xref: /netbsd-src/external/gpl3/gcc/dist/gcc/config/s390/s390.h (revision b1e838363e3c6fc78a55519254d99869742dd33c)
1 /* Definitions of target machine for GNU compiler, for IBM S/390
2    Copyright (C) 1999-2022 Free Software Foundation, Inc.
3    Contributed by Hartmut Penner (hpenner@de.ibm.com) and
4 		  Ulrich Weigand (uweigand@de.ibm.com).
5 		  Andreas Krebbel (Andreas.Krebbel@de.ibm.com)
6 
7 This file is part of GCC.
8 
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13 
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
17 for more details.
18 
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3.  If not see
21 <http://www.gnu.org/licenses/>.  */
22 
23 #ifndef _S390_H
24 #define _S390_H
25 
26 /* Optional architectural facilities supported by the processor.  */
27 
28 enum processor_flags
29 {
30   PF_IEEE_FLOAT = 1,
31   PF_ZARCH = 2,
32   PF_LONG_DISPLACEMENT = 4,
33   PF_EXTIMM = 8,
34   PF_DFP = 16,
35   PF_Z10 = 32,
36   PF_Z196 = 64,
37   PF_ZEC12 = 128,
38   PF_TX = 256,
39   PF_Z13 = 512,
40   PF_VX = 1024,
41   PF_Z14 = 2048,
42   PF_VXE = 4096,
43   PF_VXE2 = 8192,
44   PF_Z15 = 16384,
45   PF_NNPA = 32768,
46   PF_Z16 = 65536
47 };
48 
49 /* This is necessary to avoid a warning about comparing different enum
50    types.  */
51 #define s390_tune_attr ((enum attr_cpu)(s390_tune > PROCESSOR_3931_Z16 ? PROCESSOR_3931_Z16 : s390_tune ))
52 
53 /* These flags indicate that the generated code should run on a cpu
54    providing the respective hardware facility regardless of the
55    current cpu mode (ESA or z/Architecture).  */
56 
57 #define TARGET_CPU_IEEE_FLOAT \
58 	(s390_arch_flags & PF_IEEE_FLOAT)
59 #define TARGET_CPU_IEEE_FLOAT_P(opts) \
60 	(opts->x_s390_arch_flags & PF_IEEE_FLOAT)
61 #define TARGET_CPU_LONG_DISPLACEMENT \
62 	(s390_arch_flags & PF_LONG_DISPLACEMENT)
63 #define TARGET_CPU_LONG_DISPLACEMENT_P(opts) \
64 	(opts->x_s390_arch_flags & PF_LONG_DISPLACEMENT)
65 #define TARGET_CPU_EXTIMM \
66 	(s390_arch_flags & PF_EXTIMM)
67 #define TARGET_CPU_EXTIMM_P(opts) \
68 	(opts->x_s390_arch_flags & PF_EXTIMM)
69 #define TARGET_CPU_DFP \
70 	(s390_arch_flags & PF_DFP)
71 #define TARGET_CPU_DFP_P(opts) \
72 	(opts->x_s390_arch_flags & PF_DFP)
73 #define TARGET_CPU_Z10 \
74 	(s390_arch_flags & PF_Z10)
75 #define TARGET_CPU_Z10_P(opts) \
76 	(opts->x_s390_arch_flags & PF_Z10)
77 #define TARGET_CPU_Z196 \
78 	(s390_arch_flags & PF_Z196)
79 #define TARGET_CPU_Z196_P(opts) \
80 	(opts->x_s390_arch_flags & PF_Z196)
81 #define TARGET_CPU_ZEC12 \
82 	(s390_arch_flags & PF_ZEC12)
83 #define TARGET_CPU_ZEC12_P(opts) \
84 	(opts->x_s390_arch_flags & PF_ZEC12)
85 #define TARGET_CPU_HTM \
86 	(s390_arch_flags & PF_TX)
87 #define TARGET_CPU_HTM_P(opts) \
88 	(opts->x_s390_arch_flags & PF_TX)
89 #define TARGET_CPU_Z13 \
90 	(s390_arch_flags & PF_Z13)
91 #define TARGET_CPU_Z13_P(opts) \
92 	(opts->x_s390_arch_flags & PF_Z13)
93 #define TARGET_CPU_VX \
94 	(s390_arch_flags & PF_VX)
95 #define TARGET_CPU_VX_P(opts) \
96 	(opts->x_s390_arch_flags & PF_VX)
97 #define TARGET_CPU_Z14 \
98 	(s390_arch_flags & PF_Z14)
99 #define TARGET_CPU_Z14_P(opts) \
100 	(opts->x_s390_arch_flags & PF_Z14)
101 #define TARGET_CPU_VXE \
102 	(s390_arch_flags & PF_VXE)
103 #define TARGET_CPU_VXE_P(opts) \
104 	(opts->x_s390_arch_flags & PF_VXE)
105 #define TARGET_CPU_Z15 \
106 	(s390_arch_flags & PF_Z15)
107 #define TARGET_CPU_Z15_P(opts) \
108 	(opts->x_s390_arch_flags & PF_Z15)
109 #define TARGET_CPU_VXE2 \
110 	(s390_arch_flags & PF_VXE2)
111 #define TARGET_CPU_VXE2_P(opts) \
112 	(opts->x_s390_arch_flags & PF_VXE2)
113 #define TARGET_CPU_Z16 \
114 	(s390_arch_flags & PF_Z16)
115 #define TARGET_CPU_Z16_P(opts) \
116 	(opts->x_s390_arch_flags & PF_Z16)
117 #define TARGET_CPU_NNPA \
118 	(s390_arch_flags & PF_NNPA)
119 #define TARGET_CPU_NNPA_P(opts) \
120 	(opts->x_s390_arch_flags & PF_NNPA)
121 
122 #define TARGET_HARD_FLOAT_P(opts) (!TARGET_SOFT_FLOAT_P(opts))
123 
124 /* These flags indicate that the generated code should run on a cpu
125    providing the respective hardware facility when run in
126    z/Architecture mode.  */
127 
128 #define TARGET_LONG_DISPLACEMENT \
129 	(TARGET_ZARCH && TARGET_CPU_LONG_DISPLACEMENT)
130 #define TARGET_LONG_DISPLACEMENT_P(opts) \
131 	(TARGET_ZARCH_P (opts->x_target_flags) \
132 	 && TARGET_CPU_LONG_DISPLACEMENT_P (opts))
133 #define TARGET_EXTIMM \
134 	(TARGET_ZARCH && TARGET_CPU_EXTIMM)
135 #define TARGET_EXTIMM_P(opts) \
136 	(TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_EXTIMM_P (opts))
137 #define TARGET_DFP \
138 	(TARGET_ZARCH && TARGET_CPU_DFP && TARGET_HARD_FLOAT)
139 #define TARGET_DFP_P(opts) \
140 	(TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_DFP_P (opts) \
141 	 && TARGET_HARD_FLOAT_P (opts->x_target_flags))
142 #define TARGET_Z10 \
143 	(TARGET_ZARCH && TARGET_CPU_Z10)
144 #define TARGET_Z10_P(opts) \
145 	(TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_Z10_P (opts))
146 #define TARGET_Z196 \
147 	(TARGET_ZARCH && TARGET_CPU_Z196)
148 #define TARGET_Z196_P(opts) \
149 	(TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_Z196_P (opts))
150 #define TARGET_ZEC12 \
151 	(TARGET_ZARCH && TARGET_CPU_ZEC12)
152 #define TARGET_ZEC12_P(opts) \
153 	(TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_ZEC12_P (opts))
154 #define TARGET_HTM (TARGET_OPT_HTM)
155 #define TARGET_HTM_P(opts) (TARGET_OPT_HTM_P (opts->x_target_flags))
156 #define TARGET_Z13 \
157 	(TARGET_ZARCH && TARGET_CPU_Z13)
158 #define TARGET_Z13_P(opts) \
159 	(TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_Z13_P (opts))
160 #define TARGET_VX \
161 	(TARGET_ZARCH && TARGET_CPU_VX && TARGET_OPT_VX && TARGET_HARD_FLOAT)
162 #define TARGET_VX_P(opts) \
163 	(TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_VX_P (opts) \
164 	 && TARGET_OPT_VX_P (opts->x_target_flags) \
165 	 && TARGET_HARD_FLOAT_P (opts->x_target_flags))
166 #define TARGET_Z14 (TARGET_ZARCH && TARGET_CPU_Z14)
167 #define TARGET_Z14_P(opts)						\
168 	(TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_Z14_P (opts))
169 #define TARGET_VXE				\
170 	(TARGET_VX && TARGET_CPU_VXE)
171 #define TARGET_VXE_P(opts)						\
172 	(TARGET_VX_P (opts) && TARGET_CPU_VXE_P (opts))
173 #define TARGET_Z15 (TARGET_ZARCH && TARGET_CPU_Z15)
174 #define TARGET_Z15_P(opts)						\
175 	(TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_Z15_P (opts))
176 #define TARGET_VXE2					\
177 	(TARGET_VX && TARGET_CPU_VXE2)
178 #define TARGET_VXE2_P(opts)						\
179 	(TARGET_VX_P (opts) && TARGET_CPU_VXE2_P (opts))
180 #define TARGET_Z16 (TARGET_ZARCH && TARGET_CPU_Z16)
181 #define TARGET_Z16_P(opts)						\
182 	(TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_Z16_P (opts))
183 #define TARGET_NNPA					\
184 	(TARGET_ZARCH && TARGET_CPU_NNPA)
185 #define TARGET_NNPA_P(opts)						\
186 	(TARGET_ZARCH_P (opts) && TARGET_CPU_NNPA_P (opts))
187 
188 #if defined(HAVE_AS_VECTOR_LOADSTORE_ALIGNMENT_HINTS_ON_Z13)
189 #define TARGET_VECTOR_LOADSTORE_ALIGNMENT_HINTS TARGET_Z13
190 #elif defined(HAVE_AS_VECTOR_LOADSTORE_ALIGNMENT_HINTS)
191 #define TARGET_VECTOR_LOADSTORE_ALIGNMENT_HINTS TARGET_Z14
192 #else
193 #define TARGET_VECTOR_LOADSTORE_ALIGNMENT_HINTS 0
194 #endif
195 
196 /* Evaluate to true if it is ok to emit a non-signaling vector
197    comparison.  */
198 #define TARGET_NONSIGNALING_VECTOR_COMPARE_OK \
199   (TARGET_VX && !TARGET_VXE && (flag_finite_math_only || !flag_trapping_math))
200 
201 #ifdef HAVE_AS_MACHINE_MACHINEMODE
202 #define S390_USE_TARGET_ATTRIBUTE 1
203 #else
204 #define S390_USE_TARGET_ATTRIBUTE 0
205 #endif
206 
207 #ifdef HAVE_AS_ARCHITECTURE_MODIFIERS
208 #define S390_USE_ARCHITECTURE_MODIFIERS 1
209 #else
210 #define S390_USE_ARCHITECTURE_MODIFIERS 0
211 #endif
212 
213 #if S390_USE_TARGET_ATTRIBUTE
214 /* For switching between functions with different target attributes.  */
215 #define SWITCHABLE_TARGET 1
216 #endif
217 
218 #define TARGET_SUPPORTS_WIDE_INT 1
219 
220 /* Use the ABI introduced with IBM z13:
221    - pass vector arguments <= 16 bytes in VRs
222    - align *all* vector types to 8 bytes  */
223 #define TARGET_VX_ABI TARGET_VX
224 
225 #define TARGET_AVOID_CMP_AND_BRANCH (s390_tune == PROCESSOR_2817_Z196)
226 
227 /* Issue a write prefetch for the +4 cache line.  */
228 #define TARGET_SETMEM_PREFETCH_DISTANCE 1024
229 
230 /* Expand to a C expressions evaluating to true if a setmem to VAL of
231    length LEN should be emitted using prefetch instructions.  */
232 #define TARGET_SETMEM_PFD(VAL,LEN)					\
233   (TARGET_Z10								\
234    && (s390_tune < PROCESSOR_2964_Z13 || (VAL) != const0_rtx)		\
235    && (!CONST_INT_P (LEN) || INTVAL ((LEN)) > TARGET_SETMEM_PREFETCH_DISTANCE))
236 
237 /* Run-time target specification.  */
238 
239 /* Defaults for option flags defined only on some subtargets.  */
240 #ifndef TARGET_TPF_PROFILING
241 #define TARGET_TPF_PROFILING 0
242 #endif
243 
244 /* This will be overridden by OS headers.  */
245 #define TARGET_TPF 0
246 
247 /* Target CPU builtins.  */
248 #define TARGET_CPU_CPP_BUILTINS() s390_cpu_cpp_builtins (pfile)
249 
250 #ifdef DEFAULT_TARGET_64BIT
251 #define TARGET_DEFAULT     (MASK_64BIT | MASK_ZARCH | MASK_HARD_DFP	\
252 			    | MASK_OPT_HTM | MASK_OPT_VX)
253 #else
254 #define TARGET_DEFAULT             0
255 #endif
256 
257 /* Support for configure-time defaults.
258    The order here is important so that -march doesn't squash the
259    tune values.  */
260 #define OPTION_DEFAULT_SPECS					\
261   { "mode", "%{!mesa:%{!mzarch:-m%(VALUE)}}" },			\
262   { "tune", "%{!mtune=*:%{!march=*:-mtune=%(VALUE)}}" },	\
263   { "arch", "%{!march=*:-march=%(VALUE)}" }
264 
265 #ifdef __s390__
266 extern const char *s390_host_detect_local_cpu (int argc, const char **argv);
267 # define EXTRA_SPEC_FUNCTIONS \
268   { "local_cpu_detect", s390_host_detect_local_cpu },
269 
270 #define MARCH_MTUNE_NATIVE_SPECS				\
271   "%{mtune=native:%<mtune=native %:local_cpu_detect(tune)} "	\
272   "%{march=native:%<march=native"				\
273   " %:local_cpu_detect(arch %{mesa|mzarch:mesa_mzarch})}"
274 #else
275 # define MARCH_MTUNE_NATIVE_SPECS ""
276 #endif
277 
278 #ifdef DEFAULT_TARGET_64BIT
279 #define S390_TARGET_BITS_STRING "64"
280 #else
281 #define S390_TARGET_BITS_STRING "31"
282 #endif
283 
284 /* Defaulting rules.  */
285 #define DRIVER_SELF_SPECS					\
286   MARCH_MTUNE_NATIVE_SPECS,					\
287   "%{!m31:%{!m64:-m" S390_TARGET_BITS_STRING "}}",		\
288   "%{!mesa:%{!mzarch:%{m31:-mesa}%{m64:-mzarch}}}",		\
289   "%{!march=*:-march=z900}"
290 
291 /* Constants needed to control the TEST DATA CLASS (TDC) instruction.  */
292 #define S390_TDC_POSITIVE_ZERO                     (1 << 11)
293 #define S390_TDC_NEGATIVE_ZERO                     (1 << 10)
294 #define S390_TDC_POSITIVE_NORMALIZED_BFP_NUMBER    (1 << 9)
295 #define S390_TDC_NEGATIVE_NORMALIZED_BFP_NUMBER    (1 << 8)
296 #define S390_TDC_POSITIVE_DENORMALIZED_BFP_NUMBER  (1 << 7)
297 #define S390_TDC_NEGATIVE_DENORMALIZED_BFP_NUMBER  (1 << 6)
298 #define S390_TDC_POSITIVE_INFINITY                 (1 << 5)
299 #define S390_TDC_NEGATIVE_INFINITY                 (1 << 4)
300 #define S390_TDC_POSITIVE_QUIET_NAN                (1 << 3)
301 #define S390_TDC_NEGATIVE_QUIET_NAN                (1 << 2)
302 #define S390_TDC_POSITIVE_SIGNALING_NAN            (1 << 1)
303 #define S390_TDC_NEGATIVE_SIGNALING_NAN            (1 << 0)
304 
305 /* The following values are different for DFP.  */
306 #define S390_TDC_POSITIVE_DENORMALIZED_DFP_NUMBER (1 << 9)
307 #define S390_TDC_NEGATIVE_DENORMALIZED_DFP_NUMBER (1 << 8)
308 #define S390_TDC_POSITIVE_NORMALIZED_DFP_NUMBER   (1 << 7)
309 #define S390_TDC_NEGATIVE_NORMALIZED_DFP_NUMBER   (1 << 6)
310 
311 /* For signbit, the BFP-DFP-difference makes no difference. */
312 #define S390_TDC_SIGNBIT_SET (S390_TDC_NEGATIVE_ZERO \
313 			  | S390_TDC_NEGATIVE_NORMALIZED_BFP_NUMBER \
314 			  | S390_TDC_NEGATIVE_DENORMALIZED_BFP_NUMBER\
315 			  | S390_TDC_NEGATIVE_INFINITY \
316 			  | S390_TDC_NEGATIVE_QUIET_NAN \
317 			  | S390_TDC_NEGATIVE_SIGNALING_NAN )
318 
319 #define S390_TDC_INFINITY (S390_TDC_POSITIVE_INFINITY \
320 			  | S390_TDC_NEGATIVE_INFINITY )
321 
322 /* Target machine storage layout.  */
323 
324 /* Everything is big-endian.  */
325 #define BITS_BIG_ENDIAN 1
326 #define BYTES_BIG_ENDIAN 1
327 #define WORDS_BIG_ENDIAN 1
328 
329 #define STACK_SIZE_MODE (Pmode)
330 
331 /* Make the stack pointer to be moved downwards while issuing stack probes with
332    -fstack-check.  We need this to prevent memory below the stack pointer from
333    being accessed.  */
334 #define STACK_CHECK_MOVING_SP 1
335 
336 #ifndef IN_LIBGCC2
337 
338 /* Width of a word, in units (bytes).  */
339   #define UNITS_PER_WORD (TARGET_ZARCH ? 8 : 4)
340 
341 /* Width of a pointer.  To be used instead of UNITS_PER_WORD in
342    ABI-relevant contexts.  This always matches
343    GET_MODE_SIZE (Pmode).  */
344   #define UNITS_PER_LONG (TARGET_64BIT ? 8 : 4)
345   #define MIN_UNITS_PER_WORD 4
346   #define MAX_BITS_PER_WORD 64
347 #else
348 
349   /* In libgcc, UNITS_PER_WORD has ABI-relevant effects, e.g. whether
350      the library should export TImode functions or not.  Thus, we have
351      to redefine UNITS_PER_WORD depending on __s390x__ for libgcc.  */
352   #ifdef __s390x__
353     #define UNITS_PER_WORD 8
354   #else
355     #define UNITS_PER_WORD 4
356   #endif
357 #endif
358 
359 /* Width of a pointer, in bits.  */
360 #define POINTER_SIZE (TARGET_64BIT ? 64 : 32)
361 
362 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
363 #define PARM_BOUNDARY (TARGET_64BIT ? 64 : 32)
364 
365 /* Boundary (in *bits*) on which stack pointer should be aligned.  */
366 #define STACK_BOUNDARY 64
367 
368 /* Allocation boundary (in *bits*) for the code of a function.  */
369 #define FUNCTION_BOUNDARY 64
370 
371 /* There is no point aligning anything to a rounder boundary than this.  */
372 #define BIGGEST_ALIGNMENT 64
373 
374 /* Alignment of field after `int : 0' in a structure.  */
375 #define EMPTY_FIELD_BOUNDARY 32
376 
377 /* Alignment on even addresses for LARL instruction.  */
378 #define DATA_ABI_ALIGNMENT(TYPE, ALIGN) (ALIGN) < 16 ? 16 : (ALIGN)
379 
380 /* Alignment is not required by the hardware.  */
381 #define STRICT_ALIGNMENT 0
382 
383 /* Mode of stack savearea.
384    FUNCTION is VOIDmode because calling convention maintains SP.
385    BLOCK needs Pmode for SP.
386    NONLOCAL needs twice Pmode to maintain both backchain and SP.  */
387 #define STACK_SAVEAREA_MODE(LEVEL)					\
388   ((LEVEL) == SAVE_FUNCTION ? VOIDmode					\
389    : (LEVEL) == SAVE_NONLOCAL ? (TARGET_64BIT ? OImode : TImode) : Pmode)
390 
391 
392 /* Type layout.  */
393 
394 /* Sizes in bits of the source language data types.  */
395 #define SHORT_TYPE_SIZE 16
396 #define INT_TYPE_SIZE 32
397 #define LONG_TYPE_SIZE (TARGET_64BIT ? 64 : 32)
398 #define LONG_LONG_TYPE_SIZE 64
399 #define FLOAT_TYPE_SIZE 32
400 #define DOUBLE_TYPE_SIZE 64
401 #define LONG_DOUBLE_TYPE_SIZE (TARGET_LONG_DOUBLE_128 ? 128 : 64)
402 
403 /* Work around target_flags dependency in ada/targtyps.cc.  */
404 #define WIDEST_HARDWARE_FP_SIZE 64
405 
406 /* We use "unsigned char" as default.  */
407 #define DEFAULT_SIGNED_CHAR 0
408 
409 
410 /* Register usage.  */
411 
412 /* We have 16 general purpose registers (registers 0-15),
413    and 16 floating point registers (registers 16-31).
414    (On non-IEEE machines, we have only 4 fp registers.)
415 
416    Amongst the general purpose registers, some are used
417    for specific purposes:
418    GPR 11: Hard frame pointer (if needed)
419    GPR 12: Global offset table pointer (if needed)
420    GPR 13: Literal pool base register
421    GPR 14: Return address register
422    GPR 15: Stack pointer
423 
424    Registers 32-35 are 'fake' hard registers that do not
425    correspond to actual hardware:
426    Reg 32: Argument pointer
427    Reg 33: Condition code
428    Reg 34: Frame pointer
429    Reg 35: Return address pointer
430 
431    Registers 36 and 37 are mapped to access registers
432    0 and 1, used to implement thread-local storage.
433 
434    Reg 38-53: Vector registers v16-v31  */
435 
436 #define FIRST_PSEUDO_REGISTER 54
437 
438 /* Standard register usage.  */
439 #define GENERAL_REGNO_P(N)	((int)(N) >= 0 && (N) < 16)
440 #define ADDR_REGNO_P(N)		((N) >= 1 && (N) < 16)
441 #define FP_REGNO_P(N)		((N) >= 16 && (N) < 32)
442 #define CC_REGNO_P(N)		((N) == 33)
443 #define FRAME_REGNO_P(N)	((N) == 32 || (N) == 34 || (N) == 35)
444 #define ACCESS_REGNO_P(N)	((N) == 36 || (N) == 37)
445 #define VECTOR_NOFP_REGNO_P(N)  ((N) >= 38 && (N) <= 53)
446 #define VECTOR_REGNO_P(N)       (FP_REGNO_P (N) || VECTOR_NOFP_REGNO_P (N))
447 
448 #define GENERAL_REG_P(X)	(REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
449 #define ADDR_REG_P(X)		(REG_P (X) && ADDR_REGNO_P (REGNO (X)))
450 #define FP_REG_P(X)		(REG_P (X) && FP_REGNO_P (REGNO (X)))
451 #define CC_REG_P(X)		(REG_P (X) && CC_REGNO_P (REGNO (X)))
452 #define FRAME_REG_P(X)		(REG_P (X) && FRAME_REGNO_P (REGNO (X)))
453 #define ACCESS_REG_P(X)		(REG_P (X) && ACCESS_REGNO_P (REGNO (X)))
454 #define VECTOR_NOFP_REG_P(X)    (REG_P (X) && VECTOR_NOFP_REGNO_P (REGNO (X)))
455 #define VECTOR_REG_P(X)         (REG_P (X) && VECTOR_REGNO_P (REGNO (X)))
456 
457 /* Set up fixed registers and calling convention:
458 
459    GPRs 0-5 are always call-clobbered,
460    GPRs 6-15 are always call-saved.
461    GPR 12 is fixed if used as GOT pointer.
462    GPR 13 is always fixed (as literal pool pointer).
463    GPR 14 is always fixed on S/390 machines (as return address).
464    GPR 15 is always fixed (as stack pointer).
465    The 'fake' hard registers are call-clobbered and fixed.
466    The access registers are call-saved and fixed.
467 
468    On 31-bit, FPRs 18-19 are call-clobbered;
469    on 64-bit, FPRs 24-31 are call-clobbered.
470    The remaining FPRs are call-saved.
471 
472    All non-FP vector registers are call-clobbered v16-v31.  */
473 
474 #define FIXED_REGISTERS				\
475 { 0, 0, 0, 0,					\
476   0, 0, 0, 0,					\
477   0, 0, 0, 0,					\
478   0, 1, 1, 1,					\
479   0, 0, 0, 0,					\
480   0, 0, 0, 0,					\
481   0, 0, 0, 0,					\
482   0, 0, 0, 0,					\
483   1, 1, 1, 1,					\
484   1, 1,						\
485   0, 0, 0, 0,					\
486   0, 0, 0, 0,					\
487   0, 0, 0, 0,					\
488   0, 0, 0, 0 }
489 
490 #define CALL_REALLY_USED_REGISTERS		\
491 { 1, 1, 1, 1,	/* r0 - r15 */			\
492   1, 1, 0, 0,					\
493   0, 0, 0, 0,					\
494   0, 0, 0, 0,					\
495   1, 1, 1, 1,	/* f0 (16) - f15 (31) */	\
496   1, 1, 1, 1,					\
497   1, 1, 1, 1,					\
498   1, 1, 1, 1,					\
499   1, 1, 1, 1,	/* arg, cc, fp, ret addr */	\
500   0, 0,		/* a0 (36), a1 (37) */		\
501   1, 1, 1, 1,	/* v16 (38) - v23 (45) */	\
502   1, 1, 1, 1,					\
503   1, 1, 1, 1,	/* v24 (46) - v31 (53) */	\
504   1, 1, 1, 1 }
505 
506 /* Preferred register allocation order.  */
507 #define REG_ALLOC_ORDER							\
508   {  1, 2, 3, 4, 5, 0, 12, 11, 10, 9, 8, 7, 6, 14, 13,			\
509      16, 17, 18, 19, 20, 21, 22, 23,					\
510      24, 25, 26, 27, 28, 29, 30, 31,					\
511      38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,	\
512      15, 32, 33, 34, 35, 36, 37 }
513 
514 
515 #define HARD_REGNO_RENAME_OK(FROM, TO)          \
516   s390_hard_regno_rename_ok ((FROM), (TO))
517 
518 /* Maximum number of registers to represent a value of mode MODE
519    in a register of class CLASS.  */
520 #define CLASS_MAX_NREGS(CLASS, MODE)					\
521   s390_class_max_nregs ((CLASS), (MODE))
522 
523 /* We can reverse a CC mode safely if we know whether it comes from a
524    floating point compare or not.  With the vector modes it is encoded
525    as part of the mode.
526    FIXME: It might make sense to do this for other cc modes as well.  */
527 #define REVERSIBLE_CC_MODE(MODE)				\
528   ((MODE) == CCVIALLmode || (MODE) == CCVIANYmode		\
529    || (MODE) == CCVFALLmode || (MODE) == CCVFANYmode)
530 
531 /* Given a condition code and a mode, return the inverse condition.  */
532 #define REVERSE_CONDITION(CODE, MODE) s390_reverse_condition (MODE, CODE)
533 
534 
535 /* Register classes.  */
536 
537 /* We use the following register classes:
538    GENERAL_REGS     All general purpose registers
539    ADDR_REGS        All general purpose registers except %r0
540 		    (These registers can be used in address generation)
541    FP_REGS          All floating point registers
542    CC_REGS          The condition code register
543    ACCESS_REGS      The access registers
544 
545    GENERAL_FP_REGS  Union of GENERAL_REGS and FP_REGS
546    ADDR_FP_REGS     Union of ADDR_REGS and FP_REGS
547    GENERAL_CC_REGS  Union of GENERAL_REGS and CC_REGS
548    ADDR_CC_REGS     Union of ADDR_REGS and CC_REGS
549 
550    NO_REGS          No registers
551    ALL_REGS         All registers
552 
553    Note that the 'fake' frame pointer and argument pointer registers
554    are included amongst the address registers here.  */
555 
556 enum reg_class
557 {
558   NO_REGS, CC_REGS, ADDR_REGS, GENERAL_REGS, ACCESS_REGS,
559   ADDR_CC_REGS, GENERAL_CC_REGS,
560   FP_REGS, ADDR_FP_REGS, GENERAL_FP_REGS,
561   VEC_REGS, ADDR_VEC_REGS, GENERAL_VEC_REGS,
562   ALL_REGS, LIM_REG_CLASSES
563 };
564 #define N_REG_CLASSES (int) LIM_REG_CLASSES
565 
566 #define REG_CLASS_NAMES							\
567 { "NO_REGS", "CC_REGS", "ADDR_REGS", "GENERAL_REGS", "ACCESS_REGS",	\
568   "ADDR_CC_REGS", "GENERAL_CC_REGS",					\
569   "FP_REGS", "ADDR_FP_REGS", "GENERAL_FP_REGS",				\
570   "VEC_REGS", "ADDR_VEC_REGS", "GENERAL_VEC_REGS",			\
571   "ALL_REGS" }
572 
573 /* Class -> register mapping.  */
574 #define REG_CLASS_CONTENTS				\
575 {							\
576   { 0x00000000, 0x00000000 },	/* NO_REGS */		\
577   { 0x00000000, 0x00000002 },	/* CC_REGS */		\
578   { 0x0000fffe, 0x0000000d },	/* ADDR_REGS */		\
579   { 0x0000ffff, 0x0000000d },	/* GENERAL_REGS */	\
580   { 0x00000000, 0x00000030 },	/* ACCESS_REGS */	\
581   { 0x0000fffe, 0x0000000f },	/* ADDR_CC_REGS */	\
582   { 0x0000ffff, 0x0000000f },	/* GENERAL_CC_REGS */	\
583   { 0xffff0000, 0x00000000 },	/* FP_REGS */		\
584   { 0xfffffffe, 0x0000000d },	/* ADDR_FP_REGS */	\
585   { 0xffffffff, 0x0000000d },	/* GENERAL_FP_REGS */	\
586   { 0xffff0000, 0x003fffc0 },	/* VEC_REGS */		\
587   { 0xfffffffe, 0x003fffcd },	/* ADDR_VEC_REGS */	\
588   { 0xffffffff, 0x003fffcd },	/* GENERAL_VEC_REGS */	\
589   { 0xffffffff, 0x003fffff },	/* ALL_REGS */		\
590 }
591 
592 /* In some case register allocation order is not enough for IRA to
593    generate a good code.  The following macro (if defined) increases
594    cost of REGNO for a pseudo approximately by pseudo usage frequency
595    multiplied by the macro value.
596 
597    We avoid usage of BASE_REGNUM by nonzero macro value because the
598    reload can decide not to use the hard register because some
599    constant was forced to be in memory.  */
600 #define IRA_HARD_REGNO_ADD_COST_MULTIPLIER(regno)	\
601   ((regno) != BASE_REGNUM ? 0.0 : 0.5)
602 
603 /* Register -> class mapping.  */
604 extern const enum reg_class regclass_map[FIRST_PSEUDO_REGISTER];
605 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
606 
607 /* ADDR_REGS can be used as base or index register.  */
608 #define INDEX_REG_CLASS ADDR_REGS
609 #define BASE_REG_CLASS ADDR_REGS
610 
611 /* Check whether REGNO is a hard register of the suitable class
612    or a pseudo register currently allocated to one such.  */
613 #define REGNO_OK_FOR_INDEX_P(REGNO)					\
614     (((REGNO) < FIRST_PSEUDO_REGISTER					\
615       && REGNO_REG_CLASS ((REGNO)) == ADDR_REGS)			\
616      || ADDR_REGNO_P (reg_renumber[REGNO]))
617 #define REGNO_OK_FOR_BASE_P(REGNO) REGNO_OK_FOR_INDEX_P (REGNO)
618 
619 
620 /* Stack layout and calling conventions.  */
621 
622 /* Our stack grows from higher to lower addresses.  However, local variables
623    are accessed by positive offsets, and function arguments are stored at
624    increasing addresses.  */
625 #define STACK_GROWS_DOWNWARD 1
626 #define FRAME_GROWS_DOWNWARD 1
627 /* #undef ARGS_GROW_DOWNWARD */
628 
629 /* The basic stack layout looks like this: the stack pointer points
630    to the register save area for called functions.  Above that area
631    is the location to place outgoing arguments.  Above those follow
632    dynamic allocations (alloca), and finally the local variables.  */
633 
634 /* Offset from stack-pointer to first location of outgoing args.  */
635 #define STACK_POINTER_OFFSET (TARGET_64BIT ? 160 : 96)
636 
637 /* Offset from the stack pointer register to an item dynamically
638    allocated on the stack, e.g., by `alloca'.  */
639 #define STACK_DYNAMIC_OFFSET(FUNDECL) \
640   (STACK_POINTER_OFFSET + crtl->outgoing_args_size)
641 
642 /* Offset of first parameter from the argument pointer register value.
643    We have a fake argument pointer register that points directly to
644    the argument area.  */
645 #define FIRST_PARM_OFFSET(FNDECL) 0
646 
647 /* Defining this macro makes __builtin_frame_address(0) and
648    __builtin_return_address(0) work with -fomit-frame-pointer.  */
649 #define INITIAL_FRAME_ADDRESS_RTX                                             \
650   (plus_constant (Pmode, arg_pointer_rtx, -STACK_POINTER_OFFSET))
651 
652 /* The return address of the current frame is retrieved
653    from the initial value of register RETURN_REGNUM.
654    For frames farther back, we use the stack slot where
655    the corresponding RETURN_REGNUM register was saved.  */
656 #define DYNAMIC_CHAIN_ADDRESS(FRAME)                                          \
657   (TARGET_PACKED_STACK ?                                                      \
658    plus_constant (Pmode, (FRAME),					      \
659 		  STACK_POINTER_OFFSET - UNITS_PER_LONG) : (FRAME))
660 
661 /* For -mpacked-stack this adds 160 - 8 (96 - 4) to the output of
662    builtin_frame_address.  Otherwise arg pointer -
663    STACK_POINTER_OFFSET would be returned for
664    __builtin_frame_address(0) what might result in an address pointing
665    somewhere into the middle of the local variables since the packed
666    stack layout generally does not need all the bytes in the register
667    save area.  */
668 #define FRAME_ADDR_RTX(FRAME)			\
669   DYNAMIC_CHAIN_ADDRESS ((FRAME))
670 
671 #define RETURN_ADDR_RTX(COUNT, FRAME)					      \
672   s390_return_addr_rtx ((COUNT), DYNAMIC_CHAIN_ADDRESS ((FRAME)))
673 
674 /* In 31-bit mode, we need to mask off the high bit of return addresses.  */
675 #define MASK_RETURN_ADDR (TARGET_64BIT ? constm1_rtx : GEN_INT (0x7fffffff))
676 
677 
678 /* Exception handling.  */
679 
680 /* Describe calling conventions for DWARF-2 exception handling.  */
681 #define INCOMING_RETURN_ADDR_RTX  gen_rtx_REG (Pmode, RETURN_REGNUM)
682 #define INCOMING_FRAME_SP_OFFSET STACK_POINTER_OFFSET
683 #define DWARF_FRAME_RETURN_COLUMN  14
684 
685 /* Describe how we implement __builtin_eh_return.  */
686 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 6 : INVALID_REGNUM)
687 #define EH_RETURN_HANDLER_RTX gen_rtx_MEM (Pmode, return_address_pointer_rtx)
688 
689 /* Select a format to encode pointers in exception handling data.  */
690 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL)			    \
691   (flag_pic								    \
692     ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4 \
693    : DW_EH_PE_absptr)
694 
695 /* Register save slot alignment.  */
696 #define DWARF_CIE_DATA_ALIGNMENT (-UNITS_PER_LONG)
697 
698 /* Let the assembler generate debug line info.  */
699 #define DWARF2_ASM_LINE_DEBUG_INFO 1
700 
701 /* Define the dwarf register mapping.
702    v16-v31 -> 68-83
703    rX      -> X      otherwise  */
704 #define DBX_REGISTER_NUMBER(regno)				\
705   (((regno) >= 38 && (regno) <= 53) ? (regno) + 30 : (regno))
706 
707 /* Frame registers.  */
708 
709 #define STACK_POINTER_REGNUM 15
710 #define FRAME_POINTER_REGNUM 34
711 #define HARD_FRAME_POINTER_REGNUM 11
712 #define ARG_POINTER_REGNUM 32
713 #define RETURN_ADDRESS_POINTER_REGNUM 35
714 
715 /* The static chain must be call-clobbered, but not used for
716    function argument passing.  As register 1 is clobbered by
717    the trampoline code, we only have one option.  */
718 #define STATIC_CHAIN_REGNUM 0
719 
720 /* Number of hardware registers that go into the DWARF-2 unwind info.
721    To avoid ABI incompatibility, this number must not change even as
722    'fake' hard registers are added or removed.  */
723 #define DWARF_FRAME_REGISTERS 34
724 
725 
726 /* Frame pointer and argument pointer elimination.  */
727 
728 #define ELIMINABLE_REGS						\
729 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM },		\
730  { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM },		\
731  { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM },			\
732  { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM },		\
733  { RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM },	\
734  { RETURN_ADDRESS_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM },	\
735  { BASE_REGNUM, BASE_REGNUM }}
736 
737 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
738   (OFFSET) = s390_initial_elimination_offset ((FROM), (TO))
739 
740 
741 /* Stack arguments.  */
742 
743 /* We need current_function_outgoing_args to be valid.  */
744 #define ACCUMULATE_OUTGOING_ARGS 1
745 
746 
747 /* Register arguments.  */
748 
749 typedef struct s390_arg_structure
750 {
751   int gprs;			/* gpr so far */
752   int fprs;			/* fpr so far */
753   int vrs;                      /* vr so far */
754 }
755 CUMULATIVE_ARGS;
756 
757 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, NN, N_NAMED_ARGS) \
758   ((CUM).gprs=0, (CUM).fprs=0, (CUM).vrs=0)
759 
760 #define FIRST_VEC_ARG_REGNO 46
761 #define LAST_VEC_ARG_REGNO 53
762 
763 /* Arguments can be placed in general registers 2 to 6, or in floating
764    point registers 0 and 2 for 31 bit and fprs 0, 2, 4 and 6 for 64
765    bit.  */
766 #define FUNCTION_ARG_REGNO_P(N)						\
767   (((N) >=2 && (N) < 7) || (N) == 16 || (N) == 17			\
768    || (TARGET_64BIT && ((N) == 18 || (N) == 19))			\
769    || (TARGET_VX && ((N) >= FIRST_VEC_ARG_REGNO && (N) <= LAST_VEC_ARG_REGNO)))
770 
771 
772 /* Only gpr 2, fpr 0, and v24 are ever used as return registers.  */
773 #define FUNCTION_VALUE_REGNO_P(N)		\
774   ((N) == 2 || (N) == 16			\
775    || (TARGET_VX && (N) == FIRST_VEC_ARG_REGNO))
776 
777 
778 /* Function entry and exit.  */
779 
780 /* When returning from a function, the stack pointer does not matter.  */
781 #define EXIT_IGNORE_STACK       1
782 
783 
784 /* Profiling.  */
785 
786 #define FUNCTION_PROFILER(FILE, LABELNO)			\
787   s390_function_profiler ((FILE), ((LABELNO)))
788 
789 #define PROFILE_BEFORE_PROLOGUE 1
790 
791 #define NO_PROFILE_COUNTERS 1
792 
793 
794 /* Trampolines for nested functions.  */
795 
796 #define TRAMPOLINE_SIZE		(TARGET_64BIT ? 32 : 16)
797 #define TRAMPOLINE_ALIGNMENT	BITS_PER_WORD
798 
799 /* Addressing modes, and classification of registers for them.  */
800 
801 /* Recognize any constant value that is a valid address.  */
802 #define CONSTANT_ADDRESS_P(X) 0
803 
804 /* Maximum number of registers that can appear in a valid memory address.  */
805 #define MAX_REGS_PER_ADDRESS 2
806 
807 /* This definition replaces the formerly used 'm' constraint with a
808    different constraint letter in order to avoid changing semantics of
809    the 'm' constraint when accepting new address formats in
810    TARGET_LEGITIMATE_ADDRESS_P.  The constraint letter defined here
811    must not be used in insn definitions or inline assemblies.  */
812 #define TARGET_MEM_CONSTRAINT 'e'
813 
814 /* Try a machine-dependent way of reloading an illegitimate address
815    operand.  If we find one, push the reload and jump to WIN.  This
816    macro is used in only one place: `find_reloads_address' in reload.cc.  */
817 #define LEGITIMIZE_RELOAD_ADDRESS(AD, MODE, OPNUM, TYPE, IND, WIN)	\
818   do {									\
819     rtx new_rtx = legitimize_reload_address ((AD), (MODE),		\
820 					     (OPNUM), (int)(TYPE));	\
821     if (new_rtx)							\
822       {									\
823 	(AD) = new_rtx;							\
824 	goto WIN;							\
825       }									\
826   } while (0)
827 
828 /* Helper macro for s390.cc and s390.md to check for symbolic constants.  */
829 #define SYMBOLIC_CONST(X)						\
830   (GET_CODE (X) == SYMBOL_REF						\
831    || GET_CODE (X) == LABEL_REF						\
832    || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
833 
834 #define TLS_SYMBOLIC_CONST(X)						\
835   ((GET_CODE (X) == SYMBOL_REF && tls_symbolic_operand (X))		\
836    || (GET_CODE (X) == CONST && tls_symbolic_reference_mentioned_p (X)))
837 
838 
839 /* Condition codes.  */
840 
841 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
842    return the mode to be used for the comparison.  */
843 #define SELECT_CC_MODE(OP, X, Y) s390_select_ccmode ((OP), (X), (Y))
844 
845 /* Relative costs of operations.  */
846 
847 /* A C expression for the cost of a branch instruction.  A value of 1
848    is the default; other values are interpreted relative to that.  */
849 #define BRANCH_COST(speed_p, predictable_p) s390_branch_cost
850 
851 /* Nonzero if access to memory by bytes is slow and undesirable.  */
852 #define SLOW_BYTE_ACCESS 1
853 
854 /* An integer expression for the size in bits of the largest integer machine
855    mode that should actually be used.  We allow pairs of registers.  */
856 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
857 
858 /* The maximum number of bytes that a single instruction can move quickly
859    between memory and registers or between two memory locations.  */
860 #define MOVE_MAX (TARGET_ZARCH ? 16 : 8)
861 #define MOVE_MAX_PIECES (TARGET_ZARCH ? 8 : 4)
862 #define MAX_MOVE_MAX 16
863 
864 /* Don't perform CSE on function addresses.  */
865 #define NO_FUNCTION_CSE 1
866 
867 /* This value is used in tree-sra to decide whether it might benefical
868    to split a struct move into several word-size moves.  For S/390
869    only small values make sense here since struct moves are relatively
870    cheap thanks to mvc so the small default value chosen for archs
871    with memmove patterns should be ok.  But this value is multiplied
872    in tree-sra with UNITS_PER_WORD to make a decision so we adjust it
873    here to compensate for that factor since mvc costs exactly the same
874    on 31 and 64 bit.  */
875 #define MOVE_RATIO(speed) (TARGET_64BIT? 2 : 4)
876 
877 
878 /* Sections.  */
879 
880 /* Output before read-only data.  */
881 #define TEXT_SECTION_ASM_OP ".text"
882 
883 /* Output before writable (initialized) data.  */
884 #define DATA_SECTION_ASM_OP ".data"
885 
886 /* Output before writable (uninitialized) data.  */
887 #define BSS_SECTION_ASM_OP ".bss"
888 
889 /* S/390 constant pool breaks the devices in crtstuff.c to control section
890    in where code resides.  We have to write it as asm code.  */
891 #ifndef __s390x__
892 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
893     asm (SECTION_OP "\n\
894 	bras\t%r2,1f\n\
895 0:	.long\t" USER_LABEL_PREFIX #FUNC " - 0b\n\
896 1:	l\t%r3,0(%r2)\n\
897 	bas\t%r14,0(%r3,%r2)\n\
898 	.previous");
899 #endif
900 
901 
902 /* Position independent code.  */
903 
904 #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? 12 : INVALID_REGNUM)
905 
906 #define LEGITIMATE_PIC_OPERAND_P(X)  legitimate_pic_operand_p (X)
907 
908 #ifndef TARGET_DEFAULT_PIC_DATA_IS_TEXT_RELATIVE
909 #define TARGET_DEFAULT_PIC_DATA_IS_TEXT_RELATIVE 1
910 #endif
911 
912 
913 /* Assembler file format.  */
914 
915 /* Character to start a comment.  */
916 #define ASM_COMMENT_START "#"
917 
918 /* Declare an uninitialized external linkage data object.  */
919 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN)		\
920   asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN))
921 
922 /* Globalizing directive for a label.  */
923 #define GLOBAL_ASM_OP ".globl "
924 
925 /* Advance the location counter to a multiple of 2**LOG bytes.  */
926 #define ASM_OUTPUT_ALIGN(FILE, LOG) \
927   if ((LOG)) fprintf ((FILE), "\t.align\t%d\n", 1 << (LOG))
928 
929 /* Advance the location counter by SIZE bytes.  */
930 #define ASM_OUTPUT_SKIP(FILE, SIZE) \
931   fprintf ((FILE), "\t.set\t.,.+" HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
932 
933 /* The LOCAL_LABEL_PREFIX variable is used by dbxelf.h.  */
934 #define LOCAL_LABEL_PREFIX "."
935 
936 #define LABEL_ALIGN(LABEL) \
937   s390_label_align ((LABEL))
938 
939 /* How to refer to registers in assembler output.  This sequence is
940    indexed by compiler's hard-register-number (see above).  */
941 #define REGISTER_NAMES							\
942   { "%r0",  "%r1",  "%r2",  "%r3",  "%r4",  "%r5",  "%r6",  "%r7",	\
943     "%r8",  "%r9",  "%r10", "%r11", "%r12", "%r13", "%r14", "%r15",	\
944     "%f0",  "%f2",  "%f4",  "%f6",  "%f1",  "%f3",  "%f5",  "%f7",	\
945     "%f8",  "%f10", "%f12", "%f14", "%f9",  "%f11", "%f13", "%f15",	\
946     "%ap",  "%cc",  "%fp",  "%rp",  "%a0",  "%a1",			\
947     "%v16", "%v18", "%v20", "%v22", "%v17", "%v19", "%v21", "%v23",	\
948     "%v24", "%v26", "%v28", "%v30", "%v25", "%v27", "%v29", "%v31"	\
949   }
950 
951 #define ADDITIONAL_REGISTER_NAMES					\
952   { { "v0", 16 }, { "v2",  17 }, { "v4",  18 }, { "v6",  19 },		\
953     { "v1", 20 }, { "v3",  21 }, { "v5",  22 }, { "v7",  23 },          \
954     { "v8", 24 }, { "v10", 25 }, { "v12", 26 }, { "v14", 27 },          \
955     { "v9", 28 }, { "v11", 29 }, { "v13", 30 }, { "v15", 31 } };
956 
957 /* Print operand X (an rtx) in assembler syntax to file FILE.  */
958 #define PRINT_OPERAND(FILE, X, CODE) print_operand ((FILE), (X), (CODE))
959 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address ((FILE), (ADDR))
960 
961 /* Output an element of a case-vector that is absolute.  */
962 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)				\
963 do {									\
964   char buf[32];								\
965   fputs (integer_asm_op (UNITS_PER_LONG, TRUE), (FILE));		\
966   ASM_GENERATE_INTERNAL_LABEL (buf, "L", (VALUE));			\
967   assemble_name ((FILE), buf);						\
968   fputc ('\n', (FILE));							\
969 } while (0)
970 
971 /* Output an element of a case-vector that is relative.  */
972 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL)		\
973 do {									\
974   char buf[32];								\
975   fputs (integer_asm_op (UNITS_PER_LONG, TRUE), (FILE));		\
976   ASM_GENERATE_INTERNAL_LABEL (buf, "L", (VALUE));			\
977   assemble_name ((FILE), buf);						\
978   fputc ('-', (FILE));							\
979   ASM_GENERATE_INTERNAL_LABEL (buf, "L", (REL));			\
980   assemble_name ((FILE), buf);						\
981   fputc ('\n', (FILE));							\
982 } while (0)
983 
984 /* Mark the return register as used by the epilogue so that we can
985    use it in unadorned (return) and (simple_return) instructions.  */
986 #define EPILOGUE_USES(REGNO) ((REGNO) == RETURN_REGNUM)
987 
988 #undef ASM_OUTPUT_FUNCTION_LABEL
989 #define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL)		\
990   s390_asm_output_function_label ((FILE), (NAME), (DECL))
991 
992 #if S390_USE_TARGET_ATTRIBUTE
993 /* Hook to output .machine and .machinemode at start of function.  */
994 #undef ASM_OUTPUT_FUNCTION_PREFIX
995 #define ASM_OUTPUT_FUNCTION_PREFIX s390_asm_output_function_prefix
996 
997 /* Hook to output .machine and .machinemode at end of function.  */
998 #undef ASM_DECLARE_FUNCTION_SIZE
999 #define ASM_DECLARE_FUNCTION_SIZE s390_asm_declare_function_size
1000 #endif
1001 
1002 /* Miscellaneous parameters.  */
1003 
1004 /* Specify the machine mode that this machine uses for the index in the
1005    tablejump instruction.  */
1006 #define CASE_VECTOR_MODE (TARGET_64BIT ? DImode : SImode)
1007 
1008 /* Specify the machine mode that pointers have.
1009    After generation of rtl, the compiler makes no further distinction
1010    between pointers and any other objects of this machine mode.  */
1011 #define Pmode (TARGET_64BIT ? DImode : SImode)
1012 
1013 /* This is -1 for "pointer mode" extend.  See ptr_extend in s390.md.  */
1014 #define POINTERS_EXTEND_UNSIGNED -1
1015 
1016 /* A function address in a call instruction is a byte address (for
1017    indexing purposes) so give the MEM rtx a byte's mode.  */
1018 #define FUNCTION_MODE QImode
1019 
1020 /* Specify the value which is used when clz operand is zero.  */
1021 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 64, 1)
1022 
1023 /* Machine-specific symbol_ref flags.  */
1024 #define SYMBOL_FLAG_ALIGN_SHIFT	  SYMBOL_FLAG_MACH_DEP_SHIFT
1025 #define SYMBOL_FLAG_ALIGN_MASK    \
1026   ((SYMBOL_FLAG_MACH_DEP << 0) | (SYMBOL_FLAG_MACH_DEP << 1))
1027 
1028 #define SYMBOL_FLAG_SET_ALIGN(X, A) \
1029     (SYMBOL_REF_FLAGS (X) = (SYMBOL_REF_FLAGS (X) & ~SYMBOL_FLAG_ALIGN_MASK) \
1030      | (A << SYMBOL_FLAG_ALIGN_SHIFT))
1031 
1032 #define SYMBOL_FLAG_GET_ALIGN(X) \
1033     ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_ALIGN_MASK) >> SYMBOL_FLAG_ALIGN_SHIFT)
1034 
1035 /* Helpers to access symbol_ref flags.  They are used in
1036    check_symref_alignment() and larl_operand to detect if the
1037    available alignment matches the required one.  We do not use
1038    a positive check like _ALIGN2 because in that case we would have
1039    to annotate every symbol_ref.  However, we only want to touch
1040    the symbol_refs that can be misaligned and assume that the others
1041    are correctly aligned.  Hence, if a symbol_ref does not have
1042    a _NOTALIGN flag it is supposed to be correctly aligned.  */
1043 #define SYMBOL_FLAG_SET_NOTALIGN2(X) SYMBOL_FLAG_SET_ALIGN((X), 1)
1044 #define SYMBOL_FLAG_SET_NOTALIGN4(X) SYMBOL_FLAG_SET_ALIGN((X), 2)
1045 #define SYMBOL_FLAG_SET_NOTALIGN8(X) SYMBOL_FLAG_SET_ALIGN((X), 3)
1046 
1047 #define SYMBOL_FLAG_NOTALIGN2_P(X) (SYMBOL_FLAG_GET_ALIGN(X) == 1)
1048 #define SYMBOL_FLAG_NOTALIGN4_P(X) (SYMBOL_FLAG_GET_ALIGN(X) == 2	\
1049 				    || SYMBOL_FLAG_GET_ALIGN(X) == 1)
1050 #define SYMBOL_FLAG_NOTALIGN8_P(X) (SYMBOL_FLAG_GET_ALIGN(X) == 3	\
1051 				    || SYMBOL_FLAG_GET_ALIGN(X) == 2	\
1052 				    || SYMBOL_FLAG_GET_ALIGN(X) == 1)
1053 
1054 /* Check whether integer displacement is in range for a short displacement.  */
1055 #define SHORT_DISP_IN_RANGE(d) ((d) >= 0 && (d) <= 4095)
1056 
1057 /* Check whether integer displacement is in range.  */
1058 #define DISP_IN_RANGE(d)				\
1059   (TARGET_LONG_DISPLACEMENT				\
1060    ? ((d) >= -524288 && (d) <= 524287)			\
1061    : SHORT_DISP_IN_RANGE(d))
1062 
1063 /* Reads can reuse write prefetches, used by tree-ssa-prefetch-loops.c.  */
1064 #define READ_CAN_USE_WRITE_PREFETCH 1
1065 
1066 extern const int processor_flags_table[];
1067 
1068 struct s390_processor
1069 {
1070   /* The preferred name to be used in user visible output.  */
1071   const char *const name;
1072   /* CPU name as it should be passed to Binutils via .machine  */
1073   const char *const binutils_name;
1074   const enum processor_type processor;
1075   const struct processor_costs *cost;
1076   int arch_level;
1077 };
1078 
1079 extern const struct s390_processor processor_table[];
1080 
1081 /* The truth element value for vector comparisons.  Our instructions
1082    always generate -1 in that case.  */
1083 #define VECTOR_STORE_FLAG_VALUE(MODE) CONSTM1_RTX (GET_MODE_INNER (MODE))
1084 
1085 /* Target pragma.  */
1086 
1087 /* resolve_overloaded_builtin cannot be defined the normal way since
1088    it is defined in code which technically belongs to the
1089    front-end.  */
1090 #define REGISTER_TARGET_PRAGMAS()		\
1091   do {						\
1092     s390_register_target_pragmas ();		\
1093   } while (0)
1094 
1095 #ifndef USED_FOR_TARGET
1096 /* The following structure is embedded in the machine
1097    specific part of struct function.  */
1098 
1099 struct GTY (()) s390_frame_layout
1100 {
1101   /* Offset within stack frame.  */
1102   HOST_WIDE_INT gprs_offset;
1103   HOST_WIDE_INT f0_offset;
1104   HOST_WIDE_INT f4_offset;
1105   HOST_WIDE_INT f8_offset;
1106   HOST_WIDE_INT backchain_offset;
1107 
1108   /* Number of first and last gpr where slots in the register
1109      save area are reserved for.  */
1110   int first_save_gpr_slot;
1111   int last_save_gpr_slot;
1112 
1113   /* Location (FP register number) where GPRs (r0-r15) should
1114      be saved to.
1115       0 - does not need to be saved at all
1116      -1 - stack slot  */
1117 #define SAVE_SLOT_NONE   0
1118 #define SAVE_SLOT_STACK -1
1119   signed char gpr_save_slots[16];
1120 
1121   /* Number of first and last gpr to be saved, restored.  */
1122   int first_save_gpr;
1123   int first_restore_gpr;
1124   int last_save_gpr;
1125   int last_restore_gpr;
1126 
1127   /* Bits standing for floating point registers. Set, if the
1128      respective register has to be saved. Starting with reg 16 (f0)
1129      at the rightmost bit.
1130      Bit 15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0
1131      fpr 15 13 11  9 14 12 10  8  7  5  3  1  6  4  2  0
1132      reg 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16  */
1133   unsigned int fpr_bitmap;
1134 
1135   /* Number of floating point registers f8-f15 which must be saved.  */
1136   int high_fprs;
1137 
1138   /* Set if return address needs to be saved.
1139      This flag is set by s390_return_addr_rtx if it could not use
1140      the initial value of r14 and therefore depends on r14 saved
1141      to the stack.  */
1142   bool save_return_addr_p;
1143 
1144   /* Size of stack frame.  */
1145   HOST_WIDE_INT frame_size;
1146 };
1147 
1148 
1149 /* Define the structure for the machine field in struct function.  */
1150 
1151 struct GTY(()) machine_function
1152 {
1153   struct s390_frame_layout frame_layout;
1154 
1155   /* Literal pool base register.  */
1156   rtx base_reg;
1157 
1158   bool has_landing_pad_p;
1159 
1160   /* True if the current function may contain a tbegin clobbering
1161      FPRs.  */
1162   bool tbegin_p;
1163 
1164   /* For -fsplit-stack support: A stack local which holds a pointer to
1165      the stack arguments for a function with a variable number of
1166      arguments.  This is set at the start of the function and is used
1167      to initialize the overflow_arg_area field of the va_list
1168      structure.  */
1169   rtx split_stack_varargs_pointer;
1170 
1171   enum indirect_branch indirect_branch_jump;
1172   enum indirect_branch indirect_branch_call;
1173 
1174   enum indirect_branch function_return_mem;
1175   enum indirect_branch function_return_reg;
1176 };
1177 #endif
1178 
1179 #define TARGET_INDIRECT_BRANCH_NOBP_RET_OPTION				\
1180   (cfun->machine->function_return_reg != indirect_branch_keep		\
1181    || cfun->machine->function_return_mem != indirect_branch_keep)
1182 
1183 #define TARGET_INDIRECT_BRANCH_NOBP_RET					\
1184   ((cfun->machine->function_return_reg != indirect_branch_keep		\
1185     && !s390_return_addr_from_memory ())				\
1186    || (cfun->machine->function_return_mem != indirect_branch_keep	\
1187        && s390_return_addr_from_memory ()))
1188 
1189 #define TARGET_INDIRECT_BRANCH_NOBP_JUMP				\
1190   (cfun->machine->indirect_branch_jump != indirect_branch_keep)
1191 
1192 #define TARGET_INDIRECT_BRANCH_NOBP_JUMP_THUNK				\
1193   (cfun->machine->indirect_branch_jump == indirect_branch_thunk		\
1194    || cfun->machine->indirect_branch_jump == indirect_branch_thunk_extern)
1195 
1196 #define TARGET_INDIRECT_BRANCH_NOBP_JUMP_INLINE_THUNK			\
1197   (cfun->machine->indirect_branch_jump == indirect_branch_thunk_inline)
1198 
1199 #define TARGET_INDIRECT_BRANCH_NOBP_CALL			\
1200   (cfun->machine->indirect_branch_call != indirect_branch_keep)
1201 
1202 #ifndef TARGET_DEFAULT_INDIRECT_BRANCH_TABLE
1203 #define TARGET_DEFAULT_INDIRECT_BRANCH_TABLE 0
1204 #endif
1205 
1206 #define TARGET_INDIRECT_BRANCH_THUNK_NAME_EXRL "__s390_indirect_jump_r%d"
1207 #define TARGET_INDIRECT_BRANCH_THUNK_NAME_EX   "__s390_indirect_jump_r%duse_r%d"
1208 
1209 #define TARGET_INDIRECT_BRANCH_TABLE s390_indirect_branch_table
1210 
1211 #ifdef GENERATOR_FILE
1212 /* gencondmd.cc is built before insn-flags.h.  Use an arbitrary opaque value
1213    that cannot be optimized away by gen_insn.  */
1214 #define HAVE_TF(icode) TARGET_HARD_FLOAT
1215 #else
1216 #define HAVE_TF(icode) (HAVE_##icode##_fpr || HAVE_##icode##_vr)
1217 #endif
1218 
1219 /* Dispatcher for movtf.  */
1220 #define EXPAND_MOVTF(icode)                                                   \
1221   do                                                                          \
1222     {                                                                         \
1223       if (TARGET_VXE)                                                         \
1224 	emit_insn (gen_##icode##_vr (operands[0], operands[1]));              \
1225       else                                                                    \
1226 	emit_insn (gen_##icode##_fpr (operands[0], operands[1]));             \
1227       DONE;                                                                   \
1228     }                                                                         \
1229   while (false)
1230 
1231 /* Like EXPAND_MOVTF, but also legitimizes operands.  */
1232 #define EXPAND_TF(icode, nops)                                                \
1233   do                                                                          \
1234     {                                                                         \
1235       const size_t __nops = (nops);                                           \
1236       expand_operand ops[__nops];                                             \
1237       create_output_operand (&ops[0], operands[0], GET_MODE (operands[0]));   \
1238       for (size_t i = 1; i < __nops; i++)                                     \
1239 	create_input_operand (&ops[i], operands[i], GET_MODE (operands[i]));  \
1240       if (TARGET_VXE)                                                         \
1241 	expand_insn (CODE_FOR_##icode##_vr, __nops, ops);                     \
1242       else                                                                    \
1243 	expand_insn (CODE_FOR_##icode##_fpr, __nops, ops);                    \
1244       DONE;                                                                   \
1245     }                                                                         \
1246   while (false)
1247 
1248 #endif /* S390_H */
1249