1 //===- GVNSink.cpp - sink expressions into successors ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file GVNSink.cpp
10 /// This pass attempts to sink instructions into successors, reducing static
11 /// instruction count and enabling if-conversion.
12 ///
13 /// We use a variant of global value numbering to decide what can be sunk.
14 /// Consider:
15 ///
16 /// [ %a1 = add i32 %b, 1 ] [ %c1 = add i32 %d, 1 ]
17 /// [ %a2 = xor i32 %a1, 1 ] [ %c2 = xor i32 %c1, 1 ]
18 /// \ /
19 /// [ %e = phi i32 %a2, %c2 ]
20 /// [ add i32 %e, 4 ]
21 ///
22 ///
23 /// GVN would number %a1 and %c1 differently because they compute different
24 /// results - the VN of an instruction is a function of its opcode and the
25 /// transitive closure of its operands. This is the key property for hoisting
26 /// and CSE.
27 ///
28 /// What we want when sinking however is for a numbering that is a function of
29 /// the *uses* of an instruction, which allows us to answer the question "if I
30 /// replace %a1 with %c1, will it contribute in an equivalent way to all
31 /// successive instructions?". The PostValueTable class in GVN provides this
32 /// mapping.
33 //
34 //===----------------------------------------------------------------------===//
35
36 #include "llvm/ADT/ArrayRef.h"
37 #include "llvm/ADT/DenseMap.h"
38 #include "llvm/ADT/DenseSet.h"
39 #include "llvm/ADT/Hashing.h"
40 #include "llvm/ADT/PostOrderIterator.h"
41 #include "llvm/ADT/STLExtras.h"
42 #include "llvm/ADT/SmallPtrSet.h"
43 #include "llvm/ADT/SmallVector.h"
44 #include "llvm/ADT/Statistic.h"
45 #include "llvm/Analysis/GlobalsModRef.h"
46 #include "llvm/IR/BasicBlock.h"
47 #include "llvm/IR/CFG.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/Function.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/PassManager.h"
54 #include "llvm/IR/Type.h"
55 #include "llvm/IR/Use.h"
56 #include "llvm/IR/Value.h"
57 #include "llvm/InitializePasses.h"
58 #include "llvm/Pass.h"
59 #include "llvm/Support/Allocator.h"
60 #include "llvm/Support/ArrayRecycler.h"
61 #include "llvm/Support/AtomicOrdering.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/Compiler.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Support/raw_ostream.h"
66 #include "llvm/Transforms/Scalar.h"
67 #include "llvm/Transforms/Scalar/GVN.h"
68 #include "llvm/Transforms/Scalar/GVNExpression.h"
69 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
70 #include "llvm/Transforms/Utils/Local.h"
71 #include <algorithm>
72 #include <cassert>
73 #include <cstddef>
74 #include <cstdint>
75 #include <iterator>
76 #include <utility>
77
78 using namespace llvm;
79
80 #define DEBUG_TYPE "gvn-sink"
81
82 STATISTIC(NumRemoved, "Number of instructions removed");
83
84 namespace llvm {
85 namespace GVNExpression {
86
dump() const87 LLVM_DUMP_METHOD void Expression::dump() const {
88 print(dbgs());
89 dbgs() << "\n";
90 }
91
92 } // end namespace GVNExpression
93 } // end namespace llvm
94
95 namespace {
96
isMemoryInst(const Instruction * I)97 static bool isMemoryInst(const Instruction *I) {
98 return isa<LoadInst>(I) || isa<StoreInst>(I) ||
99 (isa<InvokeInst>(I) && !cast<InvokeInst>(I)->doesNotAccessMemory()) ||
100 (isa<CallInst>(I) && !cast<CallInst>(I)->doesNotAccessMemory());
101 }
102
103 /// Iterates through instructions in a set of blocks in reverse order from the
104 /// first non-terminator. For example (assume all blocks have size n):
105 /// LockstepReverseIterator I([B1, B2, B3]);
106 /// *I-- = [B1[n], B2[n], B3[n]];
107 /// *I-- = [B1[n-1], B2[n-1], B3[n-1]];
108 /// *I-- = [B1[n-2], B2[n-2], B3[n-2]];
109 /// ...
110 ///
111 /// It continues until all blocks have been exhausted. Use \c getActiveBlocks()
112 /// to
113 /// determine which blocks are still going and the order they appear in the
114 /// list returned by operator*.
115 class LockstepReverseIterator {
116 ArrayRef<BasicBlock *> Blocks;
117 SmallSetVector<BasicBlock *, 4> ActiveBlocks;
118 SmallVector<Instruction *, 4> Insts;
119 bool Fail;
120
121 public:
LockstepReverseIterator(ArrayRef<BasicBlock * > Blocks)122 LockstepReverseIterator(ArrayRef<BasicBlock *> Blocks) : Blocks(Blocks) {
123 reset();
124 }
125
reset()126 void reset() {
127 Fail = false;
128 ActiveBlocks.clear();
129 for (BasicBlock *BB : Blocks)
130 ActiveBlocks.insert(BB);
131 Insts.clear();
132 for (BasicBlock *BB : Blocks) {
133 if (BB->size() <= 1) {
134 // Block wasn't big enough - only contained a terminator.
135 ActiveBlocks.remove(BB);
136 continue;
137 }
138 Insts.push_back(BB->getTerminator()->getPrevNode());
139 }
140 if (Insts.empty())
141 Fail = true;
142 }
143
isValid() const144 bool isValid() const { return !Fail; }
operator *() const145 ArrayRef<Instruction *> operator*() const { return Insts; }
146
147 // Note: This needs to return a SmallSetVector as the elements of
148 // ActiveBlocks will be later copied to Blocks using std::copy. The
149 // resultant order of elements in Blocks needs to be deterministic.
150 // Using SmallPtrSet instead causes non-deterministic order while
151 // copying. And we cannot simply sort Blocks as they need to match the
152 // corresponding Values.
getActiveBlocks()153 SmallSetVector<BasicBlock *, 4> &getActiveBlocks() { return ActiveBlocks; }
154
restrictToBlocks(SmallSetVector<BasicBlock *,4> & Blocks)155 void restrictToBlocks(SmallSetVector<BasicBlock *, 4> &Blocks) {
156 for (auto II = Insts.begin(); II != Insts.end();) {
157 if (!llvm::is_contained(Blocks, (*II)->getParent())) {
158 ActiveBlocks.remove((*II)->getParent());
159 II = Insts.erase(II);
160 } else {
161 ++II;
162 }
163 }
164 }
165
operator --()166 void operator--() {
167 if (Fail)
168 return;
169 SmallVector<Instruction *, 4> NewInsts;
170 for (auto *Inst : Insts) {
171 if (Inst == &Inst->getParent()->front())
172 ActiveBlocks.remove(Inst->getParent());
173 else
174 NewInsts.push_back(Inst->getPrevNode());
175 }
176 if (NewInsts.empty()) {
177 Fail = true;
178 return;
179 }
180 Insts = NewInsts;
181 }
182 };
183
184 //===----------------------------------------------------------------------===//
185
186 /// Candidate solution for sinking. There may be different ways to
187 /// sink instructions, differing in the number of instructions sunk,
188 /// the number of predecessors sunk from and the number of PHIs
189 /// required.
190 struct SinkingInstructionCandidate {
191 unsigned NumBlocks;
192 unsigned NumInstructions;
193 unsigned NumPHIs;
194 unsigned NumMemoryInsts;
195 int Cost = -1;
196 SmallVector<BasicBlock *, 4> Blocks;
197
calculateCost__anon97a272aa0111::SinkingInstructionCandidate198 void calculateCost(unsigned NumOrigPHIs, unsigned NumOrigBlocks) {
199 unsigned NumExtraPHIs = NumPHIs - NumOrigPHIs;
200 unsigned SplitEdgeCost = (NumOrigBlocks > NumBlocks) ? 2 : 0;
201 Cost = (NumInstructions * (NumBlocks - 1)) -
202 (NumExtraPHIs *
203 NumExtraPHIs) // PHIs are expensive, so make sure they're worth it.
204 - SplitEdgeCost;
205 }
206
operator >__anon97a272aa0111::SinkingInstructionCandidate207 bool operator>(const SinkingInstructionCandidate &Other) const {
208 return Cost > Other.Cost;
209 }
210 };
211
212 #ifndef NDEBUG
operator <<(raw_ostream & OS,const SinkingInstructionCandidate & C)213 raw_ostream &operator<<(raw_ostream &OS, const SinkingInstructionCandidate &C) {
214 OS << "<Candidate Cost=" << C.Cost << " #Blocks=" << C.NumBlocks
215 << " #Insts=" << C.NumInstructions << " #PHIs=" << C.NumPHIs << ">";
216 return OS;
217 }
218 #endif
219
220 //===----------------------------------------------------------------------===//
221
222 /// Describes a PHI node that may or may not exist. These track the PHIs
223 /// that must be created if we sunk a sequence of instructions. It provides
224 /// a hash function for efficient equality comparisons.
225 class ModelledPHI {
226 SmallVector<Value *, 4> Values;
227 SmallVector<BasicBlock *, 4> Blocks;
228
229 public:
230 ModelledPHI() = default;
231
ModelledPHI(const PHINode * PN)232 ModelledPHI(const PHINode *PN) {
233 // BasicBlock comes first so we sort by basic block pointer order, then by value pointer order.
234 SmallVector<std::pair<BasicBlock *, Value *>, 4> Ops;
235 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I)
236 Ops.push_back({PN->getIncomingBlock(I), PN->getIncomingValue(I)});
237 llvm::sort(Ops);
238 for (auto &P : Ops) {
239 Blocks.push_back(P.first);
240 Values.push_back(P.second);
241 }
242 }
243
244 /// Create a dummy ModelledPHI that will compare unequal to any other ModelledPHI
245 /// without the same ID.
246 /// \note This is specifically for DenseMapInfo - do not use this!
createDummy(size_t ID)247 static ModelledPHI createDummy(size_t ID) {
248 ModelledPHI M;
249 M.Values.push_back(reinterpret_cast<Value*>(ID));
250 return M;
251 }
252
253 /// Create a PHI from an array of incoming values and incoming blocks.
254 template <typename VArray, typename BArray>
ModelledPHI(const VArray & V,const BArray & B)255 ModelledPHI(const VArray &V, const BArray &B) {
256 llvm::copy(V, std::back_inserter(Values));
257 llvm::copy(B, std::back_inserter(Blocks));
258 }
259
260 /// Create a PHI from [I[OpNum] for I in Insts].
261 template <typename BArray>
ModelledPHI(ArrayRef<Instruction * > Insts,unsigned OpNum,const BArray & B)262 ModelledPHI(ArrayRef<Instruction *> Insts, unsigned OpNum, const BArray &B) {
263 llvm::copy(B, std::back_inserter(Blocks));
264 for (auto *I : Insts)
265 Values.push_back(I->getOperand(OpNum));
266 }
267
268 /// Restrict the PHI's contents down to only \c NewBlocks.
269 /// \c NewBlocks must be a subset of \c this->Blocks.
restrictToBlocks(const SmallSetVector<BasicBlock *,4> & NewBlocks)270 void restrictToBlocks(const SmallSetVector<BasicBlock *, 4> &NewBlocks) {
271 auto BI = Blocks.begin();
272 auto VI = Values.begin();
273 while (BI != Blocks.end()) {
274 assert(VI != Values.end());
275 if (!llvm::is_contained(NewBlocks, *BI)) {
276 BI = Blocks.erase(BI);
277 VI = Values.erase(VI);
278 } else {
279 ++BI;
280 ++VI;
281 }
282 }
283 assert(Blocks.size() == NewBlocks.size());
284 }
285
getValues() const286 ArrayRef<Value *> getValues() const { return Values; }
287
areAllIncomingValuesSame() const288 bool areAllIncomingValuesSame() const {
289 return llvm::all_equal(Values);
290 }
291
areAllIncomingValuesSameType() const292 bool areAllIncomingValuesSameType() const {
293 return llvm::all_of(
294 Values, [&](Value *V) { return V->getType() == Values[0]->getType(); });
295 }
296
areAnyIncomingValuesConstant() const297 bool areAnyIncomingValuesConstant() const {
298 return llvm::any_of(Values, [&](Value *V) { return isa<Constant>(V); });
299 }
300
301 // Hash functor
hash() const302 unsigned hash() const {
303 return (unsigned)hash_combine_range(Values.begin(), Values.end());
304 }
305
operator ==(const ModelledPHI & Other) const306 bool operator==(const ModelledPHI &Other) const {
307 return Values == Other.Values && Blocks == Other.Blocks;
308 }
309 };
310
311 template <typename ModelledPHI> struct DenseMapInfo {
getEmptyKey__anon97a272aa0111::DenseMapInfo312 static inline ModelledPHI &getEmptyKey() {
313 static ModelledPHI Dummy = ModelledPHI::createDummy(0);
314 return Dummy;
315 }
316
getTombstoneKey__anon97a272aa0111::DenseMapInfo317 static inline ModelledPHI &getTombstoneKey() {
318 static ModelledPHI Dummy = ModelledPHI::createDummy(1);
319 return Dummy;
320 }
321
getHashValue__anon97a272aa0111::DenseMapInfo322 static unsigned getHashValue(const ModelledPHI &V) { return V.hash(); }
323
isEqual__anon97a272aa0111::DenseMapInfo324 static bool isEqual(const ModelledPHI &LHS, const ModelledPHI &RHS) {
325 return LHS == RHS;
326 }
327 };
328
329 using ModelledPHISet = DenseSet<ModelledPHI, DenseMapInfo<ModelledPHI>>;
330
331 //===----------------------------------------------------------------------===//
332 // ValueTable
333 //===----------------------------------------------------------------------===//
334 // This is a value number table where the value number is a function of the
335 // *uses* of a value, rather than its operands. Thus, if VN(A) == VN(B) we know
336 // that the program would be equivalent if we replaced A with PHI(A, B).
337 //===----------------------------------------------------------------------===//
338
339 /// A GVN expression describing how an instruction is used. The operands
340 /// field of BasicExpression is used to store uses, not operands.
341 ///
342 /// This class also contains fields for discriminators used when determining
343 /// equivalence of instructions with sideeffects.
344 class InstructionUseExpr : public GVNExpression::BasicExpression {
345 unsigned MemoryUseOrder = -1;
346 bool Volatile = false;
347 ArrayRef<int> ShuffleMask;
348
349 public:
InstructionUseExpr(Instruction * I,ArrayRecycler<Value * > & R,BumpPtrAllocator & A)350 InstructionUseExpr(Instruction *I, ArrayRecycler<Value *> &R,
351 BumpPtrAllocator &A)
352 : GVNExpression::BasicExpression(I->getNumUses()) {
353 allocateOperands(R, A);
354 setOpcode(I->getOpcode());
355 setType(I->getType());
356
357 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I))
358 ShuffleMask = SVI->getShuffleMask().copy(A);
359
360 for (auto &U : I->uses())
361 op_push_back(U.getUser());
362 llvm::sort(op_begin(), op_end());
363 }
364
setMemoryUseOrder(unsigned MUO)365 void setMemoryUseOrder(unsigned MUO) { MemoryUseOrder = MUO; }
setVolatile(bool V)366 void setVolatile(bool V) { Volatile = V; }
367
getHashValue() const368 hash_code getHashValue() const override {
369 return hash_combine(GVNExpression::BasicExpression::getHashValue(),
370 MemoryUseOrder, Volatile, ShuffleMask);
371 }
372
getHashValue(Function MapFn)373 template <typename Function> hash_code getHashValue(Function MapFn) {
374 hash_code H = hash_combine(getOpcode(), getType(), MemoryUseOrder, Volatile,
375 ShuffleMask);
376 for (auto *V : operands())
377 H = hash_combine(H, MapFn(V));
378 return H;
379 }
380 };
381
382 using BasicBlocksSet = SmallPtrSet<const BasicBlock *, 32>;
383
384 class ValueTable {
385 DenseMap<Value *, uint32_t> ValueNumbering;
386 DenseMap<GVNExpression::Expression *, uint32_t> ExpressionNumbering;
387 DenseMap<size_t, uint32_t> HashNumbering;
388 BumpPtrAllocator Allocator;
389 ArrayRecycler<Value *> Recycler;
390 uint32_t nextValueNumber = 1;
391 BasicBlocksSet ReachableBBs;
392
393 /// Create an expression for I based on its opcode and its uses. If I
394 /// touches or reads memory, the expression is also based upon its memory
395 /// order - see \c getMemoryUseOrder().
createExpr(Instruction * I)396 InstructionUseExpr *createExpr(Instruction *I) {
397 InstructionUseExpr *E =
398 new (Allocator) InstructionUseExpr(I, Recycler, Allocator);
399 if (isMemoryInst(I))
400 E->setMemoryUseOrder(getMemoryUseOrder(I));
401
402 if (CmpInst *C = dyn_cast<CmpInst>(I)) {
403 CmpInst::Predicate Predicate = C->getPredicate();
404 E->setOpcode((C->getOpcode() << 8) | Predicate);
405 }
406 return E;
407 }
408
409 /// Helper to compute the value number for a memory instruction
410 /// (LoadInst/StoreInst), including checking the memory ordering and
411 /// volatility.
createMemoryExpr(Inst * I)412 template <class Inst> InstructionUseExpr *createMemoryExpr(Inst *I) {
413 if (isStrongerThanUnordered(I->getOrdering()) || I->isAtomic())
414 return nullptr;
415 InstructionUseExpr *E = createExpr(I);
416 E->setVolatile(I->isVolatile());
417 return E;
418 }
419
420 public:
421 ValueTable() = default;
422
423 /// Set basic blocks reachable from entry block.
setReachableBBs(const BasicBlocksSet & ReachableBBs)424 void setReachableBBs(const BasicBlocksSet &ReachableBBs) {
425 this->ReachableBBs = ReachableBBs;
426 }
427
428 /// Returns the value number for the specified value, assigning
429 /// it a new number if it did not have one before.
lookupOrAdd(Value * V)430 uint32_t lookupOrAdd(Value *V) {
431 auto VI = ValueNumbering.find(V);
432 if (VI != ValueNumbering.end())
433 return VI->second;
434
435 if (!isa<Instruction>(V)) {
436 ValueNumbering[V] = nextValueNumber;
437 return nextValueNumber++;
438 }
439
440 Instruction *I = cast<Instruction>(V);
441 if (!ReachableBBs.contains(I->getParent()))
442 return ~0U;
443
444 InstructionUseExpr *exp = nullptr;
445 switch (I->getOpcode()) {
446 case Instruction::Load:
447 exp = createMemoryExpr(cast<LoadInst>(I));
448 break;
449 case Instruction::Store:
450 exp = createMemoryExpr(cast<StoreInst>(I));
451 break;
452 case Instruction::Call:
453 case Instruction::Invoke:
454 case Instruction::FNeg:
455 case Instruction::Add:
456 case Instruction::FAdd:
457 case Instruction::Sub:
458 case Instruction::FSub:
459 case Instruction::Mul:
460 case Instruction::FMul:
461 case Instruction::UDiv:
462 case Instruction::SDiv:
463 case Instruction::FDiv:
464 case Instruction::URem:
465 case Instruction::SRem:
466 case Instruction::FRem:
467 case Instruction::Shl:
468 case Instruction::LShr:
469 case Instruction::AShr:
470 case Instruction::And:
471 case Instruction::Or:
472 case Instruction::Xor:
473 case Instruction::ICmp:
474 case Instruction::FCmp:
475 case Instruction::Trunc:
476 case Instruction::ZExt:
477 case Instruction::SExt:
478 case Instruction::FPToUI:
479 case Instruction::FPToSI:
480 case Instruction::UIToFP:
481 case Instruction::SIToFP:
482 case Instruction::FPTrunc:
483 case Instruction::FPExt:
484 case Instruction::PtrToInt:
485 case Instruction::IntToPtr:
486 case Instruction::BitCast:
487 case Instruction::AddrSpaceCast:
488 case Instruction::Select:
489 case Instruction::ExtractElement:
490 case Instruction::InsertElement:
491 case Instruction::ShuffleVector:
492 case Instruction::InsertValue:
493 case Instruction::GetElementPtr:
494 exp = createExpr(I);
495 break;
496 default:
497 break;
498 }
499
500 if (!exp) {
501 ValueNumbering[V] = nextValueNumber;
502 return nextValueNumber++;
503 }
504
505 uint32_t e = ExpressionNumbering[exp];
506 if (!e) {
507 hash_code H = exp->getHashValue([=](Value *V) { return lookupOrAdd(V); });
508 auto I = HashNumbering.find(H);
509 if (I != HashNumbering.end()) {
510 e = I->second;
511 } else {
512 e = nextValueNumber++;
513 HashNumbering[H] = e;
514 ExpressionNumbering[exp] = e;
515 }
516 }
517 ValueNumbering[V] = e;
518 return e;
519 }
520
521 /// Returns the value number of the specified value. Fails if the value has
522 /// not yet been numbered.
lookup(Value * V) const523 uint32_t lookup(Value *V) const {
524 auto VI = ValueNumbering.find(V);
525 assert(VI != ValueNumbering.end() && "Value not numbered?");
526 return VI->second;
527 }
528
529 /// Removes all value numberings and resets the value table.
clear()530 void clear() {
531 ValueNumbering.clear();
532 ExpressionNumbering.clear();
533 HashNumbering.clear();
534 Recycler.clear(Allocator);
535 nextValueNumber = 1;
536 }
537
538 /// \c Inst uses or touches memory. Return an ID describing the memory state
539 /// at \c Inst such that if getMemoryUseOrder(I1) == getMemoryUseOrder(I2),
540 /// the exact same memory operations happen after I1 and I2.
541 ///
542 /// This is a very hard problem in general, so we use domain-specific
543 /// knowledge that we only ever check for equivalence between blocks sharing a
544 /// single immediate successor that is common, and when determining if I1 ==
545 /// I2 we will have already determined that next(I1) == next(I2). This
546 /// inductive property allows us to simply return the value number of the next
547 /// instruction that defines memory.
getMemoryUseOrder(Instruction * Inst)548 uint32_t getMemoryUseOrder(Instruction *Inst) {
549 auto *BB = Inst->getParent();
550 for (auto I = std::next(Inst->getIterator()), E = BB->end();
551 I != E && !I->isTerminator(); ++I) {
552 if (!isMemoryInst(&*I))
553 continue;
554 if (isa<LoadInst>(&*I))
555 continue;
556 CallInst *CI = dyn_cast<CallInst>(&*I);
557 if (CI && CI->onlyReadsMemory())
558 continue;
559 InvokeInst *II = dyn_cast<InvokeInst>(&*I);
560 if (II && II->onlyReadsMemory())
561 continue;
562 return lookupOrAdd(&*I);
563 }
564 return 0;
565 }
566 };
567
568 //===----------------------------------------------------------------------===//
569
570 class GVNSink {
571 public:
572 GVNSink() = default;
573
run(Function & F)574 bool run(Function &F) {
575 LLVM_DEBUG(dbgs() << "GVNSink: running on function @" << F.getName()
576 << "\n");
577
578 unsigned NumSunk = 0;
579 ReversePostOrderTraversal<Function*> RPOT(&F);
580 VN.setReachableBBs(BasicBlocksSet(RPOT.begin(), RPOT.end()));
581 for (auto *N : RPOT)
582 NumSunk += sinkBB(N);
583
584 return NumSunk > 0;
585 }
586
587 private:
588 ValueTable VN;
589
shouldAvoidSinkingInstruction(Instruction * I)590 bool shouldAvoidSinkingInstruction(Instruction *I) {
591 // These instructions may change or break semantics if moved.
592 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
593 I->getType()->isTokenTy())
594 return true;
595 return false;
596 }
597
598 /// The main heuristic function. Analyze the set of instructions pointed to by
599 /// LRI and return a candidate solution if these instructions can be sunk, or
600 /// std::nullopt otherwise.
601 std::optional<SinkingInstructionCandidate> analyzeInstructionForSinking(
602 LockstepReverseIterator &LRI, unsigned &InstNum, unsigned &MemoryInstNum,
603 ModelledPHISet &NeededPHIs, SmallPtrSetImpl<Value *> &PHIContents);
604
605 /// Create a ModelledPHI for each PHI in BB, adding to PHIs.
analyzeInitialPHIs(BasicBlock * BB,ModelledPHISet & PHIs,SmallPtrSetImpl<Value * > & PHIContents)606 void analyzeInitialPHIs(BasicBlock *BB, ModelledPHISet &PHIs,
607 SmallPtrSetImpl<Value *> &PHIContents) {
608 for (PHINode &PN : BB->phis()) {
609 auto MPHI = ModelledPHI(&PN);
610 PHIs.insert(MPHI);
611 for (auto *V : MPHI.getValues())
612 PHIContents.insert(V);
613 }
614 }
615
616 /// The main instruction sinking driver. Set up state and try and sink
617 /// instructions into BBEnd from its predecessors.
618 unsigned sinkBB(BasicBlock *BBEnd);
619
620 /// Perform the actual mechanics of sinking an instruction from Blocks into
621 /// BBEnd, which is their only successor.
622 void sinkLastInstruction(ArrayRef<BasicBlock *> Blocks, BasicBlock *BBEnd);
623
624 /// Remove PHIs that all have the same incoming value.
foldPointlessPHINodes(BasicBlock * BB)625 void foldPointlessPHINodes(BasicBlock *BB) {
626 auto I = BB->begin();
627 while (PHINode *PN = dyn_cast<PHINode>(I++)) {
628 if (!llvm::all_of(PN->incoming_values(), [&](const Value *V) {
629 return V == PN->getIncomingValue(0);
630 }))
631 continue;
632 if (PN->getIncomingValue(0) != PN)
633 PN->replaceAllUsesWith(PN->getIncomingValue(0));
634 else
635 PN->replaceAllUsesWith(PoisonValue::get(PN->getType()));
636 PN->eraseFromParent();
637 }
638 }
639 };
640
641 std::optional<SinkingInstructionCandidate>
analyzeInstructionForSinking(LockstepReverseIterator & LRI,unsigned & InstNum,unsigned & MemoryInstNum,ModelledPHISet & NeededPHIs,SmallPtrSetImpl<Value * > & PHIContents)642 GVNSink::analyzeInstructionForSinking(LockstepReverseIterator &LRI,
643 unsigned &InstNum,
644 unsigned &MemoryInstNum,
645 ModelledPHISet &NeededPHIs,
646 SmallPtrSetImpl<Value *> &PHIContents) {
647 auto Insts = *LRI;
648 LLVM_DEBUG(dbgs() << " -- Analyzing instruction set: [\n"; for (auto *I
649 : Insts) {
650 I->dump();
651 } dbgs() << " ]\n";);
652
653 DenseMap<uint32_t, unsigned> VNums;
654 for (auto *I : Insts) {
655 uint32_t N = VN.lookupOrAdd(I);
656 LLVM_DEBUG(dbgs() << " VN=" << Twine::utohexstr(N) << " for" << *I << "\n");
657 if (N == ~0U)
658 return std::nullopt;
659 VNums[N]++;
660 }
661 unsigned VNumToSink =
662 std::max_element(VNums.begin(), VNums.end(), llvm::less_second())->first;
663
664 if (VNums[VNumToSink] == 1)
665 // Can't sink anything!
666 return std::nullopt;
667
668 // Now restrict the number of incoming blocks down to only those with
669 // VNumToSink.
670 auto &ActivePreds = LRI.getActiveBlocks();
671 unsigned InitialActivePredSize = ActivePreds.size();
672 SmallVector<Instruction *, 4> NewInsts;
673 for (auto *I : Insts) {
674 if (VN.lookup(I) != VNumToSink)
675 ActivePreds.remove(I->getParent());
676 else
677 NewInsts.push_back(I);
678 }
679 for (auto *I : NewInsts)
680 if (shouldAvoidSinkingInstruction(I))
681 return std::nullopt;
682
683 // If we've restricted the incoming blocks, restrict all needed PHIs also
684 // to that set.
685 bool RecomputePHIContents = false;
686 if (ActivePreds.size() != InitialActivePredSize) {
687 ModelledPHISet NewNeededPHIs;
688 for (auto P : NeededPHIs) {
689 P.restrictToBlocks(ActivePreds);
690 NewNeededPHIs.insert(P);
691 }
692 NeededPHIs = NewNeededPHIs;
693 LRI.restrictToBlocks(ActivePreds);
694 RecomputePHIContents = true;
695 }
696
697 // The sunk instruction's results.
698 ModelledPHI NewPHI(NewInsts, ActivePreds);
699
700 // Does sinking this instruction render previous PHIs redundant?
701 if (NeededPHIs.erase(NewPHI))
702 RecomputePHIContents = true;
703
704 if (RecomputePHIContents) {
705 // The needed PHIs have changed, so recompute the set of all needed
706 // values.
707 PHIContents.clear();
708 for (auto &PHI : NeededPHIs)
709 PHIContents.insert(PHI.getValues().begin(), PHI.getValues().end());
710 }
711
712 // Is this instruction required by a later PHI that doesn't match this PHI?
713 // if so, we can't sink this instruction.
714 for (auto *V : NewPHI.getValues())
715 if (PHIContents.count(V))
716 // V exists in this PHI, but the whole PHI is different to NewPHI
717 // (else it would have been removed earlier). We cannot continue
718 // because this isn't representable.
719 return std::nullopt;
720
721 // Which operands need PHIs?
722 // FIXME: If any of these fail, we should partition up the candidates to
723 // try and continue making progress.
724 Instruction *I0 = NewInsts[0];
725
726 // If all instructions that are going to participate don't have the same
727 // number of operands, we can't do any useful PHI analysis for all operands.
728 auto hasDifferentNumOperands = [&I0](Instruction *I) {
729 return I->getNumOperands() != I0->getNumOperands();
730 };
731 if (any_of(NewInsts, hasDifferentNumOperands))
732 return std::nullopt;
733
734 for (unsigned OpNum = 0, E = I0->getNumOperands(); OpNum != E; ++OpNum) {
735 ModelledPHI PHI(NewInsts, OpNum, ActivePreds);
736 if (PHI.areAllIncomingValuesSame())
737 continue;
738 if (!canReplaceOperandWithVariable(I0, OpNum))
739 // We can 't create a PHI from this instruction!
740 return std::nullopt;
741 if (NeededPHIs.count(PHI))
742 continue;
743 if (!PHI.areAllIncomingValuesSameType())
744 return std::nullopt;
745 // Don't create indirect calls! The called value is the final operand.
746 if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OpNum == E - 1 &&
747 PHI.areAnyIncomingValuesConstant())
748 return std::nullopt;
749
750 NeededPHIs.reserve(NeededPHIs.size());
751 NeededPHIs.insert(PHI);
752 PHIContents.insert(PHI.getValues().begin(), PHI.getValues().end());
753 }
754
755 if (isMemoryInst(NewInsts[0]))
756 ++MemoryInstNum;
757
758 SinkingInstructionCandidate Cand;
759 Cand.NumInstructions = ++InstNum;
760 Cand.NumMemoryInsts = MemoryInstNum;
761 Cand.NumBlocks = ActivePreds.size();
762 Cand.NumPHIs = NeededPHIs.size();
763 append_range(Cand.Blocks, ActivePreds);
764
765 return Cand;
766 }
767
sinkBB(BasicBlock * BBEnd)768 unsigned GVNSink::sinkBB(BasicBlock *BBEnd) {
769 LLVM_DEBUG(dbgs() << "GVNSink: running on basic block ";
770 BBEnd->printAsOperand(dbgs()); dbgs() << "\n");
771 SmallVector<BasicBlock *, 4> Preds;
772 for (auto *B : predecessors(BBEnd)) {
773 auto *T = B->getTerminator();
774 if (isa<BranchInst>(T) || isa<SwitchInst>(T))
775 Preds.push_back(B);
776 else
777 return 0;
778 }
779 if (Preds.size() < 2)
780 return 0;
781 llvm::sort(Preds);
782
783 unsigned NumOrigPreds = Preds.size();
784 // We can only sink instructions through unconditional branches.
785 llvm::erase_if(Preds, [](BasicBlock *BB) {
786 return BB->getTerminator()->getNumSuccessors() != 1;
787 });
788
789 LockstepReverseIterator LRI(Preds);
790 SmallVector<SinkingInstructionCandidate, 4> Candidates;
791 unsigned InstNum = 0, MemoryInstNum = 0;
792 ModelledPHISet NeededPHIs;
793 SmallPtrSet<Value *, 4> PHIContents;
794 analyzeInitialPHIs(BBEnd, NeededPHIs, PHIContents);
795 unsigned NumOrigPHIs = NeededPHIs.size();
796
797 while (LRI.isValid()) {
798 auto Cand = analyzeInstructionForSinking(LRI, InstNum, MemoryInstNum,
799 NeededPHIs, PHIContents);
800 if (!Cand)
801 break;
802 Cand->calculateCost(NumOrigPHIs, Preds.size());
803 Candidates.emplace_back(*Cand);
804 --LRI;
805 }
806
807 llvm::stable_sort(Candidates, std::greater<SinkingInstructionCandidate>());
808 LLVM_DEBUG(dbgs() << " -- Sinking candidates:\n"; for (auto &C
809 : Candidates) dbgs()
810 << " " << C << "\n";);
811
812 // Pick the top candidate, as long it is positive!
813 if (Candidates.empty() || Candidates.front().Cost <= 0)
814 return 0;
815 auto C = Candidates.front();
816
817 LLVM_DEBUG(dbgs() << " -- Sinking: " << C << "\n");
818 BasicBlock *InsertBB = BBEnd;
819 if (C.Blocks.size() < NumOrigPreds) {
820 LLVM_DEBUG(dbgs() << " -- Splitting edge to ";
821 BBEnd->printAsOperand(dbgs()); dbgs() << "\n");
822 InsertBB = SplitBlockPredecessors(BBEnd, C.Blocks, ".gvnsink.split");
823 if (!InsertBB) {
824 LLVM_DEBUG(dbgs() << " -- FAILED to split edge!\n");
825 // Edge couldn't be split.
826 return 0;
827 }
828 }
829
830 for (unsigned I = 0; I < C.NumInstructions; ++I)
831 sinkLastInstruction(C.Blocks, InsertBB);
832
833 return C.NumInstructions;
834 }
835
sinkLastInstruction(ArrayRef<BasicBlock * > Blocks,BasicBlock * BBEnd)836 void GVNSink::sinkLastInstruction(ArrayRef<BasicBlock *> Blocks,
837 BasicBlock *BBEnd) {
838 SmallVector<Instruction *, 4> Insts;
839 for (BasicBlock *BB : Blocks)
840 Insts.push_back(BB->getTerminator()->getPrevNode());
841 Instruction *I0 = Insts.front();
842
843 SmallVector<Value *, 4> NewOperands;
844 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
845 bool NeedPHI = llvm::any_of(Insts, [&I0, O](const Instruction *I) {
846 return I->getOperand(O) != I0->getOperand(O);
847 });
848 if (!NeedPHI) {
849 NewOperands.push_back(I0->getOperand(O));
850 continue;
851 }
852
853 // Create a new PHI in the successor block and populate it.
854 auto *Op = I0->getOperand(O);
855 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
856 auto *PN = PHINode::Create(Op->getType(), Insts.size(),
857 Op->getName() + ".sink", &BBEnd->front());
858 for (auto *I : Insts)
859 PN->addIncoming(I->getOperand(O), I->getParent());
860 NewOperands.push_back(PN);
861 }
862
863 // Arbitrarily use I0 as the new "common" instruction; remap its operands
864 // and move it to the start of the successor block.
865 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
866 I0->getOperandUse(O).set(NewOperands[O]);
867 I0->moveBefore(&*BBEnd->getFirstInsertionPt());
868
869 // Update metadata and IR flags.
870 for (auto *I : Insts)
871 if (I != I0) {
872 combineMetadataForCSE(I0, I, true);
873 I0->andIRFlags(I);
874 }
875
876 for (auto *I : Insts)
877 if (I != I0)
878 I->replaceAllUsesWith(I0);
879 foldPointlessPHINodes(BBEnd);
880
881 // Finally nuke all instructions apart from the common instruction.
882 for (auto *I : Insts)
883 if (I != I0)
884 I->eraseFromParent();
885
886 NumRemoved += Insts.size() - 1;
887 }
888
889 ////////////////////////////////////////////////////////////////////////////////
890 // Pass machinery / boilerplate
891
892 class GVNSinkLegacyPass : public FunctionPass {
893 public:
894 static char ID;
895
GVNSinkLegacyPass()896 GVNSinkLegacyPass() : FunctionPass(ID) {
897 initializeGVNSinkLegacyPassPass(*PassRegistry::getPassRegistry());
898 }
899
runOnFunction(Function & F)900 bool runOnFunction(Function &F) override {
901 if (skipFunction(F))
902 return false;
903 GVNSink G;
904 return G.run(F);
905 }
906
getAnalysisUsage(AnalysisUsage & AU) const907 void getAnalysisUsage(AnalysisUsage &AU) const override {
908 AU.addPreserved<GlobalsAAWrapperPass>();
909 }
910 };
911
912 } // end anonymous namespace
913
run(Function & F,FunctionAnalysisManager & AM)914 PreservedAnalyses GVNSinkPass::run(Function &F, FunctionAnalysisManager &AM) {
915 GVNSink G;
916 if (!G.run(F))
917 return PreservedAnalyses::all();
918 return PreservedAnalyses::none();
919 }
920
921 char GVNSinkLegacyPass::ID = 0;
922
923 INITIALIZE_PASS_BEGIN(GVNSinkLegacyPass, "gvn-sink",
924 "Early GVN sinking of Expressions", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)925 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
926 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
927 INITIALIZE_PASS_END(GVNSinkLegacyPass, "gvn-sink",
928 "Early GVN sinking of Expressions", false, false)
929
930 FunctionPass *llvm::createGVNSinkPass() { return new GVNSinkLegacyPass(); }
931