xref: /openbsd-src/gnu/usr.bin/gcc/gcc/config/ns32k/ns32k.h (revision c87b03e512fc05ed6e0222f6fb0ae86264b1d05b)
1 /* Definitions of target machine for GNU compiler.  NS32000 version.
2    Copyright (C) 1988, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3    2001, 2002 Free Software Foundation, Inc.
4    Contributed by Michael Tiemann (tiemann@cygnus.com)
5 
6 This file is part of GNU CC.
7 
8 GNU CC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12 
13 GNU CC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 GNU General Public License for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with GNU CC; see the file COPYING.  If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA.  */
22 
23 
24 #define TARGET_CPU_CPP_BUILTINS()			\
25   do							\
26     {							\
27       builtin_define ("__ns32000__");			\
28 							\
29       /* CPU type */					\
30       if (TARGET_32532)					\
31 	builtin_define ("__ns32532__");			\
32       else if (TARGET_32332)				\
33 	builtin_define ("__ns32332__");			\
34       else						\
35 	builtin_define ("__ns32032__");			\
36 							\
37       /* FPU type */					\
38       if (TARGET_32381)					\
39 	builtin_define ("__ns32381__");			\
40       else if (TARGET_32081)				\
41 	builtin_define ("__ns32081__");			\
42 							\
43       /* Misc. */					\
44       if (TARGET_RTD)					\
45 	builtin_define ("__RTD__");			\
46 							\
47       builtin_assert ("cpu=ns32k");			\
48       builtin_assert ("machine=ns32k");			\
49     }							\
50   while (0)
51 
52 /* Print subsidiary information on the compiler version in use.  */
53 #define TARGET_VERSION fprintf (stderr, " (32000, GAS syntax)");
54 
55 
56 /* ABSOLUTE PREFIX, IMMEDIATE_PREFIX and EXTERNAL_PREFIX can be defined
57    to cover most NS32k addressing syntax variations.  This way we don't
58    need to redefine long macros in all the tm.h files for just slight
59    variations in assembler syntax. */
60 
61 #ifndef ABSOLUTE_PREFIX
62 #define ABSOLUTE_PREFIX '@'
63 #endif
64 
65 #if defined(IMMEDIATE_PREFIX) && IMMEDIATE_PREFIX
66 #define PUT_IMMEDIATE_PREFIX(FILE) putc(IMMEDIATE_PREFIX, FILE)
67 #else
68 #define PUT_IMMEDIATE_PREFIX(FILE)
69 #endif
70 #if defined(ABSOLUTE_PREFIX) && ABSOLUTE_PREFIX
71 #define PUT_ABSOLUTE_PREFIX(FILE) putc(ABSOLUTE_PREFIX, FILE)
72 #else
73 #define PUT_ABSOLUTE_PREFIX(FILE)
74 #endif
75 #if defined(EXTERNAL_PREFIX) && EXTERNAL_PREFIX
76 #define PUT_EXTERNAL_PREFIX(FILE) putc(EXTERNAL_PREFIX, FILE)
77 #else
78 #define PUT_EXTERNAL_PREFIX(FILE)
79 #endif
80 
81 /* Run-time compilation parameters selecting different hardware subsets.  */
82 
83 extern int target_flags;
84 
85 /* Masks for target_flags */
86 #define MASK_32081		1
87 #define MASK_RTD		2
88 #define MASK_REGPARM		4
89 #define MASK_32532		8
90 #define MASK_32332		16
91 #define MASK_NO_SB		32
92 #define MASK_NO_BITFIELD	64
93 #define MASK_HIMEM		128
94 #define MASK_32381		256
95 #define MASK_MULT_ADD		512
96 #define MASK_SRC		1024
97 #define MASK_IEEE_COMPARE 2048
98 
99 /* Macros used in the machine description to test the flags.  */
100 
101 /* Compile 32081 insns for floating point (not library calls). */
102 #define TARGET_32081 (target_flags & MASK_32081)
103 #define TARGET_32381 (target_flags & MASK_32381)
104 
105 /* The use of multiply-add instructions is optional because there may
106  * be cases where it produces worse code.
107  */
108 
109 #define TARGET_MULT_ADD (target_flags & MASK_MULT_ADD)
110 
111 /* Compile using rtd insn calling sequence.
112    This will not work unless you use prototypes at least
113    for all functions that can take varying numbers of args.  */
114 #define TARGET_RTD (target_flags & MASK_RTD)
115 
116 /* Compile passing first two args in regs 0 and 1.  */
117 #define TARGET_REGPARM (target_flags & MASK_REGPARM)
118 
119 /* Options to select type of CPU, for better optimization.
120    The output is correct for any kind of 32000 regardless of these options.  */
121 #define TARGET_32532 (target_flags & MASK_32532)
122 #define TARGET_32332 (target_flags & MASK_32332)
123 
124 /* Ok to use the static base register (and presume it's 0) */
125 #define TARGET_SB    ((target_flags & MASK_NO_SB) == 0)
126 
127 #define TARGET_HIMEM (target_flags & MASK_HIMEM)
128 
129 /* Compile using bit-field insns.  */
130 #define TARGET_BITFIELD ((target_flags & MASK_NO_BITFIELD) == 0)
131 
132 #define TARGET_IEEE_COMPARE (target_flags & MASK_IEEE_COMPARE)
133 
134 /* Macro to define tables used to set the flags.
135    This is a list in braces of pairs in braces,
136    each pair being { "NAME", VALUE }
137    where VALUE is the bits to set or minus the bits to clear.
138    An empty string NAME is used to identify the default VALUE.  */
139 #define TARGET_SWITCHES							\
140   { { "32081", MASK_32081, N_("Use hardware fp")},			\
141     { "soft-float", -(MASK_32081|MASK_32381),				\
142       N_("Don't use hardware fp")},					\
143     { "rtd", MASK_RTD, N_("Alternative calling convention")},		\
144     { "nortd", -MASK_RTD, N_("Use normal calling convention")},		\
145     { "regparm", MASK_REGPARM, N_("Pass some arguments in registers")},	\
146     { "noregparm", -MASK_REGPARM, N_("Pass all arguments on stack")},	\
147     { "32532", MASK_32532|MASK_32332, N_("Optimize for 32532 cpu")},	\
148     { "32332", MASK_32332, N_("Optimize for 32332 cpu")},		\
149     { "32332", -MASK_32532, 0},						\
150     { "32032", -(MASK_32532|MASK_32332), N_("Optimize for 32032")},	\
151     { "sb", -MASK_NO_SB,						\
152       N_("Register sb is zero. Use for absolute addressing")},		\
153     { "nosb", MASK_NO_SB, N_("Do not use register sb")},		\
154     { "bitfield", -MASK_NO_BITFIELD,					\
155       N_("Use bit-field instructions")},				\
156     { "nobitfield", MASK_NO_BITFIELD,					\
157       N_("Do not use bit-field instructions")},				\
158     { "himem", MASK_HIMEM, N_("Generate code for high memory")},	\
159     { "nohimem", -MASK_HIMEM, N_("Generate code for low memory")},	\
160     { "32381", MASK_32381, N_("32381 fpu")},				\
161     { "mult-add", MASK_MULT_ADD,					\
162       N_("Use multiply-accumulate fp instructions")},			\
163     { "nomult-add", -MASK_MULT_ADD,					\
164       N_("Do not use multiply-accumulate fp instructions") },		\
165     { "src", MASK_SRC, N_("\"Small register classes\" kludge")},	\
166     { "nosrc", -MASK_SRC, N_("No \"Small register classes\" kludge")},	\
167     { "ieee-compare", MASK_IEEE_COMPARE, N_("Use IEEE math for fp comparisons")},	\
168     { "noieee-compare", -MASK_IEEE_COMPARE,					\
169       N_("Do not use IEEE math for fp comparisons")},			\
170     { "", TARGET_DEFAULT, 0}}
171 
172 /* TARGET_DEFAULT is defined in encore.h, pc532.h, etc.  */
173 
174 /* When we are generating PIC, the sb is used as a pointer
175    to the GOT. 32381 is a superset of 32081  */
176 
177 #define OVERRIDE_OPTIONS			\
178 {						\
179   if (target_flags & MASK_32532)		\
180     target_flags |= MASK_32332; 		\
181   if (flag_pic || TARGET_HIMEM)			\
182     target_flags |= MASK_NO_SB;			\
183   if (TARGET_32381)				\
184     target_flags |= MASK_32081;			\
185   else						\
186     target_flags &= ~MASK_MULT_ADD;		\
187   if (flag_unsafe_math_optimizations)		\
188      target_flags &= ~MASK_IEEE_COMPARE;		\
189 }
190 
191 /* Zero or more C statements that may conditionally modify two
192    variables `fixed_regs' and `call_used_regs' (both of type `char
193    []') after they have been initialized from the two preceding
194    macros.
195 
196    This is necessary in case the fixed or call-clobbered registers
197    depend on target flags.
198 
199    You need not define this macro if it has no work to do.
200 
201    If the usage of an entire class of registers depends on the target
202    flags, you may indicate this to GCC by using this macro to modify
203    `fixed_regs' and `call_used_regs' to 1 for each of the registers in
204    the classes which should not be used by GCC.  Also define the macro
205    `REG_CLASS_FROM_LETTER' to return `NO_REGS' if it is called with a
206    letter for a class that shouldn't be used.
207 
208    (However, if this class is not included in `GENERAL_REGS' and all
209    of the insn patterns whose constraints permit this class are
210    controlled by target switches, then GCC will automatically avoid
211    using these registers when the target switches are opposed to
212    them.)  */
213 
214 #define CONDITIONAL_REGISTER_USAGE					\
215 do									\
216   {									\
217     if (!TARGET_32081)						\
218       {									\
219 	int regno;							\
220 									\
221 	for (regno = F0_REGNUM; regno <= F0_REGNUM + 8; regno++)	\
222 	  fixed_regs[regno] = call_used_regs[regno] = 1;		\
223       }									\
224     if (!TARGET_32381)						\
225       {									\
226 	int regno;							\
227 									\
228 	for (regno = L1_REGNUM; regno <= L1_REGNUM + 8; regno++)	\
229 	  fixed_regs[regno] = call_used_regs[regno] = 1;		\
230       }									\
231   }									\
232 while (0)
233 
234 
235 /* target machine storage layout */
236 
237 /* Define this if most significant bit is lowest numbered
238    in instructions that operate on numbered bit-fields.
239    This is not true on the ns32k.  */
240 #define BITS_BIG_ENDIAN 0
241 
242 /* Define this if most significant byte of a word is the lowest numbered.  */
243 /* That is not true on the ns32k.  */
244 #define BYTES_BIG_ENDIAN 0
245 
246 /* Define this if most significant word of a multiword number is lowest
247    numbered. This is not true on the ns32k.  */
248 #define WORDS_BIG_ENDIAN 0
249 
250 /* Width of a word, in units (bytes).  */
251 #define UNITS_PER_WORD 4
252 
253 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
254 #define PARM_BOUNDARY 32
255 
256 /* Boundary (in *bits*) on which stack pointer should be aligned.  */
257 #define STACK_BOUNDARY 32
258 
259 /* Allocation boundary (in *bits*) for the code of a function.  */
260 #define FUNCTION_BOUNDARY 16
261 
262 /* Alignment of field after `int : 0' in a structure.  */
263 #define EMPTY_FIELD_BOUNDARY 32
264 
265 /* Every structure's size must be a multiple of this.  */
266 #define STRUCTURE_SIZE_BOUNDARY 8
267 
268 /* No data type wants to be aligned rounder than this.  */
269 #define BIGGEST_ALIGNMENT 32
270 
271 /* Set this nonzero if move instructions will actually fail to work
272    when given unaligned data.  National claims that the NS32032
273    works without strict alignment, but rumor has it that operands
274    crossing a page boundary cause unpredictable results.  */
275 #define STRICT_ALIGNMENT 1
276 
277 /* If bit field type is int, don't let it cross an int,
278    and give entire struct the alignment of an int.  */
279 /* Required on the 386 since it doesn't have a full set of bit-field insns.
280    (There is no signed extv insn.)  */
281 #define PCC_BITFIELD_TYPE_MATTERS 1
282 
283 /* Standard register usage.  */
284 
285 /* Number of actual hardware registers.
286    The hardware registers are assigned numbers for the compiler
287    from 0 to just below FIRST_PSEUDO_REGISTER.
288    All registers that the compiler knows about must be given numbers,
289    even those that are not normally considered general registers.  */
290 #define FIRST_PSEUDO_REGISTER 26
291 
292 /* 1 for registers that have pervasive standard uses
293    and are not available for the register allocator.
294    On the ns32k, these are the FP, SP, (SB and PC are not included here).  */
295 #define FIXED_REGISTERS {0, 0, 0, 0, 0, 0, 0, 0, \
296 			 0, 0, 0, 0, 0, 0, 0, 0, \
297                          0, 0, 0, 0, 0, 0, 0, 0, \
298 			 1, 1}
299 
300 /* 1 for registers not available across function calls.
301    These must include the FIXED_REGISTERS and also any
302    registers that can be used without being saved.
303    The latter must include the registers where values are returned
304    and the register where structure-value addresses are passed.
305    Aside from that, you can include as many other registers as you like.  */
306 #define CALL_USED_REGISTERS {1, 1, 1, 0, 0, 0, 0, 0, \
307 			     1, 1, 1, 1, 0, 0, 0, 0, \
308 			     1, 1, 0, 0, 0, 0, 0, 0, \
309 			     1, 1}
310 
311 /* How to refer to registers in assembler output.
312    This sequence is indexed by compiler's hard-register-number (see above).  */
313 
314 #define REGISTER_NAMES \
315 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
316  "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
317  "l1", "l1h","l3", "l3h","l5", "l5h","l7", "l7h", \
318  "fp", "sp"}
319 
320 
321 #define ADDITIONAL_REGISTER_NAMES \
322 {{"l0", 8}, {"l2", 10}, {"l4", 12}, {"l6", 14}}
323 
324 /* l0-7 are not recognized by the assembler. These are the names to use,
325  * but we don't want ambiguous names in REGISTER_NAMES
326  */
327 #define OUTPUT_REGISTER_NAMES \
328 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
329  "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
330  "f1", "l1h","f3", "l3h","f5", "l5h","f7", "f7h", \
331  "fp", "sp"}
332 
333 #define REG_ALLOC_ORDER \
334 {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 16, 10, 11, 18, 12, 13, 20, 14, 15, 22, 24, 25, 17, 19, 23}
335 
336 /* How to renumber registers for dbx and gdb.
337    NS32000 may need more change in the numeration. XXX */
338 
339 #define DBX_REGISTER_NUMBER(REGNO) \
340   ((REGNO) < L1_REGNUM? (REGNO) \
341    : (REGNO) < FRAME_POINTER_REGNUM? (REGNO) - L1_REGNUM + 22 \
342    : (REGNO) == FRAME_POINTER_REGNUM? 17 \
343    : 16)
344 
345 /* dwarf2out.c can't understand the funny DBX register numbering.
346  * We use dwarf2out.c for exception handling even though we use DBX
347  * for debugging
348  */
349 #define DWARF_FRAME_REGNUM(REGNO) (REGNO)
350 
351 
352 
353 #define R0_REGNUM 0
354 #define F0_REGNUM 8
355 #define L1_REGNUM 16
356 
357 /* Specify the registers used for certain standard purposes.
358    The values of these macros are register numbers.  */
359 
360 /* NS32000 pc is not overloaded on a register.  */
361 /* #define PC_REGNUM */
362 
363 /* Register to use for pushing function arguments. */
364 #define STACK_POINTER_REGNUM 25
365 
366 /* Base register for access to local variables of the function. */
367 #define FRAME_POINTER_REGNUM 24
368 
369 
370 /* Return number of consecutive hard regs needed starting at reg REGNO
371    to hold something of mode MODE.
372    This is ordinarily the length in words of a value of mode MODE
373    but can be less for certain modes in special long registers.
374    On the ns32k, all registers are 32 bits long except for the 32381 "long"
375    registers but we treat those as pairs  */
376 #define LONG_FP_REGS_P(REGNO) ((REGNO) >= L1_REGNUM && (REGNO) < L1_REGNUM + 8)
377 #define HARD_REGNO_NREGS(REGNO, MODE)   \
378  ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
379 
380 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
381 #define HARD_REGNO_MODE_OK(REGNO, MODE) hard_regno_mode_ok (REGNO, MODE)
382 
383 /* Value is 1 if it is a good idea to tie two pseudo registers
384    when one has mode MODE1 and one has mode MODE2.
385    If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
386    for any hard reg, then this must be 0 for correct output.
387 
388    Early documentation says SI and DI are not tieable if some reg can
389    be OK for SI but not for DI. However other ports (mips, i860, mvs
390    and tahoe) don't meet the above criterion. Evidently the real
391    requirement is somewhat laxer. Documentation was changed for gcc
392    2.8 but was not picked up by egcs (at least egcs 1.0). Having all
393    integer modes tieable definitely generates faster code. */
394 
395 #define MODES_TIEABLE_P(MODE1, MODE2)					\
396   ((FLOAT_MODE_P(MODE1) && FLOAT_MODE_P(MODE2)				\
397     && (GET_MODE_UNIT_SIZE(MODE1) == GET_MODE_UNIT_SIZE(MODE2)))	\
398    || (!FLOAT_MODE_P(MODE1) && !FLOAT_MODE_P(MODE2)))
399 
400 /* Value should be nonzero if functions must have frame pointers.
401    Zero means the frame pointer need not be set up (and parms
402    may be accessed via the stack pointer) in functions that seem suitable.
403    This is computed in `reload', in reload1.c.  */
404 #define FRAME_POINTER_REQUIRED 0
405 
406 /* Base register for access to arguments of the function.  */
407 #define ARG_POINTER_REGNUM 24
408 
409 /* Register in which static-chain is passed to a function.  */
410 #define STATIC_CHAIN_REGNUM 1
411 
412 /* Register in which address to store a structure value
413    is passed to a function.  */
414 #define STRUCT_VALUE_REGNUM 2
415 
416 /* Define the classes of registers for register constraints in the
417    machine description.  Also define ranges of constants.
418 
419    One of the classes must always be named ALL_REGS and include all hard regs.
420    If there is more than one class, another class must be named NO_REGS
421    and contain no registers.
422 
423    The name GENERAL_REGS must be the name of a class (or an alias for
424    another name such as ALL_REGS).  This is the class of registers
425    that is allowed by "g" or "r" in a register constraint.
426    Also, registers outside this class are allocated only when
427    instructions express preferences for them.
428 
429    The classes must be numbered in nondecreasing order; that is,
430    a larger-numbered class must never be contained completely
431    in a smaller-numbered class.
432 
433    For any two classes, it is very desirable that there be another
434    class that represents their union.  */
435 
436 enum reg_class
437 { NO_REGS, GENERAL_REGS, FLOAT_REG0, LONG_FLOAT_REG0, FLOAT_REGS,
438   FP_REGS, GEN_AND_FP_REGS, FRAME_POINTER_REG, STACK_POINTER_REG,
439   GEN_AND_MEM_REGS, ALL_REGS, LIM_REG_CLASSES };
440 
441 #define N_REG_CLASSES (int) LIM_REG_CLASSES
442 
443 /* Give names of register classes as strings for dump file.   */
444 
445 #define REG_CLASS_NAMES \
446  {"NO_REGS", "GENERAL_REGS", "FLOAT_REG0", "LONG_FLOAT_REG0", "FLOAT_REGS", \
447   "FP_REGS", "GEN_AND_FP_REGS", "FRAME_POINTER_REG", "STACK_POINTER_REG", \
448   "GEN_AND_MEM_REGS", "ALL_REGS" }
449 
450 /* Define which registers fit in which classes.
451    This is an initializer for a vector of HARD_REG_SET
452    of length N_REG_CLASSES.  */
453 
454 #define REG_CLASS_CONTENTS				\
455 	{{0},			/* NO_REGS */		\
456 	 {0x00ff},		/* GENERAL_REGS */	\
457 	 {0x100},		/* FLOAT_REG0 */	\
458 	 {0x300},		/* LONG_FLOAT_REG0 */	\
459 	 {0xff00},		/* FLOAT_REGS */	\
460          {0xffff00},		/* FP_REGS */		\
461          {0xffffff},		/* GEN_AND_FP_REGS */	\
462          {0x1000000},		/* FRAME_POINTER_REG */	\
463          {0x2000000},		/* STACK_POINTER_REG */	\
464          {0x30000ff},		/* GEN_AND_MEM_REGS */	\
465 	 {0x3ffffff}		/* ALL_REGS */		\
466 	}
467 
468 #define SUBSET_P(CLASS1, CLASS2)			\
469    ((ns32k_reg_class_contents[CLASS1][0]		\
470      & ~ns32k_reg_class_contents[CLASS2][0]) == 0)
471 
472 /* The same information, inverted:
473    Return the class number of the smallest class containing
474    reg number REGNO.  This could be a conditional expression
475    or could index an array.  */
476 
477 #define REGNO_REG_CLASS(REGNO)  (regclass_map[REGNO])
478 
479 /* The class value for index registers, and the one for base regs.  */
480 
481 #define INDEX_REG_CLASS GENERAL_REGS
482 #define BASE_REG_CLASS  GEN_AND_MEM_REGS
483 
484 /* Get reg_class from a letter such as appears in the machine description.  */
485 
486 #define REG_CLASS_FROM_LETTER(C)		\
487  ((C) == 'u' ? FLOAT_REG0			\
488   : (C) == 'v' ? LONG_FLOAT_REG0		\
489   : (C) == 'f' ? FLOAT_REGS			\
490   : (C) == 'l' ? FP_REGS			\
491   : (C) == 'x' ? FRAME_POINTER_REG		\
492   : (C) == 'y' ? STACK_POINTER_REG		\
493   : NO_REGS)
494 
495 /* The letters I, J, K, L and M in a register constraint string
496    can be used to stand for particular ranges of immediate operands.
497    This macro defines what the ranges are.
498    C is the letter, and VALUE is a constant value.
499    Return 1 if VALUE is in the range specified by C.
500 
501    On the ns32k, these letters are used as follows:
502 
503    I : Matches integers which are valid shift amounts for scaled indexing.
504        These are 0, 1, 2, 3 for byte, word, double, and quadword.
505        Used for matching arithmetic shifts only on 32032 & 32332.
506    J : Matches integers which fit a "quick" operand.
507    K : Matches integers 0 to 7 (for inss and exts instructions).
508   */
509 
510 #define CONST_OK_FOR_LETTER_P(VALUE, C)  \
511   ((VALUE) < 8 && (VALUE) + 8 >= 0 ?		\
512    ((C) == 'I' ? (!TARGET_32532 && 0 <= (VALUE) && (VALUE) <= 3) : \
513     (C) == 'J' ? (VALUE) <= 7 :			\
514     (C) == 'K' ? 0 <= (VALUE) : 0) : 0)
515 
516 /* Similar, but for floating constants, and defining letters G and H.
517    Here VALUE is the CONST_DOUBLE rtx itself.  */
518 
519 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 1
520 
521 /* Given an rtx X being reloaded into a reg required to be
522    in class CLASS, return the class of reg to actually use.
523    In general this is just CLASS; but on some machines
524    in some cases it is preferable to use a more restrictive class.  */
525 
526 /* We return GENERAL_REGS instead of GEN_AND_MEM_REGS.
527    The latter offers no real additional possibilities
528    and can cause spurious secondary reloading.  */
529 
530 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
531  ((CLASS) == GEN_AND_MEM_REGS ? GENERAL_REGS : (CLASS))
532 
533 /* Return the maximum number of consecutive registers
534    needed to represent mode MODE in a register of class CLASS.  */
535 /* On the 32000, this is the size of MODE in words */
536 
537 #define CLASS_MAX_NREGS(CLASS, MODE) \
538   ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
539 
540 /* Stack layout; function entry, exit and calling.  */
541 
542 /* Define this if pushing a word on the stack
543    makes the stack pointer a smaller address.  */
544 #define STACK_GROWS_DOWNWARD
545 
546 /* Define this if the nominal address of the stack frame
547    is at the high-address end of the local variables;
548    that is, each additional local variable allocated
549    goes at a more negative offset in the frame.  */
550 #define FRAME_GROWS_DOWNWARD
551 
552 /* Offset within stack frame to start allocating local variables at.
553    If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
554    first local allocated.  Otherwise, it is the offset to the BEGINNING
555    of the first local allocated.  */
556 #define STARTING_FRAME_OFFSET 0
557 
558 /* A C expression whose value is RTL representing the location of the
559    incoming return address at the beginning of any function, before
560    the prologue.  This RTL is either a `REG', indicating that the
561    return value is saved in `REG', or a `MEM' representing a location
562    in the stack.
563 
564    You only need to define this macro if you want to support call
565    frame debugging information like that provided by DWARF 2.
566 
567    Before the prologue, RA is at 0(sp).  */
568 
569 #define INCOMING_RETURN_ADDR_RTX \
570   gen_rtx (MEM, VOIDmode, gen_rtx (REG, VOIDmode, STACK_POINTER_REGNUM))
571 
572 /* A C expression whose value is RTL representing the value of the
573    return address for the frame COUNT steps up from the current frame,
574    after the prologue.  FRAMEADDR is the frame pointer of the COUNT
575    frame, or the frame pointer of the COUNT - 1 frame if
576    `RETURN_ADDR_IN_PREVIOUS_FRAME' is defined.
577 
578    After the prologue, RA is at 4(fp) in the current frame.  */
579 
580 #define RETURN_ADDR_RTX(COUNT, FRAME)					\
581   ((COUNT> 0 && flag_omit_frame_pointer)? NULL_RTX			\
582    : gen_rtx (MEM, Pmode, gen_rtx (PLUS, Pmode, (FRAME), GEN_INT(4))))
583 
584 /* A C expression whose value is an integer giving the offset, in
585    bytes, from the value of the stack pointer register to the top of
586    the stack frame at the beginning of any function, before the
587    prologue.  The top of the frame is defined to be the value of the
588    stack pointer in the previous frame, just before the call
589    instruction.
590 
591    You only need to define this macro if you want to support call
592    frame debugging information like that provided by DWARF 2. */
593 
594 #define INCOMING_FRAME_SP_OFFSET 4
595 
596 /* If we generate an insn to push BYTES bytes,
597    this says how many the stack pointer really advances by.
598    On the 32000, sp@- in a byte insn really pushes a BYTE.  */
599 #define PUSH_ROUNDING(BYTES) (BYTES)
600 
601 /* Offset of first parameter from the argument pointer register value.  */
602 #define FIRST_PARM_OFFSET(FNDECL) 8
603 
604 /* Value is the number of byte of arguments automatically
605    popped when returning from a subroutine call.
606    FUNDECL is the declaration node of the function (as a tree),
607    FUNTYPE is the data type of the function (as a tree),
608    or for a library call it is an identifier node for the subroutine name.
609    SIZE is the number of bytes of arguments passed on the stack.
610 
611    On the 32000, the RET insn may be used to pop them if the number
612      of args is fixed, but if the number is variable then the caller
613      must pop them all.  RET can't be used for library calls now
614      because the library is compiled with the Unix compiler.
615    Use of RET is a selectable option, since it is incompatible with
616    standard Unix calling sequences.  If the option is not selected,
617    the caller must always pop the args.
618 
619    The attribute stdcall is equivalent to RTD on a per module basis.  */
620 
621 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) \
622   (ns32k_return_pops_args (FUNDECL, FUNTYPE, SIZE))
623 
624 /* Define how to find the value returned by a function.
625    VALTYPE is the data type of the value (as a tree).
626    If the precise function being called is known, FUNC is its FUNCTION_DECL;
627    otherwise, FUNC is 0.  */
628 
629 /* On the 32000 the return value is in R0,
630    or perhaps in F0 if there is fp support.  */
631 
632 #define FUNCTION_VALUE(VALTYPE, FUNC) LIBCALL_VALUE(TYPE_MODE (VALTYPE))
633 
634 /* Define how to find the value returned by a library function
635    assuming the value has mode MODE.  */
636 
637 /* On the 32000 the return value is in R0,
638    or perhaps F0 is there is fp support.  */
639 
640 #define LIBCALL_VALUE(MODE)  \
641   gen_rtx_REG (MODE,				  \
642 	       FLOAT_MODE_P(MODE) && TARGET_32081 ? F0_REGNUM: R0_REGNUM)
643 
644 /* Define this if PCC uses the nonreentrant convention for returning
645    structure and union values.  */
646 
647 #define PCC_STATIC_STRUCT_RETURN
648 
649 /* 1 if N is a possible register number for a function value.
650    On the 32000, R0 and F0 are the only registers thus used.  */
651 
652 #define FUNCTION_VALUE_REGNO_P(N) (((N) & ~8) == 0)
653 
654 /* 1 if N is a possible register number for function argument passing.
655    On the 32000, no registers are used in this way.  */
656 
657 #define FUNCTION_ARG_REGNO_P(N) 0
658 
659 /* Define a data type for recording info about an argument list
660    during the scan of that argument list.  This data type should
661    hold all necessary information about the function itself
662    and about the args processed so far, enough to enable macros
663    such as FUNCTION_ARG to determine where the next arg should go.
664 
665    On the ns32k, this is a single integer, which is a number of bytes
666    of arguments scanned so far.  */
667 
668 #define CUMULATIVE_ARGS int
669 
670 /* Initialize a variable CUM of type CUMULATIVE_ARGS
671    for a call to a function whose data type is FNTYPE.
672    For a library call, FNTYPE is 0.
673 
674    On the ns32k, the offset starts at 0.  */
675 
676 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT)	\
677  ((CUM) = 0)
678 
679 /* Update the data in CUM to advance over an argument
680    of mode MODE and data type TYPE.
681    (TYPE is null for libcalls where that information may not be available.)  */
682 
683 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)	\
684  ((CUM) += ((MODE) != BLKmode			\
685 	    ? (GET_MODE_SIZE (MODE) + 3) & ~3	\
686 	    : (int_size_in_bytes (TYPE) + 3) & ~3))
687 
688 /* Define where to put the arguments to a function.
689    Value is zero to push the argument on the stack,
690    or a hard register in which to store the argument.
691 
692    MODE is the argument's machine mode.
693    TYPE is the data type of the argument (as a tree).
694     This is null for libcalls where that information may
695     not be available.
696    CUM is a variable of type CUMULATIVE_ARGS which gives info about
697     the preceding args and about the function being called.
698    NAMED is nonzero if this argument is a named parameter
699     (otherwise it is an extra parameter matching an ellipsis).  */
700 
701 /* On the 32000 all args are pushed, except if -mregparm is specified
702    then the first two words of arguments are passed in r0, r1.
703    *NOTE* -mregparm does not work.
704    It exists only to test register calling conventions.  */
705 
706 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
707 ((TARGET_REGPARM && (CUM) < 8) ? gen_rtx_REG ((MODE), (CUM) / 4) : 0)
708 
709 /* For an arg passed partly in registers and partly in memory,
710    this is the number of registers used.
711    For args passed entirely in registers or entirely in memory, zero.  */
712 
713 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED)	\
714 ((TARGET_REGPARM && (CUM) < 8					\
715   && 8 < ((CUM) + ((MODE) == BLKmode				\
716 		      ? int_size_in_bytes (TYPE)		\
717 		      : GET_MODE_SIZE (MODE))))  		\
718  ? 2 - (CUM) / 4 : 0)
719 
720 /* Output assembler code to FILE to increment profiler label # LABELNO
721    for profiling a function entry.
722 
723    THIS DEFINITION FOR THE 32000 IS A GUESS.  IT HAS NOT BEEN TESTED.  */
724 
725 #define FUNCTION_PROFILER(FILE, LABELNO)  \
726    fprintf (FILE, "\taddr LP%d,r0\n\tbsr mcount\n", (LABELNO))
727 
728 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
729    the stack pointer does not matter.  The value is tested only in
730    functions that have frame pointers.
731    No definition is equivalent to always zero.
732 
733    We use 0, because using 1 requires hair in output_function_epilogue()
734    that is worse than the stack adjust we could save.  */
735 
736 /* #define EXIT_IGNORE_STACK 1 */
737 
738 /* Store in the variable DEPTH the initial difference between the
739    frame pointer reg contents and the stack pointer reg contents,
740    as of the start of the function body.  This depends on the layout
741    of the fixed parts of the stack frame and on how registers are saved.  */
742 
743 #define INITIAL_FRAME_POINTER_OFFSET(DEPTH)			\
744 {								\
745   int regno;							\
746   int offset = -4;						\
747   for (regno = 0; regno < FRAME_POINTER_REGNUM; regno++)	\
748     if (regs_ever_live[regno] && ! call_used_regs[regno])	\
749       offset += 4;						\
750   if (flag_pic && current_function_uses_pic_offset_table)	\
751     offset += 4;						\
752   (DEPTH) = (offset + get_frame_size ()				\
753 	     + (get_frame_size () == 0 ? 0 : 4));		\
754 }
755 
756 
757 /* Output assembler code for a block containing the constant parts
758    of a trampoline, leaving space for the variable parts.  */
759 
760 /* On the 32k, the trampoline looks like this:
761      addr  0(pc),r2
762      jump  @__trampoline
763      .int STATIC
764      .int FUNCTION
765 Doing trampolines with a library assist function is easier than figuring
766 out how to do stores to memory in reverse byte order (the way immediate
767 operands on the 32k are stored).  */
768 
769 #define TRAMPOLINE_TEMPLATE(FILE)					\
770 {									\
771   fprintf (FILE, "\taddr 0(pc),r2\n" );					\
772   fprintf (FILE, "\tjump " );						\
773   PUT_ABSOLUTE_PREFIX (FILE);						\
774   fprintf (FILE, "__trampoline\n" );					\
775   assemble_aligned_integer (UNITS_PER_WORD, const0_rtx);		\
776   assemble_aligned_integer (UNITS_PER_WORD, const0_rtx);		\
777 }
778 
779 /* Length in units of the trampoline for entering a nested function.  */
780 
781 #define TRAMPOLINE_SIZE 20
782 
783 /* Emit RTL insns to initialize the variable parts of a trampoline.
784    FNADDR is an RTX for the address of the function's pure code.
785    CXT is an RTX for the static chain value for the function.  */
786 
787 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT)			     \
788 {									     \
789   emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 12)), CXT);    \
790   emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 16)), FNADDR); \
791 }
792 
793 /* This is the library routine that is used
794    to transfer control from the trampoline
795    to the actual nested function.  */
796 
797 /* The function name __transfer_from_trampoline is not actually used.
798    The function definition just permits use of "asm with operands"
799    (though the operand list is empty).  */
800 #define TRANSFER_FROM_TRAMPOLINE	\
801 void					\
802 __transfer_from_trampoline ()		\
803 {					\
804   asm (".globl __trampoline");		\
805   asm ("__trampoline:");		\
806   asm ("movd 16(r2),tos");		\
807   asm ("movd 12(r2),r1");		\
808   asm ("ret 0");			\
809 }
810 
811 /* Addressing modes, and classification of registers for them.  */
812 
813 /* #define HAVE_POST_INCREMENT 0 */
814 /* #define HAVE_POST_DECREMENT 0 */
815 
816 /* #define HAVE_PRE_DECREMENT 0 */
817 /* #define HAVE_PRE_INCREMENT 0 */
818 
819 /* Macros to check register numbers against specific register classes.  */
820 
821 /* These assume that REGNO is a hard or pseudo reg number.
822    They give nonzero only if REGNO is a hard reg of the suitable class
823    or a pseudo reg currently allocated to a suitable hard reg.
824    Since they use reg_renumber, they are safe only once reg_renumber
825    has been allocated, which happens in local-alloc.c.  */
826 
827 /* note that FP and SP cannot be used as an index. What about PC? */
828 #define REGNO_OK_FOR_INDEX_P(REGNO)  \
829 ((REGNO) < F0_REGNUM || (unsigned)reg_renumber[REGNO] < F0_REGNUM)
830 #define REGNO_OK_FOR_BASE_P(REGNO)   \
831 ((REGNO) < F0_REGNUM || (unsigned)reg_renumber[REGNO] < F0_REGNUM \
832  || (REGNO) == FRAME_POINTER_REGNUM || (REGNO) == STACK_POINTER_REGNUM)
833 
834 #define FP_REG_P(X) \
835  (GET_CODE (X) == REG && REGNO (X) >= F0_REGNUM && REGNO (X) < FRAME_POINTER_REGNUM)
836 
837 /* Maximum number of registers that can appear in a valid memory address.  */
838 
839 #define MAX_REGS_PER_ADDRESS 2
840 
841 /* Recognize any constant value that is a valid address.
842    This might not work on future ns32k processors as negative
843    displacements are not officially allowed but a mode reserved
844    to National.  This works on processors up to 32532, though,
845    and we don't expect any new ones in the series ;-( */
846 
847 #define CONSTANT_ADDRESS_P(X)   \
848   (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF		\
849    || GET_CODE (X) == CONST						\
850    || (GET_CODE (X) == CONST_INT					\
851        && NS32K_DISPLACEMENT_P (INTVAL (X))))
852 
853 #define CONSTANT_ADDRESS_NO_LABEL_P(X)   \
854   (GET_CODE (X) == CONST_INT						\
855    && NS32K_DISPLACEMENT_P (INTVAL (X)))
856 
857 /* Return the register class of a scratch register needed to copy IN into
858    or out of a register in CLASS in MODE.  If it can be done directly,
859    NO_REGS is returned.  */
860 
861 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
862   secondary_reload_class (CLASS, MODE, IN)
863 
864 /*  Certain machines have the property that some registers cannot be
865     copied to some other registers without using memory.  Define this
866     macro on those machines to be a C expression that is nonzero if
867     objects of mode M in registers of CLASS1 can only be copied to
868     registers of class CLASS2 by storing a register of CLASS1 into
869     memory and loading that memory location into a register of CLASS2.
870 
871     On the ns32k, floating point regs can only be loaded through memory
872 
873     The movdf and movsf insns in ns32k.md copy between general and
874     floating registers using the stack. In principle, we could get
875     better code not allowing that case in the constraints and defining
876     SECONDARY_MEMORY_NEEDED in practice, though the stack slots used
877     are not available for optimization.  */
878 
879 #if 0
880 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, M)			\
881      secondary_memory_needed(CLASS1, CLASS2, M)
882 #endif
883 
884 /* SMALL_REGISTER_CLASSES is a run time option. This should no longer
885    be necessay and should go when we have confidence that we won't run
886    out of spill registers */
887 #define SMALL_REGISTER_CLASSES (target_flags & MASK_SRC)
888 
889 /* A C expression whose value is nonzero if pseudos that have been
890    assigned to registers of class CLASS would likely be spilled
891    because registers of CLASS are needed for spill registers.
892 
893    The default definition won't do because class LONG_FLOAT_REG0 has two
894    registers which are always accessed as a pair */
895 
896 #define CLASS_LIKELY_SPILLED_P(CLASS) \
897   (reg_class_size[(int) (CLASS)] == 1 || (CLASS) == LONG_FLOAT_REG0)
898 
899 
900 /* Nonzero if the constant value X is a legitimate general operand.
901    It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */
902 
903 #define LEGITIMATE_CONSTANT_P(X) 1
904 
905 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
906    and check its validity for a certain class.
907    We have two alternate definitions for each of them.
908    The usual definition accepts all pseudo regs; the other rejects
909    them unless they have been allocated suitable hard regs.
910    The symbol REG_OK_STRICT causes the latter definition to be used.
911 
912    Most source files want to accept pseudo regs in the hope that
913    they will get allocated to the class that the insn wants them to be in.
914    Source files for reload pass need to be strict.
915    After reload, it makes no difference, since pseudo regs have
916    been eliminated by then.  */
917 
918 #ifndef REG_OK_STRICT
919 
920 /* Nonzero if X is a hard reg that can be used as an index
921    or if it is a pseudo reg.  */
922 #define REG_OK_FOR_INDEX_P(X) \
923   (REGNO (X) < F0_REGNUM || REGNO (X) >= FIRST_PSEUDO_REGISTER)
924 /* Nonzero if X is a hard reg that can be used as a base reg
925    of if it is a pseudo reg.  */
926 #define REG_OK_FOR_BASE_P(X) (REGNO (X) < F0_REGNUM || REGNO (X) >= FRAME_POINTER_REGNUM)
927 /* Nonzero if X is a floating point reg or a pseudo reg.  */
928 
929 #else
930 
931 /* Nonzero if X is a hard reg that can be used as an index.  */
932 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
933 /* Nonzero if X is a hard reg that can be used as a base reg.  */
934 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
935 
936 #endif
937 
938 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
939    that is a valid memory address for an instruction.
940    The MODE argument is the machine mode for the MEM expression
941    that wants to use this address.
942 
943    The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS.  */
944 
945 /* 1 if X is an address that we could indirect through.  */
946 /***** NOTE ***** There is a bug in the Sequent assembler which fails
947  to fixup addressing information for symbols used as offsets
948  from registers which are not FP or SP (or SB or PC).  This
949  makes _x(fp) valid, while _x(r0) is invalid.  */
950 
951 #define INDIRECTABLE_1_ADDRESS_P(X)  \
952   (CONSTANT_ADDRESS_P (X)						\
953    || (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X))			\
954    || (GET_CODE (X) == PLUS						\
955        && GET_CODE (XEXP (X, 0)) == REG					\
956        && REG_OK_FOR_BASE_P (XEXP (X, 0))				\
957        && ((flag_pic || TARGET_HIMEM) ? 				\
958 	     CONSTANT_ADDRESS_NO_LABEL_P (XEXP (X, 1))	 		\
959 	   :								\
960 	     CONSTANT_ADDRESS_P (XEXP (X, 1))) 				\
961        && (GET_CODE (X) != CONST_INT || NS32K_DISPLACEMENT_P (INTVAL (X)))))
962 
963 /* 1 if integer I will fit in a 4 byte displacement field.
964    Strictly speaking, we can't be sure that a symbol will fit this range.
965    But, in practice, it always will.  */
966 
967 /* idall@eleceng.adelaide.edu.au says that the 32016 and 32032
968    can handle the full range of displacements--it is only the addresses
969    that have a limited range.  So the following was deleted:
970  (((i) <= 16777215 && (i) >= -16777216)
971   || ((TARGET_32532 || TARGET_32332) && ...))  */
972 #define NS32K_DISPLACEMENT_P(i) 				\
973   ((i) < (1 << 29) && (i) >= - (1 << 29))
974 
975 /* Check for frame pointer or stack pointer.  */
976 #define MEM_REG(X) \
977   (GET_CODE (X) == REG && (REGNO (X) == FRAME_POINTER_REGNUM  \
978 			   || REGNO(X) == STACK_POINTER_REGNUM))
979 
980 /* A memory ref whose address is the FP or SP, with optional integer offset,
981    or (on certain machines) a constant address.  */
982 #define INDIRECTABLE_2_ADDRESS_P(X)  \
983   (GET_CODE (X) == MEM							\
984    && (((xfoo0 = XEXP (X, 0), MEM_REG (xfoo0))				\
985        || (GET_CODE (xfoo0) == PLUS					\
986 	   && MEM_REG (XEXP (xfoo0, 0))					\
987 	   && CONSTANT_ADDRESS_NO_LABEL_P (XEXP (xfoo0, 1))))		\
988        || (TARGET_SB && CONSTANT_ADDRESS_P (xfoo0))))
989 
990 /* Go to ADDR if X is a valid address not using indexing.
991    (This much is the easy part.)  */
992 #define GO_IF_NONINDEXED_ADDRESS(X, ADDR)		\
993 { 							\
994   if (INDIRECTABLE_1_ADDRESS_P (X)) goto ADDR;		\
995   if (INDIRECTABLE_2_ADDRESS_P (X)) goto ADDR;		\
996   if (GET_CODE (X) == PLUS)				\
997     if (CONSTANT_ADDRESS_NO_LABEL_P (XEXP (X, 1)))	\
998       if (INDIRECTABLE_2_ADDRESS_P (XEXP (X, 0)))	\
999 	goto ADDR;					\
1000 }
1001 
1002 /* Go to ADDR if X is a valid address not using indexing.
1003    (This much is the easy part.)  */
1004 #define GO_IF_INDEXING(X, MODE, ADDR)  \
1005 { register rtx xfoob = (X);						\
1006   if (GET_CODE (xfoob) == PLUS && INDEX_TERM_P (XEXP (xfoob, 0), MODE))	\
1007     GO_IF_INDEXABLE_ADDRESS (XEXP (xfoob, 1), ADDR);			\
1008   if (GET_CODE (xfoob) == PLUS && INDEX_TERM_P (XEXP (xfoob, 1), MODE))	\
1009     GO_IF_INDEXABLE_ADDRESS (XEXP (xfoob, 0), ADDR); }			\
1010 
1011 #define GO_IF_INDEXABLE_ADDRESS(X, ADDR) \
1012 { if (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) goto ADDR;		\
1013   if (INDIRECTABLE_2_ADDRESS_P (X)) goto ADDR;				\
1014   if (INDIRECTABLE_1_ADDRESS_P (X)) goto ADDR;				\
1015 }
1016 
1017 /* 1 if PROD is either a reg times size of mode MODE
1018    or just a reg, if MODE is just one byte. Actually, on the ns32k,
1019    since the index mode is independent of the operand size,
1020    we can match more stuff...
1021 
1022    This macro's expansion uses the temporary variables xfoo0, xfoo1
1023    and xfoo2 that must be declared in the surrounding context.  */
1024 #define INDEX_TERM_P(PROD, MODE)   \
1025 ((GET_CODE (PROD) == REG && REG_OK_FOR_INDEX_P (PROD))			\
1026  || (GET_CODE (PROD) == MULT						\
1027      &&	(xfoo0 = XEXP (PROD, 0), xfoo1 = XEXP (PROD, 1),		\
1028 	 (GET_CODE (xfoo1) == CONST_INT					\
1029 	  && GET_CODE (xfoo0) == REG					\
1030 	  && FITS_INDEX_RANGE (INTVAL (xfoo1))				\
1031 	  && REG_OK_FOR_INDEX_P (xfoo0)))))
1032 
1033 #define FITS_INDEX_RANGE(X)  \
1034   ((xfoo2 = (unsigned)(X)-1),						\
1035    ((xfoo2 < 4 && xfoo2 != 2) || xfoo2 == 7))
1036 
1037 /* Note that xfoo0, xfoo1, xfoo2 are used in some of the submacros above.  */
1038 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)				\
1039 { register rtx xfooy, xfoo0, xfoo1;					\
1040   unsigned xfoo2;							\
1041   xfooy = X;								\
1042   if (flag_pic && cfun && ! current_function_uses_pic_offset_table	\
1043       && global_symbolic_reference_mentioned_p (X, 1))			\
1044     current_function_uses_pic_offset_table = 1;				\
1045   GO_IF_NONINDEXED_ADDRESS (xfooy, ADDR);				\
1046   if (GET_CODE (xfooy) == PLUS)						\
1047     {									\
1048       if (CONSTANT_ADDRESS_NO_LABEL_P (XEXP (xfooy, 1))			\
1049 	  && GET_CODE (XEXP (xfooy, 0)) == PLUS)			\
1050 	xfooy = XEXP (xfooy, 0);					\
1051       else if (CONSTANT_ADDRESS_NO_LABEL_P (XEXP (xfooy, 0))		\
1052 	  && GET_CODE (XEXP (xfooy, 1)) == PLUS)			\
1053 	xfooy = XEXP (xfooy, 1);					\
1054       GO_IF_INDEXING (xfooy, MODE, ADDR);				\
1055     }									\
1056   else if (INDEX_TERM_P (xfooy, MODE))					\
1057     goto ADDR;								\
1058   else if (GET_CODE (xfooy) == PRE_DEC)					\
1059     {									\
1060       if (REGNO (XEXP (xfooy, 0)) == STACK_POINTER_REGNUM) goto ADDR;	\
1061       else abort ();							\
1062     }									\
1063 }
1064 
1065 /* Try machine-dependent ways of modifying an illegitimate address
1066    to be legitimate.  If we find one, return the new, valid address.
1067    This macro is used in only one place: `memory_address' in explow.c.
1068 
1069    OLDX is the address as it was before break_out_memory_refs was called.
1070    In some cases it is useful to look at this to decide what needs to be done.
1071 
1072    MODE and WIN are passed so that this macro can use
1073    GO_IF_LEGITIMATE_ADDRESS.
1074 
1075    It is always safe for this macro to do nothing.  It exists to recognize
1076    opportunities to optimize the output.
1077 
1078    For the ns32k, we do nothing */
1079 
1080 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN)   {}
1081 
1082 /* Nonzero if the constant value X is a legitimate general operand
1083    when generating PIC code.  It is given that flag_pic is on and
1084    that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */
1085 
1086 #define LEGITIMATE_PIC_OPERAND_P(X) \
1087   (((! current_function_uses_pic_offset_table			\
1088      && symbolic_reference_mentioned_p (X))?			\
1089       (current_function_uses_pic_offset_table = 1):0		\
1090    ), (! SYMBOLIC_CONST (X)					\
1091    || GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == LABEL_REF))
1092 
1093 #define SYMBOLIC_CONST(X)	\
1094 (GET_CODE (X) == SYMBOL_REF						\
1095  || GET_CODE (X) == LABEL_REF						\
1096  || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
1097 
1098 /* Go to LABEL if ADDR (a legitimate address expression)
1099    has an effect that depends on the machine mode it is used for.
1100    On the ns32k, only predecrement and postincrement address depend thus
1101    (the amount of decrement or increment being the length of the operand).  */
1102 
1103 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)	\
1104  { if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == PRE_DEC)	\
1105      goto LABEL;}
1106 
1107 /* Specify the machine mode that this machine uses
1108    for the index in the tablejump instruction.
1109    HI mode is more efficient but the range is not wide enough for
1110    all programs. */
1111 #define CASE_VECTOR_MODE SImode
1112 
1113 /* Define as C expression which evaluates to nonzero if the tablejump
1114    instruction expects the table to contain offsets from the address of the
1115    table.
1116    Do not define this if the table should contain absolute addresses. */
1117 #define CASE_VECTOR_PC_RELATIVE 1
1118 
1119 /* Define this as 1 if `char' should by default be signed; else as 0.  */
1120 #define DEFAULT_SIGNED_CHAR 1
1121 
1122 /* Max number of bytes we can move from memory to memory
1123    in one reasonably fast instruction.  */
1124 #define MOVE_MAX 4
1125 
1126 /* The number of scalar move insns which should be generated instead
1127    of a string move insn or a library call.
1128 
1129    We have a smart movstrsi insn */
1130 #define MOVE_RATIO 0
1131 
1132 /* Nonzero if access to memory by bytes is slow and undesirable.  */
1133 #define SLOW_BYTE_ACCESS 0
1134 
1135 /* Define if shifts truncate the shift count
1136    which implies one can omit a sign-extension or zero-extension
1137    of a shift count.  */
1138 /* #define SHIFT_COUNT_TRUNCATED */
1139 
1140 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1141    is done just by pretending it is already truncated.  */
1142 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1143 
1144 /* We assume that the store-condition-codes instructions store 0 for false
1145    and some other value for true.  This is the value stored for true.  */
1146 
1147 #define STORE_FLAG_VALUE 1
1148 
1149 /* Specify the machine mode that pointers have.
1150    After generation of rtl, the compiler makes no further distinction
1151    between pointers and any other objects of this machine mode.  */
1152 #define Pmode SImode
1153 
1154 /* A function address in a call instruction
1155    is a byte address (for indexing purposes)
1156    so give the MEM rtx a byte's mode.  */
1157 #define FUNCTION_MODE QImode
1158 
1159 /* Compute the cost of address ADDRESS. */
1160 
1161 #define ADDRESS_COST(RTX) calc_address_cost (RTX)
1162 
1163 /* Compute the cost of computing a constant rtl expression RTX
1164    whose rtx-code is CODE.  The body of this macro is a portion
1165    of a switch statement.  If the code is computed here,
1166    return it with a return statement.  Otherwise, break from the switch.  */
1167 
1168 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1169   case CONST_INT:						\
1170     if (INTVAL (RTX) <= 7 && INTVAL (RTX) >= -8) return 0;	\
1171     if (INTVAL (RTX) < 0x2000 && INTVAL (RTX) >= -0x2000)	\
1172       return 1;							\
1173   case CONST:							\
1174   case LABEL_REF:						\
1175   case SYMBOL_REF:						\
1176     return 3;							\
1177   case CONST_DOUBLE:						\
1178     return 5;
1179 
1180 /* Tell final.c how to eliminate redundant test instructions.  */
1181 
1182 /* Here we define machine-dependent flags and fields in cc_status
1183    (see `conditions.h').  */
1184 
1185 /* This bit means that what ought to be in the Z bit
1186    should be tested in the F bit.  */
1187 #define CC_Z_IN_F 04000
1188 
1189 /* This bit means that what ought to be in the Z bit
1190    is complemented in the F bit.  */
1191 #define CC_Z_IN_NOT_F 010000
1192 
1193 /* This bit means that the L bit indicates unordered (IEEE) comparison.
1194  */
1195 #define CC_UNORD 020000
1196 
1197 /* Store in cc_status the expressions
1198    that the condition codes will describe
1199    after execution of an instruction whose pattern is EXP.
1200    Do not alter them if the instruction would not alter the cc's.  */
1201 
1202 #define NOTICE_UPDATE_CC(EXP, INSN) \
1203 { if (GET_CODE (EXP) == SET)					\
1204     { if (GET_CODE (SET_DEST (EXP)) == CC0)			\
1205 	{ cc_status.flags = 0;					\
1206 	  cc_status.value1 = SET_DEST (EXP);			\
1207 	  cc_status.value2 = SET_SRC (EXP);			\
1208 	}							\
1209       else if (GET_CODE (SET_SRC (EXP)) == CALL)		\
1210 	{ CC_STATUS_INIT; }					\
1211       else if (GET_CODE (SET_DEST (EXP)) == REG)		\
1212 	{ if (cc_status.value1					\
1213 	      && reg_overlap_mentioned_p (SET_DEST (EXP), cc_status.value1)) \
1214 	    cc_status.value1 = 0;				\
1215 	  if (cc_status.value2					\
1216 	      && reg_overlap_mentioned_p (SET_DEST (EXP), cc_status.value2)) \
1217 	    cc_status.value2 = 0;				\
1218 	}							\
1219       else if (GET_CODE (SET_DEST (EXP)) == MEM)		\
1220 	{ CC_STATUS_INIT; }					\
1221     }								\
1222   else if (GET_CODE (EXP) == PARALLEL				\
1223 	   && GET_CODE (XVECEXP (EXP, 0, 0)) == SET)		\
1224     { if (GET_CODE (SET_DEST (XVECEXP (EXP, 0, 0))) == CC0)	\
1225 	{ cc_status.flags = 0;					\
1226 	  cc_status.value1 = SET_DEST (XVECEXP (EXP, 0, 0));	\
1227 	  cc_status.value2 = SET_SRC (XVECEXP (EXP, 0, 0));	\
1228 	}							\
1229       else if (GET_CODE (SET_DEST (XVECEXP (EXP, 0, 0))) == REG) \
1230 	{ if (cc_status.value1					\
1231 	      && reg_overlap_mentioned_p (SET_DEST (XVECEXP (EXP, 0, 0)), cc_status.value1)) \
1232 	    cc_status.value1 = 0;				\
1233 	  if (cc_status.value2					\
1234 	      && reg_overlap_mentioned_p (SET_DEST (XVECEXP (EXP, 0, 0)), cc_status.value2)) \
1235 	    cc_status.value2 = 0;				\
1236 	}							\
1237       else if (GET_CODE (SET_DEST (XVECEXP (EXP, 0, 0))) == MEM) \
1238 	{ CC_STATUS_INIT; }					\
1239     }								\
1240   else if (GET_CODE (EXP) == CALL)				\
1241     { /* all bets are off */ CC_STATUS_INIT; }			\
1242   else { /* nothing happens? CC_STATUS_INIT; */}		\
1243   if (cc_status.value1 && GET_CODE (cc_status.value1) == REG	\
1244       && cc_status.value2					\
1245       && reg_overlap_mentioned_p (cc_status.value1, cc_status.value2))	\
1246     abort ();			\
1247 }
1248 
1249 /* Describe the costs of the following register moves which are discouraged:
1250    1.) Moves between the Floating point registers and the frame pointer and stack pointer
1251    2.) Moves between the stack pointer and the frame pointer
1252    3.) Moves between the floating point and general registers
1253 
1254   These all involve two memory references. This is worse than a memory
1255   to memory move (default cost 4)
1256  */
1257 
1258 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
1259   register_move_cost (CLASS1, CLASS2)
1260 
1261 #define OUTPUT_JUMP(NORMAL, NO_OV)  \
1262 { if (cc_status.flags & CC_NO_OVERFLOW)				\
1263     return NO_OV;						\
1264   return NORMAL; }
1265 
1266 /* Dividing the output into sections */
1267 
1268 /* Output before read-only data.  */
1269 
1270 #define TEXT_SECTION_ASM_OP "\t.text"
1271 
1272 /* Output before writable data.  */
1273 
1274 #define DATA_SECTION_ASM_OP "\t.data"
1275 
1276 /* Define the output Assembly Language */
1277 
1278 /* Output at beginning of assembler file.  */
1279 
1280 #define ASM_FILE_START(FILE) fprintf (FILE, "#NO_APP\n");
1281 
1282 /* Output to assembler file text saying following lines
1283    may contain character constants, extra white space, comments, etc.  */
1284 
1285 #define ASM_APP_ON "#APP\n"
1286 
1287 /* Output to assembler file text saying following lines
1288    no longer contain unusual constructs.  */
1289 
1290 #define ASM_APP_OFF "#NO_APP\n"
1291 
1292 /* Output of Data */
1293 
1294 /* This is how to output an assembler line defining an external/static
1295    address which is not in tree format (for collect.c).  */
1296 
1297 /* The prefix to add to user-visible assembler symbols. */
1298 #define USER_LABEL_PREFIX "_"
1299 
1300 /* This is how to output an insn to push a register on the stack.
1301    It need not be very fast code.  */
1302 
1303 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO)  \
1304   fprintf (FILE, "\tmovd %s,tos\n", reg_names[REGNO])
1305 
1306 /* This is how to output an insn to pop a register from the stack.
1307    It need not be very fast code.  */
1308 
1309 #define ASM_OUTPUT_REG_POP(FILE,REGNO)  \
1310   fprintf (FILE, "\tmovd tos,%s\n", reg_names[REGNO])
1311 
1312 /* This is how to output a command to make the user-level label named NAME
1313    defined for reference from other files.  */
1314 
1315 /* Globalizing directive for a label.  */
1316 #define GLOBAL_ASM_OP ".globl "
1317 
1318 /* This is how to output an internal numbered label where
1319    PREFIX is the class of label and NUM is the number within the class.  */
1320 
1321 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM)	\
1322   fprintf (FILE, "%s%d:\n", PREFIX, NUM)
1323 
1324 /* This is how to store into the string LABEL
1325    the symbol_ref name of an internal numbered label where
1326    PREFIX is the class of label and NUM is the number within the class.
1327    This is suitable for output with `assemble_name'.  */
1328 
1329 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM)	\
1330   sprintf (LABEL, "*%s%ld", PREFIX, (long) NUM)
1331 
1332 /* This is how to align the code that follows an unconditional branch.  */
1333 
1334 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) (2)
1335 
1336 /* This is how to output an element of a case-vector that is absolute.
1337    (The ns32k does not use such vectors,
1338    but we must define this macro anyway.)  */
1339 
1340 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
1341   fprintf (FILE, "\t.long L%d\n", VALUE)
1342 
1343 /* This is how to output an element of a case-vector that is relative.  */
1344 /* ** Notice that the second element is LI format! */
1345 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL)  \
1346   fprintf (FILE, "\t.long L%d-LI%d\n", VALUE, REL)
1347 
1348 /* This is how to output an assembler line
1349    that says to advance the location counter
1350    to a multiple of 2**LOG bytes.  */
1351 
1352 #define ASM_OUTPUT_ALIGN(FILE,LOG)  \
1353   fprintf (FILE, "\t.align %d\n", (LOG))
1354 
1355 #define ASM_OUTPUT_SKIP(FILE,SIZE)  \
1356   fprintf (FILE, "\t.space %u\n", (SIZE))
1357 
1358 /* This says how to output an assembler line
1359    to define a global common symbol.  */
1360 
1361 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED)  \
1362 ( fputs (".comm ", (FILE)),			\
1363   assemble_name ((FILE), (NAME)),		\
1364   fprintf ((FILE), ",%u\n", (ROUNDED)))
1365 
1366 /* This says how to output an assembler line
1367    to define a local common symbol.  */
1368 
1369 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED)  \
1370 ( fputs (".lcomm ", (FILE)),			\
1371   assemble_name ((FILE), (NAME)),		\
1372   fprintf ((FILE), ",%u\n", (ROUNDED)))
1373 
1374 /* Store in OUTPUT a string (made with alloca) containing
1375    an assembler-name for a local static variable named NAME.
1376    LABELNO is an integer which is different for each call.  */
1377 
1378 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO)	\
1379 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10),	\
1380   sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1381 
1382 /* Print an instruction operand X on file FILE.
1383    CODE is the code from the %-spec that requested printing this operand;
1384    if `%z3' was used to print operand 3, then CODE is 'z'. */
1385 
1386 /* %$ means print the prefix for an immediate operand.  */
1387 
1388 #define PRINT_OPERAND_PUNCT_VALID_P(CODE)				\
1389   ((CODE) == '$' || (CODE) == '?')
1390 
1391 #define PRINT_OPERAND(FILE, X, CODE)       print_operand(FILE, X, CODE)
1392 
1393 /* Print a memory operand whose address is X, on file FILE.  */
1394 
1395 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address(FILE, ADDR)
1396 
1397 extern const unsigned int ns32k_reg_class_contents[N_REG_CLASSES][1];
1398 extern const enum reg_class regclass_map[FIRST_PSEUDO_REGISTER]; /* smallest class containing REGNO */
1399 
1400 /*
1401 Local variables:
1402 version-control: t
1403 End:
1404 */
1405