1 //===- Inliner.cpp - Code common to all inliners --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the mechanics required to implement inlining without
10 // missing any calls and updating the call graph. The decisions of which calls
11 // are profitable to inline are implemented elsewhere.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Transforms/IPO/Inliner.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/Optional.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/ScopeExit.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/Analysis/AssumptionCache.h"
27 #include "llvm/Analysis/BasicAliasAnalysis.h"
28 #include "llvm/Analysis/BlockFrequencyInfo.h"
29 #include "llvm/Analysis/CGSCCPassManager.h"
30 #include "llvm/Analysis/CallGraph.h"
31 #include "llvm/Analysis/GlobalsModRef.h"
32 #include "llvm/Analysis/InlineAdvisor.h"
33 #include "llvm/Analysis/InlineCost.h"
34 #include "llvm/Analysis/LazyCallGraph.h"
35 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
36 #include "llvm/Analysis/ProfileSummaryInfo.h"
37 #include "llvm/Analysis/TargetLibraryInfo.h"
38 #include "llvm/Analysis/TargetTransformInfo.h"
39 #include "llvm/Analysis/Utils/ImportedFunctionsInliningStatistics.h"
40 #include "llvm/IR/Attributes.h"
41 #include "llvm/IR/BasicBlock.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/DebugLoc.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/DiagnosticInfo.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/InstIterator.h"
48 #include "llvm/IR/Instruction.h"
49 #include "llvm/IR/Instructions.h"
50 #include "llvm/IR/IntrinsicInst.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/IR/PassManager.h"
54 #include "llvm/IR/User.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/Pass.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/CommandLine.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/raw_ostream.h"
61 #include "llvm/Transforms/Utils/CallPromotionUtils.h"
62 #include "llvm/Transforms/Utils/Cloning.h"
63 #include "llvm/Transforms/Utils/Local.h"
64 #include "llvm/Transforms/Utils/ModuleUtils.h"
65 #include <algorithm>
66 #include <cassert>
67 #include <functional>
68 #include <sstream>
69 #include <tuple>
70 #include <utility>
71 #include <vector>
72
73 using namespace llvm;
74
75 #define DEBUG_TYPE "inline"
76
77 STATISTIC(NumInlined, "Number of functions inlined");
78 STATISTIC(NumCallsDeleted, "Number of call sites deleted, not inlined");
79 STATISTIC(NumDeleted, "Number of functions deleted because all callers found");
80 STATISTIC(NumMergedAllocas, "Number of allocas merged together");
81
82 /// Flag to disable manual alloca merging.
83 ///
84 /// Merging of allocas was originally done as a stack-size saving technique
85 /// prior to LLVM's code generator having support for stack coloring based on
86 /// lifetime markers. It is now in the process of being removed. To experiment
87 /// with disabling it and relying fully on lifetime marker based stack
88 /// coloring, you can pass this flag to LLVM.
89 static cl::opt<bool>
90 DisableInlinedAllocaMerging("disable-inlined-alloca-merging",
91 cl::init(false), cl::Hidden);
92
93 extern cl::opt<InlinerFunctionImportStatsOpts> InlinerFunctionImportStats;
94
95 static cl::opt<std::string> CGSCCInlineReplayFile(
96 "cgscc-inline-replay", cl::init(""), cl::value_desc("filename"),
97 cl::desc(
98 "Optimization remarks file containing inline remarks to be replayed "
99 "by inlining from cgscc inline remarks."),
100 cl::Hidden);
101
LegacyInlinerBase(char & ID)102 LegacyInlinerBase::LegacyInlinerBase(char &ID) : CallGraphSCCPass(ID) {}
103
LegacyInlinerBase(char & ID,bool InsertLifetime)104 LegacyInlinerBase::LegacyInlinerBase(char &ID, bool InsertLifetime)
105 : CallGraphSCCPass(ID), InsertLifetime(InsertLifetime) {}
106
107 /// For this class, we declare that we require and preserve the call graph.
108 /// If the derived class implements this method, it should
109 /// always explicitly call the implementation here.
getAnalysisUsage(AnalysisUsage & AU) const110 void LegacyInlinerBase::getAnalysisUsage(AnalysisUsage &AU) const {
111 AU.addRequired<AssumptionCacheTracker>();
112 AU.addRequired<ProfileSummaryInfoWrapperPass>();
113 AU.addRequired<TargetLibraryInfoWrapperPass>();
114 getAAResultsAnalysisUsage(AU);
115 CallGraphSCCPass::getAnalysisUsage(AU);
116 }
117
118 using InlinedArrayAllocasTy = DenseMap<ArrayType *, std::vector<AllocaInst *>>;
119
120 /// Look at all of the allocas that we inlined through this call site. If we
121 /// have already inlined other allocas through other calls into this function,
122 /// then we know that they have disjoint lifetimes and that we can merge them.
123 ///
124 /// There are many heuristics possible for merging these allocas, and the
125 /// different options have different tradeoffs. One thing that we *really*
126 /// don't want to hurt is SRoA: once inlining happens, often allocas are no
127 /// longer address taken and so they can be promoted.
128 ///
129 /// Our "solution" for that is to only merge allocas whose outermost type is an
130 /// array type. These are usually not promoted because someone is using a
131 /// variable index into them. These are also often the most important ones to
132 /// merge.
133 ///
134 /// A better solution would be to have real memory lifetime markers in the IR
135 /// and not have the inliner do any merging of allocas at all. This would
136 /// allow the backend to do proper stack slot coloring of all allocas that
137 /// *actually make it to the backend*, which is really what we want.
138 ///
139 /// Because we don't have this information, we do this simple and useful hack.
mergeInlinedArrayAllocas(Function * Caller,InlineFunctionInfo & IFI,InlinedArrayAllocasTy & InlinedArrayAllocas,int InlineHistory)140 static void mergeInlinedArrayAllocas(Function *Caller, InlineFunctionInfo &IFI,
141 InlinedArrayAllocasTy &InlinedArrayAllocas,
142 int InlineHistory) {
143 SmallPtrSet<AllocaInst *, 16> UsedAllocas;
144
145 // When processing our SCC, check to see if the call site was inlined from
146 // some other call site. For example, if we're processing "A" in this code:
147 // A() { B() }
148 // B() { x = alloca ... C() }
149 // C() { y = alloca ... }
150 // Assume that C was not inlined into B initially, and so we're processing A
151 // and decide to inline B into A. Doing this makes an alloca available for
152 // reuse and makes a callsite (C) available for inlining. When we process
153 // the C call site we don't want to do any alloca merging between X and Y
154 // because their scopes are not disjoint. We could make this smarter by
155 // keeping track of the inline history for each alloca in the
156 // InlinedArrayAllocas but this isn't likely to be a significant win.
157 if (InlineHistory != -1) // Only do merging for top-level call sites in SCC.
158 return;
159
160 // Loop over all the allocas we have so far and see if they can be merged with
161 // a previously inlined alloca. If not, remember that we had it.
162 for (unsigned AllocaNo = 0, E = IFI.StaticAllocas.size(); AllocaNo != E;
163 ++AllocaNo) {
164 AllocaInst *AI = IFI.StaticAllocas[AllocaNo];
165
166 // Don't bother trying to merge array allocations (they will usually be
167 // canonicalized to be an allocation *of* an array), or allocations whose
168 // type is not itself an array (because we're afraid of pessimizing SRoA).
169 ArrayType *ATy = dyn_cast<ArrayType>(AI->getAllocatedType());
170 if (!ATy || AI->isArrayAllocation())
171 continue;
172
173 // Get the list of all available allocas for this array type.
174 std::vector<AllocaInst *> &AllocasForType = InlinedArrayAllocas[ATy];
175
176 // Loop over the allocas in AllocasForType to see if we can reuse one. Note
177 // that we have to be careful not to reuse the same "available" alloca for
178 // multiple different allocas that we just inlined, we use the 'UsedAllocas'
179 // set to keep track of which "available" allocas are being used by this
180 // function. Also, AllocasForType can be empty of course!
181 bool MergedAwayAlloca = false;
182 for (AllocaInst *AvailableAlloca : AllocasForType) {
183 Align Align1 = AI->getAlign();
184 Align Align2 = AvailableAlloca->getAlign();
185
186 // The available alloca has to be in the right function, not in some other
187 // function in this SCC.
188 if (AvailableAlloca->getParent() != AI->getParent())
189 continue;
190
191 // If the inlined function already uses this alloca then we can't reuse
192 // it.
193 if (!UsedAllocas.insert(AvailableAlloca).second)
194 continue;
195
196 // Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare
197 // success!
198 LLVM_DEBUG(dbgs() << " ***MERGED ALLOCA: " << *AI
199 << "\n\t\tINTO: " << *AvailableAlloca << '\n');
200
201 // Move affected dbg.declare calls immediately after the new alloca to
202 // avoid the situation when a dbg.declare precedes its alloca.
203 if (auto *L = LocalAsMetadata::getIfExists(AI))
204 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
205 for (User *U : MDV->users())
206 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U))
207 DDI->moveBefore(AvailableAlloca->getNextNode());
208
209 AI->replaceAllUsesWith(AvailableAlloca);
210
211 if (Align1 > Align2)
212 AvailableAlloca->setAlignment(AI->getAlign());
213
214 AI->eraseFromParent();
215 MergedAwayAlloca = true;
216 ++NumMergedAllocas;
217 IFI.StaticAllocas[AllocaNo] = nullptr;
218 break;
219 }
220
221 // If we already nuked the alloca, we're done with it.
222 if (MergedAwayAlloca)
223 continue;
224
225 // If we were unable to merge away the alloca either because there are no
226 // allocas of the right type available or because we reused them all
227 // already, remember that this alloca came from an inlined function and mark
228 // it used so we don't reuse it for other allocas from this inline
229 // operation.
230 AllocasForType.push_back(AI);
231 UsedAllocas.insert(AI);
232 }
233 }
234
235 /// If it is possible to inline the specified call site,
236 /// do so and update the CallGraph for this operation.
237 ///
238 /// This function also does some basic book-keeping to update the IR. The
239 /// InlinedArrayAllocas map keeps track of any allocas that are already
240 /// available from other functions inlined into the caller. If we are able to
241 /// inline this call site we attempt to reuse already available allocas or add
242 /// any new allocas to the set if not possible.
inlineCallIfPossible(CallBase & CB,InlineFunctionInfo & IFI,InlinedArrayAllocasTy & InlinedArrayAllocas,int InlineHistory,bool InsertLifetime,function_ref<AAResults & (Function &)> & AARGetter,ImportedFunctionsInliningStatistics & ImportedFunctionsStats)243 static InlineResult inlineCallIfPossible(
244 CallBase &CB, InlineFunctionInfo &IFI,
245 InlinedArrayAllocasTy &InlinedArrayAllocas, int InlineHistory,
246 bool InsertLifetime, function_ref<AAResults &(Function &)> &AARGetter,
247 ImportedFunctionsInliningStatistics &ImportedFunctionsStats) {
248 Function *Callee = CB.getCalledFunction();
249 Function *Caller = CB.getCaller();
250
251 AAResults &AAR = AARGetter(*Callee);
252
253 // Try to inline the function. Get the list of static allocas that were
254 // inlined.
255 InlineResult IR = InlineFunction(CB, IFI, &AAR, InsertLifetime);
256 if (!IR.isSuccess())
257 return IR;
258
259 if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
260 ImportedFunctionsStats.recordInline(*Caller, *Callee);
261
262 AttributeFuncs::mergeAttributesForInlining(*Caller, *Callee);
263
264 if (!DisableInlinedAllocaMerging)
265 mergeInlinedArrayAllocas(Caller, IFI, InlinedArrayAllocas, InlineHistory);
266
267 return IR; // success
268 }
269
270 /// Return true if the specified inline history ID
271 /// indicates an inline history that includes the specified function.
inlineHistoryIncludes(Function * F,int InlineHistoryID,const SmallVectorImpl<std::pair<Function *,int>> & InlineHistory)272 static bool inlineHistoryIncludes(
273 Function *F, int InlineHistoryID,
274 const SmallVectorImpl<std::pair<Function *, int>> &InlineHistory) {
275 while (InlineHistoryID != -1) {
276 assert(unsigned(InlineHistoryID) < InlineHistory.size() &&
277 "Invalid inline history ID");
278 if (InlineHistory[InlineHistoryID].first == F)
279 return true;
280 InlineHistoryID = InlineHistory[InlineHistoryID].second;
281 }
282 return false;
283 }
284
doInitialization(CallGraph & CG)285 bool LegacyInlinerBase::doInitialization(CallGraph &CG) {
286 if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
287 ImportedFunctionsStats.setModuleInfo(CG.getModule());
288 return false; // No changes to CallGraph.
289 }
290
runOnSCC(CallGraphSCC & SCC)291 bool LegacyInlinerBase::runOnSCC(CallGraphSCC &SCC) {
292 if (skipSCC(SCC))
293 return false;
294 return inlineCalls(SCC);
295 }
296
297 static bool
inlineCallsImpl(CallGraphSCC & SCC,CallGraph & CG,std::function<AssumptionCache & (Function &)> GetAssumptionCache,ProfileSummaryInfo * PSI,std::function<const TargetLibraryInfo & (Function &)> GetTLI,bool InsertLifetime,function_ref<InlineCost (CallBase & CB)> GetInlineCost,function_ref<AAResults & (Function &)> AARGetter,ImportedFunctionsInliningStatistics & ImportedFunctionsStats)298 inlineCallsImpl(CallGraphSCC &SCC, CallGraph &CG,
299 std::function<AssumptionCache &(Function &)> GetAssumptionCache,
300 ProfileSummaryInfo *PSI,
301 std::function<const TargetLibraryInfo &(Function &)> GetTLI,
302 bool InsertLifetime,
303 function_ref<InlineCost(CallBase &CB)> GetInlineCost,
304 function_ref<AAResults &(Function &)> AARGetter,
305 ImportedFunctionsInliningStatistics &ImportedFunctionsStats) {
306 SmallPtrSet<Function *, 8> SCCFunctions;
307 LLVM_DEBUG(dbgs() << "Inliner visiting SCC:");
308 for (CallGraphNode *Node : SCC) {
309 Function *F = Node->getFunction();
310 if (F)
311 SCCFunctions.insert(F);
312 LLVM_DEBUG(dbgs() << " " << (F ? F->getName() : "INDIRECTNODE"));
313 }
314
315 // Scan through and identify all call sites ahead of time so that we only
316 // inline call sites in the original functions, not call sites that result
317 // from inlining other functions.
318 SmallVector<std::pair<CallBase *, int>, 16> CallSites;
319
320 // When inlining a callee produces new call sites, we want to keep track of
321 // the fact that they were inlined from the callee. This allows us to avoid
322 // infinite inlining in some obscure cases. To represent this, we use an
323 // index into the InlineHistory vector.
324 SmallVector<std::pair<Function *, int>, 8> InlineHistory;
325
326 for (CallGraphNode *Node : SCC) {
327 Function *F = Node->getFunction();
328 if (!F || F->isDeclaration())
329 continue;
330
331 OptimizationRemarkEmitter ORE(F);
332 for (BasicBlock &BB : *F)
333 for (Instruction &I : BB) {
334 auto *CB = dyn_cast<CallBase>(&I);
335 // If this isn't a call, or it is a call to an intrinsic, it can
336 // never be inlined.
337 if (!CB || isa<IntrinsicInst>(I))
338 continue;
339
340 // If this is a direct call to an external function, we can never inline
341 // it. If it is an indirect call, inlining may resolve it to be a
342 // direct call, so we keep it.
343 if (Function *Callee = CB->getCalledFunction())
344 if (Callee->isDeclaration()) {
345 using namespace ore;
346
347 setInlineRemark(*CB, "unavailable definition");
348 ORE.emit([&]() {
349 return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I)
350 << NV("Callee", Callee) << " will not be inlined into "
351 << NV("Caller", CB->getCaller())
352 << " because its definition is unavailable"
353 << setIsVerbose();
354 });
355 continue;
356 }
357
358 CallSites.push_back(std::make_pair(CB, -1));
359 }
360 }
361
362 LLVM_DEBUG(dbgs() << ": " << CallSites.size() << " call sites.\n");
363
364 // If there are no calls in this function, exit early.
365 if (CallSites.empty())
366 return false;
367
368 // Now that we have all of the call sites, move the ones to functions in the
369 // current SCC to the end of the list.
370 unsigned FirstCallInSCC = CallSites.size();
371 for (unsigned I = 0; I < FirstCallInSCC; ++I)
372 if (Function *F = CallSites[I].first->getCalledFunction())
373 if (SCCFunctions.count(F))
374 std::swap(CallSites[I--], CallSites[--FirstCallInSCC]);
375
376 InlinedArrayAllocasTy InlinedArrayAllocas;
377 InlineFunctionInfo InlineInfo(&CG, GetAssumptionCache, PSI);
378
379 // Now that we have all of the call sites, loop over them and inline them if
380 // it looks profitable to do so.
381 bool Changed = false;
382 bool LocalChange;
383 do {
384 LocalChange = false;
385 // Iterate over the outer loop because inlining functions can cause indirect
386 // calls to become direct calls.
387 // CallSites may be modified inside so ranged for loop can not be used.
388 for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi) {
389 auto &P = CallSites[CSi];
390 CallBase &CB = *P.first;
391 const int InlineHistoryID = P.second;
392
393 Function *Caller = CB.getCaller();
394 Function *Callee = CB.getCalledFunction();
395
396 // We can only inline direct calls to non-declarations.
397 if (!Callee || Callee->isDeclaration())
398 continue;
399
400 bool IsTriviallyDead = isInstructionTriviallyDead(&CB, &GetTLI(*Caller));
401
402 if (!IsTriviallyDead) {
403 // If this call site was obtained by inlining another function, verify
404 // that the include path for the function did not include the callee
405 // itself. If so, we'd be recursively inlining the same function,
406 // which would provide the same callsites, which would cause us to
407 // infinitely inline.
408 if (InlineHistoryID != -1 &&
409 inlineHistoryIncludes(Callee, InlineHistoryID, InlineHistory)) {
410 setInlineRemark(CB, "recursive");
411 continue;
412 }
413 }
414
415 // FIXME for new PM: because of the old PM we currently generate ORE and
416 // in turn BFI on demand. With the new PM, the ORE dependency should
417 // just become a regular analysis dependency.
418 OptimizationRemarkEmitter ORE(Caller);
419
420 auto OIC = shouldInline(CB, GetInlineCost, ORE);
421 // If the policy determines that we should inline this function,
422 // delete the call instead.
423 if (!OIC)
424 continue;
425
426 // If this call site is dead and it is to a readonly function, we should
427 // just delete the call instead of trying to inline it, regardless of
428 // size. This happens because IPSCCP propagates the result out of the
429 // call and then we're left with the dead call.
430 if (IsTriviallyDead) {
431 LLVM_DEBUG(dbgs() << " -> Deleting dead call: " << CB << "\n");
432 // Update the call graph by deleting the edge from Callee to Caller.
433 setInlineRemark(CB, "trivially dead");
434 CG[Caller]->removeCallEdgeFor(CB);
435 CB.eraseFromParent();
436 ++NumCallsDeleted;
437 } else {
438 // Get DebugLoc to report. CB will be invalid after Inliner.
439 DebugLoc DLoc = CB.getDebugLoc();
440 BasicBlock *Block = CB.getParent();
441
442 // Attempt to inline the function.
443 using namespace ore;
444
445 InlineResult IR = inlineCallIfPossible(
446 CB, InlineInfo, InlinedArrayAllocas, InlineHistoryID,
447 InsertLifetime, AARGetter, ImportedFunctionsStats);
448 if (!IR.isSuccess()) {
449 setInlineRemark(CB, std::string(IR.getFailureReason()) + "; " +
450 inlineCostStr(*OIC));
451 ORE.emit([&]() {
452 return OptimizationRemarkMissed(DEBUG_TYPE, "NotInlined", DLoc,
453 Block)
454 << NV("Callee", Callee) << " will not be inlined into "
455 << NV("Caller", Caller) << ": "
456 << NV("Reason", IR.getFailureReason());
457 });
458 continue;
459 }
460 ++NumInlined;
461
462 emitInlinedInto(ORE, DLoc, Block, *Callee, *Caller, *OIC);
463
464 // If inlining this function gave us any new call sites, throw them
465 // onto our worklist to process. They are useful inline candidates.
466 if (!InlineInfo.InlinedCalls.empty()) {
467 // Create a new inline history entry for this, so that we remember
468 // that these new callsites came about due to inlining Callee.
469 int NewHistoryID = InlineHistory.size();
470 InlineHistory.push_back(std::make_pair(Callee, InlineHistoryID));
471
472 #ifndef NDEBUG
473 // Make sure no dupplicates in the inline candidates. This could
474 // happen when a callsite is simpilfied to reusing the return value
475 // of another callsite during function cloning, thus the other
476 // callsite will be reconsidered here.
477 DenseSet<CallBase *> DbgCallSites;
478 for (auto &II : CallSites)
479 DbgCallSites.insert(II.first);
480 #endif
481
482 for (Value *Ptr : InlineInfo.InlinedCalls) {
483 #ifndef NDEBUG
484 assert(DbgCallSites.count(dyn_cast<CallBase>(Ptr)) == 0);
485 #endif
486 CallSites.push_back(
487 std::make_pair(dyn_cast<CallBase>(Ptr), NewHistoryID));
488 }
489 }
490 }
491
492 // If we inlined or deleted the last possible call site to the function,
493 // delete the function body now.
494 if (Callee && Callee->use_empty() && Callee->hasLocalLinkage() &&
495 // TODO: Can remove if in SCC now.
496 !SCCFunctions.count(Callee) &&
497 // The function may be apparently dead, but if there are indirect
498 // callgraph references to the node, we cannot delete it yet, this
499 // could invalidate the CGSCC iterator.
500 CG[Callee]->getNumReferences() == 0) {
501 LLVM_DEBUG(dbgs() << " -> Deleting dead function: "
502 << Callee->getName() << "\n");
503 CallGraphNode *CalleeNode = CG[Callee];
504
505 // Remove any call graph edges from the callee to its callees.
506 CalleeNode->removeAllCalledFunctions();
507
508 // Removing the node for callee from the call graph and delete it.
509 delete CG.removeFunctionFromModule(CalleeNode);
510 ++NumDeleted;
511 }
512
513 // Remove this call site from the list. If possible, use
514 // swap/pop_back for efficiency, but do not use it if doing so would
515 // move a call site to a function in this SCC before the
516 // 'FirstCallInSCC' barrier.
517 if (SCC.isSingular()) {
518 CallSites[CSi] = CallSites.back();
519 CallSites.pop_back();
520 } else {
521 CallSites.erase(CallSites.begin() + CSi);
522 }
523 --CSi;
524
525 Changed = true;
526 LocalChange = true;
527 }
528 } while (LocalChange);
529
530 return Changed;
531 }
532
inlineCalls(CallGraphSCC & SCC)533 bool LegacyInlinerBase::inlineCalls(CallGraphSCC &SCC) {
534 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
535 ACT = &getAnalysis<AssumptionCacheTracker>();
536 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
537 GetTLI = [&](Function &F) -> const TargetLibraryInfo & {
538 return getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
539 };
540 auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
541 return ACT->getAssumptionCache(F);
542 };
543 return inlineCallsImpl(
544 SCC, CG, GetAssumptionCache, PSI, GetTLI, InsertLifetime,
545 [&](CallBase &CB) { return getInlineCost(CB); }, LegacyAARGetter(*this),
546 ImportedFunctionsStats);
547 }
548
549 /// Remove now-dead linkonce functions at the end of
550 /// processing to avoid breaking the SCC traversal.
doFinalization(CallGraph & CG)551 bool LegacyInlinerBase::doFinalization(CallGraph &CG) {
552 if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
553 ImportedFunctionsStats.dump(InlinerFunctionImportStats ==
554 InlinerFunctionImportStatsOpts::Verbose);
555 return removeDeadFunctions(CG);
556 }
557
558 /// Remove dead functions that are not included in DNR (Do Not Remove) list.
removeDeadFunctions(CallGraph & CG,bool AlwaysInlineOnly)559 bool LegacyInlinerBase::removeDeadFunctions(CallGraph &CG,
560 bool AlwaysInlineOnly) {
561 SmallVector<CallGraphNode *, 16> FunctionsToRemove;
562 SmallVector<Function *, 16> DeadFunctionsInComdats;
563
564 auto RemoveCGN = [&](CallGraphNode *CGN) {
565 // Remove any call graph edges from the function to its callees.
566 CGN->removeAllCalledFunctions();
567
568 // Remove any edges from the external node to the function's call graph
569 // node. These edges might have been made irrelegant due to
570 // optimization of the program.
571 CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN);
572
573 // Removing the node for callee from the call graph and delete it.
574 FunctionsToRemove.push_back(CGN);
575 };
576
577 // Scan for all of the functions, looking for ones that should now be removed
578 // from the program. Insert the dead ones in the FunctionsToRemove set.
579 for (const auto &I : CG) {
580 CallGraphNode *CGN = I.second.get();
581 Function *F = CGN->getFunction();
582 if (!F || F->isDeclaration())
583 continue;
584
585 // Handle the case when this function is called and we only want to care
586 // about always-inline functions. This is a bit of a hack to share code
587 // between here and the InlineAlways pass.
588 if (AlwaysInlineOnly && !F->hasFnAttribute(Attribute::AlwaysInline))
589 continue;
590
591 // If the only remaining users of the function are dead constants, remove
592 // them.
593 F->removeDeadConstantUsers();
594
595 if (!F->isDefTriviallyDead())
596 continue;
597
598 // It is unsafe to drop a function with discardable linkage from a COMDAT
599 // without also dropping the other members of the COMDAT.
600 // The inliner doesn't visit non-function entities which are in COMDAT
601 // groups so it is unsafe to do so *unless* the linkage is local.
602 if (!F->hasLocalLinkage()) {
603 if (F->hasComdat()) {
604 DeadFunctionsInComdats.push_back(F);
605 continue;
606 }
607 }
608
609 RemoveCGN(CGN);
610 }
611 if (!DeadFunctionsInComdats.empty()) {
612 // Filter out the functions whose comdats remain alive.
613 filterDeadComdatFunctions(CG.getModule(), DeadFunctionsInComdats);
614 // Remove the rest.
615 for (Function *F : DeadFunctionsInComdats)
616 RemoveCGN(CG[F]);
617 }
618
619 if (FunctionsToRemove.empty())
620 return false;
621
622 // Now that we know which functions to delete, do so. We didn't want to do
623 // this inline, because that would invalidate our CallGraph::iterator
624 // objects. :(
625 //
626 // Note that it doesn't matter that we are iterating over a non-stable order
627 // here to do this, it doesn't matter which order the functions are deleted
628 // in.
629 array_pod_sort(FunctionsToRemove.begin(), FunctionsToRemove.end());
630 FunctionsToRemove.erase(
631 std::unique(FunctionsToRemove.begin(), FunctionsToRemove.end()),
632 FunctionsToRemove.end());
633 for (CallGraphNode *CGN : FunctionsToRemove) {
634 delete CG.removeFunctionFromModule(CGN);
635 ++NumDeleted;
636 }
637 return true;
638 }
639
640 InlineAdvisor &
getAdvisor(const ModuleAnalysisManagerCGSCCProxy::Result & MAM,FunctionAnalysisManager & FAM,Module & M)641 InlinerPass::getAdvisor(const ModuleAnalysisManagerCGSCCProxy::Result &MAM,
642 FunctionAnalysisManager &FAM, Module &M) {
643 if (OwnedAdvisor)
644 return *OwnedAdvisor;
645
646 auto *IAA = MAM.getCachedResult<InlineAdvisorAnalysis>(M);
647 if (!IAA) {
648 // It should still be possible to run the inliner as a stand-alone SCC pass,
649 // for test scenarios. In that case, we default to the
650 // DefaultInlineAdvisor, which doesn't need to keep state between SCC pass
651 // runs. It also uses just the default InlineParams.
652 // In this case, we need to use the provided FAM, which is valid for the
653 // duration of the inliner pass, and thus the lifetime of the owned advisor.
654 // The one we would get from the MAM can be invalidated as a result of the
655 // inliner's activity.
656 OwnedAdvisor =
657 std::make_unique<DefaultInlineAdvisor>(M, FAM, getInlineParams());
658
659 if (!CGSCCInlineReplayFile.empty())
660 OwnedAdvisor = std::make_unique<ReplayInlineAdvisor>(
661 M, FAM, M.getContext(), std::move(OwnedAdvisor),
662 CGSCCInlineReplayFile,
663 /*EmitRemarks=*/true);
664
665 return *OwnedAdvisor;
666 }
667 assert(IAA->getAdvisor() &&
668 "Expected a present InlineAdvisorAnalysis also have an "
669 "InlineAdvisor initialized");
670 return *IAA->getAdvisor();
671 }
672
run(LazyCallGraph::SCC & InitialC,CGSCCAnalysisManager & AM,LazyCallGraph & CG,CGSCCUpdateResult & UR)673 PreservedAnalyses InlinerPass::run(LazyCallGraph::SCC &InitialC,
674 CGSCCAnalysisManager &AM, LazyCallGraph &CG,
675 CGSCCUpdateResult &UR) {
676 const auto &MAMProxy =
677 AM.getResult<ModuleAnalysisManagerCGSCCProxy>(InitialC, CG);
678 bool Changed = false;
679
680 assert(InitialC.size() > 0 && "Cannot handle an empty SCC!");
681 Module &M = *InitialC.begin()->getFunction().getParent();
682 ProfileSummaryInfo *PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(M);
683
684 FunctionAnalysisManager &FAM =
685 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(InitialC, CG)
686 .getManager();
687
688 InlineAdvisor &Advisor = getAdvisor(MAMProxy, FAM, M);
689 Advisor.onPassEntry();
690
691 auto AdvisorOnExit = make_scope_exit([&] { Advisor.onPassExit(); });
692
693 // We use a single common worklist for calls across the entire SCC. We
694 // process these in-order and append new calls introduced during inlining to
695 // the end.
696 //
697 // Note that this particular order of processing is actually critical to
698 // avoid very bad behaviors. Consider *highly connected* call graphs where
699 // each function contains a small amount of code and a couple of calls to
700 // other functions. Because the LLVM inliner is fundamentally a bottom-up
701 // inliner, it can handle gracefully the fact that these all appear to be
702 // reasonable inlining candidates as it will flatten things until they become
703 // too big to inline, and then move on and flatten another batch.
704 //
705 // However, when processing call edges *within* an SCC we cannot rely on this
706 // bottom-up behavior. As a consequence, with heavily connected *SCCs* of
707 // functions we can end up incrementally inlining N calls into each of
708 // N functions because each incremental inlining decision looks good and we
709 // don't have a topological ordering to prevent explosions.
710 //
711 // To compensate for this, we don't process transitive edges made immediate
712 // by inlining until we've done one pass of inlining across the entire SCC.
713 // Large, highly connected SCCs still lead to some amount of code bloat in
714 // this model, but it is uniformly spread across all the functions in the SCC
715 // and eventually they all become too large to inline, rather than
716 // incrementally maknig a single function grow in a super linear fashion.
717 SmallVector<std::pair<CallBase *, int>, 16> Calls;
718
719 // Populate the initial list of calls in this SCC.
720 for (auto &N : InitialC) {
721 auto &ORE =
722 FAM.getResult<OptimizationRemarkEmitterAnalysis>(N.getFunction());
723 // We want to generally process call sites top-down in order for
724 // simplifications stemming from replacing the call with the returned value
725 // after inlining to be visible to subsequent inlining decisions.
726 // FIXME: Using instructions sequence is a really bad way to do this.
727 // Instead we should do an actual RPO walk of the function body.
728 for (Instruction &I : instructions(N.getFunction()))
729 if (auto *CB = dyn_cast<CallBase>(&I))
730 if (Function *Callee = CB->getCalledFunction()) {
731 if (!Callee->isDeclaration())
732 Calls.push_back({CB, -1});
733 else if (!isa<IntrinsicInst>(I)) {
734 using namespace ore;
735 setInlineRemark(*CB, "unavailable definition");
736 ORE.emit([&]() {
737 return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I)
738 << NV("Callee", Callee) << " will not be inlined into "
739 << NV("Caller", CB->getCaller())
740 << " because its definition is unavailable"
741 << setIsVerbose();
742 });
743 }
744 }
745 }
746 if (Calls.empty())
747 return PreservedAnalyses::all();
748
749 // Capture updatable variable for the current SCC.
750 auto *C = &InitialC;
751
752 // When inlining a callee produces new call sites, we want to keep track of
753 // the fact that they were inlined from the callee. This allows us to avoid
754 // infinite inlining in some obscure cases. To represent this, we use an
755 // index into the InlineHistory vector.
756 SmallVector<std::pair<Function *, int>, 16> InlineHistory;
757
758 // Track a set vector of inlined callees so that we can augment the caller
759 // with all of their edges in the call graph before pruning out the ones that
760 // got simplified away.
761 SmallSetVector<Function *, 4> InlinedCallees;
762
763 // Track the dead functions to delete once finished with inlining calls. We
764 // defer deleting these to make it easier to handle the call graph updates.
765 SmallVector<Function *, 4> DeadFunctions;
766
767 // Loop forward over all of the calls. Note that we cannot cache the size as
768 // inlining can introduce new calls that need to be processed.
769 for (int I = 0; I < (int)Calls.size(); ++I) {
770 // We expect the calls to typically be batched with sequences of calls that
771 // have the same caller, so we first set up some shared infrastructure for
772 // this caller. We also do any pruning we can at this layer on the caller
773 // alone.
774 Function &F = *Calls[I].first->getCaller();
775 LazyCallGraph::Node &N = *CG.lookup(F);
776 if (CG.lookupSCC(N) != C)
777 continue;
778
779 LLVM_DEBUG(dbgs() << "Inlining calls in: " << F.getName() << "\n"
780 << " Function size: " << F.getInstructionCount()
781 << "\n");
782
783 auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
784 return FAM.getResult<AssumptionAnalysis>(F);
785 };
786
787 // Now process as many calls as we have within this caller in the sequence.
788 // We bail out as soon as the caller has to change so we can update the
789 // call graph and prepare the context of that new caller.
790 bool DidInline = false;
791 for (; I < (int)Calls.size() && Calls[I].first->getCaller() == &F; ++I) {
792 auto &P = Calls[I];
793 CallBase *CB = P.first;
794 const int InlineHistoryID = P.second;
795 Function &Callee = *CB->getCalledFunction();
796
797 if (InlineHistoryID != -1 &&
798 inlineHistoryIncludes(&Callee, InlineHistoryID, InlineHistory)) {
799 setInlineRemark(*CB, "recursive");
800 continue;
801 }
802
803 // Check if this inlining may repeat breaking an SCC apart that has
804 // already been split once before. In that case, inlining here may
805 // trigger infinite inlining, much like is prevented within the inliner
806 // itself by the InlineHistory above, but spread across CGSCC iterations
807 // and thus hidden from the full inline history.
808 if (CG.lookupSCC(*CG.lookup(Callee)) == C &&
809 UR.InlinedInternalEdges.count({&N, C})) {
810 LLVM_DEBUG(dbgs() << "Skipping inlining internal SCC edge from a node "
811 "previously split out of this SCC by inlining: "
812 << F.getName() << " -> " << Callee.getName() << "\n");
813 setInlineRemark(*CB, "recursive SCC split");
814 continue;
815 }
816
817 auto Advice = Advisor.getAdvice(*CB, OnlyMandatory);
818 // Check whether we want to inline this callsite.
819 if (!Advice->isInliningRecommended()) {
820 Advice->recordUnattemptedInlining();
821 continue;
822 }
823
824 // Setup the data structure used to plumb customization into the
825 // `InlineFunction` routine.
826 InlineFunctionInfo IFI(
827 /*cg=*/nullptr, GetAssumptionCache, PSI,
828 &FAM.getResult<BlockFrequencyAnalysis>(*(CB->getCaller())),
829 &FAM.getResult<BlockFrequencyAnalysis>(Callee));
830
831 InlineResult IR =
832 InlineFunction(*CB, IFI, &FAM.getResult<AAManager>(*CB->getCaller()));
833 if (!IR.isSuccess()) {
834 Advice->recordUnsuccessfulInlining(IR);
835 continue;
836 }
837
838 DidInline = true;
839 InlinedCallees.insert(&Callee);
840 ++NumInlined;
841
842 LLVM_DEBUG(dbgs() << " Size after inlining: "
843 << F.getInstructionCount() << "\n");
844
845 // Add any new callsites to defined functions to the worklist.
846 if (!IFI.InlinedCallSites.empty()) {
847 int NewHistoryID = InlineHistory.size();
848 InlineHistory.push_back({&Callee, InlineHistoryID});
849
850 for (CallBase *ICB : reverse(IFI.InlinedCallSites)) {
851 Function *NewCallee = ICB->getCalledFunction();
852 if (!NewCallee) {
853 // Try to promote an indirect (virtual) call without waiting for
854 // the post-inline cleanup and the next DevirtSCCRepeatedPass
855 // iteration because the next iteration may not happen and we may
856 // miss inlining it.
857 if (tryPromoteCall(*ICB))
858 NewCallee = ICB->getCalledFunction();
859 }
860 if (NewCallee)
861 if (!NewCallee->isDeclaration())
862 Calls.push_back({ICB, NewHistoryID});
863 }
864 }
865
866 // Merge the attributes based on the inlining.
867 AttributeFuncs::mergeAttributesForInlining(F, Callee);
868
869 // For local functions, check whether this makes the callee trivially
870 // dead. In that case, we can drop the body of the function eagerly
871 // which may reduce the number of callers of other functions to one,
872 // changing inline cost thresholds.
873 bool CalleeWasDeleted = false;
874 if (Callee.hasLocalLinkage()) {
875 // To check this we also need to nuke any dead constant uses (perhaps
876 // made dead by this operation on other functions).
877 Callee.removeDeadConstantUsers();
878 if (Callee.use_empty() && !CG.isLibFunction(Callee)) {
879 Calls.erase(
880 std::remove_if(Calls.begin() + I + 1, Calls.end(),
881 [&](const std::pair<CallBase *, int> &Call) {
882 return Call.first->getCaller() == &Callee;
883 }),
884 Calls.end());
885 // Clear the body and queue the function itself for deletion when we
886 // finish inlining and call graph updates.
887 // Note that after this point, it is an error to do anything other
888 // than use the callee's address or delete it.
889 Callee.dropAllReferences();
890 assert(!is_contained(DeadFunctions, &Callee) &&
891 "Cannot put cause a function to become dead twice!");
892 DeadFunctions.push_back(&Callee);
893 CalleeWasDeleted = true;
894 }
895 }
896 if (CalleeWasDeleted)
897 Advice->recordInliningWithCalleeDeleted();
898 else
899 Advice->recordInlining();
900 }
901
902 // Back the call index up by one to put us in a good position to go around
903 // the outer loop.
904 --I;
905
906 if (!DidInline)
907 continue;
908 Changed = true;
909
910 // At this point, since we have made changes we have at least removed
911 // a call instruction. However, in the process we do some incremental
912 // simplification of the surrounding code. This simplification can
913 // essentially do all of the same things as a function pass and we can
914 // re-use the exact same logic for updating the call graph to reflect the
915 // change.
916
917 // Inside the update, we also update the FunctionAnalysisManager in the
918 // proxy for this particular SCC. We do this as the SCC may have changed and
919 // as we're going to mutate this particular function we want to make sure
920 // the proxy is in place to forward any invalidation events.
921 LazyCallGraph::SCC *OldC = C;
922 C = &updateCGAndAnalysisManagerForCGSCCPass(CG, *C, N, AM, UR, FAM);
923 LLVM_DEBUG(dbgs() << "Updated inlining SCC: " << *C << "\n");
924
925 // If this causes an SCC to split apart into multiple smaller SCCs, there
926 // is a subtle risk we need to prepare for. Other transformations may
927 // expose an "infinite inlining" opportunity later, and because of the SCC
928 // mutation, we will revisit this function and potentially re-inline. If we
929 // do, and that re-inlining also has the potentially to mutate the SCC
930 // structure, the infinite inlining problem can manifest through infinite
931 // SCC splits and merges. To avoid this, we capture the originating caller
932 // node and the SCC containing the call edge. This is a slight over
933 // approximation of the possible inlining decisions that must be avoided,
934 // but is relatively efficient to store. We use C != OldC to know when
935 // a new SCC is generated and the original SCC may be generated via merge
936 // in later iterations.
937 //
938 // It is also possible that even if no new SCC is generated
939 // (i.e., C == OldC), the original SCC could be split and then merged
940 // into the same one as itself. and the original SCC will be added into
941 // UR.CWorklist again, we want to catch such cases too.
942 //
943 // FIXME: This seems like a very heavyweight way of retaining the inline
944 // history, we should look for a more efficient way of tracking it.
945 if ((C != OldC || UR.CWorklist.count(OldC)) &&
946 llvm::any_of(InlinedCallees, [&](Function *Callee) {
947 return CG.lookupSCC(*CG.lookup(*Callee)) == OldC;
948 })) {
949 LLVM_DEBUG(dbgs() << "Inlined an internal call edge and split an SCC, "
950 "retaining this to avoid infinite inlining.\n");
951 UR.InlinedInternalEdges.insert({&N, OldC});
952 }
953 InlinedCallees.clear();
954 }
955
956 // Now that we've finished inlining all of the calls across this SCC, delete
957 // all of the trivially dead functions, updating the call graph and the CGSCC
958 // pass manager in the process.
959 //
960 // Note that this walks a pointer set which has non-deterministic order but
961 // that is OK as all we do is delete things and add pointers to unordered
962 // sets.
963 for (Function *DeadF : DeadFunctions) {
964 // Get the necessary information out of the call graph and nuke the
965 // function there. Also, clear out any cached analyses.
966 auto &DeadC = *CG.lookupSCC(*CG.lookup(*DeadF));
967 FAM.clear(*DeadF, DeadF->getName());
968 AM.clear(DeadC, DeadC.getName());
969 auto &DeadRC = DeadC.getOuterRefSCC();
970 CG.removeDeadFunction(*DeadF);
971
972 // Mark the relevant parts of the call graph as invalid so we don't visit
973 // them.
974 UR.InvalidatedSCCs.insert(&DeadC);
975 UR.InvalidatedRefSCCs.insert(&DeadRC);
976
977 // And delete the actual function from the module.
978 // The Advisor may use Function pointers to efficiently index various
979 // internal maps, e.g. for memoization. Function cleanup passes like
980 // argument promotion create new functions. It is possible for a new
981 // function to be allocated at the address of a deleted function. We could
982 // index using names, but that's inefficient. Alternatively, we let the
983 // Advisor free the functions when it sees fit.
984 DeadF->getBasicBlockList().clear();
985 M.getFunctionList().remove(DeadF);
986
987 ++NumDeleted;
988 }
989
990 if (!Changed)
991 return PreservedAnalyses::all();
992
993 // Even if we change the IR, we update the core CGSCC data structures and so
994 // can preserve the proxy to the function analysis manager.
995 PreservedAnalyses PA;
996 PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
997 return PA;
998 }
999
ModuleInlinerWrapperPass(InlineParams Params,bool MandatoryFirst,InliningAdvisorMode Mode,unsigned MaxDevirtIterations)1000 ModuleInlinerWrapperPass::ModuleInlinerWrapperPass(InlineParams Params,
1001 bool MandatoryFirst,
1002 InliningAdvisorMode Mode,
1003 unsigned MaxDevirtIterations)
1004 : Params(Params), Mode(Mode), MaxDevirtIterations(MaxDevirtIterations),
1005 PM(), MPM() {
1006 // Run the inliner first. The theory is that we are walking bottom-up and so
1007 // the callees have already been fully optimized, and we want to inline them
1008 // into the callers so that our optimizations can reflect that.
1009 // For PreLinkThinLTO pass, we disable hot-caller heuristic for sample PGO
1010 // because it makes profile annotation in the backend inaccurate.
1011 if (MandatoryFirst)
1012 PM.addPass(InlinerPass(/*OnlyMandatory*/ true));
1013 PM.addPass(InlinerPass());
1014 }
1015
run(Module & M,ModuleAnalysisManager & MAM)1016 PreservedAnalyses ModuleInlinerWrapperPass::run(Module &M,
1017 ModuleAnalysisManager &MAM) {
1018 auto &IAA = MAM.getResult<InlineAdvisorAnalysis>(M);
1019 if (!IAA.tryCreate(Params, Mode, CGSCCInlineReplayFile)) {
1020 M.getContext().emitError(
1021 "Could not setup Inlining Advisor for the requested "
1022 "mode and/or options");
1023 return PreservedAnalyses::all();
1024 }
1025
1026 // We wrap the CGSCC pipeline in a devirtualization repeater. This will try
1027 // to detect when we devirtualize indirect calls and iterate the SCC passes
1028 // in that case to try and catch knock-on inlining or function attrs
1029 // opportunities. Then we add it to the module pipeline by walking the SCCs
1030 // in postorder (or bottom-up).
1031 // If MaxDevirtIterations is 0, we just don't use the devirtualization
1032 // wrapper.
1033 if (MaxDevirtIterations == 0)
1034 MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(PM)));
1035 else
1036 MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(
1037 createDevirtSCCRepeatedPass(std::move(PM), MaxDevirtIterations)));
1038 MPM.run(M, MAM);
1039
1040 IAA.clear();
1041
1042 // The ModulePassManager has already taken care of invalidating analyses.
1043 return PreservedAnalyses::all();
1044 }
1045