1 //===- AddressSanitizer.cpp - memory error detector -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is a part of AddressSanitizer, an address basic correctness 10 // checker. 11 // Details of the algorithm: 12 // https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm 13 // 14 // FIXME: This sanitizer does not yet handle scalable vectors 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 19 #include "llvm/ADT/ArrayRef.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DepthFirstIterator.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/ADT/StringExtras.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Twine.h" 28 #include "llvm/Analysis/GlobalsModRef.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/StackSafetyAnalysis.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/BinaryFormat/MachO.h" 34 #include "llvm/Demangle/Demangle.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Comdat.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DIBuilder.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/DebugInfoMetadata.h" 44 #include "llvm/IR/DebugLoc.h" 45 #include "llvm/IR/DerivedTypes.h" 46 #include "llvm/IR/EHPersonalities.h" 47 #include "llvm/IR/Function.h" 48 #include "llvm/IR/GlobalAlias.h" 49 #include "llvm/IR/GlobalValue.h" 50 #include "llvm/IR/GlobalVariable.h" 51 #include "llvm/IR/IRBuilder.h" 52 #include "llvm/IR/InlineAsm.h" 53 #include "llvm/IR/InstVisitor.h" 54 #include "llvm/IR/InstrTypes.h" 55 #include "llvm/IR/Instruction.h" 56 #include "llvm/IR/Instructions.h" 57 #include "llvm/IR/IntrinsicInst.h" 58 #include "llvm/IR/Intrinsics.h" 59 #include "llvm/IR/LLVMContext.h" 60 #include "llvm/IR/MDBuilder.h" 61 #include "llvm/IR/Metadata.h" 62 #include "llvm/IR/Module.h" 63 #include "llvm/IR/Type.h" 64 #include "llvm/IR/Use.h" 65 #include "llvm/IR/Value.h" 66 #include "llvm/MC/MCSectionMachO.h" 67 #include "llvm/Support/Casting.h" 68 #include "llvm/Support/CommandLine.h" 69 #include "llvm/Support/Debug.h" 70 #include "llvm/Support/ErrorHandling.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/TargetParser/Triple.h" 74 #include "llvm/Transforms/Instrumentation/AddressSanitizerCommon.h" 75 #include "llvm/Transforms/Instrumentation/AddressSanitizerOptions.h" 76 #include "llvm/Transforms/Utils/ASanStackFrameLayout.h" 77 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 78 #include "llvm/Transforms/Utils/Instrumentation.h" 79 #include "llvm/Transforms/Utils/Local.h" 80 #include "llvm/Transforms/Utils/ModuleUtils.h" 81 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 82 #include <algorithm> 83 #include <cassert> 84 #include <cstddef> 85 #include <cstdint> 86 #include <iomanip> 87 #include <limits> 88 #include <sstream> 89 #include <string> 90 #include <tuple> 91 92 using namespace llvm; 93 94 #define DEBUG_TYPE "asan" 95 96 static const uint64_t kDefaultShadowScale = 3; 97 static const uint64_t kDefaultShadowOffset32 = 1ULL << 29; 98 static const uint64_t kDefaultShadowOffset64 = 1ULL << 44; 99 static const uint64_t kDynamicShadowSentinel = 100 std::numeric_limits<uint64_t>::max(); 101 static const uint64_t kSmallX86_64ShadowOffsetBase = 0x7FFFFFFF; // < 2G. 102 static const uint64_t kSmallX86_64ShadowOffsetAlignMask = ~0xFFFULL; 103 static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000; 104 static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 44; 105 static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52; 106 static const uint64_t kMIPS_ShadowOffsetN32 = 1ULL << 29; 107 static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000; 108 static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37; 109 static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36; 110 static const uint64_t kLoongArch64_ShadowOffset64 = 1ULL << 46; 111 static const uint64_t kRISCV64_ShadowOffset64 = kDynamicShadowSentinel; 112 static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30; 113 static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46; 114 static const uint64_t kFreeBSDAArch64_ShadowOffset64 = 1ULL << 47; 115 static const uint64_t kFreeBSDKasan_ShadowOffset64 = 0xdffff7c000000000; 116 static const uint64_t kNetBSD_ShadowOffset32 = 1ULL << 30; 117 static const uint64_t kNetBSD_ShadowOffset64 = 1ULL << 46; 118 static const uint64_t kNetBSDKasan_ShadowOffset64 = 0xdfff900000000000; 119 static const uint64_t kPS_ShadowOffset64 = 1ULL << 40; 120 static const uint64_t kWindowsShadowOffset32 = 3ULL << 28; 121 static const uint64_t kEmscriptenShadowOffset = 0; 122 123 // The shadow memory space is dynamically allocated. 124 static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel; 125 126 static const size_t kMinStackMallocSize = 1 << 6; // 64B 127 static const size_t kMaxStackMallocSize = 1 << 16; // 64K 128 static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3; 129 static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E; 130 131 const char kAsanModuleCtorName[] = "asan.module_ctor"; 132 const char kAsanModuleDtorName[] = "asan.module_dtor"; 133 static const uint64_t kAsanCtorAndDtorPriority = 1; 134 // On Emscripten, the system needs more than one priorities for constructors. 135 static const uint64_t kAsanEmscriptenCtorAndDtorPriority = 50; 136 const char kAsanReportErrorTemplate[] = "__asan_report_"; 137 const char kAsanRegisterGlobalsName[] = "__asan_register_globals"; 138 const char kAsanUnregisterGlobalsName[] = "__asan_unregister_globals"; 139 const char kAsanRegisterImageGlobalsName[] = "__asan_register_image_globals"; 140 const char kAsanUnregisterImageGlobalsName[] = 141 "__asan_unregister_image_globals"; 142 const char kAsanRegisterElfGlobalsName[] = "__asan_register_elf_globals"; 143 const char kAsanUnregisterElfGlobalsName[] = "__asan_unregister_elf_globals"; 144 const char kAsanPoisonGlobalsName[] = "__asan_before_dynamic_init"; 145 const char kAsanUnpoisonGlobalsName[] = "__asan_after_dynamic_init"; 146 const char kAsanInitName[] = "__asan_init"; 147 const char kAsanVersionCheckNamePrefix[] = "__asan_version_mismatch_check_v"; 148 const char kAsanPtrCmp[] = "__sanitizer_ptr_cmp"; 149 const char kAsanPtrSub[] = "__sanitizer_ptr_sub"; 150 const char kAsanHandleNoReturnName[] = "__asan_handle_no_return"; 151 static const int kMaxAsanStackMallocSizeClass = 10; 152 const char kAsanStackMallocNameTemplate[] = "__asan_stack_malloc_"; 153 const char kAsanStackMallocAlwaysNameTemplate[] = 154 "__asan_stack_malloc_always_"; 155 const char kAsanStackFreeNameTemplate[] = "__asan_stack_free_"; 156 const char kAsanGenPrefix[] = "___asan_gen_"; 157 const char kODRGenPrefix[] = "__odr_asan_gen_"; 158 const char kSanCovGenPrefix[] = "__sancov_gen_"; 159 const char kAsanSetShadowPrefix[] = "__asan_set_shadow_"; 160 const char kAsanPoisonStackMemoryName[] = "__asan_poison_stack_memory"; 161 const char kAsanUnpoisonStackMemoryName[] = "__asan_unpoison_stack_memory"; 162 163 // ASan version script has __asan_* wildcard. Triple underscore prevents a 164 // linker (gold) warning about attempting to export a local symbol. 165 const char kAsanGlobalsRegisteredFlagName[] = "___asan_globals_registered"; 166 167 const char kAsanOptionDetectUseAfterReturn[] = 168 "__asan_option_detect_stack_use_after_return"; 169 170 const char kAsanShadowMemoryDynamicAddress[] = 171 "__asan_shadow_memory_dynamic_address"; 172 173 const char kAsanAllocaPoison[] = "__asan_alloca_poison"; 174 const char kAsanAllocasUnpoison[] = "__asan_allocas_unpoison"; 175 176 const char kAMDGPUAddressSharedName[] = "llvm.amdgcn.is.shared"; 177 const char kAMDGPUAddressPrivateName[] = "llvm.amdgcn.is.private"; 178 const char kAMDGPUBallotName[] = "llvm.amdgcn.ballot.i64"; 179 const char kAMDGPUUnreachableName[] = "llvm.amdgcn.unreachable"; 180 181 // Accesses sizes are powers of two: 1, 2, 4, 8, 16. 182 static const size_t kNumberOfAccessSizes = 5; 183 184 static const uint64_t kAllocaRzSize = 32; 185 186 // ASanAccessInfo implementation constants. 187 constexpr size_t kCompileKernelShift = 0; 188 constexpr size_t kCompileKernelMask = 0x1; 189 constexpr size_t kAccessSizeIndexShift = 1; 190 constexpr size_t kAccessSizeIndexMask = 0xf; 191 constexpr size_t kIsWriteShift = 5; 192 constexpr size_t kIsWriteMask = 0x1; 193 194 // Command-line flags. 195 196 static cl::opt<bool> ClEnableKasan( 197 "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"), 198 cl::Hidden, cl::init(false)); 199 200 static cl::opt<bool> ClRecover( 201 "asan-recover", 202 cl::desc("Enable recovery mode (continue-after-error)."), 203 cl::Hidden, cl::init(false)); 204 205 static cl::opt<bool> ClInsertVersionCheck( 206 "asan-guard-against-version-mismatch", 207 cl::desc("Guard against compiler/runtime version mismatch."), cl::Hidden, 208 cl::init(true)); 209 210 // This flag may need to be replaced with -f[no-]asan-reads. 211 static cl::opt<bool> ClInstrumentReads("asan-instrument-reads", 212 cl::desc("instrument read instructions"), 213 cl::Hidden, cl::init(true)); 214 215 static cl::opt<bool> ClInstrumentWrites( 216 "asan-instrument-writes", cl::desc("instrument write instructions"), 217 cl::Hidden, cl::init(true)); 218 219 static cl::opt<bool> 220 ClUseStackSafety("asan-use-stack-safety", cl::Hidden, cl::init(true), 221 cl::Hidden, cl::desc("Use Stack Safety analysis results"), 222 cl::Optional); 223 224 static cl::opt<bool> ClInstrumentAtomics( 225 "asan-instrument-atomics", 226 cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden, 227 cl::init(true)); 228 229 static cl::opt<bool> 230 ClInstrumentByval("asan-instrument-byval", 231 cl::desc("instrument byval call arguments"), cl::Hidden, 232 cl::init(true)); 233 234 static cl::opt<bool> ClAlwaysSlowPath( 235 "asan-always-slow-path", 236 cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden, 237 cl::init(false)); 238 239 static cl::opt<bool> ClForceDynamicShadow( 240 "asan-force-dynamic-shadow", 241 cl::desc("Load shadow address into a local variable for each function"), 242 cl::Hidden, cl::init(false)); 243 244 static cl::opt<bool> 245 ClWithIfunc("asan-with-ifunc", 246 cl::desc("Access dynamic shadow through an ifunc global on " 247 "platforms that support this"), 248 cl::Hidden, cl::init(true)); 249 250 static cl::opt<bool> ClWithIfuncSuppressRemat( 251 "asan-with-ifunc-suppress-remat", 252 cl::desc("Suppress rematerialization of dynamic shadow address by passing " 253 "it through inline asm in prologue."), 254 cl::Hidden, cl::init(true)); 255 256 // This flag limits the number of instructions to be instrumented 257 // in any given BB. Normally, this should be set to unlimited (INT_MAX), 258 // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary 259 // set it to 10000. 260 static cl::opt<int> ClMaxInsnsToInstrumentPerBB( 261 "asan-max-ins-per-bb", cl::init(10000), 262 cl::desc("maximal number of instructions to instrument in any given BB"), 263 cl::Hidden); 264 265 // This flag may need to be replaced with -f[no]asan-stack. 266 static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"), 267 cl::Hidden, cl::init(true)); 268 static cl::opt<uint32_t> ClMaxInlinePoisoningSize( 269 "asan-max-inline-poisoning-size", 270 cl::desc( 271 "Inline shadow poisoning for blocks up to the given size in bytes."), 272 cl::Hidden, cl::init(64)); 273 274 static cl::opt<AsanDetectStackUseAfterReturnMode> ClUseAfterReturn( 275 "asan-use-after-return", 276 cl::desc("Sets the mode of detection for stack-use-after-return."), 277 cl::values( 278 clEnumValN(AsanDetectStackUseAfterReturnMode::Never, "never", 279 "Never detect stack use after return."), 280 clEnumValN( 281 AsanDetectStackUseAfterReturnMode::Runtime, "runtime", 282 "Detect stack use after return if " 283 "binary flag 'ASAN_OPTIONS=detect_stack_use_after_return' is set."), 284 clEnumValN(AsanDetectStackUseAfterReturnMode::Always, "always", 285 "Always detect stack use after return.")), 286 cl::Hidden, cl::init(AsanDetectStackUseAfterReturnMode::Runtime)); 287 288 static cl::opt<bool> ClRedzoneByvalArgs("asan-redzone-byval-args", 289 cl::desc("Create redzones for byval " 290 "arguments (extra copy " 291 "required)"), cl::Hidden, 292 cl::init(true)); 293 294 static cl::opt<bool> ClUseAfterScope("asan-use-after-scope", 295 cl::desc("Check stack-use-after-scope"), 296 cl::Hidden, cl::init(false)); 297 298 // This flag may need to be replaced with -f[no]asan-globals. 299 static cl::opt<bool> ClGlobals("asan-globals", 300 cl::desc("Handle global objects"), cl::Hidden, 301 cl::init(true)); 302 303 static cl::opt<bool> ClInitializers("asan-initialization-order", 304 cl::desc("Handle C++ initializer order"), 305 cl::Hidden, cl::init(true)); 306 307 static cl::opt<bool> ClInvalidPointerPairs( 308 "asan-detect-invalid-pointer-pair", 309 cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden, 310 cl::init(false)); 311 312 static cl::opt<bool> ClInvalidPointerCmp( 313 "asan-detect-invalid-pointer-cmp", 314 cl::desc("Instrument <, <=, >, >= with pointer operands"), cl::Hidden, 315 cl::init(false)); 316 317 static cl::opt<bool> ClInvalidPointerSub( 318 "asan-detect-invalid-pointer-sub", 319 cl::desc("Instrument - operations with pointer operands"), cl::Hidden, 320 cl::init(false)); 321 322 static cl::opt<unsigned> ClRealignStack( 323 "asan-realign-stack", 324 cl::desc("Realign stack to the value of this flag (power of two)"), 325 cl::Hidden, cl::init(32)); 326 327 static cl::opt<int> ClInstrumentationWithCallsThreshold( 328 "asan-instrumentation-with-call-threshold", 329 cl::desc("If the function being instrumented contains more than " 330 "this number of memory accesses, use callbacks instead of " 331 "inline checks (-1 means never use callbacks)."), 332 cl::Hidden, cl::init(7000)); 333 334 static cl::opt<std::string> ClMemoryAccessCallbackPrefix( 335 "asan-memory-access-callback-prefix", 336 cl::desc("Prefix for memory access callbacks"), cl::Hidden, 337 cl::init("__asan_")); 338 339 static cl::opt<bool> ClKasanMemIntrinCallbackPrefix( 340 "asan-kernel-mem-intrinsic-prefix", 341 cl::desc("Use prefix for memory intrinsics in KASAN mode"), cl::Hidden, 342 cl::init(false)); 343 344 static cl::opt<bool> 345 ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas", 346 cl::desc("instrument dynamic allocas"), 347 cl::Hidden, cl::init(true)); 348 349 static cl::opt<bool> ClSkipPromotableAllocas( 350 "asan-skip-promotable-allocas", 351 cl::desc("Do not instrument promotable allocas"), cl::Hidden, 352 cl::init(true)); 353 354 static cl::opt<AsanCtorKind> ClConstructorKind( 355 "asan-constructor-kind", 356 cl::desc("Sets the ASan constructor kind"), 357 cl::values(clEnumValN(AsanCtorKind::None, "none", "No constructors"), 358 clEnumValN(AsanCtorKind::Global, "global", 359 "Use global constructors")), 360 cl::init(AsanCtorKind::Global), cl::Hidden); 361 // These flags allow to change the shadow mapping. 362 // The shadow mapping looks like 363 // Shadow = (Mem >> scale) + offset 364 365 static cl::opt<int> ClMappingScale("asan-mapping-scale", 366 cl::desc("scale of asan shadow mapping"), 367 cl::Hidden, cl::init(0)); 368 369 static cl::opt<uint64_t> 370 ClMappingOffset("asan-mapping-offset", 371 cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"), 372 cl::Hidden, cl::init(0)); 373 374 // Optimization flags. Not user visible, used mostly for testing 375 // and benchmarking the tool. 376 377 static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"), 378 cl::Hidden, cl::init(true)); 379 380 static cl::opt<bool> ClOptimizeCallbacks("asan-optimize-callbacks", 381 cl::desc("Optimize callbacks"), 382 cl::Hidden, cl::init(false)); 383 384 static cl::opt<bool> ClOptSameTemp( 385 "asan-opt-same-temp", cl::desc("Instrument the same temp just once"), 386 cl::Hidden, cl::init(true)); 387 388 static cl::opt<bool> ClOptGlobals("asan-opt-globals", 389 cl::desc("Don't instrument scalar globals"), 390 cl::Hidden, cl::init(true)); 391 392 static cl::opt<bool> ClOptStack( 393 "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"), 394 cl::Hidden, cl::init(false)); 395 396 static cl::opt<bool> ClDynamicAllocaStack( 397 "asan-stack-dynamic-alloca", 398 cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden, 399 cl::init(true)); 400 401 static cl::opt<uint32_t> ClForceExperiment( 402 "asan-force-experiment", 403 cl::desc("Force optimization experiment (for testing)"), cl::Hidden, 404 cl::init(0)); 405 406 static cl::opt<bool> 407 ClUsePrivateAlias("asan-use-private-alias", 408 cl::desc("Use private aliases for global variables"), 409 cl::Hidden, cl::init(true)); 410 411 static cl::opt<bool> 412 ClUseOdrIndicator("asan-use-odr-indicator", 413 cl::desc("Use odr indicators to improve ODR reporting"), 414 cl::Hidden, cl::init(true)); 415 416 static cl::opt<bool> 417 ClUseGlobalsGC("asan-globals-live-support", 418 cl::desc("Use linker features to support dead " 419 "code stripping of globals"), 420 cl::Hidden, cl::init(true)); 421 422 // This is on by default even though there is a bug in gold: 423 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 424 static cl::opt<bool> 425 ClWithComdat("asan-with-comdat", 426 cl::desc("Place ASan constructors in comdat sections"), 427 cl::Hidden, cl::init(true)); 428 429 static cl::opt<AsanDtorKind> ClOverrideDestructorKind( 430 "asan-destructor-kind", 431 cl::desc("Sets the ASan destructor kind. The default is to use the value " 432 "provided to the pass constructor"), 433 cl::values(clEnumValN(AsanDtorKind::None, "none", "No destructors"), 434 clEnumValN(AsanDtorKind::Global, "global", 435 "Use global destructors")), 436 cl::init(AsanDtorKind::Invalid), cl::Hidden); 437 438 // Debug flags. 439 440 static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden, 441 cl::init(0)); 442 443 static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"), 444 cl::Hidden, cl::init(0)); 445 446 static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden, 447 cl::desc("Debug func")); 448 449 static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"), 450 cl::Hidden, cl::init(-1)); 451 452 static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"), 453 cl::Hidden, cl::init(-1)); 454 455 STATISTIC(NumInstrumentedReads, "Number of instrumented reads"); 456 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes"); 457 STATISTIC(NumOptimizedAccessesToGlobalVar, 458 "Number of optimized accesses to global vars"); 459 STATISTIC(NumOptimizedAccessesToStackVar, 460 "Number of optimized accesses to stack vars"); 461 462 namespace { 463 464 /// This struct defines the shadow mapping using the rule: 465 /// shadow = (mem >> Scale) ADD-or-OR Offset. 466 /// If InGlobal is true, then 467 /// extern char __asan_shadow[]; 468 /// shadow = (mem >> Scale) + &__asan_shadow 469 struct ShadowMapping { 470 int Scale; 471 uint64_t Offset; 472 bool OrShadowOffset; 473 bool InGlobal; 474 }; 475 476 } // end anonymous namespace 477 478 static ShadowMapping getShadowMapping(const Triple &TargetTriple, int LongSize, 479 bool IsKasan) { 480 bool IsAndroid = TargetTriple.isAndroid(); 481 bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS() || 482 TargetTriple.isDriverKit(); 483 bool IsMacOS = TargetTriple.isMacOSX(); 484 bool IsFreeBSD = TargetTriple.isOSFreeBSD(); 485 bool IsNetBSD = TargetTriple.isOSNetBSD(); 486 bool IsPS = TargetTriple.isPS(); 487 bool IsLinux = TargetTriple.isOSLinux(); 488 bool IsPPC64 = TargetTriple.getArch() == Triple::ppc64 || 489 TargetTriple.getArch() == Triple::ppc64le; 490 bool IsSystemZ = TargetTriple.getArch() == Triple::systemz; 491 bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64; 492 bool IsMIPSN32ABI = TargetTriple.isABIN32(); 493 bool IsMIPS32 = TargetTriple.isMIPS32(); 494 bool IsMIPS64 = TargetTriple.isMIPS64(); 495 bool IsArmOrThumb = TargetTriple.isARM() || TargetTriple.isThumb(); 496 bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64 || 497 TargetTriple.getArch() == Triple::aarch64_be; 498 bool IsLoongArch64 = TargetTriple.isLoongArch64(); 499 bool IsRISCV64 = TargetTriple.getArch() == Triple::riscv64; 500 bool IsWindows = TargetTriple.isOSWindows(); 501 bool IsFuchsia = TargetTriple.isOSFuchsia(); 502 bool IsEmscripten = TargetTriple.isOSEmscripten(); 503 bool IsAMDGPU = TargetTriple.isAMDGPU(); 504 505 ShadowMapping Mapping; 506 507 Mapping.Scale = kDefaultShadowScale; 508 if (ClMappingScale.getNumOccurrences() > 0) { 509 Mapping.Scale = ClMappingScale; 510 } 511 512 if (LongSize == 32) { 513 if (IsAndroid) 514 Mapping.Offset = kDynamicShadowSentinel; 515 else if (IsMIPSN32ABI) 516 Mapping.Offset = kMIPS_ShadowOffsetN32; 517 else if (IsMIPS32) 518 Mapping.Offset = kMIPS32_ShadowOffset32; 519 else if (IsFreeBSD) 520 Mapping.Offset = kFreeBSD_ShadowOffset32; 521 else if (IsNetBSD) 522 Mapping.Offset = kNetBSD_ShadowOffset32; 523 else if (IsIOS) 524 Mapping.Offset = kDynamicShadowSentinel; 525 else if (IsWindows) 526 Mapping.Offset = kWindowsShadowOffset32; 527 else if (IsEmscripten) 528 Mapping.Offset = kEmscriptenShadowOffset; 529 else 530 Mapping.Offset = kDefaultShadowOffset32; 531 } else { // LongSize == 64 532 // Fuchsia is always PIE, which means that the beginning of the address 533 // space is always available. 534 if (IsFuchsia) 535 Mapping.Offset = 0; 536 else if (IsPPC64) 537 Mapping.Offset = kPPC64_ShadowOffset64; 538 else if (IsSystemZ) 539 Mapping.Offset = kSystemZ_ShadowOffset64; 540 else if (IsFreeBSD && IsAArch64) 541 Mapping.Offset = kFreeBSDAArch64_ShadowOffset64; 542 else if (IsFreeBSD && !IsMIPS64) { 543 if (IsKasan) 544 Mapping.Offset = kFreeBSDKasan_ShadowOffset64; 545 else 546 Mapping.Offset = kFreeBSD_ShadowOffset64; 547 } else if (IsNetBSD) { 548 if (IsKasan) 549 Mapping.Offset = kNetBSDKasan_ShadowOffset64; 550 else 551 Mapping.Offset = kNetBSD_ShadowOffset64; 552 } else if (IsPS) 553 Mapping.Offset = kPS_ShadowOffset64; 554 else if (IsLinux && IsX86_64) { 555 if (IsKasan) 556 Mapping.Offset = kLinuxKasan_ShadowOffset64; 557 else 558 Mapping.Offset = (kSmallX86_64ShadowOffsetBase & 559 (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale)); 560 } else if (IsWindows && IsX86_64) { 561 Mapping.Offset = kWindowsShadowOffset64; 562 } else if (IsMIPS64) 563 Mapping.Offset = kMIPS64_ShadowOffset64; 564 else if (IsIOS) 565 Mapping.Offset = kDynamicShadowSentinel; 566 else if (IsMacOS && IsAArch64) 567 Mapping.Offset = kDynamicShadowSentinel; 568 else if (IsAArch64) 569 Mapping.Offset = kAArch64_ShadowOffset64; 570 else if (IsLoongArch64) 571 Mapping.Offset = kLoongArch64_ShadowOffset64; 572 else if (IsRISCV64) 573 Mapping.Offset = kRISCV64_ShadowOffset64; 574 else if (IsAMDGPU) 575 Mapping.Offset = (kSmallX86_64ShadowOffsetBase & 576 (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale)); 577 else 578 Mapping.Offset = kDefaultShadowOffset64; 579 } 580 581 if (ClForceDynamicShadow) { 582 Mapping.Offset = kDynamicShadowSentinel; 583 } 584 585 if (ClMappingOffset.getNumOccurrences() > 0) { 586 Mapping.Offset = ClMappingOffset; 587 } 588 589 // OR-ing shadow offset if more efficient (at least on x86) if the offset 590 // is a power of two, but on ppc64 and loongarch64 we have to use add since 591 // the shadow offset is not necessarily 1/8-th of the address space. On 592 // SystemZ, we could OR the constant in a single instruction, but it's more 593 // efficient to load it once and use indexed addressing. 594 Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ && !IsPS && 595 !IsRISCV64 && !IsLoongArch64 && 596 !(Mapping.Offset & (Mapping.Offset - 1)) && 597 Mapping.Offset != kDynamicShadowSentinel; 598 bool IsAndroidWithIfuncSupport = 599 IsAndroid && !TargetTriple.isAndroidVersionLT(21); 600 Mapping.InGlobal = ClWithIfunc && IsAndroidWithIfuncSupport && IsArmOrThumb; 601 602 return Mapping; 603 } 604 605 namespace llvm { 606 void getAddressSanitizerParams(const Triple &TargetTriple, int LongSize, 607 bool IsKasan, uint64_t *ShadowBase, 608 int *MappingScale, bool *OrShadowOffset) { 609 auto Mapping = getShadowMapping(TargetTriple, LongSize, IsKasan); 610 *ShadowBase = Mapping.Offset; 611 *MappingScale = Mapping.Scale; 612 *OrShadowOffset = Mapping.OrShadowOffset; 613 } 614 615 ASanAccessInfo::ASanAccessInfo(int32_t Packed) 616 : Packed(Packed), 617 AccessSizeIndex((Packed >> kAccessSizeIndexShift) & kAccessSizeIndexMask), 618 IsWrite((Packed >> kIsWriteShift) & kIsWriteMask), 619 CompileKernel((Packed >> kCompileKernelShift) & kCompileKernelMask) {} 620 621 ASanAccessInfo::ASanAccessInfo(bool IsWrite, bool CompileKernel, 622 uint8_t AccessSizeIndex) 623 : Packed((IsWrite << kIsWriteShift) + 624 (CompileKernel << kCompileKernelShift) + 625 (AccessSizeIndex << kAccessSizeIndexShift)), 626 AccessSizeIndex(AccessSizeIndex), IsWrite(IsWrite), 627 CompileKernel(CompileKernel) {} 628 629 } // namespace llvm 630 631 static uint64_t getRedzoneSizeForScale(int MappingScale) { 632 // Redzone used for stack and globals is at least 32 bytes. 633 // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively. 634 return std::max(32U, 1U << MappingScale); 635 } 636 637 static uint64_t GetCtorAndDtorPriority(Triple &TargetTriple) { 638 if (TargetTriple.isOSEmscripten()) { 639 return kAsanEmscriptenCtorAndDtorPriority; 640 } else { 641 return kAsanCtorAndDtorPriority; 642 } 643 } 644 645 static Twine genName(StringRef suffix) { 646 return Twine(kAsanGenPrefix) + suffix; 647 } 648 649 namespace { 650 /// Helper RAII class to post-process inserted asan runtime calls during a 651 /// pass on a single Function. Upon end of scope, detects and applies the 652 /// required funclet OpBundle. 653 class RuntimeCallInserter { 654 Function *OwnerFn = nullptr; 655 bool TrackInsertedCalls = false; 656 SmallVector<CallInst *> InsertedCalls; 657 658 public: 659 RuntimeCallInserter(Function &Fn) : OwnerFn(&Fn) { 660 if (Fn.hasPersonalityFn()) { 661 auto Personality = classifyEHPersonality(Fn.getPersonalityFn()); 662 if (isScopedEHPersonality(Personality)) 663 TrackInsertedCalls = true; 664 } 665 } 666 667 ~RuntimeCallInserter() { 668 if (InsertedCalls.empty()) 669 return; 670 assert(TrackInsertedCalls && "Calls were wrongly tracked"); 671 672 DenseMap<BasicBlock *, ColorVector> BlockColors = colorEHFunclets(*OwnerFn); 673 for (CallInst *CI : InsertedCalls) { 674 BasicBlock *BB = CI->getParent(); 675 assert(BB && "Instruction doesn't belong to a BasicBlock"); 676 assert(BB->getParent() == OwnerFn && 677 "Instruction doesn't belong to the expected Function!"); 678 679 ColorVector &Colors = BlockColors[BB]; 680 // funclet opbundles are only valid in monochromatic BBs. 681 // Note that unreachable BBs are seen as colorless by colorEHFunclets() 682 // and will be DCE'ed later. 683 if (Colors.empty()) 684 continue; 685 if (Colors.size() != 1) { 686 OwnerFn->getContext().emitError( 687 "Instruction's BasicBlock is not monochromatic"); 688 continue; 689 } 690 691 BasicBlock *Color = Colors.front(); 692 BasicBlock::iterator EHPadIt = Color->getFirstNonPHIIt(); 693 694 if (EHPadIt != Color->end() && EHPadIt->isEHPad()) { 695 // Replace CI with a clone with an added funclet OperandBundle 696 OperandBundleDef OB("funclet", &*EHPadIt); 697 auto *NewCall = CallBase::addOperandBundle(CI, LLVMContext::OB_funclet, 698 OB, CI->getIterator()); 699 NewCall->copyMetadata(*CI); 700 CI->replaceAllUsesWith(NewCall); 701 CI->eraseFromParent(); 702 } 703 } 704 } 705 706 CallInst *createRuntimeCall(IRBuilder<> &IRB, FunctionCallee Callee, 707 ArrayRef<Value *> Args = {}, 708 const Twine &Name = "") { 709 assert(IRB.GetInsertBlock()->getParent() == OwnerFn); 710 711 CallInst *Inst = IRB.CreateCall(Callee, Args, Name, nullptr); 712 if (TrackInsertedCalls) 713 InsertedCalls.push_back(Inst); 714 return Inst; 715 } 716 }; 717 718 /// AddressSanitizer: instrument the code in module to find memory bugs. 719 struct AddressSanitizer { 720 AddressSanitizer(Module &M, const StackSafetyGlobalInfo *SSGI, 721 int InstrumentationWithCallsThreshold, 722 uint32_t MaxInlinePoisoningSize, bool CompileKernel = false, 723 bool Recover = false, bool UseAfterScope = false, 724 AsanDetectStackUseAfterReturnMode UseAfterReturn = 725 AsanDetectStackUseAfterReturnMode::Runtime) 726 : M(M), 727 CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan 728 : CompileKernel), 729 Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover), 730 UseAfterScope(UseAfterScope || ClUseAfterScope), 731 UseAfterReturn(ClUseAfterReturn.getNumOccurrences() ? ClUseAfterReturn 732 : UseAfterReturn), 733 SSGI(SSGI), 734 InstrumentationWithCallsThreshold( 735 ClInstrumentationWithCallsThreshold.getNumOccurrences() > 0 736 ? ClInstrumentationWithCallsThreshold 737 : InstrumentationWithCallsThreshold), 738 MaxInlinePoisoningSize(ClMaxInlinePoisoningSize.getNumOccurrences() > 0 739 ? ClMaxInlinePoisoningSize 740 : MaxInlinePoisoningSize) { 741 C = &(M.getContext()); 742 DL = &M.getDataLayout(); 743 LongSize = M.getDataLayout().getPointerSizeInBits(); 744 IntptrTy = Type::getIntNTy(*C, LongSize); 745 PtrTy = PointerType::getUnqual(*C); 746 Int32Ty = Type::getInt32Ty(*C); 747 TargetTriple = Triple(M.getTargetTriple()); 748 749 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel); 750 751 assert(this->UseAfterReturn != AsanDetectStackUseAfterReturnMode::Invalid); 752 } 753 754 TypeSize getAllocaSizeInBytes(const AllocaInst &AI) const { 755 return *AI.getAllocationSize(AI.getDataLayout()); 756 } 757 758 /// Check if we want (and can) handle this alloca. 759 bool isInterestingAlloca(const AllocaInst &AI); 760 761 bool ignoreAccess(Instruction *Inst, Value *Ptr); 762 void getInterestingMemoryOperands( 763 Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting); 764 765 void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, 766 InterestingMemoryOperand &O, bool UseCalls, 767 const DataLayout &DL, RuntimeCallInserter &RTCI); 768 void instrumentPointerComparisonOrSubtraction(Instruction *I, 769 RuntimeCallInserter &RTCI); 770 void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore, 771 Value *Addr, MaybeAlign Alignment, 772 uint32_t TypeStoreSize, bool IsWrite, 773 Value *SizeArgument, bool UseCalls, uint32_t Exp, 774 RuntimeCallInserter &RTCI); 775 Instruction *instrumentAMDGPUAddress(Instruction *OrigIns, 776 Instruction *InsertBefore, Value *Addr, 777 uint32_t TypeStoreSize, bool IsWrite, 778 Value *SizeArgument); 779 Instruction *genAMDGPUReportBlock(IRBuilder<> &IRB, Value *Cond, 780 bool Recover); 781 void instrumentUnusualSizeOrAlignment(Instruction *I, 782 Instruction *InsertBefore, Value *Addr, 783 TypeSize TypeStoreSize, bool IsWrite, 784 Value *SizeArgument, bool UseCalls, 785 uint32_t Exp, 786 RuntimeCallInserter &RTCI); 787 void instrumentMaskedLoadOrStore(AddressSanitizer *Pass, const DataLayout &DL, 788 Type *IntptrTy, Value *Mask, Value *EVL, 789 Value *Stride, Instruction *I, Value *Addr, 790 MaybeAlign Alignment, unsigned Granularity, 791 Type *OpType, bool IsWrite, 792 Value *SizeArgument, bool UseCalls, 793 uint32_t Exp, RuntimeCallInserter &RTCI); 794 Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 795 Value *ShadowValue, uint32_t TypeStoreSize); 796 Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr, 797 bool IsWrite, size_t AccessSizeIndex, 798 Value *SizeArgument, uint32_t Exp, 799 RuntimeCallInserter &RTCI); 800 void instrumentMemIntrinsic(MemIntrinsic *MI, RuntimeCallInserter &RTCI); 801 Value *memToShadow(Value *Shadow, IRBuilder<> &IRB); 802 bool suppressInstrumentationSiteForDebug(int &Instrumented); 803 bool instrumentFunction(Function &F, const TargetLibraryInfo *TLI); 804 bool maybeInsertAsanInitAtFunctionEntry(Function &F); 805 bool maybeInsertDynamicShadowAtFunctionEntry(Function &F); 806 void markEscapedLocalAllocas(Function &F); 807 808 private: 809 friend struct FunctionStackPoisoner; 810 811 void initializeCallbacks(const TargetLibraryInfo *TLI); 812 813 bool LooksLikeCodeInBug11395(Instruction *I); 814 bool GlobalIsLinkerInitialized(GlobalVariable *G); 815 bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr, 816 TypeSize TypeStoreSize) const; 817 818 /// Helper to cleanup per-function state. 819 struct FunctionStateRAII { 820 AddressSanitizer *Pass; 821 822 FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) { 823 assert(Pass->ProcessedAllocas.empty() && 824 "last pass forgot to clear cache"); 825 assert(!Pass->LocalDynamicShadow); 826 } 827 828 ~FunctionStateRAII() { 829 Pass->LocalDynamicShadow = nullptr; 830 Pass->ProcessedAllocas.clear(); 831 } 832 }; 833 834 Module &M; 835 LLVMContext *C; 836 const DataLayout *DL; 837 Triple TargetTriple; 838 int LongSize; 839 bool CompileKernel; 840 bool Recover; 841 bool UseAfterScope; 842 AsanDetectStackUseAfterReturnMode UseAfterReturn; 843 Type *IntptrTy; 844 Type *Int32Ty; 845 PointerType *PtrTy; 846 ShadowMapping Mapping; 847 FunctionCallee AsanHandleNoReturnFunc; 848 FunctionCallee AsanPtrCmpFunction, AsanPtrSubFunction; 849 Constant *AsanShadowGlobal; 850 851 // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize). 852 FunctionCallee AsanErrorCallback[2][2][kNumberOfAccessSizes]; 853 FunctionCallee AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes]; 854 855 // These arrays is indexed by AccessIsWrite and Experiment. 856 FunctionCallee AsanErrorCallbackSized[2][2]; 857 FunctionCallee AsanMemoryAccessCallbackSized[2][2]; 858 859 FunctionCallee AsanMemmove, AsanMemcpy, AsanMemset; 860 Value *LocalDynamicShadow = nullptr; 861 const StackSafetyGlobalInfo *SSGI; 862 DenseMap<const AllocaInst *, bool> ProcessedAllocas; 863 864 FunctionCallee AMDGPUAddressShared; 865 FunctionCallee AMDGPUAddressPrivate; 866 int InstrumentationWithCallsThreshold; 867 uint32_t MaxInlinePoisoningSize; 868 }; 869 870 class ModuleAddressSanitizer { 871 public: 872 ModuleAddressSanitizer(Module &M, bool InsertVersionCheck, 873 bool CompileKernel = false, bool Recover = false, 874 bool UseGlobalsGC = true, bool UseOdrIndicator = true, 875 AsanDtorKind DestructorKind = AsanDtorKind::Global, 876 AsanCtorKind ConstructorKind = AsanCtorKind::Global) 877 : M(M), 878 CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan 879 : CompileKernel), 880 InsertVersionCheck(ClInsertVersionCheck.getNumOccurrences() > 0 881 ? ClInsertVersionCheck 882 : InsertVersionCheck), 883 Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover), 884 UseGlobalsGC(UseGlobalsGC && ClUseGlobalsGC && !this->CompileKernel), 885 // Enable aliases as they should have no downside with ODR indicators. 886 UsePrivateAlias(ClUsePrivateAlias.getNumOccurrences() > 0 887 ? ClUsePrivateAlias 888 : UseOdrIndicator), 889 UseOdrIndicator(ClUseOdrIndicator.getNumOccurrences() > 0 890 ? ClUseOdrIndicator 891 : UseOdrIndicator), 892 // Not a typo: ClWithComdat is almost completely pointless without 893 // ClUseGlobalsGC (because then it only works on modules without 894 // globals, which are rare); it is a prerequisite for ClUseGlobalsGC; 895 // and both suffer from gold PR19002 for which UseGlobalsGC constructor 896 // argument is designed as workaround. Therefore, disable both 897 // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to 898 // do globals-gc. 899 UseCtorComdat(UseGlobalsGC && ClWithComdat && !this->CompileKernel), 900 DestructorKind(DestructorKind), 901 ConstructorKind(ClConstructorKind.getNumOccurrences() > 0 902 ? ClConstructorKind 903 : ConstructorKind) { 904 C = &(M.getContext()); 905 int LongSize = M.getDataLayout().getPointerSizeInBits(); 906 IntptrTy = Type::getIntNTy(*C, LongSize); 907 PtrTy = PointerType::getUnqual(*C); 908 TargetTriple = Triple(M.getTargetTriple()); 909 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel); 910 911 if (ClOverrideDestructorKind != AsanDtorKind::Invalid) 912 this->DestructorKind = ClOverrideDestructorKind; 913 assert(this->DestructorKind != AsanDtorKind::Invalid); 914 } 915 916 bool instrumentModule(); 917 918 private: 919 void initializeCallbacks(); 920 921 void instrumentGlobals(IRBuilder<> &IRB, bool *CtorComdat); 922 void InstrumentGlobalsCOFF(IRBuilder<> &IRB, 923 ArrayRef<GlobalVariable *> ExtendedGlobals, 924 ArrayRef<Constant *> MetadataInitializers); 925 void instrumentGlobalsELF(IRBuilder<> &IRB, 926 ArrayRef<GlobalVariable *> ExtendedGlobals, 927 ArrayRef<Constant *> MetadataInitializers, 928 const std::string &UniqueModuleId); 929 void InstrumentGlobalsMachO(IRBuilder<> &IRB, 930 ArrayRef<GlobalVariable *> ExtendedGlobals, 931 ArrayRef<Constant *> MetadataInitializers); 932 void 933 InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, 934 ArrayRef<GlobalVariable *> ExtendedGlobals, 935 ArrayRef<Constant *> MetadataInitializers); 936 937 GlobalVariable *CreateMetadataGlobal(Constant *Initializer, 938 StringRef OriginalName); 939 void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata, 940 StringRef InternalSuffix); 941 Instruction *CreateAsanModuleDtor(); 942 943 const GlobalVariable *getExcludedAliasedGlobal(const GlobalAlias &GA) const; 944 bool shouldInstrumentGlobal(GlobalVariable *G) const; 945 bool ShouldUseMachOGlobalsSection() const; 946 StringRef getGlobalMetadataSection() const; 947 void poisonOneInitializer(Function &GlobalInit); 948 void createInitializerPoisonCalls(); 949 uint64_t getMinRedzoneSizeForGlobal() const { 950 return getRedzoneSizeForScale(Mapping.Scale); 951 } 952 uint64_t getRedzoneSizeForGlobal(uint64_t SizeInBytes) const; 953 int GetAsanVersion() const; 954 GlobalVariable *getOrCreateModuleName(); 955 956 Module &M; 957 bool CompileKernel; 958 bool InsertVersionCheck; 959 bool Recover; 960 bool UseGlobalsGC; 961 bool UsePrivateAlias; 962 bool UseOdrIndicator; 963 bool UseCtorComdat; 964 AsanDtorKind DestructorKind; 965 AsanCtorKind ConstructorKind; 966 Type *IntptrTy; 967 PointerType *PtrTy; 968 LLVMContext *C; 969 Triple TargetTriple; 970 ShadowMapping Mapping; 971 FunctionCallee AsanPoisonGlobals; 972 FunctionCallee AsanUnpoisonGlobals; 973 FunctionCallee AsanRegisterGlobals; 974 FunctionCallee AsanUnregisterGlobals; 975 FunctionCallee AsanRegisterImageGlobals; 976 FunctionCallee AsanUnregisterImageGlobals; 977 FunctionCallee AsanRegisterElfGlobals; 978 FunctionCallee AsanUnregisterElfGlobals; 979 980 Function *AsanCtorFunction = nullptr; 981 Function *AsanDtorFunction = nullptr; 982 GlobalVariable *ModuleName = nullptr; 983 }; 984 985 // Stack poisoning does not play well with exception handling. 986 // When an exception is thrown, we essentially bypass the code 987 // that unpoisones the stack. This is why the run-time library has 988 // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire 989 // stack in the interceptor. This however does not work inside the 990 // actual function which catches the exception. Most likely because the 991 // compiler hoists the load of the shadow value somewhere too high. 992 // This causes asan to report a non-existing bug on 453.povray. 993 // It sounds like an LLVM bug. 994 struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> { 995 Function &F; 996 AddressSanitizer &ASan; 997 RuntimeCallInserter &RTCI; 998 DIBuilder DIB; 999 LLVMContext *C; 1000 Type *IntptrTy; 1001 Type *IntptrPtrTy; 1002 ShadowMapping Mapping; 1003 1004 SmallVector<AllocaInst *, 16> AllocaVec; 1005 SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp; 1006 SmallVector<Instruction *, 8> RetVec; 1007 1008 FunctionCallee AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1], 1009 AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1]; 1010 FunctionCallee AsanSetShadowFunc[0x100] = {}; 1011 FunctionCallee AsanPoisonStackMemoryFunc, AsanUnpoisonStackMemoryFunc; 1012 FunctionCallee AsanAllocaPoisonFunc, AsanAllocasUnpoisonFunc; 1013 1014 // Stores a place and arguments of poisoning/unpoisoning call for alloca. 1015 struct AllocaPoisonCall { 1016 IntrinsicInst *InsBefore; 1017 AllocaInst *AI; 1018 uint64_t Size; 1019 bool DoPoison; 1020 }; 1021 SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec; 1022 SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec; 1023 bool HasUntracedLifetimeIntrinsic = false; 1024 1025 SmallVector<AllocaInst *, 1> DynamicAllocaVec; 1026 SmallVector<IntrinsicInst *, 1> StackRestoreVec; 1027 AllocaInst *DynamicAllocaLayout = nullptr; 1028 IntrinsicInst *LocalEscapeCall = nullptr; 1029 1030 bool HasInlineAsm = false; 1031 bool HasReturnsTwiceCall = false; 1032 bool PoisonStack; 1033 1034 FunctionStackPoisoner(Function &F, AddressSanitizer &ASan, 1035 RuntimeCallInserter &RTCI) 1036 : F(F), ASan(ASan), RTCI(RTCI), 1037 DIB(*F.getParent(), /*AllowUnresolved*/ false), C(ASan.C), 1038 IntptrTy(ASan.IntptrTy), 1039 IntptrPtrTy(PointerType::get(IntptrTy->getContext(), 0)), 1040 Mapping(ASan.Mapping), 1041 PoisonStack(ClStack && 1042 !Triple(F.getParent()->getTargetTriple()).isAMDGPU()) {} 1043 1044 bool runOnFunction() { 1045 if (!PoisonStack) 1046 return false; 1047 1048 if (ClRedzoneByvalArgs) 1049 copyArgsPassedByValToAllocas(); 1050 1051 // Collect alloca, ret, lifetime instructions etc. 1052 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB); 1053 1054 if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false; 1055 1056 initializeCallbacks(*F.getParent()); 1057 1058 if (HasUntracedLifetimeIntrinsic) { 1059 // If there are lifetime intrinsics which couldn't be traced back to an 1060 // alloca, we may not know exactly when a variable enters scope, and 1061 // therefore should "fail safe" by not poisoning them. 1062 StaticAllocaPoisonCallVec.clear(); 1063 DynamicAllocaPoisonCallVec.clear(); 1064 } 1065 1066 processDynamicAllocas(); 1067 processStaticAllocas(); 1068 1069 if (ClDebugStack) { 1070 LLVM_DEBUG(dbgs() << F); 1071 } 1072 return true; 1073 } 1074 1075 // Arguments marked with the "byval" attribute are implicitly copied without 1076 // using an alloca instruction. To produce redzones for those arguments, we 1077 // copy them a second time into memory allocated with an alloca instruction. 1078 void copyArgsPassedByValToAllocas(); 1079 1080 // Finds all Alloca instructions and puts 1081 // poisoned red zones around all of them. 1082 // Then unpoison everything back before the function returns. 1083 void processStaticAllocas(); 1084 void processDynamicAllocas(); 1085 1086 void createDynamicAllocasInitStorage(); 1087 1088 // ----------------------- Visitors. 1089 /// Collect all Ret instructions, or the musttail call instruction if it 1090 /// precedes the return instruction. 1091 void visitReturnInst(ReturnInst &RI) { 1092 if (CallInst *CI = RI.getParent()->getTerminatingMustTailCall()) 1093 RetVec.push_back(CI); 1094 else 1095 RetVec.push_back(&RI); 1096 } 1097 1098 /// Collect all Resume instructions. 1099 void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); } 1100 1101 /// Collect all CatchReturnInst instructions. 1102 void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); } 1103 1104 void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore, 1105 Value *SavedStack) { 1106 IRBuilder<> IRB(InstBefore); 1107 Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy); 1108 // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we 1109 // need to adjust extracted SP to compute the address of the most recent 1110 // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for 1111 // this purpose. 1112 if (!isa<ReturnInst>(InstBefore)) { 1113 Value *DynamicAreaOffset = IRB.CreateIntrinsic( 1114 Intrinsic::get_dynamic_area_offset, {IntptrTy}, {}); 1115 1116 DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy), 1117 DynamicAreaOffset); 1118 } 1119 1120 RTCI.createRuntimeCall( 1121 IRB, AsanAllocasUnpoisonFunc, 1122 {IRB.CreateLoad(IntptrTy, DynamicAllocaLayout), DynamicAreaPtr}); 1123 } 1124 1125 // Unpoison dynamic allocas redzones. 1126 void unpoisonDynamicAllocas() { 1127 for (Instruction *Ret : RetVec) 1128 unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout); 1129 1130 for (Instruction *StackRestoreInst : StackRestoreVec) 1131 unpoisonDynamicAllocasBeforeInst(StackRestoreInst, 1132 StackRestoreInst->getOperand(0)); 1133 } 1134 1135 // Deploy and poison redzones around dynamic alloca call. To do this, we 1136 // should replace this call with another one with changed parameters and 1137 // replace all its uses with new address, so 1138 // addr = alloca type, old_size, align 1139 // is replaced by 1140 // new_size = (old_size + additional_size) * sizeof(type) 1141 // tmp = alloca i8, new_size, max(align, 32) 1142 // addr = tmp + 32 (first 32 bytes are for the left redzone). 1143 // Additional_size is added to make new memory allocation contain not only 1144 // requested memory, but also left, partial and right redzones. 1145 void handleDynamicAllocaCall(AllocaInst *AI); 1146 1147 /// Collect Alloca instructions we want (and can) handle. 1148 void visitAllocaInst(AllocaInst &AI) { 1149 // FIXME: Handle scalable vectors instead of ignoring them. 1150 const Type *AllocaType = AI.getAllocatedType(); 1151 const auto *STy = dyn_cast<StructType>(AllocaType); 1152 if (!ASan.isInterestingAlloca(AI) || isa<ScalableVectorType>(AllocaType) || 1153 (STy && STy->containsHomogeneousScalableVectorTypes())) { 1154 if (AI.isStaticAlloca()) { 1155 // Skip over allocas that are present *before* the first instrumented 1156 // alloca, we don't want to move those around. 1157 if (AllocaVec.empty()) 1158 return; 1159 1160 StaticAllocasToMoveUp.push_back(&AI); 1161 } 1162 return; 1163 } 1164 1165 if (!AI.isStaticAlloca()) 1166 DynamicAllocaVec.push_back(&AI); 1167 else 1168 AllocaVec.push_back(&AI); 1169 } 1170 1171 /// Collect lifetime intrinsic calls to check for use-after-scope 1172 /// errors. 1173 void visitIntrinsicInst(IntrinsicInst &II) { 1174 Intrinsic::ID ID = II.getIntrinsicID(); 1175 if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II); 1176 if (ID == Intrinsic::localescape) LocalEscapeCall = &II; 1177 if (!ASan.UseAfterScope) 1178 return; 1179 if (!II.isLifetimeStartOrEnd()) 1180 return; 1181 // Found lifetime intrinsic, add ASan instrumentation if necessary. 1182 auto *Size = cast<ConstantInt>(II.getArgOperand(0)); 1183 // If size argument is undefined, don't do anything. 1184 if (Size->isMinusOne()) return; 1185 // Check that size doesn't saturate uint64_t and can 1186 // be stored in IntptrTy. 1187 const uint64_t SizeValue = Size->getValue().getLimitedValue(); 1188 if (SizeValue == ~0ULL || 1189 !ConstantInt::isValueValidForType(IntptrTy, SizeValue)) 1190 return; 1191 // Find alloca instruction that corresponds to llvm.lifetime argument. 1192 // Currently we can only handle lifetime markers pointing to the 1193 // beginning of the alloca. 1194 AllocaInst *AI = findAllocaForValue(II.getArgOperand(1), true); 1195 if (!AI) { 1196 HasUntracedLifetimeIntrinsic = true; 1197 return; 1198 } 1199 // We're interested only in allocas we can handle. 1200 if (!ASan.isInterestingAlloca(*AI)) 1201 return; 1202 bool DoPoison = (ID == Intrinsic::lifetime_end); 1203 AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison}; 1204 if (AI->isStaticAlloca()) 1205 StaticAllocaPoisonCallVec.push_back(APC); 1206 else if (ClInstrumentDynamicAllocas) 1207 DynamicAllocaPoisonCallVec.push_back(APC); 1208 } 1209 1210 void visitCallBase(CallBase &CB) { 1211 if (CallInst *CI = dyn_cast<CallInst>(&CB)) { 1212 HasInlineAsm |= CI->isInlineAsm() && &CB != ASan.LocalDynamicShadow; 1213 HasReturnsTwiceCall |= CI->canReturnTwice(); 1214 } 1215 } 1216 1217 // ---------------------- Helpers. 1218 void initializeCallbacks(Module &M); 1219 1220 // Copies bytes from ShadowBytes into shadow memory for indexes where 1221 // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that 1222 // ShadowBytes[i] is constantly zero and doesn't need to be overwritten. 1223 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, 1224 IRBuilder<> &IRB, Value *ShadowBase); 1225 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, 1226 size_t Begin, size_t End, IRBuilder<> &IRB, 1227 Value *ShadowBase); 1228 void copyToShadowInline(ArrayRef<uint8_t> ShadowMask, 1229 ArrayRef<uint8_t> ShadowBytes, size_t Begin, 1230 size_t End, IRBuilder<> &IRB, Value *ShadowBase); 1231 1232 void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison); 1233 1234 Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L, 1235 bool Dynamic); 1236 PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue, 1237 Instruction *ThenTerm, Value *ValueIfFalse); 1238 }; 1239 1240 } // end anonymous namespace 1241 1242 void AddressSanitizerPass::printPipeline( 1243 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 1244 static_cast<PassInfoMixin<AddressSanitizerPass> *>(this)->printPipeline( 1245 OS, MapClassName2PassName); 1246 OS << '<'; 1247 if (Options.CompileKernel) 1248 OS << "kernel"; 1249 OS << '>'; 1250 } 1251 1252 AddressSanitizerPass::AddressSanitizerPass( 1253 const AddressSanitizerOptions &Options, bool UseGlobalGC, 1254 bool UseOdrIndicator, AsanDtorKind DestructorKind, 1255 AsanCtorKind ConstructorKind) 1256 : Options(Options), UseGlobalGC(UseGlobalGC), 1257 UseOdrIndicator(UseOdrIndicator), DestructorKind(DestructorKind), 1258 ConstructorKind(ConstructorKind) {} 1259 1260 PreservedAnalyses AddressSanitizerPass::run(Module &M, 1261 ModuleAnalysisManager &MAM) { 1262 // Return early if nosanitize_address module flag is present for the module. 1263 // This implies that asan pass has already run before. 1264 if (checkIfAlreadyInstrumented(M, "nosanitize_address")) 1265 return PreservedAnalyses::all(); 1266 1267 ModuleAddressSanitizer ModuleSanitizer( 1268 M, Options.InsertVersionCheck, Options.CompileKernel, Options.Recover, 1269 UseGlobalGC, UseOdrIndicator, DestructorKind, ConstructorKind); 1270 bool Modified = false; 1271 auto &FAM = MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 1272 const StackSafetyGlobalInfo *const SSGI = 1273 ClUseStackSafety ? &MAM.getResult<StackSafetyGlobalAnalysis>(M) : nullptr; 1274 for (Function &F : M) { 1275 AddressSanitizer FunctionSanitizer( 1276 M, SSGI, Options.InstrumentationWithCallsThreshold, 1277 Options.MaxInlinePoisoningSize, Options.CompileKernel, Options.Recover, 1278 Options.UseAfterScope, Options.UseAfterReturn); 1279 const TargetLibraryInfo &TLI = FAM.getResult<TargetLibraryAnalysis>(F); 1280 Modified |= FunctionSanitizer.instrumentFunction(F, &TLI); 1281 } 1282 Modified |= ModuleSanitizer.instrumentModule(); 1283 if (!Modified) 1284 return PreservedAnalyses::all(); 1285 1286 PreservedAnalyses PA = PreservedAnalyses::none(); 1287 // GlobalsAA is considered stateless and does not get invalidated unless 1288 // explicitly invalidated; PreservedAnalyses::none() is not enough. Sanitizers 1289 // make changes that require GlobalsAA to be invalidated. 1290 PA.abandon<GlobalsAA>(); 1291 return PA; 1292 } 1293 1294 static size_t TypeStoreSizeToSizeIndex(uint32_t TypeSize) { 1295 size_t Res = llvm::countr_zero(TypeSize / 8); 1296 assert(Res < kNumberOfAccessSizes); 1297 return Res; 1298 } 1299 1300 /// Check if \p G has been created by a trusted compiler pass. 1301 static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) { 1302 // Do not instrument @llvm.global_ctors, @llvm.used, etc. 1303 if (G->getName().starts_with("llvm.") || 1304 // Do not instrument gcov counter arrays. 1305 G->getName().starts_with("__llvm_gcov_ctr") || 1306 // Do not instrument rtti proxy symbols for function sanitizer. 1307 G->getName().starts_with("__llvm_rtti_proxy")) 1308 return true; 1309 1310 // Do not instrument asan globals. 1311 if (G->getName().starts_with(kAsanGenPrefix) || 1312 G->getName().starts_with(kSanCovGenPrefix) || 1313 G->getName().starts_with(kODRGenPrefix)) 1314 return true; 1315 1316 return false; 1317 } 1318 1319 static bool isUnsupportedAMDGPUAddrspace(Value *Addr) { 1320 Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType()); 1321 unsigned int AddrSpace = PtrTy->getPointerAddressSpace(); 1322 if (AddrSpace == 3 || AddrSpace == 5) 1323 return true; 1324 return false; 1325 } 1326 1327 Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) { 1328 // Shadow >> scale 1329 Shadow = IRB.CreateLShr(Shadow, Mapping.Scale); 1330 if (Mapping.Offset == 0) return Shadow; 1331 // (Shadow >> scale) | offset 1332 Value *ShadowBase; 1333 if (LocalDynamicShadow) 1334 ShadowBase = LocalDynamicShadow; 1335 else 1336 ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset); 1337 if (Mapping.OrShadowOffset) 1338 return IRB.CreateOr(Shadow, ShadowBase); 1339 else 1340 return IRB.CreateAdd(Shadow, ShadowBase); 1341 } 1342 1343 // Instrument memset/memmove/memcpy 1344 void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI, 1345 RuntimeCallInserter &RTCI) { 1346 InstrumentationIRBuilder IRB(MI); 1347 if (isa<MemTransferInst>(MI)) { 1348 RTCI.createRuntimeCall( 1349 IRB, isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy, 1350 {IRB.CreateAddrSpaceCast(MI->getOperand(0), PtrTy), 1351 IRB.CreateAddrSpaceCast(MI->getOperand(1), PtrTy), 1352 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 1353 } else if (isa<MemSetInst>(MI)) { 1354 RTCI.createRuntimeCall( 1355 IRB, AsanMemset, 1356 {IRB.CreateAddrSpaceCast(MI->getOperand(0), PtrTy), 1357 IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false), 1358 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 1359 } 1360 MI->eraseFromParent(); 1361 } 1362 1363 /// Check if we want (and can) handle this alloca. 1364 bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) { 1365 auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI); 1366 1367 if (PreviouslySeenAllocaInfo != ProcessedAllocas.end()) 1368 return PreviouslySeenAllocaInfo->getSecond(); 1369 1370 bool IsInteresting = 1371 (AI.getAllocatedType()->isSized() && 1372 // alloca() may be called with 0 size, ignore it. 1373 ((!AI.isStaticAlloca()) || !getAllocaSizeInBytes(AI).isZero()) && 1374 // We are only interested in allocas not promotable to registers. 1375 // Promotable allocas are common under -O0. 1376 (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) && 1377 // inalloca allocas are not treated as static, and we don't want 1378 // dynamic alloca instrumentation for them as well. 1379 !AI.isUsedWithInAlloca() && 1380 // swifterror allocas are register promoted by ISel 1381 !AI.isSwiftError() && 1382 // safe allocas are not interesting 1383 !(SSGI && SSGI->isSafe(AI))); 1384 1385 ProcessedAllocas[&AI] = IsInteresting; 1386 return IsInteresting; 1387 } 1388 1389 bool AddressSanitizer::ignoreAccess(Instruction *Inst, Value *Ptr) { 1390 // Instrument accesses from different address spaces only for AMDGPU. 1391 Type *PtrTy = cast<PointerType>(Ptr->getType()->getScalarType()); 1392 if (PtrTy->getPointerAddressSpace() != 0 && 1393 !(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(Ptr))) 1394 return true; 1395 1396 // Ignore swifterror addresses. 1397 // swifterror memory addresses are mem2reg promoted by instruction 1398 // selection. As such they cannot have regular uses like an instrumentation 1399 // function and it makes no sense to track them as memory. 1400 if (Ptr->isSwiftError()) 1401 return true; 1402 1403 // Treat memory accesses to promotable allocas as non-interesting since they 1404 // will not cause memory violations. This greatly speeds up the instrumented 1405 // executable at -O0. 1406 if (auto AI = dyn_cast_or_null<AllocaInst>(Ptr)) 1407 if (ClSkipPromotableAllocas && !isInterestingAlloca(*AI)) 1408 return true; 1409 1410 if (SSGI != nullptr && SSGI->stackAccessIsSafe(*Inst) && 1411 findAllocaForValue(Ptr)) 1412 return true; 1413 1414 return false; 1415 } 1416 1417 void AddressSanitizer::getInterestingMemoryOperands( 1418 Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting) { 1419 // Do not instrument the load fetching the dynamic shadow address. 1420 if (LocalDynamicShadow == I) 1421 return; 1422 1423 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 1424 if (!ClInstrumentReads || ignoreAccess(I, LI->getPointerOperand())) 1425 return; 1426 Interesting.emplace_back(I, LI->getPointerOperandIndex(), false, 1427 LI->getType(), LI->getAlign()); 1428 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 1429 if (!ClInstrumentWrites || ignoreAccess(I, SI->getPointerOperand())) 1430 return; 1431 Interesting.emplace_back(I, SI->getPointerOperandIndex(), true, 1432 SI->getValueOperand()->getType(), SI->getAlign()); 1433 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 1434 if (!ClInstrumentAtomics || ignoreAccess(I, RMW->getPointerOperand())) 1435 return; 1436 Interesting.emplace_back(I, RMW->getPointerOperandIndex(), true, 1437 RMW->getValOperand()->getType(), std::nullopt); 1438 } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) { 1439 if (!ClInstrumentAtomics || ignoreAccess(I, XCHG->getPointerOperand())) 1440 return; 1441 Interesting.emplace_back(I, XCHG->getPointerOperandIndex(), true, 1442 XCHG->getCompareOperand()->getType(), 1443 std::nullopt); 1444 } else if (auto CI = dyn_cast<CallInst>(I)) { 1445 switch (CI->getIntrinsicID()) { 1446 case Intrinsic::masked_load: 1447 case Intrinsic::masked_store: 1448 case Intrinsic::masked_gather: 1449 case Intrinsic::masked_scatter: { 1450 bool IsWrite = CI->getType()->isVoidTy(); 1451 // Masked store has an initial operand for the value. 1452 unsigned OpOffset = IsWrite ? 1 : 0; 1453 if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads) 1454 return; 1455 1456 auto BasePtr = CI->getOperand(OpOffset); 1457 if (ignoreAccess(I, BasePtr)) 1458 return; 1459 Type *Ty = IsWrite ? CI->getArgOperand(0)->getType() : CI->getType(); 1460 MaybeAlign Alignment = Align(1); 1461 // Otherwise no alignment guarantees. We probably got Undef. 1462 if (auto *Op = dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset))) 1463 Alignment = Op->getMaybeAlignValue(); 1464 Value *Mask = CI->getOperand(2 + OpOffset); 1465 Interesting.emplace_back(I, OpOffset, IsWrite, Ty, Alignment, Mask); 1466 break; 1467 } 1468 case Intrinsic::masked_expandload: 1469 case Intrinsic::masked_compressstore: { 1470 bool IsWrite = CI->getIntrinsicID() == Intrinsic::masked_compressstore; 1471 unsigned OpOffset = IsWrite ? 1 : 0; 1472 if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads) 1473 return; 1474 auto BasePtr = CI->getOperand(OpOffset); 1475 if (ignoreAccess(I, BasePtr)) 1476 return; 1477 MaybeAlign Alignment = BasePtr->getPointerAlignment(*DL); 1478 Type *Ty = IsWrite ? CI->getArgOperand(0)->getType() : CI->getType(); 1479 1480 IRBuilder IB(I); 1481 Value *Mask = CI->getOperand(1 + OpOffset); 1482 // Use the popcount of Mask as the effective vector length. 1483 Type *ExtTy = VectorType::get(IntptrTy, cast<VectorType>(Ty)); 1484 Value *ExtMask = IB.CreateZExt(Mask, ExtTy); 1485 Value *EVL = IB.CreateAddReduce(ExtMask); 1486 Value *TrueMask = ConstantInt::get(Mask->getType(), 1); 1487 Interesting.emplace_back(I, OpOffset, IsWrite, Ty, Alignment, TrueMask, 1488 EVL); 1489 break; 1490 } 1491 case Intrinsic::vp_load: 1492 case Intrinsic::vp_store: 1493 case Intrinsic::experimental_vp_strided_load: 1494 case Intrinsic::experimental_vp_strided_store: { 1495 auto *VPI = cast<VPIntrinsic>(CI); 1496 unsigned IID = CI->getIntrinsicID(); 1497 bool IsWrite = CI->getType()->isVoidTy(); 1498 if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads) 1499 return; 1500 unsigned PtrOpNo = *VPI->getMemoryPointerParamPos(IID); 1501 Type *Ty = IsWrite ? CI->getArgOperand(0)->getType() : CI->getType(); 1502 MaybeAlign Alignment = VPI->getOperand(PtrOpNo)->getPointerAlignment(*DL); 1503 Value *Stride = nullptr; 1504 if (IID == Intrinsic::experimental_vp_strided_store || 1505 IID == Intrinsic::experimental_vp_strided_load) { 1506 Stride = VPI->getOperand(PtrOpNo + 1); 1507 // Use the pointer alignment as the element alignment if the stride is a 1508 // mutiple of the pointer alignment. Otherwise, the element alignment 1509 // should be Align(1). 1510 unsigned PointerAlign = Alignment.valueOrOne().value(); 1511 if (!isa<ConstantInt>(Stride) || 1512 cast<ConstantInt>(Stride)->getZExtValue() % PointerAlign != 0) 1513 Alignment = Align(1); 1514 } 1515 Interesting.emplace_back(I, PtrOpNo, IsWrite, Ty, Alignment, 1516 VPI->getMaskParam(), VPI->getVectorLengthParam(), 1517 Stride); 1518 break; 1519 } 1520 case Intrinsic::vp_gather: 1521 case Intrinsic::vp_scatter: { 1522 auto *VPI = cast<VPIntrinsic>(CI); 1523 unsigned IID = CI->getIntrinsicID(); 1524 bool IsWrite = IID == Intrinsic::vp_scatter; 1525 if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads) 1526 return; 1527 unsigned PtrOpNo = *VPI->getMemoryPointerParamPos(IID); 1528 Type *Ty = IsWrite ? CI->getArgOperand(0)->getType() : CI->getType(); 1529 MaybeAlign Alignment = VPI->getPointerAlignment(); 1530 Interesting.emplace_back(I, PtrOpNo, IsWrite, Ty, Alignment, 1531 VPI->getMaskParam(), 1532 VPI->getVectorLengthParam()); 1533 break; 1534 } 1535 default: 1536 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ArgNo++) { 1537 if (!ClInstrumentByval || !CI->isByValArgument(ArgNo) || 1538 ignoreAccess(I, CI->getArgOperand(ArgNo))) 1539 continue; 1540 Type *Ty = CI->getParamByValType(ArgNo); 1541 Interesting.emplace_back(I, ArgNo, false, Ty, Align(1)); 1542 } 1543 } 1544 } 1545 } 1546 1547 static bool isPointerOperand(Value *V) { 1548 return V->getType()->isPointerTy() || isa<PtrToIntInst>(V); 1549 } 1550 1551 // This is a rough heuristic; it may cause both false positives and 1552 // false negatives. The proper implementation requires cooperation with 1553 // the frontend. 1554 static bool isInterestingPointerComparison(Instruction *I) { 1555 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) { 1556 if (!Cmp->isRelational()) 1557 return false; 1558 } else { 1559 return false; 1560 } 1561 return isPointerOperand(I->getOperand(0)) && 1562 isPointerOperand(I->getOperand(1)); 1563 } 1564 1565 // This is a rough heuristic; it may cause both false positives and 1566 // false negatives. The proper implementation requires cooperation with 1567 // the frontend. 1568 static bool isInterestingPointerSubtraction(Instruction *I) { 1569 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 1570 if (BO->getOpcode() != Instruction::Sub) 1571 return false; 1572 } else { 1573 return false; 1574 } 1575 return isPointerOperand(I->getOperand(0)) && 1576 isPointerOperand(I->getOperand(1)); 1577 } 1578 1579 bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) { 1580 // If a global variable does not have dynamic initialization we don't 1581 // have to instrument it. However, if a global does not have initializer 1582 // at all, we assume it has dynamic initializer (in other TU). 1583 if (!G->hasInitializer()) 1584 return false; 1585 1586 if (G->hasSanitizerMetadata() && G->getSanitizerMetadata().IsDynInit) 1587 return false; 1588 1589 return true; 1590 } 1591 1592 void AddressSanitizer::instrumentPointerComparisonOrSubtraction( 1593 Instruction *I, RuntimeCallInserter &RTCI) { 1594 IRBuilder<> IRB(I); 1595 FunctionCallee F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction; 1596 Value *Param[2] = {I->getOperand(0), I->getOperand(1)}; 1597 for (Value *&i : Param) { 1598 if (i->getType()->isPointerTy()) 1599 i = IRB.CreatePointerCast(i, IntptrTy); 1600 } 1601 RTCI.createRuntimeCall(IRB, F, Param); 1602 } 1603 1604 static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I, 1605 Instruction *InsertBefore, Value *Addr, 1606 MaybeAlign Alignment, unsigned Granularity, 1607 TypeSize TypeStoreSize, bool IsWrite, 1608 Value *SizeArgument, bool UseCalls, 1609 uint32_t Exp, RuntimeCallInserter &RTCI) { 1610 // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check 1611 // if the data is properly aligned. 1612 if (!TypeStoreSize.isScalable()) { 1613 const auto FixedSize = TypeStoreSize.getFixedValue(); 1614 switch (FixedSize) { 1615 case 8: 1616 case 16: 1617 case 32: 1618 case 64: 1619 case 128: 1620 if (!Alignment || *Alignment >= Granularity || 1621 *Alignment >= FixedSize / 8) 1622 return Pass->instrumentAddress(I, InsertBefore, Addr, Alignment, 1623 FixedSize, IsWrite, nullptr, UseCalls, 1624 Exp, RTCI); 1625 } 1626 } 1627 Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeStoreSize, 1628 IsWrite, nullptr, UseCalls, Exp, RTCI); 1629 } 1630 1631 void AddressSanitizer::instrumentMaskedLoadOrStore( 1632 AddressSanitizer *Pass, const DataLayout &DL, Type *IntptrTy, Value *Mask, 1633 Value *EVL, Value *Stride, Instruction *I, Value *Addr, 1634 MaybeAlign Alignment, unsigned Granularity, Type *OpType, bool IsWrite, 1635 Value *SizeArgument, bool UseCalls, uint32_t Exp, 1636 RuntimeCallInserter &RTCI) { 1637 auto *VTy = cast<VectorType>(OpType); 1638 TypeSize ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType()); 1639 auto Zero = ConstantInt::get(IntptrTy, 0); 1640 1641 IRBuilder IB(I); 1642 Instruction *LoopInsertBefore = I; 1643 if (EVL) { 1644 // The end argument of SplitBlockAndInsertForLane is assumed bigger 1645 // than zero, so we should check whether EVL is zero here. 1646 Type *EVLType = EVL->getType(); 1647 Value *IsEVLZero = IB.CreateICmpNE(EVL, ConstantInt::get(EVLType, 0)); 1648 LoopInsertBefore = SplitBlockAndInsertIfThen(IsEVLZero, I, false); 1649 IB.SetInsertPoint(LoopInsertBefore); 1650 // Cast EVL to IntptrTy. 1651 EVL = IB.CreateZExtOrTrunc(EVL, IntptrTy); 1652 // To avoid undefined behavior for extracting with out of range index, use 1653 // the minimum of evl and element count as trip count. 1654 Value *EC = IB.CreateElementCount(IntptrTy, VTy->getElementCount()); 1655 EVL = IB.CreateBinaryIntrinsic(Intrinsic::umin, EVL, EC); 1656 } else { 1657 EVL = IB.CreateElementCount(IntptrTy, VTy->getElementCount()); 1658 } 1659 1660 // Cast Stride to IntptrTy. 1661 if (Stride) 1662 Stride = IB.CreateZExtOrTrunc(Stride, IntptrTy); 1663 1664 SplitBlockAndInsertForEachLane(EVL, LoopInsertBefore->getIterator(), 1665 [&](IRBuilderBase &IRB, Value *Index) { 1666 Value *MaskElem = IRB.CreateExtractElement(Mask, Index); 1667 if (auto *MaskElemC = dyn_cast<ConstantInt>(MaskElem)) { 1668 if (MaskElemC->isZero()) 1669 // No check 1670 return; 1671 // Unconditional check 1672 } else { 1673 // Conditional check 1674 Instruction *ThenTerm = SplitBlockAndInsertIfThen( 1675 MaskElem, &*IRB.GetInsertPoint(), false); 1676 IRB.SetInsertPoint(ThenTerm); 1677 } 1678 1679 Value *InstrumentedAddress; 1680 if (isa<VectorType>(Addr->getType())) { 1681 assert( 1682 cast<VectorType>(Addr->getType())->getElementType()->isPointerTy() && 1683 "Expected vector of pointer."); 1684 InstrumentedAddress = IRB.CreateExtractElement(Addr, Index); 1685 } else if (Stride) { 1686 Index = IRB.CreateMul(Index, Stride); 1687 InstrumentedAddress = IRB.CreatePtrAdd(Addr, Index); 1688 } else { 1689 InstrumentedAddress = IRB.CreateGEP(VTy, Addr, {Zero, Index}); 1690 } 1691 doInstrumentAddress(Pass, I, &*IRB.GetInsertPoint(), InstrumentedAddress, 1692 Alignment, Granularity, ElemTypeSize, IsWrite, 1693 SizeArgument, UseCalls, Exp, RTCI); 1694 }); 1695 } 1696 1697 void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, 1698 InterestingMemoryOperand &O, bool UseCalls, 1699 const DataLayout &DL, 1700 RuntimeCallInserter &RTCI) { 1701 Value *Addr = O.getPtr(); 1702 1703 // Optimization experiments. 1704 // The experiments can be used to evaluate potential optimizations that remove 1705 // instrumentation (assess false negatives). Instead of completely removing 1706 // some instrumentation, you set Exp to a non-zero value (mask of optimization 1707 // experiments that want to remove instrumentation of this instruction). 1708 // If Exp is non-zero, this pass will emit special calls into runtime 1709 // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls 1710 // make runtime terminate the program in a special way (with a different 1711 // exit status). Then you run the new compiler on a buggy corpus, collect 1712 // the special terminations (ideally, you don't see them at all -- no false 1713 // negatives) and make the decision on the optimization. 1714 uint32_t Exp = ClForceExperiment; 1715 1716 if (ClOpt && ClOptGlobals) { 1717 // If initialization order checking is disabled, a simple access to a 1718 // dynamically initialized global is always valid. 1719 GlobalVariable *G = dyn_cast<GlobalVariable>(getUnderlyingObject(Addr)); 1720 if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) && 1721 isSafeAccess(ObjSizeVis, Addr, O.TypeStoreSize)) { 1722 NumOptimizedAccessesToGlobalVar++; 1723 return; 1724 } 1725 } 1726 1727 if (ClOpt && ClOptStack) { 1728 // A direct inbounds access to a stack variable is always valid. 1729 if (isa<AllocaInst>(getUnderlyingObject(Addr)) && 1730 isSafeAccess(ObjSizeVis, Addr, O.TypeStoreSize)) { 1731 NumOptimizedAccessesToStackVar++; 1732 return; 1733 } 1734 } 1735 1736 if (O.IsWrite) 1737 NumInstrumentedWrites++; 1738 else 1739 NumInstrumentedReads++; 1740 1741 unsigned Granularity = 1 << Mapping.Scale; 1742 if (O.MaybeMask) { 1743 instrumentMaskedLoadOrStore(this, DL, IntptrTy, O.MaybeMask, O.MaybeEVL, 1744 O.MaybeStride, O.getInsn(), Addr, O.Alignment, 1745 Granularity, O.OpType, O.IsWrite, nullptr, 1746 UseCalls, Exp, RTCI); 1747 } else { 1748 doInstrumentAddress(this, O.getInsn(), O.getInsn(), Addr, O.Alignment, 1749 Granularity, O.TypeStoreSize, O.IsWrite, nullptr, 1750 UseCalls, Exp, RTCI); 1751 } 1752 } 1753 1754 Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore, 1755 Value *Addr, bool IsWrite, 1756 size_t AccessSizeIndex, 1757 Value *SizeArgument, 1758 uint32_t Exp, 1759 RuntimeCallInserter &RTCI) { 1760 InstrumentationIRBuilder IRB(InsertBefore); 1761 Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp); 1762 CallInst *Call = nullptr; 1763 if (SizeArgument) { 1764 if (Exp == 0) 1765 Call = RTCI.createRuntimeCall(IRB, AsanErrorCallbackSized[IsWrite][0], 1766 {Addr, SizeArgument}); 1767 else 1768 Call = RTCI.createRuntimeCall(IRB, AsanErrorCallbackSized[IsWrite][1], 1769 {Addr, SizeArgument, ExpVal}); 1770 } else { 1771 if (Exp == 0) 1772 Call = RTCI.createRuntimeCall( 1773 IRB, AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr); 1774 else 1775 Call = RTCI.createRuntimeCall( 1776 IRB, AsanErrorCallback[IsWrite][1][AccessSizeIndex], {Addr, ExpVal}); 1777 } 1778 1779 Call->setCannotMerge(); 1780 return Call; 1781 } 1782 1783 Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 1784 Value *ShadowValue, 1785 uint32_t TypeStoreSize) { 1786 size_t Granularity = static_cast<size_t>(1) << Mapping.Scale; 1787 // Addr & (Granularity - 1) 1788 Value *LastAccessedByte = 1789 IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1)); 1790 // (Addr & (Granularity - 1)) + size - 1 1791 if (TypeStoreSize / 8 > 1) 1792 LastAccessedByte = IRB.CreateAdd( 1793 LastAccessedByte, ConstantInt::get(IntptrTy, TypeStoreSize / 8 - 1)); 1794 // (uint8_t) ((Addr & (Granularity-1)) + size - 1) 1795 LastAccessedByte = 1796 IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false); 1797 // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue 1798 return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue); 1799 } 1800 1801 Instruction *AddressSanitizer::instrumentAMDGPUAddress( 1802 Instruction *OrigIns, Instruction *InsertBefore, Value *Addr, 1803 uint32_t TypeStoreSize, bool IsWrite, Value *SizeArgument) { 1804 // Do not instrument unsupported addrspaces. 1805 if (isUnsupportedAMDGPUAddrspace(Addr)) 1806 return nullptr; 1807 Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType()); 1808 // Follow host instrumentation for global and constant addresses. 1809 if (PtrTy->getPointerAddressSpace() != 0) 1810 return InsertBefore; 1811 // Instrument generic addresses in supported addressspaces. 1812 IRBuilder<> IRB(InsertBefore); 1813 Value *IsShared = IRB.CreateCall(AMDGPUAddressShared, {Addr}); 1814 Value *IsPrivate = IRB.CreateCall(AMDGPUAddressPrivate, {Addr}); 1815 Value *IsSharedOrPrivate = IRB.CreateOr(IsShared, IsPrivate); 1816 Value *Cmp = IRB.CreateNot(IsSharedOrPrivate); 1817 Value *AddrSpaceZeroLanding = 1818 SplitBlockAndInsertIfThen(Cmp, InsertBefore, false); 1819 InsertBefore = cast<Instruction>(AddrSpaceZeroLanding); 1820 return InsertBefore; 1821 } 1822 1823 Instruction *AddressSanitizer::genAMDGPUReportBlock(IRBuilder<> &IRB, 1824 Value *Cond, bool Recover) { 1825 Module &M = *IRB.GetInsertBlock()->getModule(); 1826 Value *ReportCond = Cond; 1827 if (!Recover) { 1828 auto Ballot = M.getOrInsertFunction(kAMDGPUBallotName, IRB.getInt64Ty(), 1829 IRB.getInt1Ty()); 1830 ReportCond = IRB.CreateIsNotNull(IRB.CreateCall(Ballot, {Cond})); 1831 } 1832 1833 auto *Trm = 1834 SplitBlockAndInsertIfThen(ReportCond, &*IRB.GetInsertPoint(), false, 1835 MDBuilder(*C).createUnlikelyBranchWeights()); 1836 Trm->getParent()->setName("asan.report"); 1837 1838 if (Recover) 1839 return Trm; 1840 1841 Trm = SplitBlockAndInsertIfThen(Cond, Trm, false); 1842 IRB.SetInsertPoint(Trm); 1843 return IRB.CreateCall( 1844 M.getOrInsertFunction(kAMDGPUUnreachableName, IRB.getVoidTy()), {}); 1845 } 1846 1847 void AddressSanitizer::instrumentAddress(Instruction *OrigIns, 1848 Instruction *InsertBefore, Value *Addr, 1849 MaybeAlign Alignment, 1850 uint32_t TypeStoreSize, bool IsWrite, 1851 Value *SizeArgument, bool UseCalls, 1852 uint32_t Exp, 1853 RuntimeCallInserter &RTCI) { 1854 if (TargetTriple.isAMDGPU()) { 1855 InsertBefore = instrumentAMDGPUAddress(OrigIns, InsertBefore, Addr, 1856 TypeStoreSize, IsWrite, SizeArgument); 1857 if (!InsertBefore) 1858 return; 1859 } 1860 1861 InstrumentationIRBuilder IRB(InsertBefore); 1862 size_t AccessSizeIndex = TypeStoreSizeToSizeIndex(TypeStoreSize); 1863 1864 if (UseCalls && ClOptimizeCallbacks) { 1865 const ASanAccessInfo AccessInfo(IsWrite, CompileKernel, AccessSizeIndex); 1866 IRB.CreateIntrinsic(Intrinsic::asan_check_memaccess, {}, 1867 {IRB.CreatePointerCast(Addr, PtrTy), 1868 ConstantInt::get(Int32Ty, AccessInfo.Packed)}); 1869 return; 1870 } 1871 1872 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 1873 if (UseCalls) { 1874 if (Exp == 0) 1875 RTCI.createRuntimeCall( 1876 IRB, AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex], AddrLong); 1877 else 1878 RTCI.createRuntimeCall( 1879 IRB, AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex], 1880 {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)}); 1881 return; 1882 } 1883 1884 Type *ShadowTy = 1885 IntegerType::get(*C, std::max(8U, TypeStoreSize >> Mapping.Scale)); 1886 Type *ShadowPtrTy = PointerType::get(*C, 0); 1887 Value *ShadowPtr = memToShadow(AddrLong, IRB); 1888 const uint64_t ShadowAlign = 1889 std::max<uint64_t>(Alignment.valueOrOne().value() >> Mapping.Scale, 1); 1890 Value *ShadowValue = IRB.CreateAlignedLoad( 1891 ShadowTy, IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy), Align(ShadowAlign)); 1892 1893 Value *Cmp = IRB.CreateIsNotNull(ShadowValue); 1894 size_t Granularity = 1ULL << Mapping.Scale; 1895 Instruction *CrashTerm = nullptr; 1896 1897 bool GenSlowPath = (ClAlwaysSlowPath || (TypeStoreSize < 8 * Granularity)); 1898 1899 if (TargetTriple.isAMDGCN()) { 1900 if (GenSlowPath) { 1901 auto *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeStoreSize); 1902 Cmp = IRB.CreateAnd(Cmp, Cmp2); 1903 } 1904 CrashTerm = genAMDGPUReportBlock(IRB, Cmp, Recover); 1905 } else if (GenSlowPath) { 1906 // We use branch weights for the slow path check, to indicate that the slow 1907 // path is rarely taken. This seems to be the case for SPEC benchmarks. 1908 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1909 Cmp, InsertBefore, false, MDBuilder(*C).createUnlikelyBranchWeights()); 1910 assert(cast<BranchInst>(CheckTerm)->isUnconditional()); 1911 BasicBlock *NextBB = CheckTerm->getSuccessor(0); 1912 IRB.SetInsertPoint(CheckTerm); 1913 Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeStoreSize); 1914 if (Recover) { 1915 CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false); 1916 } else { 1917 BasicBlock *CrashBlock = 1918 BasicBlock::Create(*C, "", NextBB->getParent(), NextBB); 1919 CrashTerm = new UnreachableInst(*C, CrashBlock); 1920 BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2); 1921 ReplaceInstWithInst(CheckTerm, NewTerm); 1922 } 1923 } else { 1924 CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover); 1925 } 1926 1927 Instruction *Crash = generateCrashCode( 1928 CrashTerm, AddrLong, IsWrite, AccessSizeIndex, SizeArgument, Exp, RTCI); 1929 if (OrigIns->getDebugLoc()) 1930 Crash->setDebugLoc(OrigIns->getDebugLoc()); 1931 } 1932 1933 // Instrument unusual size or unusual alignment. 1934 // We can not do it with a single check, so we do 1-byte check for the first 1935 // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able 1936 // to report the actual access size. 1937 void AddressSanitizer::instrumentUnusualSizeOrAlignment( 1938 Instruction *I, Instruction *InsertBefore, Value *Addr, 1939 TypeSize TypeStoreSize, bool IsWrite, Value *SizeArgument, bool UseCalls, 1940 uint32_t Exp, RuntimeCallInserter &RTCI) { 1941 InstrumentationIRBuilder IRB(InsertBefore); 1942 Value *NumBits = IRB.CreateTypeSize(IntptrTy, TypeStoreSize); 1943 Value *Size = IRB.CreateLShr(NumBits, ConstantInt::get(IntptrTy, 3)); 1944 1945 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 1946 if (UseCalls) { 1947 if (Exp == 0) 1948 RTCI.createRuntimeCall(IRB, AsanMemoryAccessCallbackSized[IsWrite][0], 1949 {AddrLong, Size}); 1950 else 1951 RTCI.createRuntimeCall( 1952 IRB, AsanMemoryAccessCallbackSized[IsWrite][1], 1953 {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)}); 1954 } else { 1955 Value *SizeMinusOne = IRB.CreateSub(Size, ConstantInt::get(IntptrTy, 1)); 1956 Value *LastByte = IRB.CreateIntToPtr( 1957 IRB.CreateAdd(AddrLong, SizeMinusOne), 1958 Addr->getType()); 1959 instrumentAddress(I, InsertBefore, Addr, {}, 8, IsWrite, Size, false, Exp, 1960 RTCI); 1961 instrumentAddress(I, InsertBefore, LastByte, {}, 8, IsWrite, Size, false, 1962 Exp, RTCI); 1963 } 1964 } 1965 1966 void ModuleAddressSanitizer::poisonOneInitializer(Function &GlobalInit) { 1967 // Set up the arguments to our poison/unpoison functions. 1968 IRBuilder<> IRB(&GlobalInit.front(), 1969 GlobalInit.front().getFirstInsertionPt()); 1970 1971 // Add a call to poison all external globals before the given function starts. 1972 Value *ModuleNameAddr = 1973 ConstantExpr::getPointerCast(getOrCreateModuleName(), IntptrTy); 1974 IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr); 1975 1976 // Add calls to unpoison all globals before each return instruction. 1977 for (auto &BB : GlobalInit) 1978 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) 1979 CallInst::Create(AsanUnpoisonGlobals, "", RI->getIterator()); 1980 } 1981 1982 void ModuleAddressSanitizer::createInitializerPoisonCalls() { 1983 GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors"); 1984 if (!GV) 1985 return; 1986 1987 ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer()); 1988 if (!CA) 1989 return; 1990 1991 for (Use &OP : CA->operands()) { 1992 if (isa<ConstantAggregateZero>(OP)) continue; 1993 ConstantStruct *CS = cast<ConstantStruct>(OP); 1994 1995 // Must have a function or null ptr. 1996 if (Function *F = dyn_cast<Function>(CS->getOperand(1))) { 1997 if (F->getName() == kAsanModuleCtorName) continue; 1998 auto *Priority = cast<ConstantInt>(CS->getOperand(0)); 1999 // Don't instrument CTORs that will run before asan.module_ctor. 2000 if (Priority->getLimitedValue() <= GetCtorAndDtorPriority(TargetTriple)) 2001 continue; 2002 poisonOneInitializer(*F); 2003 } 2004 } 2005 } 2006 2007 const GlobalVariable * 2008 ModuleAddressSanitizer::getExcludedAliasedGlobal(const GlobalAlias &GA) const { 2009 // In case this function should be expanded to include rules that do not just 2010 // apply when CompileKernel is true, either guard all existing rules with an 2011 // 'if (CompileKernel) { ... }' or be absolutely sure that all these rules 2012 // should also apply to user space. 2013 assert(CompileKernel && "Only expecting to be called when compiling kernel"); 2014 2015 const Constant *C = GA.getAliasee(); 2016 2017 // When compiling the kernel, globals that are aliased by symbols prefixed 2018 // by "__" are special and cannot be padded with a redzone. 2019 if (GA.getName().starts_with("__")) 2020 return dyn_cast<GlobalVariable>(C->stripPointerCastsAndAliases()); 2021 2022 return nullptr; 2023 } 2024 2025 bool ModuleAddressSanitizer::shouldInstrumentGlobal(GlobalVariable *G) const { 2026 Type *Ty = G->getValueType(); 2027 LLVM_DEBUG(dbgs() << "GLOBAL: " << *G << "\n"); 2028 2029 if (G->hasSanitizerMetadata() && G->getSanitizerMetadata().NoAddress) 2030 return false; 2031 if (!Ty->isSized()) return false; 2032 if (!G->hasInitializer()) return false; 2033 // Globals in address space 1 and 4 are supported for AMDGPU. 2034 if (G->getAddressSpace() && 2035 !(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(G))) 2036 return false; 2037 if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals. 2038 // Two problems with thread-locals: 2039 // - The address of the main thread's copy can't be computed at link-time. 2040 // - Need to poison all copies, not just the main thread's one. 2041 if (G->isThreadLocal()) return false; 2042 // For now, just ignore this Global if the alignment is large. 2043 if (G->getAlign() && *G->getAlign() > getMinRedzoneSizeForGlobal()) return false; 2044 2045 // For non-COFF targets, only instrument globals known to be defined by this 2046 // TU. 2047 // FIXME: We can instrument comdat globals on ELF if we are using the 2048 // GC-friendly metadata scheme. 2049 if (!TargetTriple.isOSBinFormatCOFF()) { 2050 if (!G->hasExactDefinition() || G->hasComdat()) 2051 return false; 2052 } else { 2053 // On COFF, don't instrument non-ODR linkages. 2054 if (G->isInterposable()) 2055 return false; 2056 // If the global has AvailableExternally linkage, then it is not in this 2057 // module, which means it does not need to be instrumented. 2058 if (G->hasAvailableExternallyLinkage()) 2059 return false; 2060 } 2061 2062 // If a comdat is present, it must have a selection kind that implies ODR 2063 // semantics: no duplicates, any, or exact match. 2064 if (Comdat *C = G->getComdat()) { 2065 switch (C->getSelectionKind()) { 2066 case Comdat::Any: 2067 case Comdat::ExactMatch: 2068 case Comdat::NoDeduplicate: 2069 break; 2070 case Comdat::Largest: 2071 case Comdat::SameSize: 2072 return false; 2073 } 2074 } 2075 2076 if (G->hasSection()) { 2077 // The kernel uses explicit sections for mostly special global variables 2078 // that we should not instrument. E.g. the kernel may rely on their layout 2079 // without redzones, or remove them at link time ("discard.*"), etc. 2080 if (CompileKernel) 2081 return false; 2082 2083 StringRef Section = G->getSection(); 2084 2085 // Globals from llvm.metadata aren't emitted, do not instrument them. 2086 if (Section == "llvm.metadata") return false; 2087 // Do not instrument globals from special LLVM sections. 2088 if (Section.contains("__llvm") || Section.contains("__LLVM")) 2089 return false; 2090 2091 // Do not instrument function pointers to initialization and termination 2092 // routines: dynamic linker will not properly handle redzones. 2093 if (Section.starts_with(".preinit_array") || 2094 Section.starts_with(".init_array") || 2095 Section.starts_with(".fini_array")) { 2096 return false; 2097 } 2098 2099 // Do not instrument user-defined sections (with names resembling 2100 // valid C identifiers) 2101 if (TargetTriple.isOSBinFormatELF()) { 2102 if (llvm::all_of(Section, 2103 [](char c) { return llvm::isAlnum(c) || c == '_'; })) 2104 return false; 2105 } 2106 2107 // On COFF, if the section name contains '$', it is highly likely that the 2108 // user is using section sorting to create an array of globals similar to 2109 // the way initialization callbacks are registered in .init_array and 2110 // .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones 2111 // to such globals is counterproductive, because the intent is that they 2112 // will form an array, and out-of-bounds accesses are expected. 2113 // See https://github.com/google/sanitizers/issues/305 2114 // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx 2115 if (TargetTriple.isOSBinFormatCOFF() && Section.contains('$')) { 2116 LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): " 2117 << *G << "\n"); 2118 return false; 2119 } 2120 2121 if (TargetTriple.isOSBinFormatMachO()) { 2122 StringRef ParsedSegment, ParsedSection; 2123 unsigned TAA = 0, StubSize = 0; 2124 bool TAAParsed; 2125 cantFail(MCSectionMachO::ParseSectionSpecifier( 2126 Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize)); 2127 2128 // Ignore the globals from the __OBJC section. The ObjC runtime assumes 2129 // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to 2130 // them. 2131 if (ParsedSegment == "__OBJC" || 2132 (ParsedSegment == "__DATA" && ParsedSection.starts_with("__objc_"))) { 2133 LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n"); 2134 return false; 2135 } 2136 // See https://github.com/google/sanitizers/issues/32 2137 // Constant CFString instances are compiled in the following way: 2138 // -- the string buffer is emitted into 2139 // __TEXT,__cstring,cstring_literals 2140 // -- the constant NSConstantString structure referencing that buffer 2141 // is placed into __DATA,__cfstring 2142 // Therefore there's no point in placing redzones into __DATA,__cfstring. 2143 // Moreover, it causes the linker to crash on OS X 10.7 2144 if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") { 2145 LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n"); 2146 return false; 2147 } 2148 // The linker merges the contents of cstring_literals and removes the 2149 // trailing zeroes. 2150 if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) { 2151 LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n"); 2152 return false; 2153 } 2154 } 2155 } 2156 2157 if (CompileKernel) { 2158 // Globals that prefixed by "__" are special and cannot be padded with a 2159 // redzone. 2160 if (G->getName().starts_with("__")) 2161 return false; 2162 } 2163 2164 return true; 2165 } 2166 2167 // On Mach-O platforms, we emit global metadata in a separate section of the 2168 // binary in order to allow the linker to properly dead strip. This is only 2169 // supported on recent versions of ld64. 2170 bool ModuleAddressSanitizer::ShouldUseMachOGlobalsSection() const { 2171 if (!TargetTriple.isOSBinFormatMachO()) 2172 return false; 2173 2174 if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11)) 2175 return true; 2176 if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9)) 2177 return true; 2178 if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2)) 2179 return true; 2180 if (TargetTriple.isDriverKit()) 2181 return true; 2182 if (TargetTriple.isXROS()) 2183 return true; 2184 2185 return false; 2186 } 2187 2188 StringRef ModuleAddressSanitizer::getGlobalMetadataSection() const { 2189 switch (TargetTriple.getObjectFormat()) { 2190 case Triple::COFF: return ".ASAN$GL"; 2191 case Triple::ELF: return "asan_globals"; 2192 case Triple::MachO: return "__DATA,__asan_globals,regular"; 2193 case Triple::Wasm: 2194 case Triple::GOFF: 2195 case Triple::SPIRV: 2196 case Triple::XCOFF: 2197 case Triple::DXContainer: 2198 report_fatal_error( 2199 "ModuleAddressSanitizer not implemented for object file format"); 2200 case Triple::UnknownObjectFormat: 2201 break; 2202 } 2203 llvm_unreachable("unsupported object format"); 2204 } 2205 2206 void ModuleAddressSanitizer::initializeCallbacks() { 2207 IRBuilder<> IRB(*C); 2208 2209 // Declare our poisoning and unpoisoning functions. 2210 AsanPoisonGlobals = 2211 M.getOrInsertFunction(kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy); 2212 AsanUnpoisonGlobals = 2213 M.getOrInsertFunction(kAsanUnpoisonGlobalsName, IRB.getVoidTy()); 2214 2215 // Declare functions that register/unregister globals. 2216 AsanRegisterGlobals = M.getOrInsertFunction( 2217 kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy); 2218 AsanUnregisterGlobals = M.getOrInsertFunction( 2219 kAsanUnregisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy); 2220 2221 // Declare the functions that find globals in a shared object and then invoke 2222 // the (un)register function on them. 2223 AsanRegisterImageGlobals = M.getOrInsertFunction( 2224 kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy); 2225 AsanUnregisterImageGlobals = M.getOrInsertFunction( 2226 kAsanUnregisterImageGlobalsName, IRB.getVoidTy(), IntptrTy); 2227 2228 AsanRegisterElfGlobals = 2229 M.getOrInsertFunction(kAsanRegisterElfGlobalsName, IRB.getVoidTy(), 2230 IntptrTy, IntptrTy, IntptrTy); 2231 AsanUnregisterElfGlobals = 2232 M.getOrInsertFunction(kAsanUnregisterElfGlobalsName, IRB.getVoidTy(), 2233 IntptrTy, IntptrTy, IntptrTy); 2234 } 2235 2236 // Put the metadata and the instrumented global in the same group. This ensures 2237 // that the metadata is discarded if the instrumented global is discarded. 2238 void ModuleAddressSanitizer::SetComdatForGlobalMetadata( 2239 GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix) { 2240 Module &M = *G->getParent(); 2241 Comdat *C = G->getComdat(); 2242 if (!C) { 2243 if (!G->hasName()) { 2244 // If G is unnamed, it must be internal. Give it an artificial name 2245 // so we can put it in a comdat. 2246 assert(G->hasLocalLinkage()); 2247 G->setName(genName("anon_global")); 2248 } 2249 2250 if (!InternalSuffix.empty() && G->hasLocalLinkage()) { 2251 std::string Name = std::string(G->getName()); 2252 Name += InternalSuffix; 2253 C = M.getOrInsertComdat(Name); 2254 } else { 2255 C = M.getOrInsertComdat(G->getName()); 2256 } 2257 2258 // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private 2259 // linkage to internal linkage so that a symbol table entry is emitted. This 2260 // is necessary in order to create the comdat group. 2261 if (TargetTriple.isOSBinFormatCOFF()) { 2262 C->setSelectionKind(Comdat::NoDeduplicate); 2263 if (G->hasPrivateLinkage()) 2264 G->setLinkage(GlobalValue::InternalLinkage); 2265 } 2266 G->setComdat(C); 2267 } 2268 2269 assert(G->hasComdat()); 2270 Metadata->setComdat(G->getComdat()); 2271 } 2272 2273 // Create a separate metadata global and put it in the appropriate ASan 2274 // global registration section. 2275 GlobalVariable * 2276 ModuleAddressSanitizer::CreateMetadataGlobal(Constant *Initializer, 2277 StringRef OriginalName) { 2278 auto Linkage = TargetTriple.isOSBinFormatMachO() 2279 ? GlobalVariable::InternalLinkage 2280 : GlobalVariable::PrivateLinkage; 2281 GlobalVariable *Metadata = new GlobalVariable( 2282 M, Initializer->getType(), false, Linkage, Initializer, 2283 Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName)); 2284 Metadata->setSection(getGlobalMetadataSection()); 2285 // Place metadata in a large section for x86-64 ELF binaries to mitigate 2286 // relocation pressure. 2287 setGlobalVariableLargeSection(TargetTriple, *Metadata); 2288 return Metadata; 2289 } 2290 2291 Instruction *ModuleAddressSanitizer::CreateAsanModuleDtor() { 2292 AsanDtorFunction = Function::createWithDefaultAttr( 2293 FunctionType::get(Type::getVoidTy(*C), false), 2294 GlobalValue::InternalLinkage, 0, kAsanModuleDtorName, &M); 2295 AsanDtorFunction->addFnAttr(Attribute::NoUnwind); 2296 // Ensure Dtor cannot be discarded, even if in a comdat. 2297 appendToUsed(M, {AsanDtorFunction}); 2298 BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction); 2299 2300 return ReturnInst::Create(*C, AsanDtorBB); 2301 } 2302 2303 void ModuleAddressSanitizer::InstrumentGlobalsCOFF( 2304 IRBuilder<> &IRB, ArrayRef<GlobalVariable *> ExtendedGlobals, 2305 ArrayRef<Constant *> MetadataInitializers) { 2306 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2307 auto &DL = M.getDataLayout(); 2308 2309 SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size()); 2310 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2311 Constant *Initializer = MetadataInitializers[i]; 2312 GlobalVariable *G = ExtendedGlobals[i]; 2313 GlobalVariable *Metadata = CreateMetadataGlobal(Initializer, G->getName()); 2314 MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G)); 2315 Metadata->setMetadata(LLVMContext::MD_associated, MD); 2316 MetadataGlobals[i] = Metadata; 2317 2318 // The MSVC linker always inserts padding when linking incrementally. We 2319 // cope with that by aligning each struct to its size, which must be a power 2320 // of two. 2321 unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType()); 2322 assert(isPowerOf2_32(SizeOfGlobalStruct) && 2323 "global metadata will not be padded appropriately"); 2324 Metadata->setAlignment(assumeAligned(SizeOfGlobalStruct)); 2325 2326 SetComdatForGlobalMetadata(G, Metadata, ""); 2327 } 2328 2329 // Update llvm.compiler.used, adding the new metadata globals. This is 2330 // needed so that during LTO these variables stay alive. 2331 if (!MetadataGlobals.empty()) 2332 appendToCompilerUsed(M, MetadataGlobals); 2333 } 2334 2335 void ModuleAddressSanitizer::instrumentGlobalsELF( 2336 IRBuilder<> &IRB, ArrayRef<GlobalVariable *> ExtendedGlobals, 2337 ArrayRef<Constant *> MetadataInitializers, 2338 const std::string &UniqueModuleId) { 2339 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2340 2341 // Putting globals in a comdat changes the semantic and potentially cause 2342 // false negative odr violations at link time. If odr indicators are used, we 2343 // keep the comdat sections, as link time odr violations will be dectected on 2344 // the odr indicator symbols. 2345 bool UseComdatForGlobalsGC = UseOdrIndicator && !UniqueModuleId.empty(); 2346 2347 SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size()); 2348 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2349 GlobalVariable *G = ExtendedGlobals[i]; 2350 GlobalVariable *Metadata = 2351 CreateMetadataGlobal(MetadataInitializers[i], G->getName()); 2352 MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G)); 2353 Metadata->setMetadata(LLVMContext::MD_associated, MD); 2354 MetadataGlobals[i] = Metadata; 2355 2356 if (UseComdatForGlobalsGC) 2357 SetComdatForGlobalMetadata(G, Metadata, UniqueModuleId); 2358 } 2359 2360 // Update llvm.compiler.used, adding the new metadata globals. This is 2361 // needed so that during LTO these variables stay alive. 2362 if (!MetadataGlobals.empty()) 2363 appendToCompilerUsed(M, MetadataGlobals); 2364 2365 // RegisteredFlag serves two purposes. First, we can pass it to dladdr() 2366 // to look up the loaded image that contains it. Second, we can store in it 2367 // whether registration has already occurred, to prevent duplicate 2368 // registration. 2369 // 2370 // Common linkage ensures that there is only one global per shared library. 2371 GlobalVariable *RegisteredFlag = new GlobalVariable( 2372 M, IntptrTy, false, GlobalVariable::CommonLinkage, 2373 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); 2374 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); 2375 2376 // Create start and stop symbols. 2377 GlobalVariable *StartELFMetadata = new GlobalVariable( 2378 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, 2379 "__start_" + getGlobalMetadataSection()); 2380 StartELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); 2381 GlobalVariable *StopELFMetadata = new GlobalVariable( 2382 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, 2383 "__stop_" + getGlobalMetadataSection()); 2384 StopELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); 2385 2386 // Create a call to register the globals with the runtime. 2387 if (ConstructorKind == AsanCtorKind::Global) 2388 IRB.CreateCall(AsanRegisterElfGlobals, 2389 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), 2390 IRB.CreatePointerCast(StartELFMetadata, IntptrTy), 2391 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); 2392 2393 // We also need to unregister globals at the end, e.g., when a shared library 2394 // gets closed. 2395 if (DestructorKind != AsanDtorKind::None && !MetadataGlobals.empty()) { 2396 IRBuilder<> IrbDtor(CreateAsanModuleDtor()); 2397 IrbDtor.CreateCall(AsanUnregisterElfGlobals, 2398 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), 2399 IRB.CreatePointerCast(StartELFMetadata, IntptrTy), 2400 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); 2401 } 2402 } 2403 2404 void ModuleAddressSanitizer::InstrumentGlobalsMachO( 2405 IRBuilder<> &IRB, ArrayRef<GlobalVariable *> ExtendedGlobals, 2406 ArrayRef<Constant *> MetadataInitializers) { 2407 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2408 2409 // On recent Mach-O platforms, use a structure which binds the liveness of 2410 // the global variable to the metadata struct. Keep the list of "Liveness" GV 2411 // created to be added to llvm.compiler.used 2412 StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy); 2413 SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size()); 2414 2415 for (size_t i = 0; i < ExtendedGlobals.size(); i++) { 2416 Constant *Initializer = MetadataInitializers[i]; 2417 GlobalVariable *G = ExtendedGlobals[i]; 2418 GlobalVariable *Metadata = CreateMetadataGlobal(Initializer, G->getName()); 2419 2420 // On recent Mach-O platforms, we emit the global metadata in a way that 2421 // allows the linker to properly strip dead globals. 2422 auto LivenessBinder = 2423 ConstantStruct::get(LivenessTy, Initializer->getAggregateElement(0u), 2424 ConstantExpr::getPointerCast(Metadata, IntptrTy)); 2425 GlobalVariable *Liveness = new GlobalVariable( 2426 M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder, 2427 Twine("__asan_binder_") + G->getName()); 2428 Liveness->setSection("__DATA,__asan_liveness,regular,live_support"); 2429 LivenessGlobals[i] = Liveness; 2430 } 2431 2432 // Update llvm.compiler.used, adding the new liveness globals. This is 2433 // needed so that during LTO these variables stay alive. The alternative 2434 // would be to have the linker handling the LTO symbols, but libLTO 2435 // current API does not expose access to the section for each symbol. 2436 if (!LivenessGlobals.empty()) 2437 appendToCompilerUsed(M, LivenessGlobals); 2438 2439 // RegisteredFlag serves two purposes. First, we can pass it to dladdr() 2440 // to look up the loaded image that contains it. Second, we can store in it 2441 // whether registration has already occurred, to prevent duplicate 2442 // registration. 2443 // 2444 // common linkage ensures that there is only one global per shared library. 2445 GlobalVariable *RegisteredFlag = new GlobalVariable( 2446 M, IntptrTy, false, GlobalVariable::CommonLinkage, 2447 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); 2448 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); 2449 2450 if (ConstructorKind == AsanCtorKind::Global) 2451 IRB.CreateCall(AsanRegisterImageGlobals, 2452 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); 2453 2454 // We also need to unregister globals at the end, e.g., when a shared library 2455 // gets closed. 2456 if (DestructorKind != AsanDtorKind::None) { 2457 IRBuilder<> IrbDtor(CreateAsanModuleDtor()); 2458 IrbDtor.CreateCall(AsanUnregisterImageGlobals, 2459 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); 2460 } 2461 } 2462 2463 void ModuleAddressSanitizer::InstrumentGlobalsWithMetadataArray( 2464 IRBuilder<> &IRB, ArrayRef<GlobalVariable *> ExtendedGlobals, 2465 ArrayRef<Constant *> MetadataInitializers) { 2466 assert(ExtendedGlobals.size() == MetadataInitializers.size()); 2467 unsigned N = ExtendedGlobals.size(); 2468 assert(N > 0); 2469 2470 // On platforms that don't have a custom metadata section, we emit an array 2471 // of global metadata structures. 2472 ArrayType *ArrayOfGlobalStructTy = 2473 ArrayType::get(MetadataInitializers[0]->getType(), N); 2474 auto AllGlobals = new GlobalVariable( 2475 M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage, 2476 ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), ""); 2477 if (Mapping.Scale > 3) 2478 AllGlobals->setAlignment(Align(1ULL << Mapping.Scale)); 2479 2480 if (ConstructorKind == AsanCtorKind::Global) 2481 IRB.CreateCall(AsanRegisterGlobals, 2482 {IRB.CreatePointerCast(AllGlobals, IntptrTy), 2483 ConstantInt::get(IntptrTy, N)}); 2484 2485 // We also need to unregister globals at the end, e.g., when a shared library 2486 // gets closed. 2487 if (DestructorKind != AsanDtorKind::None) { 2488 IRBuilder<> IrbDtor(CreateAsanModuleDtor()); 2489 IrbDtor.CreateCall(AsanUnregisterGlobals, 2490 {IRB.CreatePointerCast(AllGlobals, IntptrTy), 2491 ConstantInt::get(IntptrTy, N)}); 2492 } 2493 } 2494 2495 // This function replaces all global variables with new variables that have 2496 // trailing redzones. It also creates a function that poisons 2497 // redzones and inserts this function into llvm.global_ctors. 2498 // Sets *CtorComdat to true if the global registration code emitted into the 2499 // asan constructor is comdat-compatible. 2500 void ModuleAddressSanitizer::instrumentGlobals(IRBuilder<> &IRB, 2501 bool *CtorComdat) { 2502 // Build set of globals that are aliased by some GA, where 2503 // getExcludedAliasedGlobal(GA) returns the relevant GlobalVariable. 2504 SmallPtrSet<const GlobalVariable *, 16> AliasedGlobalExclusions; 2505 if (CompileKernel) { 2506 for (auto &GA : M.aliases()) { 2507 if (const GlobalVariable *GV = getExcludedAliasedGlobal(GA)) 2508 AliasedGlobalExclusions.insert(GV); 2509 } 2510 } 2511 2512 SmallVector<GlobalVariable *, 16> GlobalsToChange; 2513 for (auto &G : M.globals()) { 2514 if (!AliasedGlobalExclusions.count(&G) && shouldInstrumentGlobal(&G)) 2515 GlobalsToChange.push_back(&G); 2516 } 2517 2518 size_t n = GlobalsToChange.size(); 2519 auto &DL = M.getDataLayout(); 2520 2521 // A global is described by a structure 2522 // size_t beg; 2523 // size_t size; 2524 // size_t size_with_redzone; 2525 // const char *name; 2526 // const char *module_name; 2527 // size_t has_dynamic_init; 2528 // size_t padding_for_windows_msvc_incremental_link; 2529 // size_t odr_indicator; 2530 // We initialize an array of such structures and pass it to a run-time call. 2531 StructType *GlobalStructTy = 2532 StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy, 2533 IntptrTy, IntptrTy, IntptrTy); 2534 SmallVector<GlobalVariable *, 16> NewGlobals(n); 2535 SmallVector<Constant *, 16> Initializers(n); 2536 2537 for (size_t i = 0; i < n; i++) { 2538 GlobalVariable *G = GlobalsToChange[i]; 2539 2540 GlobalValue::SanitizerMetadata MD; 2541 if (G->hasSanitizerMetadata()) 2542 MD = G->getSanitizerMetadata(); 2543 2544 // The runtime library tries demangling symbol names in the descriptor but 2545 // functionality like __cxa_demangle may be unavailable (e.g. 2546 // -static-libstdc++). So we demangle the symbol names here. 2547 std::string NameForGlobal = G->getName().str(); 2548 GlobalVariable *Name = 2549 createPrivateGlobalForString(M, llvm::demangle(NameForGlobal), 2550 /*AllowMerging*/ true, genName("global")); 2551 2552 Type *Ty = G->getValueType(); 2553 const uint64_t SizeInBytes = DL.getTypeAllocSize(Ty); 2554 const uint64_t RightRedzoneSize = getRedzoneSizeForGlobal(SizeInBytes); 2555 Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize); 2556 2557 StructType *NewTy = StructType::get(Ty, RightRedZoneTy); 2558 Constant *NewInitializer = ConstantStruct::get( 2559 NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy)); 2560 2561 // Create a new global variable with enough space for a redzone. 2562 GlobalValue::LinkageTypes Linkage = G->getLinkage(); 2563 if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage) 2564 Linkage = GlobalValue::InternalLinkage; 2565 GlobalVariable *NewGlobal = new GlobalVariable( 2566 M, NewTy, G->isConstant(), Linkage, NewInitializer, "", G, 2567 G->getThreadLocalMode(), G->getAddressSpace()); 2568 NewGlobal->copyAttributesFrom(G); 2569 NewGlobal->setComdat(G->getComdat()); 2570 NewGlobal->setAlignment(Align(getMinRedzoneSizeForGlobal())); 2571 // Don't fold globals with redzones. ODR violation detector and redzone 2572 // poisoning implicitly creates a dependence on the global's address, so it 2573 // is no longer valid for it to be marked unnamed_addr. 2574 NewGlobal->setUnnamedAddr(GlobalValue::UnnamedAddr::None); 2575 2576 // Move null-terminated C strings to "__asan_cstring" section on Darwin. 2577 if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() && 2578 G->isConstant()) { 2579 auto Seq = dyn_cast<ConstantDataSequential>(G->getInitializer()); 2580 if (Seq && Seq->isCString()) 2581 NewGlobal->setSection("__TEXT,__asan_cstring,regular"); 2582 } 2583 2584 // Transfer the debug info and type metadata. The payload starts at offset 2585 // zero so we can copy the metadata over as is. 2586 NewGlobal->copyMetadata(G, 0); 2587 2588 Value *Indices2[2]; 2589 Indices2[0] = IRB.getInt32(0); 2590 Indices2[1] = IRB.getInt32(0); 2591 2592 G->replaceAllUsesWith( 2593 ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true)); 2594 NewGlobal->takeName(G); 2595 G->eraseFromParent(); 2596 NewGlobals[i] = NewGlobal; 2597 2598 Constant *ODRIndicator = ConstantPointerNull::get(PtrTy); 2599 GlobalValue *InstrumentedGlobal = NewGlobal; 2600 2601 bool CanUsePrivateAliases = 2602 TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() || 2603 TargetTriple.isOSBinFormatWasm(); 2604 if (CanUsePrivateAliases && UsePrivateAlias) { 2605 // Create local alias for NewGlobal to avoid crash on ODR between 2606 // instrumented and non-instrumented libraries. 2607 InstrumentedGlobal = 2608 GlobalAlias::create(GlobalValue::PrivateLinkage, "", NewGlobal); 2609 } 2610 2611 // ODR should not happen for local linkage. 2612 if (NewGlobal->hasLocalLinkage()) { 2613 ODRIndicator = 2614 ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy, -1), PtrTy); 2615 } else if (UseOdrIndicator) { 2616 // With local aliases, we need to provide another externally visible 2617 // symbol __odr_asan_XXX to detect ODR violation. 2618 auto *ODRIndicatorSym = 2619 new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage, 2620 Constant::getNullValue(IRB.getInt8Ty()), 2621 kODRGenPrefix + NameForGlobal, nullptr, 2622 NewGlobal->getThreadLocalMode()); 2623 2624 // Set meaningful attributes for indicator symbol. 2625 ODRIndicatorSym->setVisibility(NewGlobal->getVisibility()); 2626 ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass()); 2627 ODRIndicatorSym->setAlignment(Align(1)); 2628 ODRIndicator = ODRIndicatorSym; 2629 } 2630 2631 Constant *Initializer = ConstantStruct::get( 2632 GlobalStructTy, 2633 ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy), 2634 ConstantInt::get(IntptrTy, SizeInBytes), 2635 ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize), 2636 ConstantExpr::getPointerCast(Name, IntptrTy), 2637 ConstantExpr::getPointerCast(getOrCreateModuleName(), IntptrTy), 2638 ConstantInt::get(IntptrTy, MD.IsDynInit), 2639 Constant::getNullValue(IntptrTy), 2640 ConstantExpr::getPointerCast(ODRIndicator, IntptrTy)); 2641 2642 LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n"); 2643 2644 Initializers[i] = Initializer; 2645 } 2646 2647 // Add instrumented globals to llvm.compiler.used list to avoid LTO from 2648 // ConstantMerge'ing them. 2649 SmallVector<GlobalValue *, 16> GlobalsToAddToUsedList; 2650 for (size_t i = 0; i < n; i++) { 2651 GlobalVariable *G = NewGlobals[i]; 2652 if (G->getName().empty()) continue; 2653 GlobalsToAddToUsedList.push_back(G); 2654 } 2655 appendToCompilerUsed(M, ArrayRef<GlobalValue *>(GlobalsToAddToUsedList)); 2656 2657 if (UseGlobalsGC && TargetTriple.isOSBinFormatELF()) { 2658 // Use COMDAT and register globals even if n == 0 to ensure that (a) the 2659 // linkage unit will only have one module constructor, and (b) the register 2660 // function will be called. The module destructor is not created when n == 2661 // 0. 2662 *CtorComdat = true; 2663 instrumentGlobalsELF(IRB, NewGlobals, Initializers, getUniqueModuleId(&M)); 2664 } else if (n == 0) { 2665 // When UseGlobalsGC is false, COMDAT can still be used if n == 0, because 2666 // all compile units will have identical module constructor/destructor. 2667 *CtorComdat = TargetTriple.isOSBinFormatELF(); 2668 } else { 2669 *CtorComdat = false; 2670 if (UseGlobalsGC && TargetTriple.isOSBinFormatCOFF()) { 2671 InstrumentGlobalsCOFF(IRB, NewGlobals, Initializers); 2672 } else if (UseGlobalsGC && ShouldUseMachOGlobalsSection()) { 2673 InstrumentGlobalsMachO(IRB, NewGlobals, Initializers); 2674 } else { 2675 InstrumentGlobalsWithMetadataArray(IRB, NewGlobals, Initializers); 2676 } 2677 } 2678 2679 // Create calls for poisoning before initializers run and unpoisoning after. 2680 if (ClInitializers) 2681 createInitializerPoisonCalls(); 2682 2683 LLVM_DEBUG(dbgs() << M); 2684 } 2685 2686 uint64_t 2687 ModuleAddressSanitizer::getRedzoneSizeForGlobal(uint64_t SizeInBytes) const { 2688 constexpr uint64_t kMaxRZ = 1 << 18; 2689 const uint64_t MinRZ = getMinRedzoneSizeForGlobal(); 2690 2691 uint64_t RZ = 0; 2692 if (SizeInBytes <= MinRZ / 2) { 2693 // Reduce redzone size for small size objects, e.g. int, char[1]. MinRZ is 2694 // at least 32 bytes, optimize when SizeInBytes is less than or equal to 2695 // half of MinRZ. 2696 RZ = MinRZ - SizeInBytes; 2697 } else { 2698 // Calculate RZ, where MinRZ <= RZ <= MaxRZ, and RZ ~ 1/4 * SizeInBytes. 2699 RZ = std::clamp((SizeInBytes / MinRZ / 4) * MinRZ, MinRZ, kMaxRZ); 2700 2701 // Round up to multiple of MinRZ. 2702 if (SizeInBytes % MinRZ) 2703 RZ += MinRZ - (SizeInBytes % MinRZ); 2704 } 2705 2706 assert((RZ + SizeInBytes) % MinRZ == 0); 2707 2708 return RZ; 2709 } 2710 2711 int ModuleAddressSanitizer::GetAsanVersion() const { 2712 int LongSize = M.getDataLayout().getPointerSizeInBits(); 2713 bool isAndroid = Triple(M.getTargetTriple()).isAndroid(); 2714 int Version = 8; 2715 // 32-bit Android is one version ahead because of the switch to dynamic 2716 // shadow. 2717 Version += (LongSize == 32 && isAndroid); 2718 return Version; 2719 } 2720 2721 GlobalVariable *ModuleAddressSanitizer::getOrCreateModuleName() { 2722 if (!ModuleName) { 2723 // We shouldn't merge same module names, as this string serves as unique 2724 // module ID in runtime. 2725 ModuleName = 2726 createPrivateGlobalForString(M, M.getModuleIdentifier(), 2727 /*AllowMerging*/ false, genName("module")); 2728 } 2729 return ModuleName; 2730 } 2731 2732 bool ModuleAddressSanitizer::instrumentModule() { 2733 initializeCallbacks(); 2734 2735 // Create a module constructor. A destructor is created lazily because not all 2736 // platforms, and not all modules need it. 2737 if (ConstructorKind == AsanCtorKind::Global) { 2738 if (CompileKernel) { 2739 // The kernel always builds with its own runtime, and therefore does not 2740 // need the init and version check calls. 2741 AsanCtorFunction = createSanitizerCtor(M, kAsanModuleCtorName); 2742 } else { 2743 std::string AsanVersion = std::to_string(GetAsanVersion()); 2744 std::string VersionCheckName = 2745 InsertVersionCheck ? (kAsanVersionCheckNamePrefix + AsanVersion) : ""; 2746 std::tie(AsanCtorFunction, std::ignore) = 2747 createSanitizerCtorAndInitFunctions( 2748 M, kAsanModuleCtorName, kAsanInitName, /*InitArgTypes=*/{}, 2749 /*InitArgs=*/{}, VersionCheckName); 2750 } 2751 } 2752 2753 bool CtorComdat = true; 2754 if (ClGlobals) { 2755 assert(AsanCtorFunction || ConstructorKind == AsanCtorKind::None); 2756 if (AsanCtorFunction) { 2757 IRBuilder<> IRB(AsanCtorFunction->getEntryBlock().getTerminator()); 2758 instrumentGlobals(IRB, &CtorComdat); 2759 } else { 2760 IRBuilder<> IRB(*C); 2761 instrumentGlobals(IRB, &CtorComdat); 2762 } 2763 } 2764 2765 const uint64_t Priority = GetCtorAndDtorPriority(TargetTriple); 2766 2767 // Put the constructor and destructor in comdat if both 2768 // (1) global instrumentation is not TU-specific 2769 // (2) target is ELF. 2770 if (UseCtorComdat && TargetTriple.isOSBinFormatELF() && CtorComdat) { 2771 if (AsanCtorFunction) { 2772 AsanCtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleCtorName)); 2773 appendToGlobalCtors(M, AsanCtorFunction, Priority, AsanCtorFunction); 2774 } 2775 if (AsanDtorFunction) { 2776 AsanDtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleDtorName)); 2777 appendToGlobalDtors(M, AsanDtorFunction, Priority, AsanDtorFunction); 2778 } 2779 } else { 2780 if (AsanCtorFunction) 2781 appendToGlobalCtors(M, AsanCtorFunction, Priority); 2782 if (AsanDtorFunction) 2783 appendToGlobalDtors(M, AsanDtorFunction, Priority); 2784 } 2785 2786 return true; 2787 } 2788 2789 void AddressSanitizer::initializeCallbacks(const TargetLibraryInfo *TLI) { 2790 IRBuilder<> IRB(*C); 2791 // Create __asan_report* callbacks. 2792 // IsWrite, TypeSize and Exp are encoded in the function name. 2793 for (int Exp = 0; Exp < 2; Exp++) { 2794 for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) { 2795 const std::string TypeStr = AccessIsWrite ? "store" : "load"; 2796 const std::string ExpStr = Exp ? "exp_" : ""; 2797 const std::string EndingStr = Recover ? "_noabort" : ""; 2798 2799 SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy}; 2800 SmallVector<Type *, 2> Args1{1, IntptrTy}; 2801 AttributeList AL2; 2802 AttributeList AL1; 2803 if (Exp) { 2804 Type *ExpType = Type::getInt32Ty(*C); 2805 Args2.push_back(ExpType); 2806 Args1.push_back(ExpType); 2807 if (auto AK = TLI->getExtAttrForI32Param(false)) { 2808 AL2 = AL2.addParamAttribute(*C, 2, AK); 2809 AL1 = AL1.addParamAttribute(*C, 1, AK); 2810 } 2811 } 2812 AsanErrorCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( 2813 kAsanReportErrorTemplate + ExpStr + TypeStr + "_n" + EndingStr, 2814 FunctionType::get(IRB.getVoidTy(), Args2, false), AL2); 2815 2816 AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( 2817 ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr, 2818 FunctionType::get(IRB.getVoidTy(), Args2, false), AL2); 2819 2820 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 2821 AccessSizeIndex++) { 2822 const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex); 2823 AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] = 2824 M.getOrInsertFunction( 2825 kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr, 2826 FunctionType::get(IRB.getVoidTy(), Args1, false), AL1); 2827 2828 AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] = 2829 M.getOrInsertFunction( 2830 ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr, 2831 FunctionType::get(IRB.getVoidTy(), Args1, false), AL1); 2832 } 2833 } 2834 } 2835 2836 const std::string MemIntrinCallbackPrefix = 2837 (CompileKernel && !ClKasanMemIntrinCallbackPrefix) 2838 ? std::string("") 2839 : ClMemoryAccessCallbackPrefix; 2840 AsanMemmove = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memmove", 2841 PtrTy, PtrTy, PtrTy, IntptrTy); 2842 AsanMemcpy = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memcpy", PtrTy, 2843 PtrTy, PtrTy, IntptrTy); 2844 AsanMemset = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memset", 2845 TLI->getAttrList(C, {1}, /*Signed=*/false), 2846 PtrTy, PtrTy, IRB.getInt32Ty(), IntptrTy); 2847 2848 AsanHandleNoReturnFunc = 2849 M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy()); 2850 2851 AsanPtrCmpFunction = 2852 M.getOrInsertFunction(kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy); 2853 AsanPtrSubFunction = 2854 M.getOrInsertFunction(kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy); 2855 if (Mapping.InGlobal) 2856 AsanShadowGlobal = M.getOrInsertGlobal("__asan_shadow", 2857 ArrayType::get(IRB.getInt8Ty(), 0)); 2858 2859 AMDGPUAddressShared = 2860 M.getOrInsertFunction(kAMDGPUAddressSharedName, IRB.getInt1Ty(), PtrTy); 2861 AMDGPUAddressPrivate = 2862 M.getOrInsertFunction(kAMDGPUAddressPrivateName, IRB.getInt1Ty(), PtrTy); 2863 } 2864 2865 bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) { 2866 // For each NSObject descendant having a +load method, this method is invoked 2867 // by the ObjC runtime before any of the static constructors is called. 2868 // Therefore we need to instrument such methods with a call to __asan_init 2869 // at the beginning in order to initialize our runtime before any access to 2870 // the shadow memory. 2871 // We cannot just ignore these methods, because they may call other 2872 // instrumented functions. 2873 if (F.getName().contains(" load]")) { 2874 FunctionCallee AsanInitFunction = 2875 declareSanitizerInitFunction(*F.getParent(), kAsanInitName, {}); 2876 IRBuilder<> IRB(&F.front(), F.front().begin()); 2877 IRB.CreateCall(AsanInitFunction, {}); 2878 return true; 2879 } 2880 return false; 2881 } 2882 2883 bool AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) { 2884 // Generate code only when dynamic addressing is needed. 2885 if (Mapping.Offset != kDynamicShadowSentinel) 2886 return false; 2887 2888 IRBuilder<> IRB(&F.front().front()); 2889 if (Mapping.InGlobal) { 2890 if (ClWithIfuncSuppressRemat) { 2891 // An empty inline asm with input reg == output reg. 2892 // An opaque pointer-to-int cast, basically. 2893 InlineAsm *Asm = InlineAsm::get( 2894 FunctionType::get(IntptrTy, {AsanShadowGlobal->getType()}, false), 2895 StringRef(""), StringRef("=r,0"), 2896 /*hasSideEffects=*/false); 2897 LocalDynamicShadow = 2898 IRB.CreateCall(Asm, {AsanShadowGlobal}, ".asan.shadow"); 2899 } else { 2900 LocalDynamicShadow = 2901 IRB.CreatePointerCast(AsanShadowGlobal, IntptrTy, ".asan.shadow"); 2902 } 2903 } else { 2904 Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal( 2905 kAsanShadowMemoryDynamicAddress, IntptrTy); 2906 LocalDynamicShadow = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress); 2907 } 2908 return true; 2909 } 2910 2911 void AddressSanitizer::markEscapedLocalAllocas(Function &F) { 2912 // Find the one possible call to llvm.localescape and pre-mark allocas passed 2913 // to it as uninteresting. This assumes we haven't started processing allocas 2914 // yet. This check is done up front because iterating the use list in 2915 // isInterestingAlloca would be algorithmically slower. 2916 assert(ProcessedAllocas.empty() && "must process localescape before allocas"); 2917 2918 // Try to get the declaration of llvm.localescape. If it's not in the module, 2919 // we can exit early. 2920 if (!F.getParent()->getFunction("llvm.localescape")) return; 2921 2922 // Look for a call to llvm.localescape call in the entry block. It can't be in 2923 // any other block. 2924 for (Instruction &I : F.getEntryBlock()) { 2925 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I); 2926 if (II && II->getIntrinsicID() == Intrinsic::localescape) { 2927 // We found a call. Mark all the allocas passed in as uninteresting. 2928 for (Value *Arg : II->args()) { 2929 AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 2930 assert(AI && AI->isStaticAlloca() && 2931 "non-static alloca arg to localescape"); 2932 ProcessedAllocas[AI] = false; 2933 } 2934 break; 2935 } 2936 } 2937 } 2938 2939 bool AddressSanitizer::suppressInstrumentationSiteForDebug(int &Instrumented) { 2940 bool ShouldInstrument = 2941 ClDebugMin < 0 || ClDebugMax < 0 || 2942 (Instrumented >= ClDebugMin && Instrumented <= ClDebugMax); 2943 Instrumented++; 2944 return !ShouldInstrument; 2945 } 2946 2947 bool AddressSanitizer::instrumentFunction(Function &F, 2948 const TargetLibraryInfo *TLI) { 2949 if (F.empty()) 2950 return false; 2951 if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false; 2952 if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false; 2953 if (F.getName().starts_with("__asan_")) return false; 2954 if (F.isPresplitCoroutine()) 2955 return false; 2956 2957 bool FunctionModified = false; 2958 2959 // Do not apply any instrumentation for naked functions. 2960 if (F.hasFnAttribute(Attribute::Naked)) 2961 return FunctionModified; 2962 2963 // If needed, insert __asan_init before checking for SanitizeAddress attr. 2964 // This function needs to be called even if the function body is not 2965 // instrumented. 2966 if (maybeInsertAsanInitAtFunctionEntry(F)) 2967 FunctionModified = true; 2968 2969 // Leave if the function doesn't need instrumentation. 2970 if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified; 2971 2972 if (F.hasFnAttribute(Attribute::DisableSanitizerInstrumentation)) 2973 return FunctionModified; 2974 2975 LLVM_DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n"); 2976 2977 initializeCallbacks(TLI); 2978 2979 FunctionStateRAII CleanupObj(this); 2980 2981 RuntimeCallInserter RTCI(F); 2982 2983 FunctionModified |= maybeInsertDynamicShadowAtFunctionEntry(F); 2984 2985 // We can't instrument allocas used with llvm.localescape. Only static allocas 2986 // can be passed to that intrinsic. 2987 markEscapedLocalAllocas(F); 2988 2989 // We want to instrument every address only once per basic block (unless there 2990 // are calls between uses). 2991 SmallPtrSet<Value *, 16> TempsToInstrument; 2992 SmallVector<InterestingMemoryOperand, 16> OperandsToInstrument; 2993 SmallVector<MemIntrinsic *, 16> IntrinToInstrument; 2994 SmallVector<Instruction *, 8> NoReturnCalls; 2995 SmallVector<BasicBlock *, 16> AllBlocks; 2996 SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts; 2997 2998 // Fill the set of memory operations to instrument. 2999 for (auto &BB : F) { 3000 AllBlocks.push_back(&BB); 3001 TempsToInstrument.clear(); 3002 int NumInsnsPerBB = 0; 3003 for (auto &Inst : BB) { 3004 if (LooksLikeCodeInBug11395(&Inst)) return false; 3005 // Skip instructions inserted by another instrumentation. 3006 if (Inst.hasMetadata(LLVMContext::MD_nosanitize)) 3007 continue; 3008 SmallVector<InterestingMemoryOperand, 1> InterestingOperands; 3009 getInterestingMemoryOperands(&Inst, InterestingOperands); 3010 3011 if (!InterestingOperands.empty()) { 3012 for (auto &Operand : InterestingOperands) { 3013 if (ClOpt && ClOptSameTemp) { 3014 Value *Ptr = Operand.getPtr(); 3015 // If we have a mask, skip instrumentation if we've already 3016 // instrumented the full object. But don't add to TempsToInstrument 3017 // because we might get another load/store with a different mask. 3018 if (Operand.MaybeMask) { 3019 if (TempsToInstrument.count(Ptr)) 3020 continue; // We've seen this (whole) temp in the current BB. 3021 } else { 3022 if (!TempsToInstrument.insert(Ptr).second) 3023 continue; // We've seen this temp in the current BB. 3024 } 3025 } 3026 OperandsToInstrument.push_back(Operand); 3027 NumInsnsPerBB++; 3028 } 3029 } else if (((ClInvalidPointerPairs || ClInvalidPointerCmp) && 3030 isInterestingPointerComparison(&Inst)) || 3031 ((ClInvalidPointerPairs || ClInvalidPointerSub) && 3032 isInterestingPointerSubtraction(&Inst))) { 3033 PointerComparisonsOrSubtracts.push_back(&Inst); 3034 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(&Inst)) { 3035 // ok, take it. 3036 IntrinToInstrument.push_back(MI); 3037 NumInsnsPerBB++; 3038 } else { 3039 if (auto *CB = dyn_cast<CallBase>(&Inst)) { 3040 // A call inside BB. 3041 TempsToInstrument.clear(); 3042 if (CB->doesNotReturn()) 3043 NoReturnCalls.push_back(CB); 3044 } 3045 if (CallInst *CI = dyn_cast<CallInst>(&Inst)) 3046 maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI); 3047 } 3048 if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break; 3049 } 3050 } 3051 3052 bool UseCalls = (InstrumentationWithCallsThreshold >= 0 && 3053 OperandsToInstrument.size() + IntrinToInstrument.size() > 3054 (unsigned)InstrumentationWithCallsThreshold); 3055 const DataLayout &DL = F.getDataLayout(); 3056 ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext()); 3057 3058 // Instrument. 3059 int NumInstrumented = 0; 3060 for (auto &Operand : OperandsToInstrument) { 3061 if (!suppressInstrumentationSiteForDebug(NumInstrumented)) 3062 instrumentMop(ObjSizeVis, Operand, UseCalls, 3063 F.getDataLayout(), RTCI); 3064 FunctionModified = true; 3065 } 3066 for (auto *Inst : IntrinToInstrument) { 3067 if (!suppressInstrumentationSiteForDebug(NumInstrumented)) 3068 instrumentMemIntrinsic(Inst, RTCI); 3069 FunctionModified = true; 3070 } 3071 3072 FunctionStackPoisoner FSP(F, *this, RTCI); 3073 bool ChangedStack = FSP.runOnFunction(); 3074 3075 // We must unpoison the stack before NoReturn calls (throw, _exit, etc). 3076 // See e.g. https://github.com/google/sanitizers/issues/37 3077 for (auto *CI : NoReturnCalls) { 3078 IRBuilder<> IRB(CI); 3079 RTCI.createRuntimeCall(IRB, AsanHandleNoReturnFunc, {}); 3080 } 3081 3082 for (auto *Inst : PointerComparisonsOrSubtracts) { 3083 instrumentPointerComparisonOrSubtraction(Inst, RTCI); 3084 FunctionModified = true; 3085 } 3086 3087 if (ChangedStack || !NoReturnCalls.empty()) 3088 FunctionModified = true; 3089 3090 LLVM_DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " " 3091 << F << "\n"); 3092 3093 return FunctionModified; 3094 } 3095 3096 // Workaround for bug 11395: we don't want to instrument stack in functions 3097 // with large assembly blobs (32-bit only), otherwise reg alloc may crash. 3098 // FIXME: remove once the bug 11395 is fixed. 3099 bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) { 3100 if (LongSize != 32) return false; 3101 CallInst *CI = dyn_cast<CallInst>(I); 3102 if (!CI || !CI->isInlineAsm()) return false; 3103 if (CI->arg_size() <= 5) 3104 return false; 3105 // We have inline assembly with quite a few arguments. 3106 return true; 3107 } 3108 3109 void FunctionStackPoisoner::initializeCallbacks(Module &M) { 3110 IRBuilder<> IRB(*C); 3111 if (ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Always || 3112 ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Runtime) { 3113 const char *MallocNameTemplate = 3114 ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Always 3115 ? kAsanStackMallocAlwaysNameTemplate 3116 : kAsanStackMallocNameTemplate; 3117 for (int Index = 0; Index <= kMaxAsanStackMallocSizeClass; Index++) { 3118 std::string Suffix = itostr(Index); 3119 AsanStackMallocFunc[Index] = M.getOrInsertFunction( 3120 MallocNameTemplate + Suffix, IntptrTy, IntptrTy); 3121 AsanStackFreeFunc[Index] = 3122 M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix, 3123 IRB.getVoidTy(), IntptrTy, IntptrTy); 3124 } 3125 } 3126 if (ASan.UseAfterScope) { 3127 AsanPoisonStackMemoryFunc = M.getOrInsertFunction( 3128 kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy); 3129 AsanUnpoisonStackMemoryFunc = M.getOrInsertFunction( 3130 kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy); 3131 } 3132 3133 for (size_t Val : {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0xf1, 0xf2, 3134 0xf3, 0xf5, 0xf8}) { 3135 std::ostringstream Name; 3136 Name << kAsanSetShadowPrefix; 3137 Name << std::setw(2) << std::setfill('0') << std::hex << Val; 3138 AsanSetShadowFunc[Val] = 3139 M.getOrInsertFunction(Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy); 3140 } 3141 3142 AsanAllocaPoisonFunc = M.getOrInsertFunction( 3143 kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy); 3144 AsanAllocasUnpoisonFunc = M.getOrInsertFunction( 3145 kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy); 3146 } 3147 3148 void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask, 3149 ArrayRef<uint8_t> ShadowBytes, 3150 size_t Begin, size_t End, 3151 IRBuilder<> &IRB, 3152 Value *ShadowBase) { 3153 if (Begin >= End) 3154 return; 3155 3156 const size_t LargestStoreSizeInBytes = 3157 std::min<size_t>(sizeof(uint64_t), ASan.LongSize / 8); 3158 3159 const bool IsLittleEndian = F.getDataLayout().isLittleEndian(); 3160 3161 // Poison given range in shadow using larges store size with out leading and 3162 // trailing zeros in ShadowMask. Zeros never change, so they need neither 3163 // poisoning nor up-poisoning. Still we don't mind if some of them get into a 3164 // middle of a store. 3165 for (size_t i = Begin; i < End;) { 3166 if (!ShadowMask[i]) { 3167 assert(!ShadowBytes[i]); 3168 ++i; 3169 continue; 3170 } 3171 3172 size_t StoreSizeInBytes = LargestStoreSizeInBytes; 3173 // Fit store size into the range. 3174 while (StoreSizeInBytes > End - i) 3175 StoreSizeInBytes /= 2; 3176 3177 // Minimize store size by trimming trailing zeros. 3178 for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) { 3179 while (j <= StoreSizeInBytes / 2) 3180 StoreSizeInBytes /= 2; 3181 } 3182 3183 uint64_t Val = 0; 3184 for (size_t j = 0; j < StoreSizeInBytes; j++) { 3185 if (IsLittleEndian) 3186 Val |= (uint64_t)ShadowBytes[i + j] << (8 * j); 3187 else 3188 Val = (Val << 8) | ShadowBytes[i + j]; 3189 } 3190 3191 Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)); 3192 Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val); 3193 IRB.CreateAlignedStore( 3194 Poison, IRB.CreateIntToPtr(Ptr, PointerType::getUnqual(Poison->getContext())), 3195 Align(1)); 3196 3197 i += StoreSizeInBytes; 3198 } 3199 } 3200 3201 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, 3202 ArrayRef<uint8_t> ShadowBytes, 3203 IRBuilder<> &IRB, Value *ShadowBase) { 3204 copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase); 3205 } 3206 3207 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, 3208 ArrayRef<uint8_t> ShadowBytes, 3209 size_t Begin, size_t End, 3210 IRBuilder<> &IRB, Value *ShadowBase) { 3211 assert(ShadowMask.size() == ShadowBytes.size()); 3212 size_t Done = Begin; 3213 for (size_t i = Begin, j = Begin + 1; i < End; i = j++) { 3214 if (!ShadowMask[i]) { 3215 assert(!ShadowBytes[i]); 3216 continue; 3217 } 3218 uint8_t Val = ShadowBytes[i]; 3219 if (!AsanSetShadowFunc[Val]) 3220 continue; 3221 3222 // Skip same values. 3223 for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) { 3224 } 3225 3226 if (j - i >= ASan.MaxInlinePoisoningSize) { 3227 copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase); 3228 RTCI.createRuntimeCall( 3229 IRB, AsanSetShadowFunc[Val], 3230 {IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)), 3231 ConstantInt::get(IntptrTy, j - i)}); 3232 Done = j; 3233 } 3234 } 3235 3236 copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase); 3237 } 3238 3239 // Fake stack allocator (asan_fake_stack.h) has 11 size classes 3240 // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass 3241 static int StackMallocSizeClass(uint64_t LocalStackSize) { 3242 assert(LocalStackSize <= kMaxStackMallocSize); 3243 uint64_t MaxSize = kMinStackMallocSize; 3244 for (int i = 0;; i++, MaxSize *= 2) 3245 if (LocalStackSize <= MaxSize) return i; 3246 llvm_unreachable("impossible LocalStackSize"); 3247 } 3248 3249 void FunctionStackPoisoner::copyArgsPassedByValToAllocas() { 3250 Instruction *CopyInsertPoint = &F.front().front(); 3251 if (CopyInsertPoint == ASan.LocalDynamicShadow) { 3252 // Insert after the dynamic shadow location is determined 3253 CopyInsertPoint = CopyInsertPoint->getNextNode(); 3254 assert(CopyInsertPoint); 3255 } 3256 IRBuilder<> IRB(CopyInsertPoint); 3257 const DataLayout &DL = F.getDataLayout(); 3258 for (Argument &Arg : F.args()) { 3259 if (Arg.hasByValAttr()) { 3260 Type *Ty = Arg.getParamByValType(); 3261 const Align Alignment = 3262 DL.getValueOrABITypeAlignment(Arg.getParamAlign(), Ty); 3263 3264 AllocaInst *AI = IRB.CreateAlloca( 3265 Ty, nullptr, 3266 (Arg.hasName() ? Arg.getName() : "Arg" + Twine(Arg.getArgNo())) + 3267 ".byval"); 3268 AI->setAlignment(Alignment); 3269 Arg.replaceAllUsesWith(AI); 3270 3271 uint64_t AllocSize = DL.getTypeAllocSize(Ty); 3272 IRB.CreateMemCpy(AI, Alignment, &Arg, Alignment, AllocSize); 3273 } 3274 } 3275 } 3276 3277 PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond, 3278 Value *ValueIfTrue, 3279 Instruction *ThenTerm, 3280 Value *ValueIfFalse) { 3281 PHINode *PHI = IRB.CreatePHI(IntptrTy, 2); 3282 BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent(); 3283 PHI->addIncoming(ValueIfFalse, CondBlock); 3284 BasicBlock *ThenBlock = ThenTerm->getParent(); 3285 PHI->addIncoming(ValueIfTrue, ThenBlock); 3286 return PHI; 3287 } 3288 3289 Value *FunctionStackPoisoner::createAllocaForLayout( 3290 IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) { 3291 AllocaInst *Alloca; 3292 if (Dynamic) { 3293 Alloca = IRB.CreateAlloca(IRB.getInt8Ty(), 3294 ConstantInt::get(IRB.getInt64Ty(), L.FrameSize), 3295 "MyAlloca"); 3296 } else { 3297 Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize), 3298 nullptr, "MyAlloca"); 3299 assert(Alloca->isStaticAlloca()); 3300 } 3301 assert((ClRealignStack & (ClRealignStack - 1)) == 0); 3302 uint64_t FrameAlignment = std::max(L.FrameAlignment, uint64_t(ClRealignStack)); 3303 Alloca->setAlignment(Align(FrameAlignment)); 3304 return IRB.CreatePointerCast(Alloca, IntptrTy); 3305 } 3306 3307 void FunctionStackPoisoner::createDynamicAllocasInitStorage() { 3308 BasicBlock &FirstBB = *F.begin(); 3309 IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin())); 3310 DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr); 3311 IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout); 3312 DynamicAllocaLayout->setAlignment(Align(32)); 3313 } 3314 3315 void FunctionStackPoisoner::processDynamicAllocas() { 3316 if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) { 3317 assert(DynamicAllocaPoisonCallVec.empty()); 3318 return; 3319 } 3320 3321 // Insert poison calls for lifetime intrinsics for dynamic allocas. 3322 for (const auto &APC : DynamicAllocaPoisonCallVec) { 3323 assert(APC.InsBefore); 3324 assert(APC.AI); 3325 assert(ASan.isInterestingAlloca(*APC.AI)); 3326 assert(!APC.AI->isStaticAlloca()); 3327 3328 IRBuilder<> IRB(APC.InsBefore); 3329 poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison); 3330 // Dynamic allocas will be unpoisoned unconditionally below in 3331 // unpoisonDynamicAllocas. 3332 // Flag that we need unpoison static allocas. 3333 } 3334 3335 // Handle dynamic allocas. 3336 createDynamicAllocasInitStorage(); 3337 for (auto &AI : DynamicAllocaVec) 3338 handleDynamicAllocaCall(AI); 3339 unpoisonDynamicAllocas(); 3340 } 3341 3342 /// Collect instructions in the entry block after \p InsBefore which initialize 3343 /// permanent storage for a function argument. These instructions must remain in 3344 /// the entry block so that uninitialized values do not appear in backtraces. An 3345 /// added benefit is that this conserves spill slots. This does not move stores 3346 /// before instrumented / "interesting" allocas. 3347 static void findStoresToUninstrumentedArgAllocas( 3348 AddressSanitizer &ASan, Instruction &InsBefore, 3349 SmallVectorImpl<Instruction *> &InitInsts) { 3350 Instruction *Start = InsBefore.getNextNonDebugInstruction(); 3351 for (Instruction *It = Start; It; It = It->getNextNonDebugInstruction()) { 3352 // Argument initialization looks like: 3353 // 1) store <Argument>, <Alloca> OR 3354 // 2) <CastArgument> = cast <Argument> to ... 3355 // store <CastArgument> to <Alloca> 3356 // Do not consider any other kind of instruction. 3357 // 3358 // Note: This covers all known cases, but may not be exhaustive. An 3359 // alternative to pattern-matching stores is to DFS over all Argument uses: 3360 // this might be more general, but is probably much more complicated. 3361 if (isa<AllocaInst>(It) || isa<CastInst>(It)) 3362 continue; 3363 if (auto *Store = dyn_cast<StoreInst>(It)) { 3364 // The store destination must be an alloca that isn't interesting for 3365 // ASan to instrument. These are moved up before InsBefore, and they're 3366 // not interesting because allocas for arguments can be mem2reg'd. 3367 auto *Alloca = dyn_cast<AllocaInst>(Store->getPointerOperand()); 3368 if (!Alloca || ASan.isInterestingAlloca(*Alloca)) 3369 continue; 3370 3371 Value *Val = Store->getValueOperand(); 3372 bool IsDirectArgInit = isa<Argument>(Val); 3373 bool IsArgInitViaCast = 3374 isa<CastInst>(Val) && 3375 isa<Argument>(cast<CastInst>(Val)->getOperand(0)) && 3376 // Check that the cast appears directly before the store. Otherwise 3377 // moving the cast before InsBefore may break the IR. 3378 Val == It->getPrevNonDebugInstruction(); 3379 bool IsArgInit = IsDirectArgInit || IsArgInitViaCast; 3380 if (!IsArgInit) 3381 continue; 3382 3383 if (IsArgInitViaCast) 3384 InitInsts.push_back(cast<Instruction>(Val)); 3385 InitInsts.push_back(Store); 3386 continue; 3387 } 3388 3389 // Do not reorder past unknown instructions: argument initialization should 3390 // only involve casts and stores. 3391 return; 3392 } 3393 } 3394 3395 void FunctionStackPoisoner::processStaticAllocas() { 3396 if (AllocaVec.empty()) { 3397 assert(StaticAllocaPoisonCallVec.empty()); 3398 return; 3399 } 3400 3401 int StackMallocIdx = -1; 3402 DebugLoc EntryDebugLocation; 3403 if (auto SP = F.getSubprogram()) 3404 EntryDebugLocation = 3405 DILocation::get(SP->getContext(), SP->getScopeLine(), 0, SP); 3406 3407 Instruction *InsBefore = AllocaVec[0]; 3408 IRBuilder<> IRB(InsBefore); 3409 3410 // Make sure non-instrumented allocas stay in the entry block. Otherwise, 3411 // debug info is broken, because only entry-block allocas are treated as 3412 // regular stack slots. 3413 auto InsBeforeB = InsBefore->getParent(); 3414 assert(InsBeforeB == &F.getEntryBlock()); 3415 for (auto *AI : StaticAllocasToMoveUp) 3416 if (AI->getParent() == InsBeforeB) 3417 AI->moveBefore(InsBefore->getIterator()); 3418 3419 // Move stores of arguments into entry-block allocas as well. This prevents 3420 // extra stack slots from being generated (to house the argument values until 3421 // they can be stored into the allocas). This also prevents uninitialized 3422 // values from being shown in backtraces. 3423 SmallVector<Instruction *, 8> ArgInitInsts; 3424 findStoresToUninstrumentedArgAllocas(ASan, *InsBefore, ArgInitInsts); 3425 for (Instruction *ArgInitInst : ArgInitInsts) 3426 ArgInitInst->moveBefore(InsBefore->getIterator()); 3427 3428 // If we have a call to llvm.localescape, keep it in the entry block. 3429 if (LocalEscapeCall) 3430 LocalEscapeCall->moveBefore(InsBefore->getIterator()); 3431 3432 SmallVector<ASanStackVariableDescription, 16> SVD; 3433 SVD.reserve(AllocaVec.size()); 3434 for (AllocaInst *AI : AllocaVec) { 3435 ASanStackVariableDescription D = {AI->getName().data(), 3436 ASan.getAllocaSizeInBytes(*AI), 3437 0, 3438 AI->getAlign().value(), 3439 AI, 3440 0, 3441 0}; 3442 SVD.push_back(D); 3443 } 3444 3445 // Minimal header size (left redzone) is 4 pointers, 3446 // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms. 3447 uint64_t Granularity = 1ULL << Mapping.Scale; 3448 uint64_t MinHeaderSize = std::max((uint64_t)ASan.LongSize / 2, Granularity); 3449 const ASanStackFrameLayout &L = 3450 ComputeASanStackFrameLayout(SVD, Granularity, MinHeaderSize); 3451 3452 // Build AllocaToSVDMap for ASanStackVariableDescription lookup. 3453 DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap; 3454 for (auto &Desc : SVD) 3455 AllocaToSVDMap[Desc.AI] = &Desc; 3456 3457 // Update SVD with information from lifetime intrinsics. 3458 for (const auto &APC : StaticAllocaPoisonCallVec) { 3459 assert(APC.InsBefore); 3460 assert(APC.AI); 3461 assert(ASan.isInterestingAlloca(*APC.AI)); 3462 assert(APC.AI->isStaticAlloca()); 3463 3464 ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; 3465 Desc.LifetimeSize = Desc.Size; 3466 if (const DILocation *FnLoc = EntryDebugLocation.get()) { 3467 if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) { 3468 if (LifetimeLoc->getFile() == FnLoc->getFile()) 3469 if (unsigned Line = LifetimeLoc->getLine()) 3470 Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line); 3471 } 3472 } 3473 } 3474 3475 auto DescriptionString = ComputeASanStackFrameDescription(SVD); 3476 LLVM_DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n"); 3477 uint64_t LocalStackSize = L.FrameSize; 3478 bool DoStackMalloc = 3479 ASan.UseAfterReturn != AsanDetectStackUseAfterReturnMode::Never && 3480 !ASan.CompileKernel && LocalStackSize <= kMaxStackMallocSize; 3481 bool DoDynamicAlloca = ClDynamicAllocaStack; 3482 // Don't do dynamic alloca or stack malloc if: 3483 // 1) There is inline asm: too often it makes assumptions on which registers 3484 // are available. 3485 // 2) There is a returns_twice call (typically setjmp), which is 3486 // optimization-hostile, and doesn't play well with introduced indirect 3487 // register-relative calculation of local variable addresses. 3488 DoDynamicAlloca &= !HasInlineAsm && !HasReturnsTwiceCall; 3489 DoStackMalloc &= !HasInlineAsm && !HasReturnsTwiceCall; 3490 3491 Value *StaticAlloca = 3492 DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false); 3493 3494 Value *FakeStack; 3495 Value *LocalStackBase; 3496 Value *LocalStackBaseAlloca; 3497 uint8_t DIExprFlags = DIExpression::ApplyOffset; 3498 3499 if (DoStackMalloc) { 3500 LocalStackBaseAlloca = 3501 IRB.CreateAlloca(IntptrTy, nullptr, "asan_local_stack_base"); 3502 if (ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Runtime) { 3503 // void *FakeStack = __asan_option_detect_stack_use_after_return 3504 // ? __asan_stack_malloc_N(LocalStackSize) 3505 // : nullptr; 3506 // void *LocalStackBase = (FakeStack) ? FakeStack : 3507 // alloca(LocalStackSize); 3508 Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal( 3509 kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty()); 3510 Value *UseAfterReturnIsEnabled = IRB.CreateICmpNE( 3511 IRB.CreateLoad(IRB.getInt32Ty(), OptionDetectUseAfterReturn), 3512 Constant::getNullValue(IRB.getInt32Ty())); 3513 Instruction *Term = 3514 SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false); 3515 IRBuilder<> IRBIf(Term); 3516 StackMallocIdx = StackMallocSizeClass(LocalStackSize); 3517 assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass); 3518 Value *FakeStackValue = 3519 RTCI.createRuntimeCall(IRBIf, AsanStackMallocFunc[StackMallocIdx], 3520 ConstantInt::get(IntptrTy, LocalStackSize)); 3521 IRB.SetInsertPoint(InsBefore); 3522 FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term, 3523 ConstantInt::get(IntptrTy, 0)); 3524 } else { 3525 // assert(ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode:Always) 3526 // void *FakeStack = __asan_stack_malloc_N(LocalStackSize); 3527 // void *LocalStackBase = (FakeStack) ? FakeStack : 3528 // alloca(LocalStackSize); 3529 StackMallocIdx = StackMallocSizeClass(LocalStackSize); 3530 FakeStack = 3531 RTCI.createRuntimeCall(IRB, AsanStackMallocFunc[StackMallocIdx], 3532 ConstantInt::get(IntptrTy, LocalStackSize)); 3533 } 3534 Value *NoFakeStack = 3535 IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy)); 3536 Instruction *Term = 3537 SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false); 3538 IRBuilder<> IRBIf(Term); 3539 Value *AllocaValue = 3540 DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca; 3541 3542 IRB.SetInsertPoint(InsBefore); 3543 LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack); 3544 IRB.CreateStore(LocalStackBase, LocalStackBaseAlloca); 3545 DIExprFlags |= DIExpression::DerefBefore; 3546 } else { 3547 // void *FakeStack = nullptr; 3548 // void *LocalStackBase = alloca(LocalStackSize); 3549 FakeStack = ConstantInt::get(IntptrTy, 0); 3550 LocalStackBase = 3551 DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca; 3552 LocalStackBaseAlloca = LocalStackBase; 3553 } 3554 3555 // It shouldn't matter whether we pass an `alloca` or a `ptrtoint` as the 3556 // dbg.declare address opereand, but passing a `ptrtoint` seems to confuse 3557 // later passes and can result in dropped variable coverage in debug info. 3558 Value *LocalStackBaseAllocaPtr = 3559 isa<PtrToIntInst>(LocalStackBaseAlloca) 3560 ? cast<PtrToIntInst>(LocalStackBaseAlloca)->getPointerOperand() 3561 : LocalStackBaseAlloca; 3562 assert(isa<AllocaInst>(LocalStackBaseAllocaPtr) && 3563 "Variable descriptions relative to ASan stack base will be dropped"); 3564 3565 // Replace Alloca instructions with base+offset. 3566 for (const auto &Desc : SVD) { 3567 AllocaInst *AI = Desc.AI; 3568 replaceDbgDeclare(AI, LocalStackBaseAllocaPtr, DIB, DIExprFlags, 3569 Desc.Offset); 3570 Value *NewAllocaPtr = IRB.CreateIntToPtr( 3571 IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)), 3572 AI->getType()); 3573 AI->replaceAllUsesWith(NewAllocaPtr); 3574 } 3575 3576 // The left-most redzone has enough space for at least 4 pointers. 3577 // Write the Magic value to redzone[0]. 3578 Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy); 3579 IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic), 3580 BasePlus0); 3581 // Write the frame description constant to redzone[1]. 3582 Value *BasePlus1 = IRB.CreateIntToPtr( 3583 IRB.CreateAdd(LocalStackBase, 3584 ConstantInt::get(IntptrTy, ASan.LongSize / 8)), 3585 IntptrPtrTy); 3586 GlobalVariable *StackDescriptionGlobal = 3587 createPrivateGlobalForString(*F.getParent(), DescriptionString, 3588 /*AllowMerging*/ true, genName("stack")); 3589 Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy); 3590 IRB.CreateStore(Description, BasePlus1); 3591 // Write the PC to redzone[2]. 3592 Value *BasePlus2 = IRB.CreateIntToPtr( 3593 IRB.CreateAdd(LocalStackBase, 3594 ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)), 3595 IntptrPtrTy); 3596 IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2); 3597 3598 const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L); 3599 3600 // Poison the stack red zones at the entry. 3601 Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB); 3602 // As mask we must use most poisoned case: red zones and after scope. 3603 // As bytes we can use either the same or just red zones only. 3604 copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase); 3605 3606 if (!StaticAllocaPoisonCallVec.empty()) { 3607 const auto &ShadowInScope = GetShadowBytes(SVD, L); 3608 3609 // Poison static allocas near lifetime intrinsics. 3610 for (const auto &APC : StaticAllocaPoisonCallVec) { 3611 const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; 3612 assert(Desc.Offset % L.Granularity == 0); 3613 size_t Begin = Desc.Offset / L.Granularity; 3614 size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity; 3615 3616 IRBuilder<> IRB(APC.InsBefore); 3617 copyToShadow(ShadowAfterScope, 3618 APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End, 3619 IRB, ShadowBase); 3620 } 3621 } 3622 3623 SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0); 3624 SmallVector<uint8_t, 64> ShadowAfterReturn; 3625 3626 // (Un)poison the stack before all ret instructions. 3627 for (Instruction *Ret : RetVec) { 3628 IRBuilder<> IRBRet(Ret); 3629 // Mark the current frame as retired. 3630 IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic), 3631 BasePlus0); 3632 if (DoStackMalloc) { 3633 assert(StackMallocIdx >= 0); 3634 // if FakeStack != 0 // LocalStackBase == FakeStack 3635 // // In use-after-return mode, poison the whole stack frame. 3636 // if StackMallocIdx <= 4 3637 // // For small sizes inline the whole thing: 3638 // memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize); 3639 // **SavedFlagPtr(FakeStack) = 0 3640 // else 3641 // __asan_stack_free_N(FakeStack, LocalStackSize) 3642 // else 3643 // <This is not a fake stack; unpoison the redzones> 3644 Value *Cmp = 3645 IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy)); 3646 Instruction *ThenTerm, *ElseTerm; 3647 SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm); 3648 3649 IRBuilder<> IRBPoison(ThenTerm); 3650 if (ASan.MaxInlinePoisoningSize != 0 && StackMallocIdx <= 4) { 3651 int ClassSize = kMinStackMallocSize << StackMallocIdx; 3652 ShadowAfterReturn.resize(ClassSize / L.Granularity, 3653 kAsanStackUseAfterReturnMagic); 3654 copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison, 3655 ShadowBase); 3656 Value *SavedFlagPtrPtr = IRBPoison.CreateAdd( 3657 FakeStack, 3658 ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8)); 3659 Value *SavedFlagPtr = IRBPoison.CreateLoad( 3660 IntptrTy, IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy)); 3661 IRBPoison.CreateStore( 3662 Constant::getNullValue(IRBPoison.getInt8Ty()), 3663 IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getPtrTy())); 3664 } else { 3665 // For larger frames call __asan_stack_free_*. 3666 RTCI.createRuntimeCall( 3667 IRBPoison, AsanStackFreeFunc[StackMallocIdx], 3668 {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)}); 3669 } 3670 3671 IRBuilder<> IRBElse(ElseTerm); 3672 copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase); 3673 } else { 3674 copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase); 3675 } 3676 } 3677 3678 // We are done. Remove the old unused alloca instructions. 3679 for (auto *AI : AllocaVec) 3680 AI->eraseFromParent(); 3681 } 3682 3683 void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size, 3684 IRBuilder<> &IRB, bool DoPoison) { 3685 // For now just insert the call to ASan runtime. 3686 Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy); 3687 Value *SizeArg = ConstantInt::get(IntptrTy, Size); 3688 RTCI.createRuntimeCall( 3689 IRB, DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc, 3690 {AddrArg, SizeArg}); 3691 } 3692 3693 // Handling llvm.lifetime intrinsics for a given %alloca: 3694 // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca. 3695 // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect 3696 // invalid accesses) and unpoison it for llvm.lifetime.start (the memory 3697 // could be poisoned by previous llvm.lifetime.end instruction, as the 3698 // variable may go in and out of scope several times, e.g. in loops). 3699 // (3) if we poisoned at least one %alloca in a function, 3700 // unpoison the whole stack frame at function exit. 3701 void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) { 3702 IRBuilder<> IRB(AI); 3703 3704 const Align Alignment = std::max(Align(kAllocaRzSize), AI->getAlign()); 3705 const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1; 3706 3707 Value *Zero = Constant::getNullValue(IntptrTy); 3708 Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize); 3709 Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask); 3710 3711 // Since we need to extend alloca with additional memory to locate 3712 // redzones, and OldSize is number of allocated blocks with 3713 // ElementSize size, get allocated memory size in bytes by 3714 // OldSize * ElementSize. 3715 const unsigned ElementSize = 3716 F.getDataLayout().getTypeAllocSize(AI->getAllocatedType()); 3717 Value *OldSize = 3718 IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false), 3719 ConstantInt::get(IntptrTy, ElementSize)); 3720 3721 // PartialSize = OldSize % 32 3722 Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask); 3723 3724 // Misalign = kAllocaRzSize - PartialSize; 3725 Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize); 3726 3727 // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0; 3728 Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize); 3729 Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero); 3730 3731 // AdditionalChunkSize = Alignment + PartialPadding + kAllocaRzSize 3732 // Alignment is added to locate left redzone, PartialPadding for possible 3733 // partial redzone and kAllocaRzSize for right redzone respectively. 3734 Value *AdditionalChunkSize = IRB.CreateAdd( 3735 ConstantInt::get(IntptrTy, Alignment.value() + kAllocaRzSize), 3736 PartialPadding); 3737 3738 Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize); 3739 3740 // Insert new alloca with new NewSize and Alignment params. 3741 AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize); 3742 NewAlloca->setAlignment(Alignment); 3743 3744 // NewAddress = Address + Alignment 3745 Value *NewAddress = 3746 IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy), 3747 ConstantInt::get(IntptrTy, Alignment.value())); 3748 3749 // Insert __asan_alloca_poison call for new created alloca. 3750 RTCI.createRuntimeCall(IRB, AsanAllocaPoisonFunc, {NewAddress, OldSize}); 3751 3752 // Store the last alloca's address to DynamicAllocaLayout. We'll need this 3753 // for unpoisoning stuff. 3754 IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout); 3755 3756 Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType()); 3757 3758 // Replace all uses of AddessReturnedByAlloca with NewAddressPtr. 3759 AI->replaceAllUsesWith(NewAddressPtr); 3760 3761 // We are done. Erase old alloca from parent. 3762 AI->eraseFromParent(); 3763 } 3764 3765 // isSafeAccess returns true if Addr is always inbounds with respect to its 3766 // base object. For example, it is a field access or an array access with 3767 // constant inbounds index. 3768 bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, 3769 Value *Addr, TypeSize TypeStoreSize) const { 3770 if (TypeStoreSize.isScalable()) 3771 // TODO: We can use vscale_range to convert a scalable value to an 3772 // upper bound on the access size. 3773 return false; 3774 3775 SizeOffsetAPInt SizeOffset = ObjSizeVis.compute(Addr); 3776 if (!SizeOffset.bothKnown()) 3777 return false; 3778 3779 uint64_t Size = SizeOffset.Size.getZExtValue(); 3780 int64_t Offset = SizeOffset.Offset.getSExtValue(); 3781 3782 // Three checks are required to ensure safety: 3783 // . Offset >= 0 (since the offset is given from the base ptr) 3784 // . Size >= Offset (unsigned) 3785 // . Size - Offset >= NeededSize (unsigned) 3786 return Offset >= 0 && Size >= uint64_t(Offset) && 3787 Size - uint64_t(Offset) >= TypeStoreSize / 8; 3788 } 3789