getPointer()->Deallocate(Page);
159     }
160     // If we own the allocator, simply reset it.
161     if (Allocator.getInt())
162       Allocator.getPointer()->Reset();
163     PageToDataPtrs.clear();
164   }
165 
166   /// Iterator on all the elements of the vector
167   /// which have actually being constructed.
168   class MaterializedIterator {
169     const PagedVector *PV;
170     size_t ElementIdx;
171 
172   public:
173     using iterator_category = std::forward_iterator_tag;
174     using value_type = T;
175     using difference_type = std::ptrdiff_t;
176     using pointer = T *;
177     using reference = T &;
178 
MaterializedIterator(PagedVector const * PV,size_t ElementIdx)179     MaterializedIterator(PagedVector const *PV, size_t ElementIdx)
180         : PV(PV), ElementIdx(ElementIdx) {}
181 
182     /// Pre-increment operator.
183     ///
184     /// When incrementing the iterator, we skip the elements which have not
185     /// been materialized yet.
186     MaterializedIterator &operator++() {
187       ++ElementIdx;
188       if (ElementIdx % PageSize == 0) {
189         while (ElementIdx < PV->Size &&
190                !PV->PageToDataPtrs[ElementIdx / PageSize])
191           ElementIdx += PageSize;
192         if (ElementIdx > PV->Size)
193           ElementIdx = PV->Size;
194       }
195 
196       return *this;
197     }
198 
199     MaterializedIterator operator++(int) {
200       MaterializedIterator Copy = *this;
201       ++*this;
202       return Copy;
203     }
204 
205     T const &operator*() const {
206       assert(ElementIdx < PV->Size);
207       assert(PV->PageToDataPtrs[ElementIdx / PageSize]);
208       T *PagePtr = PV->PageToDataPtrs[ElementIdx / PageSize];
209       return PagePtr[ElementIdx % PageSize];
210     }
211 
212     /// Equality operator.
213     friend bool operator==(const MaterializedIterator &LHS,
214                            const MaterializedIterator &RHS) {
215       return LHS.equals(RHS);
216     }
217 
getIndex()218     [[nodiscard]] size_t getIndex() const { return ElementIdx; }
219 
220     friend bool operator!=(const MaterializedIterator &LHS,
221                            const MaterializedIterator &RHS) {
222       return !(LHS == RHS);
223     }
224 
225   private:
verify()226     void verify() const {
227       assert(
228           ElementIdx == PV->Size ||
229           (ElementIdx < PV->Size && PV->PageToDataPtrs[ElementIdx / PageSize]));
230     }
231 
equals(const MaterializedIterator & Other)232     bool equals(const MaterializedIterator &Other) const {
233       assert(PV == Other.PV);
234       verify();
235       Other.verify();
236       return ElementIdx == Other.ElementIdx;
237     }
238   };
239 
240   /// Iterators over the materialized elements of the vector.
241   ///
242   /// This includes all the elements belonging to allocated pages,
243   /// even if they have not been accessed yet. It's enough to access
244   /// one element of a page to materialize all the elements of the page.
materialized_begin()245   MaterializedIterator materialized_begin() const {
246     // Look for the first valid page.
247     for (size_t ElementIdx = 0; ElementIdx < Size; ElementIdx += PageSize)
248       if (PageToDataPtrs[ElementIdx / PageSize])
249         return MaterializedIterator(this, ElementIdx);
250 
251     return MaterializedIterator(this, Size);
252   }
253 
materialized_end()254   MaterializedIterator materialized_end() const {
255     return MaterializedIterator(this, Size);
256   }
257 
258   [[nodiscard]] llvm::iterator_range<MaterializedIterator>
materialized()259   materialized() const {
260     return {materialized_begin(), materialized_end()};
261   }
262 };
263 } // namespace llvm
264 #endif // LLVM_ADT_PAGEDVECTOR_H
265