1 //===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file transforms calls of the current function (self recursion) followed
10 // by a return instruction with a branch to the entry of the function, creating
11 // a loop. This pass also implements the following extensions to the basic
12 // algorithm:
13 //
14 // 1. Trivial instructions between the call and return do not prevent the
15 // transformation from taking place, though currently the analysis cannot
16 // support moving any really useful instructions (only dead ones).
17 // 2. This pass transforms functions that are prevented from being tail
18 // recursive by an associative and commutative expression to use an
19 // accumulator variable, thus compiling the typical naive factorial or
20 // 'fib' implementation into efficient code.
21 // 3. TRE is performed if the function returns void, if the return
22 // returns the result returned by the call, or if the function returns a
23 // run-time constant on all exits from the function. It is possible, though
24 // unlikely, that the return returns something else (like constant 0), and
25 // can still be TRE'd. It can be TRE'd if ALL OTHER return instructions in
26 // the function return the exact same value.
27 // 4. If it can prove that callees do not access their caller stack frame,
28 // they are marked as eligible for tail call elimination (by the code
29 // generator).
30 //
31 // There are several improvements that could be made:
32 //
33 // 1. If the function has any alloca instructions, these instructions will be
34 // moved out of the entry block of the function, causing them to be
35 // evaluated each time through the tail recursion. Safely keeping allocas
36 // in the entry block requires analysis to proves that the tail-called
37 // function does not read or write the stack object.
38 // 2. Tail recursion is only performed if the call immediately precedes the
39 // return instruction. It's possible that there could be a jump between
40 // the call and the return.
41 // 3. There can be intervening operations between the call and the return that
42 // prevent the TRE from occurring. For example, there could be GEP's and
43 // stores to memory that will not be read or written by the call. This
44 // requires some substantial analysis (such as with DSA) to prove safe to
45 // move ahead of the call, but doing so could allow many more TREs to be
46 // performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark.
47 // 4. The algorithm we use to detect if callees access their caller stack
48 // frames is very primitive.
49 //
50 //===----------------------------------------------------------------------===//
51
52 #include "llvm/Transforms/Scalar/TailRecursionElimination.h"
53 #include "llvm/ADT/STLExtras.h"
54 #include "llvm/ADT/SmallPtrSet.h"
55 #include "llvm/ADT/Statistic.h"
56 #include "llvm/Analysis/CFG.h"
57 #include "llvm/Analysis/CaptureTracking.h"
58 #include "llvm/Analysis/DomTreeUpdater.h"
59 #include "llvm/Analysis/GlobalsModRef.h"
60 #include "llvm/Analysis/InlineCost.h"
61 #include "llvm/Analysis/InstructionSimplify.h"
62 #include "llvm/Analysis/Loads.h"
63 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
64 #include "llvm/Analysis/PostDominators.h"
65 #include "llvm/Analysis/TargetTransformInfo.h"
66 #include "llvm/IR/CFG.h"
67 #include "llvm/IR/Constants.h"
68 #include "llvm/IR/DataLayout.h"
69 #include "llvm/IR/DerivedTypes.h"
70 #include "llvm/IR/DiagnosticInfo.h"
71 #include "llvm/IR/Dominators.h"
72 #include "llvm/IR/Function.h"
73 #include "llvm/IR/InstIterator.h"
74 #include "llvm/IR/Instructions.h"
75 #include "llvm/IR/IntrinsicInst.h"
76 #include "llvm/IR/Module.h"
77 #include "llvm/IR/ValueHandle.h"
78 #include "llvm/InitializePasses.h"
79 #include "llvm/Pass.h"
80 #include "llvm/Support/Debug.h"
81 #include "llvm/Support/raw_ostream.h"
82 #include "llvm/Transforms/Scalar.h"
83 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
84 using namespace llvm;
85
86 #define DEBUG_TYPE "tailcallelim"
87
88 STATISTIC(NumEliminated, "Number of tail calls removed");
89 STATISTIC(NumRetDuped, "Number of return duplicated");
90 STATISTIC(NumAccumAdded, "Number of accumulators introduced");
91
92 /// Scan the specified function for alloca instructions.
93 /// If it contains any dynamic allocas, returns false.
canTRE(Function & F)94 static bool canTRE(Function &F) {
95 // FIXME: The code generator produces really bad code when an 'escaping
96 // alloca' is changed from being a static alloca to being a dynamic alloca.
97 // Until this is resolved, disable this transformation if that would ever
98 // happen. This bug is PR962.
99 return llvm::all_of(instructions(F), [](Instruction &I) {
100 auto *AI = dyn_cast<AllocaInst>(&I);
101 return !AI || AI->isStaticAlloca();
102 });
103 }
104
105 namespace {
106 struct AllocaDerivedValueTracker {
107 // Start at a root value and walk its use-def chain to mark calls that use the
108 // value or a derived value in AllocaUsers, and places where it may escape in
109 // EscapePoints.
walk__anon34966dfb0211::AllocaDerivedValueTracker110 void walk(Value *Root) {
111 SmallVector<Use *, 32> Worklist;
112 SmallPtrSet<Use *, 32> Visited;
113
114 auto AddUsesToWorklist = [&](Value *V) {
115 for (auto &U : V->uses()) {
116 if (!Visited.insert(&U).second)
117 continue;
118 Worklist.push_back(&U);
119 }
120 };
121
122 AddUsesToWorklist(Root);
123
124 while (!Worklist.empty()) {
125 Use *U = Worklist.pop_back_val();
126 Instruction *I = cast<Instruction>(U->getUser());
127
128 switch (I->getOpcode()) {
129 case Instruction::Call:
130 case Instruction::Invoke: {
131 auto &CB = cast<CallBase>(*I);
132 // If the alloca-derived argument is passed byval it is not an escape
133 // point, or a use of an alloca. Calling with byval copies the contents
134 // of the alloca into argument registers or stack slots, which exist
135 // beyond the lifetime of the current frame.
136 if (CB.isArgOperand(U) && CB.isByValArgument(CB.getArgOperandNo(U)))
137 continue;
138 bool IsNocapture =
139 CB.isDataOperand(U) && CB.doesNotCapture(CB.getDataOperandNo(U));
140 callUsesLocalStack(CB, IsNocapture);
141 if (IsNocapture) {
142 // If the alloca-derived argument is passed in as nocapture, then it
143 // can't propagate to the call's return. That would be capturing.
144 continue;
145 }
146 break;
147 }
148 case Instruction::Load: {
149 // The result of a load is not alloca-derived (unless an alloca has
150 // otherwise escaped, but this is a local analysis).
151 continue;
152 }
153 case Instruction::Store: {
154 if (U->getOperandNo() == 0)
155 EscapePoints.insert(I);
156 continue; // Stores have no users to analyze.
157 }
158 case Instruction::BitCast:
159 case Instruction::GetElementPtr:
160 case Instruction::PHI:
161 case Instruction::Select:
162 case Instruction::AddrSpaceCast:
163 break;
164 default:
165 EscapePoints.insert(I);
166 break;
167 }
168
169 AddUsesToWorklist(I);
170 }
171 }
172
callUsesLocalStack__anon34966dfb0211::AllocaDerivedValueTracker173 void callUsesLocalStack(CallBase &CB, bool IsNocapture) {
174 // Add it to the list of alloca users.
175 AllocaUsers.insert(&CB);
176
177 // If it's nocapture then it can't capture this alloca.
178 if (IsNocapture)
179 return;
180
181 // If it can write to memory, it can leak the alloca value.
182 if (!CB.onlyReadsMemory())
183 EscapePoints.insert(&CB);
184 }
185
186 SmallPtrSet<Instruction *, 32> AllocaUsers;
187 SmallPtrSet<Instruction *, 32> EscapePoints;
188 };
189 }
190
markTails(Function & F,bool & AllCallsAreTailCalls,OptimizationRemarkEmitter * ORE)191 static bool markTails(Function &F, bool &AllCallsAreTailCalls,
192 OptimizationRemarkEmitter *ORE) {
193 if (F.callsFunctionThatReturnsTwice())
194 return false;
195 AllCallsAreTailCalls = true;
196
197 // The local stack holds all alloca instructions and all byval arguments.
198 AllocaDerivedValueTracker Tracker;
199 for (Argument &Arg : F.args()) {
200 if (Arg.hasByValAttr())
201 Tracker.walk(&Arg);
202 }
203 for (auto &BB : F) {
204 for (auto &I : BB)
205 if (AllocaInst *AI = dyn_cast<AllocaInst>(&I))
206 Tracker.walk(AI);
207 }
208
209 bool Modified = false;
210
211 // Track whether a block is reachable after an alloca has escaped. Blocks that
212 // contain the escaping instruction will be marked as being visited without an
213 // escaped alloca, since that is how the block began.
214 enum VisitType {
215 UNVISITED,
216 UNESCAPED,
217 ESCAPED
218 };
219 DenseMap<BasicBlock *, VisitType> Visited;
220
221 // We propagate the fact that an alloca has escaped from block to successor.
222 // Visit the blocks that are propagating the escapedness first. To do this, we
223 // maintain two worklists.
224 SmallVector<BasicBlock *, 32> WorklistUnescaped, WorklistEscaped;
225
226 // We may enter a block and visit it thinking that no alloca has escaped yet,
227 // then see an escape point and go back around a loop edge and come back to
228 // the same block twice. Because of this, we defer setting tail on calls when
229 // we first encounter them in a block. Every entry in this list does not
230 // statically use an alloca via use-def chain analysis, but may find an alloca
231 // through other means if the block turns out to be reachable after an escape
232 // point.
233 SmallVector<CallInst *, 32> DeferredTails;
234
235 BasicBlock *BB = &F.getEntryBlock();
236 VisitType Escaped = UNESCAPED;
237 do {
238 for (auto &I : *BB) {
239 if (Tracker.EscapePoints.count(&I))
240 Escaped = ESCAPED;
241
242 CallInst *CI = dyn_cast<CallInst>(&I);
243 // A PseudoProbeInst has the IntrInaccessibleMemOnly tag hence it is
244 // considered accessing memory and will be marked as a tail call if we
245 // don't bail out here.
246 if (!CI || CI->isTailCall() || isa<DbgInfoIntrinsic>(&I) ||
247 isa<PseudoProbeInst>(&I))
248 continue;
249
250 // Special-case operand bundle "clang.arc.attachedcall".
251 bool IsNoTail =
252 CI->isNoTailCall() || CI->hasOperandBundlesOtherThan(
253 LLVMContext::OB_clang_arc_attachedcall);
254
255 if (!IsNoTail && CI->doesNotAccessMemory()) {
256 // A call to a readnone function whose arguments are all things computed
257 // outside this function can be marked tail. Even if you stored the
258 // alloca address into a global, a readnone function can't load the
259 // global anyhow.
260 //
261 // Note that this runs whether we know an alloca has escaped or not. If
262 // it has, then we can't trust Tracker.AllocaUsers to be accurate.
263 bool SafeToTail = true;
264 for (auto &Arg : CI->arg_operands()) {
265 if (isa<Constant>(Arg.getUser()))
266 continue;
267 if (Argument *A = dyn_cast<Argument>(Arg.getUser()))
268 if (!A->hasByValAttr())
269 continue;
270 SafeToTail = false;
271 break;
272 }
273 if (SafeToTail) {
274 using namespace ore;
275 ORE->emit([&]() {
276 return OptimizationRemark(DEBUG_TYPE, "tailcall-readnone", CI)
277 << "marked as tail call candidate (readnone)";
278 });
279 CI->setTailCall();
280 Modified = true;
281 continue;
282 }
283 }
284
285 if (!IsNoTail && Escaped == UNESCAPED && !Tracker.AllocaUsers.count(CI)) {
286 DeferredTails.push_back(CI);
287 } else {
288 AllCallsAreTailCalls = false;
289 }
290 }
291
292 for (auto *SuccBB : successors(BB)) {
293 auto &State = Visited[SuccBB];
294 if (State < Escaped) {
295 State = Escaped;
296 if (State == ESCAPED)
297 WorklistEscaped.push_back(SuccBB);
298 else
299 WorklistUnescaped.push_back(SuccBB);
300 }
301 }
302
303 if (!WorklistEscaped.empty()) {
304 BB = WorklistEscaped.pop_back_val();
305 Escaped = ESCAPED;
306 } else {
307 BB = nullptr;
308 while (!WorklistUnescaped.empty()) {
309 auto *NextBB = WorklistUnescaped.pop_back_val();
310 if (Visited[NextBB] == UNESCAPED) {
311 BB = NextBB;
312 Escaped = UNESCAPED;
313 break;
314 }
315 }
316 }
317 } while (BB);
318
319 for (CallInst *CI : DeferredTails) {
320 if (Visited[CI->getParent()] != ESCAPED) {
321 // If the escape point was part way through the block, calls after the
322 // escape point wouldn't have been put into DeferredTails.
323 LLVM_DEBUG(dbgs() << "Marked as tail call candidate: " << *CI << "\n");
324 CI->setTailCall();
325 Modified = true;
326 } else {
327 AllCallsAreTailCalls = false;
328 }
329 }
330
331 return Modified;
332 }
333
334 /// Return true if it is safe to move the specified
335 /// instruction from after the call to before the call, assuming that all
336 /// instructions between the call and this instruction are movable.
337 ///
canMoveAboveCall(Instruction * I,CallInst * CI,AliasAnalysis * AA)338 static bool canMoveAboveCall(Instruction *I, CallInst *CI, AliasAnalysis *AA) {
339 // FIXME: We can move load/store/call/free instructions above the call if the
340 // call does not mod/ref the memory location being processed.
341 if (I->mayHaveSideEffects()) // This also handles volatile loads.
342 return false;
343
344 if (LoadInst *L = dyn_cast<LoadInst>(I)) {
345 // Loads may always be moved above calls without side effects.
346 if (CI->mayHaveSideEffects()) {
347 // Non-volatile loads may be moved above a call with side effects if it
348 // does not write to memory and the load provably won't trap.
349 // Writes to memory only matter if they may alias the pointer
350 // being loaded from.
351 const DataLayout &DL = L->getModule()->getDataLayout();
352 if (isModSet(AA->getModRefInfo(CI, MemoryLocation::get(L))) ||
353 !isSafeToLoadUnconditionally(L->getPointerOperand(), L->getType(),
354 L->getAlign(), DL, L))
355 return false;
356 }
357 }
358
359 // Otherwise, if this is a side-effect free instruction, check to make sure
360 // that it does not use the return value of the call. If it doesn't use the
361 // return value of the call, it must only use things that are defined before
362 // the call, or movable instructions between the call and the instruction
363 // itself.
364 return !is_contained(I->operands(), CI);
365 }
366
canTransformAccumulatorRecursion(Instruction * I,CallInst * CI)367 static bool canTransformAccumulatorRecursion(Instruction *I, CallInst *CI) {
368 if (!I->isAssociative() || !I->isCommutative())
369 return false;
370
371 assert(I->getNumOperands() == 2 &&
372 "Associative/commutative operations should have 2 args!");
373
374 // Exactly one operand should be the result of the call instruction.
375 if ((I->getOperand(0) == CI && I->getOperand(1) == CI) ||
376 (I->getOperand(0) != CI && I->getOperand(1) != CI))
377 return false;
378
379 // The only user of this instruction we allow is a single return instruction.
380 if (!I->hasOneUse() || !isa<ReturnInst>(I->user_back()))
381 return false;
382
383 return true;
384 }
385
firstNonDbg(BasicBlock::iterator I)386 static Instruction *firstNonDbg(BasicBlock::iterator I) {
387 while (isa<DbgInfoIntrinsic>(I))
388 ++I;
389 return &*I;
390 }
391
392 namespace {
393 class TailRecursionEliminator {
394 Function &F;
395 const TargetTransformInfo *TTI;
396 AliasAnalysis *AA;
397 OptimizationRemarkEmitter *ORE;
398 DomTreeUpdater &DTU;
399
400 // The below are shared state we want to have available when eliminating any
401 // calls in the function. There values should be populated by
402 // createTailRecurseLoopHeader the first time we find a call we can eliminate.
403 BasicBlock *HeaderBB = nullptr;
404 SmallVector<PHINode *, 8> ArgumentPHIs;
405 bool RemovableCallsMustBeMarkedTail = false;
406
407 // PHI node to store our return value.
408 PHINode *RetPN = nullptr;
409
410 // i1 PHI node to track if we have a valid return value stored in RetPN.
411 PHINode *RetKnownPN = nullptr;
412
413 // Vector of select instructions we insereted. These selects use RetKnownPN
414 // to either propagate RetPN or select a new return value.
415 SmallVector<SelectInst *, 8> RetSelects;
416
417 // The below are shared state needed when performing accumulator recursion.
418 // There values should be populated by insertAccumulator the first time we
419 // find an elimination that requires an accumulator.
420
421 // PHI node to store our current accumulated value.
422 PHINode *AccPN = nullptr;
423
424 // The instruction doing the accumulating.
425 Instruction *AccumulatorRecursionInstr = nullptr;
426
TailRecursionEliminator(Function & F,const TargetTransformInfo * TTI,AliasAnalysis * AA,OptimizationRemarkEmitter * ORE,DomTreeUpdater & DTU)427 TailRecursionEliminator(Function &F, const TargetTransformInfo *TTI,
428 AliasAnalysis *AA, OptimizationRemarkEmitter *ORE,
429 DomTreeUpdater &DTU)
430 : F(F), TTI(TTI), AA(AA), ORE(ORE), DTU(DTU) {}
431
432 CallInst *findTRECandidate(BasicBlock *BB,
433 bool CannotTailCallElimCallsMarkedTail);
434
435 void createTailRecurseLoopHeader(CallInst *CI);
436
437 void insertAccumulator(Instruction *AccRecInstr);
438
439 bool eliminateCall(CallInst *CI);
440
441 void cleanupAndFinalize();
442
443 bool processBlock(BasicBlock &BB, bool CannotTailCallElimCallsMarkedTail);
444
445 public:
446 static bool eliminate(Function &F, const TargetTransformInfo *TTI,
447 AliasAnalysis *AA, OptimizationRemarkEmitter *ORE,
448 DomTreeUpdater &DTU);
449 };
450 } // namespace
451
findTRECandidate(BasicBlock * BB,bool CannotTailCallElimCallsMarkedTail)452 CallInst *TailRecursionEliminator::findTRECandidate(
453 BasicBlock *BB, bool CannotTailCallElimCallsMarkedTail) {
454 Instruction *TI = BB->getTerminator();
455
456 if (&BB->front() == TI) // Make sure there is something before the terminator.
457 return nullptr;
458
459 // Scan backwards from the return, checking to see if there is a tail call in
460 // this block. If so, set CI to it.
461 CallInst *CI = nullptr;
462 BasicBlock::iterator BBI(TI);
463 while (true) {
464 CI = dyn_cast<CallInst>(BBI);
465 if (CI && CI->getCalledFunction() == &F)
466 break;
467
468 if (BBI == BB->begin())
469 return nullptr; // Didn't find a potential tail call.
470 --BBI;
471 }
472
473 // If this call is marked as a tail call, and if there are dynamic allocas in
474 // the function, we cannot perform this optimization.
475 if (CI->isTailCall() && CannotTailCallElimCallsMarkedTail)
476 return nullptr;
477
478 // As a special case, detect code like this:
479 // double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call
480 // and disable this xform in this case, because the code generator will
481 // lower the call to fabs into inline code.
482 if (BB == &F.getEntryBlock() &&
483 firstNonDbg(BB->front().getIterator()) == CI &&
484 firstNonDbg(std::next(BB->begin())) == TI && CI->getCalledFunction() &&
485 !TTI->isLoweredToCall(CI->getCalledFunction())) {
486 // A single-block function with just a call and a return. Check that
487 // the arguments match.
488 auto I = CI->arg_begin(), E = CI->arg_end();
489 Function::arg_iterator FI = F.arg_begin(), FE = F.arg_end();
490 for (; I != E && FI != FE; ++I, ++FI)
491 if (*I != &*FI) break;
492 if (I == E && FI == FE)
493 return nullptr;
494 }
495
496 return CI;
497 }
498
createTailRecurseLoopHeader(CallInst * CI)499 void TailRecursionEliminator::createTailRecurseLoopHeader(CallInst *CI) {
500 HeaderBB = &F.getEntryBlock();
501 BasicBlock *NewEntry = BasicBlock::Create(F.getContext(), "", &F, HeaderBB);
502 NewEntry->takeName(HeaderBB);
503 HeaderBB->setName("tailrecurse");
504 BranchInst *BI = BranchInst::Create(HeaderBB, NewEntry);
505 BI->setDebugLoc(CI->getDebugLoc());
506
507 // If this function has self recursive calls in the tail position where some
508 // are marked tail and some are not, only transform one flavor or another.
509 // We have to choose whether we move allocas in the entry block to the new
510 // entry block or not, so we can't make a good choice for both. We make this
511 // decision here based on whether the first call we found to remove is
512 // marked tail.
513 // NOTE: We could do slightly better here in the case that the function has
514 // no entry block allocas.
515 RemovableCallsMustBeMarkedTail = CI->isTailCall();
516
517 // If this tail call is marked 'tail' and if there are any allocas in the
518 // entry block, move them up to the new entry block.
519 if (RemovableCallsMustBeMarkedTail)
520 // Move all fixed sized allocas from HeaderBB to NewEntry.
521 for (BasicBlock::iterator OEBI = HeaderBB->begin(), E = HeaderBB->end(),
522 NEBI = NewEntry->begin();
523 OEBI != E;)
524 if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++))
525 if (isa<ConstantInt>(AI->getArraySize()))
526 AI->moveBefore(&*NEBI);
527
528 // Now that we have created a new block, which jumps to the entry
529 // block, insert a PHI node for each argument of the function.
530 // For now, we initialize each PHI to only have the real arguments
531 // which are passed in.
532 Instruction *InsertPos = &HeaderBB->front();
533 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
534 PHINode *PN =
535 PHINode::Create(I->getType(), 2, I->getName() + ".tr", InsertPos);
536 I->replaceAllUsesWith(PN); // Everyone use the PHI node now!
537 PN->addIncoming(&*I, NewEntry);
538 ArgumentPHIs.push_back(PN);
539 }
540
541 // If the function doen't return void, create the RetPN and RetKnownPN PHI
542 // nodes to track our return value. We initialize RetPN with undef and
543 // RetKnownPN with false since we can't know our return value at function
544 // entry.
545 Type *RetType = F.getReturnType();
546 if (!RetType->isVoidTy()) {
547 Type *BoolType = Type::getInt1Ty(F.getContext());
548 RetPN = PHINode::Create(RetType, 2, "ret.tr", InsertPos);
549 RetKnownPN = PHINode::Create(BoolType, 2, "ret.known.tr", InsertPos);
550
551 RetPN->addIncoming(UndefValue::get(RetType), NewEntry);
552 RetKnownPN->addIncoming(ConstantInt::getFalse(BoolType), NewEntry);
553 }
554
555 // The entry block was changed from HeaderBB to NewEntry.
556 // The forward DominatorTree needs to be recalculated when the EntryBB is
557 // changed. In this corner-case we recalculate the entire tree.
558 DTU.recalculate(*NewEntry->getParent());
559 }
560
insertAccumulator(Instruction * AccRecInstr)561 void TailRecursionEliminator::insertAccumulator(Instruction *AccRecInstr) {
562 assert(!AccPN && "Trying to insert multiple accumulators");
563
564 AccumulatorRecursionInstr = AccRecInstr;
565
566 // Start by inserting a new PHI node for the accumulator.
567 pred_iterator PB = pred_begin(HeaderBB), PE = pred_end(HeaderBB);
568 AccPN = PHINode::Create(F.getReturnType(), std::distance(PB, PE) + 1,
569 "accumulator.tr", &HeaderBB->front());
570
571 // Loop over all of the predecessors of the tail recursion block. For the
572 // real entry into the function we seed the PHI with the identity constant for
573 // the accumulation operation. For any other existing branches to this block
574 // (due to other tail recursions eliminated) the accumulator is not modified.
575 // Because we haven't added the branch in the current block to HeaderBB yet,
576 // it will not show up as a predecessor.
577 for (pred_iterator PI = PB; PI != PE; ++PI) {
578 BasicBlock *P = *PI;
579 if (P == &F.getEntryBlock()) {
580 Constant *Identity = ConstantExpr::getBinOpIdentity(
581 AccRecInstr->getOpcode(), AccRecInstr->getType());
582 AccPN->addIncoming(Identity, P);
583 } else {
584 AccPN->addIncoming(AccPN, P);
585 }
586 }
587
588 ++NumAccumAdded;
589 }
590
eliminateCall(CallInst * CI)591 bool TailRecursionEliminator::eliminateCall(CallInst *CI) {
592 ReturnInst *Ret = cast<ReturnInst>(CI->getParent()->getTerminator());
593
594 // Ok, we found a potential tail call. We can currently only transform the
595 // tail call if all of the instructions between the call and the return are
596 // movable to above the call itself, leaving the call next to the return.
597 // Check that this is the case now.
598 Instruction *AccRecInstr = nullptr;
599 BasicBlock::iterator BBI(CI);
600 for (++BBI; &*BBI != Ret; ++BBI) {
601 if (canMoveAboveCall(&*BBI, CI, AA))
602 continue;
603
604 // If we can't move the instruction above the call, it might be because it
605 // is an associative and commutative operation that could be transformed
606 // using accumulator recursion elimination. Check to see if this is the
607 // case, and if so, remember which instruction accumulates for later.
608 if (AccPN || !canTransformAccumulatorRecursion(&*BBI, CI))
609 return false; // We cannot eliminate the tail recursion!
610
611 // Yes, this is accumulator recursion. Remember which instruction
612 // accumulates.
613 AccRecInstr = &*BBI;
614 }
615
616 BasicBlock *BB = Ret->getParent();
617
618 using namespace ore;
619 ORE->emit([&]() {
620 return OptimizationRemark(DEBUG_TYPE, "tailcall-recursion", CI)
621 << "transforming tail recursion into loop";
622 });
623
624 // OK! We can transform this tail call. If this is the first one found,
625 // create the new entry block, allowing us to branch back to the old entry.
626 if (!HeaderBB)
627 createTailRecurseLoopHeader(CI);
628
629 if (RemovableCallsMustBeMarkedTail && !CI->isTailCall())
630 return false;
631
632 // Ok, now that we know we have a pseudo-entry block WITH all of the
633 // required PHI nodes, add entries into the PHI node for the actual
634 // parameters passed into the tail-recursive call.
635 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i)
636 ArgumentPHIs[i]->addIncoming(CI->getArgOperand(i), BB);
637
638 if (AccRecInstr) {
639 insertAccumulator(AccRecInstr);
640
641 // Rewrite the accumulator recursion instruction so that it does not use
642 // the result of the call anymore, instead, use the PHI node we just
643 // inserted.
644 AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN);
645 }
646
647 // Update our return value tracking
648 if (RetPN) {
649 if (Ret->getReturnValue() == CI || AccRecInstr) {
650 // Defer selecting a return value
651 RetPN->addIncoming(RetPN, BB);
652 RetKnownPN->addIncoming(RetKnownPN, BB);
653 } else {
654 // We found a return value we want to use, insert a select instruction to
655 // select it if we don't already know what our return value will be and
656 // store the result in our return value PHI node.
657 SelectInst *SI = SelectInst::Create(
658 RetKnownPN, RetPN, Ret->getReturnValue(), "current.ret.tr", Ret);
659 RetSelects.push_back(SI);
660
661 RetPN->addIncoming(SI, BB);
662 RetKnownPN->addIncoming(ConstantInt::getTrue(RetKnownPN->getType()), BB);
663 }
664
665 if (AccPN)
666 AccPN->addIncoming(AccRecInstr ? AccRecInstr : AccPN, BB);
667 }
668
669 // Now that all of the PHI nodes are in place, remove the call and
670 // ret instructions, replacing them with an unconditional branch.
671 BranchInst *NewBI = BranchInst::Create(HeaderBB, Ret);
672 NewBI->setDebugLoc(CI->getDebugLoc());
673
674 BB->getInstList().erase(Ret); // Remove return.
675 BB->getInstList().erase(CI); // Remove call.
676 DTU.applyUpdates({{DominatorTree::Insert, BB, HeaderBB}});
677 ++NumEliminated;
678 return true;
679 }
680
cleanupAndFinalize()681 void TailRecursionEliminator::cleanupAndFinalize() {
682 // If we eliminated any tail recursions, it's possible that we inserted some
683 // silly PHI nodes which just merge an initial value (the incoming operand)
684 // with themselves. Check to see if we did and clean up our mess if so. This
685 // occurs when a function passes an argument straight through to its tail
686 // call.
687 for (PHINode *PN : ArgumentPHIs) {
688 // If the PHI Node is a dynamic constant, replace it with the value it is.
689 if (Value *PNV = SimplifyInstruction(PN, F.getParent()->getDataLayout())) {
690 PN->replaceAllUsesWith(PNV);
691 PN->eraseFromParent();
692 }
693 }
694
695 if (RetPN) {
696 if (RetSelects.empty()) {
697 // If we didn't insert any select instructions, then we know we didn't
698 // store a return value and we can remove the PHI nodes we inserted.
699 RetPN->dropAllReferences();
700 RetPN->eraseFromParent();
701
702 RetKnownPN->dropAllReferences();
703 RetKnownPN->eraseFromParent();
704
705 if (AccPN) {
706 // We need to insert a copy of our accumulator instruction before any
707 // return in the function, and return its result instead.
708 Instruction *AccRecInstr = AccumulatorRecursionInstr;
709 for (BasicBlock &BB : F) {
710 ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator());
711 if (!RI)
712 continue;
713
714 Instruction *AccRecInstrNew = AccRecInstr->clone();
715 AccRecInstrNew->setName("accumulator.ret.tr");
716 AccRecInstrNew->setOperand(AccRecInstr->getOperand(0) == AccPN,
717 RI->getOperand(0));
718 AccRecInstrNew->insertBefore(RI);
719 RI->setOperand(0, AccRecInstrNew);
720 }
721 }
722 } else {
723 // We need to insert a select instruction before any return left in the
724 // function to select our stored return value if we have one.
725 for (BasicBlock &BB : F) {
726 ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator());
727 if (!RI)
728 continue;
729
730 SelectInst *SI = SelectInst::Create(
731 RetKnownPN, RetPN, RI->getOperand(0), "current.ret.tr", RI);
732 RetSelects.push_back(SI);
733 RI->setOperand(0, SI);
734 }
735
736 if (AccPN) {
737 // We need to insert a copy of our accumulator instruction before any
738 // of the selects we inserted, and select its result instead.
739 Instruction *AccRecInstr = AccumulatorRecursionInstr;
740 for (SelectInst *SI : RetSelects) {
741 Instruction *AccRecInstrNew = AccRecInstr->clone();
742 AccRecInstrNew->setName("accumulator.ret.tr");
743 AccRecInstrNew->setOperand(AccRecInstr->getOperand(0) == AccPN,
744 SI->getFalseValue());
745 AccRecInstrNew->insertBefore(SI);
746 SI->setFalseValue(AccRecInstrNew);
747 }
748 }
749 }
750 }
751 }
752
processBlock(BasicBlock & BB,bool CannotTailCallElimCallsMarkedTail)753 bool TailRecursionEliminator::processBlock(
754 BasicBlock &BB, bool CannotTailCallElimCallsMarkedTail) {
755 Instruction *TI = BB.getTerminator();
756
757 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
758 if (BI->isConditional())
759 return false;
760
761 BasicBlock *Succ = BI->getSuccessor(0);
762 ReturnInst *Ret = dyn_cast<ReturnInst>(Succ->getFirstNonPHIOrDbg(true));
763
764 if (!Ret)
765 return false;
766
767 CallInst *CI = findTRECandidate(&BB, CannotTailCallElimCallsMarkedTail);
768
769 if (!CI)
770 return false;
771
772 LLVM_DEBUG(dbgs() << "FOLDING: " << *Succ
773 << "INTO UNCOND BRANCH PRED: " << BB);
774 FoldReturnIntoUncondBranch(Ret, Succ, &BB, &DTU);
775 ++NumRetDuped;
776
777 // If all predecessors of Succ have been eliminated by
778 // FoldReturnIntoUncondBranch, delete it. It is important to empty it,
779 // because the ret instruction in there is still using a value which
780 // eliminateCall will attempt to remove. This block can only contain
781 // instructions that can't have uses, therefore it is safe to remove.
782 if (pred_empty(Succ))
783 DTU.deleteBB(Succ);
784
785 eliminateCall(CI);
786 return true;
787 } else if (isa<ReturnInst>(TI)) {
788 CallInst *CI = findTRECandidate(&BB, CannotTailCallElimCallsMarkedTail);
789
790 if (CI)
791 return eliminateCall(CI);
792 }
793
794 return false;
795 }
796
eliminate(Function & F,const TargetTransformInfo * TTI,AliasAnalysis * AA,OptimizationRemarkEmitter * ORE,DomTreeUpdater & DTU)797 bool TailRecursionEliminator::eliminate(Function &F,
798 const TargetTransformInfo *TTI,
799 AliasAnalysis *AA,
800 OptimizationRemarkEmitter *ORE,
801 DomTreeUpdater &DTU) {
802 if (F.getFnAttribute("disable-tail-calls").getValueAsBool())
803 return false;
804
805 bool MadeChange = false;
806 bool AllCallsAreTailCalls = false;
807 MadeChange |= markTails(F, AllCallsAreTailCalls, ORE);
808 if (!AllCallsAreTailCalls)
809 return MadeChange;
810
811 // If this function is a varargs function, we won't be able to PHI the args
812 // right, so don't even try to convert it...
813 if (F.getFunctionType()->isVarArg())
814 return MadeChange;
815
816 // If false, we cannot perform TRE on tail calls marked with the 'tail'
817 // attribute, because doing so would cause the stack size to increase (real
818 // TRE would deallocate variable sized allocas, TRE doesn't).
819 bool CanTRETailMarkedCall = canTRE(F);
820
821 // Change any tail recursive calls to loops.
822 TailRecursionEliminator TRE(F, TTI, AA, ORE, DTU);
823
824 for (BasicBlock &BB : F)
825 MadeChange |= TRE.processBlock(BB, !CanTRETailMarkedCall);
826
827 TRE.cleanupAndFinalize();
828
829 return MadeChange;
830 }
831
832 namespace {
833 struct TailCallElim : public FunctionPass {
834 static char ID; // Pass identification, replacement for typeid
TailCallElim__anon34966dfb0711::TailCallElim835 TailCallElim() : FunctionPass(ID) {
836 initializeTailCallElimPass(*PassRegistry::getPassRegistry());
837 }
838
getAnalysisUsage__anon34966dfb0711::TailCallElim839 void getAnalysisUsage(AnalysisUsage &AU) const override {
840 AU.addRequired<TargetTransformInfoWrapperPass>();
841 AU.addRequired<AAResultsWrapperPass>();
842 AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
843 AU.addPreserved<GlobalsAAWrapperPass>();
844 AU.addPreserved<DominatorTreeWrapperPass>();
845 AU.addPreserved<PostDominatorTreeWrapperPass>();
846 }
847
runOnFunction__anon34966dfb0711::TailCallElim848 bool runOnFunction(Function &F) override {
849 if (skipFunction(F))
850 return false;
851
852 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
853 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
854 auto *PDTWP = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>();
855 auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr;
856 // There is no noticable performance difference here between Lazy and Eager
857 // UpdateStrategy based on some test results. It is feasible to switch the
858 // UpdateStrategy to Lazy if we find it profitable later.
859 DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager);
860
861 return TailRecursionEliminator::eliminate(
862 F, &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F),
863 &getAnalysis<AAResultsWrapperPass>().getAAResults(),
864 &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(), DTU);
865 }
866 };
867 }
868
869 char TailCallElim::ID = 0;
870 INITIALIZE_PASS_BEGIN(TailCallElim, "tailcallelim", "Tail Call Elimination",
871 false, false)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)872 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
873 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
874 INITIALIZE_PASS_END(TailCallElim, "tailcallelim", "Tail Call Elimination",
875 false, false)
876
877 // Public interface to the TailCallElimination pass
878 FunctionPass *llvm::createTailCallEliminationPass() {
879 return new TailCallElim();
880 }
881
run(Function & F,FunctionAnalysisManager & AM)882 PreservedAnalyses TailCallElimPass::run(Function &F,
883 FunctionAnalysisManager &AM) {
884
885 TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F);
886 AliasAnalysis &AA = AM.getResult<AAManager>(F);
887 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
888 auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F);
889 auto *PDT = AM.getCachedResult<PostDominatorTreeAnalysis>(F);
890 // There is no noticable performance difference here between Lazy and Eager
891 // UpdateStrategy based on some test results. It is feasible to switch the
892 // UpdateStrategy to Lazy if we find it profitable later.
893 DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager);
894 bool Changed = TailRecursionEliminator::eliminate(F, &TTI, &AA, &ORE, DTU);
895
896 if (!Changed)
897 return PreservedAnalyses::all();
898 PreservedAnalyses PA;
899 PA.preserve<DominatorTreeAnalysis>();
900 PA.preserve<PostDominatorTreeAnalysis>();
901 return PA;
902 }
903