1 //===-- SIFoldOperands.cpp - Fold operands --- ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 /// \file 8 //===----------------------------------------------------------------------===// 9 // 10 11 #include "SIFoldOperands.h" 12 #include "AMDGPU.h" 13 #include "GCNSubtarget.h" 14 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 15 #include "SIMachineFunctionInfo.h" 16 #include "llvm/ADT/DepthFirstIterator.h" 17 #include "llvm/CodeGen/MachineFunctionPass.h" 18 #include "llvm/CodeGen/MachineOperand.h" 19 20 #define DEBUG_TYPE "si-fold-operands" 21 using namespace llvm; 22 23 namespace { 24 25 struct FoldCandidate { 26 MachineInstr *UseMI; 27 union { 28 MachineOperand *OpToFold; 29 uint64_t ImmToFold; 30 int FrameIndexToFold; 31 }; 32 int ShrinkOpcode; 33 unsigned UseOpNo; 34 MachineOperand::MachineOperandType Kind; 35 bool Commuted; 36 37 FoldCandidate(MachineInstr *MI, unsigned OpNo, MachineOperand *FoldOp, 38 bool Commuted_ = false, 39 int ShrinkOp = -1) : 40 UseMI(MI), OpToFold(nullptr), ShrinkOpcode(ShrinkOp), UseOpNo(OpNo), 41 Kind(FoldOp->getType()), 42 Commuted(Commuted_) { 43 if (FoldOp->isImm()) { 44 ImmToFold = FoldOp->getImm(); 45 } else if (FoldOp->isFI()) { 46 FrameIndexToFold = FoldOp->getIndex(); 47 } else { 48 assert(FoldOp->isReg() || FoldOp->isGlobal()); 49 OpToFold = FoldOp; 50 } 51 } 52 53 bool isFI() const { 54 return Kind == MachineOperand::MO_FrameIndex; 55 } 56 57 bool isImm() const { 58 return Kind == MachineOperand::MO_Immediate; 59 } 60 61 bool isReg() const { 62 return Kind == MachineOperand::MO_Register; 63 } 64 65 bool isGlobal() const { return Kind == MachineOperand::MO_GlobalAddress; } 66 67 bool needsShrink() const { return ShrinkOpcode != -1; } 68 }; 69 70 class SIFoldOperandsImpl { 71 public: 72 MachineRegisterInfo *MRI; 73 const SIInstrInfo *TII; 74 const SIRegisterInfo *TRI; 75 const GCNSubtarget *ST; 76 const SIMachineFunctionInfo *MFI; 77 78 bool frameIndexMayFold(const MachineInstr &UseMI, int OpNo, 79 const MachineOperand &OpToFold) const; 80 81 // TODO: Just use TII::getVALUOp 82 unsigned convertToVALUOp(unsigned Opc, bool UseVOP3 = false) const { 83 switch (Opc) { 84 case AMDGPU::S_ADD_I32: { 85 if (ST->hasAddNoCarry()) 86 return UseVOP3 ? AMDGPU::V_ADD_U32_e64 : AMDGPU::V_ADD_U32_e32; 87 return UseVOP3 ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_ADD_CO_U32_e32; 88 } 89 case AMDGPU::S_OR_B32: 90 return UseVOP3 ? AMDGPU::V_OR_B32_e64 : AMDGPU::V_OR_B32_e32; 91 case AMDGPU::S_AND_B32: 92 return UseVOP3 ? AMDGPU::V_AND_B32_e64 : AMDGPU::V_AND_B32_e32; 93 case AMDGPU::S_MUL_I32: 94 return AMDGPU::V_MUL_LO_U32_e64; 95 default: 96 return AMDGPU::INSTRUCTION_LIST_END; 97 } 98 } 99 100 bool foldCopyToVGPROfScalarAddOfFrameIndex(Register DstReg, Register SrcReg, 101 MachineInstr &MI) const; 102 103 bool updateOperand(FoldCandidate &Fold) const; 104 105 bool canUseImmWithOpSel(FoldCandidate &Fold) const; 106 107 bool tryFoldImmWithOpSel(FoldCandidate &Fold) const; 108 109 bool tryAddToFoldList(SmallVectorImpl<FoldCandidate> &FoldList, 110 MachineInstr *MI, unsigned OpNo, 111 MachineOperand *OpToFold) const; 112 bool isUseSafeToFold(const MachineInstr &MI, 113 const MachineOperand &UseMO) const; 114 bool 115 getRegSeqInit(SmallVectorImpl<std::pair<MachineOperand *, unsigned>> &Defs, 116 Register UseReg, uint8_t OpTy) const; 117 bool tryToFoldACImm(const MachineOperand &OpToFold, MachineInstr *UseMI, 118 unsigned UseOpIdx, 119 SmallVectorImpl<FoldCandidate> &FoldList) const; 120 void foldOperand(MachineOperand &OpToFold, 121 MachineInstr *UseMI, 122 int UseOpIdx, 123 SmallVectorImpl<FoldCandidate> &FoldList, 124 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const; 125 126 MachineOperand *getImmOrMaterializedImm(MachineOperand &Op) const; 127 bool tryConstantFoldOp(MachineInstr *MI) const; 128 bool tryFoldCndMask(MachineInstr &MI) const; 129 bool tryFoldZeroHighBits(MachineInstr &MI) const; 130 bool foldInstOperand(MachineInstr &MI, MachineOperand &OpToFold) const; 131 bool tryFoldFoldableCopy(MachineInstr &MI, 132 MachineOperand *&CurrentKnownM0Val) const; 133 134 const MachineOperand *isClamp(const MachineInstr &MI) const; 135 bool tryFoldClamp(MachineInstr &MI); 136 137 std::pair<const MachineOperand *, int> isOMod(const MachineInstr &MI) const; 138 bool tryFoldOMod(MachineInstr &MI); 139 bool tryFoldRegSequence(MachineInstr &MI); 140 bool tryFoldPhiAGPR(MachineInstr &MI); 141 bool tryFoldLoad(MachineInstr &MI); 142 143 bool tryOptimizeAGPRPhis(MachineBasicBlock &MBB); 144 145 public: 146 SIFoldOperandsImpl() = default; 147 148 bool run(MachineFunction &MF); 149 }; 150 151 class SIFoldOperandsLegacy : public MachineFunctionPass { 152 public: 153 static char ID; 154 155 SIFoldOperandsLegacy() : MachineFunctionPass(ID) {} 156 157 bool runOnMachineFunction(MachineFunction &MF) override { 158 if (skipFunction(MF.getFunction())) 159 return false; 160 return SIFoldOperandsImpl().run(MF); 161 } 162 163 StringRef getPassName() const override { return "SI Fold Operands"; } 164 165 void getAnalysisUsage(AnalysisUsage &AU) const override { 166 AU.setPreservesCFG(); 167 MachineFunctionPass::getAnalysisUsage(AU); 168 } 169 }; 170 171 } // End anonymous namespace. 172 173 INITIALIZE_PASS(SIFoldOperandsLegacy, DEBUG_TYPE, "SI Fold Operands", false, 174 false) 175 176 char SIFoldOperandsLegacy::ID = 0; 177 178 char &llvm::SIFoldOperandsLegacyID = SIFoldOperandsLegacy::ID; 179 180 static const TargetRegisterClass *getRegOpRC(const MachineRegisterInfo &MRI, 181 const TargetRegisterInfo &TRI, 182 const MachineOperand &MO) { 183 const TargetRegisterClass *RC = MRI.getRegClass(MO.getReg()); 184 if (const TargetRegisterClass *SubRC = 185 TRI.getSubRegisterClass(RC, MO.getSubReg())) 186 RC = SubRC; 187 return RC; 188 } 189 190 // Map multiply-accumulate opcode to corresponding multiply-add opcode if any. 191 static unsigned macToMad(unsigned Opc) { 192 switch (Opc) { 193 case AMDGPU::V_MAC_F32_e64: 194 return AMDGPU::V_MAD_F32_e64; 195 case AMDGPU::V_MAC_F16_e64: 196 return AMDGPU::V_MAD_F16_e64; 197 case AMDGPU::V_FMAC_F32_e64: 198 return AMDGPU::V_FMA_F32_e64; 199 case AMDGPU::V_FMAC_F16_e64: 200 return AMDGPU::V_FMA_F16_gfx9_e64; 201 case AMDGPU::V_FMAC_F16_fake16_e64: 202 return AMDGPU::V_FMA_F16_gfx9_fake16_e64; 203 case AMDGPU::V_FMAC_LEGACY_F32_e64: 204 return AMDGPU::V_FMA_LEGACY_F32_e64; 205 case AMDGPU::V_FMAC_F64_e64: 206 return AMDGPU::V_FMA_F64_e64; 207 } 208 return AMDGPU::INSTRUCTION_LIST_END; 209 } 210 211 // TODO: Add heuristic that the frame index might not fit in the addressing mode 212 // immediate offset to avoid materializing in loops. 213 bool SIFoldOperandsImpl::frameIndexMayFold( 214 const MachineInstr &UseMI, int OpNo, const MachineOperand &OpToFold) const { 215 if (!OpToFold.isFI()) 216 return false; 217 218 const unsigned Opc = UseMI.getOpcode(); 219 switch (Opc) { 220 case AMDGPU::S_ADD_I32: 221 case AMDGPU::S_OR_B32: 222 case AMDGPU::S_AND_B32: 223 case AMDGPU::V_ADD_U32_e32: 224 case AMDGPU::V_ADD_CO_U32_e32: 225 // TODO: Possibly relax hasOneUse. It matters more for mubuf, since we have 226 // to insert the wave size shift at every point we use the index. 227 // TODO: Fix depending on visit order to fold immediates into the operand 228 return UseMI.getOperand(OpNo == 1 ? 2 : 1).isImm() && 229 MRI->hasOneNonDBGUse(UseMI.getOperand(OpNo).getReg()); 230 case AMDGPU::V_ADD_U32_e64: 231 case AMDGPU::V_ADD_CO_U32_e64: 232 return UseMI.getOperand(OpNo == 2 ? 3 : 2).isImm() && 233 MRI->hasOneNonDBGUse(UseMI.getOperand(OpNo).getReg()); 234 default: 235 break; 236 } 237 238 if (TII->isMUBUF(UseMI)) 239 return OpNo == AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vaddr); 240 if (!TII->isFLATScratch(UseMI)) 241 return false; 242 243 int SIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::saddr); 244 if (OpNo == SIdx) 245 return true; 246 247 int VIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vaddr); 248 return OpNo == VIdx && SIdx == -1; 249 } 250 251 /// Fold %vgpr = COPY (S_ADD_I32 x, frameindex) 252 /// 253 /// => %vgpr = V_ADD_U32 x, frameindex 254 bool SIFoldOperandsImpl::foldCopyToVGPROfScalarAddOfFrameIndex( 255 Register DstReg, Register SrcReg, MachineInstr &MI) const { 256 if (TRI->isVGPR(*MRI, DstReg) && TRI->isSGPRReg(*MRI, SrcReg) && 257 MRI->hasOneNonDBGUse(SrcReg)) { 258 MachineInstr *Def = MRI->getVRegDef(SrcReg); 259 if (!Def || Def->getNumOperands() != 4) 260 return false; 261 262 MachineOperand *Src0 = &Def->getOperand(1); 263 MachineOperand *Src1 = &Def->getOperand(2); 264 265 // TODO: This is profitable with more operand types, and for more 266 // opcodes. But ultimately this is working around poor / nonexistent 267 // regbankselect. 268 if (!Src0->isFI() && !Src1->isFI()) 269 return false; 270 271 if (Src0->isFI()) 272 std::swap(Src0, Src1); 273 274 const bool UseVOP3 = !Src0->isImm() || TII->isInlineConstant(*Src0); 275 unsigned NewOp = convertToVALUOp(Def->getOpcode(), UseVOP3); 276 if (NewOp == AMDGPU::INSTRUCTION_LIST_END || 277 !Def->getOperand(3).isDead()) // Check if scc is dead 278 return false; 279 280 MachineBasicBlock *MBB = Def->getParent(); 281 const DebugLoc &DL = Def->getDebugLoc(); 282 if (NewOp != AMDGPU::V_ADD_CO_U32_e32) { 283 MachineInstrBuilder Add = 284 BuildMI(*MBB, *Def, DL, TII->get(NewOp), DstReg); 285 286 if (Add->getDesc().getNumDefs() == 2) { 287 Register CarryOutReg = MRI->createVirtualRegister(TRI->getBoolRC()); 288 Add.addDef(CarryOutReg, RegState::Dead); 289 MRI->setRegAllocationHint(CarryOutReg, 0, TRI->getVCC()); 290 } 291 292 Add.add(*Src0).add(*Src1).setMIFlags(Def->getFlags()); 293 if (AMDGPU::hasNamedOperand(NewOp, AMDGPU::OpName::clamp)) 294 Add.addImm(0); 295 296 Def->eraseFromParent(); 297 MI.eraseFromParent(); 298 return true; 299 } 300 301 assert(NewOp == AMDGPU::V_ADD_CO_U32_e32); 302 303 MachineBasicBlock::LivenessQueryResult Liveness = 304 MBB->computeRegisterLiveness(TRI, AMDGPU::VCC, *Def, 16); 305 if (Liveness == MachineBasicBlock::LQR_Dead) { 306 // TODO: If src1 satisfies operand constraints, use vop3 version. 307 BuildMI(*MBB, *Def, DL, TII->get(NewOp), DstReg) 308 .add(*Src0) 309 .add(*Src1) 310 .setOperandDead(3) // implicit-def $vcc 311 .setMIFlags(Def->getFlags()); 312 Def->eraseFromParent(); 313 MI.eraseFromParent(); 314 return true; 315 } 316 } 317 318 return false; 319 } 320 321 FunctionPass *llvm::createSIFoldOperandsLegacyPass() { 322 return new SIFoldOperandsLegacy(); 323 } 324 325 bool SIFoldOperandsImpl::canUseImmWithOpSel(FoldCandidate &Fold) const { 326 MachineInstr *MI = Fold.UseMI; 327 MachineOperand &Old = MI->getOperand(Fold.UseOpNo); 328 const uint64_t TSFlags = MI->getDesc().TSFlags; 329 330 assert(Old.isReg() && Fold.isImm()); 331 332 if (!(TSFlags & SIInstrFlags::IsPacked) || (TSFlags & SIInstrFlags::IsMAI) || 333 (TSFlags & SIInstrFlags::IsWMMA) || (TSFlags & SIInstrFlags::IsSWMMAC) || 334 (ST->hasDOTOpSelHazard() && (TSFlags & SIInstrFlags::IsDOT))) 335 return false; 336 337 unsigned Opcode = MI->getOpcode(); 338 int OpNo = MI->getOperandNo(&Old); 339 uint8_t OpType = TII->get(Opcode).operands()[OpNo].OperandType; 340 switch (OpType) { 341 default: 342 return false; 343 case AMDGPU::OPERAND_REG_IMM_V2FP16: 344 case AMDGPU::OPERAND_REG_IMM_V2BF16: 345 case AMDGPU::OPERAND_REG_IMM_V2INT16: 346 case AMDGPU::OPERAND_REG_INLINE_C_V2FP16: 347 case AMDGPU::OPERAND_REG_INLINE_C_V2BF16: 348 case AMDGPU::OPERAND_REG_INLINE_C_V2INT16: 349 break; 350 } 351 352 return true; 353 } 354 355 bool SIFoldOperandsImpl::tryFoldImmWithOpSel(FoldCandidate &Fold) const { 356 MachineInstr *MI = Fold.UseMI; 357 MachineOperand &Old = MI->getOperand(Fold.UseOpNo); 358 unsigned Opcode = MI->getOpcode(); 359 int OpNo = MI->getOperandNo(&Old); 360 uint8_t OpType = TII->get(Opcode).operands()[OpNo].OperandType; 361 362 // If the literal can be inlined as-is, apply it and short-circuit the 363 // tests below. The main motivation for this is to avoid unintuitive 364 // uses of opsel. 365 if (AMDGPU::isInlinableLiteralV216(Fold.ImmToFold, OpType)) { 366 Old.ChangeToImmediate(Fold.ImmToFold); 367 return true; 368 } 369 370 // Refer to op_sel/op_sel_hi and check if we can change the immediate and 371 // op_sel in a way that allows an inline constant. 372 int ModIdx = -1; 373 unsigned SrcIdx = ~0; 374 if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0)) { 375 ModIdx = AMDGPU::OpName::src0_modifiers; 376 SrcIdx = 0; 377 } else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1)) { 378 ModIdx = AMDGPU::OpName::src1_modifiers; 379 SrcIdx = 1; 380 } else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2)) { 381 ModIdx = AMDGPU::OpName::src2_modifiers; 382 SrcIdx = 2; 383 } 384 assert(ModIdx != -1); 385 ModIdx = AMDGPU::getNamedOperandIdx(Opcode, ModIdx); 386 MachineOperand &Mod = MI->getOperand(ModIdx); 387 unsigned ModVal = Mod.getImm(); 388 389 uint16_t ImmLo = static_cast<uint16_t>( 390 Fold.ImmToFold >> (ModVal & SISrcMods::OP_SEL_0 ? 16 : 0)); 391 uint16_t ImmHi = static_cast<uint16_t>( 392 Fold.ImmToFold >> (ModVal & SISrcMods::OP_SEL_1 ? 16 : 0)); 393 uint32_t Imm = (static_cast<uint32_t>(ImmHi) << 16) | ImmLo; 394 unsigned NewModVal = ModVal & ~(SISrcMods::OP_SEL_0 | SISrcMods::OP_SEL_1); 395 396 // Helper function that attempts to inline the given value with a newly 397 // chosen opsel pattern. 398 auto tryFoldToInline = [&](uint32_t Imm) -> bool { 399 if (AMDGPU::isInlinableLiteralV216(Imm, OpType)) { 400 Mod.setImm(NewModVal | SISrcMods::OP_SEL_1); 401 Old.ChangeToImmediate(Imm); 402 return true; 403 } 404 405 // Try to shuffle the halves around and leverage opsel to get an inline 406 // constant. 407 uint16_t Lo = static_cast<uint16_t>(Imm); 408 uint16_t Hi = static_cast<uint16_t>(Imm >> 16); 409 if (Lo == Hi) { 410 if (AMDGPU::isInlinableLiteralV216(Lo, OpType)) { 411 Mod.setImm(NewModVal); 412 Old.ChangeToImmediate(Lo); 413 return true; 414 } 415 416 if (static_cast<int16_t>(Lo) < 0) { 417 int32_t SExt = static_cast<int16_t>(Lo); 418 if (AMDGPU::isInlinableLiteralV216(SExt, OpType)) { 419 Mod.setImm(NewModVal); 420 Old.ChangeToImmediate(SExt); 421 return true; 422 } 423 } 424 425 // This check is only useful for integer instructions 426 if (OpType == AMDGPU::OPERAND_REG_IMM_V2INT16 || 427 OpType == AMDGPU::OPERAND_REG_INLINE_AC_V2INT16) { 428 if (AMDGPU::isInlinableLiteralV216(Lo << 16, OpType)) { 429 Mod.setImm(NewModVal | SISrcMods::OP_SEL_0 | SISrcMods::OP_SEL_1); 430 Old.ChangeToImmediate(static_cast<uint32_t>(Lo) << 16); 431 return true; 432 } 433 } 434 } else { 435 uint32_t Swapped = (static_cast<uint32_t>(Lo) << 16) | Hi; 436 if (AMDGPU::isInlinableLiteralV216(Swapped, OpType)) { 437 Mod.setImm(NewModVal | SISrcMods::OP_SEL_0); 438 Old.ChangeToImmediate(Swapped); 439 return true; 440 } 441 } 442 443 return false; 444 }; 445 446 if (tryFoldToInline(Imm)) 447 return true; 448 449 // Replace integer addition by subtraction and vice versa if it allows 450 // folding the immediate to an inline constant. 451 // 452 // We should only ever get here for SrcIdx == 1 due to canonicalization 453 // earlier in the pipeline, but we double-check here to be safe / fully 454 // general. 455 bool IsUAdd = Opcode == AMDGPU::V_PK_ADD_U16; 456 bool IsUSub = Opcode == AMDGPU::V_PK_SUB_U16; 457 if (SrcIdx == 1 && (IsUAdd || IsUSub)) { 458 unsigned ClampIdx = 459 AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::clamp); 460 bool Clamp = MI->getOperand(ClampIdx).getImm() != 0; 461 462 if (!Clamp) { 463 uint16_t NegLo = -static_cast<uint16_t>(Imm); 464 uint16_t NegHi = -static_cast<uint16_t>(Imm >> 16); 465 uint32_t NegImm = (static_cast<uint32_t>(NegHi) << 16) | NegLo; 466 467 if (tryFoldToInline(NegImm)) { 468 unsigned NegOpcode = 469 IsUAdd ? AMDGPU::V_PK_SUB_U16 : AMDGPU::V_PK_ADD_U16; 470 MI->setDesc(TII->get(NegOpcode)); 471 return true; 472 } 473 } 474 } 475 476 return false; 477 } 478 479 bool SIFoldOperandsImpl::updateOperand(FoldCandidate &Fold) const { 480 MachineInstr *MI = Fold.UseMI; 481 MachineOperand &Old = MI->getOperand(Fold.UseOpNo); 482 assert(Old.isReg()); 483 484 if (Fold.isImm() && canUseImmWithOpSel(Fold)) { 485 if (tryFoldImmWithOpSel(Fold)) 486 return true; 487 488 // We can't represent the candidate as an inline constant. Try as a literal 489 // with the original opsel, checking constant bus limitations. 490 MachineOperand New = MachineOperand::CreateImm(Fold.ImmToFold); 491 int OpNo = MI->getOperandNo(&Old); 492 if (!TII->isOperandLegal(*MI, OpNo, &New)) 493 return false; 494 Old.ChangeToImmediate(Fold.ImmToFold); 495 return true; 496 } 497 498 if ((Fold.isImm() || Fold.isFI() || Fold.isGlobal()) && Fold.needsShrink()) { 499 MachineBasicBlock *MBB = MI->getParent(); 500 auto Liveness = MBB->computeRegisterLiveness(TRI, AMDGPU::VCC, MI, 16); 501 if (Liveness != MachineBasicBlock::LQR_Dead) { 502 LLVM_DEBUG(dbgs() << "Not shrinking " << MI << " due to vcc liveness\n"); 503 return false; 504 } 505 506 int Op32 = Fold.ShrinkOpcode; 507 MachineOperand &Dst0 = MI->getOperand(0); 508 MachineOperand &Dst1 = MI->getOperand(1); 509 assert(Dst0.isDef() && Dst1.isDef()); 510 511 bool HaveNonDbgCarryUse = !MRI->use_nodbg_empty(Dst1.getReg()); 512 513 const TargetRegisterClass *Dst0RC = MRI->getRegClass(Dst0.getReg()); 514 Register NewReg0 = MRI->createVirtualRegister(Dst0RC); 515 516 MachineInstr *Inst32 = TII->buildShrunkInst(*MI, Op32); 517 518 if (HaveNonDbgCarryUse) { 519 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(AMDGPU::COPY), 520 Dst1.getReg()) 521 .addReg(AMDGPU::VCC, RegState::Kill); 522 } 523 524 // Keep the old instruction around to avoid breaking iterators, but 525 // replace it with a dummy instruction to remove uses. 526 // 527 // FIXME: We should not invert how this pass looks at operands to avoid 528 // this. Should track set of foldable movs instead of looking for uses 529 // when looking at a use. 530 Dst0.setReg(NewReg0); 531 for (unsigned I = MI->getNumOperands() - 1; I > 0; --I) 532 MI->removeOperand(I); 533 MI->setDesc(TII->get(AMDGPU::IMPLICIT_DEF)); 534 535 if (Fold.Commuted) 536 TII->commuteInstruction(*Inst32, false); 537 return true; 538 } 539 540 assert(!Fold.needsShrink() && "not handled"); 541 542 if (Fold.isImm()) { 543 if (Old.isTied()) { 544 int NewMFMAOpc = AMDGPU::getMFMAEarlyClobberOp(MI->getOpcode()); 545 if (NewMFMAOpc == -1) 546 return false; 547 MI->setDesc(TII->get(NewMFMAOpc)); 548 MI->untieRegOperand(0); 549 } 550 Old.ChangeToImmediate(Fold.ImmToFold); 551 return true; 552 } 553 554 if (Fold.isGlobal()) { 555 Old.ChangeToGA(Fold.OpToFold->getGlobal(), Fold.OpToFold->getOffset(), 556 Fold.OpToFold->getTargetFlags()); 557 return true; 558 } 559 560 if (Fold.isFI()) { 561 Old.ChangeToFrameIndex(Fold.FrameIndexToFold); 562 return true; 563 } 564 565 MachineOperand *New = Fold.OpToFold; 566 Old.substVirtReg(New->getReg(), New->getSubReg(), *TRI); 567 Old.setIsUndef(New->isUndef()); 568 return true; 569 } 570 571 static bool isUseMIInFoldList(ArrayRef<FoldCandidate> FoldList, 572 const MachineInstr *MI) { 573 return any_of(FoldList, [&](const auto &C) { return C.UseMI == MI; }); 574 } 575 576 static void appendFoldCandidate(SmallVectorImpl<FoldCandidate> &FoldList, 577 MachineInstr *MI, unsigned OpNo, 578 MachineOperand *FoldOp, bool Commuted = false, 579 int ShrinkOp = -1) { 580 // Skip additional folding on the same operand. 581 for (FoldCandidate &Fold : FoldList) 582 if (Fold.UseMI == MI && Fold.UseOpNo == OpNo) 583 return; 584 LLVM_DEBUG(dbgs() << "Append " << (Commuted ? "commuted" : "normal") 585 << " operand " << OpNo << "\n " << *MI); 586 FoldList.emplace_back(MI, OpNo, FoldOp, Commuted, ShrinkOp); 587 } 588 589 bool SIFoldOperandsImpl::tryAddToFoldList( 590 SmallVectorImpl<FoldCandidate> &FoldList, MachineInstr *MI, unsigned OpNo, 591 MachineOperand *OpToFold) const { 592 const unsigned Opc = MI->getOpcode(); 593 594 auto tryToFoldAsFMAAKorMK = [&]() { 595 if (!OpToFold->isImm()) 596 return false; 597 598 const bool TryAK = OpNo == 3; 599 const unsigned NewOpc = TryAK ? AMDGPU::S_FMAAK_F32 : AMDGPU::S_FMAMK_F32; 600 MI->setDesc(TII->get(NewOpc)); 601 602 // We have to fold into operand which would be Imm not into OpNo. 603 bool FoldAsFMAAKorMK = 604 tryAddToFoldList(FoldList, MI, TryAK ? 3 : 2, OpToFold); 605 if (FoldAsFMAAKorMK) { 606 // Untie Src2 of fmac. 607 MI->untieRegOperand(3); 608 // For fmamk swap operands 1 and 2 if OpToFold was meant for operand 1. 609 if (OpNo == 1) { 610 MachineOperand &Op1 = MI->getOperand(1); 611 MachineOperand &Op2 = MI->getOperand(2); 612 Register OldReg = Op1.getReg(); 613 // Operand 2 might be an inlinable constant 614 if (Op2.isImm()) { 615 Op1.ChangeToImmediate(Op2.getImm()); 616 Op2.ChangeToRegister(OldReg, false); 617 } else { 618 Op1.setReg(Op2.getReg()); 619 Op2.setReg(OldReg); 620 } 621 } 622 return true; 623 } 624 MI->setDesc(TII->get(Opc)); 625 return false; 626 }; 627 628 bool IsLegal = TII->isOperandLegal(*MI, OpNo, OpToFold); 629 if (!IsLegal && OpToFold->isImm()) { 630 FoldCandidate Fold(MI, OpNo, OpToFold); 631 IsLegal = canUseImmWithOpSel(Fold); 632 } 633 634 if (!IsLegal) { 635 // Special case for v_mac_{f16, f32}_e64 if we are trying to fold into src2 636 unsigned NewOpc = macToMad(Opc); 637 if (NewOpc != AMDGPU::INSTRUCTION_LIST_END) { 638 // Check if changing this to a v_mad_{f16, f32} instruction will allow us 639 // to fold the operand. 640 MI->setDesc(TII->get(NewOpc)); 641 bool AddOpSel = !AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel) && 642 AMDGPU::hasNamedOperand(NewOpc, AMDGPU::OpName::op_sel); 643 if (AddOpSel) 644 MI->addOperand(MachineOperand::CreateImm(0)); 645 bool FoldAsMAD = tryAddToFoldList(FoldList, MI, OpNo, OpToFold); 646 if (FoldAsMAD) { 647 MI->untieRegOperand(OpNo); 648 return true; 649 } 650 if (AddOpSel) 651 MI->removeOperand(MI->getNumExplicitOperands() - 1); 652 MI->setDesc(TII->get(Opc)); 653 } 654 655 // Special case for s_fmac_f32 if we are trying to fold into Src2. 656 // By transforming into fmaak we can untie Src2 and make folding legal. 657 if (Opc == AMDGPU::S_FMAC_F32 && OpNo == 3) { 658 if (tryToFoldAsFMAAKorMK()) 659 return true; 660 } 661 662 // Special case for s_setreg_b32 663 if (OpToFold->isImm()) { 664 unsigned ImmOpc = 0; 665 if (Opc == AMDGPU::S_SETREG_B32) 666 ImmOpc = AMDGPU::S_SETREG_IMM32_B32; 667 else if (Opc == AMDGPU::S_SETREG_B32_mode) 668 ImmOpc = AMDGPU::S_SETREG_IMM32_B32_mode; 669 if (ImmOpc) { 670 MI->setDesc(TII->get(ImmOpc)); 671 appendFoldCandidate(FoldList, MI, OpNo, OpToFold); 672 return true; 673 } 674 } 675 676 // If we are already folding into another operand of MI, then 677 // we can't commute the instruction, otherwise we risk making the 678 // other fold illegal. 679 if (isUseMIInFoldList(FoldList, MI)) 680 return false; 681 682 // Operand is not legal, so try to commute the instruction to 683 // see if this makes it possible to fold. 684 unsigned CommuteOpNo = TargetInstrInfo::CommuteAnyOperandIndex; 685 bool CanCommute = TII->findCommutedOpIndices(*MI, OpNo, CommuteOpNo); 686 if (!CanCommute) 687 return false; 688 689 // One of operands might be an Imm operand, and OpNo may refer to it after 690 // the call of commuteInstruction() below. Such situations are avoided 691 // here explicitly as OpNo must be a register operand to be a candidate 692 // for memory folding. 693 if (!MI->getOperand(OpNo).isReg() || !MI->getOperand(CommuteOpNo).isReg()) 694 return false; 695 696 if (!TII->commuteInstruction(*MI, false, OpNo, CommuteOpNo)) 697 return false; 698 699 int Op32 = -1; 700 if (!TII->isOperandLegal(*MI, CommuteOpNo, OpToFold)) { 701 if ((Opc != AMDGPU::V_ADD_CO_U32_e64 && Opc != AMDGPU::V_SUB_CO_U32_e64 && 702 Opc != AMDGPU::V_SUBREV_CO_U32_e64) || // FIXME 703 (!OpToFold->isImm() && !OpToFold->isFI() && !OpToFold->isGlobal())) { 704 TII->commuteInstruction(*MI, false, OpNo, CommuteOpNo); 705 return false; 706 } 707 708 // Verify the other operand is a VGPR, otherwise we would violate the 709 // constant bus restriction. 710 MachineOperand &OtherOp = MI->getOperand(OpNo); 711 if (!OtherOp.isReg() || 712 !TII->getRegisterInfo().isVGPR(*MRI, OtherOp.getReg())) 713 return false; 714 715 assert(MI->getOperand(1).isDef()); 716 717 // Make sure to get the 32-bit version of the commuted opcode. 718 unsigned MaybeCommutedOpc = MI->getOpcode(); 719 Op32 = AMDGPU::getVOPe32(MaybeCommutedOpc); 720 } 721 722 appendFoldCandidate(FoldList, MI, CommuteOpNo, OpToFold, true, Op32); 723 return true; 724 } 725 726 // Inlineable constant might have been folded into Imm operand of fmaak or 727 // fmamk and we are trying to fold a non-inlinable constant. 728 if ((Opc == AMDGPU::S_FMAAK_F32 || Opc == AMDGPU::S_FMAMK_F32) && 729 !OpToFold->isReg() && !TII->isInlineConstant(*OpToFold)) { 730 unsigned ImmIdx = Opc == AMDGPU::S_FMAAK_F32 ? 3 : 2; 731 MachineOperand &OpImm = MI->getOperand(ImmIdx); 732 if (!OpImm.isReg() && 733 TII->isInlineConstant(*MI, MI->getOperand(OpNo), OpImm)) 734 return tryToFoldAsFMAAKorMK(); 735 } 736 737 // Special case for s_fmac_f32 if we are trying to fold into Src0 or Src1. 738 // By changing into fmamk we can untie Src2. 739 // If folding for Src0 happens first and it is identical operand to Src1 we 740 // should avoid transforming into fmamk which requires commuting as it would 741 // cause folding into Src1 to fail later on due to wrong OpNo used. 742 if (Opc == AMDGPU::S_FMAC_F32 && 743 (OpNo != 1 || !MI->getOperand(1).isIdenticalTo(MI->getOperand(2)))) { 744 if (tryToFoldAsFMAAKorMK()) 745 return true; 746 } 747 748 // Check the case where we might introduce a second constant operand to a 749 // scalar instruction 750 if (TII->isSALU(MI->getOpcode())) { 751 const MCInstrDesc &InstDesc = MI->getDesc(); 752 const MCOperandInfo &OpInfo = InstDesc.operands()[OpNo]; 753 754 // Fine if the operand can be encoded as an inline constant 755 if (!OpToFold->isReg() && !TII->isInlineConstant(*OpToFold, OpInfo)) { 756 // Otherwise check for another constant 757 for (unsigned i = 0, e = InstDesc.getNumOperands(); i != e; ++i) { 758 auto &Op = MI->getOperand(i); 759 if (OpNo != i && !Op.isReg() && 760 !TII->isInlineConstant(Op, InstDesc.operands()[i])) 761 return false; 762 } 763 } 764 } 765 766 appendFoldCandidate(FoldList, MI, OpNo, OpToFold); 767 return true; 768 } 769 770 bool SIFoldOperandsImpl::isUseSafeToFold(const MachineInstr &MI, 771 const MachineOperand &UseMO) const { 772 // Operands of SDWA instructions must be registers. 773 return !TII->isSDWA(MI); 774 } 775 776 // Find a def of the UseReg, check if it is a reg_sequence and find initializers 777 // for each subreg, tracking it to foldable inline immediate if possible. 778 // Returns true on success. 779 bool SIFoldOperandsImpl::getRegSeqInit( 780 SmallVectorImpl<std::pair<MachineOperand *, unsigned>> &Defs, 781 Register UseReg, uint8_t OpTy) const { 782 MachineInstr *Def = MRI->getVRegDef(UseReg); 783 if (!Def || !Def->isRegSequence()) 784 return false; 785 786 for (unsigned I = 1, E = Def->getNumExplicitOperands(); I < E; I += 2) { 787 MachineOperand *Sub = &Def->getOperand(I); 788 assert(Sub->isReg()); 789 790 for (MachineInstr *SubDef = MRI->getVRegDef(Sub->getReg()); 791 SubDef && Sub->isReg() && Sub->getReg().isVirtual() && 792 !Sub->getSubReg() && TII->isFoldableCopy(*SubDef); 793 SubDef = MRI->getVRegDef(Sub->getReg())) { 794 MachineOperand *Op = &SubDef->getOperand(1); 795 if (Op->isImm()) { 796 if (TII->isInlineConstant(*Op, OpTy)) 797 Sub = Op; 798 break; 799 } 800 if (!Op->isReg() || Op->getReg().isPhysical()) 801 break; 802 Sub = Op; 803 } 804 805 Defs.emplace_back(Sub, Def->getOperand(I + 1).getImm()); 806 } 807 808 return true; 809 } 810 811 bool SIFoldOperandsImpl::tryToFoldACImm( 812 const MachineOperand &OpToFold, MachineInstr *UseMI, unsigned UseOpIdx, 813 SmallVectorImpl<FoldCandidate> &FoldList) const { 814 const MCInstrDesc &Desc = UseMI->getDesc(); 815 if (UseOpIdx >= Desc.getNumOperands()) 816 return false; 817 818 if (!AMDGPU::isSISrcInlinableOperand(Desc, UseOpIdx)) 819 return false; 820 821 uint8_t OpTy = Desc.operands()[UseOpIdx].OperandType; 822 if (OpToFold.isImm() && TII->isInlineConstant(OpToFold, OpTy) && 823 TII->isOperandLegal(*UseMI, UseOpIdx, &OpToFold)) { 824 UseMI->getOperand(UseOpIdx).ChangeToImmediate(OpToFold.getImm()); 825 return true; 826 } 827 828 if (!OpToFold.isReg()) 829 return false; 830 831 Register UseReg = OpToFold.getReg(); 832 if (!UseReg.isVirtual()) 833 return false; 834 835 if (isUseMIInFoldList(FoldList, UseMI)) 836 return false; 837 838 // Maybe it is just a COPY of an immediate itself. 839 MachineInstr *Def = MRI->getVRegDef(UseReg); 840 MachineOperand &UseOp = UseMI->getOperand(UseOpIdx); 841 if (!UseOp.getSubReg() && Def && TII->isFoldableCopy(*Def)) { 842 MachineOperand &DefOp = Def->getOperand(1); 843 if (DefOp.isImm() && TII->isInlineConstant(DefOp, OpTy) && 844 TII->isOperandLegal(*UseMI, UseOpIdx, &DefOp)) { 845 UseMI->getOperand(UseOpIdx).ChangeToImmediate(DefOp.getImm()); 846 return true; 847 } 848 } 849 850 SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs; 851 if (!getRegSeqInit(Defs, UseReg, OpTy)) 852 return false; 853 854 int32_t Imm; 855 for (unsigned I = 0, E = Defs.size(); I != E; ++I) { 856 const MachineOperand *Op = Defs[I].first; 857 if (!Op->isImm()) 858 return false; 859 860 auto SubImm = Op->getImm(); 861 if (!I) { 862 Imm = SubImm; 863 if (!TII->isInlineConstant(*Op, OpTy) || 864 !TII->isOperandLegal(*UseMI, UseOpIdx, Op)) 865 return false; 866 867 continue; 868 } 869 if (Imm != SubImm) 870 return false; // Can only fold splat constants 871 } 872 873 appendFoldCandidate(FoldList, UseMI, UseOpIdx, Defs[0].first); 874 return true; 875 } 876 877 void SIFoldOperandsImpl::foldOperand( 878 MachineOperand &OpToFold, MachineInstr *UseMI, int UseOpIdx, 879 SmallVectorImpl<FoldCandidate> &FoldList, 880 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const { 881 const MachineOperand *UseOp = &UseMI->getOperand(UseOpIdx); 882 883 if (!isUseSafeToFold(*UseMI, *UseOp)) 884 return; 885 886 // FIXME: Fold operands with subregs. 887 if (UseOp->isReg() && OpToFold.isReg() && 888 (UseOp->isImplicit() || UseOp->getSubReg() != AMDGPU::NoSubRegister)) 889 return; 890 891 // Special case for REG_SEQUENCE: We can't fold literals into 892 // REG_SEQUENCE instructions, so we have to fold them into the 893 // uses of REG_SEQUENCE. 894 if (UseMI->isRegSequence()) { 895 Register RegSeqDstReg = UseMI->getOperand(0).getReg(); 896 unsigned RegSeqDstSubReg = UseMI->getOperand(UseOpIdx + 1).getImm(); 897 898 // Grab the use operands first 899 SmallVector<MachineOperand *, 4> UsesToProcess; 900 for (auto &Use : MRI->use_nodbg_operands(RegSeqDstReg)) 901 UsesToProcess.push_back(&Use); 902 for (auto *RSUse : UsesToProcess) { 903 MachineInstr *RSUseMI = RSUse->getParent(); 904 905 if (tryToFoldACImm(UseMI->getOperand(0), RSUseMI, 906 RSUseMI->getOperandNo(RSUse), FoldList)) 907 continue; 908 909 if (RSUse->getSubReg() != RegSeqDstSubReg) 910 continue; 911 912 foldOperand(OpToFold, RSUseMI, RSUseMI->getOperandNo(RSUse), FoldList, 913 CopiesToReplace); 914 } 915 return; 916 } 917 918 if (tryToFoldACImm(OpToFold, UseMI, UseOpIdx, FoldList)) 919 return; 920 921 if (frameIndexMayFold(*UseMI, UseOpIdx, OpToFold)) { 922 // Verify that this is a stack access. 923 // FIXME: Should probably use stack pseudos before frame lowering. 924 925 if (TII->isMUBUF(*UseMI)) { 926 if (TII->getNamedOperand(*UseMI, AMDGPU::OpName::srsrc)->getReg() != 927 MFI->getScratchRSrcReg()) 928 return; 929 930 // Ensure this is either relative to the current frame or the current 931 // wave. 932 MachineOperand &SOff = 933 *TII->getNamedOperand(*UseMI, AMDGPU::OpName::soffset); 934 if (!SOff.isImm() || SOff.getImm() != 0) 935 return; 936 } 937 938 // A frame index will resolve to a positive constant, so it should always be 939 // safe to fold the addressing mode, even pre-GFX9. 940 UseMI->getOperand(UseOpIdx).ChangeToFrameIndex(OpToFold.getIndex()); 941 942 const unsigned Opc = UseMI->getOpcode(); 943 if (TII->isFLATScratch(*UseMI) && 944 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::vaddr) && 945 !AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::saddr)) { 946 unsigned NewOpc = AMDGPU::getFlatScratchInstSSfromSV(Opc); 947 UseMI->setDesc(TII->get(NewOpc)); 948 } 949 950 return; 951 } 952 953 bool FoldingImmLike = 954 OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal(); 955 956 if (FoldingImmLike && UseMI->isCopy()) { 957 Register DestReg = UseMI->getOperand(0).getReg(); 958 Register SrcReg = UseMI->getOperand(1).getReg(); 959 assert(SrcReg.isVirtual()); 960 961 const TargetRegisterClass *SrcRC = MRI->getRegClass(SrcReg); 962 963 // Don't fold into a copy to a physical register with the same class. Doing 964 // so would interfere with the register coalescer's logic which would avoid 965 // redundant initializations. 966 if (DestReg.isPhysical() && SrcRC->contains(DestReg)) 967 return; 968 969 const TargetRegisterClass *DestRC = TRI->getRegClassForReg(*MRI, DestReg); 970 if (!DestReg.isPhysical()) { 971 if (DestRC == &AMDGPU::AGPR_32RegClass && 972 TII->isInlineConstant(OpToFold, AMDGPU::OPERAND_REG_INLINE_C_INT32)) { 973 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64)); 974 UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm()); 975 CopiesToReplace.push_back(UseMI); 976 return; 977 } 978 } 979 980 // In order to fold immediates into copies, we need to change the 981 // copy to a MOV. 982 983 unsigned MovOp = TII->getMovOpcode(DestRC); 984 if (MovOp == AMDGPU::COPY) 985 return; 986 987 MachineInstr::mop_iterator ImpOpI = UseMI->implicit_operands().begin(); 988 MachineInstr::mop_iterator ImpOpE = UseMI->implicit_operands().end(); 989 while (ImpOpI != ImpOpE) { 990 MachineInstr::mop_iterator Tmp = ImpOpI; 991 ImpOpI++; 992 UseMI->removeOperand(UseMI->getOperandNo(Tmp)); 993 } 994 UseMI->setDesc(TII->get(MovOp)); 995 996 if (MovOp == AMDGPU::V_MOV_B16_t16_e64) { 997 const auto &SrcOp = UseMI->getOperand(UseOpIdx); 998 MachineOperand NewSrcOp(SrcOp); 999 MachineFunction *MF = UseMI->getParent()->getParent(); 1000 UseMI->removeOperand(1); 1001 UseMI->addOperand(*MF, MachineOperand::CreateImm(0)); // src0_modifiers 1002 UseMI->addOperand(NewSrcOp); // src0 1003 UseMI->addOperand(*MF, MachineOperand::CreateImm(0)); // op_sel 1004 UseOpIdx = 2; 1005 UseOp = &UseMI->getOperand(UseOpIdx); 1006 } 1007 CopiesToReplace.push_back(UseMI); 1008 } else { 1009 if (UseMI->isCopy() && OpToFold.isReg() && 1010 UseMI->getOperand(0).getReg().isVirtual() && 1011 !UseMI->getOperand(1).getSubReg()) { 1012 LLVM_DEBUG(dbgs() << "Folding " << OpToFold << "\n into " << *UseMI); 1013 unsigned Size = TII->getOpSize(*UseMI, 1); 1014 Register UseReg = OpToFold.getReg(); 1015 UseMI->getOperand(1).setReg(UseReg); 1016 UseMI->getOperand(1).setSubReg(OpToFold.getSubReg()); 1017 UseMI->getOperand(1).setIsKill(false); 1018 CopiesToReplace.push_back(UseMI); 1019 OpToFold.setIsKill(false); 1020 1021 // Remove kill flags as kills may now be out of order with uses. 1022 MRI->clearKillFlags(OpToFold.getReg()); 1023 1024 // That is very tricky to store a value into an AGPR. v_accvgpr_write_b32 1025 // can only accept VGPR or inline immediate. Recreate a reg_sequence with 1026 // its initializers right here, so we will rematerialize immediates and 1027 // avoid copies via different reg classes. 1028 SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs; 1029 if (Size > 4 && TRI->isAGPR(*MRI, UseMI->getOperand(0).getReg()) && 1030 getRegSeqInit(Defs, UseReg, AMDGPU::OPERAND_REG_INLINE_C_INT32)) { 1031 const DebugLoc &DL = UseMI->getDebugLoc(); 1032 MachineBasicBlock &MBB = *UseMI->getParent(); 1033 1034 UseMI->setDesc(TII->get(AMDGPU::REG_SEQUENCE)); 1035 for (unsigned I = UseMI->getNumOperands() - 1; I > 0; --I) 1036 UseMI->removeOperand(I); 1037 1038 MachineInstrBuilder B(*MBB.getParent(), UseMI); 1039 DenseMap<TargetInstrInfo::RegSubRegPair, Register> VGPRCopies; 1040 SmallSetVector<TargetInstrInfo::RegSubRegPair, 32> SeenAGPRs; 1041 for (unsigned I = 0; I < Size / 4; ++I) { 1042 MachineOperand *Def = Defs[I].first; 1043 TargetInstrInfo::RegSubRegPair CopyToVGPR; 1044 if (Def->isImm() && 1045 TII->isInlineConstant(*Def, AMDGPU::OPERAND_REG_INLINE_C_INT32)) { 1046 int64_t Imm = Def->getImm(); 1047 1048 auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass); 1049 BuildMI(MBB, UseMI, DL, 1050 TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64), Tmp).addImm(Imm); 1051 B.addReg(Tmp); 1052 } else if (Def->isReg() && TRI->isAGPR(*MRI, Def->getReg())) { 1053 auto Src = getRegSubRegPair(*Def); 1054 Def->setIsKill(false); 1055 if (!SeenAGPRs.insert(Src)) { 1056 // We cannot build a reg_sequence out of the same registers, they 1057 // must be copied. Better do it here before copyPhysReg() created 1058 // several reads to do the AGPR->VGPR->AGPR copy. 1059 CopyToVGPR = Src; 1060 } else { 1061 B.addReg(Src.Reg, Def->isUndef() ? RegState::Undef : 0, 1062 Src.SubReg); 1063 } 1064 } else { 1065 assert(Def->isReg()); 1066 Def->setIsKill(false); 1067 auto Src = getRegSubRegPair(*Def); 1068 1069 // Direct copy from SGPR to AGPR is not possible. To avoid creation 1070 // of exploded copies SGPR->VGPR->AGPR in the copyPhysReg() later, 1071 // create a copy here and track if we already have such a copy. 1072 if (TRI->isSGPRReg(*MRI, Src.Reg)) { 1073 CopyToVGPR = Src; 1074 } else { 1075 auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass); 1076 BuildMI(MBB, UseMI, DL, TII->get(AMDGPU::COPY), Tmp).add(*Def); 1077 B.addReg(Tmp); 1078 } 1079 } 1080 1081 if (CopyToVGPR.Reg) { 1082 Register Vgpr; 1083 if (VGPRCopies.count(CopyToVGPR)) { 1084 Vgpr = VGPRCopies[CopyToVGPR]; 1085 } else { 1086 Vgpr = MRI->createVirtualRegister(&AMDGPU::VGPR_32RegClass); 1087 BuildMI(MBB, UseMI, DL, TII->get(AMDGPU::COPY), Vgpr).add(*Def); 1088 VGPRCopies[CopyToVGPR] = Vgpr; 1089 } 1090 auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass); 1091 BuildMI(MBB, UseMI, DL, 1092 TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64), Tmp).addReg(Vgpr); 1093 B.addReg(Tmp); 1094 } 1095 1096 B.addImm(Defs[I].second); 1097 } 1098 LLVM_DEBUG(dbgs() << "Folded " << *UseMI); 1099 } 1100 1101 return; 1102 } 1103 1104 unsigned UseOpc = UseMI->getOpcode(); 1105 if (UseOpc == AMDGPU::V_READFIRSTLANE_B32 || 1106 (UseOpc == AMDGPU::V_READLANE_B32 && 1107 (int)UseOpIdx == 1108 AMDGPU::getNamedOperandIdx(UseOpc, AMDGPU::OpName::src0))) { 1109 // %vgpr = V_MOV_B32 imm 1110 // %sgpr = V_READFIRSTLANE_B32 %vgpr 1111 // => 1112 // %sgpr = S_MOV_B32 imm 1113 if (FoldingImmLike) { 1114 if (execMayBeModifiedBeforeUse(*MRI, 1115 UseMI->getOperand(UseOpIdx).getReg(), 1116 *OpToFold.getParent(), 1117 *UseMI)) 1118 return; 1119 1120 UseMI->setDesc(TII->get(AMDGPU::S_MOV_B32)); 1121 1122 if (OpToFold.isImm()) 1123 UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm()); 1124 else 1125 UseMI->getOperand(1).ChangeToFrameIndex(OpToFold.getIndex()); 1126 UseMI->removeOperand(2); // Remove exec read (or src1 for readlane) 1127 return; 1128 } 1129 1130 if (OpToFold.isReg() && TRI->isSGPRReg(*MRI, OpToFold.getReg())) { 1131 if (execMayBeModifiedBeforeUse(*MRI, 1132 UseMI->getOperand(UseOpIdx).getReg(), 1133 *OpToFold.getParent(), 1134 *UseMI)) 1135 return; 1136 1137 // %vgpr = COPY %sgpr0 1138 // %sgpr1 = V_READFIRSTLANE_B32 %vgpr 1139 // => 1140 // %sgpr1 = COPY %sgpr0 1141 UseMI->setDesc(TII->get(AMDGPU::COPY)); 1142 UseMI->getOperand(1).setReg(OpToFold.getReg()); 1143 UseMI->getOperand(1).setSubReg(OpToFold.getSubReg()); 1144 UseMI->getOperand(1).setIsKill(false); 1145 UseMI->removeOperand(2); // Remove exec read (or src1 for readlane) 1146 return; 1147 } 1148 } 1149 1150 const MCInstrDesc &UseDesc = UseMI->getDesc(); 1151 1152 // Don't fold into target independent nodes. Target independent opcodes 1153 // don't have defined register classes. 1154 if (UseDesc.isVariadic() || UseOp->isImplicit() || 1155 UseDesc.operands()[UseOpIdx].RegClass == -1) 1156 return; 1157 } 1158 1159 if (!FoldingImmLike) { 1160 if (OpToFold.isReg() && ST->needsAlignedVGPRs()) { 1161 // Don't fold if OpToFold doesn't hold an aligned register. 1162 const TargetRegisterClass *RC = 1163 TRI->getRegClassForReg(*MRI, OpToFold.getReg()); 1164 assert(RC); 1165 if (TRI->hasVectorRegisters(RC) && OpToFold.getSubReg()) { 1166 unsigned SubReg = OpToFold.getSubReg(); 1167 if (const TargetRegisterClass *SubRC = 1168 TRI->getSubRegisterClass(RC, SubReg)) 1169 RC = SubRC; 1170 } 1171 1172 if (!RC || !TRI->isProperlyAlignedRC(*RC)) 1173 return; 1174 } 1175 1176 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold); 1177 1178 // FIXME: We could try to change the instruction from 64-bit to 32-bit 1179 // to enable more folding opportunities. The shrink operands pass 1180 // already does this. 1181 return; 1182 } 1183 1184 1185 const MCInstrDesc &FoldDesc = OpToFold.getParent()->getDesc(); 1186 const TargetRegisterClass *FoldRC = 1187 TRI->getRegClass(FoldDesc.operands()[0].RegClass); 1188 1189 // Split 64-bit constants into 32-bits for folding. 1190 if (UseOp->getSubReg() && AMDGPU::getRegBitWidth(*FoldRC) == 64) { 1191 Register UseReg = UseOp->getReg(); 1192 const TargetRegisterClass *UseRC = MRI->getRegClass(UseReg); 1193 if (AMDGPU::getRegBitWidth(*UseRC) != 64) 1194 return; 1195 1196 APInt Imm(64, OpToFold.getImm()); 1197 if (UseOp->getSubReg() == AMDGPU::sub0) { 1198 Imm = Imm.getLoBits(32); 1199 } else { 1200 assert(UseOp->getSubReg() == AMDGPU::sub1); 1201 Imm = Imm.getHiBits(32); 1202 } 1203 1204 MachineOperand ImmOp = MachineOperand::CreateImm(Imm.getSExtValue()); 1205 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &ImmOp); 1206 return; 1207 } 1208 1209 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold); 1210 } 1211 1212 static bool evalBinaryInstruction(unsigned Opcode, int32_t &Result, 1213 uint32_t LHS, uint32_t RHS) { 1214 switch (Opcode) { 1215 case AMDGPU::V_AND_B32_e64: 1216 case AMDGPU::V_AND_B32_e32: 1217 case AMDGPU::S_AND_B32: 1218 Result = LHS & RHS; 1219 return true; 1220 case AMDGPU::V_OR_B32_e64: 1221 case AMDGPU::V_OR_B32_e32: 1222 case AMDGPU::S_OR_B32: 1223 Result = LHS | RHS; 1224 return true; 1225 case AMDGPU::V_XOR_B32_e64: 1226 case AMDGPU::V_XOR_B32_e32: 1227 case AMDGPU::S_XOR_B32: 1228 Result = LHS ^ RHS; 1229 return true; 1230 case AMDGPU::S_XNOR_B32: 1231 Result = ~(LHS ^ RHS); 1232 return true; 1233 case AMDGPU::S_NAND_B32: 1234 Result = ~(LHS & RHS); 1235 return true; 1236 case AMDGPU::S_NOR_B32: 1237 Result = ~(LHS | RHS); 1238 return true; 1239 case AMDGPU::S_ANDN2_B32: 1240 Result = LHS & ~RHS; 1241 return true; 1242 case AMDGPU::S_ORN2_B32: 1243 Result = LHS | ~RHS; 1244 return true; 1245 case AMDGPU::V_LSHL_B32_e64: 1246 case AMDGPU::V_LSHL_B32_e32: 1247 case AMDGPU::S_LSHL_B32: 1248 // The instruction ignores the high bits for out of bounds shifts. 1249 Result = LHS << (RHS & 31); 1250 return true; 1251 case AMDGPU::V_LSHLREV_B32_e64: 1252 case AMDGPU::V_LSHLREV_B32_e32: 1253 Result = RHS << (LHS & 31); 1254 return true; 1255 case AMDGPU::V_LSHR_B32_e64: 1256 case AMDGPU::V_LSHR_B32_e32: 1257 case AMDGPU::S_LSHR_B32: 1258 Result = LHS >> (RHS & 31); 1259 return true; 1260 case AMDGPU::V_LSHRREV_B32_e64: 1261 case AMDGPU::V_LSHRREV_B32_e32: 1262 Result = RHS >> (LHS & 31); 1263 return true; 1264 case AMDGPU::V_ASHR_I32_e64: 1265 case AMDGPU::V_ASHR_I32_e32: 1266 case AMDGPU::S_ASHR_I32: 1267 Result = static_cast<int32_t>(LHS) >> (RHS & 31); 1268 return true; 1269 case AMDGPU::V_ASHRREV_I32_e64: 1270 case AMDGPU::V_ASHRREV_I32_e32: 1271 Result = static_cast<int32_t>(RHS) >> (LHS & 31); 1272 return true; 1273 default: 1274 return false; 1275 } 1276 } 1277 1278 static unsigned getMovOpc(bool IsScalar) { 1279 return IsScalar ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32; 1280 } 1281 1282 static void mutateCopyOp(MachineInstr &MI, const MCInstrDesc &NewDesc) { 1283 MI.setDesc(NewDesc); 1284 1285 // Remove any leftover implicit operands from mutating the instruction. e.g. 1286 // if we replace an s_and_b32 with a copy, we don't need the implicit scc def 1287 // anymore. 1288 const MCInstrDesc &Desc = MI.getDesc(); 1289 unsigned NumOps = Desc.getNumOperands() + Desc.implicit_uses().size() + 1290 Desc.implicit_defs().size(); 1291 1292 for (unsigned I = MI.getNumOperands() - 1; I >= NumOps; --I) 1293 MI.removeOperand(I); 1294 } 1295 1296 MachineOperand * 1297 SIFoldOperandsImpl::getImmOrMaterializedImm(MachineOperand &Op) const { 1298 // If this has a subregister, it obviously is a register source. 1299 if (!Op.isReg() || Op.getSubReg() != AMDGPU::NoSubRegister || 1300 !Op.getReg().isVirtual()) 1301 return &Op; 1302 1303 MachineInstr *Def = MRI->getVRegDef(Op.getReg()); 1304 if (Def && Def->isMoveImmediate()) { 1305 MachineOperand &ImmSrc = Def->getOperand(1); 1306 if (ImmSrc.isImm()) 1307 return &ImmSrc; 1308 } 1309 1310 return &Op; 1311 } 1312 1313 // Try to simplify operations with a constant that may appear after instruction 1314 // selection. 1315 // TODO: See if a frame index with a fixed offset can fold. 1316 bool SIFoldOperandsImpl::tryConstantFoldOp(MachineInstr *MI) const { 1317 if (!MI->allImplicitDefsAreDead()) 1318 return false; 1319 1320 unsigned Opc = MI->getOpcode(); 1321 1322 int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0); 1323 if (Src0Idx == -1) 1324 return false; 1325 MachineOperand *Src0 = getImmOrMaterializedImm(MI->getOperand(Src0Idx)); 1326 1327 if ((Opc == AMDGPU::V_NOT_B32_e64 || Opc == AMDGPU::V_NOT_B32_e32 || 1328 Opc == AMDGPU::S_NOT_B32) && 1329 Src0->isImm()) { 1330 MI->getOperand(1).ChangeToImmediate(~Src0->getImm()); 1331 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_NOT_B32))); 1332 return true; 1333 } 1334 1335 int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1); 1336 if (Src1Idx == -1) 1337 return false; 1338 MachineOperand *Src1 = getImmOrMaterializedImm(MI->getOperand(Src1Idx)); 1339 1340 if (!Src0->isImm() && !Src1->isImm()) 1341 return false; 1342 1343 // and k0, k1 -> v_mov_b32 (k0 & k1) 1344 // or k0, k1 -> v_mov_b32 (k0 | k1) 1345 // xor k0, k1 -> v_mov_b32 (k0 ^ k1) 1346 if (Src0->isImm() && Src1->isImm()) { 1347 int32_t NewImm; 1348 if (!evalBinaryInstruction(Opc, NewImm, Src0->getImm(), Src1->getImm())) 1349 return false; 1350 1351 bool IsSGPR = TRI->isSGPRReg(*MRI, MI->getOperand(0).getReg()); 1352 1353 // Be careful to change the right operand, src0 may belong to a different 1354 // instruction. 1355 MI->getOperand(Src0Idx).ChangeToImmediate(NewImm); 1356 MI->removeOperand(Src1Idx); 1357 mutateCopyOp(*MI, TII->get(getMovOpc(IsSGPR))); 1358 return true; 1359 } 1360 1361 if (!MI->isCommutable()) 1362 return false; 1363 1364 if (Src0->isImm() && !Src1->isImm()) { 1365 std::swap(Src0, Src1); 1366 std::swap(Src0Idx, Src1Idx); 1367 } 1368 1369 int32_t Src1Val = static_cast<int32_t>(Src1->getImm()); 1370 if (Opc == AMDGPU::V_OR_B32_e64 || 1371 Opc == AMDGPU::V_OR_B32_e32 || 1372 Opc == AMDGPU::S_OR_B32) { 1373 if (Src1Val == 0) { 1374 // y = or x, 0 => y = copy x 1375 MI->removeOperand(Src1Idx); 1376 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 1377 } else if (Src1Val == -1) { 1378 // y = or x, -1 => y = v_mov_b32 -1 1379 MI->removeOperand(Src1Idx); 1380 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_OR_B32))); 1381 } else 1382 return false; 1383 1384 return true; 1385 } 1386 1387 if (Opc == AMDGPU::V_AND_B32_e64 || Opc == AMDGPU::V_AND_B32_e32 || 1388 Opc == AMDGPU::S_AND_B32) { 1389 if (Src1Val == 0) { 1390 // y = and x, 0 => y = v_mov_b32 0 1391 MI->removeOperand(Src0Idx); 1392 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_AND_B32))); 1393 } else if (Src1Val == -1) { 1394 // y = and x, -1 => y = copy x 1395 MI->removeOperand(Src1Idx); 1396 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 1397 } else 1398 return false; 1399 1400 return true; 1401 } 1402 1403 if (Opc == AMDGPU::V_XOR_B32_e64 || Opc == AMDGPU::V_XOR_B32_e32 || 1404 Opc == AMDGPU::S_XOR_B32) { 1405 if (Src1Val == 0) { 1406 // y = xor x, 0 => y = copy x 1407 MI->removeOperand(Src1Idx); 1408 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 1409 return true; 1410 } 1411 } 1412 1413 return false; 1414 } 1415 1416 // Try to fold an instruction into a simpler one 1417 bool SIFoldOperandsImpl::tryFoldCndMask(MachineInstr &MI) const { 1418 unsigned Opc = MI.getOpcode(); 1419 if (Opc != AMDGPU::V_CNDMASK_B32_e32 && Opc != AMDGPU::V_CNDMASK_B32_e64 && 1420 Opc != AMDGPU::V_CNDMASK_B64_PSEUDO) 1421 return false; 1422 1423 MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 1424 MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 1425 if (!Src1->isIdenticalTo(*Src0)) { 1426 auto *Src0Imm = getImmOrMaterializedImm(*Src0); 1427 auto *Src1Imm = getImmOrMaterializedImm(*Src1); 1428 if (!Src1Imm->isIdenticalTo(*Src0Imm)) 1429 return false; 1430 } 1431 1432 int Src1ModIdx = 1433 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers); 1434 int Src0ModIdx = 1435 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers); 1436 if ((Src1ModIdx != -1 && MI.getOperand(Src1ModIdx).getImm() != 0) || 1437 (Src0ModIdx != -1 && MI.getOperand(Src0ModIdx).getImm() != 0)) 1438 return false; 1439 1440 LLVM_DEBUG(dbgs() << "Folded " << MI << " into "); 1441 auto &NewDesc = 1442 TII->get(Src0->isReg() ? (unsigned)AMDGPU::COPY : getMovOpc(false)); 1443 int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 1444 if (Src2Idx != -1) 1445 MI.removeOperand(Src2Idx); 1446 MI.removeOperand(AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1)); 1447 if (Src1ModIdx != -1) 1448 MI.removeOperand(Src1ModIdx); 1449 if (Src0ModIdx != -1) 1450 MI.removeOperand(Src0ModIdx); 1451 mutateCopyOp(MI, NewDesc); 1452 LLVM_DEBUG(dbgs() << MI); 1453 return true; 1454 } 1455 1456 bool SIFoldOperandsImpl::tryFoldZeroHighBits(MachineInstr &MI) const { 1457 if (MI.getOpcode() != AMDGPU::V_AND_B32_e64 && 1458 MI.getOpcode() != AMDGPU::V_AND_B32_e32) 1459 return false; 1460 1461 MachineOperand *Src0 = getImmOrMaterializedImm(MI.getOperand(1)); 1462 if (!Src0->isImm() || Src0->getImm() != 0xffff) 1463 return false; 1464 1465 Register Src1 = MI.getOperand(2).getReg(); 1466 MachineInstr *SrcDef = MRI->getVRegDef(Src1); 1467 if (!ST->zeroesHigh16BitsOfDest(SrcDef->getOpcode())) 1468 return false; 1469 1470 Register Dst = MI.getOperand(0).getReg(); 1471 MRI->replaceRegWith(Dst, Src1); 1472 if (!MI.getOperand(2).isKill()) 1473 MRI->clearKillFlags(Src1); 1474 MI.eraseFromParent(); 1475 return true; 1476 } 1477 1478 bool SIFoldOperandsImpl::foldInstOperand(MachineInstr &MI, 1479 MachineOperand &OpToFold) const { 1480 // We need mutate the operands of new mov instructions to add implicit 1481 // uses of EXEC, but adding them invalidates the use_iterator, so defer 1482 // this. 1483 SmallVector<MachineInstr *, 4> CopiesToReplace; 1484 SmallVector<FoldCandidate, 4> FoldList; 1485 MachineOperand &Dst = MI.getOperand(0); 1486 bool Changed = false; 1487 1488 if (OpToFold.isImm()) { 1489 for (auto &UseMI : 1490 make_early_inc_range(MRI->use_nodbg_instructions(Dst.getReg()))) { 1491 // Folding the immediate may reveal operations that can be constant 1492 // folded or replaced with a copy. This can happen for example after 1493 // frame indices are lowered to constants or from splitting 64-bit 1494 // constants. 1495 // 1496 // We may also encounter cases where one or both operands are 1497 // immediates materialized into a register, which would ordinarily not 1498 // be folded due to multiple uses or operand constraints. 1499 if (tryConstantFoldOp(&UseMI)) { 1500 LLVM_DEBUG(dbgs() << "Constant folded " << UseMI); 1501 Changed = true; 1502 } 1503 } 1504 } 1505 1506 SmallVector<MachineOperand *, 4> UsesToProcess; 1507 for (auto &Use : MRI->use_nodbg_operands(Dst.getReg())) 1508 UsesToProcess.push_back(&Use); 1509 for (auto *U : UsesToProcess) { 1510 MachineInstr *UseMI = U->getParent(); 1511 foldOperand(OpToFold, UseMI, UseMI->getOperandNo(U), FoldList, 1512 CopiesToReplace); 1513 } 1514 1515 if (CopiesToReplace.empty() && FoldList.empty()) 1516 return Changed; 1517 1518 MachineFunction *MF = MI.getParent()->getParent(); 1519 // Make sure we add EXEC uses to any new v_mov instructions created. 1520 for (MachineInstr *Copy : CopiesToReplace) 1521 Copy->addImplicitDefUseOperands(*MF); 1522 1523 for (FoldCandidate &Fold : FoldList) { 1524 assert(!Fold.isReg() || Fold.OpToFold); 1525 if (Fold.isReg() && Fold.OpToFold->getReg().isVirtual()) { 1526 Register Reg = Fold.OpToFold->getReg(); 1527 MachineInstr *DefMI = Fold.OpToFold->getParent(); 1528 if (DefMI->readsRegister(AMDGPU::EXEC, TRI) && 1529 execMayBeModifiedBeforeUse(*MRI, Reg, *DefMI, *Fold.UseMI)) 1530 continue; 1531 } 1532 if (updateOperand(Fold)) { 1533 // Clear kill flags. 1534 if (Fold.isReg()) { 1535 assert(Fold.OpToFold && Fold.OpToFold->isReg()); 1536 // FIXME: Probably shouldn't bother trying to fold if not an 1537 // SGPR. PeepholeOptimizer can eliminate redundant VGPR->VGPR 1538 // copies. 1539 MRI->clearKillFlags(Fold.OpToFold->getReg()); 1540 } 1541 LLVM_DEBUG(dbgs() << "Folded source from " << MI << " into OpNo " 1542 << static_cast<int>(Fold.UseOpNo) << " of " 1543 << *Fold.UseMI); 1544 } else if (Fold.Commuted) { 1545 // Restoring instruction's original operand order if fold has failed. 1546 TII->commuteInstruction(*Fold.UseMI, false); 1547 } 1548 } 1549 return true; 1550 } 1551 1552 bool SIFoldOperandsImpl::tryFoldFoldableCopy( 1553 MachineInstr &MI, MachineOperand *&CurrentKnownM0Val) const { 1554 Register DstReg = MI.getOperand(0).getReg(); 1555 // Specially track simple redefs of m0 to the same value in a block, so we 1556 // can erase the later ones. 1557 if (DstReg == AMDGPU::M0) { 1558 MachineOperand &NewM0Val = MI.getOperand(1); 1559 if (CurrentKnownM0Val && CurrentKnownM0Val->isIdenticalTo(NewM0Val)) { 1560 MI.eraseFromParent(); 1561 return true; 1562 } 1563 1564 // We aren't tracking other physical registers 1565 CurrentKnownM0Val = (NewM0Val.isReg() && NewM0Val.getReg().isPhysical()) 1566 ? nullptr 1567 : &NewM0Val; 1568 return false; 1569 } 1570 1571 MachineOperand *OpToFoldPtr; 1572 if (MI.getOpcode() == AMDGPU::V_MOV_B16_t16_e64) { 1573 // Folding when any src_modifiers are non-zero is unsupported 1574 if (TII->hasAnyModifiersSet(MI)) 1575 return false; 1576 OpToFoldPtr = &MI.getOperand(2); 1577 } else 1578 OpToFoldPtr = &MI.getOperand(1); 1579 MachineOperand &OpToFold = *OpToFoldPtr; 1580 bool FoldingImm = OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal(); 1581 1582 // FIXME: We could also be folding things like TargetIndexes. 1583 if (!FoldingImm && !OpToFold.isReg()) 1584 return false; 1585 1586 if (OpToFold.isReg() && !OpToFold.getReg().isVirtual()) 1587 return false; 1588 1589 // Prevent folding operands backwards in the function. For example, 1590 // the COPY opcode must not be replaced by 1 in this example: 1591 // 1592 // %3 = COPY %vgpr0; VGPR_32:%3 1593 // ... 1594 // %vgpr0 = V_MOV_B32_e32 1, implicit %exec 1595 if (!DstReg.isVirtual()) 1596 return false; 1597 1598 if (OpToFold.isReg() && 1599 foldCopyToVGPROfScalarAddOfFrameIndex(DstReg, OpToFold.getReg(), MI)) 1600 return true; 1601 1602 bool Changed = foldInstOperand(MI, OpToFold); 1603 1604 // If we managed to fold all uses of this copy then we might as well 1605 // delete it now. 1606 // The only reason we need to follow chains of copies here is that 1607 // tryFoldRegSequence looks forward through copies before folding a 1608 // REG_SEQUENCE into its eventual users. 1609 auto *InstToErase = &MI; 1610 while (MRI->use_nodbg_empty(InstToErase->getOperand(0).getReg())) { 1611 auto &SrcOp = InstToErase->getOperand(1); 1612 auto SrcReg = SrcOp.isReg() ? SrcOp.getReg() : Register(); 1613 InstToErase->eraseFromParent(); 1614 Changed = true; 1615 InstToErase = nullptr; 1616 if (!SrcReg || SrcReg.isPhysical()) 1617 break; 1618 InstToErase = MRI->getVRegDef(SrcReg); 1619 if (!InstToErase || !TII->isFoldableCopy(*InstToErase)) 1620 break; 1621 } 1622 1623 if (InstToErase && InstToErase->isRegSequence() && 1624 MRI->use_nodbg_empty(InstToErase->getOperand(0).getReg())) { 1625 InstToErase->eraseFromParent(); 1626 Changed = true; 1627 } 1628 1629 return Changed; 1630 } 1631 1632 // Clamp patterns are canonically selected to v_max_* instructions, so only 1633 // handle them. 1634 const MachineOperand * 1635 SIFoldOperandsImpl::isClamp(const MachineInstr &MI) const { 1636 unsigned Op = MI.getOpcode(); 1637 switch (Op) { 1638 case AMDGPU::V_MAX_F32_e64: 1639 case AMDGPU::V_MAX_F16_e64: 1640 case AMDGPU::V_MAX_F16_t16_e64: 1641 case AMDGPU::V_MAX_F16_fake16_e64: 1642 case AMDGPU::V_MAX_F64_e64: 1643 case AMDGPU::V_MAX_NUM_F64_e64: 1644 case AMDGPU::V_PK_MAX_F16: { 1645 if (MI.mayRaiseFPException()) 1646 return nullptr; 1647 1648 if (!TII->getNamedOperand(MI, AMDGPU::OpName::clamp)->getImm()) 1649 return nullptr; 1650 1651 // Make sure sources are identical. 1652 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 1653 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 1654 if (!Src0->isReg() || !Src1->isReg() || 1655 Src0->getReg() != Src1->getReg() || 1656 Src0->getSubReg() != Src1->getSubReg() || 1657 Src0->getSubReg() != AMDGPU::NoSubRegister) 1658 return nullptr; 1659 1660 // Can't fold up if we have modifiers. 1661 if (TII->hasModifiersSet(MI, AMDGPU::OpName::omod)) 1662 return nullptr; 1663 1664 unsigned Src0Mods 1665 = TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)->getImm(); 1666 unsigned Src1Mods 1667 = TII->getNamedOperand(MI, AMDGPU::OpName::src1_modifiers)->getImm(); 1668 1669 // Having a 0 op_sel_hi would require swizzling the output in the source 1670 // instruction, which we can't do. 1671 unsigned UnsetMods = (Op == AMDGPU::V_PK_MAX_F16) ? SISrcMods::OP_SEL_1 1672 : 0u; 1673 if (Src0Mods != UnsetMods && Src1Mods != UnsetMods) 1674 return nullptr; 1675 return Src0; 1676 } 1677 default: 1678 return nullptr; 1679 } 1680 } 1681 1682 // FIXME: Clamp for v_mad_mixhi_f16 handled during isel. 1683 bool SIFoldOperandsImpl::tryFoldClamp(MachineInstr &MI) { 1684 const MachineOperand *ClampSrc = isClamp(MI); 1685 if (!ClampSrc || !MRI->hasOneNonDBGUser(ClampSrc->getReg())) 1686 return false; 1687 1688 MachineInstr *Def = MRI->getVRegDef(ClampSrc->getReg()); 1689 1690 // The type of clamp must be compatible. 1691 if (TII->getClampMask(*Def) != TII->getClampMask(MI)) 1692 return false; 1693 1694 if (Def->mayRaiseFPException()) 1695 return false; 1696 1697 MachineOperand *DefClamp = TII->getNamedOperand(*Def, AMDGPU::OpName::clamp); 1698 if (!DefClamp) 1699 return false; 1700 1701 LLVM_DEBUG(dbgs() << "Folding clamp " << *DefClamp << " into " << *Def); 1702 1703 // Clamp is applied after omod, so it is OK if omod is set. 1704 DefClamp->setImm(1); 1705 1706 Register DefReg = Def->getOperand(0).getReg(); 1707 Register MIDstReg = MI.getOperand(0).getReg(); 1708 if (TRI->isSGPRReg(*MRI, DefReg)) { 1709 // Pseudo scalar instructions have a SGPR for dst and clamp is a v_max* 1710 // instruction with a VGPR dst. 1711 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), TII->get(AMDGPU::COPY), 1712 MIDstReg) 1713 .addReg(DefReg); 1714 } else { 1715 MRI->replaceRegWith(MIDstReg, DefReg); 1716 } 1717 MI.eraseFromParent(); 1718 1719 // Use of output modifiers forces VOP3 encoding for a VOP2 mac/fmac 1720 // instruction, so we might as well convert it to the more flexible VOP3-only 1721 // mad/fma form. 1722 if (TII->convertToThreeAddress(*Def, nullptr, nullptr)) 1723 Def->eraseFromParent(); 1724 1725 return true; 1726 } 1727 1728 static int getOModValue(unsigned Opc, int64_t Val) { 1729 switch (Opc) { 1730 case AMDGPU::V_MUL_F64_e64: 1731 case AMDGPU::V_MUL_F64_pseudo_e64: { 1732 switch (Val) { 1733 case 0x3fe0000000000000: // 0.5 1734 return SIOutMods::DIV2; 1735 case 0x4000000000000000: // 2.0 1736 return SIOutMods::MUL2; 1737 case 0x4010000000000000: // 4.0 1738 return SIOutMods::MUL4; 1739 default: 1740 return SIOutMods::NONE; 1741 } 1742 } 1743 case AMDGPU::V_MUL_F32_e64: { 1744 switch (static_cast<uint32_t>(Val)) { 1745 case 0x3f000000: // 0.5 1746 return SIOutMods::DIV2; 1747 case 0x40000000: // 2.0 1748 return SIOutMods::MUL2; 1749 case 0x40800000: // 4.0 1750 return SIOutMods::MUL4; 1751 default: 1752 return SIOutMods::NONE; 1753 } 1754 } 1755 case AMDGPU::V_MUL_F16_e64: 1756 case AMDGPU::V_MUL_F16_t16_e64: 1757 case AMDGPU::V_MUL_F16_fake16_e64: { 1758 switch (static_cast<uint16_t>(Val)) { 1759 case 0x3800: // 0.5 1760 return SIOutMods::DIV2; 1761 case 0x4000: // 2.0 1762 return SIOutMods::MUL2; 1763 case 0x4400: // 4.0 1764 return SIOutMods::MUL4; 1765 default: 1766 return SIOutMods::NONE; 1767 } 1768 } 1769 default: 1770 llvm_unreachable("invalid mul opcode"); 1771 } 1772 } 1773 1774 // FIXME: Does this really not support denormals with f16? 1775 // FIXME: Does this need to check IEEE mode bit? SNaNs are generally not 1776 // handled, so will anything other than that break? 1777 std::pair<const MachineOperand *, int> 1778 SIFoldOperandsImpl::isOMod(const MachineInstr &MI) const { 1779 unsigned Op = MI.getOpcode(); 1780 switch (Op) { 1781 case AMDGPU::V_MUL_F64_e64: 1782 case AMDGPU::V_MUL_F64_pseudo_e64: 1783 case AMDGPU::V_MUL_F32_e64: 1784 case AMDGPU::V_MUL_F16_t16_e64: 1785 case AMDGPU::V_MUL_F16_fake16_e64: 1786 case AMDGPU::V_MUL_F16_e64: { 1787 // If output denormals are enabled, omod is ignored. 1788 if ((Op == AMDGPU::V_MUL_F32_e64 && 1789 MFI->getMode().FP32Denormals.Output != DenormalMode::PreserveSign) || 1790 ((Op == AMDGPU::V_MUL_F64_e64 || Op == AMDGPU::V_MUL_F64_pseudo_e64 || 1791 Op == AMDGPU::V_MUL_F16_e64 || Op == AMDGPU::V_MUL_F16_t16_e64 || 1792 Op == AMDGPU::V_MUL_F16_fake16_e64) && 1793 MFI->getMode().FP64FP16Denormals.Output != 1794 DenormalMode::PreserveSign) || 1795 MI.mayRaiseFPException()) 1796 return std::pair(nullptr, SIOutMods::NONE); 1797 1798 const MachineOperand *RegOp = nullptr; 1799 const MachineOperand *ImmOp = nullptr; 1800 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 1801 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 1802 if (Src0->isImm()) { 1803 ImmOp = Src0; 1804 RegOp = Src1; 1805 } else if (Src1->isImm()) { 1806 ImmOp = Src1; 1807 RegOp = Src0; 1808 } else 1809 return std::pair(nullptr, SIOutMods::NONE); 1810 1811 int OMod = getOModValue(Op, ImmOp->getImm()); 1812 if (OMod == SIOutMods::NONE || 1813 TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) || 1814 TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) || 1815 TII->hasModifiersSet(MI, AMDGPU::OpName::omod) || 1816 TII->hasModifiersSet(MI, AMDGPU::OpName::clamp)) 1817 return std::pair(nullptr, SIOutMods::NONE); 1818 1819 return std::pair(RegOp, OMod); 1820 } 1821 case AMDGPU::V_ADD_F64_e64: 1822 case AMDGPU::V_ADD_F64_pseudo_e64: 1823 case AMDGPU::V_ADD_F32_e64: 1824 case AMDGPU::V_ADD_F16_e64: 1825 case AMDGPU::V_ADD_F16_t16_e64: 1826 case AMDGPU::V_ADD_F16_fake16_e64: { 1827 // If output denormals are enabled, omod is ignored. 1828 if ((Op == AMDGPU::V_ADD_F32_e64 && 1829 MFI->getMode().FP32Denormals.Output != DenormalMode::PreserveSign) || 1830 ((Op == AMDGPU::V_ADD_F64_e64 || Op == AMDGPU::V_ADD_F64_pseudo_e64 || 1831 Op == AMDGPU::V_ADD_F16_e64 || Op == AMDGPU::V_ADD_F16_t16_e64 || 1832 Op == AMDGPU::V_ADD_F16_fake16_e64) && 1833 MFI->getMode().FP64FP16Denormals.Output != DenormalMode::PreserveSign)) 1834 return std::pair(nullptr, SIOutMods::NONE); 1835 1836 // Look through the DAGCombiner canonicalization fmul x, 2 -> fadd x, x 1837 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 1838 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 1839 1840 if (Src0->isReg() && Src1->isReg() && Src0->getReg() == Src1->getReg() && 1841 Src0->getSubReg() == Src1->getSubReg() && 1842 !TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) && 1843 !TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) && 1844 !TII->hasModifiersSet(MI, AMDGPU::OpName::clamp) && 1845 !TII->hasModifiersSet(MI, AMDGPU::OpName::omod)) 1846 return std::pair(Src0, SIOutMods::MUL2); 1847 1848 return std::pair(nullptr, SIOutMods::NONE); 1849 } 1850 default: 1851 return std::pair(nullptr, SIOutMods::NONE); 1852 } 1853 } 1854 1855 // FIXME: Does this need to check IEEE bit on function? 1856 bool SIFoldOperandsImpl::tryFoldOMod(MachineInstr &MI) { 1857 const MachineOperand *RegOp; 1858 int OMod; 1859 std::tie(RegOp, OMod) = isOMod(MI); 1860 if (OMod == SIOutMods::NONE || !RegOp->isReg() || 1861 RegOp->getSubReg() != AMDGPU::NoSubRegister || 1862 !MRI->hasOneNonDBGUser(RegOp->getReg())) 1863 return false; 1864 1865 MachineInstr *Def = MRI->getVRegDef(RegOp->getReg()); 1866 MachineOperand *DefOMod = TII->getNamedOperand(*Def, AMDGPU::OpName::omod); 1867 if (!DefOMod || DefOMod->getImm() != SIOutMods::NONE) 1868 return false; 1869 1870 if (Def->mayRaiseFPException()) 1871 return false; 1872 1873 // Clamp is applied after omod. If the source already has clamp set, don't 1874 // fold it. 1875 if (TII->hasModifiersSet(*Def, AMDGPU::OpName::clamp)) 1876 return false; 1877 1878 LLVM_DEBUG(dbgs() << "Folding omod " << MI << " into " << *Def); 1879 1880 DefOMod->setImm(OMod); 1881 MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg()); 1882 // Kill flags can be wrong if we replaced a def inside a loop with a def 1883 // outside the loop. 1884 MRI->clearKillFlags(Def->getOperand(0).getReg()); 1885 MI.eraseFromParent(); 1886 1887 // Use of output modifiers forces VOP3 encoding for a VOP2 mac/fmac 1888 // instruction, so we might as well convert it to the more flexible VOP3-only 1889 // mad/fma form. 1890 if (TII->convertToThreeAddress(*Def, nullptr, nullptr)) 1891 Def->eraseFromParent(); 1892 1893 return true; 1894 } 1895 1896 // Try to fold a reg_sequence with vgpr output and agpr inputs into an 1897 // instruction which can take an agpr. So far that means a store. 1898 bool SIFoldOperandsImpl::tryFoldRegSequence(MachineInstr &MI) { 1899 assert(MI.isRegSequence()); 1900 auto Reg = MI.getOperand(0).getReg(); 1901 1902 if (!ST->hasGFX90AInsts() || !TRI->isVGPR(*MRI, Reg) || 1903 !MRI->hasOneNonDBGUse(Reg)) 1904 return false; 1905 1906 SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs; 1907 if (!getRegSeqInit(Defs, Reg, MCOI::OPERAND_REGISTER)) 1908 return false; 1909 1910 for (auto &[Op, SubIdx] : Defs) { 1911 if (!Op->isReg()) 1912 return false; 1913 if (TRI->isAGPR(*MRI, Op->getReg())) 1914 continue; 1915 // Maybe this is a COPY from AREG 1916 const MachineInstr *SubDef = MRI->getVRegDef(Op->getReg()); 1917 if (!SubDef || !SubDef->isCopy() || SubDef->getOperand(1).getSubReg()) 1918 return false; 1919 if (!TRI->isAGPR(*MRI, SubDef->getOperand(1).getReg())) 1920 return false; 1921 } 1922 1923 MachineOperand *Op = &*MRI->use_nodbg_begin(Reg); 1924 MachineInstr *UseMI = Op->getParent(); 1925 while (UseMI->isCopy() && !Op->getSubReg()) { 1926 Reg = UseMI->getOperand(0).getReg(); 1927 if (!TRI->isVGPR(*MRI, Reg) || !MRI->hasOneNonDBGUse(Reg)) 1928 return false; 1929 Op = &*MRI->use_nodbg_begin(Reg); 1930 UseMI = Op->getParent(); 1931 } 1932 1933 if (Op->getSubReg()) 1934 return false; 1935 1936 unsigned OpIdx = Op - &UseMI->getOperand(0); 1937 const MCInstrDesc &InstDesc = UseMI->getDesc(); 1938 const TargetRegisterClass *OpRC = 1939 TII->getRegClass(InstDesc, OpIdx, TRI, *MI.getMF()); 1940 if (!OpRC || !TRI->isVectorSuperClass(OpRC)) 1941 return false; 1942 1943 const auto *NewDstRC = TRI->getEquivalentAGPRClass(MRI->getRegClass(Reg)); 1944 auto Dst = MRI->createVirtualRegister(NewDstRC); 1945 auto RS = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), 1946 TII->get(AMDGPU::REG_SEQUENCE), Dst); 1947 1948 for (auto &[Def, SubIdx] : Defs) { 1949 Def->setIsKill(false); 1950 if (TRI->isAGPR(*MRI, Def->getReg())) { 1951 RS.add(*Def); 1952 } else { // This is a copy 1953 MachineInstr *SubDef = MRI->getVRegDef(Def->getReg()); 1954 SubDef->getOperand(1).setIsKill(false); 1955 RS.addReg(SubDef->getOperand(1).getReg(), 0, Def->getSubReg()); 1956 } 1957 RS.addImm(SubIdx); 1958 } 1959 1960 Op->setReg(Dst); 1961 if (!TII->isOperandLegal(*UseMI, OpIdx, Op)) { 1962 Op->setReg(Reg); 1963 RS->eraseFromParent(); 1964 return false; 1965 } 1966 1967 LLVM_DEBUG(dbgs() << "Folded " << *RS << " into " << *UseMI); 1968 1969 // Erase the REG_SEQUENCE eagerly, unless we followed a chain of COPY users, 1970 // in which case we can erase them all later in runOnMachineFunction. 1971 if (MRI->use_nodbg_empty(MI.getOperand(0).getReg())) 1972 MI.eraseFromParent(); 1973 return true; 1974 } 1975 1976 /// Checks whether \p Copy is a AGPR -> VGPR copy. Returns `true` on success and 1977 /// stores the AGPR register in \p OutReg and the subreg in \p OutSubReg 1978 static bool isAGPRCopy(const SIRegisterInfo &TRI, 1979 const MachineRegisterInfo &MRI, const MachineInstr &Copy, 1980 Register &OutReg, unsigned &OutSubReg) { 1981 assert(Copy.isCopy()); 1982 1983 const MachineOperand &CopySrc = Copy.getOperand(1); 1984 Register CopySrcReg = CopySrc.getReg(); 1985 if (!CopySrcReg.isVirtual()) 1986 return false; 1987 1988 // Common case: copy from AGPR directly, e.g. 1989 // %1:vgpr_32 = COPY %0:agpr_32 1990 if (TRI.isAGPR(MRI, CopySrcReg)) { 1991 OutReg = CopySrcReg; 1992 OutSubReg = CopySrc.getSubReg(); 1993 return true; 1994 } 1995 1996 // Sometimes it can also involve two copies, e.g. 1997 // %1:vgpr_256 = COPY %0:agpr_256 1998 // %2:vgpr_32 = COPY %1:vgpr_256.sub0 1999 const MachineInstr *CopySrcDef = MRI.getVRegDef(CopySrcReg); 2000 if (!CopySrcDef || !CopySrcDef->isCopy()) 2001 return false; 2002 2003 const MachineOperand &OtherCopySrc = CopySrcDef->getOperand(1); 2004 Register OtherCopySrcReg = OtherCopySrc.getReg(); 2005 if (!OtherCopySrcReg.isVirtual() || 2006 CopySrcDef->getOperand(0).getSubReg() != AMDGPU::NoSubRegister || 2007 OtherCopySrc.getSubReg() != AMDGPU::NoSubRegister || 2008 !TRI.isAGPR(MRI, OtherCopySrcReg)) 2009 return false; 2010 2011 OutReg = OtherCopySrcReg; 2012 OutSubReg = CopySrc.getSubReg(); 2013 return true; 2014 } 2015 2016 // Try to hoist an AGPR to VGPR copy across a PHI. 2017 // This should allow folding of an AGPR into a consumer which may support it. 2018 // 2019 // Example 1: LCSSA PHI 2020 // loop: 2021 // %1:vreg = COPY %0:areg 2022 // exit: 2023 // %2:vreg = PHI %1:vreg, %loop 2024 // => 2025 // loop: 2026 // exit: 2027 // %1:areg = PHI %0:areg, %loop 2028 // %2:vreg = COPY %1:areg 2029 // 2030 // Example 2: PHI with multiple incoming values: 2031 // entry: 2032 // %1:vreg = GLOBAL_LOAD(..) 2033 // loop: 2034 // %2:vreg = PHI %1:vreg, %entry, %5:vreg, %loop 2035 // %3:areg = COPY %2:vreg 2036 // %4:areg = (instr using %3:areg) 2037 // %5:vreg = COPY %4:areg 2038 // => 2039 // entry: 2040 // %1:vreg = GLOBAL_LOAD(..) 2041 // %2:areg = COPY %1:vreg 2042 // loop: 2043 // %3:areg = PHI %2:areg, %entry, %X:areg, 2044 // %4:areg = (instr using %3:areg) 2045 bool SIFoldOperandsImpl::tryFoldPhiAGPR(MachineInstr &PHI) { 2046 assert(PHI.isPHI()); 2047 2048 Register PhiOut = PHI.getOperand(0).getReg(); 2049 if (!TRI->isVGPR(*MRI, PhiOut)) 2050 return false; 2051 2052 // Iterate once over all incoming values of the PHI to check if this PHI is 2053 // eligible, and determine the exact AGPR RC we'll target. 2054 const TargetRegisterClass *ARC = nullptr; 2055 for (unsigned K = 1; K < PHI.getNumExplicitOperands(); K += 2) { 2056 MachineOperand &MO = PHI.getOperand(K); 2057 MachineInstr *Copy = MRI->getVRegDef(MO.getReg()); 2058 if (!Copy || !Copy->isCopy()) 2059 continue; 2060 2061 Register AGPRSrc; 2062 unsigned AGPRRegMask = AMDGPU::NoSubRegister; 2063 if (!isAGPRCopy(*TRI, *MRI, *Copy, AGPRSrc, AGPRRegMask)) 2064 continue; 2065 2066 const TargetRegisterClass *CopyInRC = MRI->getRegClass(AGPRSrc); 2067 if (const auto *SubRC = TRI->getSubRegisterClass(CopyInRC, AGPRRegMask)) 2068 CopyInRC = SubRC; 2069 2070 if (ARC && !ARC->hasSubClassEq(CopyInRC)) 2071 return false; 2072 ARC = CopyInRC; 2073 } 2074 2075 if (!ARC) 2076 return false; 2077 2078 bool IsAGPR32 = (ARC == &AMDGPU::AGPR_32RegClass); 2079 2080 // Rewrite the PHI's incoming values to ARC. 2081 LLVM_DEBUG(dbgs() << "Folding AGPR copies into: " << PHI); 2082 for (unsigned K = 1; K < PHI.getNumExplicitOperands(); K += 2) { 2083 MachineOperand &MO = PHI.getOperand(K); 2084 Register Reg = MO.getReg(); 2085 2086 MachineBasicBlock::iterator InsertPt; 2087 MachineBasicBlock *InsertMBB = nullptr; 2088 2089 // Look at the def of Reg, ignoring all copies. 2090 unsigned CopyOpc = AMDGPU::COPY; 2091 if (MachineInstr *Def = MRI->getVRegDef(Reg)) { 2092 2093 // Look at pre-existing COPY instructions from ARC: Steal the operand. If 2094 // the copy was single-use, it will be removed by DCE later. 2095 if (Def->isCopy()) { 2096 Register AGPRSrc; 2097 unsigned AGPRSubReg = AMDGPU::NoSubRegister; 2098 if (isAGPRCopy(*TRI, *MRI, *Def, AGPRSrc, AGPRSubReg)) { 2099 MO.setReg(AGPRSrc); 2100 MO.setSubReg(AGPRSubReg); 2101 continue; 2102 } 2103 2104 // If this is a multi-use SGPR -> VGPR copy, use V_ACCVGPR_WRITE on 2105 // GFX908 directly instead of a COPY. Otherwise, SIFoldOperand may try 2106 // to fold the sgpr -> vgpr -> agpr copy into a sgpr -> agpr copy which 2107 // is unlikely to be profitable. 2108 // 2109 // Note that V_ACCVGPR_WRITE is only used for AGPR_32. 2110 MachineOperand &CopyIn = Def->getOperand(1); 2111 if (IsAGPR32 && !ST->hasGFX90AInsts() && !MRI->hasOneNonDBGUse(Reg) && 2112 TRI->isSGPRReg(*MRI, CopyIn.getReg())) 2113 CopyOpc = AMDGPU::V_ACCVGPR_WRITE_B32_e64; 2114 } 2115 2116 InsertMBB = Def->getParent(); 2117 InsertPt = InsertMBB->SkipPHIsLabelsAndDebug(++Def->getIterator()); 2118 } else { 2119 InsertMBB = PHI.getOperand(MO.getOperandNo() + 1).getMBB(); 2120 InsertPt = InsertMBB->getFirstTerminator(); 2121 } 2122 2123 Register NewReg = MRI->createVirtualRegister(ARC); 2124 MachineInstr *MI = BuildMI(*InsertMBB, InsertPt, PHI.getDebugLoc(), 2125 TII->get(CopyOpc), NewReg) 2126 .addReg(Reg); 2127 MO.setReg(NewReg); 2128 2129 (void)MI; 2130 LLVM_DEBUG(dbgs() << " Created COPY: " << *MI); 2131 } 2132 2133 // Replace the PHI's result with a new register. 2134 Register NewReg = MRI->createVirtualRegister(ARC); 2135 PHI.getOperand(0).setReg(NewReg); 2136 2137 // COPY that new register back to the original PhiOut register. This COPY will 2138 // usually be folded out later. 2139 MachineBasicBlock *MBB = PHI.getParent(); 2140 BuildMI(*MBB, MBB->getFirstNonPHI(), PHI.getDebugLoc(), 2141 TII->get(AMDGPU::COPY), PhiOut) 2142 .addReg(NewReg); 2143 2144 LLVM_DEBUG(dbgs() << " Done: Folded " << PHI); 2145 return true; 2146 } 2147 2148 // Attempt to convert VGPR load to an AGPR load. 2149 bool SIFoldOperandsImpl::tryFoldLoad(MachineInstr &MI) { 2150 assert(MI.mayLoad()); 2151 if (!ST->hasGFX90AInsts() || MI.getNumExplicitDefs() != 1) 2152 return false; 2153 2154 MachineOperand &Def = MI.getOperand(0); 2155 if (!Def.isDef()) 2156 return false; 2157 2158 Register DefReg = Def.getReg(); 2159 2160 if (DefReg.isPhysical() || !TRI->isVGPR(*MRI, DefReg)) 2161 return false; 2162 2163 SmallVector<const MachineInstr*, 8> Users; 2164 SmallVector<Register, 8> MoveRegs; 2165 for (const MachineInstr &I : MRI->use_nodbg_instructions(DefReg)) 2166 Users.push_back(&I); 2167 2168 if (Users.empty()) 2169 return false; 2170 2171 // Check that all uses a copy to an agpr or a reg_sequence producing an agpr. 2172 while (!Users.empty()) { 2173 const MachineInstr *I = Users.pop_back_val(); 2174 if (!I->isCopy() && !I->isRegSequence()) 2175 return false; 2176 Register DstReg = I->getOperand(0).getReg(); 2177 // Physical registers may have more than one instruction definitions 2178 if (DstReg.isPhysical()) 2179 return false; 2180 if (TRI->isAGPR(*MRI, DstReg)) 2181 continue; 2182 MoveRegs.push_back(DstReg); 2183 for (const MachineInstr &U : MRI->use_nodbg_instructions(DstReg)) 2184 Users.push_back(&U); 2185 } 2186 2187 const TargetRegisterClass *RC = MRI->getRegClass(DefReg); 2188 MRI->setRegClass(DefReg, TRI->getEquivalentAGPRClass(RC)); 2189 if (!TII->isOperandLegal(MI, 0, &Def)) { 2190 MRI->setRegClass(DefReg, RC); 2191 return false; 2192 } 2193 2194 while (!MoveRegs.empty()) { 2195 Register Reg = MoveRegs.pop_back_val(); 2196 MRI->setRegClass(Reg, TRI->getEquivalentAGPRClass(MRI->getRegClass(Reg))); 2197 } 2198 2199 LLVM_DEBUG(dbgs() << "Folded " << MI); 2200 2201 return true; 2202 } 2203 2204 // tryFoldPhiAGPR will aggressively try to create AGPR PHIs. 2205 // For GFX90A and later, this is pretty much always a good thing, but for GFX908 2206 // there's cases where it can create a lot more AGPR-AGPR copies, which are 2207 // expensive on this architecture due to the lack of V_ACCVGPR_MOV. 2208 // 2209 // This function looks at all AGPR PHIs in a basic block and collects their 2210 // operands. Then, it checks for register that are used more than once across 2211 // all PHIs and caches them in a VGPR. This prevents ExpandPostRAPseudo from 2212 // having to create one VGPR temporary per use, which can get very messy if 2213 // these PHIs come from a broken-up large PHI (e.g. 32 AGPR phis, one per vector 2214 // element). 2215 // 2216 // Example 2217 // a: 2218 // %in:agpr_256 = COPY %foo:vgpr_256 2219 // c: 2220 // %x:agpr_32 = .. 2221 // b: 2222 // %0:areg = PHI %in.sub0:agpr_32, %a, %x, %c 2223 // %1:areg = PHI %in.sub0:agpr_32, %a, %y, %c 2224 // %2:areg = PHI %in.sub0:agpr_32, %a, %z, %c 2225 // => 2226 // a: 2227 // %in:agpr_256 = COPY %foo:vgpr_256 2228 // %tmp:vgpr_32 = V_ACCVGPR_READ_B32_e64 %in.sub0:agpr_32 2229 // %tmp_agpr:agpr_32 = COPY %tmp 2230 // c: 2231 // %x:agpr_32 = .. 2232 // b: 2233 // %0:areg = PHI %tmp_agpr, %a, %x, %c 2234 // %1:areg = PHI %tmp_agpr, %a, %y, %c 2235 // %2:areg = PHI %tmp_agpr, %a, %z, %c 2236 bool SIFoldOperandsImpl::tryOptimizeAGPRPhis(MachineBasicBlock &MBB) { 2237 // This is only really needed on GFX908 where AGPR-AGPR copies are 2238 // unreasonably difficult. 2239 if (ST->hasGFX90AInsts()) 2240 return false; 2241 2242 // Look at all AGPR Phis and collect the register + subregister used. 2243 DenseMap<std::pair<Register, unsigned>, std::vector<MachineOperand *>> 2244 RegToMO; 2245 2246 for (auto &MI : MBB) { 2247 if (!MI.isPHI()) 2248 break; 2249 2250 if (!TRI->isAGPR(*MRI, MI.getOperand(0).getReg())) 2251 continue; 2252 2253 for (unsigned K = 1; K < MI.getNumOperands(); K += 2) { 2254 MachineOperand &PhiMO = MI.getOperand(K); 2255 if (!PhiMO.getSubReg()) 2256 continue; 2257 RegToMO[{PhiMO.getReg(), PhiMO.getSubReg()}].push_back(&PhiMO); 2258 } 2259 } 2260 2261 // For all (Reg, SubReg) pair that are used more than once, cache the value in 2262 // a VGPR. 2263 bool Changed = false; 2264 for (const auto &[Entry, MOs] : RegToMO) { 2265 if (MOs.size() == 1) 2266 continue; 2267 2268 const auto [Reg, SubReg] = Entry; 2269 MachineInstr *Def = MRI->getVRegDef(Reg); 2270 MachineBasicBlock *DefMBB = Def->getParent(); 2271 2272 // Create a copy in a VGPR using V_ACCVGPR_READ_B32_e64 so it's not folded 2273 // out. 2274 const TargetRegisterClass *ARC = getRegOpRC(*MRI, *TRI, *MOs.front()); 2275 Register TempVGPR = 2276 MRI->createVirtualRegister(TRI->getEquivalentVGPRClass(ARC)); 2277 MachineInstr *VGPRCopy = 2278 BuildMI(*DefMBB, ++Def->getIterator(), Def->getDebugLoc(), 2279 TII->get(AMDGPU::V_ACCVGPR_READ_B32_e64), TempVGPR) 2280 .addReg(Reg, /* flags */ 0, SubReg); 2281 2282 // Copy back to an AGPR and use that instead of the AGPR subreg in all MOs. 2283 Register TempAGPR = MRI->createVirtualRegister(ARC); 2284 BuildMI(*DefMBB, ++VGPRCopy->getIterator(), Def->getDebugLoc(), 2285 TII->get(AMDGPU::COPY), TempAGPR) 2286 .addReg(TempVGPR); 2287 2288 LLVM_DEBUG(dbgs() << "Caching AGPR into VGPR: " << *VGPRCopy); 2289 for (MachineOperand *MO : MOs) { 2290 MO->setReg(TempAGPR); 2291 MO->setSubReg(AMDGPU::NoSubRegister); 2292 LLVM_DEBUG(dbgs() << " Changed PHI Operand: " << *MO << "\n"); 2293 } 2294 2295 Changed = true; 2296 } 2297 2298 return Changed; 2299 } 2300 2301 bool SIFoldOperandsImpl::run(MachineFunction &MF) { 2302 MRI = &MF.getRegInfo(); 2303 ST = &MF.getSubtarget<GCNSubtarget>(); 2304 TII = ST->getInstrInfo(); 2305 TRI = &TII->getRegisterInfo(); 2306 MFI = MF.getInfo<SIMachineFunctionInfo>(); 2307 2308 // omod is ignored by hardware if IEEE bit is enabled. omod also does not 2309 // correctly handle signed zeros. 2310 // 2311 // FIXME: Also need to check strictfp 2312 bool IsIEEEMode = MFI->getMode().IEEE; 2313 bool HasNSZ = MFI->hasNoSignedZerosFPMath(); 2314 2315 bool Changed = false; 2316 for (MachineBasicBlock *MBB : depth_first(&MF)) { 2317 MachineOperand *CurrentKnownM0Val = nullptr; 2318 for (auto &MI : make_early_inc_range(*MBB)) { 2319 Changed |= tryFoldCndMask(MI); 2320 2321 if (tryFoldZeroHighBits(MI)) { 2322 Changed = true; 2323 continue; 2324 } 2325 2326 if (MI.isRegSequence() && tryFoldRegSequence(MI)) { 2327 Changed = true; 2328 continue; 2329 } 2330 2331 if (MI.isPHI() && tryFoldPhiAGPR(MI)) { 2332 Changed = true; 2333 continue; 2334 } 2335 2336 if (MI.mayLoad() && tryFoldLoad(MI)) { 2337 Changed = true; 2338 continue; 2339 } 2340 2341 if (TII->isFoldableCopy(MI)) { 2342 Changed |= tryFoldFoldableCopy(MI, CurrentKnownM0Val); 2343 continue; 2344 } 2345 2346 // Saw an unknown clobber of m0, so we no longer know what it is. 2347 if (CurrentKnownM0Val && MI.modifiesRegister(AMDGPU::M0, TRI)) 2348 CurrentKnownM0Val = nullptr; 2349 2350 // TODO: Omod might be OK if there is NSZ only on the source 2351 // instruction, and not the omod multiply. 2352 if (IsIEEEMode || (!HasNSZ && !MI.getFlag(MachineInstr::FmNsz)) || 2353 !tryFoldOMod(MI)) 2354 Changed |= tryFoldClamp(MI); 2355 } 2356 2357 Changed |= tryOptimizeAGPRPhis(*MBB); 2358 } 2359 2360 return Changed; 2361 } 2362 2363 PreservedAnalyses SIFoldOperandsPass::run(MachineFunction &MF, 2364 MachineFunctionAnalysisManager &) { 2365 bool Changed = SIFoldOperandsImpl().run(MF); 2366 if (!Changed) { 2367 return PreservedAnalyses::all(); 2368 } 2369 auto PA = getMachineFunctionPassPreservedAnalyses(); 2370 PA.preserveSet<CFGAnalyses>(); 2371 return PA; 2372 } 2373