1 //===- Overload.h - C++ Overloading -----------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the data structures and types used in C++ 10 // overload resolution. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_CLANG_SEMA_OVERLOAD_H 15 #define LLVM_CLANG_SEMA_OVERLOAD_H 16 17 #include "clang/AST/Decl.h" 18 #include "clang/AST/DeclAccessPair.h" 19 #include "clang/AST/DeclBase.h" 20 #include "clang/AST/DeclCXX.h" 21 #include "clang/AST/DeclTemplate.h" 22 #include "clang/AST/Expr.h" 23 #include "clang/AST/Type.h" 24 #include "clang/Basic/LLVM.h" 25 #include "clang/Basic/SourceLocation.h" 26 #include "clang/Sema/SemaFixItUtils.h" 27 #include "clang/Sema/TemplateDeduction.h" 28 #include "llvm/ADT/ArrayRef.h" 29 #include "llvm/ADT/STLExtras.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/StringRef.h" 33 #include "llvm/Support/AlignOf.h" 34 #include "llvm/Support/Allocator.h" 35 #include "llvm/Support/Casting.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include <cassert> 38 #include <cstddef> 39 #include <cstdint> 40 #include <utility> 41 42 namespace clang { 43 44 class APValue; 45 class ASTContext; 46 class Sema; 47 48 /// OverloadingResult - Capture the result of performing overload 49 /// resolution. 50 enum OverloadingResult { 51 /// Overload resolution succeeded. 52 OR_Success, 53 54 /// No viable function found. 55 OR_No_Viable_Function, 56 57 /// Ambiguous candidates found. 58 OR_Ambiguous, 59 60 /// Succeeded, but refers to a deleted function. 61 OR_Deleted 62 }; 63 64 enum OverloadCandidateDisplayKind { 65 /// Requests that all candidates be shown. Viable candidates will 66 /// be printed first. 67 OCD_AllCandidates, 68 69 /// Requests that only viable candidates be shown. 70 OCD_ViableCandidates, 71 72 /// Requests that only tied-for-best candidates be shown. 73 OCD_AmbiguousCandidates 74 }; 75 76 /// The parameter ordering that will be used for the candidate. This is 77 /// used to represent C++20 binary operator rewrites that reverse the order 78 /// of the arguments. If the parameter ordering is Reversed, the Args list is 79 /// reversed (but obviously the ParamDecls for the function are not). 80 /// 81 /// After forming an OverloadCandidate with reversed parameters, the list 82 /// of conversions will (as always) be indexed by argument, so will be 83 /// in reverse parameter order. 84 enum class OverloadCandidateParamOrder : char { Normal, Reversed }; 85 86 /// The kinds of rewrite we perform on overload candidates. Note that the 87 /// values here are chosen to serve as both bitflags and as a rank (lower 88 /// values are preferred by overload resolution). 89 enum OverloadCandidateRewriteKind : unsigned { 90 /// Candidate is not a rewritten candidate. 91 CRK_None = 0x0, 92 93 /// Candidate is a rewritten candidate with a different operator name. 94 CRK_DifferentOperator = 0x1, 95 96 /// Candidate is a rewritten candidate with a reversed order of parameters. 97 CRK_Reversed = 0x2, 98 }; 99 100 /// ImplicitConversionKind - The kind of implicit conversion used to 101 /// convert an argument to a parameter's type. The enumerator values 102 /// match with the table titled 'Conversions' in [over.ics.scs] and are listed 103 /// such that better conversion kinds have smaller values. 104 enum ImplicitConversionKind { 105 /// Identity conversion (no conversion) 106 ICK_Identity = 0, 107 108 /// Lvalue-to-rvalue conversion (C++ [conv.lval]) 109 ICK_Lvalue_To_Rvalue, 110 111 /// Array-to-pointer conversion (C++ [conv.array]) 112 ICK_Array_To_Pointer, 113 114 /// Function-to-pointer (C++ [conv.array]) 115 ICK_Function_To_Pointer, 116 117 /// Function pointer conversion (C++17 [conv.fctptr]) 118 ICK_Function_Conversion, 119 120 /// Qualification conversions (C++ [conv.qual]) 121 ICK_Qualification, 122 123 /// Integral promotions (C++ [conv.prom]) 124 ICK_Integral_Promotion, 125 126 /// Floating point promotions (C++ [conv.fpprom]) 127 ICK_Floating_Promotion, 128 129 /// Complex promotions (Clang extension) 130 ICK_Complex_Promotion, 131 132 /// Integral conversions (C++ [conv.integral]) 133 ICK_Integral_Conversion, 134 135 /// Floating point conversions (C++ [conv.double] 136 ICK_Floating_Conversion, 137 138 /// Complex conversions (C99 6.3.1.6) 139 ICK_Complex_Conversion, 140 141 /// Floating-integral conversions (C++ [conv.fpint]) 142 ICK_Floating_Integral, 143 144 /// Pointer conversions (C++ [conv.ptr]) 145 ICK_Pointer_Conversion, 146 147 /// Pointer-to-member conversions (C++ [conv.mem]) 148 ICK_Pointer_Member, 149 150 /// Boolean conversions (C++ [conv.bool]) 151 ICK_Boolean_Conversion, 152 153 /// Conversions between compatible types in C99 154 ICK_Compatible_Conversion, 155 156 /// Derived-to-base (C++ [over.best.ics]) 157 ICK_Derived_To_Base, 158 159 /// Vector conversions 160 ICK_Vector_Conversion, 161 162 /// Arm SVE Vector conversions 163 ICK_SVE_Vector_Conversion, 164 165 /// RISC-V RVV Vector conversions 166 ICK_RVV_Vector_Conversion, 167 168 /// A vector splat from an arithmetic type 169 ICK_Vector_Splat, 170 171 /// Complex-real conversions (C99 6.3.1.7) 172 ICK_Complex_Real, 173 174 /// Block Pointer conversions 175 ICK_Block_Pointer_Conversion, 176 177 /// Transparent Union Conversions 178 ICK_TransparentUnionConversion, 179 180 /// Objective-C ARC writeback conversion 181 ICK_Writeback_Conversion, 182 183 /// Zero constant to event (OpenCL1.2 6.12.10) 184 ICK_Zero_Event_Conversion, 185 186 /// Zero constant to queue 187 ICK_Zero_Queue_Conversion, 188 189 /// Conversions allowed in C, but not C++ 190 ICK_C_Only_Conversion, 191 192 /// C-only conversion between pointers with incompatible types 193 ICK_Incompatible_Pointer_Conversion, 194 195 /// Fixed point type conversions according to N1169. 196 ICK_Fixed_Point_Conversion, 197 198 /// HLSL vector truncation. 199 ICK_HLSL_Vector_Truncation, 200 201 /// HLSL non-decaying array rvalue cast. 202 ICK_HLSL_Array_RValue, 203 204 // HLSL vector splat from scalar or boolean type. 205 ICK_HLSL_Vector_Splat, 206 207 /// The number of conversion kinds 208 ICK_Num_Conversion_Kinds, 209 }; 210 211 /// ImplicitConversionRank - The rank of an implicit conversion 212 /// kind. The enumerator values match with Table 9 of (C++ 213 /// 13.3.3.1.1) and are listed such that better conversion ranks 214 /// have smaller values. 215 enum ImplicitConversionRank { 216 /// Exact Match 217 ICR_Exact_Match = 0, 218 219 /// HLSL Scalar Widening 220 ICR_HLSL_Scalar_Widening, 221 222 /// Promotion 223 ICR_Promotion, 224 225 /// HLSL Scalar Widening with promotion 226 ICR_HLSL_Scalar_Widening_Promotion, 227 228 /// Conversion 229 ICR_Conversion, 230 231 /// OpenCL Scalar Widening 232 ICR_OCL_Scalar_Widening, 233 234 /// HLSL Scalar Widening with conversion 235 ICR_HLSL_Scalar_Widening_Conversion, 236 237 /// Complex <-> Real conversion 238 ICR_Complex_Real_Conversion, 239 240 /// ObjC ARC writeback conversion 241 ICR_Writeback_Conversion, 242 243 /// Conversion only allowed in the C standard (e.g. void* to char*). 244 ICR_C_Conversion, 245 246 /// Conversion not allowed by the C standard, but that we accept as an 247 /// extension anyway. 248 ICR_C_Conversion_Extension, 249 250 /// HLSL Matching Dimension Reduction 251 ICR_HLSL_Dimension_Reduction, 252 253 /// HLSL Dimension reduction with promotion 254 ICR_HLSL_Dimension_Reduction_Promotion, 255 256 /// HLSL Dimension reduction with conversion 257 ICR_HLSL_Dimension_Reduction_Conversion, 258 }; 259 260 ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind); 261 262 ImplicitConversionRank 263 GetDimensionConversionRank(ImplicitConversionRank Base, 264 ImplicitConversionKind Dimension); 265 266 /// NarrowingKind - The kind of narrowing conversion being performed by a 267 /// standard conversion sequence according to C++11 [dcl.init.list]p7. 268 enum NarrowingKind { 269 /// Not a narrowing conversion. 270 NK_Not_Narrowing, 271 272 /// A narrowing conversion by virtue of the source and destination types. 273 NK_Type_Narrowing, 274 275 /// A narrowing conversion, because a constant expression got narrowed. 276 NK_Constant_Narrowing, 277 278 /// A narrowing conversion, because a non-constant-expression variable might 279 /// have got narrowed. 280 NK_Variable_Narrowing, 281 282 /// Cannot tell whether this is a narrowing conversion because the 283 /// expression is value-dependent. 284 NK_Dependent_Narrowing, 285 }; 286 287 /// StandardConversionSequence - represents a standard conversion 288 /// sequence (C++ 13.3.3.1.1). A standard conversion sequence 289 /// contains between zero and three conversions. If a particular 290 /// conversion is not needed, it will be set to the identity conversion 291 /// (ICK_Identity). 292 class StandardConversionSequence { 293 public: 294 /// First -- The first conversion can be an lvalue-to-rvalue 295 /// conversion, array-to-pointer conversion, or 296 /// function-to-pointer conversion. 297 ImplicitConversionKind First : 8; 298 299 /// Second - The second conversion can be an integral promotion, 300 /// floating point promotion, integral conversion, floating point 301 /// conversion, floating-integral conversion, pointer conversion, 302 /// pointer-to-member conversion, or boolean conversion. 303 ImplicitConversionKind Second : 8; 304 305 /// Dimension - Between the second and third conversion a vector or matrix 306 /// dimension conversion may occur. If this is not ICK_Identity this 307 /// conversion truncates the vector or matrix, or extends a scalar. 308 ImplicitConversionKind Dimension : 8; 309 310 /// Third - The third conversion can be a qualification conversion 311 /// or a function conversion. 312 ImplicitConversionKind Third : 8; 313 314 /// Whether this is the deprecated conversion of a 315 /// string literal to a pointer to non-const character data 316 /// (C++ 4.2p2). 317 LLVM_PREFERRED_TYPE(bool) 318 unsigned DeprecatedStringLiteralToCharPtr : 1; 319 320 /// Whether the qualification conversion involves a change in the 321 /// Objective-C lifetime (for automatic reference counting). 322 LLVM_PREFERRED_TYPE(bool) 323 unsigned QualificationIncludesObjCLifetime : 1; 324 325 /// IncompatibleObjC - Whether this is an Objective-C conversion 326 /// that we should warn about (if we actually use it). 327 LLVM_PREFERRED_TYPE(bool) 328 unsigned IncompatibleObjC : 1; 329 330 /// ReferenceBinding - True when this is a reference binding 331 /// (C++ [over.ics.ref]). 332 LLVM_PREFERRED_TYPE(bool) 333 unsigned ReferenceBinding : 1; 334 335 /// DirectBinding - True when this is a reference binding that is a 336 /// direct binding (C++ [dcl.init.ref]). 337 LLVM_PREFERRED_TYPE(bool) 338 unsigned DirectBinding : 1; 339 340 /// Whether this is an lvalue reference binding (otherwise, it's 341 /// an rvalue reference binding). 342 LLVM_PREFERRED_TYPE(bool) 343 unsigned IsLvalueReference : 1; 344 345 /// Whether we're binding to a function lvalue. 346 LLVM_PREFERRED_TYPE(bool) 347 unsigned BindsToFunctionLvalue : 1; 348 349 /// Whether we're binding to an rvalue. 350 LLVM_PREFERRED_TYPE(bool) 351 unsigned BindsToRvalue : 1; 352 353 /// Whether this binds an implicit object argument to a 354 /// non-static member function without a ref-qualifier. 355 LLVM_PREFERRED_TYPE(bool) 356 unsigned BindsImplicitObjectArgumentWithoutRefQualifier : 1; 357 358 /// Whether this binds a reference to an object with a different 359 /// Objective-C lifetime qualifier. 360 LLVM_PREFERRED_TYPE(bool) 361 unsigned ObjCLifetimeConversionBinding : 1; 362 363 /// FromType - The type that this conversion is converting 364 /// from. This is an opaque pointer that can be translated into a 365 /// QualType. 366 void *FromTypePtr; 367 368 /// ToType - The types that this conversion is converting to in 369 /// each step. This is an opaque pointer that can be translated 370 /// into a QualType. 371 void *ToTypePtrs[3]; 372 373 /// CopyConstructor - The copy constructor that is used to perform 374 /// this conversion, when the conversion is actually just the 375 /// initialization of an object via copy constructor. Such 376 /// conversions are either identity conversions or derived-to-base 377 /// conversions. 378 CXXConstructorDecl *CopyConstructor; 379 DeclAccessPair FoundCopyConstructor; 380 381 void setFromType(QualType T) { FromTypePtr = T.getAsOpaquePtr(); } 382 383 void setToType(unsigned Idx, QualType T) { 384 assert(Idx < 3 && "To type index is out of range"); 385 ToTypePtrs[Idx] = T.getAsOpaquePtr(); 386 } 387 388 void setAllToTypes(QualType T) { 389 ToTypePtrs[0] = T.getAsOpaquePtr(); 390 ToTypePtrs[1] = ToTypePtrs[0]; 391 ToTypePtrs[2] = ToTypePtrs[0]; 392 } 393 394 QualType getFromType() const { 395 return QualType::getFromOpaquePtr(FromTypePtr); 396 } 397 398 QualType getToType(unsigned Idx) const { 399 assert(Idx < 3 && "To type index is out of range"); 400 return QualType::getFromOpaquePtr(ToTypePtrs[Idx]); 401 } 402 403 void setAsIdentityConversion(); 404 405 bool isIdentityConversion() const { 406 return Second == ICK_Identity && Dimension == ICK_Identity && 407 Third == ICK_Identity; 408 } 409 410 ImplicitConversionRank getRank() const; 411 NarrowingKind 412 getNarrowingKind(ASTContext &Context, const Expr *Converted, 413 APValue &ConstantValue, QualType &ConstantType, 414 bool IgnoreFloatToIntegralConversion = false) const; 415 bool isPointerConversionToBool() const; 416 bool isPointerConversionToVoidPointer(ASTContext& Context) const; 417 void dump() const; 418 }; 419 420 /// UserDefinedConversionSequence - Represents a user-defined 421 /// conversion sequence (C++ 13.3.3.1.2). 422 struct UserDefinedConversionSequence { 423 /// Represents the standard conversion that occurs before 424 /// the actual user-defined conversion. 425 /// 426 /// C++11 13.3.3.1.2p1: 427 /// If the user-defined conversion is specified by a constructor 428 /// (12.3.1), the initial standard conversion sequence converts 429 /// the source type to the type required by the argument of the 430 /// constructor. If the user-defined conversion is specified by 431 /// a conversion function (12.3.2), the initial standard 432 /// conversion sequence converts the source type to the implicit 433 /// object parameter of the conversion function. 434 StandardConversionSequence Before; 435 436 /// EllipsisConversion - When this is true, it means user-defined 437 /// conversion sequence starts with a ... (ellipsis) conversion, instead of 438 /// a standard conversion. In this case, 'Before' field must be ignored. 439 // FIXME. I much rather put this as the first field. But there seems to be 440 // a gcc code gen. bug which causes a crash in a test. Putting it here seems 441 // to work around the crash. 442 bool EllipsisConversion : 1; 443 444 /// HadMultipleCandidates - When this is true, it means that the 445 /// conversion function was resolved from an overloaded set having 446 /// size greater than 1. 447 bool HadMultipleCandidates : 1; 448 449 /// After - Represents the standard conversion that occurs after 450 /// the actual user-defined conversion. 451 StandardConversionSequence After; 452 453 /// ConversionFunction - The function that will perform the 454 /// user-defined conversion. Null if the conversion is an 455 /// aggregate initialization from an initializer list. 456 FunctionDecl* ConversionFunction; 457 458 /// The declaration that we found via name lookup, which might be 459 /// the same as \c ConversionFunction or it might be a using declaration 460 /// that refers to \c ConversionFunction. 461 DeclAccessPair FoundConversionFunction; 462 463 void dump() const; 464 }; 465 466 /// Represents an ambiguous user-defined conversion sequence. 467 struct AmbiguousConversionSequence { 468 using ConversionSet = 469 SmallVector<std::pair<NamedDecl *, FunctionDecl *>, 4>; 470 471 void *FromTypePtr; 472 void *ToTypePtr; 473 char Buffer[sizeof(ConversionSet)]; 474 475 QualType getFromType() const { 476 return QualType::getFromOpaquePtr(FromTypePtr); 477 } 478 479 QualType getToType() const { 480 return QualType::getFromOpaquePtr(ToTypePtr); 481 } 482 483 void setFromType(QualType T) { FromTypePtr = T.getAsOpaquePtr(); } 484 void setToType(QualType T) { ToTypePtr = T.getAsOpaquePtr(); } 485 486 ConversionSet &conversions() { 487 return *reinterpret_cast<ConversionSet*>(Buffer); 488 } 489 490 const ConversionSet &conversions() const { 491 return *reinterpret_cast<const ConversionSet*>(Buffer); 492 } 493 494 void addConversion(NamedDecl *Found, FunctionDecl *D) { 495 conversions().push_back(std::make_pair(Found, D)); 496 } 497 498 using iterator = ConversionSet::iterator; 499 500 iterator begin() { return conversions().begin(); } 501 iterator end() { return conversions().end(); } 502 503 using const_iterator = ConversionSet::const_iterator; 504 505 const_iterator begin() const { return conversions().begin(); } 506 const_iterator end() const { return conversions().end(); } 507 508 void construct(); 509 void destruct(); 510 void copyFrom(const AmbiguousConversionSequence &); 511 }; 512 513 /// BadConversionSequence - Records information about an invalid 514 /// conversion sequence. 515 struct BadConversionSequence { 516 enum FailureKind { 517 no_conversion, 518 unrelated_class, 519 bad_qualifiers, 520 lvalue_ref_to_rvalue, 521 rvalue_ref_to_lvalue, 522 too_few_initializers, 523 too_many_initializers, 524 }; 525 526 // This can be null, e.g. for implicit object arguments. 527 Expr *FromExpr; 528 529 FailureKind Kind; 530 531 private: 532 // The type we're converting from (an opaque QualType). 533 void *FromTy; 534 535 // The type we're converting to (an opaque QualType). 536 void *ToTy; 537 538 public: 539 void init(FailureKind K, Expr *From, QualType To) { 540 init(K, From->getType(), To); 541 FromExpr = From; 542 } 543 544 void init(FailureKind K, QualType From, QualType To) { 545 Kind = K; 546 FromExpr = nullptr; 547 setFromType(From); 548 setToType(To); 549 } 550 551 QualType getFromType() const { return QualType::getFromOpaquePtr(FromTy); } 552 QualType getToType() const { return QualType::getFromOpaquePtr(ToTy); } 553 554 void setFromExpr(Expr *E) { 555 FromExpr = E; 556 setFromType(E->getType()); 557 } 558 559 void setFromType(QualType T) { FromTy = T.getAsOpaquePtr(); } 560 void setToType(QualType T) { ToTy = T.getAsOpaquePtr(); } 561 }; 562 563 /// ImplicitConversionSequence - Represents an implicit conversion 564 /// sequence, which may be a standard conversion sequence 565 /// (C++ 13.3.3.1.1), user-defined conversion sequence (C++ 13.3.3.1.2), 566 /// or an ellipsis conversion sequence (C++ 13.3.3.1.3). 567 class ImplicitConversionSequence { 568 public: 569 /// Kind - The kind of implicit conversion sequence. BadConversion 570 /// specifies that there is no conversion from the source type to 571 /// the target type. AmbiguousConversion represents the unique 572 /// ambiguous conversion (C++0x [over.best.ics]p10). 573 /// StaticObjectArgumentConversion represents the conversion rules for 574 /// the synthesized first argument of calls to static member functions 575 /// ([over.best.ics.general]p8). 576 enum Kind { 577 StandardConversion = 0, 578 StaticObjectArgumentConversion, 579 UserDefinedConversion, 580 AmbiguousConversion, 581 EllipsisConversion, 582 BadConversion 583 }; 584 585 private: 586 enum { 587 Uninitialized = BadConversion + 1 588 }; 589 590 /// ConversionKind - The kind of implicit conversion sequence. 591 LLVM_PREFERRED_TYPE(Kind) 592 unsigned ConversionKind : 31; 593 594 // Whether the initializer list was of an incomplete array. 595 LLVM_PREFERRED_TYPE(bool) 596 unsigned InitializerListOfIncompleteArray : 1; 597 598 /// When initializing an array or std::initializer_list from an 599 /// initializer-list, this is the array or std::initializer_list type being 600 /// initialized. The remainder of the conversion sequence, including ToType, 601 /// describe the worst conversion of an initializer to an element of the 602 /// array or std::initializer_list. (Note, 'worst' is not well defined.) 603 QualType InitializerListContainerType; 604 605 void setKind(Kind K) { 606 destruct(); 607 ConversionKind = K; 608 } 609 610 void destruct() { 611 if (ConversionKind == AmbiguousConversion) Ambiguous.destruct(); 612 } 613 614 public: 615 union { 616 /// When ConversionKind == StandardConversion, provides the 617 /// details of the standard conversion sequence. 618 StandardConversionSequence Standard; 619 620 /// When ConversionKind == UserDefinedConversion, provides the 621 /// details of the user-defined conversion sequence. 622 UserDefinedConversionSequence UserDefined; 623 624 /// When ConversionKind == AmbiguousConversion, provides the 625 /// details of the ambiguous conversion. 626 AmbiguousConversionSequence Ambiguous; 627 628 /// When ConversionKind == BadConversion, provides the details 629 /// of the bad conversion. 630 BadConversionSequence Bad; 631 }; 632 633 ImplicitConversionSequence() 634 : ConversionKind(Uninitialized), 635 InitializerListOfIncompleteArray(false) { 636 Standard.setAsIdentityConversion(); 637 } 638 639 ImplicitConversionSequence(const ImplicitConversionSequence &Other) 640 : ConversionKind(Other.ConversionKind), 641 InitializerListOfIncompleteArray( 642 Other.InitializerListOfIncompleteArray), 643 InitializerListContainerType(Other.InitializerListContainerType) { 644 switch (ConversionKind) { 645 case Uninitialized: break; 646 case StandardConversion: Standard = Other.Standard; break; 647 case StaticObjectArgumentConversion: 648 break; 649 case UserDefinedConversion: UserDefined = Other.UserDefined; break; 650 case AmbiguousConversion: Ambiguous.copyFrom(Other.Ambiguous); break; 651 case EllipsisConversion: break; 652 case BadConversion: Bad = Other.Bad; break; 653 } 654 } 655 656 ImplicitConversionSequence & 657 operator=(const ImplicitConversionSequence &Other) { 658 destruct(); 659 new (this) ImplicitConversionSequence(Other); 660 return *this; 661 } 662 663 ~ImplicitConversionSequence() { 664 destruct(); 665 } 666 667 Kind getKind() const { 668 assert(isInitialized() && "querying uninitialized conversion"); 669 return Kind(ConversionKind); 670 } 671 672 /// Return a ranking of the implicit conversion sequence 673 /// kind, where smaller ranks represent better conversion 674 /// sequences. 675 /// 676 /// In particular, this routine gives user-defined conversion 677 /// sequences and ambiguous conversion sequences the same rank, 678 /// per C++ [over.best.ics]p10. 679 unsigned getKindRank() const { 680 switch (getKind()) { 681 case StandardConversion: 682 case StaticObjectArgumentConversion: 683 return 0; 684 685 case UserDefinedConversion: 686 case AmbiguousConversion: 687 return 1; 688 689 case EllipsisConversion: 690 return 2; 691 692 case BadConversion: 693 return 3; 694 } 695 696 llvm_unreachable("Invalid ImplicitConversionSequence::Kind!"); 697 } 698 699 bool isBad() const { return getKind() == BadConversion; } 700 bool isStandard() const { return getKind() == StandardConversion; } 701 bool isStaticObjectArgument() const { 702 return getKind() == StaticObjectArgumentConversion; 703 } 704 bool isEllipsis() const { return getKind() == EllipsisConversion; } 705 bool isAmbiguous() const { return getKind() == AmbiguousConversion; } 706 bool isUserDefined() const { return getKind() == UserDefinedConversion; } 707 bool isFailure() const { return isBad() || isAmbiguous(); } 708 709 /// Determines whether this conversion sequence has been 710 /// initialized. Most operations should never need to query 711 /// uninitialized conversions and should assert as above. 712 bool isInitialized() const { return ConversionKind != Uninitialized; } 713 714 /// Sets this sequence as a bad conversion for an explicit argument. 715 void setBad(BadConversionSequence::FailureKind Failure, 716 Expr *FromExpr, QualType ToType) { 717 setKind(BadConversion); 718 Bad.init(Failure, FromExpr, ToType); 719 } 720 721 /// Sets this sequence as a bad conversion for an implicit argument. 722 void setBad(BadConversionSequence::FailureKind Failure, 723 QualType FromType, QualType ToType) { 724 setKind(BadConversion); 725 Bad.init(Failure, FromType, ToType); 726 } 727 728 void setStandard() { setKind(StandardConversion); } 729 void setStaticObjectArgument() { setKind(StaticObjectArgumentConversion); } 730 void setEllipsis() { setKind(EllipsisConversion); } 731 void setUserDefined() { setKind(UserDefinedConversion); } 732 733 void setAmbiguous() { 734 if (ConversionKind == AmbiguousConversion) return; 735 ConversionKind = AmbiguousConversion; 736 Ambiguous.construct(); 737 } 738 739 void setAsIdentityConversion(QualType T) { 740 setStandard(); 741 Standard.setAsIdentityConversion(); 742 Standard.setFromType(T); 743 Standard.setAllToTypes(T); 744 } 745 746 // True iff this is a conversion sequence from an initializer list to an 747 // array or std::initializer. 748 bool hasInitializerListContainerType() const { 749 return !InitializerListContainerType.isNull(); 750 } 751 void setInitializerListContainerType(QualType T, bool IA) { 752 InitializerListContainerType = T; 753 InitializerListOfIncompleteArray = IA; 754 } 755 bool isInitializerListOfIncompleteArray() const { 756 return InitializerListOfIncompleteArray; 757 } 758 QualType getInitializerListContainerType() const { 759 assert(hasInitializerListContainerType() && 760 "not initializer list container"); 761 return InitializerListContainerType; 762 } 763 764 /// Form an "implicit" conversion sequence from nullptr_t to bool, for a 765 /// direct-initialization of a bool object from nullptr_t. 766 static ImplicitConversionSequence getNullptrToBool(QualType SourceType, 767 QualType DestType, 768 bool NeedLValToRVal) { 769 ImplicitConversionSequence ICS; 770 ICS.setStandard(); 771 ICS.Standard.setAsIdentityConversion(); 772 ICS.Standard.setFromType(SourceType); 773 if (NeedLValToRVal) 774 ICS.Standard.First = ICK_Lvalue_To_Rvalue; 775 ICS.Standard.setToType(0, SourceType); 776 ICS.Standard.Second = ICK_Boolean_Conversion; 777 ICS.Standard.setToType(1, DestType); 778 ICS.Standard.setToType(2, DestType); 779 return ICS; 780 } 781 782 // The result of a comparison between implicit conversion 783 // sequences. Use Sema::CompareImplicitConversionSequences to 784 // actually perform the comparison. 785 enum CompareKind { 786 Better = -1, 787 Indistinguishable = 0, 788 Worse = 1 789 }; 790 791 void DiagnoseAmbiguousConversion(Sema &S, 792 SourceLocation CaretLoc, 793 const PartialDiagnostic &PDiag) const; 794 795 void dump() const; 796 }; 797 798 enum OverloadFailureKind { 799 ovl_fail_too_many_arguments, 800 ovl_fail_too_few_arguments, 801 ovl_fail_bad_conversion, 802 ovl_fail_bad_deduction, 803 804 /// This conversion candidate was not considered because it 805 /// duplicates the work of a trivial or derived-to-base 806 /// conversion. 807 ovl_fail_trivial_conversion, 808 809 /// This conversion candidate was not considered because it is 810 /// an illegal instantiation of a constructor temploid: it is 811 /// callable with one argument, we only have one argument, and 812 /// its first parameter type is exactly the type of the class. 813 /// 814 /// Defining such a constructor directly is illegal, and 815 /// template-argument deduction is supposed to ignore such 816 /// instantiations, but we can still get one with the right 817 /// kind of implicit instantiation. 818 ovl_fail_illegal_constructor, 819 820 /// This conversion candidate is not viable because its result 821 /// type is not implicitly convertible to the desired type. 822 ovl_fail_bad_final_conversion, 823 824 /// This conversion function template specialization candidate is not 825 /// viable because the final conversion was not an exact match. 826 ovl_fail_final_conversion_not_exact, 827 828 /// (CUDA) This candidate was not viable because the callee 829 /// was not accessible from the caller's target (i.e. host->device, 830 /// global->host, device->host). 831 ovl_fail_bad_target, 832 833 /// This candidate function was not viable because an enable_if 834 /// attribute disabled it. 835 ovl_fail_enable_if, 836 837 /// This candidate constructor or conversion function is explicit but 838 /// the context doesn't permit explicit functions. 839 ovl_fail_explicit, 840 841 /// This candidate was not viable because its address could not be taken. 842 ovl_fail_addr_not_available, 843 844 /// This inherited constructor is not viable because it would slice the 845 /// argument. 846 ovl_fail_inhctor_slice, 847 848 /// This candidate was not viable because it is a non-default multiversioned 849 /// function. 850 ovl_non_default_multiversion_function, 851 852 /// This constructor/conversion candidate fail due to an address space 853 /// mismatch between the object being constructed and the overload 854 /// candidate. 855 ovl_fail_object_addrspace_mismatch, 856 857 /// This candidate was not viable because its associated constraints were 858 /// not satisfied. 859 ovl_fail_constraints_not_satisfied, 860 861 /// This candidate was not viable because it has internal linkage and is 862 /// from a different module unit than the use. 863 ovl_fail_module_mismatched, 864 }; 865 866 /// A list of implicit conversion sequences for the arguments of an 867 /// OverloadCandidate. 868 using ConversionSequenceList = 869 llvm::MutableArrayRef<ImplicitConversionSequence>; 870 871 /// OverloadCandidate - A single candidate in an overload set (C++ 13.3). 872 struct OverloadCandidate { 873 /// Function - The actual function that this candidate 874 /// represents. When NULL, this is a built-in candidate 875 /// (C++ [over.oper]) or a surrogate for a conversion to a 876 /// function pointer or reference (C++ [over.call.object]). 877 FunctionDecl *Function; 878 879 /// FoundDecl - The original declaration that was looked up / 880 /// invented / otherwise found, together with its access. 881 /// Might be a UsingShadowDecl or a FunctionTemplateDecl. 882 DeclAccessPair FoundDecl; 883 884 /// BuiltinParamTypes - Provides the parameter types of a built-in overload 885 /// candidate. Only valid when Function is NULL. 886 QualType BuiltinParamTypes[3]; 887 888 /// Surrogate - The conversion function for which this candidate 889 /// is a surrogate, but only if IsSurrogate is true. 890 CXXConversionDecl *Surrogate; 891 892 /// The conversion sequences used to convert the function arguments 893 /// to the function parameters. Note that these are indexed by argument, 894 /// so may not match the parameter order of Function. 895 ConversionSequenceList Conversions; 896 897 /// The FixIt hints which can be used to fix the Bad candidate. 898 ConversionFixItGenerator Fix; 899 900 /// Viable - True to indicate that this overload candidate is viable. 901 LLVM_PREFERRED_TYPE(bool) 902 unsigned Viable : 1; 903 904 /// Whether this candidate is the best viable function, or tied for being 905 /// the best viable function. 906 /// 907 /// For an ambiguous overload resolution, indicates whether this candidate 908 /// was part of the ambiguity kernel: the minimal non-empty set of viable 909 /// candidates such that all elements of the ambiguity kernel are better 910 /// than all viable candidates not in the ambiguity kernel. 911 LLVM_PREFERRED_TYPE(bool) 912 unsigned Best : 1; 913 914 /// IsSurrogate - True to indicate that this candidate is a 915 /// surrogate for a conversion to a function pointer or reference 916 /// (C++ [over.call.object]). 917 LLVM_PREFERRED_TYPE(bool) 918 unsigned IsSurrogate : 1; 919 920 /// IgnoreObjectArgument - True to indicate that the first 921 /// argument's conversion, which for this function represents the 922 /// implicit object argument, should be ignored. This will be true 923 /// when the candidate is a static member function (where the 924 /// implicit object argument is just a placeholder) or a 925 /// non-static member function when the call doesn't have an 926 /// object argument. 927 LLVM_PREFERRED_TYPE(bool) 928 unsigned IgnoreObjectArgument : 1; 929 930 LLVM_PREFERRED_TYPE(bool) 931 unsigned TookAddressOfOverload : 1; 932 933 /// Have we matched any packs on the parameter side, versus any non-packs on 934 /// the argument side, in a context where the opposite matching is also 935 /// allowed? 936 bool HasMatchedPackOnParmToNonPackOnArg : 1; 937 938 /// True if the candidate was found using ADL. 939 LLVM_PREFERRED_TYPE(CallExpr::ADLCallKind) 940 unsigned IsADLCandidate : 1; 941 942 /// Whether this is a rewritten candidate, and if so, of what kind? 943 LLVM_PREFERRED_TYPE(OverloadCandidateRewriteKind) 944 unsigned RewriteKind : 2; 945 946 /// FailureKind - The reason why this candidate is not viable. 947 /// Actually an OverloadFailureKind. 948 unsigned char FailureKind; 949 950 /// The number of call arguments that were explicitly provided, 951 /// to be used while performing partial ordering of function templates. 952 unsigned ExplicitCallArguments; 953 954 union { 955 DeductionFailureInfo DeductionFailure; 956 957 /// FinalConversion - For a conversion function (where Function is 958 /// a CXXConversionDecl), the standard conversion that occurs 959 /// after the call to the overload candidate to convert the result 960 /// of calling the conversion function to the required type. 961 StandardConversionSequence FinalConversion; 962 }; 963 964 /// Get RewriteKind value in OverloadCandidateRewriteKind type (This 965 /// function is to workaround the spurious GCC bitfield enum warning) 966 OverloadCandidateRewriteKind getRewriteKind() const { 967 return static_cast<OverloadCandidateRewriteKind>(RewriteKind); 968 } 969 970 bool isReversed() const { return getRewriteKind() & CRK_Reversed; } 971 972 /// hasAmbiguousConversion - Returns whether this overload 973 /// candidate requires an ambiguous conversion or not. 974 bool hasAmbiguousConversion() const { 975 for (auto &C : Conversions) { 976 if (!C.isInitialized()) return false; 977 if (C.isAmbiguous()) return true; 978 } 979 return false; 980 } 981 982 bool TryToFixBadConversion(unsigned Idx, Sema &S) { 983 bool CanFix = Fix.tryToFixConversion( 984 Conversions[Idx].Bad.FromExpr, 985 Conversions[Idx].Bad.getFromType(), 986 Conversions[Idx].Bad.getToType(), S); 987 988 // If at least one conversion fails, the candidate cannot be fixed. 989 if (!CanFix) 990 Fix.clear(); 991 992 return CanFix; 993 } 994 995 unsigned getNumParams() const { 996 if (IsSurrogate) { 997 QualType STy = Surrogate->getConversionType(); 998 while (STy->isPointerOrReferenceType()) 999 STy = STy->getPointeeType(); 1000 return STy->castAs<FunctionProtoType>()->getNumParams(); 1001 } 1002 if (Function) 1003 return Function->getNumParams(); 1004 return ExplicitCallArguments; 1005 } 1006 1007 bool NotValidBecauseConstraintExprHasError() const; 1008 1009 private: 1010 friend class OverloadCandidateSet; 1011 OverloadCandidate() 1012 : IsSurrogate(false), IgnoreObjectArgument(false), 1013 TookAddressOfOverload(false), 1014 HasMatchedPackOnParmToNonPackOnArg(false), 1015 IsADLCandidate(llvm::to_underlying(CallExpr::NotADL)), 1016 RewriteKind(CRK_None) {} 1017 }; 1018 1019 /// OverloadCandidateSet - A set of overload candidates, used in C++ 1020 /// overload resolution (C++ 13.3). 1021 class OverloadCandidateSet { 1022 public: 1023 enum CandidateSetKind { 1024 /// Normal lookup. 1025 CSK_Normal, 1026 1027 /// C++ [over.match.oper]: 1028 /// Lookup of operator function candidates in a call using operator 1029 /// syntax. Candidates that have no parameters of class type will be 1030 /// skipped unless there is a parameter of (reference to) enum type and 1031 /// the corresponding argument is of the same enum type. 1032 CSK_Operator, 1033 1034 /// C++ [over.match.copy]: 1035 /// Copy-initialization of an object of class type by user-defined 1036 /// conversion. 1037 CSK_InitByUserDefinedConversion, 1038 1039 /// C++ [over.match.ctor], [over.match.list] 1040 /// Initialization of an object of class type by constructor, 1041 /// using either a parenthesized or braced list of arguments. 1042 CSK_InitByConstructor, 1043 1044 /// C++ [over.match.call.general] 1045 /// Resolve a call through the address of an overload set. 1046 CSK_AddressOfOverloadSet, 1047 }; 1048 1049 /// Information about operator rewrites to consider when adding operator 1050 /// functions to a candidate set. 1051 struct OperatorRewriteInfo { 1052 OperatorRewriteInfo() 1053 : OriginalOperator(OO_None), OpLoc(), AllowRewrittenCandidates(false) {} 1054 OperatorRewriteInfo(OverloadedOperatorKind Op, SourceLocation OpLoc, 1055 bool AllowRewritten) 1056 : OriginalOperator(Op), OpLoc(OpLoc), 1057 AllowRewrittenCandidates(AllowRewritten) {} 1058 1059 /// The original operator as written in the source. 1060 OverloadedOperatorKind OriginalOperator; 1061 /// The source location of the operator. 1062 SourceLocation OpLoc; 1063 /// Whether we should include rewritten candidates in the overload set. 1064 bool AllowRewrittenCandidates; 1065 1066 /// Would use of this function result in a rewrite using a different 1067 /// operator? 1068 bool isRewrittenOperator(const FunctionDecl *FD) { 1069 return OriginalOperator && 1070 FD->getDeclName().getCXXOverloadedOperator() != OriginalOperator; 1071 } 1072 1073 bool isAcceptableCandidate(const FunctionDecl *FD) { 1074 if (!OriginalOperator) 1075 return true; 1076 1077 // For an overloaded operator, we can have candidates with a different 1078 // name in our unqualified lookup set. Make sure we only consider the 1079 // ones we're supposed to. 1080 OverloadedOperatorKind OO = 1081 FD->getDeclName().getCXXOverloadedOperator(); 1082 return OO && (OO == OriginalOperator || 1083 (AllowRewrittenCandidates && 1084 OO == getRewrittenOverloadedOperator(OriginalOperator))); 1085 } 1086 1087 /// Determine the kind of rewrite that should be performed for this 1088 /// candidate. 1089 OverloadCandidateRewriteKind 1090 getRewriteKind(const FunctionDecl *FD, OverloadCandidateParamOrder PO) { 1091 OverloadCandidateRewriteKind CRK = CRK_None; 1092 if (isRewrittenOperator(FD)) 1093 CRK = OverloadCandidateRewriteKind(CRK | CRK_DifferentOperator); 1094 if (PO == OverloadCandidateParamOrder::Reversed) 1095 CRK = OverloadCandidateRewriteKind(CRK | CRK_Reversed); 1096 return CRK; 1097 } 1098 /// Determines whether this operator could be implemented by a function 1099 /// with reversed parameter order. 1100 bool isReversible() { 1101 return AllowRewrittenCandidates && OriginalOperator && 1102 (getRewrittenOverloadedOperator(OriginalOperator) != OO_None || 1103 allowsReversed(OriginalOperator)); 1104 } 1105 1106 /// Determine whether reversing parameter order is allowed for operator 1107 /// Op. 1108 bool allowsReversed(OverloadedOperatorKind Op); 1109 1110 /// Determine whether we should add a rewritten candidate for \p FD with 1111 /// reversed parameter order. 1112 /// \param OriginalArgs are the original non reversed arguments. 1113 bool shouldAddReversed(Sema &S, ArrayRef<Expr *> OriginalArgs, 1114 FunctionDecl *FD); 1115 }; 1116 1117 private: 1118 SmallVector<OverloadCandidate, 16> Candidates; 1119 llvm::SmallPtrSet<uintptr_t, 16> Functions; 1120 1121 // Allocator for ConversionSequenceLists. We store the first few of these 1122 // inline to avoid allocation for small sets. 1123 llvm::BumpPtrAllocator SlabAllocator; 1124 1125 SourceLocation Loc; 1126 CandidateSetKind Kind; 1127 OperatorRewriteInfo RewriteInfo; 1128 1129 constexpr static unsigned NumInlineBytes = 1130 24 * sizeof(ImplicitConversionSequence); 1131 unsigned NumInlineBytesUsed = 0; 1132 alignas(void *) char InlineSpace[NumInlineBytes]; 1133 1134 // Address space of the object being constructed. 1135 LangAS DestAS = LangAS::Default; 1136 1137 /// If we have space, allocates from inline storage. Otherwise, allocates 1138 /// from the slab allocator. 1139 /// FIXME: It would probably be nice to have a SmallBumpPtrAllocator 1140 /// instead. 1141 /// FIXME: Now that this only allocates ImplicitConversionSequences, do we 1142 /// want to un-generalize this? 1143 template <typename T> 1144 T *slabAllocate(unsigned N) { 1145 // It's simpler if this doesn't need to consider alignment. 1146 static_assert(alignof(T) == alignof(void *), 1147 "Only works for pointer-aligned types."); 1148 static_assert(std::is_trivial<T>::value || 1149 std::is_same<ImplicitConversionSequence, T>::value, 1150 "Add destruction logic to OverloadCandidateSet::clear()."); 1151 1152 unsigned NBytes = sizeof(T) * N; 1153 if (NBytes > NumInlineBytes - NumInlineBytesUsed) 1154 return SlabAllocator.Allocate<T>(N); 1155 char *FreeSpaceStart = InlineSpace + NumInlineBytesUsed; 1156 assert(uintptr_t(FreeSpaceStart) % alignof(void *) == 0 && 1157 "Misaligned storage!"); 1158 1159 NumInlineBytesUsed += NBytes; 1160 return reinterpret_cast<T *>(FreeSpaceStart); 1161 } 1162 1163 void destroyCandidates(); 1164 1165 public: 1166 OverloadCandidateSet(SourceLocation Loc, CandidateSetKind CSK, 1167 OperatorRewriteInfo RewriteInfo = {}) 1168 : Loc(Loc), Kind(CSK), RewriteInfo(RewriteInfo) {} 1169 OverloadCandidateSet(const OverloadCandidateSet &) = delete; 1170 OverloadCandidateSet &operator=(const OverloadCandidateSet &) = delete; 1171 ~OverloadCandidateSet() { destroyCandidates(); } 1172 1173 SourceLocation getLocation() const { return Loc; } 1174 CandidateSetKind getKind() const { return Kind; } 1175 OperatorRewriteInfo getRewriteInfo() const { return RewriteInfo; } 1176 1177 /// Whether diagnostics should be deferred. 1178 bool shouldDeferDiags(Sema &S, ArrayRef<Expr *> Args, SourceLocation OpLoc); 1179 1180 /// Determine when this overload candidate will be new to the 1181 /// overload set. 1182 bool isNewCandidate(Decl *F, OverloadCandidateParamOrder PO = 1183 OverloadCandidateParamOrder::Normal) { 1184 uintptr_t Key = reinterpret_cast<uintptr_t>(F->getCanonicalDecl()); 1185 Key |= static_cast<uintptr_t>(PO); 1186 return Functions.insert(Key).second; 1187 } 1188 1189 /// Exclude a function from being considered by overload resolution. 1190 void exclude(Decl *F) { 1191 isNewCandidate(F, OverloadCandidateParamOrder::Normal); 1192 isNewCandidate(F, OverloadCandidateParamOrder::Reversed); 1193 } 1194 1195 /// Clear out all of the candidates. 1196 void clear(CandidateSetKind CSK); 1197 1198 using iterator = SmallVectorImpl<OverloadCandidate>::iterator; 1199 1200 iterator begin() { return Candidates.begin(); } 1201 iterator end() { return Candidates.end(); } 1202 1203 size_t size() const { return Candidates.size(); } 1204 bool empty() const { return Candidates.empty(); } 1205 1206 /// Allocate storage for conversion sequences for NumConversions 1207 /// conversions. 1208 ConversionSequenceList 1209 allocateConversionSequences(unsigned NumConversions) { 1210 ImplicitConversionSequence *Conversions = 1211 slabAllocate<ImplicitConversionSequence>(NumConversions); 1212 1213 // Construct the new objects. 1214 for (unsigned I = 0; I != NumConversions; ++I) 1215 new (&Conversions[I]) ImplicitConversionSequence(); 1216 1217 return ConversionSequenceList(Conversions, NumConversions); 1218 } 1219 1220 /// Add a new candidate with NumConversions conversion sequence slots 1221 /// to the overload set. 1222 OverloadCandidate &addCandidate(unsigned NumConversions = 0, 1223 ConversionSequenceList Conversions = {}) { 1224 assert((Conversions.empty() || Conversions.size() == NumConversions) && 1225 "preallocated conversion sequence has wrong length"); 1226 1227 Candidates.push_back(OverloadCandidate()); 1228 OverloadCandidate &C = Candidates.back(); 1229 C.Conversions = Conversions.empty() 1230 ? allocateConversionSequences(NumConversions) 1231 : Conversions; 1232 return C; 1233 } 1234 1235 /// Find the best viable function on this overload set, if it exists. 1236 OverloadingResult BestViableFunction(Sema &S, SourceLocation Loc, 1237 OverloadCandidateSet::iterator& Best); 1238 1239 SmallVector<OverloadCandidate *, 32> CompleteCandidates( 1240 Sema &S, OverloadCandidateDisplayKind OCD, ArrayRef<Expr *> Args, 1241 SourceLocation OpLoc = SourceLocation(), 1242 llvm::function_ref<bool(OverloadCandidate &)> Filter = 1243 [](OverloadCandidate &) { return true; }); 1244 1245 void NoteCandidates( 1246 PartialDiagnosticAt PA, Sema &S, OverloadCandidateDisplayKind OCD, 1247 ArrayRef<Expr *> Args, StringRef Opc = "", 1248 SourceLocation Loc = SourceLocation(), 1249 llvm::function_ref<bool(OverloadCandidate &)> Filter = 1250 [](OverloadCandidate &) { return true; }); 1251 1252 void NoteCandidates(Sema &S, ArrayRef<Expr *> Args, 1253 ArrayRef<OverloadCandidate *> Cands, 1254 StringRef Opc = "", 1255 SourceLocation OpLoc = SourceLocation()); 1256 1257 LangAS getDestAS() { return DestAS; } 1258 1259 void setDestAS(LangAS AS) { 1260 assert((Kind == CSK_InitByConstructor || 1261 Kind == CSK_InitByUserDefinedConversion) && 1262 "can't set the destination address space when not constructing an " 1263 "object"); 1264 DestAS = AS; 1265 } 1266 1267 }; 1268 1269 bool isBetterOverloadCandidate(Sema &S, 1270 const OverloadCandidate &Cand1, 1271 const OverloadCandidate &Cand2, 1272 SourceLocation Loc, 1273 OverloadCandidateSet::CandidateSetKind Kind); 1274 1275 struct ConstructorInfo { 1276 DeclAccessPair FoundDecl; 1277 CXXConstructorDecl *Constructor; 1278 FunctionTemplateDecl *ConstructorTmpl; 1279 1280 explicit operator bool() const { return Constructor; } 1281 }; 1282 1283 // FIXME: Add an AddOverloadCandidate / AddTemplateOverloadCandidate overload 1284 // that takes one of these. 1285 inline ConstructorInfo getConstructorInfo(NamedDecl *ND) { 1286 if (isa<UsingDecl>(ND)) 1287 return ConstructorInfo{}; 1288 1289 // For constructors, the access check is performed against the underlying 1290 // declaration, not the found declaration. 1291 auto *D = ND->getUnderlyingDecl(); 1292 ConstructorInfo Info = {DeclAccessPair::make(ND, D->getAccess()), nullptr, 1293 nullptr}; 1294 Info.ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D); 1295 if (Info.ConstructorTmpl) 1296 D = Info.ConstructorTmpl->getTemplatedDecl(); 1297 Info.Constructor = dyn_cast<CXXConstructorDecl>(D); 1298 return Info; 1299 } 1300 1301 // Returns false if signature help is relevant despite number of arguments 1302 // exceeding parameters. Specifically, it returns false when 1303 // PartialOverloading is true and one of the following: 1304 // * Function is variadic 1305 // * Function is template variadic 1306 // * Function is an instantiation of template variadic function 1307 // The last case may seem strange. The idea is that if we added one more 1308 // argument, we'd end up with a function similar to Function. Since, in the 1309 // context of signature help and/or code completion, we do not know what the 1310 // type of the next argument (that the user is typing) will be, this is as 1311 // good candidate as we can get, despite the fact that it takes one less 1312 // parameter. 1313 bool shouldEnforceArgLimit(bool PartialOverloading, FunctionDecl *Function); 1314 1315 } // namespace clang 1316 1317 #endif // LLVM_CLANG_SEMA_OVERLOAD_H 1318