xref: /netbsd-src/external/apache2/llvm/dist/llvm/lib/Transforms/Scalar/TailRecursionElimination.cpp (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 //===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file transforms calls of the current function (self recursion) followed
10 // by a return instruction with a branch to the entry of the function, creating
11 // a loop.  This pass also implements the following extensions to the basic
12 // algorithm:
13 //
14 //  1. Trivial instructions between the call and return do not prevent the
15 //     transformation from taking place, though currently the analysis cannot
16 //     support moving any really useful instructions (only dead ones).
17 //  2. This pass transforms functions that are prevented from being tail
18 //     recursive by an associative and commutative expression to use an
19 //     accumulator variable, thus compiling the typical naive factorial or
20 //     'fib' implementation into efficient code.
21 //  3. TRE is performed if the function returns void, if the return
22 //     returns the result returned by the call, or if the function returns a
23 //     run-time constant on all exits from the function.  It is possible, though
24 //     unlikely, that the return returns something else (like constant 0), and
25 //     can still be TRE'd.  It can be TRE'd if ALL OTHER return instructions in
26 //     the function return the exact same value.
27 //  4. If it can prove that callees do not access their caller stack frame,
28 //     they are marked as eligible for tail call elimination (by the code
29 //     generator).
30 //
31 // There are several improvements that could be made:
32 //
33 //  1. If the function has any alloca instructions, these instructions will be
34 //     moved out of the entry block of the function, causing them to be
35 //     evaluated each time through the tail recursion.  Safely keeping allocas
36 //     in the entry block requires analysis to proves that the tail-called
37 //     function does not read or write the stack object.
38 //  2. Tail recursion is only performed if the call immediately precedes the
39 //     return instruction.  It's possible that there could be a jump between
40 //     the call and the return.
41 //  3. There can be intervening operations between the call and the return that
42 //     prevent the TRE from occurring.  For example, there could be GEP's and
43 //     stores to memory that will not be read or written by the call.  This
44 //     requires some substantial analysis (such as with DSA) to prove safe to
45 //     move ahead of the call, but doing so could allow many more TREs to be
46 //     performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark.
47 //  4. The algorithm we use to detect if callees access their caller stack
48 //     frames is very primitive.
49 //
50 //===----------------------------------------------------------------------===//
51 
52 #include "llvm/Transforms/Scalar/TailRecursionElimination.h"
53 #include "llvm/ADT/STLExtras.h"
54 #include "llvm/ADT/SmallPtrSet.h"
55 #include "llvm/ADT/Statistic.h"
56 #include "llvm/Analysis/CFG.h"
57 #include "llvm/Analysis/CaptureTracking.h"
58 #include "llvm/Analysis/DomTreeUpdater.h"
59 #include "llvm/Analysis/GlobalsModRef.h"
60 #include "llvm/Analysis/InlineCost.h"
61 #include "llvm/Analysis/InstructionSimplify.h"
62 #include "llvm/Analysis/Loads.h"
63 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
64 #include "llvm/Analysis/PostDominators.h"
65 #include "llvm/Analysis/TargetTransformInfo.h"
66 #include "llvm/IR/CFG.h"
67 #include "llvm/IR/Constants.h"
68 #include "llvm/IR/DataLayout.h"
69 #include "llvm/IR/DerivedTypes.h"
70 #include "llvm/IR/DiagnosticInfo.h"
71 #include "llvm/IR/Dominators.h"
72 #include "llvm/IR/Function.h"
73 #include "llvm/IR/InstIterator.h"
74 #include "llvm/IR/Instructions.h"
75 #include "llvm/IR/IntrinsicInst.h"
76 #include "llvm/IR/Module.h"
77 #include "llvm/IR/ValueHandle.h"
78 #include "llvm/InitializePasses.h"
79 #include "llvm/Pass.h"
80 #include "llvm/Support/Debug.h"
81 #include "llvm/Support/raw_ostream.h"
82 #include "llvm/Transforms/Scalar.h"
83 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
84 using namespace llvm;
85 
86 #define DEBUG_TYPE "tailcallelim"
87 
88 STATISTIC(NumEliminated, "Number of tail calls removed");
89 STATISTIC(NumRetDuped,   "Number of return duplicated");
90 STATISTIC(NumAccumAdded, "Number of accumulators introduced");
91 
92 /// Scan the specified function for alloca instructions.
93 /// If it contains any dynamic allocas, returns false.
canTRE(Function & F)94 static bool canTRE(Function &F) {
95   // FIXME: The code generator produces really bad code when an 'escaping
96   // alloca' is changed from being a static alloca to being a dynamic alloca.
97   // Until this is resolved, disable this transformation if that would ever
98   // happen.  This bug is PR962.
99   return llvm::all_of(instructions(F), [](Instruction &I) {
100     auto *AI = dyn_cast<AllocaInst>(&I);
101     return !AI || AI->isStaticAlloca();
102   });
103 }
104 
105 namespace {
106 struct AllocaDerivedValueTracker {
107   // Start at a root value and walk its use-def chain to mark calls that use the
108   // value or a derived value in AllocaUsers, and places where it may escape in
109   // EscapePoints.
walk__anon34966dfb0211::AllocaDerivedValueTracker110   void walk(Value *Root) {
111     SmallVector<Use *, 32> Worklist;
112     SmallPtrSet<Use *, 32> Visited;
113 
114     auto AddUsesToWorklist = [&](Value *V) {
115       for (auto &U : V->uses()) {
116         if (!Visited.insert(&U).second)
117           continue;
118         Worklist.push_back(&U);
119       }
120     };
121 
122     AddUsesToWorklist(Root);
123 
124     while (!Worklist.empty()) {
125       Use *U = Worklist.pop_back_val();
126       Instruction *I = cast<Instruction>(U->getUser());
127 
128       switch (I->getOpcode()) {
129       case Instruction::Call:
130       case Instruction::Invoke: {
131         auto &CB = cast<CallBase>(*I);
132         // If the alloca-derived argument is passed byval it is not an escape
133         // point, or a use of an alloca. Calling with byval copies the contents
134         // of the alloca into argument registers or stack slots, which exist
135         // beyond the lifetime of the current frame.
136         if (CB.isArgOperand(U) && CB.isByValArgument(CB.getArgOperandNo(U)))
137           continue;
138         bool IsNocapture =
139             CB.isDataOperand(U) && CB.doesNotCapture(CB.getDataOperandNo(U));
140         callUsesLocalStack(CB, IsNocapture);
141         if (IsNocapture) {
142           // If the alloca-derived argument is passed in as nocapture, then it
143           // can't propagate to the call's return. That would be capturing.
144           continue;
145         }
146         break;
147       }
148       case Instruction::Load: {
149         // The result of a load is not alloca-derived (unless an alloca has
150         // otherwise escaped, but this is a local analysis).
151         continue;
152       }
153       case Instruction::Store: {
154         if (U->getOperandNo() == 0)
155           EscapePoints.insert(I);
156         continue;  // Stores have no users to analyze.
157       }
158       case Instruction::BitCast:
159       case Instruction::GetElementPtr:
160       case Instruction::PHI:
161       case Instruction::Select:
162       case Instruction::AddrSpaceCast:
163         break;
164       default:
165         EscapePoints.insert(I);
166         break;
167       }
168 
169       AddUsesToWorklist(I);
170     }
171   }
172 
callUsesLocalStack__anon34966dfb0211::AllocaDerivedValueTracker173   void callUsesLocalStack(CallBase &CB, bool IsNocapture) {
174     // Add it to the list of alloca users.
175     AllocaUsers.insert(&CB);
176 
177     // If it's nocapture then it can't capture this alloca.
178     if (IsNocapture)
179       return;
180 
181     // If it can write to memory, it can leak the alloca value.
182     if (!CB.onlyReadsMemory())
183       EscapePoints.insert(&CB);
184   }
185 
186   SmallPtrSet<Instruction *, 32> AllocaUsers;
187   SmallPtrSet<Instruction *, 32> EscapePoints;
188 };
189 }
190 
markTails(Function & F,bool & AllCallsAreTailCalls,OptimizationRemarkEmitter * ORE)191 static bool markTails(Function &F, bool &AllCallsAreTailCalls,
192                       OptimizationRemarkEmitter *ORE) {
193   if (F.callsFunctionThatReturnsTwice())
194     return false;
195   AllCallsAreTailCalls = true;
196 
197   // The local stack holds all alloca instructions and all byval arguments.
198   AllocaDerivedValueTracker Tracker;
199   for (Argument &Arg : F.args()) {
200     if (Arg.hasByValAttr())
201       Tracker.walk(&Arg);
202   }
203   for (auto &BB : F) {
204     for (auto &I : BB)
205       if (AllocaInst *AI = dyn_cast<AllocaInst>(&I))
206         Tracker.walk(AI);
207   }
208 
209   bool Modified = false;
210 
211   // Track whether a block is reachable after an alloca has escaped. Blocks that
212   // contain the escaping instruction will be marked as being visited without an
213   // escaped alloca, since that is how the block began.
214   enum VisitType {
215     UNVISITED,
216     UNESCAPED,
217     ESCAPED
218   };
219   DenseMap<BasicBlock *, VisitType> Visited;
220 
221   // We propagate the fact that an alloca has escaped from block to successor.
222   // Visit the blocks that are propagating the escapedness first. To do this, we
223   // maintain two worklists.
224   SmallVector<BasicBlock *, 32> WorklistUnescaped, WorklistEscaped;
225 
226   // We may enter a block and visit it thinking that no alloca has escaped yet,
227   // then see an escape point and go back around a loop edge and come back to
228   // the same block twice. Because of this, we defer setting tail on calls when
229   // we first encounter them in a block. Every entry in this list does not
230   // statically use an alloca via use-def chain analysis, but may find an alloca
231   // through other means if the block turns out to be reachable after an escape
232   // point.
233   SmallVector<CallInst *, 32> DeferredTails;
234 
235   BasicBlock *BB = &F.getEntryBlock();
236   VisitType Escaped = UNESCAPED;
237   do {
238     for (auto &I : *BB) {
239       if (Tracker.EscapePoints.count(&I))
240         Escaped = ESCAPED;
241 
242       CallInst *CI = dyn_cast<CallInst>(&I);
243       // A PseudoProbeInst has the IntrInaccessibleMemOnly tag hence it is
244       // considered accessing memory and will be marked as a tail call if we
245       // don't bail out here.
246       if (!CI || CI->isTailCall() || isa<DbgInfoIntrinsic>(&I) ||
247           isa<PseudoProbeInst>(&I))
248         continue;
249 
250       // Special-case operand bundle "clang.arc.attachedcall".
251       bool IsNoTail =
252           CI->isNoTailCall() || CI->hasOperandBundlesOtherThan(
253                                     LLVMContext::OB_clang_arc_attachedcall);
254 
255       if (!IsNoTail && CI->doesNotAccessMemory()) {
256         // A call to a readnone function whose arguments are all things computed
257         // outside this function can be marked tail. Even if you stored the
258         // alloca address into a global, a readnone function can't load the
259         // global anyhow.
260         //
261         // Note that this runs whether we know an alloca has escaped or not. If
262         // it has, then we can't trust Tracker.AllocaUsers to be accurate.
263         bool SafeToTail = true;
264         for (auto &Arg : CI->arg_operands()) {
265           if (isa<Constant>(Arg.getUser()))
266             continue;
267           if (Argument *A = dyn_cast<Argument>(Arg.getUser()))
268             if (!A->hasByValAttr())
269               continue;
270           SafeToTail = false;
271           break;
272         }
273         if (SafeToTail) {
274           using namespace ore;
275           ORE->emit([&]() {
276             return OptimizationRemark(DEBUG_TYPE, "tailcall-readnone", CI)
277                    << "marked as tail call candidate (readnone)";
278           });
279           CI->setTailCall();
280           Modified = true;
281           continue;
282         }
283       }
284 
285       if (!IsNoTail && Escaped == UNESCAPED && !Tracker.AllocaUsers.count(CI)) {
286         DeferredTails.push_back(CI);
287       } else {
288         AllCallsAreTailCalls = false;
289       }
290     }
291 
292     for (auto *SuccBB : successors(BB)) {
293       auto &State = Visited[SuccBB];
294       if (State < Escaped) {
295         State = Escaped;
296         if (State == ESCAPED)
297           WorklistEscaped.push_back(SuccBB);
298         else
299           WorklistUnescaped.push_back(SuccBB);
300       }
301     }
302 
303     if (!WorklistEscaped.empty()) {
304       BB = WorklistEscaped.pop_back_val();
305       Escaped = ESCAPED;
306     } else {
307       BB = nullptr;
308       while (!WorklistUnescaped.empty()) {
309         auto *NextBB = WorklistUnescaped.pop_back_val();
310         if (Visited[NextBB] == UNESCAPED) {
311           BB = NextBB;
312           Escaped = UNESCAPED;
313           break;
314         }
315       }
316     }
317   } while (BB);
318 
319   for (CallInst *CI : DeferredTails) {
320     if (Visited[CI->getParent()] != ESCAPED) {
321       // If the escape point was part way through the block, calls after the
322       // escape point wouldn't have been put into DeferredTails.
323       LLVM_DEBUG(dbgs() << "Marked as tail call candidate: " << *CI << "\n");
324       CI->setTailCall();
325       Modified = true;
326     } else {
327       AllCallsAreTailCalls = false;
328     }
329   }
330 
331   return Modified;
332 }
333 
334 /// Return true if it is safe to move the specified
335 /// instruction from after the call to before the call, assuming that all
336 /// instructions between the call and this instruction are movable.
337 ///
canMoveAboveCall(Instruction * I,CallInst * CI,AliasAnalysis * AA)338 static bool canMoveAboveCall(Instruction *I, CallInst *CI, AliasAnalysis *AA) {
339   // FIXME: We can move load/store/call/free instructions above the call if the
340   // call does not mod/ref the memory location being processed.
341   if (I->mayHaveSideEffects())  // This also handles volatile loads.
342     return false;
343 
344   if (LoadInst *L = dyn_cast<LoadInst>(I)) {
345     // Loads may always be moved above calls without side effects.
346     if (CI->mayHaveSideEffects()) {
347       // Non-volatile loads may be moved above a call with side effects if it
348       // does not write to memory and the load provably won't trap.
349       // Writes to memory only matter if they may alias the pointer
350       // being loaded from.
351       const DataLayout &DL = L->getModule()->getDataLayout();
352       if (isModSet(AA->getModRefInfo(CI, MemoryLocation::get(L))) ||
353           !isSafeToLoadUnconditionally(L->getPointerOperand(), L->getType(),
354                                        L->getAlign(), DL, L))
355         return false;
356     }
357   }
358 
359   // Otherwise, if this is a side-effect free instruction, check to make sure
360   // that it does not use the return value of the call.  If it doesn't use the
361   // return value of the call, it must only use things that are defined before
362   // the call, or movable instructions between the call and the instruction
363   // itself.
364   return !is_contained(I->operands(), CI);
365 }
366 
canTransformAccumulatorRecursion(Instruction * I,CallInst * CI)367 static bool canTransformAccumulatorRecursion(Instruction *I, CallInst *CI) {
368   if (!I->isAssociative() || !I->isCommutative())
369     return false;
370 
371   assert(I->getNumOperands() == 2 &&
372          "Associative/commutative operations should have 2 args!");
373 
374   // Exactly one operand should be the result of the call instruction.
375   if ((I->getOperand(0) == CI && I->getOperand(1) == CI) ||
376       (I->getOperand(0) != CI && I->getOperand(1) != CI))
377     return false;
378 
379   // The only user of this instruction we allow is a single return instruction.
380   if (!I->hasOneUse() || !isa<ReturnInst>(I->user_back()))
381     return false;
382 
383   return true;
384 }
385 
firstNonDbg(BasicBlock::iterator I)386 static Instruction *firstNonDbg(BasicBlock::iterator I) {
387   while (isa<DbgInfoIntrinsic>(I))
388     ++I;
389   return &*I;
390 }
391 
392 namespace {
393 class TailRecursionEliminator {
394   Function &F;
395   const TargetTransformInfo *TTI;
396   AliasAnalysis *AA;
397   OptimizationRemarkEmitter *ORE;
398   DomTreeUpdater &DTU;
399 
400   // The below are shared state we want to have available when eliminating any
401   // calls in the function. There values should be populated by
402   // createTailRecurseLoopHeader the first time we find a call we can eliminate.
403   BasicBlock *HeaderBB = nullptr;
404   SmallVector<PHINode *, 8> ArgumentPHIs;
405   bool RemovableCallsMustBeMarkedTail = false;
406 
407   // PHI node to store our return value.
408   PHINode *RetPN = nullptr;
409 
410   // i1 PHI node to track if we have a valid return value stored in RetPN.
411   PHINode *RetKnownPN = nullptr;
412 
413   // Vector of select instructions we insereted. These selects use RetKnownPN
414   // to either propagate RetPN or select a new return value.
415   SmallVector<SelectInst *, 8> RetSelects;
416 
417   // The below are shared state needed when performing accumulator recursion.
418   // There values should be populated by insertAccumulator the first time we
419   // find an elimination that requires an accumulator.
420 
421   // PHI node to store our current accumulated value.
422   PHINode *AccPN = nullptr;
423 
424   // The instruction doing the accumulating.
425   Instruction *AccumulatorRecursionInstr = nullptr;
426 
TailRecursionEliminator(Function & F,const TargetTransformInfo * TTI,AliasAnalysis * AA,OptimizationRemarkEmitter * ORE,DomTreeUpdater & DTU)427   TailRecursionEliminator(Function &F, const TargetTransformInfo *TTI,
428                           AliasAnalysis *AA, OptimizationRemarkEmitter *ORE,
429                           DomTreeUpdater &DTU)
430       : F(F), TTI(TTI), AA(AA), ORE(ORE), DTU(DTU) {}
431 
432   CallInst *findTRECandidate(BasicBlock *BB,
433                              bool CannotTailCallElimCallsMarkedTail);
434 
435   void createTailRecurseLoopHeader(CallInst *CI);
436 
437   void insertAccumulator(Instruction *AccRecInstr);
438 
439   bool eliminateCall(CallInst *CI);
440 
441   void cleanupAndFinalize();
442 
443   bool processBlock(BasicBlock &BB, bool CannotTailCallElimCallsMarkedTail);
444 
445 public:
446   static bool eliminate(Function &F, const TargetTransformInfo *TTI,
447                         AliasAnalysis *AA, OptimizationRemarkEmitter *ORE,
448                         DomTreeUpdater &DTU);
449 };
450 } // namespace
451 
findTRECandidate(BasicBlock * BB,bool CannotTailCallElimCallsMarkedTail)452 CallInst *TailRecursionEliminator::findTRECandidate(
453     BasicBlock *BB, bool CannotTailCallElimCallsMarkedTail) {
454   Instruction *TI = BB->getTerminator();
455 
456   if (&BB->front() == TI) // Make sure there is something before the terminator.
457     return nullptr;
458 
459   // Scan backwards from the return, checking to see if there is a tail call in
460   // this block.  If so, set CI to it.
461   CallInst *CI = nullptr;
462   BasicBlock::iterator BBI(TI);
463   while (true) {
464     CI = dyn_cast<CallInst>(BBI);
465     if (CI && CI->getCalledFunction() == &F)
466       break;
467 
468     if (BBI == BB->begin())
469       return nullptr;          // Didn't find a potential tail call.
470     --BBI;
471   }
472 
473   // If this call is marked as a tail call, and if there are dynamic allocas in
474   // the function, we cannot perform this optimization.
475   if (CI->isTailCall() && CannotTailCallElimCallsMarkedTail)
476     return nullptr;
477 
478   // As a special case, detect code like this:
479   //   double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call
480   // and disable this xform in this case, because the code generator will
481   // lower the call to fabs into inline code.
482   if (BB == &F.getEntryBlock() &&
483       firstNonDbg(BB->front().getIterator()) == CI &&
484       firstNonDbg(std::next(BB->begin())) == TI && CI->getCalledFunction() &&
485       !TTI->isLoweredToCall(CI->getCalledFunction())) {
486     // A single-block function with just a call and a return. Check that
487     // the arguments match.
488     auto I = CI->arg_begin(), E = CI->arg_end();
489     Function::arg_iterator FI = F.arg_begin(), FE = F.arg_end();
490     for (; I != E && FI != FE; ++I, ++FI)
491       if (*I != &*FI) break;
492     if (I == E && FI == FE)
493       return nullptr;
494   }
495 
496   return CI;
497 }
498 
createTailRecurseLoopHeader(CallInst * CI)499 void TailRecursionEliminator::createTailRecurseLoopHeader(CallInst *CI) {
500   HeaderBB = &F.getEntryBlock();
501   BasicBlock *NewEntry = BasicBlock::Create(F.getContext(), "", &F, HeaderBB);
502   NewEntry->takeName(HeaderBB);
503   HeaderBB->setName("tailrecurse");
504   BranchInst *BI = BranchInst::Create(HeaderBB, NewEntry);
505   BI->setDebugLoc(CI->getDebugLoc());
506 
507   // If this function has self recursive calls in the tail position where some
508   // are marked tail and some are not, only transform one flavor or another.
509   // We have to choose whether we move allocas in the entry block to the new
510   // entry block or not, so we can't make a good choice for both. We make this
511   // decision here based on whether the first call we found to remove is
512   // marked tail.
513   // NOTE: We could do slightly better here in the case that the function has
514   // no entry block allocas.
515   RemovableCallsMustBeMarkedTail = CI->isTailCall();
516 
517   // If this tail call is marked 'tail' and if there are any allocas in the
518   // entry block, move them up to the new entry block.
519   if (RemovableCallsMustBeMarkedTail)
520     // Move all fixed sized allocas from HeaderBB to NewEntry.
521     for (BasicBlock::iterator OEBI = HeaderBB->begin(), E = HeaderBB->end(),
522                               NEBI = NewEntry->begin();
523          OEBI != E;)
524       if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++))
525         if (isa<ConstantInt>(AI->getArraySize()))
526           AI->moveBefore(&*NEBI);
527 
528   // Now that we have created a new block, which jumps to the entry
529   // block, insert a PHI node for each argument of the function.
530   // For now, we initialize each PHI to only have the real arguments
531   // which are passed in.
532   Instruction *InsertPos = &HeaderBB->front();
533   for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
534     PHINode *PN =
535         PHINode::Create(I->getType(), 2, I->getName() + ".tr", InsertPos);
536     I->replaceAllUsesWith(PN); // Everyone use the PHI node now!
537     PN->addIncoming(&*I, NewEntry);
538     ArgumentPHIs.push_back(PN);
539   }
540 
541   // If the function doen't return void, create the RetPN and RetKnownPN PHI
542   // nodes to track our return value. We initialize RetPN with undef and
543   // RetKnownPN with false since we can't know our return value at function
544   // entry.
545   Type *RetType = F.getReturnType();
546   if (!RetType->isVoidTy()) {
547     Type *BoolType = Type::getInt1Ty(F.getContext());
548     RetPN = PHINode::Create(RetType, 2, "ret.tr", InsertPos);
549     RetKnownPN = PHINode::Create(BoolType, 2, "ret.known.tr", InsertPos);
550 
551     RetPN->addIncoming(UndefValue::get(RetType), NewEntry);
552     RetKnownPN->addIncoming(ConstantInt::getFalse(BoolType), NewEntry);
553   }
554 
555   // The entry block was changed from HeaderBB to NewEntry.
556   // The forward DominatorTree needs to be recalculated when the EntryBB is
557   // changed. In this corner-case we recalculate the entire tree.
558   DTU.recalculate(*NewEntry->getParent());
559 }
560 
insertAccumulator(Instruction * AccRecInstr)561 void TailRecursionEliminator::insertAccumulator(Instruction *AccRecInstr) {
562   assert(!AccPN && "Trying to insert multiple accumulators");
563 
564   AccumulatorRecursionInstr = AccRecInstr;
565 
566   // Start by inserting a new PHI node for the accumulator.
567   pred_iterator PB = pred_begin(HeaderBB), PE = pred_end(HeaderBB);
568   AccPN = PHINode::Create(F.getReturnType(), std::distance(PB, PE) + 1,
569                           "accumulator.tr", &HeaderBB->front());
570 
571   // Loop over all of the predecessors of the tail recursion block.  For the
572   // real entry into the function we seed the PHI with the identity constant for
573   // the accumulation operation.  For any other existing branches to this block
574   // (due to other tail recursions eliminated) the accumulator is not modified.
575   // Because we haven't added the branch in the current block to HeaderBB yet,
576   // it will not show up as a predecessor.
577   for (pred_iterator PI = PB; PI != PE; ++PI) {
578     BasicBlock *P = *PI;
579     if (P == &F.getEntryBlock()) {
580       Constant *Identity = ConstantExpr::getBinOpIdentity(
581           AccRecInstr->getOpcode(), AccRecInstr->getType());
582       AccPN->addIncoming(Identity, P);
583     } else {
584       AccPN->addIncoming(AccPN, P);
585     }
586   }
587 
588   ++NumAccumAdded;
589 }
590 
eliminateCall(CallInst * CI)591 bool TailRecursionEliminator::eliminateCall(CallInst *CI) {
592   ReturnInst *Ret = cast<ReturnInst>(CI->getParent()->getTerminator());
593 
594   // Ok, we found a potential tail call.  We can currently only transform the
595   // tail call if all of the instructions between the call and the return are
596   // movable to above the call itself, leaving the call next to the return.
597   // Check that this is the case now.
598   Instruction *AccRecInstr = nullptr;
599   BasicBlock::iterator BBI(CI);
600   for (++BBI; &*BBI != Ret; ++BBI) {
601     if (canMoveAboveCall(&*BBI, CI, AA))
602       continue;
603 
604     // If we can't move the instruction above the call, it might be because it
605     // is an associative and commutative operation that could be transformed
606     // using accumulator recursion elimination.  Check to see if this is the
607     // case, and if so, remember which instruction accumulates for later.
608     if (AccPN || !canTransformAccumulatorRecursion(&*BBI, CI))
609       return false; // We cannot eliminate the tail recursion!
610 
611     // Yes, this is accumulator recursion.  Remember which instruction
612     // accumulates.
613     AccRecInstr = &*BBI;
614   }
615 
616   BasicBlock *BB = Ret->getParent();
617 
618   using namespace ore;
619   ORE->emit([&]() {
620     return OptimizationRemark(DEBUG_TYPE, "tailcall-recursion", CI)
621            << "transforming tail recursion into loop";
622   });
623 
624   // OK! We can transform this tail call.  If this is the first one found,
625   // create the new entry block, allowing us to branch back to the old entry.
626   if (!HeaderBB)
627     createTailRecurseLoopHeader(CI);
628 
629   if (RemovableCallsMustBeMarkedTail && !CI->isTailCall())
630     return false;
631 
632   // Ok, now that we know we have a pseudo-entry block WITH all of the
633   // required PHI nodes, add entries into the PHI node for the actual
634   // parameters passed into the tail-recursive call.
635   for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i)
636     ArgumentPHIs[i]->addIncoming(CI->getArgOperand(i), BB);
637 
638   if (AccRecInstr) {
639     insertAccumulator(AccRecInstr);
640 
641     // Rewrite the accumulator recursion instruction so that it does not use
642     // the result of the call anymore, instead, use the PHI node we just
643     // inserted.
644     AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN);
645   }
646 
647   // Update our return value tracking
648   if (RetPN) {
649     if (Ret->getReturnValue() == CI || AccRecInstr) {
650       // Defer selecting a return value
651       RetPN->addIncoming(RetPN, BB);
652       RetKnownPN->addIncoming(RetKnownPN, BB);
653     } else {
654       // We found a return value we want to use, insert a select instruction to
655       // select it if we don't already know what our return value will be and
656       // store the result in our return value PHI node.
657       SelectInst *SI = SelectInst::Create(
658           RetKnownPN, RetPN, Ret->getReturnValue(), "current.ret.tr", Ret);
659       RetSelects.push_back(SI);
660 
661       RetPN->addIncoming(SI, BB);
662       RetKnownPN->addIncoming(ConstantInt::getTrue(RetKnownPN->getType()), BB);
663     }
664 
665     if (AccPN)
666       AccPN->addIncoming(AccRecInstr ? AccRecInstr : AccPN, BB);
667   }
668 
669   // Now that all of the PHI nodes are in place, remove the call and
670   // ret instructions, replacing them with an unconditional branch.
671   BranchInst *NewBI = BranchInst::Create(HeaderBB, Ret);
672   NewBI->setDebugLoc(CI->getDebugLoc());
673 
674   BB->getInstList().erase(Ret);  // Remove return.
675   BB->getInstList().erase(CI);   // Remove call.
676   DTU.applyUpdates({{DominatorTree::Insert, BB, HeaderBB}});
677   ++NumEliminated;
678   return true;
679 }
680 
cleanupAndFinalize()681 void TailRecursionEliminator::cleanupAndFinalize() {
682   // If we eliminated any tail recursions, it's possible that we inserted some
683   // silly PHI nodes which just merge an initial value (the incoming operand)
684   // with themselves.  Check to see if we did and clean up our mess if so.  This
685   // occurs when a function passes an argument straight through to its tail
686   // call.
687   for (PHINode *PN : ArgumentPHIs) {
688     // If the PHI Node is a dynamic constant, replace it with the value it is.
689     if (Value *PNV = SimplifyInstruction(PN, F.getParent()->getDataLayout())) {
690       PN->replaceAllUsesWith(PNV);
691       PN->eraseFromParent();
692     }
693   }
694 
695   if (RetPN) {
696     if (RetSelects.empty()) {
697       // If we didn't insert any select instructions, then we know we didn't
698       // store a return value and we can remove the PHI nodes we inserted.
699       RetPN->dropAllReferences();
700       RetPN->eraseFromParent();
701 
702       RetKnownPN->dropAllReferences();
703       RetKnownPN->eraseFromParent();
704 
705       if (AccPN) {
706         // We need to insert a copy of our accumulator instruction before any
707         // return in the function, and return its result instead.
708         Instruction *AccRecInstr = AccumulatorRecursionInstr;
709         for (BasicBlock &BB : F) {
710           ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator());
711           if (!RI)
712             continue;
713 
714           Instruction *AccRecInstrNew = AccRecInstr->clone();
715           AccRecInstrNew->setName("accumulator.ret.tr");
716           AccRecInstrNew->setOperand(AccRecInstr->getOperand(0) == AccPN,
717                                      RI->getOperand(0));
718           AccRecInstrNew->insertBefore(RI);
719           RI->setOperand(0, AccRecInstrNew);
720         }
721       }
722     } else {
723       // We need to insert a select instruction before any return left in the
724       // function to select our stored return value if we have one.
725       for (BasicBlock &BB : F) {
726         ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator());
727         if (!RI)
728           continue;
729 
730         SelectInst *SI = SelectInst::Create(
731             RetKnownPN, RetPN, RI->getOperand(0), "current.ret.tr", RI);
732         RetSelects.push_back(SI);
733         RI->setOperand(0, SI);
734       }
735 
736       if (AccPN) {
737         // We need to insert a copy of our accumulator instruction before any
738         // of the selects we inserted, and select its result instead.
739         Instruction *AccRecInstr = AccumulatorRecursionInstr;
740         for (SelectInst *SI : RetSelects) {
741           Instruction *AccRecInstrNew = AccRecInstr->clone();
742           AccRecInstrNew->setName("accumulator.ret.tr");
743           AccRecInstrNew->setOperand(AccRecInstr->getOperand(0) == AccPN,
744                                      SI->getFalseValue());
745           AccRecInstrNew->insertBefore(SI);
746           SI->setFalseValue(AccRecInstrNew);
747         }
748       }
749     }
750   }
751 }
752 
processBlock(BasicBlock & BB,bool CannotTailCallElimCallsMarkedTail)753 bool TailRecursionEliminator::processBlock(
754     BasicBlock &BB, bool CannotTailCallElimCallsMarkedTail) {
755   Instruction *TI = BB.getTerminator();
756 
757   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
758     if (BI->isConditional())
759       return false;
760 
761     BasicBlock *Succ = BI->getSuccessor(0);
762     ReturnInst *Ret = dyn_cast<ReturnInst>(Succ->getFirstNonPHIOrDbg(true));
763 
764     if (!Ret)
765       return false;
766 
767     CallInst *CI = findTRECandidate(&BB, CannotTailCallElimCallsMarkedTail);
768 
769     if (!CI)
770       return false;
771 
772     LLVM_DEBUG(dbgs() << "FOLDING: " << *Succ
773                       << "INTO UNCOND BRANCH PRED: " << BB);
774     FoldReturnIntoUncondBranch(Ret, Succ, &BB, &DTU);
775     ++NumRetDuped;
776 
777     // If all predecessors of Succ have been eliminated by
778     // FoldReturnIntoUncondBranch, delete it.  It is important to empty it,
779     // because the ret instruction in there is still using a value which
780     // eliminateCall will attempt to remove.  This block can only contain
781     // instructions that can't have uses, therefore it is safe to remove.
782     if (pred_empty(Succ))
783       DTU.deleteBB(Succ);
784 
785     eliminateCall(CI);
786     return true;
787   } else if (isa<ReturnInst>(TI)) {
788     CallInst *CI = findTRECandidate(&BB, CannotTailCallElimCallsMarkedTail);
789 
790     if (CI)
791       return eliminateCall(CI);
792   }
793 
794   return false;
795 }
796 
eliminate(Function & F,const TargetTransformInfo * TTI,AliasAnalysis * AA,OptimizationRemarkEmitter * ORE,DomTreeUpdater & DTU)797 bool TailRecursionEliminator::eliminate(Function &F,
798                                         const TargetTransformInfo *TTI,
799                                         AliasAnalysis *AA,
800                                         OptimizationRemarkEmitter *ORE,
801                                         DomTreeUpdater &DTU) {
802   if (F.getFnAttribute("disable-tail-calls").getValueAsBool())
803     return false;
804 
805   bool MadeChange = false;
806   bool AllCallsAreTailCalls = false;
807   MadeChange |= markTails(F, AllCallsAreTailCalls, ORE);
808   if (!AllCallsAreTailCalls)
809     return MadeChange;
810 
811   // If this function is a varargs function, we won't be able to PHI the args
812   // right, so don't even try to convert it...
813   if (F.getFunctionType()->isVarArg())
814     return MadeChange;
815 
816   // If false, we cannot perform TRE on tail calls marked with the 'tail'
817   // attribute, because doing so would cause the stack size to increase (real
818   // TRE would deallocate variable sized allocas, TRE doesn't).
819   bool CanTRETailMarkedCall = canTRE(F);
820 
821   // Change any tail recursive calls to loops.
822   TailRecursionEliminator TRE(F, TTI, AA, ORE, DTU);
823 
824   for (BasicBlock &BB : F)
825     MadeChange |= TRE.processBlock(BB, !CanTRETailMarkedCall);
826 
827   TRE.cleanupAndFinalize();
828 
829   return MadeChange;
830 }
831 
832 namespace {
833 struct TailCallElim : public FunctionPass {
834   static char ID; // Pass identification, replacement for typeid
TailCallElim__anon34966dfb0711::TailCallElim835   TailCallElim() : FunctionPass(ID) {
836     initializeTailCallElimPass(*PassRegistry::getPassRegistry());
837   }
838 
getAnalysisUsage__anon34966dfb0711::TailCallElim839   void getAnalysisUsage(AnalysisUsage &AU) const override {
840     AU.addRequired<TargetTransformInfoWrapperPass>();
841     AU.addRequired<AAResultsWrapperPass>();
842     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
843     AU.addPreserved<GlobalsAAWrapperPass>();
844     AU.addPreserved<DominatorTreeWrapperPass>();
845     AU.addPreserved<PostDominatorTreeWrapperPass>();
846   }
847 
runOnFunction__anon34966dfb0711::TailCallElim848   bool runOnFunction(Function &F) override {
849     if (skipFunction(F))
850       return false;
851 
852     auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
853     auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
854     auto *PDTWP = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>();
855     auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr;
856     // There is no noticable performance difference here between Lazy and Eager
857     // UpdateStrategy based on some test results. It is feasible to switch the
858     // UpdateStrategy to Lazy if we find it profitable later.
859     DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager);
860 
861     return TailRecursionEliminator::eliminate(
862         F, &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F),
863         &getAnalysis<AAResultsWrapperPass>().getAAResults(),
864         &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(), DTU);
865   }
866 };
867 }
868 
869 char TailCallElim::ID = 0;
870 INITIALIZE_PASS_BEGIN(TailCallElim, "tailcallelim", "Tail Call Elimination",
871                       false, false)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)872 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
873 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
874 INITIALIZE_PASS_END(TailCallElim, "tailcallelim", "Tail Call Elimination",
875                     false, false)
876 
877 // Public interface to the TailCallElimination pass
878 FunctionPass *llvm::createTailCallEliminationPass() {
879   return new TailCallElim();
880 }
881 
run(Function & F,FunctionAnalysisManager & AM)882 PreservedAnalyses TailCallElimPass::run(Function &F,
883                                         FunctionAnalysisManager &AM) {
884 
885   TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F);
886   AliasAnalysis &AA = AM.getResult<AAManager>(F);
887   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
888   auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F);
889   auto *PDT = AM.getCachedResult<PostDominatorTreeAnalysis>(F);
890   // There is no noticable performance difference here between Lazy and Eager
891   // UpdateStrategy based on some test results. It is feasible to switch the
892   // UpdateStrategy to Lazy if we find it profitable later.
893   DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager);
894   bool Changed = TailRecursionEliminator::eliminate(F, &TTI, &AA, &ORE, DTU);
895 
896   if (!Changed)
897     return PreservedAnalyses::all();
898   PreservedAnalyses PA;
899   PA.preserve<DominatorTreeAnalysis>();
900   PA.preserve<PostDominatorTreeAnalysis>();
901   return PA;
902 }
903