xref: /netbsd-src/external/gpl3/gcc/dist/gcc/config/mips/mips.h (revision b1e838363e3c6fc78a55519254d99869742dd33c)
1 /* Definitions of target machine for GNU compiler.  MIPS version.
2    Copyright (C) 1989-2022 Free Software Foundation, Inc.
3    Contributed by A. Lichnewsky (lich@inria.inria.fr).
4    Changed by Michael Meissner	(meissner@osf.org).
5    64-bit r4000 support by Ian Lance Taylor (ian@cygnus.com) and
6    Brendan Eich (brendan@microunity.com).
7 
8 This file is part of GCC.
9 
10 GCC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
14 
15 GCC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18 GNU General Public License for more details.
19 
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3.  If not see
22 <http://www.gnu.org/licenses/>.  */
23 
24 
25 #include "config/vxworks-dummy.h"
26 
27 #ifdef GENERATOR_FILE
28 /* This is used in some insn conditions, so needs to be declared, but
29    does not need to be defined.  */
30 extern int target_flags_explicit;
31 #endif
32 
33 /* MIPS external variables defined in mips.cc.  */
34 
35 /* Which ABI to use.  ABI_32 (original 32, or o32), ABI_N32 (n32),
36    ABI_64 (n64) are all defined by SGI.  ABI_O64 is o32 extended
37    to work on a 64-bit machine.  */
38 
39 #define ABI_32  0
40 #define ABI_N32 1
41 #define ABI_64  2
42 #define ABI_EABI 3
43 #define ABI_O64  4
44 
45 enum mips_isa {
46   MIPS_ISA_MIPS1 = 1,
47   MIPS_ISA_MIPS2 = 2,
48   MIPS_ISA_MIPS3 = 3,
49   MIPS_ISA_MIPS4 = 4,
50   MIPS_ISA_MIPS32 = 32,
51   MIPS_ISA_MIPS32R2 = 33,
52   MIPS_ISA_MIPS32R3 = 34,
53   MIPS_ISA_MIPS32R5 = 36,
54   MIPS_ISA_MIPS32R6 = 37,
55   MIPS_ISA_MIPS64 = 64,
56   MIPS_ISA_MIPS64R2 = 65,
57   MIPS_ISA_MIPS64R3 = 66,
58   MIPS_ISA_MIPS64R5 = 68,
59   MIPS_ISA_MIPS64R6 = 69
60 };
61 
62 /* Masks that affect tuning.
63 
64    PTF_AVOID_BRANCHLIKELY_SPEED
65 	Set if it is usually not profitable to use branch-likely instructions
66 	for this target when optimizing code for speed, typically because
67 	the branches are always predicted taken and so incur a large overhead
68 	when not taken.
69 
70    PTF_AVOID_BRANCHLIKELY_SIZE
71 	As above but when optimizing for size.
72 
73    PTF_AVOID_BRANCHLIKELY_ALWAYS
74 	As above but regardless of whether we optimize for speed or size.
75 
76    PTF_AVOID_IMADD
77 	Set if it is usually not profitable to use the integer MADD or MSUB
78 	instructions because of the overhead of getting the result out of
79 	the HI/LO registers.  */
80 
81 #define PTF_AVOID_BRANCHLIKELY_SPEED	0x1
82 #define PTF_AVOID_BRANCHLIKELY_SIZE	0x2
83 #define PTF_AVOID_BRANCHLIKELY_ALWAYS	(PTF_AVOID_BRANCHLIKELY_SPEED | \
84 					 PTF_AVOID_BRANCHLIKELY_SIZE)
85 #define PTF_AVOID_IMADD			0x4
86 
87 /* Information about one recognized processor.  Defined here for the
88    benefit of TARGET_CPU_CPP_BUILTINS.  */
89 struct mips_cpu_info {
90   /* The 'canonical' name of the processor as far as GCC is concerned.
91      It's typically a manufacturer's prefix followed by a numerical
92      designation.  It should be lowercase.  */
93   const char *name;
94 
95   /* The internal processor number that most closely matches this
96      entry.  Several processors can have the same value, if there's no
97      difference between them from GCC's point of view.  */
98   enum processor cpu;
99 
100   /* The ISA level that the processor implements.  */
101   enum mips_isa isa;
102 
103   /* A mask of PTF_* values.  */
104   unsigned int tune_flags;
105 };
106 
107 #include "config/mips/mips-opts.h"
108 
109 /* Macros to silence warnings about numbers being signed in traditional
110    C and unsigned in ISO C when compiled on 32-bit hosts.  */
111 
112 #define BITMASK_HIGH	(((unsigned long)1) << 31)	/* 0x80000000 */
113 #define BITMASK_UPPER16	((unsigned long)0xffff << 16)	/* 0xffff0000 */
114 #define BITMASK_LOWER16	((unsigned long)0xffff)		/* 0x0000ffff */
115 
116 
117 /* Run-time compilation parameters selecting different hardware subsets.  */
118 
119 /* True if we are generating position-independent VxWorks RTP code.  */
120 #define TARGET_RTP_PIC (TARGET_VXWORKS_RTP && flag_pic)
121 
122 /* Compact branches must not be used if the user either selects the
123    'never' policy or the 'optimal' policy on a core that lacks
124    compact branch instructions.  */
125 #define TARGET_CB_NEVER (mips_cb == MIPS_CB_NEVER	\
126 			 || (mips_cb == MIPS_CB_OPTIMAL \
127 			     && !ISA_HAS_COMPACT_BRANCHES))
128 
129 /* Compact branches may be used if the user either selects the
130    'always' policy or the 'optimal' policy on a core that supports
131    compact branch instructions.  */
132 #define TARGET_CB_MAYBE (TARGET_CB_ALWAYS		\
133 			 || (mips_cb == MIPS_CB_OPTIMAL \
134 			     && ISA_HAS_COMPACT_BRANCHES))
135 
136 /* Compact branches must always be generated if the user selects
137    the 'always' policy or the 'optimal' policy om a core that
138    lacks delay slot branch instructions.  */
139 #define TARGET_CB_ALWAYS (mips_cb == MIPS_CB_ALWAYS	\
140 			 || (mips_cb == MIPS_CB_OPTIMAL \
141 			     && !ISA_HAS_DELAY_SLOTS))
142 
143 /* Special handling for JRC that exists in microMIPSR3 as well as R6
144    ISAs with full compact branch support.  */
145 #define ISA_HAS_JRC ((ISA_HAS_COMPACT_BRANCHES		\
146 		      || TARGET_MICROMIPS)		\
147 		     && mips_cb != MIPS_CB_NEVER)
148 
149 /* True if the output file is marked as ".abicalls; .option pic0"
150    (-call_nonpic).  */
151 #define TARGET_ABICALLS_PIC0 \
152   (TARGET_ABSOLUTE_ABICALLS && TARGET_PLT)
153 
154 /* True if the output file is marked as ".abicalls; .option pic2" (-KPIC).  */
155 #define TARGET_ABICALLS_PIC2 \
156   (TARGET_ABICALLS && !TARGET_ABICALLS_PIC0)
157 
158 /* True if the call patterns should be split into a jalr followed by
159    an instruction to restore $gp.  It is only safe to split the load
160    from the call when every use of $gp is explicit.
161 
162    See mips_must_initialize_gp_p for details about how we manage the
163    global pointer.  */
164 
165 #define TARGET_SPLIT_CALLS \
166   (TARGET_EXPLICIT_RELOCS && TARGET_CALL_CLOBBERED_GP && epilogue_completed)
167 
168 /* True if we're generating a form of -mabicalls in which we can use
169    operators like %hi and %lo to refer to locally-binding symbols.
170    We can only do this for -mno-shared, and only then if we can use
171    relocation operations instead of assembly macros.  It isn't really
172    worth using absolute sequences for 64-bit symbols because GOT
173    accesses are so much shorter.  */
174 
175 #define TARGET_ABSOLUTE_ABICALLS	\
176   (TARGET_ABICALLS			\
177    && !TARGET_SHARED			\
178    && TARGET_EXPLICIT_RELOCS		\
179    && !ABI_HAS_64BIT_SYMBOLS)
180 
181 /* True if we can optimize sibling calls.  For simplicity, we only
182    handle cases in which call_insn_operand will reject invalid
183    sibcall addresses.  There are two cases in which this isn't true:
184 
185       - TARGET_MIPS16.  call_insn_operand accepts constant addresses
186 	but there is no direct jump instruction.  It isn't worth
187 	using sibling calls in this case anyway; they would usually
188 	be longer than normal calls.
189 
190       - TARGET_USE_GOT && !TARGET_EXPLICIT_RELOCS.  call_insn_operand
191 	accepts global constants, but all sibcalls must be indirect.  */
192 #define TARGET_SIBCALLS \
193   (!TARGET_MIPS16 && (!TARGET_USE_GOT || TARGET_EXPLICIT_RELOCS))
194 
195 /* True if we need to use a global offset table to access some symbols.  */
196 #define TARGET_USE_GOT (TARGET_ABICALLS || TARGET_RTP_PIC)
197 
198 /* True if TARGET_USE_GOT and if $gp is a call-clobbered register.  */
199 #define TARGET_CALL_CLOBBERED_GP (TARGET_ABICALLS && TARGET_OLDABI)
200 
201 /* True if TARGET_USE_GOT and if $gp is a call-saved register.  */
202 #define TARGET_CALL_SAVED_GP (TARGET_USE_GOT && !TARGET_CALL_CLOBBERED_GP)
203 
204 /* True if we should use .cprestore to store to the cprestore slot.
205 
206    We continue to use .cprestore for explicit-reloc code so that JALs
207    inside inline asms will work correctly.  */
208 #define TARGET_CPRESTORE_DIRECTIVE \
209   (TARGET_ABICALLS_PIC2 && !TARGET_MIPS16)
210 
211 /* True if we can use the J and JAL instructions.  */
212 #define TARGET_ABSOLUTE_JUMPS \
213   (!flag_pic || TARGET_ABSOLUTE_ABICALLS)
214 
215 /* True if indirect calls must use register class PIC_FN_ADDR_REG.
216    This is true for both the PIC and non-PIC VxWorks RTP modes.  */
217 #define TARGET_USE_PIC_FN_ADDR_REG (TARGET_ABICALLS || TARGET_VXWORKS_RTP)
218 
219 /* True if .gpword or .gpdword should be used for switch tables.  */
220 #define TARGET_GPWORD				\
221   (TARGET_ABICALLS && !TARGET_ABSOLUTE_ABICALLS)
222 
223 /* True if the output must have a writable .eh_frame.
224    See ASM_PREFERRED_EH_DATA_FORMAT for details.  */
225 #ifdef HAVE_LD_PERSONALITY_RELAXATION
226 #define TARGET_WRITABLE_EH_FRAME 0
227 #else
228 #define TARGET_WRITABLE_EH_FRAME (flag_pic && TARGET_SHARED)
229 #endif
230 
231 /* Test the assembler to set ISA_HAS_DSP_MULT to DSP Rev 1 or 2.  */
232 #ifdef HAVE_AS_DSPR1_MULT
233 #define ISA_HAS_DSP_MULT ISA_HAS_DSP
234 #else
235 #define ISA_HAS_DSP_MULT ISA_HAS_DSPR2
236 #endif
237 
238 /* ISA has LSA available.  */
239 #define ISA_HAS_LSA		(mips_isa_rev >= 6 || ISA_HAS_MSA)
240 
241 /* ISA has DLSA available.  */
242 #define ISA_HAS_DLSA		(TARGET_64BIT \
243 				 && (mips_isa_rev >= 6 \
244 				     || ISA_HAS_MSA))
245 
246 /* ISA load/store instructions can handle unaligned address */
247 #define ISA_HAS_UNALIGNED_ACCESS (TARGET_UNALIGNED_ACCESS \
248 				 && (mips_isa_rev >= 6))
249 
250 /* The ISA compression flags that are currently in effect.  */
251 #define TARGET_COMPRESSION (target_flags & (MASK_MIPS16 | MASK_MICROMIPS))
252 
253 /* Generate mips16 code */
254 #define TARGET_MIPS16		((target_flags & MASK_MIPS16) != 0)
255 /* Generate mips16e code. Default 16bit ASE for mips32* and mips64* */
256 #define GENERATE_MIPS16E	(TARGET_MIPS16 && mips_isa >= MIPS_ISA_MIPS32)
257 /* Generate mips16e register save/restore sequences.  */
258 #define GENERATE_MIPS16E_SAVE_RESTORE (GENERATE_MIPS16E && mips_abi == ABI_32)
259 
260 /* True if we're generating a form of MIPS16 code in which general
261    text loads are allowed.  */
262 #define TARGET_MIPS16_TEXT_LOADS \
263   (TARGET_MIPS16 && mips_code_readable == CODE_READABLE_YES)
264 
265 /* True if we're generating a form of MIPS16 code in which PC-relative
266    loads are allowed.  */
267 #define TARGET_MIPS16_PCREL_LOADS \
268   (TARGET_MIPS16 && mips_code_readable >= CODE_READABLE_PCREL)
269 
270 /* Generic ISA defines.  */
271 #define ISA_MIPS1		    (mips_isa == MIPS_ISA_MIPS1)
272 #define ISA_MIPS2		    (mips_isa == MIPS_ISA_MIPS2)
273 #define ISA_MIPS3                   (mips_isa == MIPS_ISA_MIPS3)
274 #define ISA_MIPS4		    (mips_isa == MIPS_ISA_MIPS4)
275 #define ISA_MIPS32		    (mips_isa == MIPS_ISA_MIPS32)
276 #define ISA_MIPS32R2		    (mips_isa == MIPS_ISA_MIPS32R2)
277 #define ISA_MIPS32R3		    (mips_isa == MIPS_ISA_MIPS32R3)
278 #define ISA_MIPS32R5		    (mips_isa == MIPS_ISA_MIPS32R5)
279 #define ISA_MIPS32R6		    (mips_isa == MIPS_ISA_MIPS32R6)
280 #define ISA_MIPS64                  (mips_isa == MIPS_ISA_MIPS64)
281 #define ISA_MIPS64R2		    (mips_isa == MIPS_ISA_MIPS64R2)
282 #define ISA_MIPS64R3		    (mips_isa == MIPS_ISA_MIPS64R3)
283 #define ISA_MIPS64R5		    (mips_isa == MIPS_ISA_MIPS64R5)
284 #define ISA_MIPS64R6		    (mips_isa == MIPS_ISA_MIPS64R6)
285 
286 /* Architecture target defines.  */
287 #define TARGET_LOONGSON_2E          (mips_arch == PROCESSOR_LOONGSON_2E)
288 #define TARGET_LOONGSON_2F          (mips_arch == PROCESSOR_LOONGSON_2F)
289 #define TARGET_LOONGSON_2EF         (TARGET_LOONGSON_2E || TARGET_LOONGSON_2F)
290 #define TARGET_GS464		    (mips_arch == PROCESSOR_GS464)
291 #define TARGET_GS464E		    (mips_arch == PROCESSOR_GS464E)
292 #define TARGET_GS264E		    (mips_arch == PROCESSOR_GS264E)
293 #define TARGET_MIPS3900             (mips_arch == PROCESSOR_R3900)
294 #define TARGET_MIPS4000             (mips_arch == PROCESSOR_R4000)
295 #define TARGET_MIPS4120             (mips_arch == PROCESSOR_R4120)
296 #define TARGET_MIPS4130             (mips_arch == PROCESSOR_R4130)
297 #define TARGET_MIPS5400             (mips_arch == PROCESSOR_R5400)
298 #define TARGET_MIPS5500             (mips_arch == PROCESSOR_R5500)
299 #define TARGET_MIPS5900             (mips_arch == PROCESSOR_R5900)
300 #define TARGET_MIPS7000             (mips_arch == PROCESSOR_R7000)
301 #define TARGET_MIPS8000             (mips_arch == PROCESSOR_R8000)
302 #define TARGET_MIPS9000             (mips_arch == PROCESSOR_R9000)
303 #define TARGET_OCTEON		    (mips_arch == PROCESSOR_OCTEON	\
304 				     || mips_arch == PROCESSOR_OCTEON2	\
305 				     || mips_arch == PROCESSOR_OCTEON3)
306 #define TARGET_OCTEON2		    (mips_arch == PROCESSOR_OCTEON2	\
307 				     || mips_arch == PROCESSOR_OCTEON3)
308 #define TARGET_SB1                  (mips_arch == PROCESSOR_SB1		\
309 				     || mips_arch == PROCESSOR_SB1A)
310 #define TARGET_SR71K                (mips_arch == PROCESSOR_SR71000)
311 #define TARGET_XLP                  (mips_arch == PROCESSOR_XLP)
312 
313 /* Scheduling target defines.  */
314 #define TUNE_20KC		    (mips_tune == PROCESSOR_20KC)
315 #define TUNE_24K		    (mips_tune == PROCESSOR_24KC	\
316 				     || mips_tune == PROCESSOR_24KF2_1	\
317 				     || mips_tune == PROCESSOR_24KF1_1)
318 #define TUNE_74K                    (mips_tune == PROCESSOR_74KC	\
319 				     || mips_tune == PROCESSOR_74KF2_1	\
320 				     || mips_tune == PROCESSOR_74KF1_1  \
321 				     || mips_tune == PROCESSOR_74KF3_2)
322 #define TUNE_LOONGSON_2EF           (mips_tune == PROCESSOR_LOONGSON_2E	\
323 				     || mips_tune == PROCESSOR_LOONGSON_2F)
324 #define TUNE_GS464		    (mips_tune == PROCESSOR_GS464)
325 #define TUNE_GS464E		    (mips_tune == PROCESSOR_GS464E)
326 #define TUNE_GS264E		    (mips_tune == PROCESSOR_GS264E)
327 #define TUNE_MIPS3000               (mips_tune == PROCESSOR_R3000)
328 #define TUNE_MIPS3900               (mips_tune == PROCESSOR_R3900)
329 #define TUNE_MIPS4000               (mips_tune == PROCESSOR_R4000)
330 #define TUNE_MIPS4120               (mips_tune == PROCESSOR_R4120)
331 #define TUNE_MIPS4130               (mips_tune == PROCESSOR_R4130)
332 #define TUNE_MIPS5000               (mips_tune == PROCESSOR_R5000)
333 #define TUNE_MIPS5400               (mips_tune == PROCESSOR_R5400)
334 #define TUNE_MIPS5500               (mips_tune == PROCESSOR_R5500)
335 #define TUNE_MIPS6000               (mips_tune == PROCESSOR_R6000)
336 #define TUNE_MIPS7000               (mips_tune == PROCESSOR_R7000)
337 #define TUNE_MIPS9000               (mips_tune == PROCESSOR_R9000)
338 #define TUNE_OCTEON		    (mips_tune == PROCESSOR_OCTEON	\
339 				     || mips_tune == PROCESSOR_OCTEON2	\
340 				     || mips_tune == PROCESSOR_OCTEON3)
341 #define TUNE_SB1                    (mips_tune == PROCESSOR_SB1		\
342 				     || mips_tune == PROCESSOR_SB1A)
343 #define TUNE_P5600                  (mips_tune == PROCESSOR_P5600)
344 #define TUNE_I6400                  (mips_tune == PROCESSOR_I6400)
345 #define TUNE_P6600                  (mips_tune == PROCESSOR_P6600)
346 
347 /* True if the pre-reload scheduler should try to create chains of
348    multiply-add or multiply-subtract instructions.  For example,
349    suppose we have:
350 
351 	t1 = a * b
352 	t2 = t1 + c * d
353 	t3 = e * f
354 	t4 = t3 - g * h
355 
356    t1 will have a higher priority than t2 and t3 will have a higher
357    priority than t4.  However, before reload, there is no dependence
358    between t1 and t3, and they can often have similar priorities.
359    The scheduler will then tend to prefer:
360 
361 	t1 = a * b
362 	t3 = e * f
363 	t2 = t1 + c * d
364 	t4 = t3 - g * h
365 
366    which stops us from making full use of macc/madd-style instructions.
367    This sort of situation occurs frequently in Fourier transforms and
368    in unrolled loops.
369 
370    To counter this, the TUNE_MACC_CHAINS code will reorder the ready
371    queue so that chained multiply-add and multiply-subtract instructions
372    appear ahead of any other instruction that is likely to clobber lo.
373    In the example above, if t2 and t3 become ready at the same time,
374    the code ensures that t2 is scheduled first.
375 
376    Multiply-accumulate instructions are a bigger win for some targets
377    than others, so this macro is defined on an opt-in basis.  */
378 #define TUNE_MACC_CHAINS	    (TUNE_MIPS5500		\
379 				     || TUNE_MIPS4120		\
380 				     || TUNE_MIPS4130		\
381 				     || TUNE_24K		\
382 				     || TUNE_P5600)
383 
384 #define TARGET_OLDABI		    (mips_abi == ABI_32 || mips_abi == ABI_O64)
385 #define TARGET_NEWABI		    (mips_abi == ABI_N32 || mips_abi == ABI_64)
386 
387 /* TARGET_HARD_FLOAT and TARGET_SOFT_FLOAT reflect whether the FPU is
388    directly accessible, while the command-line options select
389    TARGET_HARD_FLOAT_ABI and TARGET_SOFT_FLOAT_ABI to reflect the ABI
390    in use.  */
391 #define TARGET_HARD_FLOAT (TARGET_HARD_FLOAT_ABI && !TARGET_MIPS16)
392 #define TARGET_SOFT_FLOAT (TARGET_SOFT_FLOAT_ABI || TARGET_MIPS16)
393 
394 /* TARGET_FLOAT64 represents -mfp64 and TARGET_FLOATXX represents
395    -mfpxx, derive TARGET_FLOAT32 to represent -mfp32.  */
396 #define TARGET_FLOAT32 (!TARGET_FLOAT64 && !TARGET_FLOATXX)
397 
398 /* TARGET_O32_FP64A_ABI represents all the conditions that form the
399    o32 FP64A ABI extension (-mabi=32 -mfp64 -mno-odd-spreg).  */
400 #define TARGET_O32_FP64A_ABI (mips_abi == ABI_32 && TARGET_FLOAT64 \
401 			      && !TARGET_ODD_SPREG)
402 
403 /* False if SC acts as a memory barrier with respect to itself,
404    otherwise a SYNC will be emitted after SC for atomic operations
405    that require ordering between the SC and following loads and
406    stores.  It does not tell anything about ordering of loads and
407    stores prior to and following the SC, only about the SC itself and
408    those loads and stores follow it.  */
409 #define TARGET_SYNC_AFTER_SC (!TARGET_OCTEON && !TARGET_XLP)
410 
411 /* Define preprocessor macros for the -march and -mtune options.
412    PREFIX is either _MIPS_ARCH or _MIPS_TUNE, INFO is the selected
413    processor.  If INFO's canonical name is "foo", define PREFIX to
414    be "foo", and define an additional macro PREFIX_FOO.  */
415 #define MIPS_CPP_SET_PROCESSOR(PREFIX, INFO)			\
416   do								\
417     {								\
418       char *macro, *p;						\
419 								\
420       macro = concat ((PREFIX), "_", (INFO)->name, NULL);	\
421       for (p = macro; *p != 0; p++)				\
422         if (*p == '+')                                          \
423           *p = 'P';                                             \
424         else                                                    \
425           *p = TOUPPER (*p);                                    \
426 								\
427       builtin_define (macro);					\
428       builtin_define_with_value ((PREFIX), (INFO)->name, 1);	\
429       free (macro);						\
430     }								\
431   while (0)
432 
433 /* Target CPU builtins.  */
434 #define TARGET_CPU_CPP_BUILTINS()					\
435   do									\
436     {									\
437       builtin_assert ("machine=mips");                        		\
438       builtin_assert ("cpu=mips");					\
439       builtin_define ("__mips__");     					\
440       builtin_define ("_mips");						\
441 									\
442       /* We do this here because __mips is defined below and so we	\
443 	 can't use builtin_define_std.  We don't ever want to define	\
444 	 "mips" for VxWorks because some of the VxWorks headers		\
445 	 construct include filenames from a root directory macro,	\
446 	 an architecture macro and a filename, where the architecture	\
447 	 macro expands to 'mips'.  If we define 'mips' to 1, the	\
448 	 architecture macro expands to 1 as well.  */			\
449       if (!flag_iso && !TARGET_VXWORKS)					\
450 	builtin_define ("mips");					\
451 									\
452       if (TARGET_64BIT)							\
453 	builtin_define ("__mips64");					\
454 									\
455       /* Treat _R3000 and _R4000 like register-size			\
456 	 defines, which is how they've historically			\
457 	 been used.  */							\
458       if (TARGET_64BIT)							\
459 	{								\
460 	  builtin_define_std ("R4000");					\
461 	  builtin_define ("_R4000");					\
462 	}								\
463       else								\
464 	{								\
465 	  builtin_define_std ("R3000");					\
466 	  builtin_define ("_R3000");					\
467 	}								\
468 									\
469       if (TARGET_FLOAT64)						\
470 	builtin_define ("__mips_fpr=64");				\
471       else if (TARGET_FLOATXX)						\
472 	builtin_define ("__mips_fpr=0");				\
473       else								\
474 	builtin_define ("__mips_fpr=32");				\
475 									\
476       if (mips_base_compression_flags & MASK_MIPS16)			\
477 	builtin_define ("__mips16");					\
478 									\
479       if (TARGET_MIPS3D)						\
480 	builtin_define ("__mips3d");					\
481 									\
482       if (TARGET_SMARTMIPS)						\
483 	builtin_define ("__mips_smartmips");				\
484 									\
485       if (mips_base_compression_flags & MASK_MICROMIPS)			\
486 	builtin_define ("__mips_micromips");				\
487 									\
488       if (TARGET_MCU)							\
489 	builtin_define ("__mips_mcu");					\
490 									\
491       if (TARGET_EVA)							\
492 	builtin_define ("__mips_eva");					\
493 									\
494       if (TARGET_DSP)							\
495 	{								\
496 	  builtin_define ("__mips_dsp");				\
497 	  if (TARGET_DSPR2)						\
498 	    {								\
499 	      builtin_define ("__mips_dspr2");				\
500 	      builtin_define ("__mips_dsp_rev=2");			\
501 	    }								\
502 	  else								\
503 	    builtin_define ("__mips_dsp_rev=1");			\
504 	}								\
505 									\
506       if (ISA_HAS_MSA)							\
507 	{								\
508 	  builtin_define ("__mips_msa");				\
509 	  builtin_define ("__mips_msa_width=128");			\
510 	}								\
511 									\
512       MIPS_CPP_SET_PROCESSOR ("_MIPS_ARCH", mips_arch_info);		\
513       MIPS_CPP_SET_PROCESSOR ("_MIPS_TUNE", mips_tune_info);		\
514 									\
515       if (ISA_MIPS1)							\
516 	{								\
517 	  builtin_define ("__mips=1");					\
518 	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS1");			\
519 	}								\
520       else if (ISA_MIPS2)						\
521 	{								\
522 	  builtin_define ("__mips=2");					\
523 	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS2");			\
524 	}								\
525       else if (ISA_MIPS3)						\
526 	{								\
527 	  builtin_define ("__mips=3");					\
528 	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS3");			\
529 	}								\
530       else if (ISA_MIPS4)						\
531 	{								\
532 	  builtin_define ("__mips=4");					\
533 	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS4");			\
534 	}								\
535       else if (mips_isa >= MIPS_ISA_MIPS32				\
536 	       && mips_isa < MIPS_ISA_MIPS64)				\
537 	{								\
538 	  builtin_define ("__mips=32");					\
539 	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32");		\
540 	}								\
541       else if (mips_isa >= MIPS_ISA_MIPS64)				\
542 	{								\
543 	  builtin_define ("__mips=64");					\
544 	  builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64");		\
545 	}								\
546       if (mips_isa_rev > 0)						\
547 	builtin_define_with_int_value ("__mips_isa_rev",		\
548 				       mips_isa_rev);			\
549 									\
550       switch (mips_abi)							\
551 	{								\
552 	case ABI_32:							\
553 	  builtin_define ("_ABIO32=1");					\
554 	  builtin_define ("_MIPS_SIM=_ABIO32");				\
555 	  break;							\
556 									\
557 	case ABI_N32:							\
558 	  builtin_define ("_ABIN32=2");					\
559 	  builtin_define ("_MIPS_SIM=_ABIN32");				\
560 	  break;							\
561 									\
562 	case ABI_64:							\
563 	  builtin_define ("_ABI64=3");					\
564 	  builtin_define ("_MIPS_SIM=_ABI64");				\
565 	  break;							\
566 									\
567 	case ABI_O64:							\
568 	  builtin_define ("_ABIO64=4");					\
569 	  builtin_define ("_MIPS_SIM=_ABIO64");				\
570 	  break;							\
571 	}								\
572 									\
573       builtin_define_with_int_value ("_MIPS_SZINT", INT_TYPE_SIZE);	\
574       builtin_define_with_int_value ("_MIPS_SZLONG", LONG_TYPE_SIZE);	\
575       builtin_define_with_int_value ("_MIPS_SZPTR", POINTER_SIZE);	\
576       builtin_define_with_int_value ("_MIPS_FPSET",			\
577 				     32 / MAX_FPRS_PER_FMT);		\
578       builtin_define_with_int_value ("_MIPS_SPFPSET",			\
579 				     TARGET_ODD_SPREG ? 32 : 16);	\
580 									\
581       /* These defines reflect the ABI in use, not whether the  	\
582 	 FPU is directly accessible.  */				\
583       if (TARGET_NO_FLOAT)						\
584 	builtin_define ("__mips_no_float");				\
585       else if (TARGET_HARD_FLOAT_ABI)					\
586 	builtin_define ("__mips_hard_float");				\
587       else								\
588 	builtin_define ("__mips_soft_float");				\
589 									\
590       if (TARGET_SINGLE_FLOAT)						\
591 	builtin_define ("__mips_single_float");				\
592 									\
593       if (TARGET_PAIRED_SINGLE_FLOAT)					\
594 	builtin_define ("__mips_paired_single_float");			\
595 									\
596       if (mips_abs == MIPS_IEEE_754_2008)				\
597 	builtin_define ("__mips_abs2008");				\
598 									\
599       if (mips_nan == MIPS_IEEE_754_2008)				\
600 	builtin_define ("__mips_nan2008");				\
601 									\
602       if (TARGET_BIG_ENDIAN)						\
603 	{								\
604 	  builtin_define_std ("MIPSEB");				\
605 	  builtin_define ("_MIPSEB");					\
606 	}								\
607       else								\
608 	{								\
609 	  builtin_define_std ("MIPSEL");				\
610 	  builtin_define ("_MIPSEL");					\
611 	}								\
612                                                                         \
613       /* Whether calls should go through $25.  The separate __PIC__	\
614 	 macro indicates whether abicalls code might use a GOT.  */	\
615       if (TARGET_ABICALLS)						\
616 	builtin_define ("__mips_abicalls");				\
617 									\
618       /* Whether Loongson vector modes are enabled.  */			\
619       if (TARGET_LOONGSON_MMI)						\
620 	{								\
621 	  builtin_define ("__mips_loongson_vector_rev");		\
622 	  builtin_define ("__mips_loongson_mmi");			\
623 	}								\
624 									\
625       /* Whether Loongson EXT modes are enabled.  */			\
626       if (TARGET_LOONGSON_EXT)						\
627 	{								\
628 	  builtin_define ("__mips_loongson_ext");			\
629 	  if (TARGET_LOONGSON_EXT2)					\
630 	    {								\
631 	      builtin_define ("__mips_loongson_ext2");			\
632 	      builtin_define ("__mips_loongson_ext_rev=2");		\
633 	    }								\
634 	  else								\
635 	      builtin_define ("__mips_loongson_ext_rev=1");		\
636 	}								\
637 									\
638       /* Historical Octeon macro.  */					\
639       if (TARGET_OCTEON)						\
640 	builtin_define ("__OCTEON__");					\
641 									\
642       if (TARGET_SYNCI)							\
643 	builtin_define ("__mips_synci");				\
644 									\
645       /* Macros dependent on the C dialect.  */				\
646       if (preprocessing_asm_p ())					\
647 	{								\
648 	  builtin_define_std ("LANGUAGE_ASSEMBLY");			\
649 	  builtin_define ("_LANGUAGE_ASSEMBLY");			\
650 	}								\
651       else if (c_dialect_cxx ())					\
652 	{								\
653 	  builtin_define ("_LANGUAGE_C_PLUS_PLUS");			\
654 	  builtin_define ("__LANGUAGE_C_PLUS_PLUS");			\
655 	  builtin_define ("__LANGUAGE_C_PLUS_PLUS__");			\
656 	}								\
657       else								\
658 	{								\
659 	  builtin_define_std ("LANGUAGE_C");				\
660 	  builtin_define ("_LANGUAGE_C");				\
661 	}								\
662       if (c_dialect_objc ())						\
663 	{								\
664 	  builtin_define ("_LANGUAGE_OBJECTIVE_C");			\
665 	  builtin_define ("__LANGUAGE_OBJECTIVE_C");			\
666 	  /* Bizarre, but retained for backwards compatibility.  */	\
667 	  builtin_define_std ("LANGUAGE_C");				\
668 	  builtin_define ("_LANGUAGE_C");				\
669 	}								\
670 									\
671       if (mips_abi == ABI_EABI)						\
672 	builtin_define ("__mips_eabi");					\
673 									\
674       if (TARGET_CACHE_BUILTIN)						\
675 	builtin_define ("__GCC_HAVE_BUILTIN_MIPS_CACHE");		\
676       if (!ISA_HAS_LXC1_SXC1)						\
677 	builtin_define ("__mips_no_lxc1_sxc1");				\
678       if (!ISA_HAS_UNFUSED_MADD4 && !ISA_HAS_FUSED_MADD4)		\
679 	builtin_define ("__mips_no_madd4");				\
680     }									\
681   while (0)
682 
683 /* Default target_flags if no switches are specified  */
684 
685 #ifndef TARGET_DEFAULT
686 #define TARGET_DEFAULT 0
687 #endif
688 
689 #ifndef TARGET_CPU_DEFAULT
690 #define TARGET_CPU_DEFAULT 0
691 #endif
692 
693 #ifndef TARGET_ENDIAN_DEFAULT
694 #define TARGET_ENDIAN_DEFAULT MASK_BIG_ENDIAN
695 #endif
696 
697 #ifdef IN_LIBGCC2
698 #undef TARGET_64BIT
699 /* Make this compile time constant for libgcc2 */
700 #ifdef __mips64
701 #define TARGET_64BIT		1
702 #else
703 #define TARGET_64BIT		0
704 #endif
705 #endif /* IN_LIBGCC2 */
706 
707 /* Force the call stack unwinders in unwind.inc not to be MIPS16 code
708    when compiled with hardware floating point.  This is because MIPS16
709    code cannot save and restore the floating-point registers, which is
710    important if in a mixed MIPS16/non-MIPS16 environment.  */
711 
712 #ifdef IN_LIBGCC2
713 #if __mips_hard_float
714 #define LIBGCC2_UNWIND_ATTRIBUTE __attribute__((__nomips16__))
715 #endif
716 #endif /* IN_LIBGCC2 */
717 
718 #define TARGET_LIBGCC_SDATA_SECTION ".sdata"
719 
720 #ifndef MULTILIB_ENDIAN_DEFAULT
721 #if TARGET_ENDIAN_DEFAULT == 0
722 #define MULTILIB_ENDIAN_DEFAULT "EL"
723 #else
724 #define MULTILIB_ENDIAN_DEFAULT "EB"
725 #endif
726 #endif
727 
728 #ifndef MULTILIB_ISA_DEFAULT
729 #if MIPS_ISA_DEFAULT == MIPS_ISA_MIPS1
730 #define MULTILIB_ISA_DEFAULT "mips1"
731 #elif MIPS_ISA_DEFAULT == MIPS_ISA_MIPS2
732 #define MULTILIB_ISA_DEFAULT "mips2"
733 #elif MIPS_ISA_DEFAULT == MIPS_ISA_MIPS3
734 #define MULTILIB_ISA_DEFAULT "mips3"
735 #elif MIPS_ISA_DEFAULT == MIPS_ISA_MIPS4
736 #define MULTILIB_ISA_DEFAULT "mips4"
737 #elif MIPS_ISA_DEFAULT == MIPS_ISA_MIPS32
738 #define MULTILIB_ISA_DEFAULT "mips32"
739 #elif MIPS_ISA_DEFAULT == MIPS_ISA_MIPS32R2
740 #define MULTILIB_ISA_DEFAULT "mips32r2"
741 #elif MIPS_ISA_DEFAULT == MIPS_ISA_MIPS32R6
742 #define MULTILIB_ISA_DEFAULT "mips32r6"
743 #elif MIPS_ISA_DEFAULT == MIPS_ISA_MIPS64
744 #define MULTILIB_ISA_DEFAULT "mips64"
745 #elif MIPS_ISA_DEFAULT == MIPS_ISA_MIPS64R2
746 #define MULTILIB_ISA_DEFAULT "mips64r2"
747 #elif MIPS_ISA_DEFAULT == MIPS_ISA_MIPS64R6
748 #define MULTILIB_ISA_DEFAULT "mips64r6"
749 #else
750 #define MULTILIB_ISA_DEFAULT "mips1"
751 #endif
752 #endif
753 
754 #ifndef MIPS_ABI_DEFAULT
755 #define MIPS_ABI_DEFAULT ABI_32
756 #endif
757 
758 /* Use the most portable ABI flag for the ASM specs.  */
759 
760 #if MIPS_ABI_DEFAULT == ABI_32
761 #define MULTILIB_ABI_DEFAULT "mabi=32"
762 #elif MIPS_ABI_DEFAULT == ABI_O64
763 #define MULTILIB_ABI_DEFAULT "mabi=o64"
764 #elif MIPS_ABI_DEFAULT == ABI_N32
765 #define MULTILIB_ABI_DEFAULT "mabi=n32"
766 #elif MIPS_ABI_DEFAULT == ABI_64
767 #define MULTILIB_ABI_DEFAULT "mabi=64"
768 #elif MIPS_ABI_DEFAULT == ABI_EABI
769 #define MULTILIB_ABI_DEFAULT "mabi=eabi"
770 #endif
771 
772 #ifndef MULTILIB_DEFAULTS
773 #define MULTILIB_DEFAULTS \
774     { MULTILIB_ENDIAN_DEFAULT, MULTILIB_ISA_DEFAULT, MULTILIB_ABI_DEFAULT }
775 #endif
776 
777 /* We must pass -EL to the linker by default for little endian embedded
778    targets using linker scripts with a OUTPUT_FORMAT line.  Otherwise, the
779    linker will default to using big-endian output files.  The OUTPUT_FORMAT
780    line must be in the linker script, otherwise -EB/-EL will not work.  */
781 
782 #ifndef ENDIAN_SPEC
783 #if TARGET_ENDIAN_DEFAULT == 0
784 #define ENDIAN_SPEC "%{!EB:%{!meb:-EL}} %{EB|meb:-EB}"
785 #else
786 #define ENDIAN_SPEC "%{!EL:%{!mel:-EB}} %{EL|mel:-EL}"
787 #endif
788 #endif
789 
790 /* A spec condition that matches all non-mips16 -mips arguments.  */
791 
792 #define MIPS_ISA_LEVEL_OPTION_SPEC \
793   "mips1|mips2|mips3|mips4|mips32*|mips64*"
794 
795 /* A spec condition that matches all non-mips16 architecture arguments.  */
796 
797 #define MIPS_ARCH_OPTION_SPEC \
798   MIPS_ISA_LEVEL_OPTION_SPEC "|march=*"
799 
800 /* A spec that infers a -mips argument from an -march argument.  */
801 
802 #define MIPS_ISA_LEVEL_SPEC \
803   "%{" MIPS_ISA_LEVEL_OPTION_SPEC ":;: \
804      %{march=mips1|march=r2000|march=r3000|march=r3900:-mips1} \
805      %{march=mips2|march=r6000:-mips2} \
806      %{march=mips3|march=r4*|march=vr4*|march=orion|march=loongson2*:-mips3} \
807      %{march=mips4|march=r8000|march=vr5*|march=rm7000|march=rm9000 \
808        |march=r10000|march=r12000|march=r14000|march=r16000:-mips4} \
809      %{march=mips32|march=4kc|march=4km|march=4kp|march=4ksc:-mips32} \
810      %{march=mips32r2|march=m4k|march=4ke*|march=4ksd|march=24k* \
811        |march=34k*|march=74k*|march=m14k*|march=1004k* \
812        |march=interaptiv: -mips32r2} \
813      %{march=mips32r3: -mips32r3} \
814      %{march=mips32r5|march=p5600|march=m5100|march=m5101: -mips32r5} \
815      %{march=mips32r6: -mips32r6} \
816      %{march=mips64|march=5k*|march=20k*|march=sb1*|march=sr71000 \
817        |march=xlr: -mips64} \
818      %{march=mips64r2|march=loongson3a|march=gs464|march=gs464e|march=gs264e \
819        |march=octeon|march=xlp: -mips64r2} \
820      %{march=mips64r3: -mips64r3} \
821      %{march=mips64r5: -mips64r5} \
822      %{march=mips64r6|march=i6400|march=i6500|march=p6600: -mips64r6}}"
823 
824 /* A spec that injects the default multilib ISA if no architecture is
825    specified.  */
826 
827 #define MIPS_DEFAULT_ISA_LEVEL_SPEC \
828   "%{" MIPS_ISA_LEVEL_OPTION_SPEC ":;: \
829      %{!march=*: -" MULTILIB_ISA_DEFAULT "}}"
830 
831 /* A spec that infers a -mhard-float or -msoft-float setting from an
832    -march argument.  Note that soft-float and hard-float code are not
833    link-compatible.  */
834 
835 #define MIPS_ARCH_FLOAT_SPEC \
836   "%{mhard-float|msoft-float|mno-float|march=mips*:; \
837      march=vr41*|march=m4k|march=4k*|march=24kc|march=24kec \
838      |march=34kc|march=34kn|march=74kc|march=1004kc|march=5kc \
839      |march=m14k*|march=m5101|march=octeon|march=xlr: -msoft-float; \
840      march=*: -mhard-float}"
841 
842 /* A spec condition that matches 32-bit options.  It only works if
843    MIPS_ISA_LEVEL_SPEC has been applied.  */
844 
845 #define MIPS_32BIT_OPTION_SPEC \
846   "mips1|mips2|mips32*|mgp32"
847 
848 /* A spec condition that matches architectures should be targeted with
849    o32 FPXX for compatibility reasons.  */
850 #define MIPS_FPXX_OPTION_SPEC \
851   "mips2|mips3|mips4|mips5|mips32|mips32r2|mips32r3|mips32r5| \
852    mips64|mips64r2|mips64r3|mips64r5"
853 
854 /* Infer a -msynci setting from a -mips argument, on the assumption that
855    -msynci is desired where possible.  */
856 #define MIPS_ISA_SYNCI_SPEC \
857   "%{msynci|mno-synci:;:%{mips32r2|mips32r3|mips32r5|mips32r6|mips64r2 \
858 			  |mips64r3|mips64r5|mips64r6:-msynci;:-mno-synci}}"
859 
860 /* Infer a -mnan=2008 setting from a -mips argument.  */
861 #define MIPS_ISA_NAN2008_SPEC \
862   "%{mnan*:;mips32r6|mips64r6:-mnan=2008;march=m51*: \
863 					 %{!msoft-float:-mnan=2008}}"
864 
865 #if (MIPS_ABI_DEFAULT == ABI_O64 \
866      || MIPS_ABI_DEFAULT == ABI_N32 \
867      || MIPS_ABI_DEFAULT == ABI_64)
868 #define OPT_ARCH64 "mabi=32|mgp32:;"
869 #define OPT_ARCH32 "mabi=32|mgp32"
870 #else
871 #define OPT_ARCH64 "mabi=o64|mabi=n32|mabi=64|mgp64"
872 #define OPT_ARCH32 "mabi=o64|mabi=n32|mabi=64|mgp64:;"
873 #endif
874 
875 /* Support for a compile-time default CPU, et cetera.  The rules are:
876    --with-arch is ignored if -march is specified or a -mips is specified
877      (other than -mips16); likewise --with-arch-32 and --with-arch-64.
878    --with-tune is ignored if -mtune is specified; likewise
879      --with-tune-32 and --with-tune-64.
880    --with-abi is ignored if -mabi is specified.
881    --with-float is ignored if -mhard-float or -msoft-float are
882      specified.
883    --with-fpu is ignored if -msoft-float, -msingle-float or -mdouble-float are
884      specified.
885    --with-nan is ignored if -mnan is specified.
886    --with-fp-32 is ignored if -msoft-float, -msingle-float, -mmsa or -mfp are
887      specified.
888    --with-odd-spreg-32 is ignored if -msoft-float, -msingle-float, -modd-spreg
889      or -mno-odd-spreg are specified.
890    --with-divide is ignored if -mdivide-traps or -mdivide-breaks are
891      specified. */
892 #define OPTION_DEFAULT_SPECS \
893   {"arch", "%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}" }, \
894   {"arch_32", "%{" OPT_ARCH32 ":%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}}" }, \
895   {"arch_64", "%{" OPT_ARCH64 ":%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}}" }, \
896   {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
897   {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:-mtune=%(VALUE)}}" }, \
898   {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:-mtune=%(VALUE)}}" }, \
899   {"abi", "%{!mabi=*:-mabi=%(VALUE)}" }, \
900   {"float", "%{!msoft-float:%{!mhard-float:-m%(VALUE)-float}}" }, \
901   {"fpu", "%{!msoft-float:%{!msingle-float:%{!mdouble-float:-m%(VALUE)-float}}}" }, \
902   {"nan", "%{!mnan=*:-mnan=%(VALUE)}" }, \
903   {"fp_32", "%{" OPT_ARCH32 \
904 	    ":%{!msoft-float:%{!msingle-float:%{!mfp*:%{!mmsa:-mfp%(VALUE)}}}}}" }, \
905   {"odd_spreg_32", "%{" OPT_ARCH32 ":%{!msoft-float:%{!msingle-float:" \
906 		   "%{!modd-spreg:%{!mno-odd-spreg:-m%(VALUE)}}}}}" }, \
907   {"divide", "%{!mdivide-traps:%{!mdivide-breaks:-mdivide-%(VALUE)}}" }, \
908   {"llsc", "%{!mllsc:%{!mno-llsc:-m%(VALUE)}}" }, \
909   {"mips-plt", "%{!mplt:%{!mno-plt:-m%(VALUE)}}" }, \
910   {"synci", "%{!msynci:%{!mno-synci:-m%(VALUE)}}" },			\
911   {"lxc1-sxc1", "%{!mlxc1-sxc1:%{!mno-lxc1-sxc1:-m%(VALUE)}}" }, \
912   {"madd4", "%{!mmadd4:%{!mno-madd4:-m%(VALUE)}}" } \
913 
914 /* A spec that infers the:
915    -mnan=2008 setting from a -mips argument,
916    -mdsp setting from a -march argument.
917    -mloongson-mmi setting from a -march argument.  */
918 #define BASE_DRIVER_SELF_SPECS	\
919   MIPS_ISA_NAN2008_SPEC,	\
920   MIPS_ASE_DSP_SPEC, 		\
921   MIPS_ASE_LOONGSON_MMI_SPEC,	\
922   MIPS_ASE_LOONGSON_EXT_SPEC,	\
923   MIPS_ASE_MSA_SPEC
924 
925 
926 #define MIPS_ASE_DSP_SPEC \
927   "%{!mno-dsp: \
928      %{march=24ke*|march=34kc*|march=34kf*|march=34kx*|march=1004k* \
929        |march=interaptiv: -mdsp} \
930      %{march=74k*|march=m14ke*: %{!mno-dspr2: -mdspr2 -mdsp}}}"
931 
932 #define MIPS_ASE_LOONGSON_MMI_SPEC						\
933   "%{!mno-loongson-mmi:								\
934      %{march=loongson2e|march=loongson2f|march=loongson3a: -mloongson-mmi}}"
935 
936 #define MIPS_ASE_LOONGSON_EXT_SPEC						\
937   "%{!mno-loongson-ext:								\
938      %{march=loongson3a|march=gs464: -mloongson-ext}				\
939      %{march=gs464e|march=gs264e: %{!mno-loongson-ext2:			\
940        -mloongson-ext2 -mloongson-ext}}}"
941 
942 #define MIPS_ASE_MSA_SPEC						\
943   "%{!mno-msa:								\
944      %{march=gs264e: -mmsa}}"
945 
946 #define DRIVER_SELF_SPECS \
947   MIPS_ISA_LEVEL_SPEC,	  \
948   BASE_DRIVER_SELF_SPECS
949 
950 #define GENERATE_DIVIDE_TRAPS (TARGET_DIVIDE_TRAPS \
951                                && ISA_HAS_COND_TRAP)
952 
953 #define GENERATE_BRANCHLIKELY   (TARGET_BRANCHLIKELY && !TARGET_MIPS16)
954 
955 /* True if the ABI can only work with 64-bit integer registers.  We
956    generally allow ad-hoc variations for TARGET_SINGLE_FLOAT, but
957    otherwise floating-point registers must also be 64-bit.  */
958 #define ABI_NEEDS_64BIT_REGS	(TARGET_NEWABI || mips_abi == ABI_O64)
959 
960 /* Likewise for 32-bit regs.  */
961 #define ABI_NEEDS_32BIT_REGS	(mips_abi == ABI_32)
962 
963 /* True if the file format uses 64-bit symbols.  At present, this is
964    only true for n64, which uses 64-bit ELF.  */
965 #define FILE_HAS_64BIT_SYMBOLS	(mips_abi == ABI_64)
966 
967 /* True if symbols are 64 bits wide.  This is usually determined by
968    the ABI's file format, but it can be overridden by -msym32.  Note that
969    overriding the size with -msym32 changes the ABI of relocatable objects,
970    although it doesn't change the ABI of a fully-linked object.  */
971 #define ABI_HAS_64BIT_SYMBOLS	(FILE_HAS_64BIT_SYMBOLS \
972 				 && Pmode == DImode	\
973 				 && !TARGET_SYM32)
974 
975 /* ISA has instructions for managing 64-bit fp and gp regs (e.g. mips3).  */
976 #define ISA_HAS_64BIT_REGS	(ISA_MIPS3				\
977 				 || ISA_MIPS4				\
978 				 || ISA_MIPS64				\
979 				 || ISA_MIPS64R2			\
980 				 || ISA_MIPS64R3			\
981 				 || ISA_MIPS64R5			\
982 				 || ISA_MIPS64R6)
983 
984 #define ISA_HAS_JR		(mips_isa_rev <= 5)
985 
986 #define ISA_HAS_DELAY_SLOTS	1
987 
988 #define ISA_HAS_COMPACT_BRANCHES (mips_isa_rev >= 6)
989 
990 /* ISA has branch likely instructions (e.g. mips2).  */
991 /* Disable branchlikely for tx39 until compare rewrite.  They haven't
992    been generated up to this point.  */
993 #define ISA_HAS_BRANCHLIKELY	(!ISA_MIPS1 && mips_isa_rev <= 5)
994 
995 /* ISA has 32 single-precision registers.  */
996 #define ISA_HAS_ODD_SPREG	((mips_isa_rev >= 1			\
997 				  && !TARGET_GS464)			\
998 				 || TARGET_FLOAT64			\
999 				 || TARGET_MIPS5900)
1000 
1001 /* ISA has a three-operand multiplication instruction (usually spelt "mul").  */
1002 #define ISA_HAS_MUL3		((TARGET_MIPS3900                       \
1003 				  || TARGET_MIPS5400			\
1004 				  || TARGET_MIPS5500			\
1005 				  || TARGET_MIPS5900			\
1006 				  || TARGET_MIPS7000			\
1007 				  || TARGET_MIPS9000			\
1008 				  || TARGET_MAD				\
1009 				  || (mips_isa_rev >= 1			\
1010 				      && mips_isa_rev <= 5))		\
1011 				 && !TARGET_MIPS16)
1012 
1013 /* ISA has a three-operand multiplication instruction.  */
1014 #define ISA_HAS_DMUL3		(TARGET_64BIT				\
1015 				 && TARGET_OCTEON			\
1016 				 && !TARGET_MIPS16)
1017 
1018 /* ISA has HI and LO registers.  */
1019 #define ISA_HAS_HILO		(mips_isa_rev <= 5)
1020 
1021 /* ISA supports instructions DMULT and DMULTU. */
1022 #define ISA_HAS_DMULT		(TARGET_64BIT				\
1023 				 && !TARGET_MIPS5900			\
1024 				 && mips_isa_rev <= 5)
1025 
1026 /* ISA supports instructions MULT and MULTU.  */
1027 #define ISA_HAS_MULT		(mips_isa_rev <= 5)
1028 
1029 /* ISA supports instructions MUL, MULU, MUH, MUHU.  */
1030 #define ISA_HAS_R6MUL		(mips_isa_rev >= 6)
1031 
1032 /* ISA supports instructions DMUL, DMULU, DMUH, DMUHU.  */
1033 #define ISA_HAS_R6DMUL		(TARGET_64BIT && mips_isa_rev >= 6)
1034 
1035 /* For Loongson, it is preferable to use the Loongson-specific division and
1036    modulo instructions instead of the regular (D)DIV(U) instruction,
1037    because the former are faster and can also have the effect of reducing
1038    code size.  */
1039 #define ISA_AVOID_DIV_HILO	((TARGET_LOONGSON_2EF			\
1040 				  || TARGET_GS464)			\
1041 				 && !TARGET_MIPS16)
1042 
1043 /* ISA supports instructions DDIV and DDIVU. */
1044 #define ISA_HAS_DDIV		(TARGET_64BIT				\
1045 				 && !TARGET_MIPS5900			\
1046 				 && !ISA_AVOID_DIV_HILO			\
1047 				 && mips_isa_rev <= 5)
1048 
1049 /* ISA supports instructions DIV and DIVU.
1050    This is always true, but the macro is needed for ISA_HAS_<D>DIV
1051    in mips.md.  */
1052 #define ISA_HAS_DIV		(!ISA_AVOID_DIV_HILO			\
1053 				 && mips_isa_rev <= 5)
1054 
1055 /* ISA supports instructions DIV, DIVU, MOD and MODU.  */
1056 #define ISA_HAS_R6DIV		(mips_isa_rev >= 6)
1057 
1058 /* ISA supports instructions DDIV, DDIVU, DMOD and DMODU.  */
1059 #define ISA_HAS_R6DDIV		(TARGET_64BIT && mips_isa_rev >= 6)
1060 
1061 /* ISA has the floating-point conditional move instructions introduced
1062    in mips4.  */
1063 #define ISA_HAS_FP_CONDMOVE	((ISA_MIPS4				\
1064 				  || (mips_isa_rev >= 1			\
1065 				      && mips_isa_rev <= 5))		\
1066 				 && !TARGET_MIPS5500			\
1067 				 && !TARGET_MIPS16)
1068 
1069 /* ISA has the integer conditional move instructions introduced in mips4 and
1070    ST Loongson 2E/2F.  */
1071 #define ISA_HAS_CONDMOVE        (ISA_HAS_FP_CONDMOVE			\
1072 				 || TARGET_MIPS5900			\
1073 				 || TARGET_LOONGSON_2EF)
1074 
1075 /* ISA has LDC1 and SDC1.  */
1076 #define ISA_HAS_LDC1_SDC1	(!ISA_MIPS1				\
1077 				 && !TARGET_MIPS5900			\
1078 				 && !TARGET_MIPS16)
1079 
1080 /* ISA has the mips4 FP condition code instructions: FP-compare to CC,
1081    branch on CC, and move (both FP and non-FP) on CC.  */
1082 #define ISA_HAS_8CC		(ISA_MIPS4				\
1083 				 || (mips_isa_rev >= 1			\
1084 				     && mips_isa_rev <= 5))
1085 
1086 /* ISA has the FP condition code instructions that store the flag in an
1087    FP register.  */
1088 #define ISA_HAS_CCF		(mips_isa_rev >= 6)
1089 
1090 #define ISA_HAS_SEL		(mips_isa_rev >= 6)
1091 
1092 /* This is a catch all for other mips4 instructions: indexed load, the
1093    FP madd and msub instructions, and the FP recip and recip sqrt
1094    instructions.  Note that this macro should only be used by other
1095    ISA_HAS_* macros.  */
1096 #define ISA_HAS_FP4		((ISA_MIPS4				\
1097 				  || ISA_MIPS64				\
1098 				  || (mips_isa_rev >= 2			\
1099 				      && mips_isa_rev <= 5))		\
1100 				 && !TARGET_MIPS16)
1101 
1102 /* ISA has floating-point indexed load and store instructions
1103    (LWXC1, LDXC1, SWXC1 and SDXC1).  */
1104 #define ISA_HAS_LXC1_SXC1	(ISA_HAS_FP4				\
1105 				 && mips_lxc1_sxc1)
1106 
1107 /* ISA has paired-single instructions.  */
1108 #define ISA_HAS_PAIRED_SINGLE	((ISA_MIPS64				\
1109 				  || (mips_isa_rev >= 2			\
1110 				      && mips_isa_rev <= 5))		\
1111 				 && !TARGET_OCTEON)
1112 
1113 /* ISA has conditional trap instructions.  */
1114 #define ISA_HAS_COND_TRAP	(!ISA_MIPS1				\
1115 				 && !TARGET_MIPS16)
1116 
1117 /* ISA has conditional trap with immediate instructions.  */
1118 #define ISA_HAS_COND_TRAPI	(!ISA_MIPS1				\
1119 				 && mips_isa_rev <= 5			\
1120 				 && !TARGET_MIPS16)
1121 
1122 /* ISA has integer multiply-accumulate instructions, madd and msub.  */
1123 #define ISA_HAS_MADD_MSUB	(mips_isa_rev >= 1			\
1124 				 && mips_isa_rev <= 5)
1125 
1126 /* Integer multiply-accumulate instructions should be generated.  */
1127 #define GENERATE_MADD_MSUB	(TARGET_IMADD && !TARGET_MIPS16)
1128 
1129 /* ISA has 4 operand fused madd instructions of the form
1130    'd = [+-] (a * b [+-] c)'.  */
1131 #define ISA_HAS_FUSED_MADD4	(mips_madd4				\
1132 				 && (TARGET_MIPS8000			\
1133 				     || TARGET_GS464			\
1134 				     || TARGET_GS464E			\
1135 				     || TARGET_GS264E))
1136 
1137 /* ISA has 4 operand unfused madd instructions of the form
1138    'd = [+-] (a * b [+-] c)'.  */
1139 #define ISA_HAS_UNFUSED_MADD4	(mips_madd4				\
1140 				 && ISA_HAS_FP4				\
1141 				 && !TARGET_MIPS8000			\
1142 				 && !TARGET_GS464			\
1143 				 && !TARGET_GS464E			\
1144 				 && !TARGET_GS264E)
1145 
1146 /* ISA has 3 operand r6 fused madd instructions of the form
1147    'c = c [+-] (a * b)'.  */
1148 #define ISA_HAS_FUSED_MADDF	(mips_isa_rev >= 6)
1149 
1150 /* ISA has 3 operand loongson fused madd instructions of the form
1151    'c = [+-] (a * b [+-] c)'.  */
1152 #define ISA_HAS_FUSED_MADD3	TARGET_LOONGSON_2EF
1153 
1154 /* ISA has floating-point RECIP.fmt and RSQRT.fmt instructions.  The
1155    MIPS64 rev. 1 ISA says that RECIP.D and RSQRT.D are unpredictable when
1156    doubles are stored in pairs of FPRs, so for safety's sake, we apply
1157    this restriction to the MIPS IV ISA too.  */
1158 #define ISA_HAS_FP_RECIP_RSQRT(MODE)					\
1159 				(((ISA_HAS_FP4				\
1160 				   && ((MODE) == SFmode			\
1161 				       || ((TARGET_FLOAT64		\
1162 					    || mips_isa_rev >= 2)	\
1163 					   && (MODE) == DFmode)))	\
1164 				  || (((MODE) == SFmode			\
1165 				       || (MODE) == DFmode)		\
1166 				      && (mips_isa_rev >= 6))		\
1167 				  || (TARGET_SB1			\
1168 				      && (MODE) == V2SFmode))		\
1169 				 && !TARGET_MIPS16)
1170 
1171 #define ISA_HAS_LWL_LWR		(mips_isa_rev <= 5 && !TARGET_MIPS16)
1172 
1173 #define ISA_HAS_IEEE_754_LEGACY	(mips_isa_rev <= 5)
1174 
1175 #define ISA_HAS_IEEE_754_2008	(mips_isa_rev >= 2)
1176 
1177 /* ISA has count leading zeroes/ones instruction (not implemented).  */
1178 #define ISA_HAS_CLZ_CLO		(mips_isa_rev >= 1 && !TARGET_MIPS16)
1179 
1180 /* ISA has count trailing zeroes/ones instruction.  */
1181 #define ISA_HAS_CTZ_CTO		(TARGET_LOONGSON_EXT2)
1182 
1183 /* ISA has three operand multiply instructions that put
1184    the high part in an accumulator: mulhi or mulhiu.  */
1185 #define ISA_HAS_MULHI		((TARGET_MIPS5400			 \
1186 				  || TARGET_MIPS5500			 \
1187 				  || TARGET_SR71K)			 \
1188 				 && !TARGET_MIPS16)
1189 
1190 /* ISA has three operand multiply instructions that negate the
1191    result and put the result in an accumulator.  */
1192 #define ISA_HAS_MULS		((TARGET_MIPS5400			\
1193 				  || TARGET_MIPS5500			\
1194 				  || TARGET_SR71K)			\
1195 				 && !TARGET_MIPS16)
1196 
1197 /* ISA has three operand multiply instructions that subtract the
1198    result from a 4th operand and put the result in an accumulator.  */
1199 #define ISA_HAS_MSAC		((TARGET_MIPS5400			\
1200 				  || TARGET_MIPS5500			\
1201 				  || TARGET_SR71K)			\
1202 				 && !TARGET_MIPS16)
1203 
1204 /* ISA has three operand multiply instructions that add the result
1205    to a 4th operand and put the result in an accumulator.  */
1206 #define ISA_HAS_MACC		((TARGET_MIPS4120			\
1207 				  || TARGET_MIPS4130			\
1208 				  || TARGET_MIPS5400			\
1209 				  || TARGET_MIPS5500			\
1210 				  || TARGET_SR71K)			\
1211 				 && !TARGET_MIPS16)
1212 
1213 /* ISA has NEC VR-style MACC, MACCHI, DMACC and DMACCHI instructions.  */
1214 #define ISA_HAS_MACCHI		((TARGET_MIPS4120			\
1215 				  || TARGET_MIPS4130)			\
1216 				 && !TARGET_MIPS16)
1217 
1218 /* ISA has the "ror" (rotate right) instructions.  */
1219 #define ISA_HAS_ROR		((mips_isa_rev >= 2			\
1220 				  || TARGET_MIPS5400			\
1221 				  || TARGET_MIPS5500			\
1222 				  || TARGET_SR71K			\
1223 				  || TARGET_SMARTMIPS)			\
1224 				 && !TARGET_MIPS16)
1225 
1226 /* ISA has the WSBH (word swap bytes within halfwords) instruction.
1227    64-bit targets also provide DSBH and DSHD.  */
1228 #define ISA_HAS_WSBH		(mips_isa_rev >= 2 && !TARGET_MIPS16)
1229 
1230 /* ISA has data prefetch instructions.  This controls use of 'pref'.  */
1231 #define ISA_HAS_PREFETCH	((ISA_MIPS4				\
1232 				  || TARGET_LOONGSON_2EF		\
1233 				  || TARGET_MIPS5900			\
1234 				  || mips_isa_rev >= 1)			\
1235 				 && !TARGET_MIPS16)
1236 
1237 /* ISA has data prefetch, LL and SC with limited 9-bit displacement.  */
1238 #define ISA_HAS_9BIT_DISPLACEMENT	(mips_isa_rev >= 6)
1239 
1240 /* ISA has data indexed prefetch instructions.  This controls use of
1241    'prefx', along with TARGET_HARD_FLOAT and TARGET_DOUBLE_FLOAT.
1242    (prefx is a cop1x instruction, so can only be used if FP is
1243    enabled.)  */
1244 #define ISA_HAS_PREFETCHX	(ISA_HAS_FP4				\
1245 				 || TARGET_LOONGSON_EXT			\
1246 				 || TARGET_LOONGSON_EXT2)
1247 
1248 /* True if trunc.w.s and trunc.w.d are real (not synthetic)
1249    instructions.  Both require TARGET_HARD_FLOAT, and trunc.w.d
1250    also requires TARGET_DOUBLE_FLOAT.  */
1251 #define ISA_HAS_TRUNC_W		(!ISA_MIPS1)
1252 
1253 /* ISA includes the MIPS32r2 seb and seh instructions.  */
1254 #define ISA_HAS_SEB_SEH		(mips_isa_rev >= 2 && !TARGET_MIPS16)
1255 
1256 /* ISA includes the MIPS32/64 rev 2 ext and ins instructions.  */
1257 #define ISA_HAS_EXT_INS		(mips_isa_rev >= 2 && !TARGET_MIPS16)
1258 
1259 /* ISA has instructions for accessing top part of 64-bit fp regs.  */
1260 #define ISA_HAS_MXHC1		(!TARGET_FLOAT32	\
1261 				 && mips_isa_rev >= 2)
1262 
1263 /* ISA has lwxs instruction (load w/scaled index address.  */
1264 #define ISA_HAS_LWXS		((TARGET_SMARTMIPS || TARGET_MICROMIPS) \
1265 				 && !TARGET_MIPS16)
1266 
1267 /* ISA has lbx, lbux, lhx, lhx, lhux, lwx, lwux, or ldx instruction. */
1268 #define ISA_HAS_LBX		(TARGET_OCTEON2)
1269 #define ISA_HAS_LBUX		(ISA_HAS_DSP || TARGET_OCTEON2)
1270 #define ISA_HAS_LHX		(ISA_HAS_DSP || TARGET_OCTEON2)
1271 #define ISA_HAS_LHUX		(TARGET_OCTEON2)
1272 #define ISA_HAS_LWX		(ISA_HAS_DSP || TARGET_OCTEON2)
1273 #define ISA_HAS_LWUX		(TARGET_OCTEON2 && TARGET_64BIT)
1274 #define ISA_HAS_LDX		((ISA_HAS_DSP || TARGET_OCTEON2) \
1275 				 && TARGET_64BIT)
1276 
1277 /* The DSP ASE is available.  */
1278 #define ISA_HAS_DSP		(TARGET_DSP && !TARGET_MIPS16)
1279 
1280 /* Revision 2 of the DSP ASE is available.  */
1281 #define ISA_HAS_DSPR2		(TARGET_DSPR2 && !TARGET_MIPS16)
1282 
1283 /* The MSA ASE is available.  */
1284 #define ISA_HAS_MSA		(TARGET_MSA && !TARGET_MIPS16)
1285 
1286 /* True if the result of a load is not available to the next instruction.
1287    A nop will then be needed between instructions like "lw $4,..."
1288    and "addiu $4,$4,1".  */
1289 #define ISA_HAS_LOAD_DELAY	(ISA_MIPS1				\
1290 				 && !TARGET_MIPS3900			\
1291 				 && !TARGET_MIPS5900			\
1292 				 && !TARGET_MIPS16			\
1293 				 && !TARGET_MICROMIPS)
1294 
1295 /* Likewise mtc1 and mfc1.  */
1296 #define ISA_HAS_XFER_DELAY	(mips_isa <= MIPS_ISA_MIPS3	\
1297 				 && !TARGET_MIPS5900		\
1298 				 && !TARGET_LOONGSON_2EF)
1299 
1300 /* Likewise floating-point comparisons.  */
1301 #define ISA_HAS_FCMP_DELAY	(mips_isa <= MIPS_ISA_MIPS3	\
1302 				 && !TARGET_MIPS5900		\
1303 				 && !TARGET_LOONGSON_2EF)
1304 
1305 /* True if mflo and mfhi can be immediately followed by instructions
1306    which write to the HI and LO registers.
1307 
1308    According to MIPS specifications, MIPS ISAs I, II, and III need
1309    (at least) two instructions between the reads of HI/LO and
1310    instructions which write them, and later ISAs do not.  Contradicting
1311    the MIPS specifications, some MIPS IV processor user manuals (e.g.
1312    the UM for the NEC Vr5000) document needing the instructions between
1313    HI/LO reads and writes, as well.  Therefore, we declare only MIPS32,
1314    MIPS64 and later ISAs to have the interlocks, plus any specific
1315    earlier-ISA CPUs for which CPU documentation declares that the
1316    instructions are really interlocked.  */
1317 #define ISA_HAS_HILO_INTERLOCKS	(mips_isa_rev >= 1			\
1318 				 || TARGET_MIPS5500			\
1319 				 || TARGET_MIPS5900			\
1320 				 || TARGET_LOONGSON_2EF)
1321 
1322 /* ISA includes synci, jr.hb and jalr.hb.  */
1323 #define ISA_HAS_SYNCI (mips_isa_rev >= 2 && !TARGET_MIPS16)
1324 
1325 /* ISA includes sync.  */
1326 #define ISA_HAS_SYNC ((mips_isa >= MIPS_ISA_MIPS2 || TARGET_MIPS3900) && !TARGET_MIPS16)
1327 #define GENERATE_SYNC			\
1328   (target_flags_explicit & MASK_LLSC	\
1329    ? TARGET_LLSC && !TARGET_MIPS16	\
1330    : ISA_HAS_SYNC)
1331 
1332 /* ISA includes ll and sc.  Note that this implies ISA_HAS_SYNC
1333    because the expanders use both ISA_HAS_SYNC and ISA_HAS_LL_SC
1334    instructions.  */
1335 #define ISA_HAS_LL_SC (mips_isa >= MIPS_ISA_MIPS2 && !TARGET_MIPS5900 && !TARGET_MIPS16)
1336 #define GENERATE_LL_SC			\
1337   (target_flags_explicit & MASK_LLSC	\
1338    ? TARGET_LLSC && !TARGET_MIPS16	\
1339    : ISA_HAS_LL_SC)
1340 
1341 #define ISA_HAS_SWAP (TARGET_XLP)
1342 #define ISA_HAS_LDADD (TARGET_XLP)
1343 
1344 /* ISA includes the baddu instruction.  */
1345 #define ISA_HAS_BADDU		(TARGET_OCTEON && !TARGET_MIPS16)
1346 
1347 /* ISA includes the bbit* instructions.  */
1348 #define ISA_HAS_BBIT		(TARGET_OCTEON && !TARGET_MIPS16)
1349 
1350 /* ISA includes the cins instruction.  */
1351 #define ISA_HAS_CINS		(TARGET_OCTEON && !TARGET_MIPS16)
1352 
1353 /* ISA includes the exts instruction.  */
1354 #define ISA_HAS_EXTS		(TARGET_OCTEON && !TARGET_MIPS16)
1355 
1356 /* ISA includes the seq and sne instructions.  */
1357 #define ISA_HAS_SEQ_SNE		(TARGET_OCTEON && !TARGET_MIPS16)
1358 
1359 /* ISA includes the pop instruction.  */
1360 #define ISA_HAS_POP		(TARGET_OCTEON && !TARGET_MIPS16)
1361 
1362 /* The CACHE instruction is available in non-MIPS16 code.  */
1363 #define TARGET_CACHE_BUILTIN (mips_isa >= MIPS_ISA_MIPS3)
1364 
1365 /* The CACHE instruction is available.  */
1366 #define ISA_HAS_CACHE (TARGET_CACHE_BUILTIN && !TARGET_MIPS16)
1367 
1368 /* Tell collect what flags to pass to nm.  */
1369 #ifndef NM_FLAGS
1370 #define NM_FLAGS "-Bn"
1371 #endif
1372 
1373 
1374 /* SUBTARGET_ASM_DEBUGGING_SPEC handles passing debugging options to
1375    the assembler.  It may be overridden by subtargets.
1376 
1377    Beginning with gas 2.13, -mdebug must be passed to correctly handle
1378    COFF debugging info.  */
1379 
1380 #ifndef SUBTARGET_ASM_DEBUGGING_SPEC
1381 #define SUBTARGET_ASM_DEBUGGING_SPEC "\
1382 %{g} %{g0} %{g1} %{g2} %{g3} \
1383 %{ggdb:-g} %{ggdb0:-g0} %{ggdb1:-g1} %{ggdb2:-g2} %{ggdb3:-g3} \
1384 %{gstabs:-g} %{gstabs0:-g0} %{gstabs1:-g1} %{gstabs2:-g2} %{gstabs3:-g3} \
1385 %{gstabs+:-g} %{gstabs+0:-g0} %{gstabs+1:-g1} %{gstabs+2:-g2} %{gstabs+3:-g3}"
1386 #endif
1387 
1388 /* FP_ASM_SPEC represents the floating-point options that must be passed
1389    to the assembler when FPXX support exists.  Prior to that point the
1390    assembler could accept the options but were not required for
1391    correctness.  We only add the options when absolutely necessary
1392    because passing -msoft-float to the assembler will cause it to reject
1393    all hard-float instructions which may require some user code to be
1394    updated.  */
1395 
1396 #ifdef HAVE_AS_DOT_MODULE
1397 #define FP_ASM_SPEC "\
1398 %{mhard-float} %{msoft-float} \
1399 %{msingle-float} %{mdouble-float}"
1400 #else
1401 #define FP_ASM_SPEC
1402 #endif
1403 
1404 /* SUBTARGET_ASM_SPEC is always passed to the assembler.  It may be
1405    overridden by subtargets.  */
1406 
1407 #ifndef SUBTARGET_ASM_SPEC
1408 #define SUBTARGET_ASM_SPEC ""
1409 #endif
1410 
1411 #undef ASM_SPEC
1412 #define ASM_SPEC "\
1413 %{G*} %(endian_spec) %{mips1} %{mips2} %{mips3} %{mips4} \
1414 %{mips32*} %{mips64*} \
1415 %{mips16} %{mno-mips16:-no-mips16} \
1416 %{mmicromips} %{mno-micromips} \
1417 %{mips3d} %{mno-mips3d:-no-mips3d} \
1418 %{mdmx} %{mno-mdmx:-no-mdmx} \
1419 %{mdsp} %{mno-dsp} \
1420 %{mdspr2} %{mno-dspr2} \
1421 %{mmcu} %{mno-mcu} \
1422 %{meva} %{mno-eva} \
1423 %{mvirt} %{mno-virt} \
1424 %{mxpa} %{mno-xpa} \
1425 %{mcrc} %{mno-crc} \
1426 %{mginv} %{mno-ginv} \
1427 %{mmsa} %{mno-msa} \
1428 %{mloongson-mmi} %{mno-loongson-mmi} \
1429 %{mloongson-ext} %{mno-loongson-ext} \
1430 %{mloongson-ext2} %{mno-loongson-ext2} \
1431 %{msmartmips} %{mno-smartmips} \
1432 %{mmt} %{mno-mt} \
1433 %{mfix-r5900} %{mno-fix-r5900} \
1434 %{mfix-rm7000} %{mno-fix-rm7000} \
1435 %{mfix-vr4120} %{mfix-vr4130} \
1436 %{mfix-24k} \
1437 %{noasmopt:-O0; O0|fno-delayed-branch:-O1; O*:-O2; :-O1} \
1438 %(subtarget_asm_debugging_spec) \
1439 %{mabi=*} %{!mabi=*: %(asm_abi_default_spec)} \
1440 %{mgp32} %{mgp64} %{march=*} %{mxgot:-xgot} \
1441 %{mfp32} %{mfpxx} %{mfp64} %{mnan=*} \
1442 %{modd-spreg} %{mno-odd-spreg} \
1443 %{mshared} %{mno-shared} \
1444 %{msym32} %{mno-sym32} \
1445 %{mtune=*}" \
1446 FP_ASM_SPEC "\
1447 %(subtarget_asm_spec)"
1448 
1449 /* Extra switches sometimes passed to the linker.  */
1450 
1451 #ifndef LINK_SPEC
1452 #define LINK_SPEC "\
1453 %(endian_spec) \
1454 %{G*} %{mips1} %{mips2} %{mips3} %{mips4} %{mips32*} %{mips64*} \
1455 %{shared}"
1456 #endif  /* LINK_SPEC defined */
1457 
1458 
1459 /* Specs for the compiler proper */
1460 
1461 /* SUBTARGET_CC1_SPEC is passed to the compiler proper.  It may be
1462    overridden by subtargets.  */
1463 #ifndef SUBTARGET_CC1_SPEC
1464 #define SUBTARGET_CC1_SPEC ""
1465 #endif
1466 
1467 /* CC1_SPEC is the set of arguments to pass to the compiler proper.  */
1468 
1469 #undef CC1_SPEC
1470 #define CC1_SPEC "\
1471 %{G*} %{EB:-meb} %{EL:-mel} %{EB:%{EL:%emay not use both -EB and -EL}} \
1472 %(subtarget_cc1_spec)"
1473 
1474 /* Preprocessor specs.  */
1475 
1476 /* SUBTARGET_CPP_SPEC is passed to the preprocessor.  It may be
1477    overridden by subtargets.  */
1478 #ifndef SUBTARGET_CPP_SPEC
1479 #define SUBTARGET_CPP_SPEC ""
1480 #endif
1481 
1482 #define CPP_SPEC "%(subtarget_cpp_spec)"
1483 
1484 /* This macro defines names of additional specifications to put in the specs
1485    that can be used in various specifications like CC1_SPEC.  Its definition
1486    is an initializer with a subgrouping for each command option.
1487 
1488    Each subgrouping contains a string constant, that defines the
1489    specification name, and a string constant that used by the GCC driver
1490    program.
1491 
1492    Do not define this macro if it does not need to do anything.  */
1493 
1494 #define EXTRA_SPECS							\
1495   { "subtarget_cc1_spec", SUBTARGET_CC1_SPEC },				\
1496   { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC },				\
1497   { "subtarget_asm_debugging_spec", SUBTARGET_ASM_DEBUGGING_SPEC },	\
1498   { "subtarget_asm_spec", SUBTARGET_ASM_SPEC },				\
1499   { "asm_abi_default_spec", "-" MULTILIB_ABI_DEFAULT },			\
1500   { "endian_spec", ENDIAN_SPEC },					\
1501   SUBTARGET_EXTRA_SPECS
1502 
1503 #ifndef SUBTARGET_EXTRA_SPECS
1504 #define SUBTARGET_EXTRA_SPECS
1505 #endif
1506 
1507 #define DBX_DEBUGGING_INFO 1		/* generate stabs (OSF/rose) */
1508 #define DWARF2_DEBUGGING_INFO 1         /* dwarf2 debugging info */
1509 
1510 #ifndef PREFERRED_DEBUGGING_TYPE
1511 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
1512 #endif
1513 
1514 /* The size of DWARF addresses should be the same as the size of symbols
1515    in the target file format.  They shouldn't depend on things like -msym32,
1516    because many DWARF consumers do not allow the mixture of address sizes
1517    that one would then get from linking -msym32 code with -msym64 code.
1518 
1519    Note that the default POINTER_SIZE test is not appropriate for MIPS.
1520    EABI64 has 64-bit pointers but uses 32-bit ELF.  */
1521 #define DWARF2_ADDR_SIZE (FILE_HAS_64BIT_SYMBOLS ? 8 : 4)
1522 
1523 /* By default, turn on GDB extensions.  */
1524 #define DEFAULT_GDB_EXTENSIONS 1
1525 
1526 /* Registers may have a prefix which can be ignored when matching
1527    user asm and register definitions.  */
1528 #ifndef REGISTER_PREFIX
1529 #define REGISTER_PREFIX    "$"
1530 #endif
1531 
1532 /* Local compiler-generated symbols must have a prefix that the assembler
1533    understands.   By default, this is $, although some targets (e.g.,
1534    NetBSD-ELF) need to override this.  */
1535 
1536 #ifndef LOCAL_LABEL_PREFIX
1537 #define LOCAL_LABEL_PREFIX	"$"
1538 #endif
1539 
1540 /* By default on the mips, external symbols do not have an underscore
1541    prepended, but some targets (e.g., NetBSD) require this.  */
1542 
1543 #ifndef USER_LABEL_PREFIX
1544 #define USER_LABEL_PREFIX	""
1545 #endif
1546 
1547 /* On Sun 4, this limit is 2048.  We use 1500 to be safe,
1548    since the length can run past this up to a continuation point.  */
1549 #undef DBX_CONTIN_LENGTH
1550 #define DBX_CONTIN_LENGTH 1500
1551 
1552 /* How to renumber registers for dbx and gdb.  */
1553 #define DBX_REGISTER_NUMBER(REGNO) mips_dbx_regno[REGNO]
1554 
1555 /* The mapping from gcc register number to DWARF 2 CFA column number.  */
1556 #define DWARF_FRAME_REGNUM(REGNO) mips_dwarf_regno[REGNO]
1557 
1558 /* The DWARF 2 CFA column which tracks the return address.  */
1559 #define DWARF_FRAME_RETURN_COLUMN RETURN_ADDR_REGNUM
1560 
1561 /* Before the prologue, RA lives in r31.  */
1562 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM)
1563 
1564 /* Describe how we implement __builtin_eh_return.  */
1565 #define EH_RETURN_DATA_REGNO(N) \
1566   ((N) < (TARGET_MIPS16 ? 2 : 4) ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
1567 
1568 #define EH_RETURN_STACKADJ_RTX  gen_rtx_REG (Pmode, GP_REG_FIRST + 3)
1569 
1570 #define EH_USES(N) mips_eh_uses (N)
1571 
1572 /* Offsets recorded in opcodes are a multiple of this alignment factor.
1573    The default for this in 64-bit mode is 8, which causes problems with
1574    SFmode register saves.  */
1575 #define DWARF_CIE_DATA_ALIGNMENT -4
1576 
1577 /* Correct the offset of automatic variables and arguments.  Note that
1578    the MIPS debug format wants all automatic variables and arguments
1579    to be in terms of the virtual frame pointer (stack pointer before
1580    any adjustment in the function), while the MIPS 3.0 linker wants
1581    the frame pointer to be the stack pointer after the initial
1582    adjustment.  */
1583 
1584 #define DEBUGGER_AUTO_OFFSET(X)				\
1585   mips_debugger_offset (X, (HOST_WIDE_INT) 0)
1586 #define DEBUGGER_ARG_OFFSET(OFFSET, X)			\
1587   mips_debugger_offset (X, (HOST_WIDE_INT) OFFSET)
1588 
1589 /* Target machine storage layout */
1590 
1591 #define BITS_BIG_ENDIAN 0
1592 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
1593 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
1594 
1595 #define MAX_BITS_PER_WORD 64
1596 
1597 /* Width of a word, in units (bytes).  */
1598 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
1599 #ifndef IN_LIBGCC2
1600 #define MIN_UNITS_PER_WORD 4
1601 #endif
1602 
1603 /* Width of a MSA vector register in bytes.  */
1604 #define UNITS_PER_MSA_REG 16
1605 /* Width of a MSA vector register in bits.  */
1606 #define BITS_PER_MSA_REG (UNITS_PER_MSA_REG * BITS_PER_UNIT)
1607 
1608 /* For MIPS, width of a floating point register.  */
1609 #define UNITS_PER_FPREG (TARGET_FLOAT64 ? 8 : 4)
1610 
1611 /* The number of consecutive floating-point registers needed to store the
1612    largest format supported by the FPU.  */
1613 #define MAX_FPRS_PER_FMT (TARGET_FLOAT64 || TARGET_SINGLE_FLOAT ? 1 : 2)
1614 
1615 /* The number of consecutive floating-point registers needed to store the
1616    smallest format supported by the FPU.  */
1617 #define MIN_FPRS_PER_FMT \
1618   (TARGET_ODD_SPREG ? 1 : MAX_FPRS_PER_FMT)
1619 
1620 /* The largest size of value that can be held in floating-point
1621    registers and moved with a single instruction.  */
1622 #define UNITS_PER_HWFPVALUE \
1623   (TARGET_SOFT_FLOAT_ABI ? 0 : MAX_FPRS_PER_FMT * UNITS_PER_FPREG)
1624 
1625 /* The largest size of value that can be held in floating-point
1626    registers.  */
1627 #define UNITS_PER_FPVALUE			\
1628   (TARGET_SOFT_FLOAT_ABI ? 0			\
1629    : TARGET_SINGLE_FLOAT ? UNITS_PER_FPREG	\
1630    : LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)
1631 
1632 /* The number of bytes in a double.  */
1633 #define UNITS_PER_DOUBLE (TYPE_PRECISION (double_type_node) / BITS_PER_UNIT)
1634 
1635 /* Set the sizes of the core types.  */
1636 #define SHORT_TYPE_SIZE 16
1637 #define INT_TYPE_SIZE 32
1638 #define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32)
1639 #define LONG_LONG_TYPE_SIZE 64
1640 
1641 #define FLOAT_TYPE_SIZE 32
1642 #define DOUBLE_TYPE_SIZE 64
1643 #define LONG_DOUBLE_TYPE_SIZE (TARGET_NEWABI ? 128 : 64)
1644 
1645 /* Define the sizes of fixed-point types.  */
1646 #define SHORT_FRACT_TYPE_SIZE 8
1647 #define FRACT_TYPE_SIZE 16
1648 #define LONG_FRACT_TYPE_SIZE 32
1649 #define LONG_LONG_FRACT_TYPE_SIZE 64
1650 
1651 #define SHORT_ACCUM_TYPE_SIZE 16
1652 #define ACCUM_TYPE_SIZE 32
1653 #define LONG_ACCUM_TYPE_SIZE 64
1654 /* FIXME.  LONG_LONG_ACCUM_TYPE_SIZE should be 128 bits, but GCC
1655    doesn't support 128-bit integers for MIPS32 currently.  */
1656 #define LONG_LONG_ACCUM_TYPE_SIZE (TARGET_64BIT ? 128 : 64)
1657 
1658 /* long double is not a fixed mode, but the idea is that, if we
1659    support long double, we also want a 128-bit integer type.  */
1660 #define MAX_FIXED_MODE_SIZE LONG_DOUBLE_TYPE_SIZE
1661 
1662 /* Width in bits of a pointer.  */
1663 #ifndef POINTER_SIZE
1664 #define POINTER_SIZE ((TARGET_LONG64 && TARGET_64BIT) ? 64 : 32)
1665 #endif
1666 
1667 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
1668 #define PARM_BOUNDARY BITS_PER_WORD
1669 
1670 /* Allocation boundary (in *bits*) for the code of a function.  */
1671 #define FUNCTION_BOUNDARY 32
1672 
1673 /* Alignment of field after `int : 0' in a structure.  */
1674 #define EMPTY_FIELD_BOUNDARY 32
1675 
1676 /* Every structure's size must be a multiple of this.  */
1677 /* 8 is observed right on a DECstation and on riscos 4.02.  */
1678 #define STRUCTURE_SIZE_BOUNDARY 8
1679 
1680 /* There is no point aligning anything to a rounder boundary than
1681    LONG_DOUBLE_TYPE_SIZE, unless under MSA the bigggest alignment is
1682    BITS_PER_MSA_REG.  */
1683 #define BIGGEST_ALIGNMENT \
1684   (ISA_HAS_MSA ? BITS_PER_MSA_REG : LONG_DOUBLE_TYPE_SIZE)
1685 
1686 /* All accesses must be aligned.  */
1687 #define STRICT_ALIGNMENT (!ISA_HAS_UNALIGNED_ACCESS)
1688 
1689 /* Define this if you wish to imitate the way many other C compilers
1690    handle alignment of bitfields and the structures that contain
1691    them.
1692 
1693    The behavior is that the type written for a bit-field (`int',
1694    `short', or other integer type) imposes an alignment for the
1695    entire structure, as if the structure really did contain an
1696    ordinary field of that type.  In addition, the bit-field is placed
1697    within the structure so that it would fit within such a field,
1698    not crossing a boundary for it.
1699 
1700    Thus, on most machines, a bit-field whose type is written as `int'
1701    would not cross a four-byte boundary, and would force four-byte
1702    alignment for the whole structure.  (The alignment used may not
1703    be four bytes; it is controlled by the other alignment
1704    parameters.)
1705 
1706    If the macro is defined, its definition should be a C expression;
1707    a nonzero value for the expression enables this behavior.  */
1708 
1709 #define PCC_BITFIELD_TYPE_MATTERS 1
1710 
1711 /* If defined, a C expression to compute the alignment for a static
1712    variable.  TYPE is the data type, and ALIGN is the alignment that
1713    the object would ordinarily have.  The value of this macro is used
1714    instead of that alignment to align the object.
1715 
1716    If this macro is not defined, then ALIGN is used.
1717 
1718    One use of this macro is to increase alignment of medium-size
1719    data to make it all fit in fewer cache lines.  Another is to
1720    cause character arrays to be word-aligned so that `strcpy' calls
1721    that copy constants to character arrays can be done inline.  */
1722 
1723 #undef DATA_ALIGNMENT
1724 #define DATA_ALIGNMENT(TYPE, ALIGN)					\
1725   ((((ALIGN) < BITS_PER_WORD)						\
1726     && (TREE_CODE (TYPE) == ARRAY_TYPE					\
1727 	|| TREE_CODE (TYPE) == UNION_TYPE				\
1728 	|| TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
1729 
1730 /* We need this for the same reason as DATA_ALIGNMENT, namely to cause
1731    character arrays to be word-aligned so that `strcpy' calls that copy
1732    constants to character arrays can be done inline, and 'strcmp' can be
1733    optimised to use word loads. */
1734 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
1735   DATA_ALIGNMENT (TYPE, ALIGN)
1736 
1737 #define PAD_VARARGS_DOWN \
1738   (targetm.calls.function_arg_padding (TYPE_MODE (type), type) == PAD_DOWNWARD)
1739 
1740 /* Define if operations between registers always perform the operation
1741    on the full register even if a narrower mode is specified.  */
1742 #define WORD_REGISTER_OPERATIONS 1
1743 
1744 /* When in 64-bit mode, move insns will sign extend SImode and CCmode
1745    moves.  All other references are zero extended.  */
1746 #define LOAD_EXTEND_OP(MODE) \
1747   (TARGET_64BIT && ((MODE) == SImode || (MODE) == CCmode) \
1748    ? SIGN_EXTEND : ZERO_EXTEND)
1749 
1750 /* Define this macro if it is advisable to hold scalars in registers
1751    in a wider mode than that declared by the program.  In such cases,
1752    the value is constrained to be within the bounds of the declared
1753    type, but kept valid in the wider mode.  The signedness of the
1754    extension may differ from that of the type.  */
1755 
1756 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE)	\
1757   if (GET_MODE_CLASS (MODE) == MODE_INT		\
1758       && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
1759     {                                           \
1760       if ((MODE) == SImode)                     \
1761         (UNSIGNEDP) = 0;                        \
1762       (MODE) = Pmode;                           \
1763     }
1764 
1765 /* Pmode is always the same as ptr_mode, but not always the same as word_mode.
1766    Extensions of pointers to word_mode must be signed.  */
1767 #define POINTERS_EXTEND_UNSIGNED false
1768 
1769 /* Define if loading short immediate values into registers sign extends.  */
1770 #define SHORT_IMMEDIATES_SIGN_EXTEND 1
1771 
1772 /* The [d]clz instructions have the natural values at 0.  */
1773 
1774 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1775   ((VALUE) = GET_MODE_UNIT_BITSIZE (MODE), 2)
1776 
1777 /* Standard register usage.  */
1778 
1779 /* Number of hardware registers.  We have:
1780 
1781    - 32 integer registers
1782    - 32 floating point registers
1783    - 8 condition code registers
1784    - 2 accumulator registers (hi and lo)
1785    - 32 registers each for coprocessors 0, 2 and 3
1786    - 4 fake registers:
1787 	- ARG_POINTER_REGNUM
1788 	- FRAME_POINTER_REGNUM
1789 	- GOT_VERSION_REGNUM (see the comment above load_call<mode> for details)
1790 	- CPRESTORE_SLOT_REGNUM
1791    - 2 dummy entries that were used at various times in the past.
1792    - 6 DSP accumulator registers (3 hi-lo pairs) for MIPS DSP ASE
1793    - 6 DSP control registers  */
1794 
1795 #define FIRST_PSEUDO_REGISTER 188
1796 
1797 /* By default, fix the kernel registers ($26 and $27), the global
1798    pointer ($28) and the stack pointer ($29).  This can change
1799    depending on the command-line options.
1800 
1801    Regarding coprocessor registers: without evidence to the contrary,
1802    it's best to assume that each coprocessor register has a unique
1803    use.  This can be overridden, in, e.g., mips_option_override or
1804    TARGET_CONDITIONAL_REGISTER_USAGE should the assumption be
1805    inappropriate for a particular target.  */
1806 
1807 #define FIXED_REGISTERS							\
1808 {									\
1809   1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1810   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0,			\
1811   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1812   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1813   0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,			\
1814   /* COP0 registers */							\
1815   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1816   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1817   /* COP2 registers */							\
1818   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1819   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1820   /* COP3 registers */							\
1821   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1822   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1823   /* 6 DSP accumulator registers & 6 control registers */		\
1824   0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1					\
1825 }
1826 
1827 
1828 /* Set up this array for o32 by default.
1829 
1830    Note that we don't mark $31 as a call-clobbered register.  The idea is
1831    that it's really the call instructions themselves which clobber $31.
1832    We don't care what the called function does with it afterwards.
1833 
1834    This approach makes it easier to implement sibcalls.  Unlike normal
1835    calls, sibcalls don't clobber $31, so the register reaches the
1836    called function in tact.  EPILOGUE_USES says that $31 is useful
1837    to the called function.  */
1838 
1839 #define CALL_REALLY_USED_REGISTERS                                      \
1840 { /* General registers.  */                                             \
1841   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                       \
1842   0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0,                       \
1843   /* Floating-point registers.  */                                      \
1844   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
1845   1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1846   /* Others.  */                                                        \
1847   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,			\
1848   /* COP0 registers */							\
1849   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1850   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1851   /* COP2 registers */							\
1852   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1853   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1854   /* COP3 registers */							\
1855   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1856   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
1857   /* 6 DSP accumulator registers & 6 control registers */		\
1858   1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0					\
1859 }
1860 
1861 /* Internal macros to classify a register number as to whether it's a
1862    general purpose register, a floating point register, a
1863    multiply/divide register, or a status register.  */
1864 
1865 #define GP_REG_FIRST 0
1866 #define GP_REG_LAST  31
1867 #define GP_REG_NUM   (GP_REG_LAST - GP_REG_FIRST + 1)
1868 #define GP_DBX_FIRST 0
1869 #define K0_REG_NUM   (GP_REG_FIRST + 26)
1870 #define K1_REG_NUM   (GP_REG_FIRST + 27)
1871 #define KERNEL_REG_P(REGNO)	(IN_RANGE (REGNO, K0_REG_NUM, K1_REG_NUM))
1872 
1873 #define FP_REG_FIRST 32
1874 #define FP_REG_LAST  63
1875 #define FP_REG_NUM   (FP_REG_LAST - FP_REG_FIRST + 1)
1876 #define FP_DBX_FIRST ((write_symbols == DBX_DEBUG) ? 38 : 32)
1877 
1878 #define MD_REG_FIRST 64
1879 #define MD_REG_LAST  65
1880 #define MD_REG_NUM   (MD_REG_LAST - MD_REG_FIRST + 1)
1881 #define MD_DBX_FIRST (FP_DBX_FIRST + FP_REG_NUM)
1882 
1883 #define MSA_REG_FIRST FP_REG_FIRST
1884 #define MSA_REG_LAST  FP_REG_LAST
1885 #define MSA_REG_NUM   FP_REG_NUM
1886 
1887 /* The DWARF 2 CFA column which tracks the return address from a
1888    signal handler context.  This means that to maintain backwards
1889    compatibility, no hard register can be assigned this column if it
1890    would need to be handled by the DWARF unwinder.  */
1891 #define DWARF_ALT_FRAME_RETURN_COLUMN 66
1892 
1893 #define ST_REG_FIRST 67
1894 #define ST_REG_LAST  74
1895 #define ST_REG_NUM   (ST_REG_LAST - ST_REG_FIRST + 1)
1896 
1897 
1898 /* FIXME: renumber.  */
1899 #define COP0_REG_FIRST 80
1900 #define COP0_REG_LAST 111
1901 #define COP0_REG_NUM (COP0_REG_LAST - COP0_REG_FIRST + 1)
1902 
1903 #define COP0_STATUS_REG_NUM	(COP0_REG_FIRST + 12)
1904 #define COP0_CAUSE_REG_NUM	(COP0_REG_FIRST + 13)
1905 #define COP0_EPC_REG_NUM	(COP0_REG_FIRST + 14)
1906 
1907 #define COP2_REG_FIRST 112
1908 #define COP2_REG_LAST 143
1909 #define COP2_REG_NUM (COP2_REG_LAST - COP2_REG_FIRST + 1)
1910 
1911 #define COP3_REG_FIRST 144
1912 #define COP3_REG_LAST 175
1913 #define COP3_REG_NUM (COP3_REG_LAST - COP3_REG_FIRST + 1)
1914 
1915 /* These definitions assume that COP0, 2 and 3 are numbered consecutively.  */
1916 #define ALL_COP_REG_FIRST COP0_REG_FIRST
1917 #define ALL_COP_REG_LAST COP3_REG_LAST
1918 #define ALL_COP_REG_NUM (ALL_COP_REG_LAST - ALL_COP_REG_FIRST + 1)
1919 
1920 #define DSP_ACC_REG_FIRST 176
1921 #define DSP_ACC_REG_LAST 181
1922 #define DSP_ACC_REG_NUM (DSP_ACC_REG_LAST - DSP_ACC_REG_FIRST + 1)
1923 
1924 #define AT_REGNUM	(GP_REG_FIRST + 1)
1925 #define HI_REGNUM	(TARGET_BIG_ENDIAN ? MD_REG_FIRST : MD_REG_FIRST + 1)
1926 #define LO_REGNUM	(TARGET_BIG_ENDIAN ? MD_REG_FIRST + 1 : MD_REG_FIRST)
1927 
1928 /* A few bitfield locations for the coprocessor registers.  */
1929 /* Request Interrupt Priority Level is from bit 10 to bit 15 of
1930    the cause register for the EIC interrupt mode.  */
1931 #define CAUSE_IPL	10
1932 /* COP1 Enable is at bit 29 of the status register.  */
1933 #define SR_COP1         29
1934 /* Interrupt Priority Level is from bit 10 to bit 15 of the status register.  */
1935 #define SR_IPL		10
1936 /* Interrupt masks start with IM0 at bit 8 to IM7 at bit 15 of the status
1937    register.  */
1938 #define SR_IM0		8
1939 /* Exception Level is at bit 1 of the status register.  */
1940 #define SR_EXL		1
1941 /* Interrupt Enable is at bit 0 of the status register.  */
1942 #define SR_IE		0
1943 
1944 /* FPSW_REGNUM is the single condition code used if !ISA_HAS_8CC.
1945    If ISA_HAS_8CC, it should not be used, and an arbitrary ST_REG
1946    should be used instead.  */
1947 #define FPSW_REGNUM	ST_REG_FIRST
1948 
1949 #define GP_REG_P(REGNO)	\
1950   ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
1951 #define M16_REG_P(REGNO) \
1952   (((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 16 || (REGNO) == 17)
1953 #define M16STORE_REG_P(REGNO) \
1954   (((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 0 || (REGNO) == 17)
1955 #define FP_REG_P(REGNO)  \
1956   ((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM)
1957 #define MD_REG_P(REGNO) \
1958   ((unsigned int) ((int) (REGNO) - MD_REG_FIRST) < MD_REG_NUM)
1959 #define ST_REG_P(REGNO) \
1960   ((unsigned int) ((int) (REGNO) - ST_REG_FIRST) < ST_REG_NUM)
1961 #define COP0_REG_P(REGNO) \
1962   ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < COP0_REG_NUM)
1963 #define COP2_REG_P(REGNO) \
1964   ((unsigned int) ((int) (REGNO) - COP2_REG_FIRST) < COP2_REG_NUM)
1965 #define COP3_REG_P(REGNO) \
1966   ((unsigned int) ((int) (REGNO) - COP3_REG_FIRST) < COP3_REG_NUM)
1967 #define ALL_COP_REG_P(REGNO) \
1968   ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < ALL_COP_REG_NUM)
1969 /* Test if REGNO is one of the 6 new DSP accumulators.  */
1970 #define DSP_ACC_REG_P(REGNO) \
1971   ((unsigned int) ((int) (REGNO) - DSP_ACC_REG_FIRST) < DSP_ACC_REG_NUM)
1972 /* Test if REGNO is hi, lo, or one of the 6 new DSP accumulators.  */
1973 #define ACC_REG_P(REGNO) \
1974   (MD_REG_P (REGNO) || DSP_ACC_REG_P (REGNO))
1975 #define MSA_REG_P(REGNO) \
1976   ((unsigned int) ((int) (REGNO) - MSA_REG_FIRST) < MSA_REG_NUM)
1977 
1978 #define FP_REG_RTX_P(X) (REG_P (X) && FP_REG_P (REGNO (X)))
1979 #define MSA_REG_RTX_P(X) (REG_P (X) && MSA_REG_P (REGNO (X)))
1980 
1981 /* True if X is (const (unspec [(const_int 0)] UNSPEC_GP)).  This is used
1982    to initialize the mips16 gp pseudo register.  */
1983 #define CONST_GP_P(X)				\
1984   (GET_CODE (X) == CONST			\
1985    && GET_CODE (XEXP (X, 0)) == UNSPEC		\
1986    && XINT (XEXP (X, 0), 1) == UNSPEC_GP)
1987 
1988 /* Return coprocessor number from register number.  */
1989 
1990 #define COPNUM_AS_CHAR_FROM_REGNUM(REGNO) 				\
1991   (COP0_REG_P (REGNO) ? '0' : COP2_REG_P (REGNO) ? '2'			\
1992    : COP3_REG_P (REGNO) ? '3' : '?')
1993 
1994 
1995 #define HARD_REGNO_RENAME_OK(OLD_REG, NEW_REG)				\
1996   mips_hard_regno_rename_ok (OLD_REG, NEW_REG)
1997 
1998 /* Select a register mode required for caller save of hard regno REGNO.  */
1999 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
2000   mips_hard_regno_caller_save_mode (REGNO, NREGS, MODE)
2001 
2002 /* Register to use for pushing function arguments.  */
2003 #define STACK_POINTER_REGNUM (GP_REG_FIRST + 29)
2004 
2005 /* These two registers don't really exist: they get eliminated to either
2006    the stack or hard frame pointer.  */
2007 #define ARG_POINTER_REGNUM 77
2008 #define FRAME_POINTER_REGNUM 78
2009 
2010 /* $30 is not available on the mips16, so we use $17 as the frame
2011    pointer.  */
2012 #define HARD_FRAME_POINTER_REGNUM \
2013   (TARGET_MIPS16 ? GP_REG_FIRST + 17 : GP_REG_FIRST + 30)
2014 
2015 #define HARD_FRAME_POINTER_IS_FRAME_POINTER 0
2016 #define HARD_FRAME_POINTER_IS_ARG_POINTER 0
2017 
2018 /* Register in which static-chain is passed to a function.  */
2019 #define STATIC_CHAIN_REGNUM (GP_REG_FIRST + 15)
2020 
2021 /* Registers used as temporaries in prologue/epilogue code:
2022 
2023    - If a MIPS16 PIC function needs access to _gp, it first loads
2024      the value into MIPS16_PIC_TEMP and then copies it to $gp.
2025 
2026    - The prologue can use MIPS_PROLOGUE_TEMP as a general temporary
2027      register.  The register must not conflict with MIPS16_PIC_TEMP.
2028 
2029    - If we aren't generating MIPS16 code, the prologue can also use
2030      MIPS_PROLOGUE_TEMP2 as a general temporary register.
2031 
2032    - The epilogue can use MIPS_EPILOGUE_TEMP as a general temporary
2033      register.
2034 
2035    If we're generating MIPS16 code, these registers must come from the
2036    core set of 8.  The prologue registers mustn't conflict with any
2037    incoming arguments, the static chain pointer, or the frame pointer.
2038    The epilogue temporary mustn't conflict with the return registers,
2039    the PIC call register ($25), the frame pointer, the EH stack adjustment,
2040    or the EH data registers.
2041 
2042    If we're generating interrupt handlers, we use K0 as a temporary register
2043    in prologue/epilogue code.  */
2044 
2045 #define MIPS16_PIC_TEMP_REGNUM (GP_REG_FIRST + 2)
2046 #define MIPS_PROLOGUE_TEMP_REGNUM \
2047   (cfun->machine->interrupt_handler_p ? K0_REG_NUM : GP_REG_FIRST + 3)
2048 #define MIPS_PROLOGUE_TEMP2_REGNUM \
2049   (TARGET_MIPS16 \
2050    ? (gcc_unreachable (), INVALID_REGNUM) \
2051    : cfun->machine->interrupt_handler_p ? K1_REG_NUM : GP_REG_FIRST + 12)
2052 #define MIPS_EPILOGUE_TEMP_REGNUM		\
2053   (cfun->machine->interrupt_handler_p		\
2054    ? K0_REG_NUM					\
2055    : GP_REG_FIRST + (TARGET_MIPS16 ? 6 : 8))
2056 
2057 #define MIPS16_PIC_TEMP gen_rtx_REG (Pmode, MIPS16_PIC_TEMP_REGNUM)
2058 #define MIPS_PROLOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_PROLOGUE_TEMP_REGNUM)
2059 #define MIPS_PROLOGUE_TEMP2(MODE) \
2060   gen_rtx_REG (MODE, MIPS_PROLOGUE_TEMP2_REGNUM)
2061 #define MIPS_EPILOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_EPILOGUE_TEMP_REGNUM)
2062 
2063 /* Define this macro if it is as good or better to call a constant
2064    function address than to call an address kept in a register.  */
2065 #define NO_FUNCTION_CSE 1
2066 
2067 /* The ABI-defined global pointer.  Sometimes we use a different
2068    register in leaf functions: see PIC_OFFSET_TABLE_REGNUM.  */
2069 #define GLOBAL_POINTER_REGNUM (GP_REG_FIRST + 28)
2070 
2071 /* We normally use $28 as the global pointer.  However, when generating
2072    n32/64 PIC, it is better for leaf functions to use a call-clobbered
2073    register instead.  They can then avoid saving and restoring $28
2074    and perhaps avoid using a frame at all.
2075 
2076    When a leaf function uses something other than $28, mips_expand_prologue
2077    will modify pic_offset_table_rtx in place.  Take the register number
2078    from there after reload.  */
2079 #define PIC_OFFSET_TABLE_REGNUM \
2080   (reload_completed ? REGNO (pic_offset_table_rtx) : GLOBAL_POINTER_REGNUM)
2081 
2082 /* Define the classes of registers for register constraints in the
2083    machine description.  Also define ranges of constants.
2084 
2085    One of the classes must always be named ALL_REGS and include all hard regs.
2086    If there is more than one class, another class must be named NO_REGS
2087    and contain no registers.
2088 
2089    The name GENERAL_REGS must be the name of a class (or an alias for
2090    another name such as ALL_REGS).  This is the class of registers
2091    that is allowed by "g" or "r" in a register constraint.
2092    Also, registers outside this class are allocated only when
2093    instructions express preferences for them.
2094 
2095    The classes must be numbered in nondecreasing order; that is,
2096    a larger-numbered class must never be contained completely
2097    in a smaller-numbered class.
2098 
2099    For any two classes, it is very desirable that there be another
2100    class that represents their union.  */
2101 
2102 enum reg_class
2103 {
2104   NO_REGS,			/* no registers in set */
2105   M16_STORE_REGS,		/* microMIPS store registers  */
2106   M16_REGS,			/* mips16 directly accessible registers */
2107   M16_SP_REGS,			/* mips16 + $sp */
2108   T_REG,			/* mips16 T register ($24) */
2109   M16_T_REGS,			/* mips16 registers plus T register */
2110   PIC_FN_ADDR_REG,		/* SVR4 PIC function address register */
2111   V1_REG,			/* Register $v1 ($3) used for TLS access.  */
2112   SPILL_REGS,			/* All but $sp and call preserved regs are in here */
2113   LEA_REGS,			/* Every GPR except $25 */
2114   GR_REGS,			/* integer registers */
2115   FP_REGS,			/* floating point registers */
2116   MD0_REG,			/* first multiply/divide register */
2117   MD1_REG,			/* second multiply/divide register */
2118   MD_REGS,			/* multiply/divide registers (hi/lo) */
2119   COP0_REGS,			/* generic coprocessor classes */
2120   COP2_REGS,
2121   COP3_REGS,
2122   ST_REGS,			/* status registers (fp status) */
2123   DSP_ACC_REGS,			/* DSP accumulator registers */
2124   ACC_REGS,			/* Hi/Lo and DSP accumulator registers */
2125   FRAME_REGS,			/* $arg and $frame */
2126   GR_AND_MD0_REGS,		/* union classes */
2127   GR_AND_MD1_REGS,
2128   GR_AND_MD_REGS,
2129   GR_AND_ACC_REGS,
2130   ALL_REGS,			/* all registers */
2131   LIM_REG_CLASSES		/* max value + 1 */
2132 };
2133 
2134 #define N_REG_CLASSES (int) LIM_REG_CLASSES
2135 
2136 #define GENERAL_REGS GR_REGS
2137 
2138 /* An initializer containing the names of the register classes as C
2139    string constants.  These names are used in writing some of the
2140    debugging dumps.  */
2141 
2142 #define REG_CLASS_NAMES							\
2143 {									\
2144   "NO_REGS",								\
2145   "M16_STORE_REGS",							\
2146   "M16_REGS",								\
2147   "M16_SP_REGS",								\
2148   "T_REG",								\
2149   "M16_T_REGS",								\
2150   "PIC_FN_ADDR_REG",							\
2151   "V1_REG",								\
2152   "SPILL_REGS",								\
2153   "LEA_REGS",								\
2154   "GR_REGS",								\
2155   "FP_REGS",								\
2156   "MD0_REG",								\
2157   "MD1_REG",								\
2158   "MD_REGS",								\
2159   /* coprocessor registers */						\
2160   "COP0_REGS",								\
2161   "COP2_REGS",								\
2162   "COP3_REGS",								\
2163   "ST_REGS",								\
2164   "DSP_ACC_REGS",							\
2165   "ACC_REGS",								\
2166   "FRAME_REGS",								\
2167   "GR_AND_MD0_REGS",							\
2168   "GR_AND_MD1_REGS",							\
2169   "GR_AND_MD_REGS",							\
2170   "GR_AND_ACC_REGS",							\
2171   "ALL_REGS"								\
2172 }
2173 
2174 /* An initializer containing the contents of the register classes,
2175    as integers which are bit masks.  The Nth integer specifies the
2176    contents of class N.  The way the integer MASK is interpreted is
2177    that register R is in the class if `MASK & (1 << R)' is 1.
2178 
2179    When the machine has more than 32 registers, an integer does not
2180    suffice.  Then the integers are replaced by sub-initializers,
2181    braced groupings containing several integers.  Each
2182    sub-initializer must be suitable as an initializer for the type
2183    `HARD_REG_SET' which is defined in `hard-reg-set.h'.  */
2184 
2185 #define REG_CLASS_CONTENTS						                                \
2186 {									                                \
2187   { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* NO_REGS */		\
2188   { 0x000200fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* M16_STORE_REGS */	\
2189   { 0x000300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* M16_REGS */		\
2190   { 0x200300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* M16_SP_REGS */		\
2191   { 0x01000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* T_REG */		\
2192   { 0x010300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* M16_T_REGS */	\
2193   { 0x02000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* PIC_FN_ADDR_REG */	\
2194   { 0x00000008, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* V1_REG */		\
2195   { 0x0303fffc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* SPILL_REGS */      	\
2196   { 0xfdffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* LEA_REGS */		\
2197   { 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* GR_REGS */		\
2198   { 0x00000000, 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },	/* FP_REGS */		\
2199   { 0x00000000, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 },	/* MD0_REG */		\
2200   { 0x00000000, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 },	/* MD1_REG */		\
2201   { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 },	/* MD_REGS */		\
2202   { 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 },   /* COP0_REGS */		\
2203   { 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 },   /* COP2_REGS */		\
2204   { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff },   /* COP3_REGS */		\
2205   { 0x00000000, 0x00000000, 0x000007f8, 0x00000000, 0x00000000, 0x00000000 },	/* ST_REGS */		\
2206   { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x003f0000 },	/* DSP_ACC_REGS */	\
2207   { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 },	/* ACC_REGS */		\
2208   { 0x00000000, 0x00000000, 0x00006000, 0x00000000, 0x00000000, 0x00000000 },	/* FRAME_REGS */	\
2209   { 0xffffffff, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 },	/* GR_AND_MD0_REGS */	\
2210   { 0xffffffff, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 },	/* GR_AND_MD1_REGS */	\
2211   { 0xffffffff, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 },	/* GR_AND_MD_REGS */	\
2212   { 0xffffffff, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 },	/* GR_AND_ACC_REGS */	\
2213   { 0xffffffff, 0xffffffff, 0xffff67ff, 0xffffffff, 0xffffffff, 0x0fffffff }	/* ALL_REGS */		\
2214 }
2215 
2216 
2217 /* A C expression whose value is a register class containing hard
2218    register REGNO.  In general there is more that one such class;
2219    choose a class which is "minimal", meaning that no smaller class
2220    also contains the register.  */
2221 
2222 #define REGNO_REG_CLASS(REGNO) mips_regno_to_class[ (REGNO) ]
2223 
2224 /* A macro whose definition is the name of the class to which a
2225    valid base register must belong.  A base register is one used in
2226    an address which is the register value plus a displacement.  */
2227 
2228 #define BASE_REG_CLASS  (TARGET_MIPS16 ? M16_SP_REGS : GR_REGS)
2229 
2230 /* A macro whose definition is the name of the class to which a
2231    valid index register must belong.  An index register is one used
2232    in an address where its value is either multiplied by a scale
2233    factor or added to another register (as well as added to a
2234    displacement).  */
2235 
2236 #define INDEX_REG_CLASS NO_REGS
2237 
2238 /* We generally want to put call-clobbered registers ahead of
2239    call-saved ones.  (IRA expects this.)  */
2240 
2241 #define REG_ALLOC_ORDER							\
2242 { /* Accumulator registers.  When GPRs and accumulators have equal	\
2243      cost, we generally prefer to use accumulators.  For example,	\
2244      a division of multiplication result is better allocated to LO,	\
2245      so that we put the MFLO at the point of use instead of at the	\
2246      point of definition.  It's also needed if we're to take advantage	\
2247      of the extra accumulators available with -mdspr2.  In some cases,	\
2248      it can also help to reduce register pressure.  */			\
2249   64, 65,176,177,178,179,180,181,					\
2250   /* Call-clobbered GPRs.  */						\
2251   1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15,		\
2252   24, 25, 31,								\
2253   /* The global pointer.  This is call-clobbered for o32 and o64	\
2254      abicalls, call-saved for n32 and n64 abicalls, and a program	\
2255      invariant otherwise.  Putting it between the call-clobbered	\
2256      and call-saved registers should cope with all eventualities.  */	\
2257   28,									\
2258   /* Call-saved GPRs.  */						\
2259   16, 17, 18, 19, 20, 21, 22, 23, 30,					\
2260   /* GPRs that can never be exposed to the register allocator.  */	\
2261   0,  26, 27, 29,							\
2262   /* Call-clobbered FPRs.  */						\
2263   32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,	\
2264   48, 49, 50, 51,							\
2265   /* FPRs that are usually call-saved.  The odd ones are actually	\
2266      call-clobbered for n32, but listing them ahead of the even		\
2267      registers might encourage the register allocator to fragment	\
2268      the available FPR pairs.  We need paired FPRs to store long	\
2269      doubles, so it isn't clear that using a different order		\
2270      for n32 would be a win.  */					\
2271   52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,			\
2272   /* None of the remaining classes have defined call-saved		\
2273      registers.  */							\
2274   66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,		\
2275   80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,	\
2276   96, 97, 98, 99, 100,101,102,103,104,105,106,107,108,109,110,111,	\
2277   112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,	\
2278   128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,	\
2279   144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,	\
2280   160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,	\
2281   182,183,184,185,186,187						\
2282 }
2283 
2284 /* True if VALUE is an unsigned 6-bit number.  */
2285 
2286 #define UIMM6_OPERAND(VALUE) \
2287   (((VALUE) & ~(unsigned HOST_WIDE_INT) 0x3f) == 0)
2288 
2289 /* True if VALUE is a signed 10-bit number.  */
2290 
2291 #define IMM10_OPERAND(VALUE) \
2292   ((unsigned HOST_WIDE_INT) (VALUE) + 0x200 < 0x400)
2293 
2294 /* True if VALUE is a signed 16-bit number.  */
2295 
2296 #define SMALL_OPERAND(VALUE) \
2297   ((unsigned HOST_WIDE_INT) (VALUE) + 0x8000 < 0x10000)
2298 
2299 /* True if VALUE is an unsigned 16-bit number.  */
2300 
2301 #define SMALL_OPERAND_UNSIGNED(VALUE) \
2302   (((VALUE) & ~(unsigned HOST_WIDE_INT) 0xffff) == 0)
2303 
2304 /* True if VALUE can be loaded into a register using LUI.  */
2305 
2306 #define LUI_OPERAND(VALUE)					\
2307   (((VALUE) | 0x7fff0000) == 0x7fff0000				\
2308    || ((unsigned HOST_WIDE_INT) (VALUE) | 0x7fff0000) + 0x10000 == 0)
2309 
2310 /* Return a value X with the low 16 bits clear, and such that
2311    VALUE - X is a signed 16-bit value.  */
2312 
2313 #define CONST_HIGH_PART(VALUE) \
2314   (((VALUE) + 0x8000) & ~(unsigned HOST_WIDE_INT) 0xffff)
2315 
2316 #define CONST_LOW_PART(VALUE) \
2317   ((VALUE) - CONST_HIGH_PART (VALUE))
2318 
2319 #define SMALL_INT(X) SMALL_OPERAND (INTVAL (X))
2320 #define SMALL_INT_UNSIGNED(X) SMALL_OPERAND_UNSIGNED (INTVAL (X))
2321 #define LUI_INT(X) LUI_OPERAND (INTVAL (X))
2322 #define UMIPS_12BIT_OFFSET_P(OFFSET) (IN_RANGE (OFFSET, -2048, 2047))
2323 #define MIPS_9BIT_OFFSET_P(OFFSET) (IN_RANGE (OFFSET, -256, 255))
2324 
2325 /* The HI and LO registers can only be reloaded via the general
2326    registers.  Condition code registers can only be loaded to the
2327    general registers, and from the floating point registers.  */
2328 
2329 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X)			\
2330   mips_secondary_reload_class (CLASS, MODE, X, true)
2331 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X)			\
2332   mips_secondary_reload_class (CLASS, MODE, X, false)
2333 
2334 /* Return the maximum number of consecutive registers
2335    needed to represent mode MODE in a register of class CLASS.  */
2336 
2337 #define CLASS_MAX_NREGS(CLASS, MODE) mips_class_max_nregs (CLASS, MODE)
2338 
2339 /* Stack layout; function entry, exit and calling.  */
2340 
2341 #define STACK_GROWS_DOWNWARD 1
2342 
2343 #define FRAME_GROWS_DOWNWARD (flag_stack_protect != 0			\
2344 			      || (flag_sanitize & SANITIZE_ADDRESS) != 0)
2345 
2346 /* Size of the area allocated in the frame to save the GP.  */
2347 
2348 #define MIPS_GP_SAVE_AREA_SIZE \
2349   (TARGET_CALL_CLOBBERED_GP ? MIPS_STACK_ALIGN (UNITS_PER_WORD) : 0)
2350 
2351 #define RETURN_ADDR_RTX mips_return_addr
2352 
2353 /* Mask off the MIPS16 ISA bit in unwind addresses.
2354 
2355    The reason for this is a little subtle.  When unwinding a call,
2356    we are given the call's return address, which on most targets
2357    is the address of the following instruction.  However, what we
2358    actually want to find is the EH region for the call itself.
2359    The target-independent unwind code therefore searches for "RA - 1".
2360 
2361    In the MIPS16 case, RA is always an odd-valued (ISA-encoded) address.
2362    RA - 1 is therefore the real (even-valued) start of the return
2363    instruction.  EH region labels are usually odd-valued MIPS16 symbols
2364    too, so a search for an even address within a MIPS16 region would
2365    usually work.
2366 
2367    However, there is an exception.  If the end of an EH region is also
2368    the end of a function, the end label is allowed to be even.  This is
2369    necessary because a following non-MIPS16 function may also need EH
2370    information for its first instruction.
2371 
2372    Thus a MIPS16 region may be terminated by an ISA-encoded or a
2373    non-ISA-encoded address.  This probably isn't ideal, but it is
2374    the traditional (legacy) behavior.  It is therefore only safe
2375    to search MIPS EH regions for an _odd-valued_ address.
2376 
2377    Masking off the ISA bit means that the target-independent code
2378    will search for "(RA & -2) - 1", which is guaranteed to be odd.  */
2379 #define MASK_RETURN_ADDR GEN_INT (-2)
2380 
2381 
2382 /* Similarly, don't use the least-significant bit to tell pointers to
2383    code from vtable index.  */
2384 
2385 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
2386 
2387 /* The eliminations to $17 are only used for mips16 code.  See the
2388    definition of HARD_FRAME_POINTER_REGNUM.  */
2389 
2390 #define ELIMINABLE_REGS							\
2391 {{ ARG_POINTER_REGNUM,   STACK_POINTER_REGNUM},				\
2392  { ARG_POINTER_REGNUM,   GP_REG_FIRST + 30},				\
2393  { ARG_POINTER_REGNUM,   GP_REG_FIRST + 17},				\
2394  { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},				\
2395  { FRAME_POINTER_REGNUM, GP_REG_FIRST + 30},				\
2396  { FRAME_POINTER_REGNUM, GP_REG_FIRST + 17}}
2397 
2398 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
2399   (OFFSET) = mips_initial_elimination_offset ((FROM), (TO))
2400 
2401 /* Allocate stack space for arguments at the beginning of each function.  */
2402 #define ACCUMULATE_OUTGOING_ARGS 1
2403 
2404 /* The argument pointer always points to the first argument.  */
2405 #define FIRST_PARM_OFFSET(FNDECL) 0
2406 
2407 /* o32 and o64 reserve stack space for all argument registers.  */
2408 #define REG_PARM_STACK_SPACE(FNDECL) 			\
2409   (TARGET_OLDABI					\
2410    ? (MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD)		\
2411    : 0)
2412 
2413 /* Define this if it is the responsibility of the caller to
2414    allocate the area reserved for arguments passed in registers.
2415    If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
2416    of this macro is to determine whether the space is included in
2417    `crtl->outgoing_args_size'.  */
2418 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
2419 
2420 #define STACK_BOUNDARY (TARGET_NEWABI ? 128 : 64)
2421 
2422 /* Symbolic macros for the registers used to return integer and floating
2423    point values.  */
2424 
2425 #define GP_RETURN (GP_REG_FIRST + 2)
2426 #define FP_RETURN ((TARGET_SOFT_FLOAT) ? GP_RETURN : (FP_REG_FIRST + 0))
2427 
2428 #define MAX_ARGS_IN_REGISTERS (TARGET_OLDABI ? 4 : 8)
2429 
2430 /* Symbolic macros for the first/last argument registers.  */
2431 
2432 #define GP_ARG_FIRST (GP_REG_FIRST + 4)
2433 #define GP_ARG_LAST  (GP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
2434 #define FP_ARG_FIRST (FP_REG_FIRST + 12)
2435 #define FP_ARG_LAST  (FP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
2436 
2437 /* True if MODE is vector and supported in a MSA vector register.  */
2438 #define MSA_SUPPORTED_MODE_P(MODE)			\
2439   (ISA_HAS_MSA						\
2440    && GET_MODE_SIZE (MODE) == UNITS_PER_MSA_REG		\
2441    && (GET_MODE_CLASS (MODE) == MODE_VECTOR_INT		\
2442        || GET_MODE_CLASS (MODE) == MODE_VECTOR_FLOAT))
2443 
2444 /* Temporary register that is used when restoring $gp after a call.  $4 and $5
2445    are used for returning complex double values in soft-float code, so $6 is the
2446    first suitable candidate for TARGET_MIPS16.  For !TARGET_MIPS16 we can use
2447    $gp itself as the temporary.  */
2448 #define POST_CALL_TMP_REG \
2449   (TARGET_MIPS16 ? GP_ARG_FIRST + 2 : PIC_OFFSET_TABLE_REGNUM)
2450 
2451 /* 1 if N is a possible register number for function argument passing.
2452    We have no FP argument registers when soft-float.  Special handling
2453    is required for O32 where only even numbered registers are used for
2454    O32-FPXX and O32-FP64.  */
2455 
2456 #define FUNCTION_ARG_REGNO_P(N)					\
2457   ((IN_RANGE((N), GP_ARG_FIRST, GP_ARG_LAST)			\
2458     || (IN_RANGE((N), FP_ARG_FIRST, FP_ARG_LAST) 		\
2459         && (mips_abi != ABI_32 					\
2460             || TARGET_FLOAT32 					\
2461             || ((N) % 2 == 0))))				\
2462    && !fixed_regs[N])
2463 
2464 /* This structure has to cope with two different argument allocation
2465    schemes.  Most MIPS ABIs view the arguments as a structure, of which
2466    the first N words go in registers and the rest go on the stack.  If I
2467    < N, the Ith word might go in Ith integer argument register or in a
2468    floating-point register.  For these ABIs, we only need to remember
2469    the offset of the current argument into the structure.
2470 
2471    The EABI instead allocates the integer and floating-point arguments
2472    separately.  The first N words of FP arguments go in FP registers,
2473    the rest go on the stack.  Likewise, the first N words of the other
2474    arguments go in integer registers, and the rest go on the stack.  We
2475    need to maintain three counts: the number of integer registers used,
2476    the number of floating-point registers used, and the number of words
2477    passed on the stack.
2478 
2479    We could keep separate information for the two ABIs (a word count for
2480    the standard ABIs, and three separate counts for the EABI).  But it
2481    seems simpler to view the standard ABIs as forms of EABI that do not
2482    allocate floating-point registers.
2483 
2484    So for the standard ABIs, the first N words are allocated to integer
2485    registers, and mips_function_arg decides on an argument-by-argument
2486    basis whether that argument should really go in an integer register,
2487    or in a floating-point one.  */
2488 
2489 typedef struct mips_args {
2490   /* Always true for varargs functions.  Otherwise true if at least
2491      one argument has been passed in an integer register.  */
2492   int gp_reg_found;
2493 
2494   /* The number of arguments seen so far.  */
2495   unsigned int arg_number;
2496 
2497   /* The number of integer registers used so far.  For all ABIs except
2498      EABI, this is the number of words that have been added to the
2499      argument structure, limited to MAX_ARGS_IN_REGISTERS.  */
2500   unsigned int num_gprs;
2501 
2502   /* For EABI, the number of floating-point registers used so far.  */
2503   unsigned int num_fprs;
2504 
2505   /* The number of words passed on the stack.  */
2506   unsigned int stack_words;
2507 
2508   /* On the mips16, we need to keep track of which floating point
2509      arguments were passed in general registers, but would have been
2510      passed in the FP regs if this were a 32-bit function, so that we
2511      can move them to the FP regs if we wind up calling a 32-bit
2512      function.  We record this information in fp_code, encoded in base
2513      four.  A zero digit means no floating point argument, a one digit
2514      means an SFmode argument, and a two digit means a DFmode argument,
2515      and a three digit is not used.  The low order digit is the first
2516      argument.  Thus 6 == 1 * 4 + 2 means a DFmode argument followed by
2517      an SFmode argument.  ??? A more sophisticated approach will be
2518      needed if MIPS_ABI != ABI_32.  */
2519   int fp_code;
2520 
2521   /* True if the function has a prototype.  */
2522   int prototype;
2523 } CUMULATIVE_ARGS;
2524 
2525 /* Initialize a variable CUM of type CUMULATIVE_ARGS
2526    for a call to a function whose data type is FNTYPE.
2527    For a library call, FNTYPE is 0.  */
2528 
2529 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
2530   mips_init_cumulative_args (&CUM, FNTYPE)
2531 
2532 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
2533   (mips_pad_reg_upward (MODE, TYPE) ? PAD_UPWARD : PAD_DOWNWARD)
2534 
2535 /* True if using EABI and varargs can be passed in floating-point
2536    registers.  Under these conditions, we need a more complex form
2537    of va_list, which tracks GPR, FPR and stack arguments separately.  */
2538 #define EABI_FLOAT_VARARGS_P \
2539 	(mips_abi == ABI_EABI && UNITS_PER_FPVALUE >= UNITS_PER_DOUBLE)
2540 
2541 
2542 #define EPILOGUE_USES(REGNO)	mips_epilogue_uses (REGNO)
2543 
2544 /* Treat LOC as a byte offset from the stack pointer and round it up
2545    to the next fully-aligned offset.  */
2546 #define MIPS_STACK_ALIGN(LOC) \
2547   (TARGET_NEWABI ? ROUND_UP ((LOC), 16) : ROUND_UP ((LOC), 8))
2548 
2549 
2550 /* Output assembler code to FILE to increment profiler label # LABELNO
2551    for profiling a function entry.  */
2552 
2553 #define FUNCTION_PROFILER(FILE, LABELNO) mips_function_profiler ((FILE))
2554 
2555 /* The profiler preserves all interesting registers, including $31.  */
2556 #define MIPS_SAVE_REG_FOR_PROFILING_P(REGNO) false
2557 
2558 /* No mips port has ever used the profiler counter word, so don't emit it
2559    or the label for it.  */
2560 
2561 #define NO_PROFILE_COUNTERS 1
2562 
2563 /* Define this macro if the code for function profiling should come
2564    before the function prologue.  Normally, the profiling code comes
2565    after.  */
2566 
2567 /* #define PROFILE_BEFORE_PROLOGUE */
2568 
2569 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
2570    the stack pointer does not matter.  The value is tested only in
2571    functions that have frame pointers.
2572    No definition is equivalent to always zero.  */
2573 
2574 #define EXIT_IGNORE_STACK 1
2575 
2576 
2577 /* Trampolines are a block of code followed by two pointers.  */
2578 
2579 #define TRAMPOLINE_SIZE \
2580   (mips_trampoline_code_size () + GET_MODE_SIZE (ptr_mode) * 2)
2581 
2582 /* Forcing a 64-bit alignment for 32-bit targets allows us to load two
2583    pointers from a single LUI base.  */
2584 
2585 #define TRAMPOLINE_ALIGNMENT 64
2586 
2587 /* mips_trampoline_init calls this library function to flush
2588    program and data caches.  */
2589 
2590 #ifndef CACHE_FLUSH_FUNC
2591 #define CACHE_FLUSH_FUNC "_flush_cache"
2592 #endif
2593 
2594 #define MIPS_ICACHE_SYNC(ADDR, SIZE)					\
2595   /* Flush both caches.  We need to flush the data cache in case	\
2596      the system has a write-back cache.  */				\
2597   emit_library_call (gen_rtx_SYMBOL_REF (Pmode, mips_cache_flush_func),	\
2598 		     LCT_NORMAL, VOIDmode, ADDR, Pmode, SIZE, Pmode,	\
2599 		     GEN_INT (3), TYPE_MODE (integer_type_node))
2600 
2601 
2602 /* Addressing modes, and classification of registers for them.  */
2603 
2604 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
2605 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
2606   mips_regno_mode_ok_for_base_p (REGNO, MODE, 1)
2607 
2608 /* Maximum number of registers that can appear in a valid memory address.  */
2609 
2610 #define MAX_REGS_PER_ADDRESS 1
2611 
2612 /* Check for constness inline but use mips_legitimate_address_p
2613    to check whether a constant really is an address.  */
2614 
2615 #define CONSTANT_ADDRESS_P(X) \
2616   (CONSTANT_P (X) && memory_address_p (SImode, X))
2617 
2618 /* This handles the magic '..CURRENT_FUNCTION' symbol, which means
2619    'the start of the function that this code is output in'.  */
2620 
2621 #define ASM_OUTPUT_LABELREF(FILE,NAME)					\
2622   do {									\
2623     if (strcmp (NAME, "..CURRENT_FUNCTION") == 0)			\
2624       asm_fprintf ((FILE), "%U%s",					\
2625 		   XSTR (XEXP (DECL_RTL (current_function_decl),	\
2626 			       0), 0));					\
2627     else								\
2628       asm_fprintf ((FILE), "%U%s", (NAME));				\
2629   } while (0)
2630 
2631 /* Flag to mark a function decl symbol that requires a long call.  */
2632 #define SYMBOL_FLAG_LONG_CALL	(SYMBOL_FLAG_MACH_DEP << 0)
2633 #define SYMBOL_REF_LONG_CALL_P(X)					\
2634   ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_LONG_CALL) != 0)
2635 
2636 /* This flag marks functions that cannot be lazily bound.  */
2637 #define SYMBOL_FLAG_BIND_NOW (SYMBOL_FLAG_MACH_DEP << 1)
2638 #define SYMBOL_REF_BIND_NOW_P(RTX) \
2639   ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_BIND_NOW) != 0)
2640 
2641 /* True if we're generating a form of MIPS16 code in which jump tables
2642    are stored in the text section and encoded as 16-bit PC-relative
2643    offsets.  This is only possible when general text loads are allowed,
2644    since the table access itself will be an "lh" instruction.  If the
2645    PC-relative offsets grow too large, 32-bit offsets are used instead.  */
2646 #define TARGET_MIPS16_SHORT_JUMP_TABLES TARGET_MIPS16_TEXT_LOADS
2647 
2648 #define JUMP_TABLES_IN_TEXT_SECTION TARGET_MIPS16_SHORT_JUMP_TABLES
2649 
2650 #define CASE_VECTOR_MODE (TARGET_MIPS16_SHORT_JUMP_TABLES ? SImode : ptr_mode)
2651 
2652 /* Only use short offsets if their range will not overflow.  */
2653 #define CASE_VECTOR_SHORTEN_MODE(MIN, MAX, BODY) \
2654   (!TARGET_MIPS16_SHORT_JUMP_TABLES ? ptr_mode \
2655    : ((MIN) >= -32768 && (MAX) < 32768) ? HImode \
2656    : SImode)
2657 
2658 #define CASE_VECTOR_PC_RELATIVE TARGET_MIPS16_SHORT_JUMP_TABLES
2659 
2660 /* Define this as 1 if `char' should by default be signed; else as 0.  */
2661 #ifndef DEFAULT_SIGNED_CHAR
2662 #define DEFAULT_SIGNED_CHAR 1
2663 #endif
2664 
2665 /* Although LDC1 and SDC1 provide 64-bit moves on 32-bit targets,
2666    we generally don't want to use them for copying arbitrary data.
2667    A single N-word move is usually the same cost as N single-word moves.  */
2668 #define MOVE_MAX UNITS_PER_WORD
2669 /* We don't modify it for MSA as it is only used by the classic reload.  */
2670 #define MAX_MOVE_MAX 8
2671 
2672 /* Define this macro as a C expression which is nonzero if
2673    accessing less than a word of memory (i.e. a `char' or a
2674    `short') is no faster than accessing a word of memory, i.e., if
2675    such access require more than one instruction or if there is no
2676    difference in cost between byte and (aligned) word loads.
2677 
2678    On RISC machines, it tends to generate better code to define
2679    this as 1, since it avoids making a QI or HI mode register.
2680 
2681    But, generating word accesses for -mips16 is generally bad as shifts
2682    (often extended) would be needed for byte accesses.  */
2683 #define SLOW_BYTE_ACCESS (!TARGET_MIPS16)
2684 
2685 /* Standard MIPS integer shifts truncate the shift amount to the
2686    width of the shifted operand.  However, Loongson MMI shifts
2687    do not truncate the shift amount at all.  */
2688 #define SHIFT_COUNT_TRUNCATED (!TARGET_LOONGSON_MMI)
2689 
2690 
2691 /* Specify the machine mode that pointers have.
2692    After generation of rtl, the compiler makes no further distinction
2693    between pointers and any other objects of this machine mode.  */
2694 
2695 #ifndef Pmode
2696 #define Pmode (TARGET_64BIT && TARGET_LONG64 ? DImode : SImode)
2697 #endif
2698 
2699 /* Give call MEMs SImode since it is the "most permissive" mode
2700    for both 32-bit and 64-bit targets.  */
2701 
2702 #define FUNCTION_MODE SImode
2703 
2704 
2705 /* We allocate $fcc registers by hand and can't cope with moves of
2706    CCmode registers to and from pseudos (or memory).  */
2707 #define AVOID_CCMODE_COPIES
2708 
2709 /* A C expression for the cost of a branch instruction.  A value of
2710    1 is the default; other values are interpreted relative to that.  */
2711 
2712 #define BRANCH_COST(speed_p, predictable_p) mips_branch_cost
2713 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
2714 
2715 /* The MIPS port has several functions that return an instruction count.
2716    Multiplying the count by this value gives the number of bytes that
2717    the instructions occupy.  */
2718 #define BASE_INSN_LENGTH (TARGET_MIPS16 ? 2 : 4)
2719 
2720 /* The length of a NOP in bytes.  */
2721 #define NOP_INSN_LENGTH (TARGET_COMPRESSION ? 2 : 4)
2722 
2723 /* If defined, modifies the length assigned to instruction INSN as a
2724    function of the context in which it is used.  LENGTH is an lvalue
2725    that contains the initially computed length of the insn and should
2726    be updated with the correct length of the insn.  */
2727 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
2728   ((LENGTH) = mips_adjust_insn_length ((INSN), (LENGTH)))
2729 
2730 /* Return the asm template for a non-MIPS16 conditional branch instruction.
2731    OPCODE is the opcode's mnemonic and OPERANDS is the asm template for
2732    its operands.  */
2733 #define MIPS_BRANCH(OPCODE, OPERANDS) \
2734   "%*" OPCODE "%?\t" OPERANDS "%/"
2735 
2736 #define MIPS_BRANCH_C(OPCODE, OPERANDS) \
2737   "%*" OPCODE "%:\t" OPERANDS
2738 
2739 /* Return an asm string that forces INSN to be treated as an absolute
2740    J or JAL instruction instead of an assembler macro.  */
2741 #define MIPS_ABSOLUTE_JUMP(INSN) \
2742   (TARGET_ABICALLS_PIC2						\
2743    ? ".option\tpic0\n\t" INSN "\n\t.option\tpic2"		\
2744    : INSN)
2745 
2746 
2747 /* Control the assembler format that we output.  */
2748 
2749 /* Output to assembler file text saying following lines
2750    may contain character constants, extra white space, comments, etc.  */
2751 
2752 #ifndef ASM_APP_ON
2753 #define ASM_APP_ON " #APP\n"
2754 #endif
2755 
2756 /* Output to assembler file text saying following lines
2757    no longer contain unusual constructs.  */
2758 
2759 #ifndef ASM_APP_OFF
2760 #define ASM_APP_OFF " #NO_APP\n"
2761 #endif
2762 
2763 #define REGISTER_NAMES							   \
2764 { "$0",   "$1",   "$2",   "$3",   "$4",   "$5",   "$6",   "$7",		   \
2765   "$8",   "$9",   "$10",  "$11",  "$12",  "$13",  "$14",  "$15",	   \
2766   "$16",  "$17",  "$18",  "$19",  "$20",  "$21",  "$22",  "$23",	   \
2767   "$24",  "$25",  "$26",  "$27",  "$28",  "$sp",  "$fp",  "$31",	   \
2768   "$f0",  "$f1",  "$f2",  "$f3",  "$f4",  "$f5",  "$f6",  "$f7",	   \
2769   "$f8",  "$f9",  "$f10", "$f11", "$f12", "$f13", "$f14", "$f15",	   \
2770   "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",	   \
2771   "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31",	   \
2772   "hi",   "lo",   "",     "$fcc0","$fcc1","$fcc2","$fcc3","$fcc4",	   \
2773   "$fcc5","$fcc6","$fcc7","", "$cprestore", "$arg", "$frame", "$fakec",	   \
2774   "$c0r0", "$c0r1", "$c0r2", "$c0r3", "$c0r4", "$c0r5", "$c0r6", "$c0r7",  \
2775   "$c0r8", "$c0r9", "$c0r10","$c0r11","$c0r12","$c0r13","$c0r14","$c0r15", \
2776   "$c0r16","$c0r17","$c0r18","$c0r19","$c0r20","$c0r21","$c0r22","$c0r23", \
2777   "$c0r24","$c0r25","$c0r26","$c0r27","$c0r28","$c0r29","$c0r30","$c0r31", \
2778   "$c2r0", "$c2r1", "$c2r2", "$c2r3", "$c2r4", "$c2r5", "$c2r6", "$c2r7",  \
2779   "$c2r8", "$c2r9", "$c2r10","$c2r11","$c2r12","$c2r13","$c2r14","$c2r15", \
2780   "$c2r16","$c2r17","$c2r18","$c2r19","$c2r20","$c2r21","$c2r22","$c2r23", \
2781   "$c2r24","$c2r25","$c2r26","$c2r27","$c2r28","$c2r29","$c2r30","$c2r31", \
2782   "$c3r0", "$c3r1", "$c3r2", "$c3r3", "$c3r4", "$c3r5", "$c3r6", "$c3r7",  \
2783   "$c3r8", "$c3r9", "$c3r10","$c3r11","$c3r12","$c3r13","$c3r14","$c3r15", \
2784   "$c3r16","$c3r17","$c3r18","$c3r19","$c3r20","$c3r21","$c3r22","$c3r23", \
2785   "$c3r24","$c3r25","$c3r26","$c3r27","$c3r28","$c3r29","$c3r30","$c3r31", \
2786   "$ac1hi","$ac1lo","$ac2hi","$ac2lo","$ac3hi","$ac3lo","$dsp_po","$dsp_sc", \
2787   "$dsp_ca","$dsp_ou","$dsp_cc","$dsp_ef" }
2788 
2789 /* List the "software" names for each register.  Also list the numerical
2790    names for $fp and $sp.  */
2791 
2792 #define ADDITIONAL_REGISTER_NAMES					\
2793 {									\
2794   { "$29",	29 + GP_REG_FIRST },					\
2795   { "$30",	30 + GP_REG_FIRST },					\
2796   { "at",	 1 + GP_REG_FIRST },					\
2797   { "v0",	 2 + GP_REG_FIRST },					\
2798   { "v1",	 3 + GP_REG_FIRST },					\
2799   { "a0",	 4 + GP_REG_FIRST },					\
2800   { "a1",	 5 + GP_REG_FIRST },					\
2801   { "a2",	 6 + GP_REG_FIRST },					\
2802   { "a3",	 7 + GP_REG_FIRST },					\
2803   { "t0",	 8 + GP_REG_FIRST },					\
2804   { "t1",	 9 + GP_REG_FIRST },					\
2805   { "t2",	10 + GP_REG_FIRST },					\
2806   { "t3",	11 + GP_REG_FIRST },					\
2807   { "t4",	12 + GP_REG_FIRST },					\
2808   { "t5",	13 + GP_REG_FIRST },					\
2809   { "t6",	14 + GP_REG_FIRST },					\
2810   { "t7",	15 + GP_REG_FIRST },					\
2811   { "s0",	16 + GP_REG_FIRST },					\
2812   { "s1",	17 + GP_REG_FIRST },					\
2813   { "s2",	18 + GP_REG_FIRST },					\
2814   { "s3",	19 + GP_REG_FIRST },					\
2815   { "s4",	20 + GP_REG_FIRST },					\
2816   { "s5",	21 + GP_REG_FIRST },					\
2817   { "s6",	22 + GP_REG_FIRST },					\
2818   { "s7",	23 + GP_REG_FIRST },					\
2819   { "t8",	24 + GP_REG_FIRST },					\
2820   { "t9",	25 + GP_REG_FIRST },					\
2821   { "k0",	26 + GP_REG_FIRST },					\
2822   { "k1",	27 + GP_REG_FIRST },					\
2823   { "gp",	28 + GP_REG_FIRST },					\
2824   { "sp",	29 + GP_REG_FIRST },					\
2825   { "fp",	30 + GP_REG_FIRST },					\
2826   { "ra",	31 + GP_REG_FIRST },					\
2827   { "$w0",	 0 + FP_REG_FIRST },					\
2828   { "$w1",	 1 + FP_REG_FIRST },					\
2829   { "$w2",	 2 + FP_REG_FIRST },					\
2830   { "$w3",	 3 + FP_REG_FIRST },					\
2831   { "$w4",	 4 + FP_REG_FIRST },					\
2832   { "$w5",	 5 + FP_REG_FIRST },					\
2833   { "$w6",	 6 + FP_REG_FIRST },					\
2834   { "$w7",	 7 + FP_REG_FIRST },					\
2835   { "$w8",	 8 + FP_REG_FIRST },					\
2836   { "$w9",	 9 + FP_REG_FIRST },					\
2837   { "$w10",	10 + FP_REG_FIRST },					\
2838   { "$w11",	11 + FP_REG_FIRST },					\
2839   { "$w12",	12 + FP_REG_FIRST },					\
2840   { "$w13",	13 + FP_REG_FIRST },					\
2841   { "$w14",	14 + FP_REG_FIRST },					\
2842   { "$w15",	15 + FP_REG_FIRST },					\
2843   { "$w16",	16 + FP_REG_FIRST },					\
2844   { "$w17",	17 + FP_REG_FIRST },					\
2845   { "$w18",	18 + FP_REG_FIRST },					\
2846   { "$w19",	19 + FP_REG_FIRST },					\
2847   { "$w20",	20 + FP_REG_FIRST },					\
2848   { "$w21",	21 + FP_REG_FIRST },					\
2849   { "$w22",	22 + FP_REG_FIRST },					\
2850   { "$w23",	23 + FP_REG_FIRST },					\
2851   { "$w24",	24 + FP_REG_FIRST },					\
2852   { "$w25",	25 + FP_REG_FIRST },					\
2853   { "$w26",	26 + FP_REG_FIRST },					\
2854   { "$w27",	27 + FP_REG_FIRST },					\
2855   { "$w28",	28 + FP_REG_FIRST },					\
2856   { "$w29",	29 + FP_REG_FIRST },					\
2857   { "$w30",	30 + FP_REG_FIRST },					\
2858   { "$w31",	31 + FP_REG_FIRST }					\
2859 }
2860 
2861 #define DBR_OUTPUT_SEQEND(STREAM)					\
2862 do									\
2863   {									\
2864     /* Undo the effect of '%*'.  */					\
2865     mips_pop_asm_switch (&mips_nomacro);				\
2866     mips_pop_asm_switch (&mips_noreorder);				\
2867     /* Emit a blank line after the delay slot for emphasis.  */		\
2868     fputs ("\n", STREAM);						\
2869   }									\
2870 while (0)
2871 
2872 /* The MIPS implementation uses some labels for its own purpose.  The
2873    following lists what labels are created, and are all formed by the
2874    pattern $L[a-z].*.  The machine independent portion of GCC creates
2875    labels matching:  $L[A-Z][0-9]+ and $L[0-9]+.
2876 
2877 	LM[0-9]+	Silicon Graphics/ECOFF stabs label before each stmt.
2878 	$Lb[0-9]+	Begin blocks for MIPS debug support
2879 	$Lc[0-9]+	Label for use in s<xx> operation.
2880 	$Le[0-9]+	End blocks for MIPS debug support  */
2881 
2882 #undef ASM_DECLARE_OBJECT_NAME
2883 #define ASM_DECLARE_OBJECT_NAME(STREAM, NAME, DECL) \
2884   mips_declare_object (STREAM, NAME, "", ":\n")
2885 
2886 /* Globalizing directive for a label.  */
2887 #define GLOBAL_ASM_OP "\t.globl\t"
2888 
2889 /* This says how to define a global common symbol.  */
2890 
2891 #define ASM_OUTPUT_ALIGNED_DECL_COMMON mips_output_aligned_decl_common
2892 
2893 /* This says how to define a local common symbol (i.e., not visible to
2894    linker).  */
2895 
2896 #ifndef ASM_OUTPUT_ALIGNED_LOCAL
2897 #define ASM_OUTPUT_ALIGNED_LOCAL(STREAM, NAME, SIZE, ALIGN) \
2898   mips_declare_common_object (STREAM, NAME, "\n\t.lcomm\t", SIZE, ALIGN, false)
2899 #endif
2900 
2901 /* This says how to output an external.  It would be possible not to
2902    output anything and let undefined symbol become external. However
2903    the assembler uses length information on externals to allocate in
2904    data/sdata bss/sbss, thereby saving exec time.  */
2905 
2906 #undef ASM_OUTPUT_EXTERNAL
2907 #define ASM_OUTPUT_EXTERNAL(STREAM,DECL,NAME) \
2908   mips_output_external(STREAM,DECL,NAME)
2909 
2910 /* This is how to declare a function name.  The actual work of
2911    emitting the label is moved to function_prologue, so that we can
2912    get the line number correctly emitted before the .ent directive,
2913    and after any .file directives.  Define as empty so that the function
2914    is not declared before the .ent directive elsewhere.  */
2915 
2916 #undef ASM_DECLARE_FUNCTION_NAME
2917 #define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL)
2918 
2919 /* This is how to store into the string LABEL
2920    the symbol_ref name of an internal numbered label where
2921    PREFIX is the class of label and NUM is the number within the class.
2922    This is suitable for output with `assemble_name'.  */
2923 
2924 #undef ASM_GENERATE_INTERNAL_LABEL
2925 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM)			\
2926   sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM))
2927 
2928 /* Print debug labels as "foo = ." rather than "foo:" because they should
2929    represent a byte pointer rather than an ISA-encoded address.  This is
2930    particularly important for code like:
2931 
2932 	$LFBxxx = .
2933 		.cfi_startproc
2934 		...
2935 		.section .gcc_except_table,...
2936 		...
2937 		.uleb128 foo-$LFBxxx
2938 
2939    The .uleb128 requies $LFBxxx to match the FDE start address, which is
2940    likewise a byte pointer rather than an ISA-encoded address.
2941 
2942    At the time of writing, this hook is not used for the function end
2943    label:
2944 
2945    	$LFExxx:
2946 		.end foo
2947 
2948    But this doesn't matter, because GAS doesn't treat a pre-.end label
2949    as a MIPS16 one anyway.  */
2950 
2951 #define ASM_OUTPUT_DEBUG_LABEL(FILE, PREFIX, NUM)			\
2952   fprintf (FILE, "%s%s%d = .\n", LOCAL_LABEL_PREFIX, PREFIX, NUM)
2953 
2954 /* This is how to output an element of a case-vector that is absolute.  */
2955 
2956 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE)				\
2957   fprintf (STREAM, "\t%s\t%sL%d\n",					\
2958 	   ptr_mode == DImode ? ".dword" : ".word",			\
2959 	   LOCAL_LABEL_PREFIX,						\
2960 	   VALUE)
2961 
2962 /* This is how to output an element of a case-vector.  We can make the
2963    entries PC-relative in MIPS16 code and GP-relative when .gp(d)word
2964    is supported.  */
2965 
2966 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL)		\
2967 do {									\
2968   if (TARGET_MIPS16_SHORT_JUMP_TABLES)					\
2969     {									\
2970       if (GET_MODE (BODY) == HImode)					\
2971 	fprintf (STREAM, "\t.half\t%sL%d-%sL%d\n",			\
2972 		 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL);	\
2973       else								\
2974 	fprintf (STREAM, "\t.word\t%sL%d-%sL%d\n",			\
2975 		 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL);	\
2976     }									\
2977   else if (TARGET_GPWORD)						\
2978     fprintf (STREAM, "\t%s\t%sL%d\n",					\
2979 	     ptr_mode == DImode ? ".gpdword" : ".gpword",		\
2980 	     LOCAL_LABEL_PREFIX, VALUE);				\
2981   else if (TARGET_RTP_PIC)						\
2982     {									\
2983       /* Make the entry relative to the start of the function.  */	\
2984       rtx fnsym = XEXP (DECL_RTL (current_function_decl), 0);		\
2985       fprintf (STREAM, "\t%s\t%sL%d-",					\
2986 	       Pmode == DImode ? ".dword" : ".word",			\
2987 	       LOCAL_LABEL_PREFIX, VALUE);				\
2988       assemble_name (STREAM, XSTR (fnsym, 0));				\
2989       fprintf (STREAM, "\n");						\
2990     }									\
2991   else									\
2992     fprintf (STREAM, "\t%s\t%sL%d\n",					\
2993 	     ptr_mode == DImode ? ".dword" : ".word",			\
2994 	     LOCAL_LABEL_PREFIX, VALUE);				\
2995 } while (0)
2996 
2997 /* Mark inline jump tables as data for the purpose of disassembly.  For
2998    simplicity embed the jump table's label number in the local symbol
2999    produced so that multiple jump tables within a single function end
3000    up marked with unique symbols.  Retain the alignment setting from
3001    `elfos.h' as we are replacing the definition from there.  */
3002 
3003 #undef ASM_OUTPUT_BEFORE_CASE_LABEL
3004 #define ASM_OUTPUT_BEFORE_CASE_LABEL(STREAM, PREFIX, NUM, TABLE)	\
3005   do									\
3006     {									\
3007       ASM_OUTPUT_ALIGN ((STREAM), 2);					\
3008       if (JUMP_TABLES_IN_TEXT_SECTION)					\
3009 	mips_set_text_contents_type (STREAM, "__jump_", NUM, FALSE);	\
3010     }									\
3011   while (0)
3012 
3013 /* Reset text marking to code after an inline jump table.  Like with
3014    the beginning of a jump table use the label number to keep symbols
3015    unique.  */
3016 
3017 #define ASM_OUTPUT_CASE_END(STREAM, NUM, TABLE)				\
3018   do									\
3019     if (JUMP_TABLES_IN_TEXT_SECTION)					\
3020       mips_set_text_contents_type (STREAM, "__jend_", NUM, TRUE);	\
3021   while (0)
3022 
3023 /* This is how to output an assembler line
3024    that says to advance the location counter
3025    to a multiple of 2**LOG bytes.  */
3026 
3027 #define ASM_OUTPUT_ALIGN(STREAM,LOG)					\
3028   fprintf (STREAM, "\t.align\t%d\n", (LOG))
3029 
3030 /* This is how to output an assembler line to advance the location
3031    counter by SIZE bytes.  */
3032 
3033 #undef ASM_OUTPUT_SKIP
3034 #define ASM_OUTPUT_SKIP(STREAM,SIZE)					\
3035   fprintf (STREAM, "\t.space\t" HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
3036 
3037 /* This is how to output a string.  */
3038 #undef ASM_OUTPUT_ASCII
3039 #define ASM_OUTPUT_ASCII mips_output_ascii
3040 
3041 
3042 /* Default to -G 8 */
3043 #ifndef MIPS_DEFAULT_GVALUE
3044 #define MIPS_DEFAULT_GVALUE 8
3045 #endif
3046 
3047 /* Define the strings to put out for each section in the object file.  */
3048 #define TEXT_SECTION_ASM_OP	"\t.text"	/* instructions */
3049 #define DATA_SECTION_ASM_OP	"\t.data"	/* large data */
3050 
3051 #undef READONLY_DATA_SECTION_ASM_OP
3052 #define READONLY_DATA_SECTION_ASM_OP	"\t.rdata"	/* read-only data */
3053 
3054 #define ASM_OUTPUT_REG_PUSH(STREAM,REGNO)				\
3055 do									\
3056   {									\
3057     fprintf (STREAM, "\t%s\t%s,%s,-8\n\t%s\t%s,0(%s)\n",		\
3058 	     TARGET_64BIT ? "daddiu" : "addiu",				\
3059 	     reg_names[STACK_POINTER_REGNUM],				\
3060 	     reg_names[STACK_POINTER_REGNUM],				\
3061 	     TARGET_64BIT ? "sd" : "sw",				\
3062 	     reg_names[REGNO],						\
3063 	     reg_names[STACK_POINTER_REGNUM]);				\
3064   }									\
3065 while (0)
3066 
3067 #define ASM_OUTPUT_REG_POP(STREAM,REGNO)				\
3068 do									\
3069   {									\
3070     mips_push_asm_switch (&mips_noreorder);				\
3071     fprintf (STREAM, "\t%s\t%s,0(%s)\n\t%s\t%s,%s,8\n",			\
3072 	     TARGET_64BIT ? "ld" : "lw",				\
3073 	     reg_names[REGNO],						\
3074 	     reg_names[STACK_POINTER_REGNUM],				\
3075 	     TARGET_64BIT ? "daddu" : "addu",				\
3076 	     reg_names[STACK_POINTER_REGNUM],				\
3077 	     reg_names[STACK_POINTER_REGNUM]);				\
3078     mips_pop_asm_switch (&mips_noreorder);				\
3079   }									\
3080 while (0)
3081 
3082 /* How to start an assembler comment.
3083    The leading space is important (the mips native assembler requires it).  */
3084 #ifndef ASM_COMMENT_START
3085 #define ASM_COMMENT_START " #"
3086 #endif
3087 
3088 #undef SIZE_TYPE
3089 #define SIZE_TYPE (POINTER_SIZE == 64 ? "long unsigned int" : "unsigned int")
3090 
3091 #undef PTRDIFF_TYPE
3092 #define PTRDIFF_TYPE (POINTER_SIZE == 64 ? "long int" : "int")
3093 
3094 /* The minimum alignment of any expanded block move.  */
3095 #define MIPS_MIN_MOVE_MEM_ALIGN 16
3096 
3097 /* The maximum number of bytes that can be copied by one iteration of
3098    a cpymemsi loop; see mips_block_move_loop.  */
3099 #define MIPS_MAX_MOVE_BYTES_PER_LOOP_ITER \
3100   (UNITS_PER_WORD * 4)
3101 
3102 /* The maximum number of bytes that can be copied by a straight-line
3103    implementation of cpymemsi; see mips_block_move_straight.  We want
3104    to make sure that any loop-based implementation will iterate at
3105    least twice.  */
3106 #define MIPS_MAX_MOVE_BYTES_STRAIGHT \
3107   (MIPS_MAX_MOVE_BYTES_PER_LOOP_ITER * 2)
3108 
3109 /* The base cost of a memcpy call, for MOVE_RATIO and friends.  These
3110    values were determined experimentally by benchmarking with CSiBE.
3111    In theory, the call overhead is higher for TARGET_ABICALLS (especially
3112    for o32 where we have to restore $gp afterwards as well as make an
3113    indirect call), but in practice, bumping this up higher for
3114    TARGET_ABICALLS doesn't make much difference to code size.  */
3115 
3116 #define MIPS_CALL_RATIO 8
3117 
3118 /* Any loop-based implementation of cpymemsi will have at least
3119    MIPS_MAX_MOVE_BYTES_STRAIGHT / UNITS_PER_WORD memory-to-memory
3120    moves, so allow individual copies of fewer elements.
3121 
3122    When cpymemsi is not available, use a value approximating
3123    the length of a memcpy call sequence, so that move_by_pieces
3124    will generate inline code if it is shorter than a function call.
3125    Since move_by_pieces_ninsns counts memory-to-memory moves, but
3126    we'll have to generate a load/store pair for each, halve the
3127    value of MIPS_CALL_RATIO to take that into account.  */
3128 
3129 #define MOVE_RATIO(speed)				\
3130   (HAVE_cpymemsi					\
3131    ? MIPS_MAX_MOVE_BYTES_STRAIGHT / MOVE_MAX		\
3132    : MIPS_CALL_RATIO / 2)
3133 
3134 /* For CLEAR_RATIO, when optimizing for size, give a better estimate
3135    of the length of a memset call, but use the default otherwise.  */
3136 
3137 #define CLEAR_RATIO(speed)\
3138   ((speed) ? 15 : MIPS_CALL_RATIO)
3139 
3140 /* This is similar to CLEAR_RATIO, but for a non-zero constant, so when
3141    optimizing for size adjust the ratio to account for the overhead of
3142    loading the constant and replicating it across the word.  */
3143 
3144 #define SET_RATIO(speed) \
3145   ((speed) ? 15 : MIPS_CALL_RATIO - 2)
3146 
3147 /* Since the bits of the _init and _fini function is spread across
3148    many object files, each potentially with its own GP, we must assume
3149    we need to load our GP.  We don't preserve $gp or $ra, since each
3150    init/fini chunk is supposed to initialize $gp, and crti/crtn
3151    already take care of preserving $ra and, when appropriate, $gp.  */
3152 #if (defined _ABIO32 && _MIPS_SIM == _ABIO32)
3153 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC)	\
3154    asm (SECTION_OP "\n\
3155 	.set push\n\
3156 	.set nomips16\n\
3157 	.set noreorder\n\
3158 	bal 1f\n\
3159 	nop\n\
3160 1:	.cpload $31\n\
3161 	.set reorder\n\
3162 	la $25, " USER_LABEL_PREFIX #FUNC "\n\
3163 	jalr $25\n\
3164 	.set pop\n\
3165 	" TEXT_SECTION_ASM_OP);
3166 #elif (defined _ABIN32 && _MIPS_SIM == _ABIN32)
3167 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC)	\
3168    asm (SECTION_OP "\n\
3169 	.set push\n\
3170 	.set nomips16\n\
3171 	.set noreorder\n\
3172 	bal 1f\n\
3173 	nop\n\
3174 1:	.set reorder\n\
3175 	.cpsetup $31, $2, 1b\n\
3176 	la $25, " USER_LABEL_PREFIX #FUNC "\n\
3177 	jalr $25\n\
3178 	.set pop\n\
3179 	" TEXT_SECTION_ASM_OP);
3180 #elif (defined _ABI64 && _MIPS_SIM == _ABI64)
3181 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC)	\
3182    asm (SECTION_OP "\n\
3183 	.set push\n\
3184 	.set nomips16\n\
3185 	.set noreorder\n\
3186 	bal 1f\n\
3187 	nop\n\
3188 1:	.set reorder\n\
3189 	.cpsetup $31, $2, 1b\n\
3190 	dla $25, " USER_LABEL_PREFIX #FUNC "\n\
3191 	jalr $25\n\
3192 	.set pop\n\
3193 	" TEXT_SECTION_ASM_OP);
3194 #endif
3195 
3196 #ifndef HAVE_AS_TLS
3197 #define HAVE_AS_TLS 0
3198 #endif
3199 
3200 #ifndef HAVE_AS_NAN
3201 #define HAVE_AS_NAN 0
3202 #endif
3203 
3204 #ifndef USED_FOR_TARGET
3205 /* Information about ".set noFOO; ...; .set FOO" blocks.  */
3206 struct mips_asm_switch {
3207   /* The FOO in the description above.  */
3208   const char *name;
3209 
3210   /* The current block nesting level, or 0 if we aren't in a block.  */
3211   int nesting_level;
3212 };
3213 
3214 extern const enum reg_class mips_regno_to_class[];
3215 extern const char *current_function_file; /* filename current function is in */
3216 extern int num_source_filenames;	/* current .file # */
3217 extern struct mips_asm_switch mips_noreorder;
3218 extern struct mips_asm_switch mips_nomacro;
3219 extern struct mips_asm_switch mips_noat;
3220 extern int mips_dbx_regno[];
3221 extern int mips_dwarf_regno[];
3222 extern bool mips_split_p[];
3223 extern bool mips_split_hi_p[];
3224 extern bool mips_use_pcrel_pool_p[];
3225 extern const char *mips_lo_relocs[];
3226 extern const char *mips_hi_relocs[];
3227 extern enum processor mips_arch;        /* which cpu to codegen for */
3228 extern enum processor mips_tune;        /* which cpu to schedule for */
3229 extern int mips_isa;			/* architectural level */
3230 extern int mips_isa_rev;
3231 extern const struct mips_cpu_info *mips_arch_info;
3232 extern const struct mips_cpu_info *mips_tune_info;
3233 extern unsigned int mips_base_compression_flags;
3234 extern GTY(()) struct target_globals *mips16_globals;
3235 extern GTY(()) struct target_globals *micromips_globals;
3236 
3237 /* Information about a function's frame layout.  */
3238 struct GTY(())  mips_frame_info {
3239   /* The size of the frame in bytes.  */
3240   HOST_WIDE_INT total_size;
3241 
3242   /* The number of bytes allocated to variables.  */
3243   HOST_WIDE_INT var_size;
3244 
3245   /* The number of bytes allocated to outgoing function arguments.  */
3246   HOST_WIDE_INT args_size;
3247 
3248   /* The number of bytes allocated to the .cprestore slot, or 0 if there
3249      is no such slot.  */
3250   HOST_WIDE_INT cprestore_size;
3251 
3252   /* Bit X is set if the function saves or restores GPR X.  */
3253   unsigned int mask;
3254 
3255   /* Likewise FPR X.  */
3256   unsigned int fmask;
3257 
3258   /* Likewise doubleword accumulator X ($acX).  */
3259   unsigned int acc_mask;
3260 
3261   /* The number of GPRs, FPRs, doubleword accumulators and COP0
3262      registers saved.  */
3263   unsigned int num_gp;
3264   unsigned int num_fp;
3265   unsigned int num_acc;
3266   unsigned int num_cop0_regs;
3267 
3268   /* The offset of the topmost GPR, FPR, accumulator and COP0-register
3269      save slots from the top of the frame, or zero if no such slots are
3270      needed.  */
3271   HOST_WIDE_INT gp_save_offset;
3272   HOST_WIDE_INT fp_save_offset;
3273   HOST_WIDE_INT acc_save_offset;
3274   HOST_WIDE_INT cop0_save_offset;
3275 
3276   /* Likewise, but giving offsets from the bottom of the frame.  */
3277   HOST_WIDE_INT gp_sp_offset;
3278   HOST_WIDE_INT fp_sp_offset;
3279   HOST_WIDE_INT acc_sp_offset;
3280   HOST_WIDE_INT cop0_sp_offset;
3281 
3282   /* Similar, but the value passed to _mcount.  */
3283   HOST_WIDE_INT ra_fp_offset;
3284 
3285   /* The offset of arg_pointer_rtx from the bottom of the frame.  */
3286   HOST_WIDE_INT arg_pointer_offset;
3287 
3288   /* The offset of hard_frame_pointer_rtx from the bottom of the frame.  */
3289   HOST_WIDE_INT hard_frame_pointer_offset;
3290 };
3291 
3292 /* Enumeration for masked vectored (VI) and non-masked (EIC) interrupts.  */
3293 enum mips_int_mask
3294 {
3295   INT_MASK_EIC = -1,
3296   INT_MASK_SW0 = 0,
3297   INT_MASK_SW1 = 1,
3298   INT_MASK_HW0 = 2,
3299   INT_MASK_HW1 = 3,
3300   INT_MASK_HW2 = 4,
3301   INT_MASK_HW3 = 5,
3302   INT_MASK_HW4 = 6,
3303   INT_MASK_HW5 = 7
3304 };
3305 
3306 /* Enumeration to mark the existence of the shadow register set.
3307    SHADOW_SET_INTSTACK indicates a shadow register set with a valid stack
3308    pointer.  */
3309 enum mips_shadow_set
3310 {
3311   SHADOW_SET_NO,
3312   SHADOW_SET_YES,
3313   SHADOW_SET_INTSTACK
3314 };
3315 
3316 struct GTY(())  machine_function {
3317   /* The next floating-point condition-code register to allocate
3318      for ISA_HAS_8CC targets, relative to ST_REG_FIRST.  */
3319   unsigned int next_fcc;
3320 
3321   /* The register returned by mips16_gp_pseudo_reg; see there for details.  */
3322   rtx mips16_gp_pseudo_rtx;
3323 
3324   /* The number of extra stack bytes taken up by register varargs.
3325      This area is allocated by the callee at the very top of the frame.  */
3326   int varargs_size;
3327 
3328   /* The current frame information, calculated by mips_compute_frame_info.  */
3329   struct mips_frame_info frame;
3330 
3331   /* The register to use as the function's global pointer, or INVALID_REGNUM
3332      if the function doesn't need one.  */
3333   unsigned int global_pointer;
3334 
3335   /* How many instructions it takes to load a label into $AT, or 0 if
3336      this property hasn't yet been calculated.  */
3337   unsigned int load_label_num_insns;
3338 
3339   /* True if mips_adjust_insn_length should ignore an instruction's
3340      hazard attribute.  */
3341   bool ignore_hazard_length_p;
3342 
3343   /* True if the whole function is suitable for .set noreorder and
3344      .set nomacro.  */
3345   bool all_noreorder_p;
3346 
3347   /* True if the function has "inflexible" and "flexible" references
3348      to the global pointer.  See mips_cfun_has_inflexible_gp_ref_p
3349      and mips_cfun_has_flexible_gp_ref_p for details.  */
3350   bool has_inflexible_gp_insn_p;
3351   bool has_flexible_gp_insn_p;
3352 
3353   /* True if the function's prologue must load the global pointer
3354      value into pic_offset_table_rtx and store the same value in
3355      the function's cprestore slot (if any).  Even if this value
3356      is currently false, we may decide to set it to true later;
3357      see mips_must_initialize_gp_p () for details.  */
3358   bool must_initialize_gp_p;
3359 
3360   /* True if the current function must restore $gp after any potential
3361      clobber.  This value is only meaningful during the first post-epilogue
3362      split_insns pass; see mips_must_initialize_gp_p () for details.  */
3363   bool must_restore_gp_when_clobbered_p;
3364 
3365   /* True if this is an interrupt handler.  */
3366   bool interrupt_handler_p;
3367 
3368   /* Records the way in which interrupts should be masked.  Only used if
3369      interrupts are not kept masked.  */
3370   enum mips_int_mask int_mask;
3371 
3372   /* Records if this is an interrupt handler that uses shadow registers.  */
3373   enum mips_shadow_set use_shadow_register_set;
3374 
3375   /* True if this is an interrupt handler that should keep interrupts
3376      masked.  */
3377   bool keep_interrupts_masked_p;
3378 
3379   /* True if this is an interrupt handler that should use DERET
3380      instead of ERET.  */
3381   bool use_debug_exception_return_p;
3382 
3383   /* True if at least one of the formal parameters to a function must be
3384      written to the frame header (probably so its address can be taken).  */
3385   bool does_not_use_frame_header;
3386 
3387   /* True if none of the functions that are called by this function need
3388      stack space allocated for their arguments.  */
3389   bool optimize_call_stack;
3390 
3391   /* True if one of the functions calling this function may not allocate
3392      a frame header.  */
3393   bool callers_may_not_allocate_frame;
3394 
3395   /* True if GCC stored callee saved registers in the frame header.  */
3396   bool use_frame_header_for_callee_saved_regs;
3397 };
3398 #endif
3399 
3400 /* Enable querying of DFA units.  */
3401 #define CPU_UNITS_QUERY 1
3402 
3403 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS)	\
3404   mips_final_prescan_insn (INSN, OPVEC, NOPERANDS)
3405 
3406 /* As on most targets, we want the .eh_frame section to be read-only where
3407    possible.  And as on most targets, this means two things:
3408 
3409      (a) Non-locally-binding pointers must have an indirect encoding,
3410 	 so that the addresses in the .eh_frame section itself become
3411 	 locally-binding.
3412 
3413      (b) A shared library's .eh_frame section must encode locally-binding
3414 	 pointers in a relative (relocation-free) form.
3415 
3416    However, MIPS has traditionally not allowed directives like:
3417 
3418 	.long	x-.
3419 
3420    in cases where "x" is in a different section, or is not defined in the
3421    same assembly file.  We are therefore unable to emit the PC-relative
3422    form required by (b) at assembly time.
3423 
3424    Fortunately, the linker is able to convert absolute addresses into
3425    PC-relative addresses on our behalf.  Unfortunately, only certain
3426    versions of the linker know how to do this for indirect pointers,
3427    and for personality data.  We must fall back on using writable
3428    .eh_frame sections for shared libraries if the linker does not
3429    support this feature.  */
3430 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
3431   (((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_absptr)
3432 
3433 /* For switching between MIPS16 and non-MIPS16 modes.  */
3434 #define SWITCHABLE_TARGET 1
3435 
3436 /* Several named MIPS patterns depend on Pmode.  These patterns have the
3437    form <NAME>_si for Pmode == SImode and <NAME>_di for Pmode == DImode.
3438    Add the appropriate suffix to generator function NAME and invoke it
3439    with arguments ARGS.  */
3440 #define PMODE_INSN(NAME, ARGS) \
3441   (Pmode == SImode ? NAME ## _si ARGS : NAME ## _di ARGS)
3442 
3443 /* If we are *not* using multilibs and the default ABI is not ABI_32 we
3444    need to change these from /lib and /usr/lib.  */
3445 #if MIPS_ABI_DEFAULT == ABI_N32
3446 #define STANDARD_STARTFILE_PREFIX_1 "/lib32/"
3447 #define STANDARD_STARTFILE_PREFIX_2 "/usr/lib32/"
3448 #elif MIPS_ABI_DEFAULT == ABI_64
3449 #define STANDARD_STARTFILE_PREFIX_1 "/lib64/"
3450 #define STANDARD_STARTFILE_PREFIX_2 "/usr/lib64/"
3451 #endif
3452 
3453 /* Load store bonding is not supported by micromips and fix_24k.  The
3454    performance can be degraded for those targets.  Hence, do not bond for
3455    micromips or fix_24k.  */
3456 #define ENABLE_LD_ST_PAIRS \
3457   (TARGET_LOAD_STORE_PAIRS \
3458    && (TUNE_P5600 || TUNE_I6400 || TUNE_P6600) \
3459    && !TARGET_MICROMIPS && !TARGET_FIX_24K)
3460 
3461 #define NEED_INDICATE_EXEC_STACK 0
3462 
3463 /* Define the shadow offset for asan. Other OS's can override in the
3464    respective tm.h files.  */
3465 #ifndef SUBTARGET_SHADOW_OFFSET
3466 #define SUBTARGET_SHADOW_OFFSET \
3467   (POINTER_SIZE == 64 ? HOST_WIDE_INT_1 << 37 : HOST_WIDE_INT_C (0x0aaa0000))
3468 #endif
3469