xref: /llvm-project/llvm/include/llvm/IR/PassManager.h (revision 18b47373cb47f1f63ab1f6e126ccfb22cc52963c)
1 //===- PassManager.h - Pass management infrastructure -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// This header defines various interfaces for pass management in LLVM. There
11 /// is no "pass" interface in LLVM per se. Instead, an instance of any class
12 /// which supports a method to 'run' it over a unit of IR can be used as
13 /// a pass. A pass manager is generally a tool to collect a sequence of passes
14 /// which run over a particular IR construct, and run each of them in sequence
15 /// over each such construct in the containing IR construct. As there is no
16 /// containing IR construct for a Module, a manager for passes over modules
17 /// forms the base case which runs its managed passes in sequence over the
18 /// single module provided.
19 ///
20 /// The core IR library provides managers for running passes over
21 /// modules and functions.
22 ///
23 /// * FunctionPassManager can run over a Module, runs each pass over
24 ///   a Function.
25 /// * ModulePassManager must be directly run, runs each pass over the Module.
26 ///
27 /// Note that the implementations of the pass managers use concept-based
28 /// polymorphism as outlined in the "Value Semantics and Concept-based
29 /// Polymorphism" talk (or its abbreviated sibling "Inheritance Is The Base
30 /// Class of Evil") by Sean Parent:
31 /// * https://sean-parent.stlab.cc/papers-and-presentations
32 /// * http://www.youtube.com/watch?v=_BpMYeUFXv8
33 /// * https://learn.microsoft.com/en-us/shows/goingnative-2013/inheritance-base-class-of-evil
34 ///
35 //===----------------------------------------------------------------------===//
36 
37 #ifndef LLVM_IR_PASSMANAGER_H
38 #define LLVM_IR_PASSMANAGER_H
39 
40 #include "llvm/ADT/DenseMap.h"
41 #include "llvm/ADT/STLExtras.h"
42 #include "llvm/ADT/StringRef.h"
43 #include "llvm/ADT/TinyPtrVector.h"
44 #include "llvm/IR/Analysis.h"
45 #include "llvm/IR/PassManagerInternal.h"
46 #include "llvm/Support/TypeName.h"
47 #include <cassert>
48 #include <cstring>
49 #include <iterator>
50 #include <list>
51 #include <memory>
52 #include <tuple>
53 #include <type_traits>
54 #include <utility>
55 #include <vector>
56 
57 namespace llvm {
58 
59 class Function;
60 class Module;
61 
62 // Forward declare the analysis manager template.
63 template <typename IRUnitT, typename... ExtraArgTs> class AnalysisManager;
64 
65 /// A CRTP mix-in to automatically provide informational APIs needed for
66 /// passes.
67 ///
68 /// This provides some boilerplate for types that are passes.
69 template <typename DerivedT> struct PassInfoMixin {
70   /// Gets the name of the pass we are mixed into.
71   static StringRef name() {
72     static_assert(std::is_base_of<PassInfoMixin, DerivedT>::value,
73                   "Must pass the derived type as the template argument!");
74     StringRef Name = getTypeName<DerivedT>();
75     Name.consume_front("llvm::");
76     return Name;
77   }
78 
79   void printPipeline(raw_ostream &OS,
80                      function_ref<StringRef(StringRef)> MapClassName2PassName) {
81     StringRef ClassName = DerivedT::name();
82     auto PassName = MapClassName2PassName(ClassName);
83     OS << PassName;
84   }
85 };
86 
87 /// A CRTP mix-in that provides informational APIs needed for analysis passes.
88 ///
89 /// This provides some boilerplate for types that are analysis passes. It
90 /// automatically mixes in \c PassInfoMixin.
91 template <typename DerivedT>
92 struct AnalysisInfoMixin : PassInfoMixin<DerivedT> {
93   /// Returns an opaque, unique ID for this analysis type.
94   ///
95   /// This ID is a pointer type that is guaranteed to be 8-byte aligned and thus
96   /// suitable for use in sets, maps, and other data structures that use the low
97   /// bits of pointers.
98   ///
99   /// Note that this requires the derived type provide a static \c AnalysisKey
100   /// member called \c Key.
101   ///
102   /// FIXME: The only reason the mixin type itself can't declare the Key value
103   /// is that some compilers cannot correctly unique a templated static variable
104   /// so it has the same addresses in each instantiation. The only currently
105   /// known platform with this limitation is Windows DLL builds, specifically
106   /// building each part of LLVM as a DLL. If we ever remove that build
107   /// configuration, this mixin can provide the static key as well.
108   static AnalysisKey *ID() {
109     static_assert(std::is_base_of<AnalysisInfoMixin, DerivedT>::value,
110                   "Must pass the derived type as the template argument!");
111     return &DerivedT::Key;
112   }
113 };
114 
115 namespace detail {
116 
117 /// Actual unpacker of extra arguments in getAnalysisResult,
118 /// passes only those tuple arguments that are mentioned in index_sequence.
119 template <typename PassT, typename IRUnitT, typename AnalysisManagerT,
120           typename... ArgTs, size_t... Ns>
121 typename PassT::Result
122 getAnalysisResultUnpackTuple(AnalysisManagerT &AM, IRUnitT &IR,
123                              std::tuple<ArgTs...> Args,
124                              std::index_sequence<Ns...>) {
125   (void)Args;
126   return AM.template getResult<PassT>(IR, std::get<Ns>(Args)...);
127 }
128 
129 /// Helper for *partial* unpacking of extra arguments in getAnalysisResult.
130 ///
131 /// Arguments passed in tuple come from PassManager, so they might have extra
132 /// arguments after those AnalysisManager's ExtraArgTs ones that we need to
133 /// pass to getResult.
134 template <typename PassT, typename IRUnitT, typename... AnalysisArgTs,
135           typename... MainArgTs>
136 typename PassT::Result
137 getAnalysisResult(AnalysisManager<IRUnitT, AnalysisArgTs...> &AM, IRUnitT &IR,
138                   std::tuple<MainArgTs...> Args) {
139   return (getAnalysisResultUnpackTuple<
140           PassT, IRUnitT>)(AM, IR, Args,
141                            std::index_sequence_for<AnalysisArgTs...>{});
142 }
143 
144 } // namespace detail
145 
146 /// Manages a sequence of passes over a particular unit of IR.
147 ///
148 /// A pass manager contains a sequence of passes to run over a particular unit
149 /// of IR (e.g. Functions, Modules). It is itself a valid pass over that unit of
150 /// IR, and when run over some given IR will run each of its contained passes in
151 /// sequence. Pass managers are the primary and most basic building block of a
152 /// pass pipeline.
153 ///
154 /// When you run a pass manager, you provide an \c AnalysisManager<IRUnitT>
155 /// argument. The pass manager will propagate that analysis manager to each
156 /// pass it runs, and will call the analysis manager's invalidation routine with
157 /// the PreservedAnalyses of each pass it runs.
158 template <typename IRUnitT,
159           typename AnalysisManagerT = AnalysisManager<IRUnitT>,
160           typename... ExtraArgTs>
161 class PassManager : public PassInfoMixin<
162                         PassManager<IRUnitT, AnalysisManagerT, ExtraArgTs...>> {
163 public:
164   /// Construct a pass manager.
165   explicit PassManager() = default;
166 
167   // FIXME: These are equivalent to the default move constructor/move
168   // assignment. However, using = default triggers linker errors due to the
169   // explicit instantiations below. Find away to use the default and remove the
170   // duplicated code here.
171   PassManager(PassManager &&Arg) : Passes(std::move(Arg.Passes)) {}
172 
173   PassManager &operator=(PassManager &&RHS) {
174     Passes = std::move(RHS.Passes);
175     return *this;
176   }
177 
178   void printPipeline(raw_ostream &OS,
179                      function_ref<StringRef(StringRef)> MapClassName2PassName) {
180     for (unsigned Idx = 0, Size = Passes.size(); Idx != Size; ++Idx) {
181       auto *P = Passes[Idx].get();
182       P->printPipeline(OS, MapClassName2PassName);
183       if (Idx + 1 < Size)
184         OS << ',';
185     }
186   }
187 
188   /// Run all of the passes in this manager over the given unit of IR.
189   /// ExtraArgs are passed to each pass.
190   PreservedAnalyses run(IRUnitT &IR, AnalysisManagerT &AM,
191                         ExtraArgTs... ExtraArgs);
192 
193   template <typename PassT>
194   LLVM_ATTRIBUTE_MINSIZE std::enable_if_t<!std::is_same_v<PassT, PassManager>>
195   addPass(PassT &&Pass) {
196     using PassModelT =
197         detail::PassModel<IRUnitT, PassT, AnalysisManagerT, ExtraArgTs...>;
198     // Do not use make_unique or emplace_back, they cause too many template
199     // instantiations, causing terrible compile times.
200     Passes.push_back(std::unique_ptr<PassConceptT>(
201         new PassModelT(std::forward<PassT>(Pass))));
202   }
203 
204   /// When adding a pass manager pass that has the same type as this pass
205   /// manager, simply move the passes over. This is because we don't have
206   /// use cases rely on executing nested pass managers. Doing this could
207   /// reduce implementation complexity and avoid potential invalidation
208   /// issues that may happen with nested pass managers of the same type.
209   template <typename PassT>
210   LLVM_ATTRIBUTE_MINSIZE std::enable_if_t<std::is_same_v<PassT, PassManager>>
211   addPass(PassT &&Pass) {
212     for (auto &P : Pass.Passes)
213       Passes.push_back(std::move(P));
214   }
215 
216   /// Returns if the pass manager contains any passes.
217   bool isEmpty() const { return Passes.empty(); }
218 
219   static bool isRequired() { return true; }
220 
221 protected:
222   using PassConceptT =
223       detail::PassConcept<IRUnitT, AnalysisManagerT, ExtraArgTs...>;
224 
225   std::vector<std::unique_ptr<PassConceptT>> Passes;
226 };
227 
228 template <typename IRUnitT>
229 void printIRUnitNameForStackTrace(raw_ostream &OS, const IRUnitT &IR);
230 
231 template <>
232 void printIRUnitNameForStackTrace<Module>(raw_ostream &OS, const Module &IR);
233 
234 extern template class PassManager<Module>;
235 
236 /// Convenience typedef for a pass manager over modules.
237 using ModulePassManager = PassManager<Module>;
238 
239 template <>
240 void printIRUnitNameForStackTrace<Function>(raw_ostream &OS,
241                                             const Function &IR);
242 
243 extern template class PassManager<Function>;
244 
245 /// Convenience typedef for a pass manager over functions.
246 using FunctionPassManager = PassManager<Function>;
247 
248 /// A container for analyses that lazily runs them and caches their
249 /// results.
250 ///
251 /// This class can manage analyses for any IR unit where the address of the IR
252 /// unit sufficies as its identity.
253 template <typename IRUnitT, typename... ExtraArgTs> class AnalysisManager {
254 public:
255   class Invalidator;
256 
257 private:
258   // Now that we've defined our invalidator, we can define the concept types.
259   using ResultConceptT = detail::AnalysisResultConcept<IRUnitT, Invalidator>;
260   using PassConceptT =
261       detail::AnalysisPassConcept<IRUnitT, Invalidator, ExtraArgTs...>;
262 
263   /// List of analysis pass IDs and associated concept pointers.
264   ///
265   /// Requires iterators to be valid across appending new entries and arbitrary
266   /// erases. Provides the analysis ID to enable finding iterators to a given
267   /// entry in maps below, and provides the storage for the actual result
268   /// concept.
269   using AnalysisResultListT =
270       std::list<std::pair<AnalysisKey *, std::unique_ptr<ResultConceptT>>>;
271 
272   /// Map type from IRUnitT pointer to our custom list type.
273   using AnalysisResultListMapT = DenseMap<IRUnitT *, AnalysisResultListT>;
274 
275   /// Map type from a pair of analysis ID and IRUnitT pointer to an
276   /// iterator into a particular result list (which is where the actual analysis
277   /// result is stored).
278   using AnalysisResultMapT =
279       DenseMap<std::pair<AnalysisKey *, IRUnitT *>,
280                typename AnalysisResultListT::iterator>;
281 
282 public:
283   /// API to communicate dependencies between analyses during invalidation.
284   ///
285   /// When an analysis result embeds handles to other analysis results, it
286   /// needs to be invalidated both when its own information isn't preserved and
287   /// when any of its embedded analysis results end up invalidated. We pass an
288   /// \c Invalidator object as an argument to \c invalidate() in order to let
289   /// the analysis results themselves define the dependency graph on the fly.
290   /// This lets us avoid building an explicit representation of the
291   /// dependencies between analysis results.
292   class Invalidator {
293   public:
294     /// Trigger the invalidation of some other analysis pass if not already
295     /// handled and return whether it was in fact invalidated.
296     ///
297     /// This is expected to be called from within a given analysis result's \c
298     /// invalidate method to trigger a depth-first walk of all inter-analysis
299     /// dependencies. The same \p IR unit and \p PA passed to that result's \c
300     /// invalidate method should in turn be provided to this routine.
301     ///
302     /// The first time this is called for a given analysis pass, it will call
303     /// the corresponding result's \c invalidate method.  Subsequent calls will
304     /// use a cache of the results of that initial call.  It is an error to form
305     /// cyclic dependencies between analysis results.
306     ///
307     /// This returns true if the given analysis's result is invalid. Any
308     /// dependecies on it will become invalid as a result.
309     template <typename PassT>
310     bool invalidate(IRUnitT &IR, const PreservedAnalyses &PA) {
311       using ResultModelT =
312           detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result,
313                                       Invalidator>;
314 
315       return invalidateImpl<ResultModelT>(PassT::ID(), IR, PA);
316     }
317 
318     /// A type-erased variant of the above invalidate method with the same core
319     /// API other than passing an analysis ID rather than an analysis type
320     /// parameter.
321     ///
322     /// This is sadly less efficient than the above routine, which leverages
323     /// the type parameter to avoid the type erasure overhead.
324     bool invalidate(AnalysisKey *ID, IRUnitT &IR, const PreservedAnalyses &PA) {
325       return invalidateImpl<>(ID, IR, PA);
326     }
327 
328   private:
329     friend class AnalysisManager;
330 
331     template <typename ResultT = ResultConceptT>
332     bool invalidateImpl(AnalysisKey *ID, IRUnitT &IR,
333                         const PreservedAnalyses &PA) {
334       // If we've already visited this pass, return true if it was invalidated
335       // and false otherwise.
336       auto IMapI = IsResultInvalidated.find(ID);
337       if (IMapI != IsResultInvalidated.end())
338         return IMapI->second;
339 
340       // Otherwise look up the result object.
341       auto RI = Results.find({ID, &IR});
342       assert(RI != Results.end() &&
343              "Trying to invalidate a dependent result that isn't in the "
344              "manager's cache is always an error, likely due to a stale result "
345              "handle!");
346 
347       auto &Result = static_cast<ResultT &>(*RI->second->second);
348 
349       // Insert into the map whether the result should be invalidated and return
350       // that. Note that we cannot reuse IMapI and must do a fresh insert here,
351       // as calling invalidate could (recursively) insert things into the map,
352       // making any iterator or reference invalid.
353       bool Inserted;
354       std::tie(IMapI, Inserted) =
355           IsResultInvalidated.insert({ID, Result.invalidate(IR, PA, *this)});
356       (void)Inserted;
357       assert(Inserted && "Should not have already inserted this ID, likely "
358                          "indicates a dependency cycle!");
359       return IMapI->second;
360     }
361 
362     Invalidator(SmallDenseMap<AnalysisKey *, bool, 8> &IsResultInvalidated,
363                 const AnalysisResultMapT &Results)
364         : IsResultInvalidated(IsResultInvalidated), Results(Results) {}
365 
366     SmallDenseMap<AnalysisKey *, bool, 8> &IsResultInvalidated;
367     const AnalysisResultMapT &Results;
368   };
369 
370   /// Construct an empty analysis manager.
371   AnalysisManager();
372   AnalysisManager(AnalysisManager &&);
373   AnalysisManager &operator=(AnalysisManager &&);
374 
375   /// Returns true if the analysis manager has an empty results cache.
376   bool empty() const {
377     assert(AnalysisResults.empty() == AnalysisResultLists.empty() &&
378            "The storage and index of analysis results disagree on how many "
379            "there are!");
380     return AnalysisResults.empty();
381   }
382 
383   /// Clear any cached analysis results for a single unit of IR.
384   ///
385   /// This doesn't invalidate, but instead simply deletes, the relevant results.
386   /// It is useful when the IR is being removed and we want to clear out all the
387   /// memory pinned for it.
388   void clear(IRUnitT &IR, llvm::StringRef Name);
389 
390   /// Clear all analysis results cached by this AnalysisManager.
391   ///
392   /// Like \c clear(IRUnitT&), this doesn't invalidate the results; it simply
393   /// deletes them.  This lets you clean up the AnalysisManager when the set of
394   /// IR units itself has potentially changed, and thus we can't even look up a
395   /// a result and invalidate/clear it directly.
396   void clear() {
397     AnalysisResults.clear();
398     AnalysisResultLists.clear();
399   }
400 
401   /// Returns true if the specified analysis pass is registered.
402   template <typename PassT> bool isPassRegistered() const {
403     return AnalysisPasses.count(PassT::ID());
404   }
405 
406   /// Get the result of an analysis pass for a given IR unit.
407   ///
408   /// Runs the analysis if a cached result is not available.
409   template <typename PassT>
410   typename PassT::Result &getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs) {
411     assert(AnalysisPasses.count(PassT::ID()) &&
412            "This analysis pass was not registered prior to being queried");
413     ResultConceptT &ResultConcept =
414         getResultImpl(PassT::ID(), IR, ExtraArgs...);
415 
416     using ResultModelT =
417         detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result,
418                                     Invalidator>;
419 
420     return static_cast<ResultModelT &>(ResultConcept).Result;
421   }
422 
423   /// Get the cached result of an analysis pass for a given IR unit.
424   ///
425   /// This method never runs the analysis.
426   ///
427   /// \returns null if there is no cached result.
428   template <typename PassT>
429   typename PassT::Result *getCachedResult(IRUnitT &IR) const {
430     assert(AnalysisPasses.count(PassT::ID()) &&
431            "This analysis pass was not registered prior to being queried");
432 
433     ResultConceptT *ResultConcept = getCachedResultImpl(PassT::ID(), IR);
434     if (!ResultConcept)
435       return nullptr;
436 
437     using ResultModelT =
438         detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result,
439                                     Invalidator>;
440 
441     return &static_cast<ResultModelT *>(ResultConcept)->Result;
442   }
443 
444   /// Verify that the given Result cannot be invalidated, assert otherwise.
445   template <typename PassT>
446   void verifyNotInvalidated(IRUnitT &IR, typename PassT::Result *Result) const {
447     PreservedAnalyses PA = PreservedAnalyses::none();
448     SmallDenseMap<AnalysisKey *, bool, 8> IsResultInvalidated;
449     Invalidator Inv(IsResultInvalidated, AnalysisResults);
450     assert(!Result->invalidate(IR, PA, Inv) &&
451            "Cached result cannot be invalidated");
452   }
453 
454   /// Register an analysis pass with the manager.
455   ///
456   /// The parameter is a callable whose result is an analysis pass. This allows
457   /// passing in a lambda to construct the analysis.
458   ///
459   /// The analysis type to register is the type returned by calling the \c
460   /// PassBuilder argument. If that type has already been registered, then the
461   /// argument will not be called and this function will return false.
462   /// Otherwise, we register the analysis returned by calling \c PassBuilder(),
463   /// and this function returns true.
464   ///
465   /// (Note: Although the return value of this function indicates whether or not
466   /// an analysis was previously registered, you should just register all the
467   /// analyses you might want and let this class run them lazily.  This idiom
468   /// lets us minimize the number of times we have to look up analyses in our
469   /// hashtable.)
470   template <typename PassBuilderT>
471   bool registerPass(PassBuilderT &&PassBuilder) {
472     using PassT = decltype(PassBuilder());
473     using PassModelT =
474         detail::AnalysisPassModel<IRUnitT, PassT, Invalidator, ExtraArgTs...>;
475 
476     auto &PassPtr = AnalysisPasses[PassT::ID()];
477     if (PassPtr)
478       // Already registered this pass type!
479       return false;
480 
481     // Construct a new model around the instance returned by the builder.
482     PassPtr.reset(new PassModelT(PassBuilder()));
483     return true;
484   }
485 
486   /// Invalidate cached analyses for an IR unit.
487   ///
488   /// Walk through all of the analyses pertaining to this unit of IR and
489   /// invalidate them, unless they are preserved by the PreservedAnalyses set.
490   void invalidate(IRUnitT &IR, const PreservedAnalyses &PA);
491 
492 private:
493   /// Look up a registered analysis pass.
494   PassConceptT &lookUpPass(AnalysisKey *ID) {
495     typename AnalysisPassMapT::iterator PI = AnalysisPasses.find(ID);
496     assert(PI != AnalysisPasses.end() &&
497            "Analysis passes must be registered prior to being queried!");
498     return *PI->second;
499   }
500 
501   /// Look up a registered analysis pass.
502   const PassConceptT &lookUpPass(AnalysisKey *ID) const {
503     typename AnalysisPassMapT::const_iterator PI = AnalysisPasses.find(ID);
504     assert(PI != AnalysisPasses.end() &&
505            "Analysis passes must be registered prior to being queried!");
506     return *PI->second;
507   }
508 
509   /// Get an analysis result, running the pass if necessary.
510   ResultConceptT &getResultImpl(AnalysisKey *ID, IRUnitT &IR,
511                                 ExtraArgTs... ExtraArgs);
512 
513   /// Get a cached analysis result or return null.
514   ResultConceptT *getCachedResultImpl(AnalysisKey *ID, IRUnitT &IR) const {
515     typename AnalysisResultMapT::const_iterator RI =
516         AnalysisResults.find({ID, &IR});
517     return RI == AnalysisResults.end() ? nullptr : &*RI->second->second;
518   }
519 
520   /// Map type from analysis pass ID to pass concept pointer.
521   using AnalysisPassMapT =
522       DenseMap<AnalysisKey *, std::unique_ptr<PassConceptT>>;
523 
524   /// Collection of analysis passes, indexed by ID.
525   AnalysisPassMapT AnalysisPasses;
526 
527   /// Map from IR unit to a list of analysis results.
528   ///
529   /// Provides linear time removal of all analysis results for a IR unit and
530   /// the ultimate storage for a particular cached analysis result.
531   AnalysisResultListMapT AnalysisResultLists;
532 
533   /// Map from an analysis ID and IR unit to a particular cached
534   /// analysis result.
535   AnalysisResultMapT AnalysisResults;
536 };
537 
538 extern template class AnalysisManager<Module>;
539 
540 /// Convenience typedef for the Module analysis manager.
541 using ModuleAnalysisManager = AnalysisManager<Module>;
542 
543 extern template class AnalysisManager<Function>;
544 
545 /// Convenience typedef for the Function analysis manager.
546 using FunctionAnalysisManager = AnalysisManager<Function>;
547 
548 /// An analysis over an "outer" IR unit that provides access to an
549 /// analysis manager over an "inner" IR unit.  The inner unit must be contained
550 /// in the outer unit.
551 ///
552 /// For example, InnerAnalysisManagerProxy<FunctionAnalysisManager, Module> is
553 /// an analysis over Modules (the "outer" unit) that provides access to a
554 /// Function analysis manager.  The FunctionAnalysisManager is the "inner"
555 /// manager being proxied, and Functions are the "inner" unit.  The inner/outer
556 /// relationship is valid because each Function is contained in one Module.
557 ///
558 /// If you're (transitively) within a pass manager for an IR unit U that
559 /// contains IR unit V, you should never use an analysis manager over V, except
560 /// via one of these proxies.
561 ///
562 /// Note that the proxy's result is a move-only RAII object.  The validity of
563 /// the analyses in the inner analysis manager is tied to its lifetime.
564 template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
565 class InnerAnalysisManagerProxy
566     : public AnalysisInfoMixin<
567           InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT>> {
568 public:
569   class Result {
570   public:
571     explicit Result(AnalysisManagerT &InnerAM) : InnerAM(&InnerAM) {}
572 
573     Result(Result &&Arg) : InnerAM(std::move(Arg.InnerAM)) {
574       // We have to null out the analysis manager in the moved-from state
575       // because we are taking ownership of the responsibilty to clear the
576       // analysis state.
577       Arg.InnerAM = nullptr;
578     }
579 
580     ~Result() {
581       // InnerAM is cleared in a moved from state where there is nothing to do.
582       if (!InnerAM)
583         return;
584 
585       // Clear out the analysis manager if we're being destroyed -- it means we
586       // didn't even see an invalidate call when we got invalidated.
587       InnerAM->clear();
588     }
589 
590     Result &operator=(Result &&RHS) {
591       InnerAM = RHS.InnerAM;
592       // We have to null out the analysis manager in the moved-from state
593       // because we are taking ownership of the responsibilty to clear the
594       // analysis state.
595       RHS.InnerAM = nullptr;
596       return *this;
597     }
598 
599     /// Accessor for the analysis manager.
600     AnalysisManagerT &getManager() { return *InnerAM; }
601 
602     /// Handler for invalidation of the outer IR unit, \c IRUnitT.
603     ///
604     /// If the proxy analysis itself is not preserved, we assume that the set of
605     /// inner IR objects contained in IRUnit may have changed.  In this case,
606     /// we have to call \c clear() on the inner analysis manager, as it may now
607     /// have stale pointers to its inner IR objects.
608     ///
609     /// Regardless of whether the proxy analysis is marked as preserved, all of
610     /// the analyses in the inner analysis manager are potentially invalidated
611     /// based on the set of preserved analyses.
612     bool invalidate(
613         IRUnitT &IR, const PreservedAnalyses &PA,
614         typename AnalysisManager<IRUnitT, ExtraArgTs...>::Invalidator &Inv);
615 
616   private:
617     AnalysisManagerT *InnerAM;
618   };
619 
620   explicit InnerAnalysisManagerProxy(AnalysisManagerT &InnerAM)
621       : InnerAM(&InnerAM) {}
622 
623   /// Run the analysis pass and create our proxy result object.
624   ///
625   /// This doesn't do any interesting work; it is primarily used to insert our
626   /// proxy result object into the outer analysis cache so that we can proxy
627   /// invalidation to the inner analysis manager.
628   Result run(IRUnitT &IR, AnalysisManager<IRUnitT, ExtraArgTs...> &AM,
629              ExtraArgTs...) {
630     return Result(*InnerAM);
631   }
632 
633 private:
634   friend AnalysisInfoMixin<
635       InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT>>;
636 
637   static AnalysisKey Key;
638 
639   AnalysisManagerT *InnerAM;
640 };
641 
642 template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
643 AnalysisKey
644     InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>::Key;
645 
646 /// Provide the \c FunctionAnalysisManager to \c Module proxy.
647 using FunctionAnalysisManagerModuleProxy =
648     InnerAnalysisManagerProxy<FunctionAnalysisManager, Module>;
649 
650 /// Specialization of the invalidate method for the \c
651 /// FunctionAnalysisManagerModuleProxy's result.
652 template <>
653 bool FunctionAnalysisManagerModuleProxy::Result::invalidate(
654     Module &M, const PreservedAnalyses &PA,
655     ModuleAnalysisManager::Invalidator &Inv);
656 
657 // Ensure the \c FunctionAnalysisManagerModuleProxy is provided as an extern
658 // template.
659 extern template class InnerAnalysisManagerProxy<FunctionAnalysisManager,
660                                                 Module>;
661 
662 /// An analysis over an "inner" IR unit that provides access to an
663 /// analysis manager over a "outer" IR unit.  The inner unit must be contained
664 /// in the outer unit.
665 ///
666 /// For example OuterAnalysisManagerProxy<ModuleAnalysisManager, Function> is an
667 /// analysis over Functions (the "inner" unit) which provides access to a Module
668 /// analysis manager.  The ModuleAnalysisManager is the "outer" manager being
669 /// proxied, and Modules are the "outer" IR unit.  The inner/outer relationship
670 /// is valid because each Function is contained in one Module.
671 ///
672 /// This proxy only exposes the const interface of the outer analysis manager,
673 /// to indicate that you cannot cause an outer analysis to run from within an
674 /// inner pass.  Instead, you must rely on the \c getCachedResult API.  This is
675 /// due to keeping potential future concurrency in mind. To give an example,
676 /// running a module analysis before any function passes may give a different
677 /// result than running it in a function pass. Both may be valid, but it would
678 /// produce non-deterministic results. GlobalsAA is a good analysis example,
679 /// because the cached information has the mod/ref info for all memory for each
680 /// function at the time the analysis was computed. The information is still
681 /// valid after a function transformation, but it may be *different* if
682 /// recomputed after that transform. GlobalsAA is never invalidated.
683 
684 ///
685 /// This proxy doesn't manage invalidation in any way -- that is handled by the
686 /// recursive return path of each layer of the pass manager.  A consequence of
687 /// this is the outer analyses may be stale.  We invalidate the outer analyses
688 /// only when we're done running passes over the inner IR units.
689 template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
690 class OuterAnalysisManagerProxy
691     : public AnalysisInfoMixin<
692           OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>> {
693 public:
694   /// Result proxy object for \c OuterAnalysisManagerProxy.
695   class Result {
696   public:
697     explicit Result(const AnalysisManagerT &OuterAM) : OuterAM(&OuterAM) {}
698 
699     /// Get a cached analysis. If the analysis can be invalidated, this will
700     /// assert.
701     template <typename PassT, typename IRUnitTParam>
702     typename PassT::Result *getCachedResult(IRUnitTParam &IR) const {
703       typename PassT::Result *Res =
704           OuterAM->template getCachedResult<PassT>(IR);
705       if (Res)
706         OuterAM->template verifyNotInvalidated<PassT>(IR, Res);
707       return Res;
708     }
709 
710     /// Method provided for unit testing, not intended for general use.
711     template <typename PassT, typename IRUnitTParam>
712     bool cachedResultExists(IRUnitTParam &IR) const {
713       typename PassT::Result *Res =
714           OuterAM->template getCachedResult<PassT>(IR);
715       return Res != nullptr;
716     }
717 
718     /// When invalidation occurs, remove any registered invalidation events.
719     bool invalidate(
720         IRUnitT &IRUnit, const PreservedAnalyses &PA,
721         typename AnalysisManager<IRUnitT, ExtraArgTs...>::Invalidator &Inv) {
722       // Loop over the set of registered outer invalidation mappings and if any
723       // of them map to an analysis that is now invalid, clear it out.
724       SmallVector<AnalysisKey *, 4> DeadKeys;
725       for (auto &KeyValuePair : OuterAnalysisInvalidationMap) {
726         AnalysisKey *OuterID = KeyValuePair.first;
727         auto &InnerIDs = KeyValuePair.second;
728         llvm::erase_if(InnerIDs, [&](AnalysisKey *InnerID) {
729           return Inv.invalidate(InnerID, IRUnit, PA);
730         });
731         if (InnerIDs.empty())
732           DeadKeys.push_back(OuterID);
733       }
734 
735       for (auto *OuterID : DeadKeys)
736         OuterAnalysisInvalidationMap.erase(OuterID);
737 
738       // The proxy itself remains valid regardless of anything else.
739       return false;
740     }
741 
742     /// Register a deferred invalidation event for when the outer analysis
743     /// manager processes its invalidations.
744     template <typename OuterAnalysisT, typename InvalidatedAnalysisT>
745     void registerOuterAnalysisInvalidation() {
746       AnalysisKey *OuterID = OuterAnalysisT::ID();
747       AnalysisKey *InvalidatedID = InvalidatedAnalysisT::ID();
748 
749       auto &InvalidatedIDList = OuterAnalysisInvalidationMap[OuterID];
750       // Note, this is a linear scan. If we end up with large numbers of
751       // analyses that all trigger invalidation on the same outer analysis,
752       // this entire system should be changed to some other deterministic
753       // data structure such as a `SetVector` of a pair of pointers.
754       if (!llvm::is_contained(InvalidatedIDList, InvalidatedID))
755         InvalidatedIDList.push_back(InvalidatedID);
756     }
757 
758     /// Access the map from outer analyses to deferred invalidation requiring
759     /// analyses.
760     const SmallDenseMap<AnalysisKey *, TinyPtrVector<AnalysisKey *>, 2> &
761     getOuterInvalidations() const {
762       return OuterAnalysisInvalidationMap;
763     }
764 
765   private:
766     const AnalysisManagerT *OuterAM;
767 
768     /// A map from an outer analysis ID to the set of this IR-unit's analyses
769     /// which need to be invalidated.
770     SmallDenseMap<AnalysisKey *, TinyPtrVector<AnalysisKey *>, 2>
771         OuterAnalysisInvalidationMap;
772   };
773 
774   OuterAnalysisManagerProxy(const AnalysisManagerT &OuterAM)
775       : OuterAM(&OuterAM) {}
776 
777   /// Run the analysis pass and create our proxy result object.
778   /// Nothing to see here, it just forwards the \c OuterAM reference into the
779   /// result.
780   Result run(IRUnitT &, AnalysisManager<IRUnitT, ExtraArgTs...> &,
781              ExtraArgTs...) {
782     return Result(*OuterAM);
783   }
784 
785 private:
786   friend AnalysisInfoMixin<
787       OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>>;
788 
789   static AnalysisKey Key;
790 
791   const AnalysisManagerT *OuterAM;
792 };
793 
794 template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
795 AnalysisKey
796     OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>::Key;
797 
798 extern template class OuterAnalysisManagerProxy<ModuleAnalysisManager,
799                                                 Function>;
800 /// Provide the \c ModuleAnalysisManager to \c Function proxy.
801 using ModuleAnalysisManagerFunctionProxy =
802     OuterAnalysisManagerProxy<ModuleAnalysisManager, Function>;
803 
804 /// Trivial adaptor that maps from a module to its functions.
805 ///
806 /// Designed to allow composition of a FunctionPass(Manager) and
807 /// a ModulePassManager, by running the FunctionPass(Manager) over every
808 /// function in the module.
809 ///
810 /// Function passes run within this adaptor can rely on having exclusive access
811 /// to the function they are run over. They should not read or modify any other
812 /// functions! Other threads or systems may be manipulating other functions in
813 /// the module, and so their state should never be relied on.
814 /// FIXME: Make the above true for all of LLVM's actual passes, some still
815 /// violate this principle.
816 ///
817 /// Function passes can also read the module containing the function, but they
818 /// should not modify that module outside of the use lists of various globals.
819 /// For example, a function pass is not permitted to add functions to the
820 /// module.
821 /// FIXME: Make the above true for all of LLVM's actual passes, some still
822 /// violate this principle.
823 ///
824 /// Note that although function passes can access module analyses, module
825 /// analyses are not invalidated while the function passes are running, so they
826 /// may be stale.  Function analyses will not be stale.
827 class ModuleToFunctionPassAdaptor
828     : public PassInfoMixin<ModuleToFunctionPassAdaptor> {
829 public:
830   using PassConceptT = detail::PassConcept<Function, FunctionAnalysisManager>;
831 
832   explicit ModuleToFunctionPassAdaptor(std::unique_ptr<PassConceptT> Pass,
833                                        bool EagerlyInvalidate)
834       : Pass(std::move(Pass)), EagerlyInvalidate(EagerlyInvalidate) {}
835 
836   /// Runs the function pass across every function in the module.
837   PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM);
838   void printPipeline(raw_ostream &OS,
839                      function_ref<StringRef(StringRef)> MapClassName2PassName);
840 
841   static bool isRequired() { return true; }
842 
843 private:
844   std::unique_ptr<PassConceptT> Pass;
845   bool EagerlyInvalidate;
846 };
847 
848 /// A function to deduce a function pass type and wrap it in the
849 /// templated adaptor.
850 template <typename FunctionPassT>
851 ModuleToFunctionPassAdaptor
852 createModuleToFunctionPassAdaptor(FunctionPassT &&Pass,
853                                   bool EagerlyInvalidate = false) {
854   using PassModelT =
855       detail::PassModel<Function, FunctionPassT, FunctionAnalysisManager>;
856   // Do not use make_unique, it causes too many template instantiations,
857   // causing terrible compile times.
858   return ModuleToFunctionPassAdaptor(
859       std::unique_ptr<ModuleToFunctionPassAdaptor::PassConceptT>(
860           new PassModelT(std::forward<FunctionPassT>(Pass))),
861       EagerlyInvalidate);
862 }
863 
864 /// A utility pass template to force an analysis result to be available.
865 ///
866 /// If there are extra arguments at the pass's run level there may also be
867 /// extra arguments to the analysis manager's \c getResult routine. We can't
868 /// guess how to effectively map the arguments from one to the other, and so
869 /// this specialization just ignores them.
870 ///
871 /// Specific patterns of run-method extra arguments and analysis manager extra
872 /// arguments will have to be defined as appropriate specializations.
873 template <typename AnalysisT, typename IRUnitT,
874           typename AnalysisManagerT = AnalysisManager<IRUnitT>,
875           typename... ExtraArgTs>
876 struct RequireAnalysisPass
877     : PassInfoMixin<RequireAnalysisPass<AnalysisT, IRUnitT, AnalysisManagerT,
878                                         ExtraArgTs...>> {
879   /// Run this pass over some unit of IR.
880   ///
881   /// This pass can be run over any unit of IR and use any analysis manager
882   /// provided they satisfy the basic API requirements. When this pass is
883   /// created, these methods can be instantiated to satisfy whatever the
884   /// context requires.
885   PreservedAnalyses run(IRUnitT &Arg, AnalysisManagerT &AM,
886                         ExtraArgTs &&... Args) {
887     (void)AM.template getResult<AnalysisT>(Arg,
888                                            std::forward<ExtraArgTs>(Args)...);
889 
890     return PreservedAnalyses::all();
891   }
892   void printPipeline(raw_ostream &OS,
893                      function_ref<StringRef(StringRef)> MapClassName2PassName) {
894     auto ClassName = AnalysisT::name();
895     auto PassName = MapClassName2PassName(ClassName);
896     OS << "require<" << PassName << '>';
897   }
898   static bool isRequired() { return true; }
899 };
900 
901 /// A no-op pass template which simply forces a specific analysis result
902 /// to be invalidated.
903 template <typename AnalysisT>
904 struct InvalidateAnalysisPass
905     : PassInfoMixin<InvalidateAnalysisPass<AnalysisT>> {
906   /// Run this pass over some unit of IR.
907   ///
908   /// This pass can be run over any unit of IR and use any analysis manager,
909   /// provided they satisfy the basic API requirements. When this pass is
910   /// created, these methods can be instantiated to satisfy whatever the
911   /// context requires.
912   template <typename IRUnitT, typename AnalysisManagerT, typename... ExtraArgTs>
913   PreservedAnalyses run(IRUnitT &Arg, AnalysisManagerT &AM, ExtraArgTs &&...) {
914     auto PA = PreservedAnalyses::all();
915     PA.abandon<AnalysisT>();
916     return PA;
917   }
918   void printPipeline(raw_ostream &OS,
919                      function_ref<StringRef(StringRef)> MapClassName2PassName) {
920     auto ClassName = AnalysisT::name();
921     auto PassName = MapClassName2PassName(ClassName);
922     OS << "invalidate<" << PassName << '>';
923   }
924 };
925 
926 /// A utility pass that does nothing, but preserves no analyses.
927 ///
928 /// Because this preserves no analyses, any analysis passes queried after this
929 /// pass runs will recompute fresh results.
930 struct InvalidateAllAnalysesPass : PassInfoMixin<InvalidateAllAnalysesPass> {
931   /// Run this pass over some unit of IR.
932   template <typename IRUnitT, typename AnalysisManagerT, typename... ExtraArgTs>
933   PreservedAnalyses run(IRUnitT &, AnalysisManagerT &, ExtraArgTs &&...) {
934     return PreservedAnalyses::none();
935   }
936 };
937 
938 } // end namespace llvm
939 
940 #endif // LLVM_IR_PASSMANAGER_H
941