1 //===- ARMISelLowering.cpp - ARM DAG Lowering Implementation --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that ARM uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "ARMISelLowering.h" 15 #include "ARMBaseInstrInfo.h" 16 #include "ARMBaseRegisterInfo.h" 17 #include "ARMCallingConv.h" 18 #include "ARMConstantPoolValue.h" 19 #include "ARMMachineFunctionInfo.h" 20 #include "ARMPerfectShuffle.h" 21 #include "ARMRegisterInfo.h" 22 #include "ARMSelectionDAGInfo.h" 23 #include "ARMSubtarget.h" 24 #include "ARMTargetTransformInfo.h" 25 #include "MCTargetDesc/ARMAddressingModes.h" 26 #include "MCTargetDesc/ARMBaseInfo.h" 27 #include "Utils/ARMBaseInfo.h" 28 #include "llvm/ADT/APFloat.h" 29 #include "llvm/ADT/APInt.h" 30 #include "llvm/ADT/ArrayRef.h" 31 #include "llvm/ADT/BitVector.h" 32 #include "llvm/ADT/DenseMap.h" 33 #include "llvm/ADT/STLExtras.h" 34 #include "llvm/ADT/SmallPtrSet.h" 35 #include "llvm/ADT/SmallVector.h" 36 #include "llvm/ADT/Statistic.h" 37 #include "llvm/ADT/StringExtras.h" 38 #include "llvm/ADT/StringRef.h" 39 #include "llvm/ADT/StringSwitch.h" 40 #include "llvm/ADT/Twine.h" 41 #include "llvm/Analysis/VectorUtils.h" 42 #include "llvm/CodeGen/CallingConvLower.h" 43 #include "llvm/CodeGen/ComplexDeinterleavingPass.h" 44 #include "llvm/CodeGen/ISDOpcodes.h" 45 #include "llvm/CodeGen/IntrinsicLowering.h" 46 #include "llvm/CodeGen/MachineBasicBlock.h" 47 #include "llvm/CodeGen/MachineConstantPool.h" 48 #include "llvm/CodeGen/MachineFrameInfo.h" 49 #include "llvm/CodeGen/MachineFunction.h" 50 #include "llvm/CodeGen/MachineInstr.h" 51 #include "llvm/CodeGen/MachineInstrBuilder.h" 52 #include "llvm/CodeGen/MachineJumpTableInfo.h" 53 #include "llvm/CodeGen/MachineMemOperand.h" 54 #include "llvm/CodeGen/MachineOperand.h" 55 #include "llvm/CodeGen/MachineRegisterInfo.h" 56 #include "llvm/CodeGen/RuntimeLibcallUtil.h" 57 #include "llvm/CodeGen/SelectionDAG.h" 58 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 59 #include "llvm/CodeGen/SelectionDAGNodes.h" 60 #include "llvm/CodeGen/TargetInstrInfo.h" 61 #include "llvm/CodeGen/TargetLowering.h" 62 #include "llvm/CodeGen/TargetOpcodes.h" 63 #include "llvm/CodeGen/TargetRegisterInfo.h" 64 #include "llvm/CodeGen/TargetSubtargetInfo.h" 65 #include "llvm/CodeGen/ValueTypes.h" 66 #include "llvm/CodeGenTypes/MachineValueType.h" 67 #include "llvm/IR/Attributes.h" 68 #include "llvm/IR/CallingConv.h" 69 #include "llvm/IR/Constant.h" 70 #include "llvm/IR/Constants.h" 71 #include "llvm/IR/DataLayout.h" 72 #include "llvm/IR/DebugLoc.h" 73 #include "llvm/IR/DerivedTypes.h" 74 #include "llvm/IR/Function.h" 75 #include "llvm/IR/GlobalAlias.h" 76 #include "llvm/IR/GlobalValue.h" 77 #include "llvm/IR/GlobalVariable.h" 78 #include "llvm/IR/IRBuilder.h" 79 #include "llvm/IR/InlineAsm.h" 80 #include "llvm/IR/Instruction.h" 81 #include "llvm/IR/Instructions.h" 82 #include "llvm/IR/IntrinsicInst.h" 83 #include "llvm/IR/Intrinsics.h" 84 #include "llvm/IR/IntrinsicsARM.h" 85 #include "llvm/IR/Module.h" 86 #include "llvm/IR/PatternMatch.h" 87 #include "llvm/IR/Type.h" 88 #include "llvm/IR/User.h" 89 #include "llvm/IR/Value.h" 90 #include "llvm/MC/MCInstrDesc.h" 91 #include "llvm/MC/MCInstrItineraries.h" 92 #include "llvm/MC/MCRegisterInfo.h" 93 #include "llvm/MC/MCSchedule.h" 94 #include "llvm/Support/AtomicOrdering.h" 95 #include "llvm/Support/BranchProbability.h" 96 #include "llvm/Support/Casting.h" 97 #include "llvm/Support/CodeGen.h" 98 #include "llvm/Support/CommandLine.h" 99 #include "llvm/Support/Compiler.h" 100 #include "llvm/Support/Debug.h" 101 #include "llvm/Support/ErrorHandling.h" 102 #include "llvm/Support/KnownBits.h" 103 #include "llvm/Support/MathExtras.h" 104 #include "llvm/Support/raw_ostream.h" 105 #include "llvm/Target/TargetMachine.h" 106 #include "llvm/Target/TargetOptions.h" 107 #include "llvm/TargetParser/Triple.h" 108 #include <algorithm> 109 #include <cassert> 110 #include <cstdint> 111 #include <cstdlib> 112 #include <iterator> 113 #include <limits> 114 #include <optional> 115 #include <tuple> 116 #include <utility> 117 #include <vector> 118 119 using namespace llvm; 120 using namespace llvm::PatternMatch; 121 122 #define DEBUG_TYPE "arm-isel" 123 124 STATISTIC(NumTailCalls, "Number of tail calls"); 125 STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt"); 126 STATISTIC(NumLoopByVals, "Number of loops generated for byval arguments"); 127 STATISTIC(NumConstpoolPromoted, 128 "Number of constants with their storage promoted into constant pools"); 129 130 static cl::opt<bool> 131 ARMInterworking("arm-interworking", cl::Hidden, 132 cl::desc("Enable / disable ARM interworking (for debugging only)"), 133 cl::init(true)); 134 135 static cl::opt<bool> EnableConstpoolPromotion( 136 "arm-promote-constant", cl::Hidden, 137 cl::desc("Enable / disable promotion of unnamed_addr constants into " 138 "constant pools"), 139 cl::init(false)); // FIXME: set to true by default once PR32780 is fixed 140 static cl::opt<unsigned> ConstpoolPromotionMaxSize( 141 "arm-promote-constant-max-size", cl::Hidden, 142 cl::desc("Maximum size of constant to promote into a constant pool"), 143 cl::init(64)); 144 static cl::opt<unsigned> ConstpoolPromotionMaxTotal( 145 "arm-promote-constant-max-total", cl::Hidden, 146 cl::desc("Maximum size of ALL constants to promote into a constant pool"), 147 cl::init(128)); 148 149 cl::opt<unsigned> 150 MVEMaxSupportedInterleaveFactor("mve-max-interleave-factor", cl::Hidden, 151 cl::desc("Maximum interleave factor for MVE VLDn to generate."), 152 cl::init(2)); 153 154 // The APCS parameter registers. 155 static const MCPhysReg GPRArgRegs[] = { 156 ARM::R0, ARM::R1, ARM::R2, ARM::R3 157 }; 158 159 static SDValue handleCMSEValue(const SDValue &Value, const ISD::InputArg &Arg, 160 SelectionDAG &DAG, const SDLoc &DL) { 161 assert(Arg.ArgVT.isScalarInteger()); 162 assert(Arg.ArgVT.bitsLT(MVT::i32)); 163 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, Arg.ArgVT, Value); 164 SDValue Ext = 165 DAG.getNode(Arg.Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL, 166 MVT::i32, Trunc); 167 return Ext; 168 } 169 170 void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT) { 171 if (VT != PromotedLdStVT) { 172 setOperationAction(ISD::LOAD, VT, Promote); 173 AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT); 174 175 setOperationAction(ISD::STORE, VT, Promote); 176 AddPromotedToType (ISD::STORE, VT, PromotedLdStVT); 177 } 178 179 MVT ElemTy = VT.getVectorElementType(); 180 if (ElemTy != MVT::f64) 181 setOperationAction(ISD::SETCC, VT, Custom); 182 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 183 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 184 if (ElemTy == MVT::i32) { 185 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 186 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 187 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 188 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 189 } else { 190 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 191 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 192 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 193 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 194 } 195 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 196 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 197 setOperationAction(ISD::CONCAT_VECTORS, VT, Legal); 198 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal); 199 setOperationAction(ISD::SELECT, VT, Expand); 200 setOperationAction(ISD::SELECT_CC, VT, Expand); 201 setOperationAction(ISD::VSELECT, VT, Expand); 202 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 203 if (VT.isInteger()) { 204 setOperationAction(ISD::SHL, VT, Custom); 205 setOperationAction(ISD::SRA, VT, Custom); 206 setOperationAction(ISD::SRL, VT, Custom); 207 } 208 209 // Neon does not support vector divide/remainder operations. 210 setOperationAction(ISD::SDIV, VT, Expand); 211 setOperationAction(ISD::UDIV, VT, Expand); 212 setOperationAction(ISD::FDIV, VT, Expand); 213 setOperationAction(ISD::SREM, VT, Expand); 214 setOperationAction(ISD::UREM, VT, Expand); 215 setOperationAction(ISD::FREM, VT, Expand); 216 setOperationAction(ISD::SDIVREM, VT, Expand); 217 setOperationAction(ISD::UDIVREM, VT, Expand); 218 219 if (!VT.isFloatingPoint() && VT != MVT::v2i64 && VT != MVT::v1i64) 220 for (auto Opcode : {ISD::ABS, ISD::ABDS, ISD::ABDU, ISD::SMIN, ISD::SMAX, 221 ISD::UMIN, ISD::UMAX}) 222 setOperationAction(Opcode, VT, Legal); 223 if (!VT.isFloatingPoint()) 224 for (auto Opcode : {ISD::SADDSAT, ISD::UADDSAT, ISD::SSUBSAT, ISD::USUBSAT}) 225 setOperationAction(Opcode, VT, Legal); 226 } 227 228 void ARMTargetLowering::addDRTypeForNEON(MVT VT) { 229 addRegisterClass(VT, &ARM::DPRRegClass); 230 addTypeForNEON(VT, MVT::f64); 231 } 232 233 void ARMTargetLowering::addQRTypeForNEON(MVT VT) { 234 addRegisterClass(VT, &ARM::DPairRegClass); 235 addTypeForNEON(VT, MVT::v2f64); 236 } 237 238 void ARMTargetLowering::setAllExpand(MVT VT) { 239 for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc) 240 setOperationAction(Opc, VT, Expand); 241 242 // We support these really simple operations even on types where all 243 // the actual arithmetic has to be broken down into simpler 244 // operations or turned into library calls. 245 setOperationAction(ISD::BITCAST, VT, Legal); 246 setOperationAction(ISD::LOAD, VT, Legal); 247 setOperationAction(ISD::STORE, VT, Legal); 248 setOperationAction(ISD::UNDEF, VT, Legal); 249 } 250 251 void ARMTargetLowering::addAllExtLoads(const MVT From, const MVT To, 252 LegalizeAction Action) { 253 setLoadExtAction(ISD::EXTLOAD, From, To, Action); 254 setLoadExtAction(ISD::ZEXTLOAD, From, To, Action); 255 setLoadExtAction(ISD::SEXTLOAD, From, To, Action); 256 } 257 258 void ARMTargetLowering::addMVEVectorTypes(bool HasMVEFP) { 259 const MVT IntTypes[] = { MVT::v16i8, MVT::v8i16, MVT::v4i32 }; 260 261 for (auto VT : IntTypes) { 262 addRegisterClass(VT, &ARM::MQPRRegClass); 263 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 264 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 265 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 266 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 267 setOperationAction(ISD::SHL, VT, Custom); 268 setOperationAction(ISD::SRA, VT, Custom); 269 setOperationAction(ISD::SRL, VT, Custom); 270 setOperationAction(ISD::SMIN, VT, Legal); 271 setOperationAction(ISD::SMAX, VT, Legal); 272 setOperationAction(ISD::UMIN, VT, Legal); 273 setOperationAction(ISD::UMAX, VT, Legal); 274 setOperationAction(ISD::ABS, VT, Legal); 275 setOperationAction(ISD::SETCC, VT, Custom); 276 setOperationAction(ISD::MLOAD, VT, Custom); 277 setOperationAction(ISD::MSTORE, VT, Legal); 278 setOperationAction(ISD::CTLZ, VT, Legal); 279 setOperationAction(ISD::CTTZ, VT, Custom); 280 setOperationAction(ISD::BITREVERSE, VT, Legal); 281 setOperationAction(ISD::BSWAP, VT, Legal); 282 setOperationAction(ISD::SADDSAT, VT, Legal); 283 setOperationAction(ISD::UADDSAT, VT, Legal); 284 setOperationAction(ISD::SSUBSAT, VT, Legal); 285 setOperationAction(ISD::USUBSAT, VT, Legal); 286 setOperationAction(ISD::ABDS, VT, Legal); 287 setOperationAction(ISD::ABDU, VT, Legal); 288 setOperationAction(ISD::AVGFLOORS, VT, Legal); 289 setOperationAction(ISD::AVGFLOORU, VT, Legal); 290 setOperationAction(ISD::AVGCEILS, VT, Legal); 291 setOperationAction(ISD::AVGCEILU, VT, Legal); 292 293 // No native support for these. 294 setOperationAction(ISD::UDIV, VT, Expand); 295 setOperationAction(ISD::SDIV, VT, Expand); 296 setOperationAction(ISD::UREM, VT, Expand); 297 setOperationAction(ISD::SREM, VT, Expand); 298 setOperationAction(ISD::UDIVREM, VT, Expand); 299 setOperationAction(ISD::SDIVREM, VT, Expand); 300 setOperationAction(ISD::CTPOP, VT, Expand); 301 setOperationAction(ISD::SELECT, VT, Expand); 302 setOperationAction(ISD::SELECT_CC, VT, Expand); 303 304 // Vector reductions 305 setOperationAction(ISD::VECREDUCE_ADD, VT, Legal); 306 setOperationAction(ISD::VECREDUCE_SMAX, VT, Legal); 307 setOperationAction(ISD::VECREDUCE_UMAX, VT, Legal); 308 setOperationAction(ISD::VECREDUCE_SMIN, VT, Legal); 309 setOperationAction(ISD::VECREDUCE_UMIN, VT, Legal); 310 setOperationAction(ISD::VECREDUCE_MUL, VT, Custom); 311 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 312 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 313 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 314 315 if (!HasMVEFP) { 316 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 317 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 318 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 319 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 320 } else { 321 setOperationAction(ISD::FP_TO_SINT_SAT, VT, Custom); 322 setOperationAction(ISD::FP_TO_UINT_SAT, VT, Custom); 323 } 324 325 // Pre and Post inc are supported on loads and stores 326 for (unsigned im = (unsigned)ISD::PRE_INC; 327 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) { 328 setIndexedLoadAction(im, VT, Legal); 329 setIndexedStoreAction(im, VT, Legal); 330 setIndexedMaskedLoadAction(im, VT, Legal); 331 setIndexedMaskedStoreAction(im, VT, Legal); 332 } 333 } 334 335 const MVT FloatTypes[] = { MVT::v8f16, MVT::v4f32 }; 336 for (auto VT : FloatTypes) { 337 addRegisterClass(VT, &ARM::MQPRRegClass); 338 if (!HasMVEFP) 339 setAllExpand(VT); 340 341 // These are legal or custom whether we have MVE.fp or not 342 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 343 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 344 setOperationAction(ISD::INSERT_VECTOR_ELT, VT.getVectorElementType(), Custom); 345 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 346 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 347 setOperationAction(ISD::BUILD_VECTOR, VT.getVectorElementType(), Custom); 348 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Legal); 349 setOperationAction(ISD::SETCC, VT, Custom); 350 setOperationAction(ISD::MLOAD, VT, Custom); 351 setOperationAction(ISD::MSTORE, VT, Legal); 352 setOperationAction(ISD::SELECT, VT, Expand); 353 setOperationAction(ISD::SELECT_CC, VT, Expand); 354 355 // Pre and Post inc are supported on loads and stores 356 for (unsigned im = (unsigned)ISD::PRE_INC; 357 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) { 358 setIndexedLoadAction(im, VT, Legal); 359 setIndexedStoreAction(im, VT, Legal); 360 setIndexedMaskedLoadAction(im, VT, Legal); 361 setIndexedMaskedStoreAction(im, VT, Legal); 362 } 363 364 if (HasMVEFP) { 365 setOperationAction(ISD::FMINNUM, VT, Legal); 366 setOperationAction(ISD::FMAXNUM, VT, Legal); 367 setOperationAction(ISD::FROUND, VT, Legal); 368 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 369 setOperationAction(ISD::VECREDUCE_FMUL, VT, Custom); 370 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 371 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 372 373 // No native support for these. 374 setOperationAction(ISD::FDIV, VT, Expand); 375 setOperationAction(ISD::FREM, VT, Expand); 376 setOperationAction(ISD::FSQRT, VT, Expand); 377 setOperationAction(ISD::FSIN, VT, Expand); 378 setOperationAction(ISD::FCOS, VT, Expand); 379 setOperationAction(ISD::FTAN, VT, Expand); 380 setOperationAction(ISD::FPOW, VT, Expand); 381 setOperationAction(ISD::FLOG, VT, Expand); 382 setOperationAction(ISD::FLOG2, VT, Expand); 383 setOperationAction(ISD::FLOG10, VT, Expand); 384 setOperationAction(ISD::FEXP, VT, Expand); 385 setOperationAction(ISD::FEXP2, VT, Expand); 386 setOperationAction(ISD::FEXP10, VT, Expand); 387 setOperationAction(ISD::FNEARBYINT, VT, Expand); 388 } 389 } 390 391 // Custom Expand smaller than legal vector reductions to prevent false zero 392 // items being added. 393 setOperationAction(ISD::VECREDUCE_FADD, MVT::v4f16, Custom); 394 setOperationAction(ISD::VECREDUCE_FMUL, MVT::v4f16, Custom); 395 setOperationAction(ISD::VECREDUCE_FMIN, MVT::v4f16, Custom); 396 setOperationAction(ISD::VECREDUCE_FMAX, MVT::v4f16, Custom); 397 setOperationAction(ISD::VECREDUCE_FADD, MVT::v2f16, Custom); 398 setOperationAction(ISD::VECREDUCE_FMUL, MVT::v2f16, Custom); 399 setOperationAction(ISD::VECREDUCE_FMIN, MVT::v2f16, Custom); 400 setOperationAction(ISD::VECREDUCE_FMAX, MVT::v2f16, Custom); 401 402 // We 'support' these types up to bitcast/load/store level, regardless of 403 // MVE integer-only / float support. Only doing FP data processing on the FP 404 // vector types is inhibited at integer-only level. 405 const MVT LongTypes[] = { MVT::v2i64, MVT::v2f64 }; 406 for (auto VT : LongTypes) { 407 addRegisterClass(VT, &ARM::MQPRRegClass); 408 setAllExpand(VT); 409 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 410 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 411 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 412 setOperationAction(ISD::VSELECT, VT, Legal); 413 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 414 } 415 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 416 417 // We can do bitwise operations on v2i64 vectors 418 setOperationAction(ISD::AND, MVT::v2i64, Legal); 419 setOperationAction(ISD::OR, MVT::v2i64, Legal); 420 setOperationAction(ISD::XOR, MVT::v2i64, Legal); 421 422 // It is legal to extload from v4i8 to v4i16 or v4i32. 423 addAllExtLoads(MVT::v8i16, MVT::v8i8, Legal); 424 addAllExtLoads(MVT::v4i32, MVT::v4i16, Legal); 425 addAllExtLoads(MVT::v4i32, MVT::v4i8, Legal); 426 427 // It is legal to sign extend from v4i8/v4i16 to v4i32 or v8i8 to v8i16. 428 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Legal); 429 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal); 430 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal); 431 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v8i8, Legal); 432 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v8i16, Legal); 433 434 // Some truncating stores are legal too. 435 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Legal); 436 setTruncStoreAction(MVT::v4i32, MVT::v4i8, Legal); 437 setTruncStoreAction(MVT::v8i16, MVT::v8i8, Legal); 438 439 // Pre and Post inc on these are legal, given the correct extends 440 for (unsigned im = (unsigned)ISD::PRE_INC; 441 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) { 442 for (auto VT : {MVT::v8i8, MVT::v4i8, MVT::v4i16}) { 443 setIndexedLoadAction(im, VT, Legal); 444 setIndexedStoreAction(im, VT, Legal); 445 setIndexedMaskedLoadAction(im, VT, Legal); 446 setIndexedMaskedStoreAction(im, VT, Legal); 447 } 448 } 449 450 // Predicate types 451 const MVT pTypes[] = {MVT::v16i1, MVT::v8i1, MVT::v4i1, MVT::v2i1}; 452 for (auto VT : pTypes) { 453 addRegisterClass(VT, &ARM::VCCRRegClass); 454 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 455 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 456 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 457 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 458 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 459 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 460 setOperationAction(ISD::SETCC, VT, Custom); 461 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 462 setOperationAction(ISD::LOAD, VT, Custom); 463 setOperationAction(ISD::STORE, VT, Custom); 464 setOperationAction(ISD::TRUNCATE, VT, Custom); 465 setOperationAction(ISD::VSELECT, VT, Expand); 466 setOperationAction(ISD::SELECT, VT, Expand); 467 setOperationAction(ISD::SELECT_CC, VT, Expand); 468 469 if (!HasMVEFP) { 470 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 471 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 472 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 473 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 474 } 475 } 476 setOperationAction(ISD::SETCC, MVT::v2i1, Expand); 477 setOperationAction(ISD::TRUNCATE, MVT::v2i1, Expand); 478 setOperationAction(ISD::AND, MVT::v2i1, Expand); 479 setOperationAction(ISD::OR, MVT::v2i1, Expand); 480 setOperationAction(ISD::XOR, MVT::v2i1, Expand); 481 setOperationAction(ISD::SINT_TO_FP, MVT::v2i1, Expand); 482 setOperationAction(ISD::UINT_TO_FP, MVT::v2i1, Expand); 483 setOperationAction(ISD::FP_TO_SINT, MVT::v2i1, Expand); 484 setOperationAction(ISD::FP_TO_UINT, MVT::v2i1, Expand); 485 486 setOperationAction(ISD::SIGN_EXTEND, MVT::v8i32, Custom); 487 setOperationAction(ISD::SIGN_EXTEND, MVT::v16i16, Custom); 488 setOperationAction(ISD::SIGN_EXTEND, MVT::v16i32, Custom); 489 setOperationAction(ISD::ZERO_EXTEND, MVT::v8i32, Custom); 490 setOperationAction(ISD::ZERO_EXTEND, MVT::v16i16, Custom); 491 setOperationAction(ISD::ZERO_EXTEND, MVT::v16i32, Custom); 492 setOperationAction(ISD::TRUNCATE, MVT::v8i32, Custom); 493 setOperationAction(ISD::TRUNCATE, MVT::v16i16, Custom); 494 } 495 496 ARMTargetLowering::ARMTargetLowering(const TargetMachine &TM, 497 const ARMSubtarget &STI) 498 : TargetLowering(TM), Subtarget(&STI) { 499 RegInfo = Subtarget->getRegisterInfo(); 500 Itins = Subtarget->getInstrItineraryData(); 501 502 setBooleanContents(ZeroOrOneBooleanContent); 503 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 504 505 if (!Subtarget->isTargetDarwin() && !Subtarget->isTargetIOS() && 506 !Subtarget->isTargetWatchOS() && !Subtarget->isTargetDriverKit()) { 507 bool IsHFTarget = TM.Options.FloatABIType == FloatABI::Hard; 508 for (int LCID = 0; LCID < RTLIB::UNKNOWN_LIBCALL; ++LCID) 509 setLibcallCallingConv(static_cast<RTLIB::Libcall>(LCID), 510 IsHFTarget ? CallingConv::ARM_AAPCS_VFP 511 : CallingConv::ARM_AAPCS); 512 } 513 514 if (Subtarget->isTargetMachO()) { 515 // Uses VFP for Thumb libfuncs if available. 516 if (Subtarget->isThumb() && Subtarget->hasVFP2Base() && 517 Subtarget->hasARMOps() && !Subtarget->useSoftFloat()) { 518 static const struct { 519 const RTLIB::Libcall Op; 520 const char * const Name; 521 const ISD::CondCode Cond; 522 } LibraryCalls[] = { 523 // Single-precision floating-point arithmetic. 524 { RTLIB::ADD_F32, "__addsf3vfp", ISD::SETCC_INVALID }, 525 { RTLIB::SUB_F32, "__subsf3vfp", ISD::SETCC_INVALID }, 526 { RTLIB::MUL_F32, "__mulsf3vfp", ISD::SETCC_INVALID }, 527 { RTLIB::DIV_F32, "__divsf3vfp", ISD::SETCC_INVALID }, 528 529 // Double-precision floating-point arithmetic. 530 { RTLIB::ADD_F64, "__adddf3vfp", ISD::SETCC_INVALID }, 531 { RTLIB::SUB_F64, "__subdf3vfp", ISD::SETCC_INVALID }, 532 { RTLIB::MUL_F64, "__muldf3vfp", ISD::SETCC_INVALID }, 533 { RTLIB::DIV_F64, "__divdf3vfp", ISD::SETCC_INVALID }, 534 535 // Single-precision comparisons. 536 { RTLIB::OEQ_F32, "__eqsf2vfp", ISD::SETNE }, 537 { RTLIB::UNE_F32, "__nesf2vfp", ISD::SETNE }, 538 { RTLIB::OLT_F32, "__ltsf2vfp", ISD::SETNE }, 539 { RTLIB::OLE_F32, "__lesf2vfp", ISD::SETNE }, 540 { RTLIB::OGE_F32, "__gesf2vfp", ISD::SETNE }, 541 { RTLIB::OGT_F32, "__gtsf2vfp", ISD::SETNE }, 542 { RTLIB::UO_F32, "__unordsf2vfp", ISD::SETNE }, 543 544 // Double-precision comparisons. 545 { RTLIB::OEQ_F64, "__eqdf2vfp", ISD::SETNE }, 546 { RTLIB::UNE_F64, "__nedf2vfp", ISD::SETNE }, 547 { RTLIB::OLT_F64, "__ltdf2vfp", ISD::SETNE }, 548 { RTLIB::OLE_F64, "__ledf2vfp", ISD::SETNE }, 549 { RTLIB::OGE_F64, "__gedf2vfp", ISD::SETNE }, 550 { RTLIB::OGT_F64, "__gtdf2vfp", ISD::SETNE }, 551 { RTLIB::UO_F64, "__unorddf2vfp", ISD::SETNE }, 552 553 // Floating-point to integer conversions. 554 // i64 conversions are done via library routines even when generating VFP 555 // instructions, so use the same ones. 556 { RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp", ISD::SETCC_INVALID }, 557 { RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp", ISD::SETCC_INVALID }, 558 { RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp", ISD::SETCC_INVALID }, 559 { RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp", ISD::SETCC_INVALID }, 560 561 // Conversions between floating types. 562 { RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp", ISD::SETCC_INVALID }, 563 { RTLIB::FPEXT_F32_F64, "__extendsfdf2vfp", ISD::SETCC_INVALID }, 564 565 // Integer to floating-point conversions. 566 // i64 conversions are done via library routines even when generating VFP 567 // instructions, so use the same ones. 568 // FIXME: There appears to be some naming inconsistency in ARM libgcc: 569 // e.g., __floatunsidf vs. __floatunssidfvfp. 570 { RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp", ISD::SETCC_INVALID }, 571 { RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp", ISD::SETCC_INVALID }, 572 { RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp", ISD::SETCC_INVALID }, 573 { RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp", ISD::SETCC_INVALID }, 574 }; 575 576 for (const auto &LC : LibraryCalls) { 577 setLibcallName(LC.Op, LC.Name); 578 if (LC.Cond != ISD::SETCC_INVALID) 579 setCmpLibcallCC(LC.Op, LC.Cond); 580 } 581 } 582 } 583 584 // RTLIB 585 if (Subtarget->isAAPCS_ABI() && 586 (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() || 587 Subtarget->isTargetMuslAEABI() || Subtarget->isTargetAndroid())) { 588 static const struct { 589 const RTLIB::Libcall Op; 590 const char * const Name; 591 const CallingConv::ID CC; 592 const ISD::CondCode Cond; 593 } LibraryCalls[] = { 594 // Double-precision floating-point arithmetic helper functions 595 // RTABI chapter 4.1.2, Table 2 596 { RTLIB::ADD_F64, "__aeabi_dadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 597 { RTLIB::DIV_F64, "__aeabi_ddiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 598 { RTLIB::MUL_F64, "__aeabi_dmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 599 { RTLIB::SUB_F64, "__aeabi_dsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 600 601 // Double-precision floating-point comparison helper functions 602 // RTABI chapter 4.1.2, Table 3 603 { RTLIB::OEQ_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE }, 604 { RTLIB::UNE_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ }, 605 { RTLIB::OLT_F64, "__aeabi_dcmplt", CallingConv::ARM_AAPCS, ISD::SETNE }, 606 { RTLIB::OLE_F64, "__aeabi_dcmple", CallingConv::ARM_AAPCS, ISD::SETNE }, 607 { RTLIB::OGE_F64, "__aeabi_dcmpge", CallingConv::ARM_AAPCS, ISD::SETNE }, 608 { RTLIB::OGT_F64, "__aeabi_dcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE }, 609 { RTLIB::UO_F64, "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETNE }, 610 611 // Single-precision floating-point arithmetic helper functions 612 // RTABI chapter 4.1.2, Table 4 613 { RTLIB::ADD_F32, "__aeabi_fadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 614 { RTLIB::DIV_F32, "__aeabi_fdiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 615 { RTLIB::MUL_F32, "__aeabi_fmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 616 { RTLIB::SUB_F32, "__aeabi_fsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 617 618 // Single-precision floating-point comparison helper functions 619 // RTABI chapter 4.1.2, Table 5 620 { RTLIB::OEQ_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE }, 621 { RTLIB::UNE_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ }, 622 { RTLIB::OLT_F32, "__aeabi_fcmplt", CallingConv::ARM_AAPCS, ISD::SETNE }, 623 { RTLIB::OLE_F32, "__aeabi_fcmple", CallingConv::ARM_AAPCS, ISD::SETNE }, 624 { RTLIB::OGE_F32, "__aeabi_fcmpge", CallingConv::ARM_AAPCS, ISD::SETNE }, 625 { RTLIB::OGT_F32, "__aeabi_fcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE }, 626 { RTLIB::UO_F32, "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETNE }, 627 628 // Floating-point to integer conversions. 629 // RTABI chapter 4.1.2, Table 6 630 { RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 631 { RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 632 { RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 633 { RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 634 { RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 635 { RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 636 { RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 637 { RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 638 639 // Conversions between floating types. 640 // RTABI chapter 4.1.2, Table 7 641 { RTLIB::FPROUND_F64_F32, "__aeabi_d2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 642 { RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 643 { RTLIB::FPEXT_F32_F64, "__aeabi_f2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 644 645 // Integer to floating-point conversions. 646 // RTABI chapter 4.1.2, Table 8 647 { RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 648 { RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 649 { RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 650 { RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 651 { RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 652 { RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 653 { RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 654 { RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 655 656 // Long long helper functions 657 // RTABI chapter 4.2, Table 9 658 { RTLIB::MUL_I64, "__aeabi_lmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 659 { RTLIB::SHL_I64, "__aeabi_llsl", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 660 { RTLIB::SRL_I64, "__aeabi_llsr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 661 { RTLIB::SRA_I64, "__aeabi_lasr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 662 663 // Integer division functions 664 // RTABI chapter 4.3.1 665 { RTLIB::SDIV_I8, "__aeabi_idiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 666 { RTLIB::SDIV_I16, "__aeabi_idiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 667 { RTLIB::SDIV_I32, "__aeabi_idiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 668 { RTLIB::SDIV_I64, "__aeabi_ldivmod", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 669 { RTLIB::UDIV_I8, "__aeabi_uidiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 670 { RTLIB::UDIV_I16, "__aeabi_uidiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 671 { RTLIB::UDIV_I32, "__aeabi_uidiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 672 { RTLIB::UDIV_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 673 }; 674 675 for (const auto &LC : LibraryCalls) { 676 setLibcallName(LC.Op, LC.Name); 677 setLibcallCallingConv(LC.Op, LC.CC); 678 if (LC.Cond != ISD::SETCC_INVALID) 679 setCmpLibcallCC(LC.Op, LC.Cond); 680 } 681 682 // EABI dependent RTLIB 683 if (TM.Options.EABIVersion == EABI::EABI4 || 684 TM.Options.EABIVersion == EABI::EABI5) { 685 static const struct { 686 const RTLIB::Libcall Op; 687 const char *const Name; 688 const CallingConv::ID CC; 689 const ISD::CondCode Cond; 690 } MemOpsLibraryCalls[] = { 691 // Memory operations 692 // RTABI chapter 4.3.4 693 { RTLIB::MEMCPY, "__aeabi_memcpy", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 694 { RTLIB::MEMMOVE, "__aeabi_memmove", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 695 { RTLIB::MEMSET, "__aeabi_memset", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 696 }; 697 698 for (const auto &LC : MemOpsLibraryCalls) { 699 setLibcallName(LC.Op, LC.Name); 700 setLibcallCallingConv(LC.Op, LC.CC); 701 if (LC.Cond != ISD::SETCC_INVALID) 702 setCmpLibcallCC(LC.Op, LC.Cond); 703 } 704 } 705 } 706 707 if (Subtarget->isTargetWindows()) { 708 static const struct { 709 const RTLIB::Libcall Op; 710 const char * const Name; 711 const CallingConv::ID CC; 712 } LibraryCalls[] = { 713 { RTLIB::FPTOSINT_F32_I64, "__stoi64", CallingConv::ARM_AAPCS_VFP }, 714 { RTLIB::FPTOSINT_F64_I64, "__dtoi64", CallingConv::ARM_AAPCS_VFP }, 715 { RTLIB::FPTOUINT_F32_I64, "__stou64", CallingConv::ARM_AAPCS_VFP }, 716 { RTLIB::FPTOUINT_F64_I64, "__dtou64", CallingConv::ARM_AAPCS_VFP }, 717 { RTLIB::SINTTOFP_I64_F32, "__i64tos", CallingConv::ARM_AAPCS_VFP }, 718 { RTLIB::SINTTOFP_I64_F64, "__i64tod", CallingConv::ARM_AAPCS_VFP }, 719 { RTLIB::UINTTOFP_I64_F32, "__u64tos", CallingConv::ARM_AAPCS_VFP }, 720 { RTLIB::UINTTOFP_I64_F64, "__u64tod", CallingConv::ARM_AAPCS_VFP }, 721 }; 722 723 for (const auto &LC : LibraryCalls) { 724 setLibcallName(LC.Op, LC.Name); 725 setLibcallCallingConv(LC.Op, LC.CC); 726 } 727 } 728 729 // Use divmod compiler-rt calls for iOS 5.0 and later. 730 if (Subtarget->isTargetMachO() && 731 !(Subtarget->isTargetIOS() && 732 Subtarget->getTargetTriple().isOSVersionLT(5, 0))) { 733 setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4"); 734 setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4"); 735 } 736 737 // The half <-> float conversion functions are always soft-float on 738 // non-watchos platforms, but are needed for some targets which use a 739 // hard-float calling convention by default. 740 if (!Subtarget->isTargetWatchABI()) { 741 if (Subtarget->isAAPCS_ABI()) { 742 setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_AAPCS); 743 setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_AAPCS); 744 setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_AAPCS); 745 } else { 746 setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_APCS); 747 setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_APCS); 748 setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_APCS); 749 } 750 } 751 752 // In EABI, these functions have an __aeabi_ prefix, but in GNUEABI they have 753 // a __gnu_ prefix (which is the default). 754 if (Subtarget->isTargetAEABI()) { 755 static const struct { 756 const RTLIB::Libcall Op; 757 const char * const Name; 758 const CallingConv::ID CC; 759 } LibraryCalls[] = { 760 { RTLIB::FPROUND_F32_F16, "__aeabi_f2h", CallingConv::ARM_AAPCS }, 761 { RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS }, 762 { RTLIB::FPEXT_F16_F32, "__aeabi_h2f", CallingConv::ARM_AAPCS }, 763 }; 764 765 for (const auto &LC : LibraryCalls) { 766 setLibcallName(LC.Op, LC.Name); 767 setLibcallCallingConv(LC.Op, LC.CC); 768 } 769 } 770 771 if (Subtarget->isThumb1Only()) 772 addRegisterClass(MVT::i32, &ARM::tGPRRegClass); 773 else 774 addRegisterClass(MVT::i32, &ARM::GPRRegClass); 775 776 if (!Subtarget->useSoftFloat() && !Subtarget->isThumb1Only() && 777 Subtarget->hasFPRegs()) { 778 addRegisterClass(MVT::f32, &ARM::SPRRegClass); 779 addRegisterClass(MVT::f64, &ARM::DPRRegClass); 780 781 setOperationAction(ISD::FP_TO_SINT_SAT, MVT::i32, Custom); 782 setOperationAction(ISD::FP_TO_UINT_SAT, MVT::i32, Custom); 783 setOperationAction(ISD::FP_TO_SINT_SAT, MVT::i64, Custom); 784 setOperationAction(ISD::FP_TO_UINT_SAT, MVT::i64, Custom); 785 786 if (!Subtarget->hasVFP2Base()) 787 setAllExpand(MVT::f32); 788 if (!Subtarget->hasFP64()) 789 setAllExpand(MVT::f64); 790 } 791 792 if (Subtarget->hasFullFP16()) { 793 addRegisterClass(MVT::f16, &ARM::HPRRegClass); 794 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 795 setOperationAction(ISD::BITCAST, MVT::f16, Custom); 796 797 setOperationAction(ISD::FMINNUM, MVT::f16, Legal); 798 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal); 799 } 800 801 if (Subtarget->hasBF16()) { 802 addRegisterClass(MVT::bf16, &ARM::HPRRegClass); 803 setAllExpand(MVT::bf16); 804 if (!Subtarget->hasFullFP16()) 805 setOperationAction(ISD::BITCAST, MVT::bf16, Custom); 806 } 807 808 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 809 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 810 setTruncStoreAction(VT, InnerVT, Expand); 811 addAllExtLoads(VT, InnerVT, Expand); 812 } 813 814 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 815 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 816 817 setOperationAction(ISD::BSWAP, VT, Expand); 818 } 819 820 setOperationAction(ISD::ConstantFP, MVT::f32, Custom); 821 setOperationAction(ISD::ConstantFP, MVT::f64, Custom); 822 823 setOperationAction(ISD::READ_REGISTER, MVT::i64, Custom); 824 setOperationAction(ISD::WRITE_REGISTER, MVT::i64, Custom); 825 826 if (Subtarget->hasMVEIntegerOps()) 827 addMVEVectorTypes(Subtarget->hasMVEFloatOps()); 828 829 // Combine low-overhead loop intrinsics so that we can lower i1 types. 830 if (Subtarget->hasLOB()) { 831 setTargetDAGCombine({ISD::BRCOND, ISD::BR_CC}); 832 } 833 834 if (Subtarget->hasNEON()) { 835 addDRTypeForNEON(MVT::v2f32); 836 addDRTypeForNEON(MVT::v8i8); 837 addDRTypeForNEON(MVT::v4i16); 838 addDRTypeForNEON(MVT::v2i32); 839 addDRTypeForNEON(MVT::v1i64); 840 841 addQRTypeForNEON(MVT::v4f32); 842 addQRTypeForNEON(MVT::v2f64); 843 addQRTypeForNEON(MVT::v16i8); 844 addQRTypeForNEON(MVT::v8i16); 845 addQRTypeForNEON(MVT::v4i32); 846 addQRTypeForNEON(MVT::v2i64); 847 848 if (Subtarget->hasFullFP16()) { 849 addQRTypeForNEON(MVT::v8f16); 850 addDRTypeForNEON(MVT::v4f16); 851 } 852 853 if (Subtarget->hasBF16()) { 854 addQRTypeForNEON(MVT::v8bf16); 855 addDRTypeForNEON(MVT::v4bf16); 856 } 857 } 858 859 if (Subtarget->hasMVEIntegerOps() || Subtarget->hasNEON()) { 860 // v2f64 is legal so that QR subregs can be extracted as f64 elements, but 861 // none of Neon, MVE or VFP supports any arithmetic operations on it. 862 setOperationAction(ISD::FADD, MVT::v2f64, Expand); 863 setOperationAction(ISD::FSUB, MVT::v2f64, Expand); 864 setOperationAction(ISD::FMUL, MVT::v2f64, Expand); 865 // FIXME: Code duplication: FDIV and FREM are expanded always, see 866 // ARMTargetLowering::addTypeForNEON method for details. 867 setOperationAction(ISD::FDIV, MVT::v2f64, Expand); 868 setOperationAction(ISD::FREM, MVT::v2f64, Expand); 869 // FIXME: Create unittest. 870 // In another words, find a way when "copysign" appears in DAG with vector 871 // operands. 872 setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand); 873 // FIXME: Code duplication: SETCC has custom operation action, see 874 // ARMTargetLowering::addTypeForNEON method for details. 875 setOperationAction(ISD::SETCC, MVT::v2f64, Expand); 876 // FIXME: Create unittest for FNEG and for FABS. 877 setOperationAction(ISD::FNEG, MVT::v2f64, Expand); 878 setOperationAction(ISD::FABS, MVT::v2f64, Expand); 879 setOperationAction(ISD::FSQRT, MVT::v2f64, Expand); 880 setOperationAction(ISD::FSIN, MVT::v2f64, Expand); 881 setOperationAction(ISD::FCOS, MVT::v2f64, Expand); 882 setOperationAction(ISD::FTAN, MVT::v2f64, Expand); 883 setOperationAction(ISD::FPOW, MVT::v2f64, Expand); 884 setOperationAction(ISD::FLOG, MVT::v2f64, Expand); 885 setOperationAction(ISD::FLOG2, MVT::v2f64, Expand); 886 setOperationAction(ISD::FLOG10, MVT::v2f64, Expand); 887 setOperationAction(ISD::FEXP, MVT::v2f64, Expand); 888 setOperationAction(ISD::FEXP2, MVT::v2f64, Expand); 889 setOperationAction(ISD::FEXP10, MVT::v2f64, Expand); 890 // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR. 891 setOperationAction(ISD::FCEIL, MVT::v2f64, Expand); 892 setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand); 893 setOperationAction(ISD::FRINT, MVT::v2f64, Expand); 894 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand); 895 setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand); 896 setOperationAction(ISD::FMA, MVT::v2f64, Expand); 897 } 898 899 if (Subtarget->hasNEON()) { 900 // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively 901 // supported for v4f32. 902 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); 903 setOperationAction(ISD::FSIN, MVT::v4f32, Expand); 904 setOperationAction(ISD::FCOS, MVT::v4f32, Expand); 905 setOperationAction(ISD::FTAN, MVT::v4f32, Expand); 906 setOperationAction(ISD::FPOW, MVT::v4f32, Expand); 907 setOperationAction(ISD::FLOG, MVT::v4f32, Expand); 908 setOperationAction(ISD::FLOG2, MVT::v4f32, Expand); 909 setOperationAction(ISD::FLOG10, MVT::v4f32, Expand); 910 setOperationAction(ISD::FEXP, MVT::v4f32, Expand); 911 setOperationAction(ISD::FEXP2, MVT::v4f32, Expand); 912 setOperationAction(ISD::FEXP10, MVT::v4f32, Expand); 913 setOperationAction(ISD::FCEIL, MVT::v4f32, Expand); 914 setOperationAction(ISD::FTRUNC, MVT::v4f32, Expand); 915 setOperationAction(ISD::FRINT, MVT::v4f32, Expand); 916 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand); 917 setOperationAction(ISD::FFLOOR, MVT::v4f32, Expand); 918 919 // Mark v2f32 intrinsics. 920 setOperationAction(ISD::FSQRT, MVT::v2f32, Expand); 921 setOperationAction(ISD::FSIN, MVT::v2f32, Expand); 922 setOperationAction(ISD::FCOS, MVT::v2f32, Expand); 923 setOperationAction(ISD::FTAN, MVT::v2f32, Expand); 924 setOperationAction(ISD::FPOW, MVT::v2f32, Expand); 925 setOperationAction(ISD::FLOG, MVT::v2f32, Expand); 926 setOperationAction(ISD::FLOG2, MVT::v2f32, Expand); 927 setOperationAction(ISD::FLOG10, MVT::v2f32, Expand); 928 setOperationAction(ISD::FEXP, MVT::v2f32, Expand); 929 setOperationAction(ISD::FEXP2, MVT::v2f32, Expand); 930 setOperationAction(ISD::FEXP10, MVT::v2f32, Expand); 931 setOperationAction(ISD::FCEIL, MVT::v2f32, Expand); 932 setOperationAction(ISD::FTRUNC, MVT::v2f32, Expand); 933 setOperationAction(ISD::FRINT, MVT::v2f32, Expand); 934 setOperationAction(ISD::FNEARBYINT, MVT::v2f32, Expand); 935 setOperationAction(ISD::FFLOOR, MVT::v2f32, Expand); 936 937 // Neon does not support some operations on v1i64 and v2i64 types. 938 setOperationAction(ISD::MUL, MVT::v1i64, Expand); 939 // Custom handling for some quad-vector types to detect VMULL. 940 setOperationAction(ISD::MUL, MVT::v8i16, Custom); 941 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 942 setOperationAction(ISD::MUL, MVT::v2i64, Custom); 943 // Custom handling for some vector types to avoid expensive expansions 944 setOperationAction(ISD::SDIV, MVT::v4i16, Custom); 945 setOperationAction(ISD::SDIV, MVT::v8i8, Custom); 946 setOperationAction(ISD::UDIV, MVT::v4i16, Custom); 947 setOperationAction(ISD::UDIV, MVT::v8i8, Custom); 948 // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with 949 // a destination type that is wider than the source, and nor does 950 // it have a FP_TO_[SU]INT instruction with a narrower destination than 951 // source. 952 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); 953 setOperationAction(ISD::SINT_TO_FP, MVT::v8i16, Custom); 954 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); 955 setOperationAction(ISD::UINT_TO_FP, MVT::v8i16, Custom); 956 setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom); 957 setOperationAction(ISD::FP_TO_UINT, MVT::v8i16, Custom); 958 setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom); 959 setOperationAction(ISD::FP_TO_SINT, MVT::v8i16, Custom); 960 961 setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand); 962 setOperationAction(ISD::FP_EXTEND, MVT::v2f64, Expand); 963 964 // NEON does not have single instruction CTPOP for vectors with element 965 // types wider than 8-bits. However, custom lowering can leverage the 966 // v8i8/v16i8 vcnt instruction. 967 setOperationAction(ISD::CTPOP, MVT::v2i32, Custom); 968 setOperationAction(ISD::CTPOP, MVT::v4i32, Custom); 969 setOperationAction(ISD::CTPOP, MVT::v4i16, Custom); 970 setOperationAction(ISD::CTPOP, MVT::v8i16, Custom); 971 setOperationAction(ISD::CTPOP, MVT::v1i64, Custom); 972 setOperationAction(ISD::CTPOP, MVT::v2i64, Custom); 973 974 setOperationAction(ISD::CTLZ, MVT::v1i64, Expand); 975 setOperationAction(ISD::CTLZ, MVT::v2i64, Expand); 976 977 // NEON does not have single instruction CTTZ for vectors. 978 setOperationAction(ISD::CTTZ, MVT::v8i8, Custom); 979 setOperationAction(ISD::CTTZ, MVT::v4i16, Custom); 980 setOperationAction(ISD::CTTZ, MVT::v2i32, Custom); 981 setOperationAction(ISD::CTTZ, MVT::v1i64, Custom); 982 983 setOperationAction(ISD::CTTZ, MVT::v16i8, Custom); 984 setOperationAction(ISD::CTTZ, MVT::v8i16, Custom); 985 setOperationAction(ISD::CTTZ, MVT::v4i32, Custom); 986 setOperationAction(ISD::CTTZ, MVT::v2i64, Custom); 987 988 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i8, Custom); 989 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i16, Custom); 990 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i32, Custom); 991 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v1i64, Custom); 992 993 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v16i8, Custom); 994 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i16, Custom); 995 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i32, Custom); 996 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i64, Custom); 997 998 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 999 setOperationAction(ISD::MULHS, VT, Expand); 1000 setOperationAction(ISD::MULHU, VT, Expand); 1001 } 1002 1003 // NEON only has FMA instructions as of VFP4. 1004 if (!Subtarget->hasVFP4Base()) { 1005 setOperationAction(ISD::FMA, MVT::v2f32, Expand); 1006 setOperationAction(ISD::FMA, MVT::v4f32, Expand); 1007 } 1008 1009 setTargetDAGCombine({ISD::SHL, ISD::SRL, ISD::SRA, ISD::FP_TO_SINT, 1010 ISD::FP_TO_UINT, ISD::FMUL, ISD::LOAD}); 1011 1012 // It is legal to extload from v4i8 to v4i16 or v4i32. 1013 for (MVT Ty : {MVT::v8i8, MVT::v4i8, MVT::v2i8, MVT::v4i16, MVT::v2i16, 1014 MVT::v2i32}) { 1015 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 1016 setLoadExtAction(ISD::EXTLOAD, VT, Ty, Legal); 1017 setLoadExtAction(ISD::ZEXTLOAD, VT, Ty, Legal); 1018 setLoadExtAction(ISD::SEXTLOAD, VT, Ty, Legal); 1019 } 1020 } 1021 1022 for (auto VT : {MVT::v8i8, MVT::v4i16, MVT::v2i32, MVT::v16i8, MVT::v8i16, 1023 MVT::v4i32}) { 1024 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 1025 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 1026 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 1027 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 1028 } 1029 } 1030 1031 if (Subtarget->hasNEON() || Subtarget->hasMVEIntegerOps()) { 1032 setTargetDAGCombine( 1033 {ISD::BUILD_VECTOR, ISD::VECTOR_SHUFFLE, ISD::INSERT_SUBVECTOR, 1034 ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT, 1035 ISD::SIGN_EXTEND_INREG, ISD::STORE, ISD::SIGN_EXTEND, ISD::ZERO_EXTEND, 1036 ISD::ANY_EXTEND, ISD::INTRINSIC_WO_CHAIN, ISD::INTRINSIC_W_CHAIN, 1037 ISD::INTRINSIC_VOID, ISD::VECREDUCE_ADD, ISD::ADD, ISD::BITCAST}); 1038 } 1039 if (Subtarget->hasMVEIntegerOps()) { 1040 setTargetDAGCombine({ISD::SMIN, ISD::UMIN, ISD::SMAX, ISD::UMAX, 1041 ISD::FP_EXTEND, ISD::SELECT, ISD::SELECT_CC, 1042 ISD::SETCC}); 1043 } 1044 if (Subtarget->hasMVEFloatOps()) { 1045 setTargetDAGCombine(ISD::FADD); 1046 } 1047 1048 if (!Subtarget->hasFP64()) { 1049 // When targeting a floating-point unit with only single-precision 1050 // operations, f64 is legal for the few double-precision instructions which 1051 // are present However, no double-precision operations other than moves, 1052 // loads and stores are provided by the hardware. 1053 setOperationAction(ISD::FADD, MVT::f64, Expand); 1054 setOperationAction(ISD::FSUB, MVT::f64, Expand); 1055 setOperationAction(ISD::FMUL, MVT::f64, Expand); 1056 setOperationAction(ISD::FMA, MVT::f64, Expand); 1057 setOperationAction(ISD::FDIV, MVT::f64, Expand); 1058 setOperationAction(ISD::FREM, MVT::f64, Expand); 1059 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 1060 setOperationAction(ISD::FGETSIGN, MVT::f64, Expand); 1061 setOperationAction(ISD::FNEG, MVT::f64, Expand); 1062 setOperationAction(ISD::FABS, MVT::f64, Expand); 1063 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 1064 setOperationAction(ISD::FSIN, MVT::f64, Expand); 1065 setOperationAction(ISD::FCOS, MVT::f64, Expand); 1066 setOperationAction(ISD::FPOW, MVT::f64, Expand); 1067 setOperationAction(ISD::FLOG, MVT::f64, Expand); 1068 setOperationAction(ISD::FLOG2, MVT::f64, Expand); 1069 setOperationAction(ISD::FLOG10, MVT::f64, Expand); 1070 setOperationAction(ISD::FEXP, MVT::f64, Expand); 1071 setOperationAction(ISD::FEXP2, MVT::f64, Expand); 1072 setOperationAction(ISD::FEXP10, MVT::f64, Expand); 1073 setOperationAction(ISD::FCEIL, MVT::f64, Expand); 1074 setOperationAction(ISD::FTRUNC, MVT::f64, Expand); 1075 setOperationAction(ISD::FRINT, MVT::f64, Expand); 1076 setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand); 1077 setOperationAction(ISD::FFLOOR, MVT::f64, Expand); 1078 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 1079 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 1080 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 1081 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 1082 setOperationAction(ISD::FP_TO_SINT, MVT::f64, Custom); 1083 setOperationAction(ISD::FP_TO_UINT, MVT::f64, Custom); 1084 setOperationAction(ISD::FP_ROUND, MVT::f32, Custom); 1085 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 1086 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 1087 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::f64, Custom); 1088 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::f64, Custom); 1089 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Custom); 1090 } 1091 1092 if (!Subtarget->hasFP64() || !Subtarget->hasFPARMv8Base()) { 1093 setOperationAction(ISD::FP_EXTEND, MVT::f64, Custom); 1094 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Custom); 1095 if (Subtarget->hasFullFP16()) { 1096 setOperationAction(ISD::FP_ROUND, MVT::f16, Custom); 1097 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Custom); 1098 } 1099 } 1100 1101 if (!Subtarget->hasFP16()) { 1102 setOperationAction(ISD::FP_EXTEND, MVT::f32, Custom); 1103 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Custom); 1104 } 1105 1106 computeRegisterProperties(Subtarget->getRegisterInfo()); 1107 1108 // ARM does not have floating-point extending loads. 1109 for (MVT VT : MVT::fp_valuetypes()) { 1110 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand); 1111 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand); 1112 } 1113 1114 // ... or truncating stores 1115 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 1116 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 1117 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 1118 1119 // ARM does not have i1 sign extending load. 1120 for (MVT VT : MVT::integer_valuetypes()) 1121 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 1122 1123 // ARM supports all 4 flavors of integer indexed load / store. 1124 if (!Subtarget->isThumb1Only()) { 1125 for (unsigned im = (unsigned)ISD::PRE_INC; 1126 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) { 1127 setIndexedLoadAction(im, MVT::i1, Legal); 1128 setIndexedLoadAction(im, MVT::i8, Legal); 1129 setIndexedLoadAction(im, MVT::i16, Legal); 1130 setIndexedLoadAction(im, MVT::i32, Legal); 1131 setIndexedStoreAction(im, MVT::i1, Legal); 1132 setIndexedStoreAction(im, MVT::i8, Legal); 1133 setIndexedStoreAction(im, MVT::i16, Legal); 1134 setIndexedStoreAction(im, MVT::i32, Legal); 1135 } 1136 } else { 1137 // Thumb-1 has limited post-inc load/store support - LDM r0!, {r1}. 1138 setIndexedLoadAction(ISD::POST_INC, MVT::i32, Legal); 1139 setIndexedStoreAction(ISD::POST_INC, MVT::i32, Legal); 1140 } 1141 1142 setOperationAction(ISD::SADDO, MVT::i32, Custom); 1143 setOperationAction(ISD::UADDO, MVT::i32, Custom); 1144 setOperationAction(ISD::SSUBO, MVT::i32, Custom); 1145 setOperationAction(ISD::USUBO, MVT::i32, Custom); 1146 1147 setOperationAction(ISD::UADDO_CARRY, MVT::i32, Custom); 1148 setOperationAction(ISD::USUBO_CARRY, MVT::i32, Custom); 1149 if (Subtarget->hasDSP()) { 1150 setOperationAction(ISD::SADDSAT, MVT::i8, Custom); 1151 setOperationAction(ISD::SSUBSAT, MVT::i8, Custom); 1152 setOperationAction(ISD::SADDSAT, MVT::i16, Custom); 1153 setOperationAction(ISD::SSUBSAT, MVT::i16, Custom); 1154 setOperationAction(ISD::UADDSAT, MVT::i8, Custom); 1155 setOperationAction(ISD::USUBSAT, MVT::i8, Custom); 1156 setOperationAction(ISD::UADDSAT, MVT::i16, Custom); 1157 setOperationAction(ISD::USUBSAT, MVT::i16, Custom); 1158 } 1159 if (Subtarget->hasBaseDSP()) { 1160 setOperationAction(ISD::SADDSAT, MVT::i32, Legal); 1161 setOperationAction(ISD::SSUBSAT, MVT::i32, Legal); 1162 } 1163 1164 // i64 operation support. 1165 setOperationAction(ISD::MUL, MVT::i64, Expand); 1166 setOperationAction(ISD::MULHU, MVT::i32, Expand); 1167 if (Subtarget->isThumb1Only()) { 1168 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 1169 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 1170 } 1171 if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops() 1172 || (Subtarget->isThumb2() && !Subtarget->hasDSP())) 1173 setOperationAction(ISD::MULHS, MVT::i32, Expand); 1174 1175 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 1176 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 1177 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 1178 setOperationAction(ISD::SRL, MVT::i64, Custom); 1179 setOperationAction(ISD::SRA, MVT::i64, Custom); 1180 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 1181 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); 1182 setOperationAction(ISD::LOAD, MVT::i64, Custom); 1183 setOperationAction(ISD::STORE, MVT::i64, Custom); 1184 1185 // MVE lowers 64 bit shifts to lsll and lsrl 1186 // assuming that ISD::SRL and SRA of i64 are already marked custom 1187 if (Subtarget->hasMVEIntegerOps()) 1188 setOperationAction(ISD::SHL, MVT::i64, Custom); 1189 1190 // Expand to __aeabi_l{lsl,lsr,asr} calls for Thumb1. 1191 if (Subtarget->isThumb1Only()) { 1192 setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand); 1193 setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand); 1194 setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand); 1195 } 1196 1197 if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops()) 1198 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 1199 1200 // ARM does not have ROTL. 1201 setOperationAction(ISD::ROTL, MVT::i32, Expand); 1202 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 1203 setOperationAction(ISD::ROTL, VT, Expand); 1204 setOperationAction(ISD::ROTR, VT, Expand); 1205 } 1206 setOperationAction(ISD::CTTZ, MVT::i32, Custom); 1207 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 1208 if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only()) { 1209 setOperationAction(ISD::CTLZ, MVT::i32, Expand); 1210 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, LibCall); 1211 } 1212 1213 // @llvm.readcyclecounter requires the Performance Monitors extension. 1214 // Default to the 0 expansion on unsupported platforms. 1215 // FIXME: Technically there are older ARM CPUs that have 1216 // implementation-specific ways of obtaining this information. 1217 if (Subtarget->hasPerfMon()) 1218 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom); 1219 1220 // Only ARMv6 has BSWAP. 1221 if (!Subtarget->hasV6Ops()) 1222 setOperationAction(ISD::BSWAP, MVT::i32, Expand); 1223 1224 bool hasDivide = Subtarget->isThumb() ? Subtarget->hasDivideInThumbMode() 1225 : Subtarget->hasDivideInARMMode(); 1226 if (!hasDivide) { 1227 // These are expanded into libcalls if the cpu doesn't have HW divider. 1228 setOperationAction(ISD::SDIV, MVT::i32, LibCall); 1229 setOperationAction(ISD::UDIV, MVT::i32, LibCall); 1230 } 1231 1232 if (Subtarget->isTargetWindows() && !Subtarget->hasDivideInThumbMode()) { 1233 setOperationAction(ISD::SDIV, MVT::i32, Custom); 1234 setOperationAction(ISD::UDIV, MVT::i32, Custom); 1235 1236 setOperationAction(ISD::SDIV, MVT::i64, Custom); 1237 setOperationAction(ISD::UDIV, MVT::i64, Custom); 1238 } 1239 1240 setOperationAction(ISD::SREM, MVT::i32, Expand); 1241 setOperationAction(ISD::UREM, MVT::i32, Expand); 1242 1243 // Register based DivRem for AEABI (RTABI 4.2) 1244 if (Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() || 1245 Subtarget->isTargetGNUAEABI() || Subtarget->isTargetMuslAEABI() || 1246 Subtarget->isTargetWindows()) { 1247 setOperationAction(ISD::SREM, MVT::i64, Custom); 1248 setOperationAction(ISD::UREM, MVT::i64, Custom); 1249 HasStandaloneRem = false; 1250 1251 if (Subtarget->isTargetWindows()) { 1252 const struct { 1253 const RTLIB::Libcall Op; 1254 const char * const Name; 1255 const CallingConv::ID CC; 1256 } LibraryCalls[] = { 1257 { RTLIB::SDIVREM_I8, "__rt_sdiv", CallingConv::ARM_AAPCS }, 1258 { RTLIB::SDIVREM_I16, "__rt_sdiv", CallingConv::ARM_AAPCS }, 1259 { RTLIB::SDIVREM_I32, "__rt_sdiv", CallingConv::ARM_AAPCS }, 1260 { RTLIB::SDIVREM_I64, "__rt_sdiv64", CallingConv::ARM_AAPCS }, 1261 1262 { RTLIB::UDIVREM_I8, "__rt_udiv", CallingConv::ARM_AAPCS }, 1263 { RTLIB::UDIVREM_I16, "__rt_udiv", CallingConv::ARM_AAPCS }, 1264 { RTLIB::UDIVREM_I32, "__rt_udiv", CallingConv::ARM_AAPCS }, 1265 { RTLIB::UDIVREM_I64, "__rt_udiv64", CallingConv::ARM_AAPCS }, 1266 }; 1267 1268 for (const auto &LC : LibraryCalls) { 1269 setLibcallName(LC.Op, LC.Name); 1270 setLibcallCallingConv(LC.Op, LC.CC); 1271 } 1272 } else { 1273 const struct { 1274 const RTLIB::Libcall Op; 1275 const char * const Name; 1276 const CallingConv::ID CC; 1277 } LibraryCalls[] = { 1278 { RTLIB::SDIVREM_I8, "__aeabi_idivmod", CallingConv::ARM_AAPCS }, 1279 { RTLIB::SDIVREM_I16, "__aeabi_idivmod", CallingConv::ARM_AAPCS }, 1280 { RTLIB::SDIVREM_I32, "__aeabi_idivmod", CallingConv::ARM_AAPCS }, 1281 { RTLIB::SDIVREM_I64, "__aeabi_ldivmod", CallingConv::ARM_AAPCS }, 1282 1283 { RTLIB::UDIVREM_I8, "__aeabi_uidivmod", CallingConv::ARM_AAPCS }, 1284 { RTLIB::UDIVREM_I16, "__aeabi_uidivmod", CallingConv::ARM_AAPCS }, 1285 { RTLIB::UDIVREM_I32, "__aeabi_uidivmod", CallingConv::ARM_AAPCS }, 1286 { RTLIB::UDIVREM_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS }, 1287 }; 1288 1289 for (const auto &LC : LibraryCalls) { 1290 setLibcallName(LC.Op, LC.Name); 1291 setLibcallCallingConv(LC.Op, LC.CC); 1292 } 1293 } 1294 1295 setOperationAction(ISD::SDIVREM, MVT::i32, Custom); 1296 setOperationAction(ISD::UDIVREM, MVT::i32, Custom); 1297 setOperationAction(ISD::SDIVREM, MVT::i64, Custom); 1298 setOperationAction(ISD::UDIVREM, MVT::i64, Custom); 1299 } else { 1300 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 1301 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 1302 } 1303 1304 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 1305 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 1306 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 1307 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 1308 1309 setOperationAction(ISD::TRAP, MVT::Other, Legal); 1310 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 1311 1312 // Use the default implementation. 1313 setOperationAction(ISD::VASTART, MVT::Other, Custom); 1314 setOperationAction(ISD::VAARG, MVT::Other, Expand); 1315 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 1316 setOperationAction(ISD::VAEND, MVT::Other, Expand); 1317 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 1318 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 1319 1320 if (Subtarget->isTargetWindows()) 1321 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 1322 else 1323 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand); 1324 1325 // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use 1326 // the default expansion. 1327 InsertFencesForAtomic = false; 1328 if (Subtarget->hasAnyDataBarrier() && 1329 (!Subtarget->isThumb() || Subtarget->hasV8MBaselineOps())) { 1330 // ATOMIC_FENCE needs custom lowering; the others should have been expanded 1331 // to ldrex/strex loops already. 1332 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 1333 if (!Subtarget->isThumb() || !Subtarget->isMClass()) 1334 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom); 1335 1336 // On v8, we have particularly efficient implementations of atomic fences 1337 // if they can be combined with nearby atomic loads and stores. 1338 if (!Subtarget->hasAcquireRelease() || 1339 getTargetMachine().getOptLevel() == CodeGenOptLevel::None) { 1340 // Automatically insert fences (dmb ish) around ATOMIC_SWAP etc. 1341 InsertFencesForAtomic = true; 1342 } 1343 } else { 1344 // If there's anything we can use as a barrier, go through custom lowering 1345 // for ATOMIC_FENCE. 1346 // If target has DMB in thumb, Fences can be inserted. 1347 if (Subtarget->hasDataBarrier()) 1348 InsertFencesForAtomic = true; 1349 1350 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, 1351 Subtarget->hasAnyDataBarrier() ? Custom : Expand); 1352 1353 // Set them all for libcall, which will force libcalls. 1354 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, LibCall); 1355 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, LibCall); 1356 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, LibCall); 1357 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, LibCall); 1358 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, LibCall); 1359 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, LibCall); 1360 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, LibCall); 1361 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, LibCall); 1362 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, LibCall); 1363 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, LibCall); 1364 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, LibCall); 1365 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, LibCall); 1366 // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the 1367 // Unordered/Monotonic case. 1368 if (!InsertFencesForAtomic) { 1369 setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom); 1370 setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom); 1371 } 1372 } 1373 1374 // Compute supported atomic widths. 1375 if (Subtarget->isTargetLinux() || 1376 (!Subtarget->isMClass() && Subtarget->hasV6Ops())) { 1377 // For targets where __sync_* routines are reliably available, we use them 1378 // if necessary. 1379 // 1380 // ARM Linux always supports 64-bit atomics through kernel-assisted atomic 1381 // routines (kernel 3.1 or later). FIXME: Not with compiler-rt? 1382 // 1383 // ARMv6 targets have native instructions in ARM mode. For Thumb mode, 1384 // such targets should provide __sync_* routines, which use the ARM mode 1385 // instructions. (ARMv6 doesn't have dmb, but it has an equivalent 1386 // encoding; see ARMISD::MEMBARRIER_MCR.) 1387 setMaxAtomicSizeInBitsSupported(64); 1388 } else if ((Subtarget->isMClass() && Subtarget->hasV8MBaselineOps()) || 1389 Subtarget->hasForced32BitAtomics()) { 1390 // Cortex-M (besides Cortex-M0) have 32-bit atomics. 1391 setMaxAtomicSizeInBitsSupported(32); 1392 } else { 1393 // We can't assume anything about other targets; just use libatomic 1394 // routines. 1395 setMaxAtomicSizeInBitsSupported(0); 1396 } 1397 1398 setMaxDivRemBitWidthSupported(64); 1399 1400 setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 1401 1402 // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes. 1403 if (!Subtarget->hasV6Ops()) { 1404 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 1405 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 1406 } 1407 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 1408 1409 if (!Subtarget->useSoftFloat() && Subtarget->hasFPRegs() && 1410 !Subtarget->isThumb1Only()) { 1411 // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR 1412 // iff target supports vfp2. 1413 setOperationAction(ISD::BITCAST, MVT::i64, Custom); 1414 setOperationAction(ISD::GET_ROUNDING, MVT::i32, Custom); 1415 setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom); 1416 setOperationAction(ISD::GET_FPENV, MVT::i32, Legal); 1417 setOperationAction(ISD::SET_FPENV, MVT::i32, Legal); 1418 setOperationAction(ISD::RESET_FPENV, MVT::Other, Legal); 1419 setOperationAction(ISD::GET_FPMODE, MVT::i32, Legal); 1420 setOperationAction(ISD::SET_FPMODE, MVT::i32, Custom); 1421 setOperationAction(ISD::RESET_FPMODE, MVT::Other, Custom); 1422 } 1423 1424 // We want to custom lower some of our intrinsics. 1425 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 1426 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 1427 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 1428 setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH, MVT::Other, Custom); 1429 if (Subtarget->useSjLjEH()) 1430 setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume"); 1431 1432 setOperationAction(ISD::SETCC, MVT::i32, Expand); 1433 setOperationAction(ISD::SETCC, MVT::f32, Expand); 1434 setOperationAction(ISD::SETCC, MVT::f64, Expand); 1435 setOperationAction(ISD::SELECT, MVT::i32, Custom); 1436 setOperationAction(ISD::SELECT, MVT::f32, Custom); 1437 setOperationAction(ISD::SELECT, MVT::f64, Custom); 1438 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); 1439 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 1440 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 1441 if (Subtarget->hasFullFP16()) { 1442 setOperationAction(ISD::SETCC, MVT::f16, Expand); 1443 setOperationAction(ISD::SELECT, MVT::f16, Custom); 1444 setOperationAction(ISD::SELECT_CC, MVT::f16, Custom); 1445 } 1446 1447 setOperationAction(ISD::SETCCCARRY, MVT::i32, Custom); 1448 1449 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 1450 setOperationAction(ISD::BR_CC, MVT::i32, Custom); 1451 if (Subtarget->hasFullFP16()) 1452 setOperationAction(ISD::BR_CC, MVT::f16, Custom); 1453 setOperationAction(ISD::BR_CC, MVT::f32, Custom); 1454 setOperationAction(ISD::BR_CC, MVT::f64, Custom); 1455 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 1456 1457 // We don't support sin/cos/fmod/copysign/pow 1458 setOperationAction(ISD::FSIN, MVT::f64, Expand); 1459 setOperationAction(ISD::FSIN, MVT::f32, Expand); 1460 setOperationAction(ISD::FCOS, MVT::f32, Expand); 1461 setOperationAction(ISD::FCOS, MVT::f64, Expand); 1462 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 1463 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 1464 setOperationAction(ISD::FREM, MVT::f64, Expand); 1465 setOperationAction(ISD::FREM, MVT::f32, Expand); 1466 if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2Base() && 1467 !Subtarget->isThumb1Only()) { 1468 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom); 1469 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); 1470 } 1471 setOperationAction(ISD::FPOW, MVT::f64, Expand); 1472 setOperationAction(ISD::FPOW, MVT::f32, Expand); 1473 1474 if (!Subtarget->hasVFP4Base()) { 1475 setOperationAction(ISD::FMA, MVT::f64, Expand); 1476 setOperationAction(ISD::FMA, MVT::f32, Expand); 1477 } 1478 1479 // Various VFP goodness 1480 if (!Subtarget->useSoftFloat() && !Subtarget->isThumb1Only()) { 1481 // FP-ARMv8 adds f64 <-> f16 conversion. Before that it should be expanded. 1482 if (!Subtarget->hasFPARMv8Base() || !Subtarget->hasFP64()) { 1483 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 1484 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); 1485 } 1486 1487 // fp16 is a special v7 extension that adds f16 <-> f32 conversions. 1488 if (!Subtarget->hasFP16()) { 1489 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); 1490 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); 1491 } 1492 1493 // Strict floating-point comparisons need custom lowering. 1494 setOperationAction(ISD::STRICT_FSETCC, MVT::f16, Custom); 1495 setOperationAction(ISD::STRICT_FSETCCS, MVT::f16, Custom); 1496 setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Custom); 1497 setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Custom); 1498 setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Custom); 1499 setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Custom); 1500 } 1501 1502 // Use __sincos_stret if available. 1503 if (getLibcallName(RTLIB::SINCOS_STRET_F32) != nullptr && 1504 getLibcallName(RTLIB::SINCOS_STRET_F64) != nullptr) { 1505 setOperationAction(ISD::FSINCOS, MVT::f64, Custom); 1506 setOperationAction(ISD::FSINCOS, MVT::f32, Custom); 1507 } 1508 1509 // FP-ARMv8 implements a lot of rounding-like FP operations. 1510 if (Subtarget->hasFPARMv8Base()) { 1511 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 1512 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 1513 setOperationAction(ISD::FROUND, MVT::f32, Legal); 1514 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 1515 setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal); 1516 setOperationAction(ISD::FRINT, MVT::f32, Legal); 1517 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 1518 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 1519 if (Subtarget->hasNEON()) { 1520 setOperationAction(ISD::FMINNUM, MVT::v2f32, Legal); 1521 setOperationAction(ISD::FMAXNUM, MVT::v2f32, Legal); 1522 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 1523 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 1524 } 1525 1526 if (Subtarget->hasFP64()) { 1527 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 1528 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 1529 setOperationAction(ISD::FROUND, MVT::f64, Legal); 1530 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 1531 setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal); 1532 setOperationAction(ISD::FRINT, MVT::f64, Legal); 1533 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 1534 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 1535 } 1536 } 1537 1538 // FP16 often need to be promoted to call lib functions 1539 if (Subtarget->hasFullFP16()) { 1540 setOperationAction(ISD::FREM, MVT::f16, Promote); 1541 setOperationAction(ISD::FCOPYSIGN, MVT::f16, Expand); 1542 setOperationAction(ISD::FSIN, MVT::f16, Promote); 1543 setOperationAction(ISD::FCOS, MVT::f16, Promote); 1544 setOperationAction(ISD::FTAN, MVT::f16, Promote); 1545 setOperationAction(ISD::FSINCOS, MVT::f16, Promote); 1546 setOperationAction(ISD::FPOWI, MVT::f16, Promote); 1547 setOperationAction(ISD::FPOW, MVT::f16, Promote); 1548 setOperationAction(ISD::FEXP, MVT::f16, Promote); 1549 setOperationAction(ISD::FEXP2, MVT::f16, Promote); 1550 setOperationAction(ISD::FEXP10, MVT::f16, Promote); 1551 setOperationAction(ISD::FLOG, MVT::f16, Promote); 1552 setOperationAction(ISD::FLOG10, MVT::f16, Promote); 1553 setOperationAction(ISD::FLOG2, MVT::f16, Promote); 1554 1555 setOperationAction(ISD::FROUND, MVT::f16, Legal); 1556 } 1557 1558 if (Subtarget->hasNEON()) { 1559 // vmin and vmax aren't available in a scalar form, so we can use 1560 // a NEON instruction with an undef lane instead. 1561 setOperationAction(ISD::FMINIMUM, MVT::f32, Legal); 1562 setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal); 1563 setOperationAction(ISD::FMINIMUM, MVT::f16, Legal); 1564 setOperationAction(ISD::FMAXIMUM, MVT::f16, Legal); 1565 setOperationAction(ISD::FMINIMUM, MVT::v2f32, Legal); 1566 setOperationAction(ISD::FMAXIMUM, MVT::v2f32, Legal); 1567 setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal); 1568 setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal); 1569 1570 if (Subtarget->hasFullFP16()) { 1571 setOperationAction(ISD::FMINNUM, MVT::v4f16, Legal); 1572 setOperationAction(ISD::FMAXNUM, MVT::v4f16, Legal); 1573 setOperationAction(ISD::FMINNUM, MVT::v8f16, Legal); 1574 setOperationAction(ISD::FMAXNUM, MVT::v8f16, Legal); 1575 1576 setOperationAction(ISD::FMINIMUM, MVT::v4f16, Legal); 1577 setOperationAction(ISD::FMAXIMUM, MVT::v4f16, Legal); 1578 setOperationAction(ISD::FMINIMUM, MVT::v8f16, Legal); 1579 setOperationAction(ISD::FMAXIMUM, MVT::v8f16, Legal); 1580 } 1581 } 1582 1583 // On MSVC, both 32-bit and 64-bit, ldexpf(f32) is not defined. MinGW has 1584 // it, but it's just a wrapper around ldexp. 1585 if (Subtarget->isTargetWindows()) { 1586 for (ISD::NodeType Op : {ISD::FLDEXP, ISD::STRICT_FLDEXP, ISD::FFREXP}) 1587 if (isOperationExpand(Op, MVT::f32)) 1588 setOperationAction(Op, MVT::f32, Promote); 1589 } 1590 1591 // LegalizeDAG currently can't expand fp16 LDEXP/FREXP on targets where i16 1592 // isn't legal. 1593 for (ISD::NodeType Op : {ISD::FLDEXP, ISD::STRICT_FLDEXP, ISD::FFREXP}) 1594 if (isOperationExpand(Op, MVT::f16)) 1595 setOperationAction(Op, MVT::f16, Promote); 1596 1597 // We have target-specific dag combine patterns for the following nodes: 1598 // ARMISD::VMOVRRD - No need to call setTargetDAGCombine 1599 setTargetDAGCombine( 1600 {ISD::ADD, ISD::SUB, ISD::MUL, ISD::AND, ISD::OR, ISD::XOR}); 1601 1602 if (Subtarget->hasMVEIntegerOps()) 1603 setTargetDAGCombine(ISD::VSELECT); 1604 1605 if (Subtarget->hasV6Ops()) 1606 setTargetDAGCombine(ISD::SRL); 1607 if (Subtarget->isThumb1Only()) 1608 setTargetDAGCombine(ISD::SHL); 1609 // Attempt to lower smin/smax to ssat/usat 1610 if ((!Subtarget->isThumb() && Subtarget->hasV6Ops()) || 1611 Subtarget->isThumb2()) { 1612 setTargetDAGCombine({ISD::SMIN, ISD::SMAX}); 1613 } 1614 1615 setStackPointerRegisterToSaveRestore(ARM::SP); 1616 1617 if (Subtarget->useSoftFloat() || Subtarget->isThumb1Only() || 1618 !Subtarget->hasVFP2Base() || Subtarget->hasMinSize()) 1619 setSchedulingPreference(Sched::RegPressure); 1620 else 1621 setSchedulingPreference(Sched::Hybrid); 1622 1623 //// temporary - rewrite interface to use type 1624 MaxStoresPerMemset = 8; 1625 MaxStoresPerMemsetOptSize = 4; 1626 MaxStoresPerMemcpy = 4; // For @llvm.memcpy -> sequence of stores 1627 MaxStoresPerMemcpyOptSize = 2; 1628 MaxStoresPerMemmove = 4; // For @llvm.memmove -> sequence of stores 1629 MaxStoresPerMemmoveOptSize = 2; 1630 1631 // On ARM arguments smaller than 4 bytes are extended, so all arguments 1632 // are at least 4 bytes aligned. 1633 setMinStackArgumentAlignment(Align(4)); 1634 1635 // Prefer likely predicted branches to selects on out-of-order cores. 1636 PredictableSelectIsExpensive = Subtarget->getSchedModel().isOutOfOrder(); 1637 1638 setPrefLoopAlignment(Align(1ULL << Subtarget->getPrefLoopLogAlignment())); 1639 setPrefFunctionAlignment(Align(1ULL << Subtarget->getPrefLoopLogAlignment())); 1640 1641 setMinFunctionAlignment(Subtarget->isThumb() ? Align(2) : Align(4)); 1642 } 1643 1644 bool ARMTargetLowering::useSoftFloat() const { 1645 return Subtarget->useSoftFloat(); 1646 } 1647 1648 // FIXME: It might make sense to define the representative register class as the 1649 // nearest super-register that has a non-null superset. For example, DPR_VFP2 is 1650 // a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently, 1651 // SPR's representative would be DPR_VFP2. This should work well if register 1652 // pressure tracking were modified such that a register use would increment the 1653 // pressure of the register class's representative and all of it's super 1654 // classes' representatives transitively. We have not implemented this because 1655 // of the difficulty prior to coalescing of modeling operand register classes 1656 // due to the common occurrence of cross class copies and subregister insertions 1657 // and extractions. 1658 std::pair<const TargetRegisterClass *, uint8_t> 1659 ARMTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI, 1660 MVT VT) const { 1661 const TargetRegisterClass *RRC = nullptr; 1662 uint8_t Cost = 1; 1663 switch (VT.SimpleTy) { 1664 default: 1665 return TargetLowering::findRepresentativeClass(TRI, VT); 1666 // Use DPR as representative register class for all floating point 1667 // and vector types. Since there are 32 SPR registers and 32 DPR registers so 1668 // the cost is 1 for both f32 and f64. 1669 case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16: 1670 case MVT::v2i32: case MVT::v1i64: case MVT::v2f32: 1671 RRC = &ARM::DPRRegClass; 1672 // When NEON is used for SP, only half of the register file is available 1673 // because operations that define both SP and DP results will be constrained 1674 // to the VFP2 class (D0-D15). We currently model this constraint prior to 1675 // coalescing by double-counting the SP regs. See the FIXME above. 1676 if (Subtarget->useNEONForSinglePrecisionFP()) 1677 Cost = 2; 1678 break; 1679 case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64: 1680 case MVT::v4f32: case MVT::v2f64: 1681 RRC = &ARM::DPRRegClass; 1682 Cost = 2; 1683 break; 1684 case MVT::v4i64: 1685 RRC = &ARM::DPRRegClass; 1686 Cost = 4; 1687 break; 1688 case MVT::v8i64: 1689 RRC = &ARM::DPRRegClass; 1690 Cost = 8; 1691 break; 1692 } 1693 return std::make_pair(RRC, Cost); 1694 } 1695 1696 const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const { 1697 #define MAKE_CASE(V) \ 1698 case V: \ 1699 return #V; 1700 switch ((ARMISD::NodeType)Opcode) { 1701 case ARMISD::FIRST_NUMBER: 1702 break; 1703 MAKE_CASE(ARMISD::Wrapper) 1704 MAKE_CASE(ARMISD::WrapperPIC) 1705 MAKE_CASE(ARMISD::WrapperJT) 1706 MAKE_CASE(ARMISD::COPY_STRUCT_BYVAL) 1707 MAKE_CASE(ARMISD::CALL) 1708 MAKE_CASE(ARMISD::CALL_PRED) 1709 MAKE_CASE(ARMISD::CALL_NOLINK) 1710 MAKE_CASE(ARMISD::tSECALL) 1711 MAKE_CASE(ARMISD::t2CALL_BTI) 1712 MAKE_CASE(ARMISD::BRCOND) 1713 MAKE_CASE(ARMISD::BR_JT) 1714 MAKE_CASE(ARMISD::BR2_JT) 1715 MAKE_CASE(ARMISD::RET_GLUE) 1716 MAKE_CASE(ARMISD::SERET_GLUE) 1717 MAKE_CASE(ARMISD::INTRET_GLUE) 1718 MAKE_CASE(ARMISD::PIC_ADD) 1719 MAKE_CASE(ARMISD::CMP) 1720 MAKE_CASE(ARMISD::CMN) 1721 MAKE_CASE(ARMISD::CMPZ) 1722 MAKE_CASE(ARMISD::CMPFP) 1723 MAKE_CASE(ARMISD::CMPFPE) 1724 MAKE_CASE(ARMISD::CMPFPw0) 1725 MAKE_CASE(ARMISD::CMPFPEw0) 1726 MAKE_CASE(ARMISD::BCC_i64) 1727 MAKE_CASE(ARMISD::FMSTAT) 1728 MAKE_CASE(ARMISD::CMOV) 1729 MAKE_CASE(ARMISD::SSAT) 1730 MAKE_CASE(ARMISD::USAT) 1731 MAKE_CASE(ARMISD::ASRL) 1732 MAKE_CASE(ARMISD::LSRL) 1733 MAKE_CASE(ARMISD::LSLL) 1734 MAKE_CASE(ARMISD::SRL_GLUE) 1735 MAKE_CASE(ARMISD::SRA_GLUE) 1736 MAKE_CASE(ARMISD::RRX) 1737 MAKE_CASE(ARMISD::ADDC) 1738 MAKE_CASE(ARMISD::ADDE) 1739 MAKE_CASE(ARMISD::SUBC) 1740 MAKE_CASE(ARMISD::SUBE) 1741 MAKE_CASE(ARMISD::LSLS) 1742 MAKE_CASE(ARMISD::VMOVRRD) 1743 MAKE_CASE(ARMISD::VMOVDRR) 1744 MAKE_CASE(ARMISD::VMOVhr) 1745 MAKE_CASE(ARMISD::VMOVrh) 1746 MAKE_CASE(ARMISD::VMOVSR) 1747 MAKE_CASE(ARMISD::EH_SJLJ_SETJMP) 1748 MAKE_CASE(ARMISD::EH_SJLJ_LONGJMP) 1749 MAKE_CASE(ARMISD::EH_SJLJ_SETUP_DISPATCH) 1750 MAKE_CASE(ARMISD::TC_RETURN) 1751 MAKE_CASE(ARMISD::THREAD_POINTER) 1752 MAKE_CASE(ARMISD::DYN_ALLOC) 1753 MAKE_CASE(ARMISD::MEMBARRIER_MCR) 1754 MAKE_CASE(ARMISD::PRELOAD) 1755 MAKE_CASE(ARMISD::LDRD) 1756 MAKE_CASE(ARMISD::STRD) 1757 MAKE_CASE(ARMISD::WIN__CHKSTK) 1758 MAKE_CASE(ARMISD::WIN__DBZCHK) 1759 MAKE_CASE(ARMISD::PREDICATE_CAST) 1760 MAKE_CASE(ARMISD::VECTOR_REG_CAST) 1761 MAKE_CASE(ARMISD::MVESEXT) 1762 MAKE_CASE(ARMISD::MVEZEXT) 1763 MAKE_CASE(ARMISD::MVETRUNC) 1764 MAKE_CASE(ARMISD::VCMP) 1765 MAKE_CASE(ARMISD::VCMPZ) 1766 MAKE_CASE(ARMISD::VTST) 1767 MAKE_CASE(ARMISD::VSHLs) 1768 MAKE_CASE(ARMISD::VSHLu) 1769 MAKE_CASE(ARMISD::VSHLIMM) 1770 MAKE_CASE(ARMISD::VSHRsIMM) 1771 MAKE_CASE(ARMISD::VSHRuIMM) 1772 MAKE_CASE(ARMISD::VRSHRsIMM) 1773 MAKE_CASE(ARMISD::VRSHRuIMM) 1774 MAKE_CASE(ARMISD::VRSHRNIMM) 1775 MAKE_CASE(ARMISD::VQSHLsIMM) 1776 MAKE_CASE(ARMISD::VQSHLuIMM) 1777 MAKE_CASE(ARMISD::VQSHLsuIMM) 1778 MAKE_CASE(ARMISD::VQSHRNsIMM) 1779 MAKE_CASE(ARMISD::VQSHRNuIMM) 1780 MAKE_CASE(ARMISD::VQSHRNsuIMM) 1781 MAKE_CASE(ARMISD::VQRSHRNsIMM) 1782 MAKE_CASE(ARMISD::VQRSHRNuIMM) 1783 MAKE_CASE(ARMISD::VQRSHRNsuIMM) 1784 MAKE_CASE(ARMISD::VSLIIMM) 1785 MAKE_CASE(ARMISD::VSRIIMM) 1786 MAKE_CASE(ARMISD::VGETLANEu) 1787 MAKE_CASE(ARMISD::VGETLANEs) 1788 MAKE_CASE(ARMISD::VMOVIMM) 1789 MAKE_CASE(ARMISD::VMVNIMM) 1790 MAKE_CASE(ARMISD::VMOVFPIMM) 1791 MAKE_CASE(ARMISD::VDUP) 1792 MAKE_CASE(ARMISD::VDUPLANE) 1793 MAKE_CASE(ARMISD::VEXT) 1794 MAKE_CASE(ARMISD::VREV64) 1795 MAKE_CASE(ARMISD::VREV32) 1796 MAKE_CASE(ARMISD::VREV16) 1797 MAKE_CASE(ARMISD::VZIP) 1798 MAKE_CASE(ARMISD::VUZP) 1799 MAKE_CASE(ARMISD::VTRN) 1800 MAKE_CASE(ARMISD::VTBL1) 1801 MAKE_CASE(ARMISD::VTBL2) 1802 MAKE_CASE(ARMISD::VMOVN) 1803 MAKE_CASE(ARMISD::VQMOVNs) 1804 MAKE_CASE(ARMISD::VQMOVNu) 1805 MAKE_CASE(ARMISD::VCVTN) 1806 MAKE_CASE(ARMISD::VCVTL) 1807 MAKE_CASE(ARMISD::VIDUP) 1808 MAKE_CASE(ARMISD::VMULLs) 1809 MAKE_CASE(ARMISD::VMULLu) 1810 MAKE_CASE(ARMISD::VQDMULH) 1811 MAKE_CASE(ARMISD::VADDVs) 1812 MAKE_CASE(ARMISD::VADDVu) 1813 MAKE_CASE(ARMISD::VADDVps) 1814 MAKE_CASE(ARMISD::VADDVpu) 1815 MAKE_CASE(ARMISD::VADDLVs) 1816 MAKE_CASE(ARMISD::VADDLVu) 1817 MAKE_CASE(ARMISD::VADDLVAs) 1818 MAKE_CASE(ARMISD::VADDLVAu) 1819 MAKE_CASE(ARMISD::VADDLVps) 1820 MAKE_CASE(ARMISD::VADDLVpu) 1821 MAKE_CASE(ARMISD::VADDLVAps) 1822 MAKE_CASE(ARMISD::VADDLVApu) 1823 MAKE_CASE(ARMISD::VMLAVs) 1824 MAKE_CASE(ARMISD::VMLAVu) 1825 MAKE_CASE(ARMISD::VMLAVps) 1826 MAKE_CASE(ARMISD::VMLAVpu) 1827 MAKE_CASE(ARMISD::VMLALVs) 1828 MAKE_CASE(ARMISD::VMLALVu) 1829 MAKE_CASE(ARMISD::VMLALVps) 1830 MAKE_CASE(ARMISD::VMLALVpu) 1831 MAKE_CASE(ARMISD::VMLALVAs) 1832 MAKE_CASE(ARMISD::VMLALVAu) 1833 MAKE_CASE(ARMISD::VMLALVAps) 1834 MAKE_CASE(ARMISD::VMLALVApu) 1835 MAKE_CASE(ARMISD::VMINVu) 1836 MAKE_CASE(ARMISD::VMINVs) 1837 MAKE_CASE(ARMISD::VMAXVu) 1838 MAKE_CASE(ARMISD::VMAXVs) 1839 MAKE_CASE(ARMISD::UMAAL) 1840 MAKE_CASE(ARMISD::UMLAL) 1841 MAKE_CASE(ARMISD::SMLAL) 1842 MAKE_CASE(ARMISD::SMLALBB) 1843 MAKE_CASE(ARMISD::SMLALBT) 1844 MAKE_CASE(ARMISD::SMLALTB) 1845 MAKE_CASE(ARMISD::SMLALTT) 1846 MAKE_CASE(ARMISD::SMULWB) 1847 MAKE_CASE(ARMISD::SMULWT) 1848 MAKE_CASE(ARMISD::SMLALD) 1849 MAKE_CASE(ARMISD::SMLALDX) 1850 MAKE_CASE(ARMISD::SMLSLD) 1851 MAKE_CASE(ARMISD::SMLSLDX) 1852 MAKE_CASE(ARMISD::SMMLAR) 1853 MAKE_CASE(ARMISD::SMMLSR) 1854 MAKE_CASE(ARMISD::QADD16b) 1855 MAKE_CASE(ARMISD::QSUB16b) 1856 MAKE_CASE(ARMISD::QADD8b) 1857 MAKE_CASE(ARMISD::QSUB8b) 1858 MAKE_CASE(ARMISD::UQADD16b) 1859 MAKE_CASE(ARMISD::UQSUB16b) 1860 MAKE_CASE(ARMISD::UQADD8b) 1861 MAKE_CASE(ARMISD::UQSUB8b) 1862 MAKE_CASE(ARMISD::BUILD_VECTOR) 1863 MAKE_CASE(ARMISD::BFI) 1864 MAKE_CASE(ARMISD::VORRIMM) 1865 MAKE_CASE(ARMISD::VBICIMM) 1866 MAKE_CASE(ARMISD::VBSP) 1867 MAKE_CASE(ARMISD::MEMCPY) 1868 MAKE_CASE(ARMISD::VLD1DUP) 1869 MAKE_CASE(ARMISD::VLD2DUP) 1870 MAKE_CASE(ARMISD::VLD3DUP) 1871 MAKE_CASE(ARMISD::VLD4DUP) 1872 MAKE_CASE(ARMISD::VLD1_UPD) 1873 MAKE_CASE(ARMISD::VLD2_UPD) 1874 MAKE_CASE(ARMISD::VLD3_UPD) 1875 MAKE_CASE(ARMISD::VLD4_UPD) 1876 MAKE_CASE(ARMISD::VLD1x2_UPD) 1877 MAKE_CASE(ARMISD::VLD1x3_UPD) 1878 MAKE_CASE(ARMISD::VLD1x4_UPD) 1879 MAKE_CASE(ARMISD::VLD2LN_UPD) 1880 MAKE_CASE(ARMISD::VLD3LN_UPD) 1881 MAKE_CASE(ARMISD::VLD4LN_UPD) 1882 MAKE_CASE(ARMISD::VLD1DUP_UPD) 1883 MAKE_CASE(ARMISD::VLD2DUP_UPD) 1884 MAKE_CASE(ARMISD::VLD3DUP_UPD) 1885 MAKE_CASE(ARMISD::VLD4DUP_UPD) 1886 MAKE_CASE(ARMISD::VST1_UPD) 1887 MAKE_CASE(ARMISD::VST2_UPD) 1888 MAKE_CASE(ARMISD::VST3_UPD) 1889 MAKE_CASE(ARMISD::VST4_UPD) 1890 MAKE_CASE(ARMISD::VST1x2_UPD) 1891 MAKE_CASE(ARMISD::VST1x3_UPD) 1892 MAKE_CASE(ARMISD::VST1x4_UPD) 1893 MAKE_CASE(ARMISD::VST2LN_UPD) 1894 MAKE_CASE(ARMISD::VST3LN_UPD) 1895 MAKE_CASE(ARMISD::VST4LN_UPD) 1896 MAKE_CASE(ARMISD::WLS) 1897 MAKE_CASE(ARMISD::WLSSETUP) 1898 MAKE_CASE(ARMISD::LE) 1899 MAKE_CASE(ARMISD::LOOP_DEC) 1900 MAKE_CASE(ARMISD::CSINV) 1901 MAKE_CASE(ARMISD::CSNEG) 1902 MAKE_CASE(ARMISD::CSINC) 1903 MAKE_CASE(ARMISD::MEMCPYLOOP) 1904 MAKE_CASE(ARMISD::MEMSETLOOP) 1905 #undef MAKE_CASE 1906 } 1907 return nullptr; 1908 } 1909 1910 EVT ARMTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &, 1911 EVT VT) const { 1912 if (!VT.isVector()) 1913 return getPointerTy(DL); 1914 1915 // MVE has a predicate register. 1916 if ((Subtarget->hasMVEIntegerOps() && 1917 (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 || 1918 VT == MVT::v16i8)) || 1919 (Subtarget->hasMVEFloatOps() && 1920 (VT == MVT::v2f64 || VT == MVT::v4f32 || VT == MVT::v8f16))) 1921 return MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 1922 return VT.changeVectorElementTypeToInteger(); 1923 } 1924 1925 /// getRegClassFor - Return the register class that should be used for the 1926 /// specified value type. 1927 const TargetRegisterClass * 1928 ARMTargetLowering::getRegClassFor(MVT VT, bool isDivergent) const { 1929 (void)isDivergent; 1930 // Map v4i64 to QQ registers but do not make the type legal. Similarly map 1931 // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to 1932 // load / store 4 to 8 consecutive NEON D registers, or 2 to 4 consecutive 1933 // MVE Q registers. 1934 if (Subtarget->hasNEON()) { 1935 if (VT == MVT::v4i64) 1936 return &ARM::QQPRRegClass; 1937 if (VT == MVT::v8i64) 1938 return &ARM::QQQQPRRegClass; 1939 } 1940 if (Subtarget->hasMVEIntegerOps()) { 1941 if (VT == MVT::v4i64) 1942 return &ARM::MQQPRRegClass; 1943 if (VT == MVT::v8i64) 1944 return &ARM::MQQQQPRRegClass; 1945 } 1946 return TargetLowering::getRegClassFor(VT); 1947 } 1948 1949 // memcpy, and other memory intrinsics, typically tries to use LDM/STM if the 1950 // source/dest is aligned and the copy size is large enough. We therefore want 1951 // to align such objects passed to memory intrinsics. 1952 bool ARMTargetLowering::shouldAlignPointerArgs(CallInst *CI, unsigned &MinSize, 1953 Align &PrefAlign) const { 1954 if (!isa<MemIntrinsic>(CI)) 1955 return false; 1956 MinSize = 8; 1957 // On ARM11 onwards (excluding M class) 8-byte aligned LDM is typically 1 1958 // cycle faster than 4-byte aligned LDM. 1959 PrefAlign = 1960 (Subtarget->hasV6Ops() && !Subtarget->isMClass() ? Align(8) : Align(4)); 1961 return true; 1962 } 1963 1964 // Create a fast isel object. 1965 FastISel * 1966 ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo, 1967 const TargetLibraryInfo *libInfo) const { 1968 return ARM::createFastISel(funcInfo, libInfo); 1969 } 1970 1971 Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const { 1972 unsigned NumVals = N->getNumValues(); 1973 if (!NumVals) 1974 return Sched::RegPressure; 1975 1976 for (unsigned i = 0; i != NumVals; ++i) { 1977 EVT VT = N->getValueType(i); 1978 if (VT == MVT::Glue || VT == MVT::Other) 1979 continue; 1980 if (VT.isFloatingPoint() || VT.isVector()) 1981 return Sched::ILP; 1982 } 1983 1984 if (!N->isMachineOpcode()) 1985 return Sched::RegPressure; 1986 1987 // Load are scheduled for latency even if there instruction itinerary 1988 // is not available. 1989 const TargetInstrInfo *TII = Subtarget->getInstrInfo(); 1990 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode()); 1991 1992 if (MCID.getNumDefs() == 0) 1993 return Sched::RegPressure; 1994 if (!Itins->isEmpty() && 1995 Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2U) 1996 return Sched::ILP; 1997 1998 return Sched::RegPressure; 1999 } 2000 2001 //===----------------------------------------------------------------------===// 2002 // Lowering Code 2003 //===----------------------------------------------------------------------===// 2004 2005 static bool isSRL16(const SDValue &Op) { 2006 if (Op.getOpcode() != ISD::SRL) 2007 return false; 2008 if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1))) 2009 return Const->getZExtValue() == 16; 2010 return false; 2011 } 2012 2013 static bool isSRA16(const SDValue &Op) { 2014 if (Op.getOpcode() != ISD::SRA) 2015 return false; 2016 if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1))) 2017 return Const->getZExtValue() == 16; 2018 return false; 2019 } 2020 2021 static bool isSHL16(const SDValue &Op) { 2022 if (Op.getOpcode() != ISD::SHL) 2023 return false; 2024 if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1))) 2025 return Const->getZExtValue() == 16; 2026 return false; 2027 } 2028 2029 // Check for a signed 16-bit value. We special case SRA because it makes it 2030 // more simple when also looking for SRAs that aren't sign extending a 2031 // smaller value. Without the check, we'd need to take extra care with 2032 // checking order for some operations. 2033 static bool isS16(const SDValue &Op, SelectionDAG &DAG) { 2034 if (isSRA16(Op)) 2035 return isSHL16(Op.getOperand(0)); 2036 return DAG.ComputeNumSignBits(Op) == 17; 2037 } 2038 2039 /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC 2040 static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) { 2041 switch (CC) { 2042 default: llvm_unreachable("Unknown condition code!"); 2043 case ISD::SETNE: return ARMCC::NE; 2044 case ISD::SETEQ: return ARMCC::EQ; 2045 case ISD::SETGT: return ARMCC::GT; 2046 case ISD::SETGE: return ARMCC::GE; 2047 case ISD::SETLT: return ARMCC::LT; 2048 case ISD::SETLE: return ARMCC::LE; 2049 case ISD::SETUGT: return ARMCC::HI; 2050 case ISD::SETUGE: return ARMCC::HS; 2051 case ISD::SETULT: return ARMCC::LO; 2052 case ISD::SETULE: return ARMCC::LS; 2053 } 2054 } 2055 2056 /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC. 2057 static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode, 2058 ARMCC::CondCodes &CondCode2) { 2059 CondCode2 = ARMCC::AL; 2060 switch (CC) { 2061 default: llvm_unreachable("Unknown FP condition!"); 2062 case ISD::SETEQ: 2063 case ISD::SETOEQ: CondCode = ARMCC::EQ; break; 2064 case ISD::SETGT: 2065 case ISD::SETOGT: CondCode = ARMCC::GT; break; 2066 case ISD::SETGE: 2067 case ISD::SETOGE: CondCode = ARMCC::GE; break; 2068 case ISD::SETOLT: CondCode = ARMCC::MI; break; 2069 case ISD::SETOLE: CondCode = ARMCC::LS; break; 2070 case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break; 2071 case ISD::SETO: CondCode = ARMCC::VC; break; 2072 case ISD::SETUO: CondCode = ARMCC::VS; break; 2073 case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break; 2074 case ISD::SETUGT: CondCode = ARMCC::HI; break; 2075 case ISD::SETUGE: CondCode = ARMCC::PL; break; 2076 case ISD::SETLT: 2077 case ISD::SETULT: CondCode = ARMCC::LT; break; 2078 case ISD::SETLE: 2079 case ISD::SETULE: CondCode = ARMCC::LE; break; 2080 case ISD::SETNE: 2081 case ISD::SETUNE: CondCode = ARMCC::NE; break; 2082 } 2083 } 2084 2085 //===----------------------------------------------------------------------===// 2086 // Calling Convention Implementation 2087 //===----------------------------------------------------------------------===// 2088 2089 /// getEffectiveCallingConv - Get the effective calling convention, taking into 2090 /// account presence of floating point hardware and calling convention 2091 /// limitations, such as support for variadic functions. 2092 CallingConv::ID 2093 ARMTargetLowering::getEffectiveCallingConv(CallingConv::ID CC, 2094 bool isVarArg) const { 2095 switch (CC) { 2096 default: 2097 report_fatal_error("Unsupported calling convention"); 2098 case CallingConv::ARM_AAPCS: 2099 case CallingConv::ARM_APCS: 2100 case CallingConv::GHC: 2101 case CallingConv::CFGuard_Check: 2102 return CC; 2103 case CallingConv::PreserveMost: 2104 return CallingConv::PreserveMost; 2105 case CallingConv::PreserveAll: 2106 return CallingConv::PreserveAll; 2107 case CallingConv::ARM_AAPCS_VFP: 2108 case CallingConv::Swift: 2109 case CallingConv::SwiftTail: 2110 return isVarArg ? CallingConv::ARM_AAPCS : CallingConv::ARM_AAPCS_VFP; 2111 case CallingConv::C: 2112 case CallingConv::Tail: 2113 if (!Subtarget->isAAPCS_ABI()) 2114 return CallingConv::ARM_APCS; 2115 else if (Subtarget->hasFPRegs() && !Subtarget->isThumb1Only() && 2116 getTargetMachine().Options.FloatABIType == FloatABI::Hard && 2117 !isVarArg) 2118 return CallingConv::ARM_AAPCS_VFP; 2119 else 2120 return CallingConv::ARM_AAPCS; 2121 case CallingConv::Fast: 2122 case CallingConv::CXX_FAST_TLS: 2123 if (!Subtarget->isAAPCS_ABI()) { 2124 if (Subtarget->hasVFP2Base() && !Subtarget->isThumb1Only() && !isVarArg) 2125 return CallingConv::Fast; 2126 return CallingConv::ARM_APCS; 2127 } else if (Subtarget->hasVFP2Base() && 2128 !Subtarget->isThumb1Only() && !isVarArg) 2129 return CallingConv::ARM_AAPCS_VFP; 2130 else 2131 return CallingConv::ARM_AAPCS; 2132 } 2133 } 2134 2135 CCAssignFn *ARMTargetLowering::CCAssignFnForCall(CallingConv::ID CC, 2136 bool isVarArg) const { 2137 return CCAssignFnForNode(CC, false, isVarArg); 2138 } 2139 2140 CCAssignFn *ARMTargetLowering::CCAssignFnForReturn(CallingConv::ID CC, 2141 bool isVarArg) const { 2142 return CCAssignFnForNode(CC, true, isVarArg); 2143 } 2144 2145 /// CCAssignFnForNode - Selects the correct CCAssignFn for the given 2146 /// CallingConvention. 2147 CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC, 2148 bool Return, 2149 bool isVarArg) const { 2150 switch (getEffectiveCallingConv(CC, isVarArg)) { 2151 default: 2152 report_fatal_error("Unsupported calling convention"); 2153 case CallingConv::ARM_APCS: 2154 return (Return ? RetCC_ARM_APCS : CC_ARM_APCS); 2155 case CallingConv::ARM_AAPCS: 2156 return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS); 2157 case CallingConv::ARM_AAPCS_VFP: 2158 return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP); 2159 case CallingConv::Fast: 2160 return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS); 2161 case CallingConv::GHC: 2162 return (Return ? RetCC_ARM_APCS : CC_ARM_APCS_GHC); 2163 case CallingConv::PreserveMost: 2164 return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS); 2165 case CallingConv::PreserveAll: 2166 return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS); 2167 case CallingConv::CFGuard_Check: 2168 return (Return ? RetCC_ARM_AAPCS : CC_ARM_Win32_CFGuard_Check); 2169 } 2170 } 2171 2172 SDValue ARMTargetLowering::MoveToHPR(const SDLoc &dl, SelectionDAG &DAG, 2173 MVT LocVT, MVT ValVT, SDValue Val) const { 2174 Val = DAG.getNode(ISD::BITCAST, dl, MVT::getIntegerVT(LocVT.getSizeInBits()), 2175 Val); 2176 if (Subtarget->hasFullFP16()) { 2177 Val = DAG.getNode(ARMISD::VMOVhr, dl, ValVT, Val); 2178 } else { 2179 Val = DAG.getNode(ISD::TRUNCATE, dl, 2180 MVT::getIntegerVT(ValVT.getSizeInBits()), Val); 2181 Val = DAG.getNode(ISD::BITCAST, dl, ValVT, Val); 2182 } 2183 return Val; 2184 } 2185 2186 SDValue ARMTargetLowering::MoveFromHPR(const SDLoc &dl, SelectionDAG &DAG, 2187 MVT LocVT, MVT ValVT, 2188 SDValue Val) const { 2189 if (Subtarget->hasFullFP16()) { 2190 Val = DAG.getNode(ARMISD::VMOVrh, dl, 2191 MVT::getIntegerVT(LocVT.getSizeInBits()), Val); 2192 } else { 2193 Val = DAG.getNode(ISD::BITCAST, dl, 2194 MVT::getIntegerVT(ValVT.getSizeInBits()), Val); 2195 Val = DAG.getNode(ISD::ZERO_EXTEND, dl, 2196 MVT::getIntegerVT(LocVT.getSizeInBits()), Val); 2197 } 2198 return DAG.getNode(ISD::BITCAST, dl, LocVT, Val); 2199 } 2200 2201 /// LowerCallResult - Lower the result values of a call into the 2202 /// appropriate copies out of appropriate physical registers. 2203 SDValue ARMTargetLowering::LowerCallResult( 2204 SDValue Chain, SDValue InGlue, CallingConv::ID CallConv, bool isVarArg, 2205 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 2206 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool isThisReturn, 2207 SDValue ThisVal, bool isCmseNSCall) const { 2208 // Assign locations to each value returned by this call. 2209 SmallVector<CCValAssign, 16> RVLocs; 2210 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 2211 *DAG.getContext()); 2212 CCInfo.AnalyzeCallResult(Ins, CCAssignFnForReturn(CallConv, isVarArg)); 2213 2214 // Copy all of the result registers out of their specified physreg. 2215 for (unsigned i = 0; i != RVLocs.size(); ++i) { 2216 CCValAssign VA = RVLocs[i]; 2217 2218 // Pass 'this' value directly from the argument to return value, to avoid 2219 // reg unit interference 2220 if (i == 0 && isThisReturn) { 2221 assert(!VA.needsCustom() && VA.getLocVT() == MVT::i32 && 2222 "unexpected return calling convention register assignment"); 2223 InVals.push_back(ThisVal); 2224 continue; 2225 } 2226 2227 SDValue Val; 2228 if (VA.needsCustom() && 2229 (VA.getLocVT() == MVT::f64 || VA.getLocVT() == MVT::v2f64)) { 2230 // Handle f64 or half of a v2f64. 2231 SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 2232 InGlue); 2233 Chain = Lo.getValue(1); 2234 InGlue = Lo.getValue(2); 2235 VA = RVLocs[++i]; // skip ahead to next loc 2236 SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 2237 InGlue); 2238 Chain = Hi.getValue(1); 2239 InGlue = Hi.getValue(2); 2240 if (!Subtarget->isLittle()) 2241 std::swap (Lo, Hi); 2242 Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi); 2243 2244 if (VA.getLocVT() == MVT::v2f64) { 2245 SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64); 2246 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val, 2247 DAG.getConstant(0, dl, MVT::i32)); 2248 2249 VA = RVLocs[++i]; // skip ahead to next loc 2250 Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InGlue); 2251 Chain = Lo.getValue(1); 2252 InGlue = Lo.getValue(2); 2253 VA = RVLocs[++i]; // skip ahead to next loc 2254 Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InGlue); 2255 Chain = Hi.getValue(1); 2256 InGlue = Hi.getValue(2); 2257 if (!Subtarget->isLittle()) 2258 std::swap (Lo, Hi); 2259 Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi); 2260 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val, 2261 DAG.getConstant(1, dl, MVT::i32)); 2262 } 2263 } else { 2264 Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(), 2265 InGlue); 2266 Chain = Val.getValue(1); 2267 InGlue = Val.getValue(2); 2268 } 2269 2270 switch (VA.getLocInfo()) { 2271 default: llvm_unreachable("Unknown loc info!"); 2272 case CCValAssign::Full: break; 2273 case CCValAssign::BCvt: 2274 Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val); 2275 break; 2276 } 2277 2278 // f16 arguments have their size extended to 4 bytes and passed as if they 2279 // had been copied to the LSBs of a 32-bit register. 2280 // For that, it's passed extended to i32 (soft ABI) or to f32 (hard ABI) 2281 if (VA.needsCustom() && 2282 (VA.getValVT() == MVT::f16 || VA.getValVT() == MVT::bf16)) 2283 Val = MoveToHPR(dl, DAG, VA.getLocVT(), VA.getValVT(), Val); 2284 2285 // On CMSE Non-secure Calls, call results (returned values) whose bitwidth 2286 // is less than 32 bits must be sign- or zero-extended after the call for 2287 // security reasons. Although the ABI mandates an extension done by the 2288 // callee, the latter cannot be trusted to follow the rules of the ABI. 2289 const ISD::InputArg &Arg = Ins[VA.getValNo()]; 2290 if (isCmseNSCall && Arg.ArgVT.isScalarInteger() && 2291 VA.getLocVT().isScalarInteger() && Arg.ArgVT.bitsLT(MVT::i32)) 2292 Val = handleCMSEValue(Val, Arg, DAG, dl); 2293 2294 InVals.push_back(Val); 2295 } 2296 2297 return Chain; 2298 } 2299 2300 std::pair<SDValue, MachinePointerInfo> ARMTargetLowering::computeAddrForCallArg( 2301 const SDLoc &dl, SelectionDAG &DAG, const CCValAssign &VA, SDValue StackPtr, 2302 bool IsTailCall, int SPDiff) const { 2303 SDValue DstAddr; 2304 MachinePointerInfo DstInfo; 2305 int32_t Offset = VA.getLocMemOffset(); 2306 MachineFunction &MF = DAG.getMachineFunction(); 2307 2308 if (IsTailCall) { 2309 Offset += SPDiff; 2310 auto PtrVT = getPointerTy(DAG.getDataLayout()); 2311 int Size = VA.getLocVT().getFixedSizeInBits() / 8; 2312 int FI = MF.getFrameInfo().CreateFixedObject(Size, Offset, true); 2313 DstAddr = DAG.getFrameIndex(FI, PtrVT); 2314 DstInfo = 2315 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 2316 } else { 2317 SDValue PtrOff = DAG.getIntPtrConstant(Offset, dl); 2318 DstAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), 2319 StackPtr, PtrOff); 2320 DstInfo = 2321 MachinePointerInfo::getStack(DAG.getMachineFunction(), Offset); 2322 } 2323 2324 return std::make_pair(DstAddr, DstInfo); 2325 } 2326 2327 void ARMTargetLowering::PassF64ArgInRegs(const SDLoc &dl, SelectionDAG &DAG, 2328 SDValue Chain, SDValue &Arg, 2329 RegsToPassVector &RegsToPass, 2330 CCValAssign &VA, CCValAssign &NextVA, 2331 SDValue &StackPtr, 2332 SmallVectorImpl<SDValue> &MemOpChains, 2333 bool IsTailCall, 2334 int SPDiff) const { 2335 SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl, 2336 DAG.getVTList(MVT::i32, MVT::i32), Arg); 2337 unsigned id = Subtarget->isLittle() ? 0 : 1; 2338 RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd.getValue(id))); 2339 2340 if (NextVA.isRegLoc()) 2341 RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1-id))); 2342 else { 2343 assert(NextVA.isMemLoc()); 2344 if (!StackPtr.getNode()) 2345 StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, 2346 getPointerTy(DAG.getDataLayout())); 2347 2348 SDValue DstAddr; 2349 MachinePointerInfo DstInfo; 2350 std::tie(DstAddr, DstInfo) = 2351 computeAddrForCallArg(dl, DAG, NextVA, StackPtr, IsTailCall, SPDiff); 2352 MemOpChains.push_back( 2353 DAG.getStore(Chain, dl, fmrrd.getValue(1 - id), DstAddr, DstInfo)); 2354 } 2355 } 2356 2357 static bool canGuaranteeTCO(CallingConv::ID CC, bool GuaranteeTailCalls) { 2358 return (CC == CallingConv::Fast && GuaranteeTailCalls) || 2359 CC == CallingConv::Tail || CC == CallingConv::SwiftTail; 2360 } 2361 2362 /// LowerCall - Lowering a call into a callseq_start <- 2363 /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter 2364 /// nodes. 2365 SDValue 2366 ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 2367 SmallVectorImpl<SDValue> &InVals) const { 2368 SelectionDAG &DAG = CLI.DAG; 2369 SDLoc &dl = CLI.DL; 2370 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 2371 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 2372 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 2373 SDValue Chain = CLI.Chain; 2374 SDValue Callee = CLI.Callee; 2375 bool &isTailCall = CLI.IsTailCall; 2376 CallingConv::ID CallConv = CLI.CallConv; 2377 bool doesNotRet = CLI.DoesNotReturn; 2378 bool isVarArg = CLI.IsVarArg; 2379 2380 MachineFunction &MF = DAG.getMachineFunction(); 2381 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2382 MachineFunction::CallSiteInfo CSInfo; 2383 bool isStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet(); 2384 bool isThisReturn = false; 2385 bool isCmseNSCall = false; 2386 bool isSibCall = false; 2387 bool PreferIndirect = false; 2388 bool GuardWithBTI = false; 2389 2390 // Analyze operands of the call, assigning locations to each operand. 2391 SmallVector<CCValAssign, 16> ArgLocs; 2392 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 2393 *DAG.getContext()); 2394 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CallConv, isVarArg)); 2395 2396 // Lower 'returns_twice' calls to a pseudo-instruction. 2397 if (CLI.CB && CLI.CB->getAttributes().hasFnAttr(Attribute::ReturnsTwice) && 2398 !Subtarget->noBTIAtReturnTwice()) 2399 GuardWithBTI = AFI->branchTargetEnforcement(); 2400 2401 // Determine whether this is a non-secure function call. 2402 if (CLI.CB && CLI.CB->getAttributes().hasFnAttr("cmse_nonsecure_call")) 2403 isCmseNSCall = true; 2404 2405 // Disable tail calls if they're not supported. 2406 if (!Subtarget->supportsTailCall()) 2407 isTailCall = false; 2408 2409 // For both the non-secure calls and the returns from a CMSE entry function, 2410 // the function needs to do some extra work afte r the call, or before the 2411 // return, respectively, thus it cannot end with atail call 2412 if (isCmseNSCall || AFI->isCmseNSEntryFunction()) 2413 isTailCall = false; 2414 2415 if (isa<GlobalAddressSDNode>(Callee)) { 2416 // If we're optimizing for minimum size and the function is called three or 2417 // more times in this block, we can improve codesize by calling indirectly 2418 // as BLXr has a 16-bit encoding. 2419 auto *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal(); 2420 if (CLI.CB) { 2421 auto *BB = CLI.CB->getParent(); 2422 PreferIndirect = Subtarget->isThumb() && Subtarget->hasMinSize() && 2423 count_if(GV->users(), [&BB](const User *U) { 2424 return isa<Instruction>(U) && 2425 cast<Instruction>(U)->getParent() == BB; 2426 }) > 2; 2427 } 2428 } 2429 if (isTailCall) { 2430 // Check if it's really possible to do a tail call. 2431 isTailCall = 2432 IsEligibleForTailCallOptimization(CLI, CCInfo, ArgLocs, PreferIndirect); 2433 2434 if (isTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt && 2435 CallConv != CallingConv::Tail && CallConv != CallingConv::SwiftTail) 2436 isSibCall = true; 2437 2438 // We don't support GuaranteedTailCallOpt for ARM, only automatically 2439 // detected sibcalls. 2440 if (isTailCall) 2441 ++NumTailCalls; 2442 } 2443 2444 if (!isTailCall && CLI.CB && CLI.CB->isMustTailCall()) 2445 report_fatal_error("failed to perform tail call elimination on a call " 2446 "site marked musttail"); 2447 2448 // Get a count of how many bytes are to be pushed on the stack. 2449 unsigned NumBytes = CCInfo.getStackSize(); 2450 2451 // SPDiff is the byte offset of the call's argument area from the callee's. 2452 // Stores to callee stack arguments will be placed in FixedStackSlots offset 2453 // by this amount for a tail call. In a sibling call it must be 0 because the 2454 // caller will deallocate the entire stack and the callee still expects its 2455 // arguments to begin at SP+0. Completely unused for non-tail calls. 2456 int SPDiff = 0; 2457 2458 if (isTailCall && !isSibCall) { 2459 auto FuncInfo = MF.getInfo<ARMFunctionInfo>(); 2460 unsigned NumReusableBytes = FuncInfo->getArgumentStackSize(); 2461 2462 // Since callee will pop argument stack as a tail call, we must keep the 2463 // popped size 16-byte aligned. 2464 Align StackAlign = DAG.getDataLayout().getStackAlignment(); 2465 NumBytes = alignTo(NumBytes, StackAlign); 2466 2467 // SPDiff will be negative if this tail call requires more space than we 2468 // would automatically have in our incoming argument space. Positive if we 2469 // can actually shrink the stack. 2470 SPDiff = NumReusableBytes - NumBytes; 2471 2472 // If this call requires more stack than we have available from 2473 // LowerFormalArguments, tell FrameLowering to reserve space for it. 2474 if (SPDiff < 0 && AFI->getArgRegsSaveSize() < (unsigned)-SPDiff) 2475 AFI->setArgRegsSaveSize(-SPDiff); 2476 } 2477 2478 if (isSibCall) { 2479 // For sibling tail calls, memory operands are available in our caller's stack. 2480 NumBytes = 0; 2481 } else { 2482 // Adjust the stack pointer for the new arguments... 2483 // These operations are automatically eliminated by the prolog/epilog pass 2484 Chain = DAG.getCALLSEQ_START(Chain, isTailCall ? 0 : NumBytes, 0, dl); 2485 } 2486 2487 SDValue StackPtr = 2488 DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy(DAG.getDataLayout())); 2489 2490 RegsToPassVector RegsToPass; 2491 SmallVector<SDValue, 8> MemOpChains; 2492 2493 // During a tail call, stores to the argument area must happen after all of 2494 // the function's incoming arguments have been loaded because they may alias. 2495 // This is done by folding in a TokenFactor from LowerFormalArguments, but 2496 // there's no point in doing so repeatedly so this tracks whether that's 2497 // happened yet. 2498 bool AfterFormalArgLoads = false; 2499 2500 // Walk the register/memloc assignments, inserting copies/loads. In the case 2501 // of tail call optimization, arguments are handled later. 2502 for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); 2503 i != e; 2504 ++i, ++realArgIdx) { 2505 CCValAssign &VA = ArgLocs[i]; 2506 SDValue Arg = OutVals[realArgIdx]; 2507 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags; 2508 bool isByVal = Flags.isByVal(); 2509 2510 // Promote the value if needed. 2511 switch (VA.getLocInfo()) { 2512 default: llvm_unreachable("Unknown loc info!"); 2513 case CCValAssign::Full: break; 2514 case CCValAssign::SExt: 2515 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 2516 break; 2517 case CCValAssign::ZExt: 2518 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 2519 break; 2520 case CCValAssign::AExt: 2521 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 2522 break; 2523 case CCValAssign::BCvt: 2524 Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg); 2525 break; 2526 } 2527 2528 if (isTailCall && VA.isMemLoc() && !AfterFormalArgLoads) { 2529 Chain = DAG.getStackArgumentTokenFactor(Chain); 2530 AfterFormalArgLoads = true; 2531 } 2532 2533 // f16 arguments have their size extended to 4 bytes and passed as if they 2534 // had been copied to the LSBs of a 32-bit register. 2535 // For that, it's passed extended to i32 (soft ABI) or to f32 (hard ABI) 2536 if (VA.needsCustom() && 2537 (VA.getValVT() == MVT::f16 || VA.getValVT() == MVT::bf16)) { 2538 Arg = MoveFromHPR(dl, DAG, VA.getLocVT(), VA.getValVT(), Arg); 2539 } else { 2540 // f16 arguments could have been extended prior to argument lowering. 2541 // Mask them arguments if this is a CMSE nonsecure call. 2542 auto ArgVT = Outs[realArgIdx].ArgVT; 2543 if (isCmseNSCall && (ArgVT == MVT::f16)) { 2544 auto LocBits = VA.getLocVT().getSizeInBits(); 2545 auto MaskValue = APInt::getLowBitsSet(LocBits, ArgVT.getSizeInBits()); 2546 SDValue Mask = 2547 DAG.getConstant(MaskValue, dl, MVT::getIntegerVT(LocBits)); 2548 Arg = DAG.getNode(ISD::BITCAST, dl, MVT::getIntegerVT(LocBits), Arg); 2549 Arg = DAG.getNode(ISD::AND, dl, MVT::getIntegerVT(LocBits), Arg, Mask); 2550 Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg); 2551 } 2552 } 2553 2554 // f64 and v2f64 might be passed in i32 pairs and must be split into pieces 2555 if (VA.needsCustom() && VA.getLocVT() == MVT::v2f64) { 2556 SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg, 2557 DAG.getConstant(0, dl, MVT::i32)); 2558 SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg, 2559 DAG.getConstant(1, dl, MVT::i32)); 2560 2561 PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass, VA, ArgLocs[++i], 2562 StackPtr, MemOpChains, isTailCall, SPDiff); 2563 2564 VA = ArgLocs[++i]; // skip ahead to next loc 2565 if (VA.isRegLoc()) { 2566 PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass, VA, ArgLocs[++i], 2567 StackPtr, MemOpChains, isTailCall, SPDiff); 2568 } else { 2569 assert(VA.isMemLoc()); 2570 SDValue DstAddr; 2571 MachinePointerInfo DstInfo; 2572 std::tie(DstAddr, DstInfo) = 2573 computeAddrForCallArg(dl, DAG, VA, StackPtr, isTailCall, SPDiff); 2574 MemOpChains.push_back(DAG.getStore(Chain, dl, Op1, DstAddr, DstInfo)); 2575 } 2576 } else if (VA.needsCustom() && VA.getLocVT() == MVT::f64) { 2577 PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i], 2578 StackPtr, MemOpChains, isTailCall, SPDiff); 2579 } else if (VA.isRegLoc()) { 2580 if (realArgIdx == 0 && Flags.isReturned() && !Flags.isSwiftSelf() && 2581 Outs[0].VT == MVT::i32) { 2582 assert(VA.getLocVT() == MVT::i32 && 2583 "unexpected calling convention register assignment"); 2584 assert(!Ins.empty() && Ins[0].VT == MVT::i32 && 2585 "unexpected use of 'returned'"); 2586 isThisReturn = true; 2587 } 2588 const TargetOptions &Options = DAG.getTarget().Options; 2589 if (Options.EmitCallSiteInfo) 2590 CSInfo.ArgRegPairs.emplace_back(VA.getLocReg(), i); 2591 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 2592 } else if (isByVal) { 2593 assert(VA.isMemLoc()); 2594 unsigned offset = 0; 2595 2596 // True if this byval aggregate will be split between registers 2597 // and memory. 2598 unsigned ByValArgsCount = CCInfo.getInRegsParamsCount(); 2599 unsigned CurByValIdx = CCInfo.getInRegsParamsProcessed(); 2600 2601 if (CurByValIdx < ByValArgsCount) { 2602 2603 unsigned RegBegin, RegEnd; 2604 CCInfo.getInRegsParamInfo(CurByValIdx, RegBegin, RegEnd); 2605 2606 EVT PtrVT = 2607 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2608 unsigned int i, j; 2609 for (i = 0, j = RegBegin; j < RegEnd; i++, j++) { 2610 SDValue Const = DAG.getConstant(4*i, dl, MVT::i32); 2611 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 2612 SDValue Load = 2613 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo(), 2614 DAG.InferPtrAlign(AddArg)); 2615 MemOpChains.push_back(Load.getValue(1)); 2616 RegsToPass.push_back(std::make_pair(j, Load)); 2617 } 2618 2619 // If parameter size outsides register area, "offset" value 2620 // helps us to calculate stack slot for remained part properly. 2621 offset = RegEnd - RegBegin; 2622 2623 CCInfo.nextInRegsParam(); 2624 } 2625 2626 if (Flags.getByValSize() > 4*offset) { 2627 auto PtrVT = getPointerTy(DAG.getDataLayout()); 2628 SDValue Dst; 2629 MachinePointerInfo DstInfo; 2630 std::tie(Dst, DstInfo) = 2631 computeAddrForCallArg(dl, DAG, VA, StackPtr, isTailCall, SPDiff); 2632 SDValue SrcOffset = DAG.getIntPtrConstant(4*offset, dl); 2633 SDValue Src = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, SrcOffset); 2634 SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset, dl, 2635 MVT::i32); 2636 SDValue AlignNode = 2637 DAG.getConstant(Flags.getNonZeroByValAlign().value(), dl, MVT::i32); 2638 2639 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 2640 SDValue Ops[] = { Chain, Dst, Src, SizeNode, AlignNode}; 2641 MemOpChains.push_back(DAG.getNode(ARMISD::COPY_STRUCT_BYVAL, dl, VTs, 2642 Ops)); 2643 } 2644 } else { 2645 assert(VA.isMemLoc()); 2646 SDValue DstAddr; 2647 MachinePointerInfo DstInfo; 2648 std::tie(DstAddr, DstInfo) = 2649 computeAddrForCallArg(dl, DAG, VA, StackPtr, isTailCall, SPDiff); 2650 2651 SDValue Store = DAG.getStore(Chain, dl, Arg, DstAddr, DstInfo); 2652 MemOpChains.push_back(Store); 2653 } 2654 } 2655 2656 if (!MemOpChains.empty()) 2657 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 2658 2659 // Build a sequence of copy-to-reg nodes chained together with token chain 2660 // and flag operands which copy the outgoing args into the appropriate regs. 2661 SDValue InGlue; 2662 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 2663 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 2664 RegsToPass[i].second, InGlue); 2665 InGlue = Chain.getValue(1); 2666 } 2667 2668 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every 2669 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol 2670 // node so that legalize doesn't hack it. 2671 bool isDirect = false; 2672 2673 const TargetMachine &TM = getTargetMachine(); 2674 const GlobalValue *GVal = nullptr; 2675 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 2676 GVal = G->getGlobal(); 2677 bool isStub = !TM.shouldAssumeDSOLocal(GVal) && Subtarget->isTargetMachO(); 2678 2679 bool isARMFunc = !Subtarget->isThumb() || (isStub && !Subtarget->isMClass()); 2680 bool isLocalARMFunc = false; 2681 auto PtrVt = getPointerTy(DAG.getDataLayout()); 2682 2683 if (Subtarget->genLongCalls()) { 2684 assert((!isPositionIndependent() || Subtarget->isTargetWindows()) && 2685 "long-calls codegen is not position independent!"); 2686 // Handle a global address or an external symbol. If it's not one of 2687 // those, the target's already in a register, so we don't need to do 2688 // anything extra. 2689 if (isa<GlobalAddressSDNode>(Callee)) { 2690 if (Subtarget->genExecuteOnly()) { 2691 if (Subtarget->useMovt()) 2692 ++NumMovwMovt; 2693 Callee = DAG.getNode(ARMISD::Wrapper, dl, PtrVt, 2694 DAG.getTargetGlobalAddress(GVal, dl, PtrVt)); 2695 } else { 2696 // Create a constant pool entry for the callee address 2697 unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); 2698 ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create( 2699 GVal, ARMPCLabelIndex, ARMCP::CPValue, 0); 2700 2701 // Get the address of the callee into a register 2702 SDValue Addr = DAG.getTargetConstantPool(CPV, PtrVt, Align(4)); 2703 Addr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Addr); 2704 Callee = DAG.getLoad( 2705 PtrVt, dl, DAG.getEntryNode(), Addr, 2706 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 2707 } 2708 } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) { 2709 const char *Sym = S->getSymbol(); 2710 2711 if (Subtarget->genExecuteOnly()) { 2712 if (Subtarget->useMovt()) 2713 ++NumMovwMovt; 2714 Callee = DAG.getNode(ARMISD::Wrapper, dl, PtrVt, 2715 DAG.getTargetGlobalAddress(GVal, dl, PtrVt)); 2716 } else { 2717 // Create a constant pool entry for the callee address 2718 unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); 2719 ARMConstantPoolValue *CPV = ARMConstantPoolSymbol::Create( 2720 *DAG.getContext(), Sym, ARMPCLabelIndex, 0); 2721 2722 // Get the address of the callee into a register 2723 SDValue Addr = DAG.getTargetConstantPool(CPV, PtrVt, Align(4)); 2724 Addr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Addr); 2725 Callee = DAG.getLoad( 2726 PtrVt, dl, DAG.getEntryNode(), Addr, 2727 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 2728 } 2729 } 2730 } else if (isa<GlobalAddressSDNode>(Callee)) { 2731 if (!PreferIndirect) { 2732 isDirect = true; 2733 bool isDef = GVal->isStrongDefinitionForLinker(); 2734 2735 // ARM call to a local ARM function is predicable. 2736 isLocalARMFunc = !Subtarget->isThumb() && (isDef || !ARMInterworking); 2737 // tBX takes a register source operand. 2738 if (isStub && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) { 2739 assert(Subtarget->isTargetMachO() && "WrapperPIC use on non-MachO?"); 2740 Callee = DAG.getNode( 2741 ARMISD::WrapperPIC, dl, PtrVt, 2742 DAG.getTargetGlobalAddress(GVal, dl, PtrVt, 0, ARMII::MO_NONLAZY)); 2743 Callee = DAG.getLoad( 2744 PtrVt, dl, DAG.getEntryNode(), Callee, 2745 MachinePointerInfo::getGOT(DAG.getMachineFunction()), MaybeAlign(), 2746 MachineMemOperand::MODereferenceable | 2747 MachineMemOperand::MOInvariant); 2748 } else if (Subtarget->isTargetCOFF()) { 2749 assert(Subtarget->isTargetWindows() && 2750 "Windows is the only supported COFF target"); 2751 unsigned TargetFlags = ARMII::MO_NO_FLAG; 2752 if (GVal->hasDLLImportStorageClass()) 2753 TargetFlags = ARMII::MO_DLLIMPORT; 2754 else if (!TM.shouldAssumeDSOLocal(GVal)) 2755 TargetFlags = ARMII::MO_COFFSTUB; 2756 Callee = DAG.getTargetGlobalAddress(GVal, dl, PtrVt, /*offset=*/0, 2757 TargetFlags); 2758 if (TargetFlags & (ARMII::MO_DLLIMPORT | ARMII::MO_COFFSTUB)) 2759 Callee = 2760 DAG.getLoad(PtrVt, dl, DAG.getEntryNode(), 2761 DAG.getNode(ARMISD::Wrapper, dl, PtrVt, Callee), 2762 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 2763 } else { 2764 Callee = DAG.getTargetGlobalAddress(GVal, dl, PtrVt, 0, 0); 2765 } 2766 } 2767 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 2768 isDirect = true; 2769 // tBX takes a register source operand. 2770 const char *Sym = S->getSymbol(); 2771 if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) { 2772 unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); 2773 ARMConstantPoolValue *CPV = 2774 ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym, 2775 ARMPCLabelIndex, 4); 2776 SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, Align(4)); 2777 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); 2778 Callee = DAG.getLoad( 2779 PtrVt, dl, DAG.getEntryNode(), CPAddr, 2780 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 2781 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32); 2782 Callee = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVt, Callee, PICLabel); 2783 } else { 2784 Callee = DAG.getTargetExternalSymbol(Sym, PtrVt, 0); 2785 } 2786 } 2787 2788 if (isCmseNSCall) { 2789 assert(!isARMFunc && !isDirect && 2790 "Cannot handle call to ARM function or direct call"); 2791 if (NumBytes > 0) { 2792 DiagnosticInfoUnsupported Diag(DAG.getMachineFunction().getFunction(), 2793 "call to non-secure function would " 2794 "require passing arguments on stack", 2795 dl.getDebugLoc()); 2796 DAG.getContext()->diagnose(Diag); 2797 } 2798 if (isStructRet) { 2799 DiagnosticInfoUnsupported Diag( 2800 DAG.getMachineFunction().getFunction(), 2801 "call to non-secure function would return value through pointer", 2802 dl.getDebugLoc()); 2803 DAG.getContext()->diagnose(Diag); 2804 } 2805 } 2806 2807 // FIXME: handle tail calls differently. 2808 unsigned CallOpc; 2809 if (Subtarget->isThumb()) { 2810 if (GuardWithBTI) 2811 CallOpc = ARMISD::t2CALL_BTI; 2812 else if (isCmseNSCall) 2813 CallOpc = ARMISD::tSECALL; 2814 else if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps()) 2815 CallOpc = ARMISD::CALL_NOLINK; 2816 else 2817 CallOpc = ARMISD::CALL; 2818 } else { 2819 if (!isDirect && !Subtarget->hasV5TOps()) 2820 CallOpc = ARMISD::CALL_NOLINK; 2821 else if (doesNotRet && isDirect && Subtarget->hasRetAddrStack() && 2822 // Emit regular call when code size is the priority 2823 !Subtarget->hasMinSize()) 2824 // "mov lr, pc; b _foo" to avoid confusing the RSP 2825 CallOpc = ARMISD::CALL_NOLINK; 2826 else 2827 CallOpc = isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL; 2828 } 2829 2830 // We don't usually want to end the call-sequence here because we would tidy 2831 // the frame up *after* the call, however in the ABI-changing tail-call case 2832 // we've carefully laid out the parameters so that when sp is reset they'll be 2833 // in the correct location. 2834 if (isTailCall && !isSibCall) { 2835 Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, dl); 2836 InGlue = Chain.getValue(1); 2837 } 2838 2839 std::vector<SDValue> Ops; 2840 Ops.push_back(Chain); 2841 Ops.push_back(Callee); 2842 2843 if (isTailCall) { 2844 Ops.push_back(DAG.getTargetConstant(SPDiff, dl, MVT::i32)); 2845 } 2846 2847 // Add argument registers to the end of the list so that they are known live 2848 // into the call. 2849 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 2850 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 2851 RegsToPass[i].second.getValueType())); 2852 2853 // Add a register mask operand representing the call-preserved registers. 2854 const uint32_t *Mask; 2855 const ARMBaseRegisterInfo *ARI = Subtarget->getRegisterInfo(); 2856 if (isThisReturn) { 2857 // For 'this' returns, use the R0-preserving mask if applicable 2858 Mask = ARI->getThisReturnPreservedMask(MF, CallConv); 2859 if (!Mask) { 2860 // Set isThisReturn to false if the calling convention is not one that 2861 // allows 'returned' to be modeled in this way, so LowerCallResult does 2862 // not try to pass 'this' straight through 2863 isThisReturn = false; 2864 Mask = ARI->getCallPreservedMask(MF, CallConv); 2865 } 2866 } else 2867 Mask = ARI->getCallPreservedMask(MF, CallConv); 2868 2869 assert(Mask && "Missing call preserved mask for calling convention"); 2870 Ops.push_back(DAG.getRegisterMask(Mask)); 2871 2872 if (InGlue.getNode()) 2873 Ops.push_back(InGlue); 2874 2875 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 2876 if (isTailCall) { 2877 MF.getFrameInfo().setHasTailCall(); 2878 SDValue Ret = DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, Ops); 2879 DAG.addNoMergeSiteInfo(Ret.getNode(), CLI.NoMerge); 2880 DAG.addCallSiteInfo(Ret.getNode(), std::move(CSInfo)); 2881 return Ret; 2882 } 2883 2884 // Returns a chain and a flag for retval copy to use. 2885 Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops); 2886 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 2887 InGlue = Chain.getValue(1); 2888 DAG.addCallSiteInfo(Chain.getNode(), std::move(CSInfo)); 2889 2890 // If we're guaranteeing tail-calls will be honoured, the callee must 2891 // pop its own argument stack on return. But this call is *not* a tail call so 2892 // we need to undo that after it returns to restore the status-quo. 2893 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt; 2894 uint64_t CalleePopBytes = 2895 canGuaranteeTCO(CallConv, TailCallOpt) ? alignTo(NumBytes, 16) : -1ULL; 2896 2897 Chain = DAG.getCALLSEQ_END(Chain, NumBytes, CalleePopBytes, InGlue, dl); 2898 if (!Ins.empty()) 2899 InGlue = Chain.getValue(1); 2900 2901 // Handle result values, copying them out of physregs into vregs that we 2902 // return. 2903 return LowerCallResult(Chain, InGlue, CallConv, isVarArg, Ins, dl, DAG, 2904 InVals, isThisReturn, 2905 isThisReturn ? OutVals[0] : SDValue(), isCmseNSCall); 2906 } 2907 2908 /// HandleByVal - Every parameter *after* a byval parameter is passed 2909 /// on the stack. Remember the next parameter register to allocate, 2910 /// and then confiscate the rest of the parameter registers to insure 2911 /// this. 2912 void ARMTargetLowering::HandleByVal(CCState *State, unsigned &Size, 2913 Align Alignment) const { 2914 // Byval (as with any stack) slots are always at least 4 byte aligned. 2915 Alignment = std::max(Alignment, Align(4)); 2916 2917 unsigned Reg = State->AllocateReg(GPRArgRegs); 2918 if (!Reg) 2919 return; 2920 2921 unsigned AlignInRegs = Alignment.value() / 4; 2922 unsigned Waste = (ARM::R4 - Reg) % AlignInRegs; 2923 for (unsigned i = 0; i < Waste; ++i) 2924 Reg = State->AllocateReg(GPRArgRegs); 2925 2926 if (!Reg) 2927 return; 2928 2929 unsigned Excess = 4 * (ARM::R4 - Reg); 2930 2931 // Special case when NSAA != SP and parameter size greater than size of 2932 // all remained GPR regs. In that case we can't split parameter, we must 2933 // send it to stack. We also must set NCRN to R4, so waste all 2934 // remained registers. 2935 const unsigned NSAAOffset = State->getStackSize(); 2936 if (NSAAOffset != 0 && Size > Excess) { 2937 while (State->AllocateReg(GPRArgRegs)) 2938 ; 2939 return; 2940 } 2941 2942 // First register for byval parameter is the first register that wasn't 2943 // allocated before this method call, so it would be "reg". 2944 // If parameter is small enough to be saved in range [reg, r4), then 2945 // the end (first after last) register would be reg + param-size-in-regs, 2946 // else parameter would be splitted between registers and stack, 2947 // end register would be r4 in this case. 2948 unsigned ByValRegBegin = Reg; 2949 unsigned ByValRegEnd = std::min<unsigned>(Reg + Size / 4, ARM::R4); 2950 State->addInRegsParamInfo(ByValRegBegin, ByValRegEnd); 2951 // Note, first register is allocated in the beginning of function already, 2952 // allocate remained amount of registers we need. 2953 for (unsigned i = Reg + 1; i != ByValRegEnd; ++i) 2954 State->AllocateReg(GPRArgRegs); 2955 // A byval parameter that is split between registers and memory needs its 2956 // size truncated here. 2957 // In the case where the entire structure fits in registers, we set the 2958 // size in memory to zero. 2959 Size = std::max<int>(Size - Excess, 0); 2960 } 2961 2962 /// MatchingStackOffset - Return true if the given stack call argument is 2963 /// already available in the same position (relatively) of the caller's 2964 /// incoming argument stack. 2965 static 2966 bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags, 2967 MachineFrameInfo &MFI, const MachineRegisterInfo *MRI, 2968 const TargetInstrInfo *TII) { 2969 unsigned Bytes = Arg.getValueSizeInBits() / 8; 2970 int FI = std::numeric_limits<int>::max(); 2971 if (Arg.getOpcode() == ISD::CopyFromReg) { 2972 Register VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg(); 2973 if (!VR.isVirtual()) 2974 return false; 2975 MachineInstr *Def = MRI->getVRegDef(VR); 2976 if (!Def) 2977 return false; 2978 if (!Flags.isByVal()) { 2979 if (!TII->isLoadFromStackSlot(*Def, FI)) 2980 return false; 2981 } else { 2982 return false; 2983 } 2984 } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) { 2985 if (Flags.isByVal()) 2986 // ByVal argument is passed in as a pointer but it's now being 2987 // dereferenced. e.g. 2988 // define @foo(%struct.X* %A) { 2989 // tail call @bar(%struct.X* byval %A) 2990 // } 2991 return false; 2992 SDValue Ptr = Ld->getBasePtr(); 2993 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr); 2994 if (!FINode) 2995 return false; 2996 FI = FINode->getIndex(); 2997 } else 2998 return false; 2999 3000 assert(FI != std::numeric_limits<int>::max()); 3001 if (!MFI.isFixedObjectIndex(FI)) 3002 return false; 3003 return Offset == MFI.getObjectOffset(FI) && Bytes == MFI.getObjectSize(FI); 3004 } 3005 3006 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 3007 /// for tail call optimization. Targets which want to do tail call 3008 /// optimization should implement this function. Note that this function also 3009 /// processes musttail calls, so when this function returns false on a valid 3010 /// musttail call, a fatal backend error occurs. 3011 bool ARMTargetLowering::IsEligibleForTailCallOptimization( 3012 TargetLowering::CallLoweringInfo &CLI, CCState &CCInfo, 3013 SmallVectorImpl<CCValAssign> &ArgLocs, const bool isIndirect) const { 3014 CallingConv::ID CalleeCC = CLI.CallConv; 3015 SDValue Callee = CLI.Callee; 3016 bool isVarArg = CLI.IsVarArg; 3017 const SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 3018 const SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 3019 const SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 3020 const SelectionDAG &DAG = CLI.DAG; 3021 MachineFunction &MF = DAG.getMachineFunction(); 3022 const Function &CallerF = MF.getFunction(); 3023 CallingConv::ID CallerCC = CallerF.getCallingConv(); 3024 3025 assert(Subtarget->supportsTailCall()); 3026 3027 // Indirect tail calls cannot be optimized for Thumb1 if the args 3028 // to the call take up r0-r3. The reason is that there are no legal registers 3029 // left to hold the pointer to the function to be called. 3030 // Similarly, if the function uses return address sign and authentication, 3031 // r12 is needed to hold the PAC and is not available to hold the callee 3032 // address. 3033 if (Outs.size() >= 4 && 3034 (!isa<GlobalAddressSDNode>(Callee.getNode()) || isIndirect)) { 3035 if (Subtarget->isThumb1Only()) 3036 return false; 3037 // Conservatively assume the function spills LR. 3038 if (MF.getInfo<ARMFunctionInfo>()->shouldSignReturnAddress(true)) 3039 return false; 3040 } 3041 3042 // Look for obvious safe cases to perform tail call optimization that do not 3043 // require ABI changes. This is what gcc calls sibcall. 3044 3045 // Exception-handling functions need a special set of instructions to indicate 3046 // a return to the hardware. Tail-calling another function would probably 3047 // break this. 3048 if (CallerF.hasFnAttribute("interrupt")) 3049 return false; 3050 3051 if (canGuaranteeTCO(CalleeCC, getTargetMachine().Options.GuaranteedTailCallOpt)) 3052 return CalleeCC == CallerCC; 3053 3054 // Also avoid sibcall optimization if either caller or callee uses struct 3055 // return semantics. 3056 bool isCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 3057 bool isCallerStructRet = MF.getFunction().hasStructRetAttr(); 3058 if (isCalleeStructRet || isCallerStructRet) 3059 return false; 3060 3061 // Externally-defined functions with weak linkage should not be 3062 // tail-called on ARM when the OS does not support dynamic 3063 // pre-emption of symbols, as the AAELF spec requires normal calls 3064 // to undefined weak functions to be replaced with a NOP or jump to the 3065 // next instruction. The behaviour of branch instructions in this 3066 // situation (as used for tail calls) is implementation-defined, so we 3067 // cannot rely on the linker replacing the tail call with a return. 3068 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 3069 const GlobalValue *GV = G->getGlobal(); 3070 const Triple &TT = getTargetMachine().getTargetTriple(); 3071 if (GV->hasExternalWeakLinkage() && 3072 (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO())) 3073 return false; 3074 } 3075 3076 // Check that the call results are passed in the same way. 3077 LLVMContext &C = *DAG.getContext(); 3078 if (!CCState::resultsCompatible( 3079 getEffectiveCallingConv(CalleeCC, isVarArg), 3080 getEffectiveCallingConv(CallerCC, CallerF.isVarArg()), MF, C, Ins, 3081 CCAssignFnForReturn(CalleeCC, isVarArg), 3082 CCAssignFnForReturn(CallerCC, CallerF.isVarArg()))) 3083 return false; 3084 // The callee has to preserve all registers the caller needs to preserve. 3085 const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo(); 3086 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 3087 if (CalleeCC != CallerCC) { 3088 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 3089 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 3090 return false; 3091 } 3092 3093 // If Caller's vararg or byval argument has been split between registers and 3094 // stack, do not perform tail call, since part of the argument is in caller's 3095 // local frame. 3096 const ARMFunctionInfo *AFI_Caller = MF.getInfo<ARMFunctionInfo>(); 3097 if (AFI_Caller->getArgRegsSaveSize()) 3098 return false; 3099 3100 // If the callee takes no arguments then go on to check the results of the 3101 // call. 3102 if (!Outs.empty()) { 3103 if (CCInfo.getStackSize()) { 3104 // Check if the arguments are already laid out in the right way as 3105 // the caller's fixed stack objects. 3106 MachineFrameInfo &MFI = MF.getFrameInfo(); 3107 const MachineRegisterInfo *MRI = &MF.getRegInfo(); 3108 const TargetInstrInfo *TII = Subtarget->getInstrInfo(); 3109 for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); 3110 i != e; 3111 ++i, ++realArgIdx) { 3112 CCValAssign &VA = ArgLocs[i]; 3113 EVT RegVT = VA.getLocVT(); 3114 SDValue Arg = OutVals[realArgIdx]; 3115 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags; 3116 if (VA.getLocInfo() == CCValAssign::Indirect) 3117 return false; 3118 if (VA.needsCustom() && (RegVT == MVT::f64 || RegVT == MVT::v2f64)) { 3119 // f64 and vector types are split into multiple registers or 3120 // register/stack-slot combinations. The types will not match 3121 // the registers; give up on memory f64 refs until we figure 3122 // out what to do about this. 3123 if (!VA.isRegLoc()) 3124 return false; 3125 if (!ArgLocs[++i].isRegLoc()) 3126 return false; 3127 if (RegVT == MVT::v2f64) { 3128 if (!ArgLocs[++i].isRegLoc()) 3129 return false; 3130 if (!ArgLocs[++i].isRegLoc()) 3131 return false; 3132 } 3133 } else if (!VA.isRegLoc()) { 3134 if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags, 3135 MFI, MRI, TII)) 3136 return false; 3137 } 3138 } 3139 } 3140 3141 const MachineRegisterInfo &MRI = MF.getRegInfo(); 3142 if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals)) 3143 return false; 3144 } 3145 3146 return true; 3147 } 3148 3149 bool 3150 ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 3151 MachineFunction &MF, bool isVarArg, 3152 const SmallVectorImpl<ISD::OutputArg> &Outs, 3153 LLVMContext &Context) const { 3154 SmallVector<CCValAssign, 16> RVLocs; 3155 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 3156 return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg)); 3157 } 3158 3159 static SDValue LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps, 3160 const SDLoc &DL, SelectionDAG &DAG) { 3161 const MachineFunction &MF = DAG.getMachineFunction(); 3162 const Function &F = MF.getFunction(); 3163 3164 StringRef IntKind = F.getFnAttribute("interrupt").getValueAsString(); 3165 3166 // See ARM ARM v7 B1.8.3. On exception entry LR is set to a possibly offset 3167 // version of the "preferred return address". These offsets affect the return 3168 // instruction if this is a return from PL1 without hypervisor extensions. 3169 // IRQ/FIQ: +4 "subs pc, lr, #4" 3170 // SWI: 0 "subs pc, lr, #0" 3171 // ABORT: +4 "subs pc, lr, #4" 3172 // UNDEF: +4/+2 "subs pc, lr, #0" 3173 // UNDEF varies depending on where the exception came from ARM or Thumb 3174 // mode. Alongside GCC, we throw our hands up in disgust and pretend it's 0. 3175 3176 int64_t LROffset; 3177 if (IntKind == "" || IntKind == "IRQ" || IntKind == "FIQ" || 3178 IntKind == "ABORT") 3179 LROffset = 4; 3180 else if (IntKind == "SWI" || IntKind == "UNDEF") 3181 LROffset = 0; 3182 else 3183 report_fatal_error("Unsupported interrupt attribute. If present, value " 3184 "must be one of: IRQ, FIQ, SWI, ABORT or UNDEF"); 3185 3186 RetOps.insert(RetOps.begin() + 1, 3187 DAG.getConstant(LROffset, DL, MVT::i32, false)); 3188 3189 return DAG.getNode(ARMISD::INTRET_GLUE, DL, MVT::Other, RetOps); 3190 } 3191 3192 SDValue 3193 ARMTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 3194 bool isVarArg, 3195 const SmallVectorImpl<ISD::OutputArg> &Outs, 3196 const SmallVectorImpl<SDValue> &OutVals, 3197 const SDLoc &dl, SelectionDAG &DAG) const { 3198 // CCValAssign - represent the assignment of the return value to a location. 3199 SmallVector<CCValAssign, 16> RVLocs; 3200 3201 // CCState - Info about the registers and stack slots. 3202 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 3203 *DAG.getContext()); 3204 3205 // Analyze outgoing return values. 3206 CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg)); 3207 3208 SDValue Glue; 3209 SmallVector<SDValue, 4> RetOps; 3210 RetOps.push_back(Chain); // Operand #0 = Chain (updated below) 3211 bool isLittleEndian = Subtarget->isLittle(); 3212 3213 MachineFunction &MF = DAG.getMachineFunction(); 3214 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 3215 AFI->setReturnRegsCount(RVLocs.size()); 3216 3217 // Report error if cmse entry function returns structure through first ptr arg. 3218 if (AFI->isCmseNSEntryFunction() && MF.getFunction().hasStructRetAttr()) { 3219 // Note: using an empty SDLoc(), as the first line of the function is a 3220 // better place to report than the last line. 3221 DiagnosticInfoUnsupported Diag( 3222 DAG.getMachineFunction().getFunction(), 3223 "secure entry function would return value through pointer", 3224 SDLoc().getDebugLoc()); 3225 DAG.getContext()->diagnose(Diag); 3226 } 3227 3228 // Copy the result values into the output registers. 3229 for (unsigned i = 0, realRVLocIdx = 0; 3230 i != RVLocs.size(); 3231 ++i, ++realRVLocIdx) { 3232 CCValAssign &VA = RVLocs[i]; 3233 assert(VA.isRegLoc() && "Can only return in registers!"); 3234 3235 SDValue Arg = OutVals[realRVLocIdx]; 3236 bool ReturnF16 = false; 3237 3238 if (Subtarget->hasFullFP16() && Subtarget->isTargetHardFloat()) { 3239 // Half-precision return values can be returned like this: 3240 // 3241 // t11 f16 = fadd ... 3242 // t12: i16 = bitcast t11 3243 // t13: i32 = zero_extend t12 3244 // t14: f32 = bitcast t13 <~~~~~~~ Arg 3245 // 3246 // to avoid code generation for bitcasts, we simply set Arg to the node 3247 // that produces the f16 value, t11 in this case. 3248 // 3249 if (Arg.getValueType() == MVT::f32 && Arg.getOpcode() == ISD::BITCAST) { 3250 SDValue ZE = Arg.getOperand(0); 3251 if (ZE.getOpcode() == ISD::ZERO_EXTEND && ZE.getValueType() == MVT::i32) { 3252 SDValue BC = ZE.getOperand(0); 3253 if (BC.getOpcode() == ISD::BITCAST && BC.getValueType() == MVT::i16) { 3254 Arg = BC.getOperand(0); 3255 ReturnF16 = true; 3256 } 3257 } 3258 } 3259 } 3260 3261 switch (VA.getLocInfo()) { 3262 default: llvm_unreachable("Unknown loc info!"); 3263 case CCValAssign::Full: break; 3264 case CCValAssign::BCvt: 3265 if (!ReturnF16) 3266 Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg); 3267 break; 3268 } 3269 3270 // Mask f16 arguments if this is a CMSE nonsecure entry. 3271 auto RetVT = Outs[realRVLocIdx].ArgVT; 3272 if (AFI->isCmseNSEntryFunction() && (RetVT == MVT::f16)) { 3273 if (VA.needsCustom() && VA.getValVT() == MVT::f16) { 3274 Arg = MoveFromHPR(dl, DAG, VA.getLocVT(), VA.getValVT(), Arg); 3275 } else { 3276 auto LocBits = VA.getLocVT().getSizeInBits(); 3277 auto MaskValue = APInt::getLowBitsSet(LocBits, RetVT.getSizeInBits()); 3278 SDValue Mask = 3279 DAG.getConstant(MaskValue, dl, MVT::getIntegerVT(LocBits)); 3280 Arg = DAG.getNode(ISD::BITCAST, dl, MVT::getIntegerVT(LocBits), Arg); 3281 Arg = DAG.getNode(ISD::AND, dl, MVT::getIntegerVT(LocBits), Arg, Mask); 3282 Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg); 3283 } 3284 } 3285 3286 if (VA.needsCustom() && 3287 (VA.getLocVT() == MVT::v2f64 || VA.getLocVT() == MVT::f64)) { 3288 if (VA.getLocVT() == MVT::v2f64) { 3289 // Extract the first half and return it in two registers. 3290 SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg, 3291 DAG.getConstant(0, dl, MVT::i32)); 3292 SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl, 3293 DAG.getVTList(MVT::i32, MVT::i32), Half); 3294 3295 Chain = 3296 DAG.getCopyToReg(Chain, dl, VA.getLocReg(), 3297 HalfGPRs.getValue(isLittleEndian ? 0 : 1), Glue); 3298 Glue = Chain.getValue(1); 3299 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 3300 VA = RVLocs[++i]; // skip ahead to next loc 3301 Chain = 3302 DAG.getCopyToReg(Chain, dl, VA.getLocReg(), 3303 HalfGPRs.getValue(isLittleEndian ? 1 : 0), Glue); 3304 Glue = Chain.getValue(1); 3305 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 3306 VA = RVLocs[++i]; // skip ahead to next loc 3307 3308 // Extract the 2nd half and fall through to handle it as an f64 value. 3309 Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg, 3310 DAG.getConstant(1, dl, MVT::i32)); 3311 } 3312 // Legalize ret f64 -> ret 2 x i32. We always have fmrrd if f64 is 3313 // available. 3314 SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl, 3315 DAG.getVTList(MVT::i32, MVT::i32), Arg); 3316 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), 3317 fmrrd.getValue(isLittleEndian ? 0 : 1), Glue); 3318 Glue = Chain.getValue(1); 3319 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 3320 VA = RVLocs[++i]; // skip ahead to next loc 3321 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), 3322 fmrrd.getValue(isLittleEndian ? 1 : 0), Glue); 3323 } else 3324 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Glue); 3325 3326 // Guarantee that all emitted copies are 3327 // stuck together, avoiding something bad. 3328 Glue = Chain.getValue(1); 3329 RetOps.push_back(DAG.getRegister( 3330 VA.getLocReg(), ReturnF16 ? Arg.getValueType() : VA.getLocVT())); 3331 } 3332 const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo(); 3333 const MCPhysReg *I = 3334 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction()); 3335 if (I) { 3336 for (; *I; ++I) { 3337 if (ARM::GPRRegClass.contains(*I)) 3338 RetOps.push_back(DAG.getRegister(*I, MVT::i32)); 3339 else if (ARM::DPRRegClass.contains(*I)) 3340 RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64))); 3341 else 3342 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 3343 } 3344 } 3345 3346 // Update chain and glue. 3347 RetOps[0] = Chain; 3348 if (Glue.getNode()) 3349 RetOps.push_back(Glue); 3350 3351 // CPUs which aren't M-class use a special sequence to return from 3352 // exceptions (roughly, any instruction setting pc and cpsr simultaneously, 3353 // though we use "subs pc, lr, #N"). 3354 // 3355 // M-class CPUs actually use a normal return sequence with a special 3356 // (hardware-provided) value in LR, so the normal code path works. 3357 if (DAG.getMachineFunction().getFunction().hasFnAttribute("interrupt") && 3358 !Subtarget->isMClass()) { 3359 if (Subtarget->isThumb1Only()) 3360 report_fatal_error("interrupt attribute is not supported in Thumb1"); 3361 return LowerInterruptReturn(RetOps, dl, DAG); 3362 } 3363 3364 ARMISD::NodeType RetNode = AFI->isCmseNSEntryFunction() ? ARMISD::SERET_GLUE : 3365 ARMISD::RET_GLUE; 3366 return DAG.getNode(RetNode, dl, MVT::Other, RetOps); 3367 } 3368 3369 bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const { 3370 if (N->getNumValues() != 1) 3371 return false; 3372 if (!N->hasNUsesOfValue(1, 0)) 3373 return false; 3374 3375 SDValue TCChain = Chain; 3376 SDNode *Copy = *N->use_begin(); 3377 if (Copy->getOpcode() == ISD::CopyToReg) { 3378 // If the copy has a glue operand, we conservatively assume it isn't safe to 3379 // perform a tail call. 3380 if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue) 3381 return false; 3382 TCChain = Copy->getOperand(0); 3383 } else if (Copy->getOpcode() == ARMISD::VMOVRRD) { 3384 SDNode *VMov = Copy; 3385 // f64 returned in a pair of GPRs. 3386 SmallPtrSet<SDNode*, 2> Copies; 3387 for (SDNode *U : VMov->uses()) { 3388 if (U->getOpcode() != ISD::CopyToReg) 3389 return false; 3390 Copies.insert(U); 3391 } 3392 if (Copies.size() > 2) 3393 return false; 3394 3395 for (SDNode *U : VMov->uses()) { 3396 SDValue UseChain = U->getOperand(0); 3397 if (Copies.count(UseChain.getNode())) 3398 // Second CopyToReg 3399 Copy = U; 3400 else { 3401 // We are at the top of this chain. 3402 // If the copy has a glue operand, we conservatively assume it 3403 // isn't safe to perform a tail call. 3404 if (U->getOperand(U->getNumOperands() - 1).getValueType() == MVT::Glue) 3405 return false; 3406 // First CopyToReg 3407 TCChain = UseChain; 3408 } 3409 } 3410 } else if (Copy->getOpcode() == ISD::BITCAST) { 3411 // f32 returned in a single GPR. 3412 if (!Copy->hasOneUse()) 3413 return false; 3414 Copy = *Copy->use_begin(); 3415 if (Copy->getOpcode() != ISD::CopyToReg || !Copy->hasNUsesOfValue(1, 0)) 3416 return false; 3417 // If the copy has a glue operand, we conservatively assume it isn't safe to 3418 // perform a tail call. 3419 if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue) 3420 return false; 3421 TCChain = Copy->getOperand(0); 3422 } else { 3423 return false; 3424 } 3425 3426 bool HasRet = false; 3427 for (const SDNode *U : Copy->uses()) { 3428 if (U->getOpcode() != ARMISD::RET_GLUE && 3429 U->getOpcode() != ARMISD::INTRET_GLUE) 3430 return false; 3431 HasRet = true; 3432 } 3433 3434 if (!HasRet) 3435 return false; 3436 3437 Chain = TCChain; 3438 return true; 3439 } 3440 3441 bool ARMTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 3442 if (!Subtarget->supportsTailCall()) 3443 return false; 3444 3445 if (!CI->isTailCall()) 3446 return false; 3447 3448 return true; 3449 } 3450 3451 // Trying to write a 64 bit value so need to split into two 32 bit values first, 3452 // and pass the lower and high parts through. 3453 static SDValue LowerWRITE_REGISTER(SDValue Op, SelectionDAG &DAG) { 3454 SDLoc DL(Op); 3455 SDValue WriteValue = Op->getOperand(2); 3456 3457 // This function is only supposed to be called for i64 type argument. 3458 assert(WriteValue.getValueType() == MVT::i64 3459 && "LowerWRITE_REGISTER called for non-i64 type argument."); 3460 3461 SDValue Lo, Hi; 3462 std::tie(Lo, Hi) = DAG.SplitScalar(WriteValue, DL, MVT::i32, MVT::i32); 3463 SDValue Ops[] = { Op->getOperand(0), Op->getOperand(1), Lo, Hi }; 3464 return DAG.getNode(ISD::WRITE_REGISTER, DL, MVT::Other, Ops); 3465 } 3466 3467 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as 3468 // their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is 3469 // one of the above mentioned nodes. It has to be wrapped because otherwise 3470 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only 3471 // be used to form addressing mode. These wrapped nodes will be selected 3472 // into MOVi. 3473 SDValue ARMTargetLowering::LowerConstantPool(SDValue Op, 3474 SelectionDAG &DAG) const { 3475 EVT PtrVT = Op.getValueType(); 3476 // FIXME there is no actual debug info here 3477 SDLoc dl(Op); 3478 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 3479 SDValue Res; 3480 3481 // When generating execute-only code Constant Pools must be promoted to the 3482 // global data section. It's a bit ugly that we can't share them across basic 3483 // blocks, but this way we guarantee that execute-only behaves correct with 3484 // position-independent addressing modes. 3485 if (Subtarget->genExecuteOnly()) { 3486 auto AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>(); 3487 auto T = const_cast<Type*>(CP->getType()); 3488 auto C = const_cast<Constant*>(CP->getConstVal()); 3489 auto M = const_cast<Module*>(DAG.getMachineFunction(). 3490 getFunction().getParent()); 3491 auto GV = new GlobalVariable( 3492 *M, T, /*isConstant=*/true, GlobalVariable::InternalLinkage, C, 3493 Twine(DAG.getDataLayout().getPrivateGlobalPrefix()) + "CP" + 3494 Twine(DAG.getMachineFunction().getFunctionNumber()) + "_" + 3495 Twine(AFI->createPICLabelUId()) 3496 ); 3497 SDValue GA = DAG.getTargetGlobalAddress(dyn_cast<GlobalValue>(GV), 3498 dl, PtrVT); 3499 return LowerGlobalAddress(GA, DAG); 3500 } 3501 3502 // The 16-bit ADR instruction can only encode offsets that are multiples of 4, 3503 // so we need to align to at least 4 bytes when we don't have 32-bit ADR. 3504 Align CPAlign = CP->getAlign(); 3505 if (Subtarget->isThumb1Only()) 3506 CPAlign = std::max(CPAlign, Align(4)); 3507 if (CP->isMachineConstantPoolEntry()) 3508 Res = 3509 DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CPAlign); 3510 else 3511 Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CPAlign); 3512 return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res); 3513 } 3514 3515 unsigned ARMTargetLowering::getJumpTableEncoding() const { 3516 // If we don't have a 32-bit pc-relative branch instruction then the jump 3517 // table consists of block addresses. Usually this is inline, but for 3518 // execute-only it must be placed out-of-line. 3519 if (Subtarget->genExecuteOnly() && !Subtarget->hasV8MBaselineOps()) 3520 return MachineJumpTableInfo::EK_BlockAddress; 3521 return MachineJumpTableInfo::EK_Inline; 3522 } 3523 3524 SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op, 3525 SelectionDAG &DAG) const { 3526 MachineFunction &MF = DAG.getMachineFunction(); 3527 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 3528 unsigned ARMPCLabelIndex = 0; 3529 SDLoc DL(Op); 3530 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3531 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); 3532 SDValue CPAddr; 3533 bool IsPositionIndependent = isPositionIndependent() || Subtarget->isROPI(); 3534 if (!IsPositionIndependent) { 3535 CPAddr = DAG.getTargetConstantPool(BA, PtrVT, Align(4)); 3536 } else { 3537 unsigned PCAdj = Subtarget->isThumb() ? 4 : 8; 3538 ARMPCLabelIndex = AFI->createPICLabelUId(); 3539 ARMConstantPoolValue *CPV = 3540 ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex, 3541 ARMCP::CPBlockAddress, PCAdj); 3542 CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, Align(4)); 3543 } 3544 CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr); 3545 SDValue Result = DAG.getLoad( 3546 PtrVT, DL, DAG.getEntryNode(), CPAddr, 3547 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3548 if (!IsPositionIndependent) 3549 return Result; 3550 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, DL, MVT::i32); 3551 return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel); 3552 } 3553 3554 /// Convert a TLS address reference into the correct sequence of loads 3555 /// and calls to compute the variable's address for Darwin, and return an 3556 /// SDValue containing the final node. 3557 3558 /// Darwin only has one TLS scheme which must be capable of dealing with the 3559 /// fully general situation, in the worst case. This means: 3560 /// + "extern __thread" declaration. 3561 /// + Defined in a possibly unknown dynamic library. 3562 /// 3563 /// The general system is that each __thread variable has a [3 x i32] descriptor 3564 /// which contains information used by the runtime to calculate the address. The 3565 /// only part of this the compiler needs to know about is the first word, which 3566 /// contains a function pointer that must be called with the address of the 3567 /// entire descriptor in "r0". 3568 /// 3569 /// Since this descriptor may be in a different unit, in general access must 3570 /// proceed along the usual ARM rules. A common sequence to produce is: 3571 /// 3572 /// movw rT1, :lower16:_var$non_lazy_ptr 3573 /// movt rT1, :upper16:_var$non_lazy_ptr 3574 /// ldr r0, [rT1] 3575 /// ldr rT2, [r0] 3576 /// blx rT2 3577 /// [...address now in r0...] 3578 SDValue 3579 ARMTargetLowering::LowerGlobalTLSAddressDarwin(SDValue Op, 3580 SelectionDAG &DAG) const { 3581 assert(Subtarget->isTargetDarwin() && 3582 "This function expects a Darwin target"); 3583 SDLoc DL(Op); 3584 3585 // First step is to get the address of the actua global symbol. This is where 3586 // the TLS descriptor lives. 3587 SDValue DescAddr = LowerGlobalAddressDarwin(Op, DAG); 3588 3589 // The first entry in the descriptor is a function pointer that we must call 3590 // to obtain the address of the variable. 3591 SDValue Chain = DAG.getEntryNode(); 3592 SDValue FuncTLVGet = DAG.getLoad( 3593 MVT::i32, DL, Chain, DescAddr, 3594 MachinePointerInfo::getGOT(DAG.getMachineFunction()), Align(4), 3595 MachineMemOperand::MONonTemporal | MachineMemOperand::MODereferenceable | 3596 MachineMemOperand::MOInvariant); 3597 Chain = FuncTLVGet.getValue(1); 3598 3599 MachineFunction &F = DAG.getMachineFunction(); 3600 MachineFrameInfo &MFI = F.getFrameInfo(); 3601 MFI.setAdjustsStack(true); 3602 3603 // TLS calls preserve all registers except those that absolutely must be 3604 // trashed: R0 (it takes an argument), LR (it's a call) and CPSR (let's not be 3605 // silly). 3606 auto TRI = 3607 getTargetMachine().getSubtargetImpl(F.getFunction())->getRegisterInfo(); 3608 auto ARI = static_cast<const ARMRegisterInfo *>(TRI); 3609 const uint32_t *Mask = ARI->getTLSCallPreservedMask(DAG.getMachineFunction()); 3610 3611 // Finally, we can make the call. This is just a degenerate version of a 3612 // normal AArch64 call node: r0 takes the address of the descriptor, and 3613 // returns the address of the variable in this thread. 3614 Chain = DAG.getCopyToReg(Chain, DL, ARM::R0, DescAddr, SDValue()); 3615 Chain = 3616 DAG.getNode(ARMISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue), 3617 Chain, FuncTLVGet, DAG.getRegister(ARM::R0, MVT::i32), 3618 DAG.getRegisterMask(Mask), Chain.getValue(1)); 3619 return DAG.getCopyFromReg(Chain, DL, ARM::R0, MVT::i32, Chain.getValue(1)); 3620 } 3621 3622 SDValue 3623 ARMTargetLowering::LowerGlobalTLSAddressWindows(SDValue Op, 3624 SelectionDAG &DAG) const { 3625 assert(Subtarget->isTargetWindows() && "Windows specific TLS lowering"); 3626 3627 SDValue Chain = DAG.getEntryNode(); 3628 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3629 SDLoc DL(Op); 3630 3631 // Load the current TEB (thread environment block) 3632 SDValue Ops[] = {Chain, 3633 DAG.getTargetConstant(Intrinsic::arm_mrc, DL, MVT::i32), 3634 DAG.getTargetConstant(15, DL, MVT::i32), 3635 DAG.getTargetConstant(0, DL, MVT::i32), 3636 DAG.getTargetConstant(13, DL, MVT::i32), 3637 DAG.getTargetConstant(0, DL, MVT::i32), 3638 DAG.getTargetConstant(2, DL, MVT::i32)}; 3639 SDValue CurrentTEB = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL, 3640 DAG.getVTList(MVT::i32, MVT::Other), Ops); 3641 3642 SDValue TEB = CurrentTEB.getValue(0); 3643 Chain = CurrentTEB.getValue(1); 3644 3645 // Load the ThreadLocalStoragePointer from the TEB 3646 // A pointer to the TLS array is located at offset 0x2c from the TEB. 3647 SDValue TLSArray = 3648 DAG.getNode(ISD::ADD, DL, PtrVT, TEB, DAG.getIntPtrConstant(0x2c, DL)); 3649 TLSArray = DAG.getLoad(PtrVT, DL, Chain, TLSArray, MachinePointerInfo()); 3650 3651 // The pointer to the thread's TLS data area is at the TLS Index scaled by 4 3652 // offset into the TLSArray. 3653 3654 // Load the TLS index from the C runtime 3655 SDValue TLSIndex = 3656 DAG.getTargetExternalSymbol("_tls_index", PtrVT, ARMII::MO_NO_FLAG); 3657 TLSIndex = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, TLSIndex); 3658 TLSIndex = DAG.getLoad(PtrVT, DL, Chain, TLSIndex, MachinePointerInfo()); 3659 3660 SDValue Slot = DAG.getNode(ISD::SHL, DL, PtrVT, TLSIndex, 3661 DAG.getConstant(2, DL, MVT::i32)); 3662 SDValue TLS = DAG.getLoad(PtrVT, DL, Chain, 3663 DAG.getNode(ISD::ADD, DL, PtrVT, TLSArray, Slot), 3664 MachinePointerInfo()); 3665 3666 // Get the offset of the start of the .tls section (section base) 3667 const auto *GA = cast<GlobalAddressSDNode>(Op); 3668 auto *CPV = ARMConstantPoolConstant::Create(GA->getGlobal(), ARMCP::SECREL); 3669 SDValue Offset = DAG.getLoad( 3670 PtrVT, DL, Chain, 3671 DAG.getNode(ARMISD::Wrapper, DL, MVT::i32, 3672 DAG.getTargetConstantPool(CPV, PtrVT, Align(4))), 3673 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3674 3675 return DAG.getNode(ISD::ADD, DL, PtrVT, TLS, Offset); 3676 } 3677 3678 // Lower ISD::GlobalTLSAddress using the "general dynamic" model 3679 SDValue 3680 ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA, 3681 SelectionDAG &DAG) const { 3682 SDLoc dl(GA); 3683 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3684 unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8; 3685 MachineFunction &MF = DAG.getMachineFunction(); 3686 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 3687 unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); 3688 ARMConstantPoolValue *CPV = 3689 ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex, 3690 ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true); 3691 SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, Align(4)); 3692 Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument); 3693 Argument = DAG.getLoad( 3694 PtrVT, dl, DAG.getEntryNode(), Argument, 3695 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3696 SDValue Chain = Argument.getValue(1); 3697 3698 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32); 3699 Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel); 3700 3701 // call __tls_get_addr. 3702 ArgListTy Args; 3703 ArgListEntry Entry; 3704 Entry.Node = Argument; 3705 Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext()); 3706 Args.push_back(Entry); 3707 3708 // FIXME: is there useful debug info available here? 3709 TargetLowering::CallLoweringInfo CLI(DAG); 3710 CLI.setDebugLoc(dl).setChain(Chain).setLibCallee( 3711 CallingConv::C, Type::getInt32Ty(*DAG.getContext()), 3712 DAG.getExternalSymbol("__tls_get_addr", PtrVT), std::move(Args)); 3713 3714 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 3715 return CallResult.first; 3716 } 3717 3718 // Lower ISD::GlobalTLSAddress using the "initial exec" or 3719 // "local exec" model. 3720 SDValue 3721 ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA, 3722 SelectionDAG &DAG, 3723 TLSModel::Model model) const { 3724 const GlobalValue *GV = GA->getGlobal(); 3725 SDLoc dl(GA); 3726 SDValue Offset; 3727 SDValue Chain = DAG.getEntryNode(); 3728 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3729 // Get the Thread Pointer 3730 SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT); 3731 3732 if (model == TLSModel::InitialExec) { 3733 MachineFunction &MF = DAG.getMachineFunction(); 3734 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 3735 unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); 3736 // Initial exec model. 3737 unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8; 3738 ARMConstantPoolValue *CPV = 3739 ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex, 3740 ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF, 3741 true); 3742 Offset = DAG.getTargetConstantPool(CPV, PtrVT, Align(4)); 3743 Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset); 3744 Offset = DAG.getLoad( 3745 PtrVT, dl, Chain, Offset, 3746 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3747 Chain = Offset.getValue(1); 3748 3749 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32); 3750 Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel); 3751 3752 Offset = DAG.getLoad( 3753 PtrVT, dl, Chain, Offset, 3754 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3755 } else { 3756 // local exec model 3757 assert(model == TLSModel::LocalExec); 3758 ARMConstantPoolValue *CPV = 3759 ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF); 3760 Offset = DAG.getTargetConstantPool(CPV, PtrVT, Align(4)); 3761 Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset); 3762 Offset = DAG.getLoad( 3763 PtrVT, dl, Chain, Offset, 3764 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3765 } 3766 3767 // The address of the thread local variable is the add of the thread 3768 // pointer with the offset of the variable. 3769 return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset); 3770 } 3771 3772 SDValue 3773 ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const { 3774 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 3775 if (DAG.getTarget().useEmulatedTLS()) 3776 return LowerToTLSEmulatedModel(GA, DAG); 3777 3778 if (Subtarget->isTargetDarwin()) 3779 return LowerGlobalTLSAddressDarwin(Op, DAG); 3780 3781 if (Subtarget->isTargetWindows()) 3782 return LowerGlobalTLSAddressWindows(Op, DAG); 3783 3784 // TODO: implement the "local dynamic" model 3785 assert(Subtarget->isTargetELF() && "Only ELF implemented here"); 3786 TLSModel::Model model = getTargetMachine().getTLSModel(GA->getGlobal()); 3787 3788 switch (model) { 3789 case TLSModel::GeneralDynamic: 3790 case TLSModel::LocalDynamic: 3791 return LowerToTLSGeneralDynamicModel(GA, DAG); 3792 case TLSModel::InitialExec: 3793 case TLSModel::LocalExec: 3794 return LowerToTLSExecModels(GA, DAG, model); 3795 } 3796 llvm_unreachable("bogus TLS model"); 3797 } 3798 3799 /// Return true if all users of V are within function F, looking through 3800 /// ConstantExprs. 3801 static bool allUsersAreInFunction(const Value *V, const Function *F) { 3802 SmallVector<const User*,4> Worklist(V->users()); 3803 while (!Worklist.empty()) { 3804 auto *U = Worklist.pop_back_val(); 3805 if (isa<ConstantExpr>(U)) { 3806 append_range(Worklist, U->users()); 3807 continue; 3808 } 3809 3810 auto *I = dyn_cast<Instruction>(U); 3811 if (!I || I->getParent()->getParent() != F) 3812 return false; 3813 } 3814 return true; 3815 } 3816 3817 static SDValue promoteToConstantPool(const ARMTargetLowering *TLI, 3818 const GlobalValue *GV, SelectionDAG &DAG, 3819 EVT PtrVT, const SDLoc &dl) { 3820 // If we're creating a pool entry for a constant global with unnamed address, 3821 // and the global is small enough, we can emit it inline into the constant pool 3822 // to save ourselves an indirection. 3823 // 3824 // This is a win if the constant is only used in one function (so it doesn't 3825 // need to be duplicated) or duplicating the constant wouldn't increase code 3826 // size (implying the constant is no larger than 4 bytes). 3827 const Function &F = DAG.getMachineFunction().getFunction(); 3828 3829 // We rely on this decision to inline being idemopotent and unrelated to the 3830 // use-site. We know that if we inline a variable at one use site, we'll 3831 // inline it elsewhere too (and reuse the constant pool entry). Fast-isel 3832 // doesn't know about this optimization, so bail out if it's enabled else 3833 // we could decide to inline here (and thus never emit the GV) but require 3834 // the GV from fast-isel generated code. 3835 if (!EnableConstpoolPromotion || 3836 DAG.getMachineFunction().getTarget().Options.EnableFastISel) 3837 return SDValue(); 3838 3839 auto *GVar = dyn_cast<GlobalVariable>(GV); 3840 if (!GVar || !GVar->hasInitializer() || 3841 !GVar->isConstant() || !GVar->hasGlobalUnnamedAddr() || 3842 !GVar->hasLocalLinkage()) 3843 return SDValue(); 3844 3845 // If we inline a value that contains relocations, we move the relocations 3846 // from .data to .text. This is not allowed in position-independent code. 3847 auto *Init = GVar->getInitializer(); 3848 if ((TLI->isPositionIndependent() || TLI->getSubtarget()->isROPI()) && 3849 Init->needsDynamicRelocation()) 3850 return SDValue(); 3851 3852 // The constant islands pass can only really deal with alignment requests 3853 // <= 4 bytes and cannot pad constants itself. Therefore we cannot promote 3854 // any type wanting greater alignment requirements than 4 bytes. We also 3855 // can only promote constants that are multiples of 4 bytes in size or 3856 // are paddable to a multiple of 4. Currently we only try and pad constants 3857 // that are strings for simplicity. 3858 auto *CDAInit = dyn_cast<ConstantDataArray>(Init); 3859 unsigned Size = DAG.getDataLayout().getTypeAllocSize(Init->getType()); 3860 Align PrefAlign = DAG.getDataLayout().getPreferredAlign(GVar); 3861 unsigned RequiredPadding = 4 - (Size % 4); 3862 bool PaddingPossible = 3863 RequiredPadding == 4 || (CDAInit && CDAInit->isString()); 3864 if (!PaddingPossible || PrefAlign > 4 || Size > ConstpoolPromotionMaxSize || 3865 Size == 0) 3866 return SDValue(); 3867 3868 unsigned PaddedSize = Size + ((RequiredPadding == 4) ? 0 : RequiredPadding); 3869 MachineFunction &MF = DAG.getMachineFunction(); 3870 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 3871 3872 // We can't bloat the constant pool too much, else the ConstantIslands pass 3873 // may fail to converge. If we haven't promoted this global yet (it may have 3874 // multiple uses), and promoting it would increase the constant pool size (Sz 3875 // > 4), ensure we have space to do so up to MaxTotal. 3876 if (!AFI->getGlobalsPromotedToConstantPool().count(GVar) && Size > 4) 3877 if (AFI->getPromotedConstpoolIncrease() + PaddedSize - 4 >= 3878 ConstpoolPromotionMaxTotal) 3879 return SDValue(); 3880 3881 // This is only valid if all users are in a single function; we can't clone 3882 // the constant in general. The LLVM IR unnamed_addr allows merging 3883 // constants, but not cloning them. 3884 // 3885 // We could potentially allow cloning if we could prove all uses of the 3886 // constant in the current function don't care about the address, like 3887 // printf format strings. But that isn't implemented for now. 3888 if (!allUsersAreInFunction(GVar, &F)) 3889 return SDValue(); 3890 3891 // We're going to inline this global. Pad it out if needed. 3892 if (RequiredPadding != 4) { 3893 StringRef S = CDAInit->getAsString(); 3894 3895 SmallVector<uint8_t,16> V(S.size()); 3896 std::copy(S.bytes_begin(), S.bytes_end(), V.begin()); 3897 while (RequiredPadding--) 3898 V.push_back(0); 3899 Init = ConstantDataArray::get(*DAG.getContext(), V); 3900 } 3901 3902 auto CPVal = ARMConstantPoolConstant::Create(GVar, Init); 3903 SDValue CPAddr = DAG.getTargetConstantPool(CPVal, PtrVT, Align(4)); 3904 if (!AFI->getGlobalsPromotedToConstantPool().count(GVar)) { 3905 AFI->markGlobalAsPromotedToConstantPool(GVar); 3906 AFI->setPromotedConstpoolIncrease(AFI->getPromotedConstpoolIncrease() + 3907 PaddedSize - 4); 3908 } 3909 ++NumConstpoolPromoted; 3910 return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); 3911 } 3912 3913 bool ARMTargetLowering::isReadOnly(const GlobalValue *GV) const { 3914 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV)) 3915 if (!(GV = GA->getAliaseeObject())) 3916 return false; 3917 if (const auto *V = dyn_cast<GlobalVariable>(GV)) 3918 return V->isConstant(); 3919 return isa<Function>(GV); 3920 } 3921 3922 SDValue ARMTargetLowering::LowerGlobalAddress(SDValue Op, 3923 SelectionDAG &DAG) const { 3924 switch (Subtarget->getTargetTriple().getObjectFormat()) { 3925 default: llvm_unreachable("unknown object format"); 3926 case Triple::COFF: 3927 return LowerGlobalAddressWindows(Op, DAG); 3928 case Triple::ELF: 3929 return LowerGlobalAddressELF(Op, DAG); 3930 case Triple::MachO: 3931 return LowerGlobalAddressDarwin(Op, DAG); 3932 } 3933 } 3934 3935 SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op, 3936 SelectionDAG &DAG) const { 3937 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3938 SDLoc dl(Op); 3939 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); 3940 bool IsRO = isReadOnly(GV); 3941 3942 // promoteToConstantPool only if not generating XO text section 3943 if (GV->isDSOLocal() && !Subtarget->genExecuteOnly()) 3944 if (SDValue V = promoteToConstantPool(this, GV, DAG, PtrVT, dl)) 3945 return V; 3946 3947 if (isPositionIndependent()) { 3948 SDValue G = DAG.getTargetGlobalAddress( 3949 GV, dl, PtrVT, 0, GV->isDSOLocal() ? 0 : ARMII::MO_GOT); 3950 SDValue Result = DAG.getNode(ARMISD::WrapperPIC, dl, PtrVT, G); 3951 if (!GV->isDSOLocal()) 3952 Result = 3953 DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result, 3954 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 3955 return Result; 3956 } else if (Subtarget->isROPI() && IsRO) { 3957 // PC-relative. 3958 SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT); 3959 SDValue Result = DAG.getNode(ARMISD::WrapperPIC, dl, PtrVT, G); 3960 return Result; 3961 } else if (Subtarget->isRWPI() && !IsRO) { 3962 // SB-relative. 3963 SDValue RelAddr; 3964 if (Subtarget->useMovt()) { 3965 ++NumMovwMovt; 3966 SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_SBREL); 3967 RelAddr = DAG.getNode(ARMISD::Wrapper, dl, PtrVT, G); 3968 } else { // use literal pool for address constant 3969 ARMConstantPoolValue *CPV = 3970 ARMConstantPoolConstant::Create(GV, ARMCP::SBREL); 3971 SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, Align(4)); 3972 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); 3973 RelAddr = DAG.getLoad( 3974 PtrVT, dl, DAG.getEntryNode(), CPAddr, 3975 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3976 } 3977 SDValue SB = DAG.getCopyFromReg(DAG.getEntryNode(), dl, ARM::R9, PtrVT); 3978 SDValue Result = DAG.getNode(ISD::ADD, dl, PtrVT, SB, RelAddr); 3979 return Result; 3980 } 3981 3982 // If we have T2 ops, we can materialize the address directly via movt/movw 3983 // pair. This is always cheaper. If need to generate Execute Only code, and we 3984 // only have Thumb1 available, we can't use a constant pool and are forced to 3985 // use immediate relocations. 3986 if (Subtarget->useMovt() || Subtarget->genExecuteOnly()) { 3987 if (Subtarget->useMovt()) 3988 ++NumMovwMovt; 3989 // FIXME: Once remat is capable of dealing with instructions with register 3990 // operands, expand this into two nodes. 3991 return DAG.getNode(ARMISD::Wrapper, dl, PtrVT, 3992 DAG.getTargetGlobalAddress(GV, dl, PtrVT)); 3993 } else { 3994 SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, Align(4)); 3995 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); 3996 return DAG.getLoad( 3997 PtrVT, dl, DAG.getEntryNode(), CPAddr, 3998 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3999 } 4000 } 4001 4002 SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op, 4003 SelectionDAG &DAG) const { 4004 assert(!Subtarget->isROPI() && !Subtarget->isRWPI() && 4005 "ROPI/RWPI not currently supported for Darwin"); 4006 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 4007 SDLoc dl(Op); 4008 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); 4009 4010 if (Subtarget->useMovt()) 4011 ++NumMovwMovt; 4012 4013 // FIXME: Once remat is capable of dealing with instructions with register 4014 // operands, expand this into multiple nodes 4015 unsigned Wrapper = 4016 isPositionIndependent() ? ARMISD::WrapperPIC : ARMISD::Wrapper; 4017 4018 SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_NONLAZY); 4019 SDValue Result = DAG.getNode(Wrapper, dl, PtrVT, G); 4020 4021 if (Subtarget->isGVIndirectSymbol(GV)) 4022 Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result, 4023 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 4024 return Result; 4025 } 4026 4027 SDValue ARMTargetLowering::LowerGlobalAddressWindows(SDValue Op, 4028 SelectionDAG &DAG) const { 4029 assert(Subtarget->isTargetWindows() && "non-Windows COFF is not supported"); 4030 assert(Subtarget->useMovt() && 4031 "Windows on ARM expects to use movw/movt"); 4032 assert(!Subtarget->isROPI() && !Subtarget->isRWPI() && 4033 "ROPI/RWPI not currently supported for Windows"); 4034 4035 const TargetMachine &TM = getTargetMachine(); 4036 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); 4037 ARMII::TOF TargetFlags = ARMII::MO_NO_FLAG; 4038 if (GV->hasDLLImportStorageClass()) 4039 TargetFlags = ARMII::MO_DLLIMPORT; 4040 else if (!TM.shouldAssumeDSOLocal(GV)) 4041 TargetFlags = ARMII::MO_COFFSTUB; 4042 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 4043 SDValue Result; 4044 SDLoc DL(Op); 4045 4046 ++NumMovwMovt; 4047 4048 // FIXME: Once remat is capable of dealing with instructions with register 4049 // operands, expand this into two nodes. 4050 Result = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, 4051 DAG.getTargetGlobalAddress(GV, DL, PtrVT, /*offset=*/0, 4052 TargetFlags)); 4053 if (TargetFlags & (ARMII::MO_DLLIMPORT | ARMII::MO_COFFSTUB)) 4054 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, 4055 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 4056 return Result; 4057 } 4058 4059 SDValue 4060 ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const { 4061 SDLoc dl(Op); 4062 SDValue Val = DAG.getConstant(0, dl, MVT::i32); 4063 return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl, 4064 DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0), 4065 Op.getOperand(1), Val); 4066 } 4067 4068 SDValue 4069 ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const { 4070 SDLoc dl(Op); 4071 return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0), 4072 Op.getOperand(1), DAG.getConstant(0, dl, MVT::i32)); 4073 } 4074 4075 SDValue ARMTargetLowering::LowerEH_SJLJ_SETUP_DISPATCH(SDValue Op, 4076 SelectionDAG &DAG) const { 4077 SDLoc dl(Op); 4078 return DAG.getNode(ARMISD::EH_SJLJ_SETUP_DISPATCH, dl, MVT::Other, 4079 Op.getOperand(0)); 4080 } 4081 4082 SDValue ARMTargetLowering::LowerINTRINSIC_VOID( 4083 SDValue Op, SelectionDAG &DAG, const ARMSubtarget *Subtarget) const { 4084 unsigned IntNo = 4085 Op.getConstantOperandVal(Op.getOperand(0).getValueType() == MVT::Other); 4086 switch (IntNo) { 4087 default: 4088 return SDValue(); // Don't custom lower most intrinsics. 4089 case Intrinsic::arm_gnu_eabi_mcount: { 4090 MachineFunction &MF = DAG.getMachineFunction(); 4091 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 4092 SDLoc dl(Op); 4093 SDValue Chain = Op.getOperand(0); 4094 // call "\01__gnu_mcount_nc" 4095 const ARMBaseRegisterInfo *ARI = Subtarget->getRegisterInfo(); 4096 const uint32_t *Mask = 4097 ARI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C); 4098 assert(Mask && "Missing call preserved mask for calling convention"); 4099 // Mark LR an implicit live-in. 4100 Register Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32)); 4101 SDValue ReturnAddress = 4102 DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, PtrVT); 4103 constexpr EVT ResultTys[] = {MVT::Other, MVT::Glue}; 4104 SDValue Callee = 4105 DAG.getTargetExternalSymbol("\01__gnu_mcount_nc", PtrVT, 0); 4106 SDValue RegisterMask = DAG.getRegisterMask(Mask); 4107 if (Subtarget->isThumb()) 4108 return SDValue( 4109 DAG.getMachineNode( 4110 ARM::tBL_PUSHLR, dl, ResultTys, 4111 {ReturnAddress, DAG.getTargetConstant(ARMCC::AL, dl, PtrVT), 4112 DAG.getRegister(0, PtrVT), Callee, RegisterMask, Chain}), 4113 0); 4114 return SDValue( 4115 DAG.getMachineNode(ARM::BL_PUSHLR, dl, ResultTys, 4116 {ReturnAddress, Callee, RegisterMask, Chain}), 4117 0); 4118 } 4119 } 4120 } 4121 4122 SDValue 4123 ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG, 4124 const ARMSubtarget *Subtarget) const { 4125 unsigned IntNo = Op.getConstantOperandVal(0); 4126 SDLoc dl(Op); 4127 switch (IntNo) { 4128 default: return SDValue(); // Don't custom lower most intrinsics. 4129 case Intrinsic::thread_pointer: { 4130 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 4131 return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT); 4132 } 4133 case Intrinsic::arm_cls: { 4134 const SDValue &Operand = Op.getOperand(1); 4135 const EVT VTy = Op.getValueType(); 4136 SDValue SRA = 4137 DAG.getNode(ISD::SRA, dl, VTy, Operand, DAG.getConstant(31, dl, VTy)); 4138 SDValue XOR = DAG.getNode(ISD::XOR, dl, VTy, SRA, Operand); 4139 SDValue SHL = 4140 DAG.getNode(ISD::SHL, dl, VTy, XOR, DAG.getConstant(1, dl, VTy)); 4141 SDValue OR = 4142 DAG.getNode(ISD::OR, dl, VTy, SHL, DAG.getConstant(1, dl, VTy)); 4143 SDValue Result = DAG.getNode(ISD::CTLZ, dl, VTy, OR); 4144 return Result; 4145 } 4146 case Intrinsic::arm_cls64: { 4147 // cls(x) = if cls(hi(x)) != 31 then cls(hi(x)) 4148 // else 31 + clz(if hi(x) == 0 then lo(x) else not(lo(x))) 4149 const SDValue &Operand = Op.getOperand(1); 4150 const EVT VTy = Op.getValueType(); 4151 SDValue Lo, Hi; 4152 std::tie(Lo, Hi) = DAG.SplitScalar(Operand, dl, VTy, VTy); 4153 SDValue Constant0 = DAG.getConstant(0, dl, VTy); 4154 SDValue Constant1 = DAG.getConstant(1, dl, VTy); 4155 SDValue Constant31 = DAG.getConstant(31, dl, VTy); 4156 SDValue SRAHi = DAG.getNode(ISD::SRA, dl, VTy, Hi, Constant31); 4157 SDValue XORHi = DAG.getNode(ISD::XOR, dl, VTy, SRAHi, Hi); 4158 SDValue SHLHi = DAG.getNode(ISD::SHL, dl, VTy, XORHi, Constant1); 4159 SDValue ORHi = DAG.getNode(ISD::OR, dl, VTy, SHLHi, Constant1); 4160 SDValue CLSHi = DAG.getNode(ISD::CTLZ, dl, VTy, ORHi); 4161 SDValue CheckLo = 4162 DAG.getSetCC(dl, MVT::i1, CLSHi, Constant31, ISD::CondCode::SETEQ); 4163 SDValue HiIsZero = 4164 DAG.getSetCC(dl, MVT::i1, Hi, Constant0, ISD::CondCode::SETEQ); 4165 SDValue AdjustedLo = 4166 DAG.getSelect(dl, VTy, HiIsZero, Lo, DAG.getNOT(dl, Lo, VTy)); 4167 SDValue CLZAdjustedLo = DAG.getNode(ISD::CTLZ, dl, VTy, AdjustedLo); 4168 SDValue Result = 4169 DAG.getSelect(dl, VTy, CheckLo, 4170 DAG.getNode(ISD::ADD, dl, VTy, CLZAdjustedLo, Constant31), CLSHi); 4171 return Result; 4172 } 4173 case Intrinsic::eh_sjlj_lsda: { 4174 MachineFunction &MF = DAG.getMachineFunction(); 4175 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 4176 unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); 4177 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 4178 SDValue CPAddr; 4179 bool IsPositionIndependent = isPositionIndependent(); 4180 unsigned PCAdj = IsPositionIndependent ? (Subtarget->isThumb() ? 4 : 8) : 0; 4181 ARMConstantPoolValue *CPV = 4182 ARMConstantPoolConstant::Create(&MF.getFunction(), ARMPCLabelIndex, 4183 ARMCP::CPLSDA, PCAdj); 4184 CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, Align(4)); 4185 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); 4186 SDValue Result = DAG.getLoad( 4187 PtrVT, dl, DAG.getEntryNode(), CPAddr, 4188 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 4189 4190 if (IsPositionIndependent) { 4191 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32); 4192 Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel); 4193 } 4194 return Result; 4195 } 4196 case Intrinsic::arm_neon_vabs: 4197 return DAG.getNode(ISD::ABS, SDLoc(Op), Op.getValueType(), 4198 Op.getOperand(1)); 4199 case Intrinsic::arm_neon_vabds: 4200 if (Op.getValueType().isInteger()) 4201 return DAG.getNode(ISD::ABDS, SDLoc(Op), Op.getValueType(), 4202 Op.getOperand(1), Op.getOperand(2)); 4203 return SDValue(); 4204 case Intrinsic::arm_neon_vabdu: 4205 return DAG.getNode(ISD::ABDU, SDLoc(Op), Op.getValueType(), 4206 Op.getOperand(1), Op.getOperand(2)); 4207 case Intrinsic::arm_neon_vmulls: 4208 case Intrinsic::arm_neon_vmullu: { 4209 unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls) 4210 ? ARMISD::VMULLs : ARMISD::VMULLu; 4211 return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(), 4212 Op.getOperand(1), Op.getOperand(2)); 4213 } 4214 case Intrinsic::arm_neon_vminnm: 4215 case Intrinsic::arm_neon_vmaxnm: { 4216 unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminnm) 4217 ? ISD::FMINNUM : ISD::FMAXNUM; 4218 return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(), 4219 Op.getOperand(1), Op.getOperand(2)); 4220 } 4221 case Intrinsic::arm_neon_vminu: 4222 case Intrinsic::arm_neon_vmaxu: { 4223 if (Op.getValueType().isFloatingPoint()) 4224 return SDValue(); 4225 unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminu) 4226 ? ISD::UMIN : ISD::UMAX; 4227 return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(), 4228 Op.getOperand(1), Op.getOperand(2)); 4229 } 4230 case Intrinsic::arm_neon_vmins: 4231 case Intrinsic::arm_neon_vmaxs: { 4232 // v{min,max}s is overloaded between signed integers and floats. 4233 if (!Op.getValueType().isFloatingPoint()) { 4234 unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins) 4235 ? ISD::SMIN : ISD::SMAX; 4236 return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(), 4237 Op.getOperand(1), Op.getOperand(2)); 4238 } 4239 unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins) 4240 ? ISD::FMINIMUM : ISD::FMAXIMUM; 4241 return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(), 4242 Op.getOperand(1), Op.getOperand(2)); 4243 } 4244 case Intrinsic::arm_neon_vtbl1: 4245 return DAG.getNode(ARMISD::VTBL1, SDLoc(Op), Op.getValueType(), 4246 Op.getOperand(1), Op.getOperand(2)); 4247 case Intrinsic::arm_neon_vtbl2: 4248 return DAG.getNode(ARMISD::VTBL2, SDLoc(Op), Op.getValueType(), 4249 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4250 case Intrinsic::arm_mve_pred_i2v: 4251 case Intrinsic::arm_mve_pred_v2i: 4252 return DAG.getNode(ARMISD::PREDICATE_CAST, SDLoc(Op), Op.getValueType(), 4253 Op.getOperand(1)); 4254 case Intrinsic::arm_mve_vreinterpretq: 4255 return DAG.getNode(ARMISD::VECTOR_REG_CAST, SDLoc(Op), Op.getValueType(), 4256 Op.getOperand(1)); 4257 case Intrinsic::arm_mve_lsll: 4258 return DAG.getNode(ARMISD::LSLL, SDLoc(Op), Op->getVTList(), 4259 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4260 case Intrinsic::arm_mve_asrl: 4261 return DAG.getNode(ARMISD::ASRL, SDLoc(Op), Op->getVTList(), 4262 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4263 } 4264 } 4265 4266 static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG, 4267 const ARMSubtarget *Subtarget) { 4268 SDLoc dl(Op); 4269 auto SSID = static_cast<SyncScope::ID>(Op.getConstantOperandVal(2)); 4270 if (SSID == SyncScope::SingleThread) 4271 return Op; 4272 4273 if (!Subtarget->hasDataBarrier()) { 4274 // Some ARMv6 cpus can support data barriers with an mcr instruction. 4275 // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get 4276 // here. 4277 assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() && 4278 "Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!"); 4279 return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0), 4280 DAG.getConstant(0, dl, MVT::i32)); 4281 } 4282 4283 AtomicOrdering Ord = 4284 static_cast<AtomicOrdering>(Op.getConstantOperandVal(1)); 4285 ARM_MB::MemBOpt Domain = ARM_MB::ISH; 4286 if (Subtarget->isMClass()) { 4287 // Only a full system barrier exists in the M-class architectures. 4288 Domain = ARM_MB::SY; 4289 } else if (Subtarget->preferISHSTBarriers() && 4290 Ord == AtomicOrdering::Release) { 4291 // Swift happens to implement ISHST barriers in a way that's compatible with 4292 // Release semantics but weaker than ISH so we'd be fools not to use 4293 // it. Beware: other processors probably don't! 4294 Domain = ARM_MB::ISHST; 4295 } 4296 4297 return DAG.getNode(ISD::INTRINSIC_VOID, dl, MVT::Other, Op.getOperand(0), 4298 DAG.getConstant(Intrinsic::arm_dmb, dl, MVT::i32), 4299 DAG.getConstant(Domain, dl, MVT::i32)); 4300 } 4301 4302 static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG, 4303 const ARMSubtarget *Subtarget) { 4304 // ARM pre v5TE and Thumb1 does not have preload instructions. 4305 if (!(Subtarget->isThumb2() || 4306 (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps()))) 4307 // Just preserve the chain. 4308 return Op.getOperand(0); 4309 4310 SDLoc dl(Op); 4311 unsigned isRead = ~Op.getConstantOperandVal(2) & 1; 4312 if (!isRead && 4313 (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension())) 4314 // ARMv7 with MP extension has PLDW. 4315 return Op.getOperand(0); 4316 4317 unsigned isData = Op.getConstantOperandVal(4); 4318 if (Subtarget->isThumb()) { 4319 // Invert the bits. 4320 isRead = ~isRead & 1; 4321 isData = ~isData & 1; 4322 } 4323 4324 return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0), 4325 Op.getOperand(1), DAG.getConstant(isRead, dl, MVT::i32), 4326 DAG.getConstant(isData, dl, MVT::i32)); 4327 } 4328 4329 static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) { 4330 MachineFunction &MF = DAG.getMachineFunction(); 4331 ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>(); 4332 4333 // vastart just stores the address of the VarArgsFrameIndex slot into the 4334 // memory location argument. 4335 SDLoc dl(Op); 4336 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4337 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4338 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 4339 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 4340 MachinePointerInfo(SV)); 4341 } 4342 4343 SDValue ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, 4344 CCValAssign &NextVA, 4345 SDValue &Root, 4346 SelectionDAG &DAG, 4347 const SDLoc &dl) const { 4348 MachineFunction &MF = DAG.getMachineFunction(); 4349 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 4350 4351 const TargetRegisterClass *RC; 4352 if (AFI->isThumb1OnlyFunction()) 4353 RC = &ARM::tGPRRegClass; 4354 else 4355 RC = &ARM::GPRRegClass; 4356 4357 // Transform the arguments stored in physical registers into virtual ones. 4358 Register Reg = MF.addLiveIn(VA.getLocReg(), RC); 4359 SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32); 4360 4361 SDValue ArgValue2; 4362 if (NextVA.isMemLoc()) { 4363 MachineFrameInfo &MFI = MF.getFrameInfo(); 4364 int FI = MFI.CreateFixedObject(4, NextVA.getLocMemOffset(), true); 4365 4366 // Create load node to retrieve arguments from the stack. 4367 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 4368 ArgValue2 = DAG.getLoad( 4369 MVT::i32, dl, Root, FIN, 4370 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)); 4371 } else { 4372 Reg = MF.addLiveIn(NextVA.getLocReg(), RC); 4373 ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32); 4374 } 4375 if (!Subtarget->isLittle()) 4376 std::swap (ArgValue, ArgValue2); 4377 return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2); 4378 } 4379 4380 // The remaining GPRs hold either the beginning of variable-argument 4381 // data, or the beginning of an aggregate passed by value (usually 4382 // byval). Either way, we allocate stack slots adjacent to the data 4383 // provided by our caller, and store the unallocated registers there. 4384 // If this is a variadic function, the va_list pointer will begin with 4385 // these values; otherwise, this reassembles a (byval) structure that 4386 // was split between registers and memory. 4387 // Return: The frame index registers were stored into. 4388 int ARMTargetLowering::StoreByValRegs(CCState &CCInfo, SelectionDAG &DAG, 4389 const SDLoc &dl, SDValue &Chain, 4390 const Value *OrigArg, 4391 unsigned InRegsParamRecordIdx, 4392 int ArgOffset, unsigned ArgSize) const { 4393 // Currently, two use-cases possible: 4394 // Case #1. Non-var-args function, and we meet first byval parameter. 4395 // Setup first unallocated register as first byval register; 4396 // eat all remained registers 4397 // (these two actions are performed by HandleByVal method). 4398 // Then, here, we initialize stack frame with 4399 // "store-reg" instructions. 4400 // Case #2. Var-args function, that doesn't contain byval parameters. 4401 // The same: eat all remained unallocated registers, 4402 // initialize stack frame. 4403 4404 MachineFunction &MF = DAG.getMachineFunction(); 4405 MachineFrameInfo &MFI = MF.getFrameInfo(); 4406 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 4407 unsigned RBegin, REnd; 4408 if (InRegsParamRecordIdx < CCInfo.getInRegsParamsCount()) { 4409 CCInfo.getInRegsParamInfo(InRegsParamRecordIdx, RBegin, REnd); 4410 } else { 4411 unsigned RBeginIdx = CCInfo.getFirstUnallocated(GPRArgRegs); 4412 RBegin = RBeginIdx == 4 ? (unsigned)ARM::R4 : GPRArgRegs[RBeginIdx]; 4413 REnd = ARM::R4; 4414 } 4415 4416 if (REnd != RBegin) 4417 ArgOffset = -4 * (ARM::R4 - RBegin); 4418 4419 auto PtrVT = getPointerTy(DAG.getDataLayout()); 4420 int FrameIndex = MFI.CreateFixedObject(ArgSize, ArgOffset, false); 4421 SDValue FIN = DAG.getFrameIndex(FrameIndex, PtrVT); 4422 4423 SmallVector<SDValue, 4> MemOps; 4424 const TargetRegisterClass *RC = 4425 AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass : &ARM::GPRRegClass; 4426 4427 for (unsigned Reg = RBegin, i = 0; Reg < REnd; ++Reg, ++i) { 4428 Register VReg = MF.addLiveIn(Reg, RC); 4429 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 4430 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 4431 MachinePointerInfo(OrigArg, 4 * i)); 4432 MemOps.push_back(Store); 4433 FIN = DAG.getNode(ISD::ADD, dl, PtrVT, FIN, DAG.getConstant(4, dl, PtrVT)); 4434 } 4435 4436 if (!MemOps.empty()) 4437 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4438 return FrameIndex; 4439 } 4440 4441 // Setup stack frame, the va_list pointer will start from. 4442 void ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG, 4443 const SDLoc &dl, SDValue &Chain, 4444 unsigned ArgOffset, 4445 unsigned TotalArgRegsSaveSize, 4446 bool ForceMutable) const { 4447 MachineFunction &MF = DAG.getMachineFunction(); 4448 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 4449 4450 // Try to store any remaining integer argument regs 4451 // to their spots on the stack so that they may be loaded by dereferencing 4452 // the result of va_next. 4453 // If there is no regs to be stored, just point address after last 4454 // argument passed via stack. 4455 int FrameIndex = StoreByValRegs( 4456 CCInfo, DAG, dl, Chain, nullptr, CCInfo.getInRegsParamsCount(), 4457 CCInfo.getStackSize(), std::max(4U, TotalArgRegsSaveSize)); 4458 AFI->setVarArgsFrameIndex(FrameIndex); 4459 } 4460 4461 bool ARMTargetLowering::splitValueIntoRegisterParts( 4462 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 4463 unsigned NumParts, MVT PartVT, std::optional<CallingConv::ID> CC) const { 4464 EVT ValueVT = Val.getValueType(); 4465 if ((ValueVT == MVT::f16 || ValueVT == MVT::bf16) && PartVT == MVT::f32) { 4466 unsigned ValueBits = ValueVT.getSizeInBits(); 4467 unsigned PartBits = PartVT.getSizeInBits(); 4468 Val = DAG.getNode(ISD::BITCAST, DL, MVT::getIntegerVT(ValueBits), Val); 4469 Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::getIntegerVT(PartBits), Val); 4470 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 4471 Parts[0] = Val; 4472 return true; 4473 } 4474 return false; 4475 } 4476 4477 SDValue ARMTargetLowering::joinRegisterPartsIntoValue( 4478 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 4479 MVT PartVT, EVT ValueVT, std::optional<CallingConv::ID> CC) const { 4480 if ((ValueVT == MVT::f16 || ValueVT == MVT::bf16) && PartVT == MVT::f32) { 4481 unsigned ValueBits = ValueVT.getSizeInBits(); 4482 unsigned PartBits = PartVT.getSizeInBits(); 4483 SDValue Val = Parts[0]; 4484 4485 Val = DAG.getNode(ISD::BITCAST, DL, MVT::getIntegerVT(PartBits), Val); 4486 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::getIntegerVT(ValueBits), Val); 4487 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 4488 return Val; 4489 } 4490 return SDValue(); 4491 } 4492 4493 SDValue ARMTargetLowering::LowerFormalArguments( 4494 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 4495 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4496 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4497 MachineFunction &MF = DAG.getMachineFunction(); 4498 MachineFrameInfo &MFI = MF.getFrameInfo(); 4499 4500 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 4501 4502 // Assign locations to all of the incoming arguments. 4503 SmallVector<CCValAssign, 16> ArgLocs; 4504 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 4505 *DAG.getContext()); 4506 CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForCall(CallConv, isVarArg)); 4507 4508 Function::const_arg_iterator CurOrigArg = MF.getFunction().arg_begin(); 4509 unsigned CurArgIdx = 0; 4510 4511 // Initially ArgRegsSaveSize is zero. 4512 // Then we increase this value each time we meet byval parameter. 4513 // We also increase this value in case of varargs function. 4514 AFI->setArgRegsSaveSize(0); 4515 4516 // Calculate the amount of stack space that we need to allocate to store 4517 // byval and variadic arguments that are passed in registers. 4518 // We need to know this before we allocate the first byval or variadic 4519 // argument, as they will be allocated a stack slot below the CFA (Canonical 4520 // Frame Address, the stack pointer at entry to the function). 4521 unsigned ArgRegBegin = ARM::R4; 4522 for (const CCValAssign &VA : ArgLocs) { 4523 if (CCInfo.getInRegsParamsProcessed() >= CCInfo.getInRegsParamsCount()) 4524 break; 4525 4526 unsigned Index = VA.getValNo(); 4527 ISD::ArgFlagsTy Flags = Ins[Index].Flags; 4528 if (!Flags.isByVal()) 4529 continue; 4530 4531 assert(VA.isMemLoc() && "unexpected byval pointer in reg"); 4532 unsigned RBegin, REnd; 4533 CCInfo.getInRegsParamInfo(CCInfo.getInRegsParamsProcessed(), RBegin, REnd); 4534 ArgRegBegin = std::min(ArgRegBegin, RBegin); 4535 4536 CCInfo.nextInRegsParam(); 4537 } 4538 CCInfo.rewindByValRegsInfo(); 4539 4540 int lastInsIndex = -1; 4541 if (isVarArg && MFI.hasVAStart()) { 4542 unsigned RegIdx = CCInfo.getFirstUnallocated(GPRArgRegs); 4543 if (RegIdx != std::size(GPRArgRegs)) 4544 ArgRegBegin = std::min(ArgRegBegin, (unsigned)GPRArgRegs[RegIdx]); 4545 } 4546 4547 unsigned TotalArgRegsSaveSize = 4 * (ARM::R4 - ArgRegBegin); 4548 AFI->setArgRegsSaveSize(TotalArgRegsSaveSize); 4549 auto PtrVT = getPointerTy(DAG.getDataLayout()); 4550 4551 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 4552 CCValAssign &VA = ArgLocs[i]; 4553 if (Ins[VA.getValNo()].isOrigArg()) { 4554 std::advance(CurOrigArg, 4555 Ins[VA.getValNo()].getOrigArgIndex() - CurArgIdx); 4556 CurArgIdx = Ins[VA.getValNo()].getOrigArgIndex(); 4557 } 4558 // Arguments stored in registers. 4559 if (VA.isRegLoc()) { 4560 EVT RegVT = VA.getLocVT(); 4561 SDValue ArgValue; 4562 4563 if (VA.needsCustom() && VA.getLocVT() == MVT::v2f64) { 4564 // f64 and vector types are split up into multiple registers or 4565 // combinations of registers and stack slots. 4566 SDValue ArgValue1 = 4567 GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl); 4568 VA = ArgLocs[++i]; // skip ahead to next loc 4569 SDValue ArgValue2; 4570 if (VA.isMemLoc()) { 4571 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), true); 4572 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4573 ArgValue2 = DAG.getLoad( 4574 MVT::f64, dl, Chain, FIN, 4575 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)); 4576 } else { 4577 ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl); 4578 } 4579 ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64); 4580 ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, ArgValue, 4581 ArgValue1, DAG.getIntPtrConstant(0, dl)); 4582 ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, ArgValue, 4583 ArgValue2, DAG.getIntPtrConstant(1, dl)); 4584 } else if (VA.needsCustom() && VA.getLocVT() == MVT::f64) { 4585 ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl); 4586 } else { 4587 const TargetRegisterClass *RC; 4588 4589 if (RegVT == MVT::f16 || RegVT == MVT::bf16) 4590 RC = &ARM::HPRRegClass; 4591 else if (RegVT == MVT::f32) 4592 RC = &ARM::SPRRegClass; 4593 else if (RegVT == MVT::f64 || RegVT == MVT::v4f16 || 4594 RegVT == MVT::v4bf16) 4595 RC = &ARM::DPRRegClass; 4596 else if (RegVT == MVT::v2f64 || RegVT == MVT::v8f16 || 4597 RegVT == MVT::v8bf16) 4598 RC = &ARM::QPRRegClass; 4599 else if (RegVT == MVT::i32) 4600 RC = AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass 4601 : &ARM::GPRRegClass; 4602 else 4603 llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering"); 4604 4605 // Transform the arguments in physical registers into virtual ones. 4606 Register Reg = MF.addLiveIn(VA.getLocReg(), RC); 4607 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT); 4608 4609 // If this value is passed in r0 and has the returned attribute (e.g. 4610 // C++ 'structors), record this fact for later use. 4611 if (VA.getLocReg() == ARM::R0 && Ins[VA.getValNo()].Flags.isReturned()) { 4612 AFI->setPreservesR0(); 4613 } 4614 } 4615 4616 // If this is an 8 or 16-bit value, it is really passed promoted 4617 // to 32 bits. Insert an assert[sz]ext to capture this, then 4618 // truncate to the right size. 4619 switch (VA.getLocInfo()) { 4620 default: llvm_unreachable("Unknown loc info!"); 4621 case CCValAssign::Full: break; 4622 case CCValAssign::BCvt: 4623 ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue); 4624 break; 4625 } 4626 4627 // f16 arguments have their size extended to 4 bytes and passed as if they 4628 // had been copied to the LSBs of a 32-bit register. 4629 // For that, it's passed extended to i32 (soft ABI) or to f32 (hard ABI) 4630 if (VA.needsCustom() && 4631 (VA.getValVT() == MVT::f16 || VA.getValVT() == MVT::bf16)) 4632 ArgValue = MoveToHPR(dl, DAG, VA.getLocVT(), VA.getValVT(), ArgValue); 4633 4634 // On CMSE Entry Functions, formal integer arguments whose bitwidth is 4635 // less than 32 bits must be sign- or zero-extended in the callee for 4636 // security reasons. Although the ABI mandates an extension done by the 4637 // caller, the latter cannot be trusted to follow the rules of the ABI. 4638 const ISD::InputArg &Arg = Ins[VA.getValNo()]; 4639 if (AFI->isCmseNSEntryFunction() && Arg.ArgVT.isScalarInteger() && 4640 RegVT.isScalarInteger() && Arg.ArgVT.bitsLT(MVT::i32)) 4641 ArgValue = handleCMSEValue(ArgValue, Arg, DAG, dl); 4642 4643 InVals.push_back(ArgValue); 4644 } else { // VA.isRegLoc() 4645 // Only arguments passed on the stack should make it here. 4646 assert(VA.isMemLoc()); 4647 assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered"); 4648 4649 int index = VA.getValNo(); 4650 4651 // Some Ins[] entries become multiple ArgLoc[] entries. 4652 // Process them only once. 4653 if (index != lastInsIndex) 4654 { 4655 ISD::ArgFlagsTy Flags = Ins[index].Flags; 4656 // FIXME: For now, all byval parameter objects are marked mutable. 4657 // This can be changed with more analysis. 4658 // In case of tail call optimization mark all arguments mutable. 4659 // Since they could be overwritten by lowering of arguments in case of 4660 // a tail call. 4661 if (Flags.isByVal()) { 4662 assert(Ins[index].isOrigArg() && 4663 "Byval arguments cannot be implicit"); 4664 unsigned CurByValIndex = CCInfo.getInRegsParamsProcessed(); 4665 4666 int FrameIndex = StoreByValRegs( 4667 CCInfo, DAG, dl, Chain, &*CurOrigArg, CurByValIndex, 4668 VA.getLocMemOffset(), Flags.getByValSize()); 4669 InVals.push_back(DAG.getFrameIndex(FrameIndex, PtrVT)); 4670 CCInfo.nextInRegsParam(); 4671 } else { 4672 unsigned FIOffset = VA.getLocMemOffset(); 4673 int FI = MFI.CreateFixedObject(VA.getLocVT().getSizeInBits()/8, 4674 FIOffset, true); 4675 4676 // Create load nodes to retrieve arguments from the stack. 4677 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4678 InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN, 4679 MachinePointerInfo::getFixedStack( 4680 DAG.getMachineFunction(), FI))); 4681 } 4682 lastInsIndex = index; 4683 } 4684 } 4685 } 4686 4687 // varargs 4688 if (isVarArg && MFI.hasVAStart()) { 4689 VarArgStyleRegisters(CCInfo, DAG, dl, Chain, CCInfo.getStackSize(), 4690 TotalArgRegsSaveSize); 4691 if (AFI->isCmseNSEntryFunction()) { 4692 DiagnosticInfoUnsupported Diag( 4693 DAG.getMachineFunction().getFunction(), 4694 "secure entry function must not be variadic", dl.getDebugLoc()); 4695 DAG.getContext()->diagnose(Diag); 4696 } 4697 } 4698 4699 unsigned StackArgSize = CCInfo.getStackSize(); 4700 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt; 4701 if (canGuaranteeTCO(CallConv, TailCallOpt)) { 4702 // The only way to guarantee a tail call is if the callee restores its 4703 // argument area, but it must also keep the stack aligned when doing so. 4704 const DataLayout &DL = DAG.getDataLayout(); 4705 StackArgSize = alignTo(StackArgSize, DL.getStackAlignment()); 4706 4707 AFI->setArgumentStackToRestore(StackArgSize); 4708 } 4709 AFI->setArgumentStackSize(StackArgSize); 4710 4711 if (CCInfo.getStackSize() > 0 && AFI->isCmseNSEntryFunction()) { 4712 DiagnosticInfoUnsupported Diag( 4713 DAG.getMachineFunction().getFunction(), 4714 "secure entry function requires arguments on stack", dl.getDebugLoc()); 4715 DAG.getContext()->diagnose(Diag); 4716 } 4717 4718 return Chain; 4719 } 4720 4721 /// isFloatingPointZero - Return true if this is +0.0. 4722 static bool isFloatingPointZero(SDValue Op) { 4723 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 4724 return CFP->getValueAPF().isPosZero(); 4725 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 4726 // Maybe this has already been legalized into the constant pool? 4727 if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) { 4728 SDValue WrapperOp = Op.getOperand(1).getOperand(0); 4729 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp)) 4730 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 4731 return CFP->getValueAPF().isPosZero(); 4732 } 4733 } else if (Op->getOpcode() == ISD::BITCAST && 4734 Op->getValueType(0) == MVT::f64) { 4735 // Handle (ISD::BITCAST (ARMISD::VMOVIMM (ISD::TargetConstant 0)) MVT::f64) 4736 // created by LowerConstantFP(). 4737 SDValue BitcastOp = Op->getOperand(0); 4738 if (BitcastOp->getOpcode() == ARMISD::VMOVIMM && 4739 isNullConstant(BitcastOp->getOperand(0))) 4740 return true; 4741 } 4742 return false; 4743 } 4744 4745 /// Returns appropriate ARM CMP (cmp) and corresponding condition code for 4746 /// the given operands. 4747 SDValue ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC, 4748 SDValue &ARMcc, SelectionDAG &DAG, 4749 const SDLoc &dl) const { 4750 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) { 4751 unsigned C = RHSC->getZExtValue(); 4752 if (!isLegalICmpImmediate((int32_t)C)) { 4753 // Constant does not fit, try adjusting it by one. 4754 switch (CC) { 4755 default: break; 4756 case ISD::SETLT: 4757 case ISD::SETGE: 4758 if (C != 0x80000000 && isLegalICmpImmediate(C-1)) { 4759 CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT; 4760 RHS = DAG.getConstant(C - 1, dl, MVT::i32); 4761 } 4762 break; 4763 case ISD::SETULT: 4764 case ISD::SETUGE: 4765 if (C != 0 && isLegalICmpImmediate(C-1)) { 4766 CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT; 4767 RHS = DAG.getConstant(C - 1, dl, MVT::i32); 4768 } 4769 break; 4770 case ISD::SETLE: 4771 case ISD::SETGT: 4772 if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) { 4773 CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE; 4774 RHS = DAG.getConstant(C + 1, dl, MVT::i32); 4775 } 4776 break; 4777 case ISD::SETULE: 4778 case ISD::SETUGT: 4779 if (C != 0xffffffff && isLegalICmpImmediate(C+1)) { 4780 CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 4781 RHS = DAG.getConstant(C + 1, dl, MVT::i32); 4782 } 4783 break; 4784 } 4785 } 4786 } else if ((ARM_AM::getShiftOpcForNode(LHS.getOpcode()) != ARM_AM::no_shift) && 4787 (ARM_AM::getShiftOpcForNode(RHS.getOpcode()) == ARM_AM::no_shift)) { 4788 // In ARM and Thumb-2, the compare instructions can shift their second 4789 // operand. 4790 CC = ISD::getSetCCSwappedOperands(CC); 4791 std::swap(LHS, RHS); 4792 } 4793 4794 // Thumb1 has very limited immediate modes, so turning an "and" into a 4795 // shift can save multiple instructions. 4796 // 4797 // If we have (x & C1), and C1 is an appropriate mask, we can transform it 4798 // into "((x << n) >> n)". But that isn't necessarily profitable on its 4799 // own. If it's the operand to an unsigned comparison with an immediate, 4800 // we can eliminate one of the shifts: we transform 4801 // "((x << n) >> n) == C2" to "(x << n) == (C2 << n)". 4802 // 4803 // We avoid transforming cases which aren't profitable due to encoding 4804 // details: 4805 // 4806 // 1. C2 fits into the immediate field of a cmp, and the transformed version 4807 // would not; in that case, we're essentially trading one immediate load for 4808 // another. 4809 // 2. C1 is 255 or 65535, so we can use uxtb or uxth. 4810 // 3. C2 is zero; we have other code for this special case. 4811 // 4812 // FIXME: Figure out profitability for Thumb2; we usually can't save an 4813 // instruction, since the AND is always one instruction anyway, but we could 4814 // use narrow instructions in some cases. 4815 if (Subtarget->isThumb1Only() && LHS->getOpcode() == ISD::AND && 4816 LHS->hasOneUse() && isa<ConstantSDNode>(LHS.getOperand(1)) && 4817 LHS.getValueType() == MVT::i32 && isa<ConstantSDNode>(RHS) && 4818 !isSignedIntSetCC(CC)) { 4819 unsigned Mask = LHS.getConstantOperandVal(1); 4820 auto *RHSC = cast<ConstantSDNode>(RHS.getNode()); 4821 uint64_t RHSV = RHSC->getZExtValue(); 4822 if (isMask_32(Mask) && (RHSV & ~Mask) == 0 && Mask != 255 && Mask != 65535) { 4823 unsigned ShiftBits = llvm::countl_zero(Mask); 4824 if (RHSV && (RHSV > 255 || (RHSV << ShiftBits) <= 255)) { 4825 SDValue ShiftAmt = DAG.getConstant(ShiftBits, dl, MVT::i32); 4826 LHS = DAG.getNode(ISD::SHL, dl, MVT::i32, LHS.getOperand(0), ShiftAmt); 4827 RHS = DAG.getConstant(RHSV << ShiftBits, dl, MVT::i32); 4828 } 4829 } 4830 } 4831 4832 // The specific comparison "(x<<c) > 0x80000000U" can be optimized to a 4833 // single "lsls x, c+1". The shift sets the "C" and "Z" flags the same 4834 // way a cmp would. 4835 // FIXME: Add support for ARM/Thumb2; this would need isel patterns, and 4836 // some tweaks to the heuristics for the previous and->shift transform. 4837 // FIXME: Optimize cases where the LHS isn't a shift. 4838 if (Subtarget->isThumb1Only() && LHS->getOpcode() == ISD::SHL && 4839 isa<ConstantSDNode>(RHS) && RHS->getAsZExtVal() == 0x80000000U && 4840 CC == ISD::SETUGT && isa<ConstantSDNode>(LHS.getOperand(1)) && 4841 LHS.getConstantOperandVal(1) < 31) { 4842 unsigned ShiftAmt = LHS.getConstantOperandVal(1) + 1; 4843 SDValue Shift = DAG.getNode(ARMISD::LSLS, dl, 4844 DAG.getVTList(MVT::i32, MVT::i32), 4845 LHS.getOperand(0), 4846 DAG.getConstant(ShiftAmt, dl, MVT::i32)); 4847 SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, ARM::CPSR, 4848 Shift.getValue(1), SDValue()); 4849 ARMcc = DAG.getConstant(ARMCC::HI, dl, MVT::i32); 4850 return Chain.getValue(1); 4851 } 4852 4853 ARMCC::CondCodes CondCode = IntCCToARMCC(CC); 4854 4855 // If the RHS is a constant zero then the V (overflow) flag will never be 4856 // set. This can allow us to simplify GE to PL or LT to MI, which can be 4857 // simpler for other passes (like the peephole optimiser) to deal with. 4858 if (isNullConstant(RHS)) { 4859 switch (CondCode) { 4860 default: break; 4861 case ARMCC::GE: 4862 CondCode = ARMCC::PL; 4863 break; 4864 case ARMCC::LT: 4865 CondCode = ARMCC::MI; 4866 break; 4867 } 4868 } 4869 4870 ARMISD::NodeType CompareType; 4871 switch (CondCode) { 4872 default: 4873 CompareType = ARMISD::CMP; 4874 break; 4875 case ARMCC::EQ: 4876 case ARMCC::NE: 4877 // Uses only Z Flag 4878 CompareType = ARMISD::CMPZ; 4879 break; 4880 } 4881 ARMcc = DAG.getConstant(CondCode, dl, MVT::i32); 4882 return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS); 4883 } 4884 4885 /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands. 4886 SDValue ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, 4887 SelectionDAG &DAG, const SDLoc &dl, 4888 bool Signaling) const { 4889 assert(Subtarget->hasFP64() || RHS.getValueType() != MVT::f64); 4890 SDValue Cmp; 4891 if (!isFloatingPointZero(RHS)) 4892 Cmp = DAG.getNode(Signaling ? ARMISD::CMPFPE : ARMISD::CMPFP, 4893 dl, MVT::Glue, LHS, RHS); 4894 else 4895 Cmp = DAG.getNode(Signaling ? ARMISD::CMPFPEw0 : ARMISD::CMPFPw0, 4896 dl, MVT::Glue, LHS); 4897 return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp); 4898 } 4899 4900 /// duplicateCmp - Glue values can have only one use, so this function 4901 /// duplicates a comparison node. 4902 SDValue 4903 ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const { 4904 unsigned Opc = Cmp.getOpcode(); 4905 SDLoc DL(Cmp); 4906 if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ) 4907 return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1)); 4908 4909 assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation"); 4910 Cmp = Cmp.getOperand(0); 4911 Opc = Cmp.getOpcode(); 4912 if (Opc == ARMISD::CMPFP) 4913 Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1)); 4914 else { 4915 assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT"); 4916 Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0)); 4917 } 4918 return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp); 4919 } 4920 4921 // This function returns three things: the arithmetic computation itself 4922 // (Value), a comparison (OverflowCmp), and a condition code (ARMcc). The 4923 // comparison and the condition code define the case in which the arithmetic 4924 // computation *does not* overflow. 4925 std::pair<SDValue, SDValue> 4926 ARMTargetLowering::getARMXALUOOp(SDValue Op, SelectionDAG &DAG, 4927 SDValue &ARMcc) const { 4928 assert(Op.getValueType() == MVT::i32 && "Unsupported value type"); 4929 4930 SDValue Value, OverflowCmp; 4931 SDValue LHS = Op.getOperand(0); 4932 SDValue RHS = Op.getOperand(1); 4933 SDLoc dl(Op); 4934 4935 // FIXME: We are currently always generating CMPs because we don't support 4936 // generating CMN through the backend. This is not as good as the natural 4937 // CMP case because it causes a register dependency and cannot be folded 4938 // later. 4939 4940 switch (Op.getOpcode()) { 4941 default: 4942 llvm_unreachable("Unknown overflow instruction!"); 4943 case ISD::SADDO: 4944 ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32); 4945 Value = DAG.getNode(ISD::ADD, dl, Op.getValueType(), LHS, RHS); 4946 OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS); 4947 break; 4948 case ISD::UADDO: 4949 ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32); 4950 // We use ADDC here to correspond to its use in LowerUnsignedALUO. 4951 // We do not use it in the USUBO case as Value may not be used. 4952 Value = DAG.getNode(ARMISD::ADDC, dl, 4953 DAG.getVTList(Op.getValueType(), MVT::i32), LHS, RHS) 4954 .getValue(0); 4955 OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS); 4956 break; 4957 case ISD::SSUBO: 4958 ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32); 4959 Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS); 4960 OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS); 4961 break; 4962 case ISD::USUBO: 4963 ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32); 4964 Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS); 4965 OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS); 4966 break; 4967 case ISD::UMULO: 4968 // We generate a UMUL_LOHI and then check if the high word is 0. 4969 ARMcc = DAG.getConstant(ARMCC::EQ, dl, MVT::i32); 4970 Value = DAG.getNode(ISD::UMUL_LOHI, dl, 4971 DAG.getVTList(Op.getValueType(), Op.getValueType()), 4972 LHS, RHS); 4973 OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value.getValue(1), 4974 DAG.getConstant(0, dl, MVT::i32)); 4975 Value = Value.getValue(0); // We only want the low 32 bits for the result. 4976 break; 4977 case ISD::SMULO: 4978 // We generate a SMUL_LOHI and then check if all the bits of the high word 4979 // are the same as the sign bit of the low word. 4980 ARMcc = DAG.getConstant(ARMCC::EQ, dl, MVT::i32); 4981 Value = DAG.getNode(ISD::SMUL_LOHI, dl, 4982 DAG.getVTList(Op.getValueType(), Op.getValueType()), 4983 LHS, RHS); 4984 OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value.getValue(1), 4985 DAG.getNode(ISD::SRA, dl, Op.getValueType(), 4986 Value.getValue(0), 4987 DAG.getConstant(31, dl, MVT::i32))); 4988 Value = Value.getValue(0); // We only want the low 32 bits for the result. 4989 break; 4990 } // switch (...) 4991 4992 return std::make_pair(Value, OverflowCmp); 4993 } 4994 4995 SDValue 4996 ARMTargetLowering::LowerSignedALUO(SDValue Op, SelectionDAG &DAG) const { 4997 // Let legalize expand this if it isn't a legal type yet. 4998 if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType())) 4999 return SDValue(); 5000 5001 SDValue Value, OverflowCmp; 5002 SDValue ARMcc; 5003 std::tie(Value, OverflowCmp) = getARMXALUOOp(Op, DAG, ARMcc); 5004 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); 5005 SDLoc dl(Op); 5006 // We use 0 and 1 as false and true values. 5007 SDValue TVal = DAG.getConstant(1, dl, MVT::i32); 5008 SDValue FVal = DAG.getConstant(0, dl, MVT::i32); 5009 EVT VT = Op.getValueType(); 5010 5011 SDValue Overflow = DAG.getNode(ARMISD::CMOV, dl, VT, TVal, FVal, 5012 ARMcc, CCR, OverflowCmp); 5013 5014 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32); 5015 return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow); 5016 } 5017 5018 static SDValue ConvertBooleanCarryToCarryFlag(SDValue BoolCarry, 5019 SelectionDAG &DAG) { 5020 SDLoc DL(BoolCarry); 5021 EVT CarryVT = BoolCarry.getValueType(); 5022 5023 // This converts the boolean value carry into the carry flag by doing 5024 // ARMISD::SUBC Carry, 1 5025 SDValue Carry = DAG.getNode(ARMISD::SUBC, DL, 5026 DAG.getVTList(CarryVT, MVT::i32), 5027 BoolCarry, DAG.getConstant(1, DL, CarryVT)); 5028 return Carry.getValue(1); 5029 } 5030 5031 static SDValue ConvertCarryFlagToBooleanCarry(SDValue Flags, EVT VT, 5032 SelectionDAG &DAG) { 5033 SDLoc DL(Flags); 5034 5035 // Now convert the carry flag into a boolean carry. We do this 5036 // using ARMISD:ADDE 0, 0, Carry 5037 return DAG.getNode(ARMISD::ADDE, DL, DAG.getVTList(VT, MVT::i32), 5038 DAG.getConstant(0, DL, MVT::i32), 5039 DAG.getConstant(0, DL, MVT::i32), Flags); 5040 } 5041 5042 SDValue ARMTargetLowering::LowerUnsignedALUO(SDValue Op, 5043 SelectionDAG &DAG) const { 5044 // Let legalize expand this if it isn't a legal type yet. 5045 if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType())) 5046 return SDValue(); 5047 5048 SDValue LHS = Op.getOperand(0); 5049 SDValue RHS = Op.getOperand(1); 5050 SDLoc dl(Op); 5051 5052 EVT VT = Op.getValueType(); 5053 SDVTList VTs = DAG.getVTList(VT, MVT::i32); 5054 SDValue Value; 5055 SDValue Overflow; 5056 switch (Op.getOpcode()) { 5057 default: 5058 llvm_unreachable("Unknown overflow instruction!"); 5059 case ISD::UADDO: 5060 Value = DAG.getNode(ARMISD::ADDC, dl, VTs, LHS, RHS); 5061 // Convert the carry flag into a boolean value. 5062 Overflow = ConvertCarryFlagToBooleanCarry(Value.getValue(1), VT, DAG); 5063 break; 5064 case ISD::USUBO: { 5065 Value = DAG.getNode(ARMISD::SUBC, dl, VTs, LHS, RHS); 5066 // Convert the carry flag into a boolean value. 5067 Overflow = ConvertCarryFlagToBooleanCarry(Value.getValue(1), VT, DAG); 5068 // ARMISD::SUBC returns 0 when we have to borrow, so make it an overflow 5069 // value. So compute 1 - C. 5070 Overflow = DAG.getNode(ISD::SUB, dl, MVT::i32, 5071 DAG.getConstant(1, dl, MVT::i32), Overflow); 5072 break; 5073 } 5074 } 5075 5076 return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow); 5077 } 5078 5079 static SDValue LowerADDSUBSAT(SDValue Op, SelectionDAG &DAG, 5080 const ARMSubtarget *Subtarget) { 5081 EVT VT = Op.getValueType(); 5082 if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP() || Subtarget->isThumb1Only()) 5083 return SDValue(); 5084 if (!VT.isSimple()) 5085 return SDValue(); 5086 5087 unsigned NewOpcode; 5088 switch (VT.getSimpleVT().SimpleTy) { 5089 default: 5090 return SDValue(); 5091 case MVT::i8: 5092 switch (Op->getOpcode()) { 5093 case ISD::UADDSAT: 5094 NewOpcode = ARMISD::UQADD8b; 5095 break; 5096 case ISD::SADDSAT: 5097 NewOpcode = ARMISD::QADD8b; 5098 break; 5099 case ISD::USUBSAT: 5100 NewOpcode = ARMISD::UQSUB8b; 5101 break; 5102 case ISD::SSUBSAT: 5103 NewOpcode = ARMISD::QSUB8b; 5104 break; 5105 } 5106 break; 5107 case MVT::i16: 5108 switch (Op->getOpcode()) { 5109 case ISD::UADDSAT: 5110 NewOpcode = ARMISD::UQADD16b; 5111 break; 5112 case ISD::SADDSAT: 5113 NewOpcode = ARMISD::QADD16b; 5114 break; 5115 case ISD::USUBSAT: 5116 NewOpcode = ARMISD::UQSUB16b; 5117 break; 5118 case ISD::SSUBSAT: 5119 NewOpcode = ARMISD::QSUB16b; 5120 break; 5121 } 5122 break; 5123 } 5124 5125 SDLoc dl(Op); 5126 SDValue Add = 5127 DAG.getNode(NewOpcode, dl, MVT::i32, 5128 DAG.getSExtOrTrunc(Op->getOperand(0), dl, MVT::i32), 5129 DAG.getSExtOrTrunc(Op->getOperand(1), dl, MVT::i32)); 5130 return DAG.getNode(ISD::TRUNCATE, dl, VT, Add); 5131 } 5132 5133 SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const { 5134 SDValue Cond = Op.getOperand(0); 5135 SDValue SelectTrue = Op.getOperand(1); 5136 SDValue SelectFalse = Op.getOperand(2); 5137 SDLoc dl(Op); 5138 unsigned Opc = Cond.getOpcode(); 5139 5140 if (Cond.getResNo() == 1 && 5141 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO || 5142 Opc == ISD::USUBO)) { 5143 if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0))) 5144 return SDValue(); 5145 5146 SDValue Value, OverflowCmp; 5147 SDValue ARMcc; 5148 std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc); 5149 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); 5150 EVT VT = Op.getValueType(); 5151 5152 return getCMOV(dl, VT, SelectTrue, SelectFalse, ARMcc, CCR, 5153 OverflowCmp, DAG); 5154 } 5155 5156 // Convert: 5157 // 5158 // (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond) 5159 // (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond) 5160 // 5161 if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) { 5162 const ConstantSDNode *CMOVTrue = 5163 dyn_cast<ConstantSDNode>(Cond.getOperand(0)); 5164 const ConstantSDNode *CMOVFalse = 5165 dyn_cast<ConstantSDNode>(Cond.getOperand(1)); 5166 5167 if (CMOVTrue && CMOVFalse) { 5168 unsigned CMOVTrueVal = CMOVTrue->getZExtValue(); 5169 unsigned CMOVFalseVal = CMOVFalse->getZExtValue(); 5170 5171 SDValue True; 5172 SDValue False; 5173 if (CMOVTrueVal == 1 && CMOVFalseVal == 0) { 5174 True = SelectTrue; 5175 False = SelectFalse; 5176 } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) { 5177 True = SelectFalse; 5178 False = SelectTrue; 5179 } 5180 5181 if (True.getNode() && False.getNode()) { 5182 EVT VT = Op.getValueType(); 5183 SDValue ARMcc = Cond.getOperand(2); 5184 SDValue CCR = Cond.getOperand(3); 5185 SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG); 5186 assert(True.getValueType() == VT); 5187 return getCMOV(dl, VT, True, False, ARMcc, CCR, Cmp, DAG); 5188 } 5189 } 5190 } 5191 5192 // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the 5193 // undefined bits before doing a full-word comparison with zero. 5194 Cond = DAG.getNode(ISD::AND, dl, Cond.getValueType(), Cond, 5195 DAG.getConstant(1, dl, Cond.getValueType())); 5196 5197 return DAG.getSelectCC(dl, Cond, 5198 DAG.getConstant(0, dl, Cond.getValueType()), 5199 SelectTrue, SelectFalse, ISD::SETNE); 5200 } 5201 5202 static void checkVSELConstraints(ISD::CondCode CC, ARMCC::CondCodes &CondCode, 5203 bool &swpCmpOps, bool &swpVselOps) { 5204 // Start by selecting the GE condition code for opcodes that return true for 5205 // 'equality' 5206 if (CC == ISD::SETUGE || CC == ISD::SETOGE || CC == ISD::SETOLE || 5207 CC == ISD::SETULE || CC == ISD::SETGE || CC == ISD::SETLE) 5208 CondCode = ARMCC::GE; 5209 5210 // and GT for opcodes that return false for 'equality'. 5211 else if (CC == ISD::SETUGT || CC == ISD::SETOGT || CC == ISD::SETOLT || 5212 CC == ISD::SETULT || CC == ISD::SETGT || CC == ISD::SETLT) 5213 CondCode = ARMCC::GT; 5214 5215 // Since we are constrained to GE/GT, if the opcode contains 'less', we need 5216 // to swap the compare operands. 5217 if (CC == ISD::SETOLE || CC == ISD::SETULE || CC == ISD::SETOLT || 5218 CC == ISD::SETULT || CC == ISD::SETLE || CC == ISD::SETLT) 5219 swpCmpOps = true; 5220 5221 // Both GT and GE are ordered comparisons, and return false for 'unordered'. 5222 // If we have an unordered opcode, we need to swap the operands to the VSEL 5223 // instruction (effectively negating the condition). 5224 // 5225 // This also has the effect of swapping which one of 'less' or 'greater' 5226 // returns true, so we also swap the compare operands. It also switches 5227 // whether we return true for 'equality', so we compensate by picking the 5228 // opposite condition code to our original choice. 5229 if (CC == ISD::SETULE || CC == ISD::SETULT || CC == ISD::SETUGE || 5230 CC == ISD::SETUGT) { 5231 swpCmpOps = !swpCmpOps; 5232 swpVselOps = !swpVselOps; 5233 CondCode = CondCode == ARMCC::GT ? ARMCC::GE : ARMCC::GT; 5234 } 5235 5236 // 'ordered' is 'anything but unordered', so use the VS condition code and 5237 // swap the VSEL operands. 5238 if (CC == ISD::SETO) { 5239 CondCode = ARMCC::VS; 5240 swpVselOps = true; 5241 } 5242 5243 // 'unordered or not equal' is 'anything but equal', so use the EQ condition 5244 // code and swap the VSEL operands. Also do this if we don't care about the 5245 // unordered case. 5246 if (CC == ISD::SETUNE || CC == ISD::SETNE) { 5247 CondCode = ARMCC::EQ; 5248 swpVselOps = true; 5249 } 5250 } 5251 5252 SDValue ARMTargetLowering::getCMOV(const SDLoc &dl, EVT VT, SDValue FalseVal, 5253 SDValue TrueVal, SDValue ARMcc, SDValue CCR, 5254 SDValue Cmp, SelectionDAG &DAG) const { 5255 if (!Subtarget->hasFP64() && VT == MVT::f64) { 5256 FalseVal = DAG.getNode(ARMISD::VMOVRRD, dl, 5257 DAG.getVTList(MVT::i32, MVT::i32), FalseVal); 5258 TrueVal = DAG.getNode(ARMISD::VMOVRRD, dl, 5259 DAG.getVTList(MVT::i32, MVT::i32), TrueVal); 5260 5261 SDValue TrueLow = TrueVal.getValue(0); 5262 SDValue TrueHigh = TrueVal.getValue(1); 5263 SDValue FalseLow = FalseVal.getValue(0); 5264 SDValue FalseHigh = FalseVal.getValue(1); 5265 5266 SDValue Low = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseLow, TrueLow, 5267 ARMcc, CCR, Cmp); 5268 SDValue High = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseHigh, TrueHigh, 5269 ARMcc, CCR, duplicateCmp(Cmp, DAG)); 5270 5271 return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Low, High); 5272 } else { 5273 return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR, 5274 Cmp); 5275 } 5276 } 5277 5278 static bool isGTorGE(ISD::CondCode CC) { 5279 return CC == ISD::SETGT || CC == ISD::SETGE; 5280 } 5281 5282 static bool isLTorLE(ISD::CondCode CC) { 5283 return CC == ISD::SETLT || CC == ISD::SETLE; 5284 } 5285 5286 // See if a conditional (LHS CC RHS ? TrueVal : FalseVal) is lower-saturating. 5287 // All of these conditions (and their <= and >= counterparts) will do: 5288 // x < k ? k : x 5289 // x > k ? x : k 5290 // k < x ? x : k 5291 // k > x ? k : x 5292 static bool isLowerSaturate(const SDValue LHS, const SDValue RHS, 5293 const SDValue TrueVal, const SDValue FalseVal, 5294 const ISD::CondCode CC, const SDValue K) { 5295 return (isGTorGE(CC) && 5296 ((K == LHS && K == TrueVal) || (K == RHS && K == FalseVal))) || 5297 (isLTorLE(CC) && 5298 ((K == RHS && K == TrueVal) || (K == LHS && K == FalseVal))); 5299 } 5300 5301 // Check if two chained conditionals could be converted into SSAT or USAT. 5302 // 5303 // SSAT can replace a set of two conditional selectors that bound a number to an 5304 // interval of type [k, ~k] when k + 1 is a power of 2. Here are some examples: 5305 // 5306 // x < -k ? -k : (x > k ? k : x) 5307 // x < -k ? -k : (x < k ? x : k) 5308 // x > -k ? (x > k ? k : x) : -k 5309 // x < k ? (x < -k ? -k : x) : k 5310 // etc. 5311 // 5312 // LLVM canonicalizes these to either a min(max()) or a max(min()) 5313 // pattern. This function tries to match one of these and will return a SSAT 5314 // node if successful. 5315 // 5316 // USAT works similarily to SSAT but bounds on the interval [0, k] where k + 1 5317 // is a power of 2. 5318 static SDValue LowerSaturatingConditional(SDValue Op, SelectionDAG &DAG) { 5319 EVT VT = Op.getValueType(); 5320 SDValue V1 = Op.getOperand(0); 5321 SDValue K1 = Op.getOperand(1); 5322 SDValue TrueVal1 = Op.getOperand(2); 5323 SDValue FalseVal1 = Op.getOperand(3); 5324 ISD::CondCode CC1 = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 5325 5326 const SDValue Op2 = isa<ConstantSDNode>(TrueVal1) ? FalseVal1 : TrueVal1; 5327 if (Op2.getOpcode() != ISD::SELECT_CC) 5328 return SDValue(); 5329 5330 SDValue V2 = Op2.getOperand(0); 5331 SDValue K2 = Op2.getOperand(1); 5332 SDValue TrueVal2 = Op2.getOperand(2); 5333 SDValue FalseVal2 = Op2.getOperand(3); 5334 ISD::CondCode CC2 = cast<CondCodeSDNode>(Op2.getOperand(4))->get(); 5335 5336 SDValue V1Tmp = V1; 5337 SDValue V2Tmp = V2; 5338 5339 // Check that the registers and the constants match a max(min()) or min(max()) 5340 // pattern 5341 if (V1Tmp != TrueVal1 || V2Tmp != TrueVal2 || K1 != FalseVal1 || 5342 K2 != FalseVal2 || 5343 !((isGTorGE(CC1) && isLTorLE(CC2)) || (isLTorLE(CC1) && isGTorGE(CC2)))) 5344 return SDValue(); 5345 5346 // Check that the constant in the lower-bound check is 5347 // the opposite of the constant in the upper-bound check 5348 // in 1's complement. 5349 if (!isa<ConstantSDNode>(K1) || !isa<ConstantSDNode>(K2)) 5350 return SDValue(); 5351 5352 int64_t Val1 = cast<ConstantSDNode>(K1)->getSExtValue(); 5353 int64_t Val2 = cast<ConstantSDNode>(K2)->getSExtValue(); 5354 int64_t PosVal = std::max(Val1, Val2); 5355 int64_t NegVal = std::min(Val1, Val2); 5356 5357 if (!((Val1 > Val2 && isLTorLE(CC1)) || (Val1 < Val2 && isLTorLE(CC2))) || 5358 !isPowerOf2_64(PosVal + 1)) 5359 return SDValue(); 5360 5361 // Handle the difference between USAT (unsigned) and SSAT (signed) 5362 // saturation 5363 // At this point, PosVal is guaranteed to be positive 5364 uint64_t K = PosVal; 5365 SDLoc dl(Op); 5366 if (Val1 == ~Val2) 5367 return DAG.getNode(ARMISD::SSAT, dl, VT, V2Tmp, 5368 DAG.getConstant(llvm::countr_one(K), dl, VT)); 5369 if (NegVal == 0) 5370 return DAG.getNode(ARMISD::USAT, dl, VT, V2Tmp, 5371 DAG.getConstant(llvm::countr_one(K), dl, VT)); 5372 5373 return SDValue(); 5374 } 5375 5376 // Check if a condition of the type x < k ? k : x can be converted into a 5377 // bit operation instead of conditional moves. 5378 // Currently this is allowed given: 5379 // - The conditions and values match up 5380 // - k is 0 or -1 (all ones) 5381 // This function will not check the last condition, thats up to the caller 5382 // It returns true if the transformation can be made, and in such case 5383 // returns x in V, and k in SatK. 5384 static bool isLowerSaturatingConditional(const SDValue &Op, SDValue &V, 5385 SDValue &SatK) 5386 { 5387 SDValue LHS = Op.getOperand(0); 5388 SDValue RHS = Op.getOperand(1); 5389 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 5390 SDValue TrueVal = Op.getOperand(2); 5391 SDValue FalseVal = Op.getOperand(3); 5392 5393 SDValue *K = isa<ConstantSDNode>(LHS) ? &LHS : isa<ConstantSDNode>(RHS) 5394 ? &RHS 5395 : nullptr; 5396 5397 // No constant operation in comparison, early out 5398 if (!K) 5399 return false; 5400 5401 SDValue KTmp = isa<ConstantSDNode>(TrueVal) ? TrueVal : FalseVal; 5402 V = (KTmp == TrueVal) ? FalseVal : TrueVal; 5403 SDValue VTmp = (K && *K == LHS) ? RHS : LHS; 5404 5405 // If the constant on left and right side, or variable on left and right, 5406 // does not match, early out 5407 if (*K != KTmp || V != VTmp) 5408 return false; 5409 5410 if (isLowerSaturate(LHS, RHS, TrueVal, FalseVal, CC, *K)) { 5411 SatK = *K; 5412 return true; 5413 } 5414 5415 return false; 5416 } 5417 5418 bool ARMTargetLowering::isUnsupportedFloatingType(EVT VT) const { 5419 if (VT == MVT::f32) 5420 return !Subtarget->hasVFP2Base(); 5421 if (VT == MVT::f64) 5422 return !Subtarget->hasFP64(); 5423 if (VT == MVT::f16) 5424 return !Subtarget->hasFullFP16(); 5425 return false; 5426 } 5427 5428 SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 5429 EVT VT = Op.getValueType(); 5430 SDLoc dl(Op); 5431 5432 // Try to convert two saturating conditional selects into a single SSAT 5433 if ((!Subtarget->isThumb() && Subtarget->hasV6Ops()) || Subtarget->isThumb2()) 5434 if (SDValue SatValue = LowerSaturatingConditional(Op, DAG)) 5435 return SatValue; 5436 5437 // Try to convert expressions of the form x < k ? k : x (and similar forms) 5438 // into more efficient bit operations, which is possible when k is 0 or -1 5439 // On ARM and Thumb-2 which have flexible operand 2 this will result in 5440 // single instructions. On Thumb the shift and the bit operation will be two 5441 // instructions. 5442 // Only allow this transformation on full-width (32-bit) operations 5443 SDValue LowerSatConstant; 5444 SDValue SatValue; 5445 if (VT == MVT::i32 && 5446 isLowerSaturatingConditional(Op, SatValue, LowerSatConstant)) { 5447 SDValue ShiftV = DAG.getNode(ISD::SRA, dl, VT, SatValue, 5448 DAG.getConstant(31, dl, VT)); 5449 if (isNullConstant(LowerSatConstant)) { 5450 SDValue NotShiftV = DAG.getNode(ISD::XOR, dl, VT, ShiftV, 5451 DAG.getAllOnesConstant(dl, VT)); 5452 return DAG.getNode(ISD::AND, dl, VT, SatValue, NotShiftV); 5453 } else if (isAllOnesConstant(LowerSatConstant)) 5454 return DAG.getNode(ISD::OR, dl, VT, SatValue, ShiftV); 5455 } 5456 5457 SDValue LHS = Op.getOperand(0); 5458 SDValue RHS = Op.getOperand(1); 5459 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 5460 SDValue TrueVal = Op.getOperand(2); 5461 SDValue FalseVal = Op.getOperand(3); 5462 ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FalseVal); 5463 ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TrueVal); 5464 5465 if (Subtarget->hasV8_1MMainlineOps() && CFVal && CTVal && 5466 LHS.getValueType() == MVT::i32 && RHS.getValueType() == MVT::i32) { 5467 unsigned TVal = CTVal->getZExtValue(); 5468 unsigned FVal = CFVal->getZExtValue(); 5469 unsigned Opcode = 0; 5470 5471 if (TVal == ~FVal) { 5472 Opcode = ARMISD::CSINV; 5473 } else if (TVal == ~FVal + 1) { 5474 Opcode = ARMISD::CSNEG; 5475 } else if (TVal + 1 == FVal) { 5476 Opcode = ARMISD::CSINC; 5477 } else if (TVal == FVal + 1) { 5478 Opcode = ARMISD::CSINC; 5479 std::swap(TrueVal, FalseVal); 5480 std::swap(TVal, FVal); 5481 CC = ISD::getSetCCInverse(CC, LHS.getValueType()); 5482 } 5483 5484 if (Opcode) { 5485 // If one of the constants is cheaper than another, materialise the 5486 // cheaper one and let the csel generate the other. 5487 if (Opcode != ARMISD::CSINC && 5488 HasLowerConstantMaterializationCost(FVal, TVal, Subtarget)) { 5489 std::swap(TrueVal, FalseVal); 5490 std::swap(TVal, FVal); 5491 CC = ISD::getSetCCInverse(CC, LHS.getValueType()); 5492 } 5493 5494 // Attempt to use ZR checking TVal is 0, possibly inverting the condition 5495 // to get there. CSINC not is invertable like the other two (~(~a) == a, 5496 // -(-a) == a, but (a+1)+1 != a). 5497 if (FVal == 0 && Opcode != ARMISD::CSINC) { 5498 std::swap(TrueVal, FalseVal); 5499 std::swap(TVal, FVal); 5500 CC = ISD::getSetCCInverse(CC, LHS.getValueType()); 5501 } 5502 5503 // Drops F's value because we can get it by inverting/negating TVal. 5504 FalseVal = TrueVal; 5505 5506 SDValue ARMcc; 5507 SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl); 5508 EVT VT = TrueVal.getValueType(); 5509 return DAG.getNode(Opcode, dl, VT, TrueVal, FalseVal, ARMcc, Cmp); 5510 } 5511 } 5512 5513 if (isUnsupportedFloatingType(LHS.getValueType())) { 5514 DAG.getTargetLoweringInfo().softenSetCCOperands( 5515 DAG, LHS.getValueType(), LHS, RHS, CC, dl, LHS, RHS); 5516 5517 // If softenSetCCOperands only returned one value, we should compare it to 5518 // zero. 5519 if (!RHS.getNode()) { 5520 RHS = DAG.getConstant(0, dl, LHS.getValueType()); 5521 CC = ISD::SETNE; 5522 } 5523 } 5524 5525 if (LHS.getValueType() == MVT::i32) { 5526 // Try to generate VSEL on ARMv8. 5527 // The VSEL instruction can't use all the usual ARM condition 5528 // codes: it only has two bits to select the condition code, so it's 5529 // constrained to use only GE, GT, VS and EQ. 5530 // 5531 // To implement all the various ISD::SETXXX opcodes, we sometimes need to 5532 // swap the operands of the previous compare instruction (effectively 5533 // inverting the compare condition, swapping 'less' and 'greater') and 5534 // sometimes need to swap the operands to the VSEL (which inverts the 5535 // condition in the sense of firing whenever the previous condition didn't) 5536 if (Subtarget->hasFPARMv8Base() && (TrueVal.getValueType() == MVT::f16 || 5537 TrueVal.getValueType() == MVT::f32 || 5538 TrueVal.getValueType() == MVT::f64)) { 5539 ARMCC::CondCodes CondCode = IntCCToARMCC(CC); 5540 if (CondCode == ARMCC::LT || CondCode == ARMCC::LE || 5541 CondCode == ARMCC::VC || CondCode == ARMCC::NE) { 5542 CC = ISD::getSetCCInverse(CC, LHS.getValueType()); 5543 std::swap(TrueVal, FalseVal); 5544 } 5545 } 5546 5547 SDValue ARMcc; 5548 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); 5549 SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl); 5550 // Choose GE over PL, which vsel does now support 5551 if (ARMcc->getAsZExtVal() == ARMCC::PL) 5552 ARMcc = DAG.getConstant(ARMCC::GE, dl, MVT::i32); 5553 return getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG); 5554 } 5555 5556 ARMCC::CondCodes CondCode, CondCode2; 5557 FPCCToARMCC(CC, CondCode, CondCode2); 5558 5559 // Normalize the fp compare. If RHS is zero we prefer to keep it there so we 5560 // match CMPFPw0 instead of CMPFP, though we don't do this for f16 because we 5561 // must use VSEL (limited condition codes), due to not having conditional f16 5562 // moves. 5563 if (Subtarget->hasFPARMv8Base() && 5564 !(isFloatingPointZero(RHS) && TrueVal.getValueType() != MVT::f16) && 5565 (TrueVal.getValueType() == MVT::f16 || 5566 TrueVal.getValueType() == MVT::f32 || 5567 TrueVal.getValueType() == MVT::f64)) { 5568 bool swpCmpOps = false; 5569 bool swpVselOps = false; 5570 checkVSELConstraints(CC, CondCode, swpCmpOps, swpVselOps); 5571 5572 if (CondCode == ARMCC::GT || CondCode == ARMCC::GE || 5573 CondCode == ARMCC::VS || CondCode == ARMCC::EQ) { 5574 if (swpCmpOps) 5575 std::swap(LHS, RHS); 5576 if (swpVselOps) 5577 std::swap(TrueVal, FalseVal); 5578 } 5579 } 5580 5581 SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32); 5582 SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl); 5583 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); 5584 SDValue Result = getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG); 5585 if (CondCode2 != ARMCC::AL) { 5586 SDValue ARMcc2 = DAG.getConstant(CondCode2, dl, MVT::i32); 5587 // FIXME: Needs another CMP because flag can have but one use. 5588 SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl); 5589 Result = getCMOV(dl, VT, Result, TrueVal, ARMcc2, CCR, Cmp2, DAG); 5590 } 5591 return Result; 5592 } 5593 5594 /// canChangeToInt - Given the fp compare operand, return true if it is suitable 5595 /// to morph to an integer compare sequence. 5596 static bool canChangeToInt(SDValue Op, bool &SeenZero, 5597 const ARMSubtarget *Subtarget) { 5598 SDNode *N = Op.getNode(); 5599 if (!N->hasOneUse()) 5600 // Otherwise it requires moving the value from fp to integer registers. 5601 return false; 5602 if (!N->getNumValues()) 5603 return false; 5604 EVT VT = Op.getValueType(); 5605 if (VT != MVT::f32 && !Subtarget->isFPBrccSlow()) 5606 // f32 case is generally profitable. f64 case only makes sense when vcmpe + 5607 // vmrs are very slow, e.g. cortex-a8. 5608 return false; 5609 5610 if (isFloatingPointZero(Op)) { 5611 SeenZero = true; 5612 return true; 5613 } 5614 return ISD::isNormalLoad(N); 5615 } 5616 5617 static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) { 5618 if (isFloatingPointZero(Op)) 5619 return DAG.getConstant(0, SDLoc(Op), MVT::i32); 5620 5621 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) 5622 return DAG.getLoad(MVT::i32, SDLoc(Op), Ld->getChain(), Ld->getBasePtr(), 5623 Ld->getPointerInfo(), Ld->getAlign(), 5624 Ld->getMemOperand()->getFlags()); 5625 5626 llvm_unreachable("Unknown VFP cmp argument!"); 5627 } 5628 5629 static void expandf64Toi32(SDValue Op, SelectionDAG &DAG, 5630 SDValue &RetVal1, SDValue &RetVal2) { 5631 SDLoc dl(Op); 5632 5633 if (isFloatingPointZero(Op)) { 5634 RetVal1 = DAG.getConstant(0, dl, MVT::i32); 5635 RetVal2 = DAG.getConstant(0, dl, MVT::i32); 5636 return; 5637 } 5638 5639 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) { 5640 SDValue Ptr = Ld->getBasePtr(); 5641 RetVal1 = 5642 DAG.getLoad(MVT::i32, dl, Ld->getChain(), Ptr, Ld->getPointerInfo(), 5643 Ld->getAlign(), Ld->getMemOperand()->getFlags()); 5644 5645 EVT PtrType = Ptr.getValueType(); 5646 SDValue NewPtr = DAG.getNode(ISD::ADD, dl, 5647 PtrType, Ptr, DAG.getConstant(4, dl, PtrType)); 5648 RetVal2 = DAG.getLoad(MVT::i32, dl, Ld->getChain(), NewPtr, 5649 Ld->getPointerInfo().getWithOffset(4), 5650 commonAlignment(Ld->getAlign(), 4), 5651 Ld->getMemOperand()->getFlags()); 5652 return; 5653 } 5654 5655 llvm_unreachable("Unknown VFP cmp argument!"); 5656 } 5657 5658 /// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some 5659 /// f32 and even f64 comparisons to integer ones. 5660 SDValue 5661 ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const { 5662 SDValue Chain = Op.getOperand(0); 5663 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 5664 SDValue LHS = Op.getOperand(2); 5665 SDValue RHS = Op.getOperand(3); 5666 SDValue Dest = Op.getOperand(4); 5667 SDLoc dl(Op); 5668 5669 bool LHSSeenZero = false; 5670 bool LHSOk = canChangeToInt(LHS, LHSSeenZero, Subtarget); 5671 bool RHSSeenZero = false; 5672 bool RHSOk = canChangeToInt(RHS, RHSSeenZero, Subtarget); 5673 if (LHSOk && RHSOk && (LHSSeenZero || RHSSeenZero)) { 5674 // If unsafe fp math optimization is enabled and there are no other uses of 5675 // the CMP operands, and the condition code is EQ or NE, we can optimize it 5676 // to an integer comparison. 5677 if (CC == ISD::SETOEQ) 5678 CC = ISD::SETEQ; 5679 else if (CC == ISD::SETUNE) 5680 CC = ISD::SETNE; 5681 5682 SDValue Mask = DAG.getConstant(0x7fffffff, dl, MVT::i32); 5683 SDValue ARMcc; 5684 if (LHS.getValueType() == MVT::f32) { 5685 LHS = DAG.getNode(ISD::AND, dl, MVT::i32, 5686 bitcastf32Toi32(LHS, DAG), Mask); 5687 RHS = DAG.getNode(ISD::AND, dl, MVT::i32, 5688 bitcastf32Toi32(RHS, DAG), Mask); 5689 SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl); 5690 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); 5691 return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, 5692 Chain, Dest, ARMcc, CCR, Cmp); 5693 } 5694 5695 SDValue LHS1, LHS2; 5696 SDValue RHS1, RHS2; 5697 expandf64Toi32(LHS, DAG, LHS1, LHS2); 5698 expandf64Toi32(RHS, DAG, RHS1, RHS2); 5699 LHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, LHS2, Mask); 5700 RHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, RHS2, Mask); 5701 ARMCC::CondCodes CondCode = IntCCToARMCC(CC); 5702 ARMcc = DAG.getConstant(CondCode, dl, MVT::i32); 5703 SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue); 5704 SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest }; 5705 return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops); 5706 } 5707 5708 return SDValue(); 5709 } 5710 5711 SDValue ARMTargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 5712 SDValue Chain = Op.getOperand(0); 5713 SDValue Cond = Op.getOperand(1); 5714 SDValue Dest = Op.getOperand(2); 5715 SDLoc dl(Op); 5716 5717 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch 5718 // instruction. 5719 unsigned Opc = Cond.getOpcode(); 5720 bool OptimizeMul = (Opc == ISD::SMULO || Opc == ISD::UMULO) && 5721 !Subtarget->isThumb1Only(); 5722 if (Cond.getResNo() == 1 && 5723 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO || 5724 Opc == ISD::USUBO || OptimizeMul)) { 5725 // Only lower legal XALUO ops. 5726 if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0))) 5727 return SDValue(); 5728 5729 // The actual operation with overflow check. 5730 SDValue Value, OverflowCmp; 5731 SDValue ARMcc; 5732 std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc); 5733 5734 // Reverse the condition code. 5735 ARMCC::CondCodes CondCode = 5736 (ARMCC::CondCodes)cast<const ConstantSDNode>(ARMcc)->getZExtValue(); 5737 CondCode = ARMCC::getOppositeCondition(CondCode); 5738 ARMcc = DAG.getConstant(CondCode, SDLoc(ARMcc), MVT::i32); 5739 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); 5740 5741 return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Chain, Dest, ARMcc, CCR, 5742 OverflowCmp); 5743 } 5744 5745 return SDValue(); 5746 } 5747 5748 SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 5749 SDValue Chain = Op.getOperand(0); 5750 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 5751 SDValue LHS = Op.getOperand(2); 5752 SDValue RHS = Op.getOperand(3); 5753 SDValue Dest = Op.getOperand(4); 5754 SDLoc dl(Op); 5755 5756 if (isUnsupportedFloatingType(LHS.getValueType())) { 5757 DAG.getTargetLoweringInfo().softenSetCCOperands( 5758 DAG, LHS.getValueType(), LHS, RHS, CC, dl, LHS, RHS); 5759 5760 // If softenSetCCOperands only returned one value, we should compare it to 5761 // zero. 5762 if (!RHS.getNode()) { 5763 RHS = DAG.getConstant(0, dl, LHS.getValueType()); 5764 CC = ISD::SETNE; 5765 } 5766 } 5767 5768 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch 5769 // instruction. 5770 unsigned Opc = LHS.getOpcode(); 5771 bool OptimizeMul = (Opc == ISD::SMULO || Opc == ISD::UMULO) && 5772 !Subtarget->isThumb1Only(); 5773 if (LHS.getResNo() == 1 && (isOneConstant(RHS) || isNullConstant(RHS)) && 5774 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO || 5775 Opc == ISD::USUBO || OptimizeMul) && 5776 (CC == ISD::SETEQ || CC == ISD::SETNE)) { 5777 // Only lower legal XALUO ops. 5778 if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0))) 5779 return SDValue(); 5780 5781 // The actual operation with overflow check. 5782 SDValue Value, OverflowCmp; 5783 SDValue ARMcc; 5784 std::tie(Value, OverflowCmp) = getARMXALUOOp(LHS.getValue(0), DAG, ARMcc); 5785 5786 if ((CC == ISD::SETNE) != isOneConstant(RHS)) { 5787 // Reverse the condition code. 5788 ARMCC::CondCodes CondCode = 5789 (ARMCC::CondCodes)cast<const ConstantSDNode>(ARMcc)->getZExtValue(); 5790 CondCode = ARMCC::getOppositeCondition(CondCode); 5791 ARMcc = DAG.getConstant(CondCode, SDLoc(ARMcc), MVT::i32); 5792 } 5793 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); 5794 5795 return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Chain, Dest, ARMcc, CCR, 5796 OverflowCmp); 5797 } 5798 5799 if (LHS.getValueType() == MVT::i32) { 5800 SDValue ARMcc; 5801 SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl); 5802 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); 5803 return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, 5804 Chain, Dest, ARMcc, CCR, Cmp); 5805 } 5806 5807 if (getTargetMachine().Options.UnsafeFPMath && 5808 (CC == ISD::SETEQ || CC == ISD::SETOEQ || 5809 CC == ISD::SETNE || CC == ISD::SETUNE)) { 5810 if (SDValue Result = OptimizeVFPBrcond(Op, DAG)) 5811 return Result; 5812 } 5813 5814 ARMCC::CondCodes CondCode, CondCode2; 5815 FPCCToARMCC(CC, CondCode, CondCode2); 5816 5817 SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32); 5818 SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl); 5819 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); 5820 SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue); 5821 SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp }; 5822 SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops); 5823 if (CondCode2 != ARMCC::AL) { 5824 ARMcc = DAG.getConstant(CondCode2, dl, MVT::i32); 5825 SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) }; 5826 Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops); 5827 } 5828 return Res; 5829 } 5830 5831 SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const { 5832 SDValue Chain = Op.getOperand(0); 5833 SDValue Table = Op.getOperand(1); 5834 SDValue Index = Op.getOperand(2); 5835 SDLoc dl(Op); 5836 5837 EVT PTy = getPointerTy(DAG.getDataLayout()); 5838 JumpTableSDNode *JT = cast<JumpTableSDNode>(Table); 5839 SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy); 5840 Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI); 5841 Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, dl, PTy)); 5842 SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Table, Index); 5843 if (Subtarget->isThumb2() || (Subtarget->hasV8MBaselineOps() && Subtarget->isThumb())) { 5844 // Thumb2 and ARMv8-M use a two-level jump. That is, it jumps into the jump table 5845 // which does another jump to the destination. This also makes it easier 5846 // to translate it to TBB / TBH later (Thumb2 only). 5847 // FIXME: This might not work if the function is extremely large. 5848 return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain, 5849 Addr, Op.getOperand(2), JTI); 5850 } 5851 if (isPositionIndependent() || Subtarget->isROPI()) { 5852 Addr = 5853 DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr, 5854 MachinePointerInfo::getJumpTable(DAG.getMachineFunction())); 5855 Chain = Addr.getValue(1); 5856 Addr = DAG.getNode(ISD::ADD, dl, PTy, Table, Addr); 5857 return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI); 5858 } else { 5859 Addr = 5860 DAG.getLoad(PTy, dl, Chain, Addr, 5861 MachinePointerInfo::getJumpTable(DAG.getMachineFunction())); 5862 Chain = Addr.getValue(1); 5863 return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI); 5864 } 5865 } 5866 5867 static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) { 5868 EVT VT = Op.getValueType(); 5869 SDLoc dl(Op); 5870 5871 if (Op.getValueType().getVectorElementType() == MVT::i32) { 5872 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32) 5873 return Op; 5874 return DAG.UnrollVectorOp(Op.getNode()); 5875 } 5876 5877 const bool HasFullFP16 = DAG.getSubtarget<ARMSubtarget>().hasFullFP16(); 5878 5879 EVT NewTy; 5880 const EVT OpTy = Op.getOperand(0).getValueType(); 5881 if (OpTy == MVT::v4f32) 5882 NewTy = MVT::v4i32; 5883 else if (OpTy == MVT::v4f16 && HasFullFP16) 5884 NewTy = MVT::v4i16; 5885 else if (OpTy == MVT::v8f16 && HasFullFP16) 5886 NewTy = MVT::v8i16; 5887 else 5888 llvm_unreachable("Invalid type for custom lowering!"); 5889 5890 if (VT != MVT::v4i16 && VT != MVT::v8i16) 5891 return DAG.UnrollVectorOp(Op.getNode()); 5892 5893 Op = DAG.getNode(Op.getOpcode(), dl, NewTy, Op.getOperand(0)); 5894 return DAG.getNode(ISD::TRUNCATE, dl, VT, Op); 5895 } 5896 5897 SDValue ARMTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const { 5898 EVT VT = Op.getValueType(); 5899 if (VT.isVector()) 5900 return LowerVectorFP_TO_INT(Op, DAG); 5901 5902 bool IsStrict = Op->isStrictFPOpcode(); 5903 SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0); 5904 5905 if (isUnsupportedFloatingType(SrcVal.getValueType())) { 5906 RTLIB::Libcall LC; 5907 if (Op.getOpcode() == ISD::FP_TO_SINT || 5908 Op.getOpcode() == ISD::STRICT_FP_TO_SINT) 5909 LC = RTLIB::getFPTOSINT(SrcVal.getValueType(), 5910 Op.getValueType()); 5911 else 5912 LC = RTLIB::getFPTOUINT(SrcVal.getValueType(), 5913 Op.getValueType()); 5914 SDLoc Loc(Op); 5915 MakeLibCallOptions CallOptions; 5916 SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue(); 5917 SDValue Result; 5918 std::tie(Result, Chain) = makeLibCall(DAG, LC, Op.getValueType(), SrcVal, 5919 CallOptions, Loc, Chain); 5920 return IsStrict ? DAG.getMergeValues({Result, Chain}, Loc) : Result; 5921 } 5922 5923 // FIXME: Remove this when we have strict fp instruction selection patterns 5924 if (IsStrict) { 5925 SDLoc Loc(Op); 5926 SDValue Result = 5927 DAG.getNode(Op.getOpcode() == ISD::STRICT_FP_TO_SINT ? ISD::FP_TO_SINT 5928 : ISD::FP_TO_UINT, 5929 Loc, Op.getValueType(), SrcVal); 5930 return DAG.getMergeValues({Result, Op.getOperand(0)}, Loc); 5931 } 5932 5933 return Op; 5934 } 5935 5936 static SDValue LowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG, 5937 const ARMSubtarget *Subtarget) { 5938 EVT VT = Op.getValueType(); 5939 EVT ToVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 5940 EVT FromVT = Op.getOperand(0).getValueType(); 5941 5942 if (VT == MVT::i32 && ToVT == MVT::i32 && FromVT == MVT::f32) 5943 return Op; 5944 if (VT == MVT::i32 && ToVT == MVT::i32 && FromVT == MVT::f64 && 5945 Subtarget->hasFP64()) 5946 return Op; 5947 if (VT == MVT::i32 && ToVT == MVT::i32 && FromVT == MVT::f16 && 5948 Subtarget->hasFullFP16()) 5949 return Op; 5950 if (VT == MVT::v4i32 && ToVT == MVT::i32 && FromVT == MVT::v4f32 && 5951 Subtarget->hasMVEFloatOps()) 5952 return Op; 5953 if (VT == MVT::v8i16 && ToVT == MVT::i16 && FromVT == MVT::v8f16 && 5954 Subtarget->hasMVEFloatOps()) 5955 return Op; 5956 5957 if (FromVT != MVT::v4f32 && FromVT != MVT::v8f16) 5958 return SDValue(); 5959 5960 SDLoc DL(Op); 5961 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT; 5962 unsigned BW = ToVT.getScalarSizeInBits() - IsSigned; 5963 SDValue CVT = DAG.getNode(Op.getOpcode(), DL, VT, Op.getOperand(0), 5964 DAG.getValueType(VT.getScalarType())); 5965 SDValue Max = DAG.getNode(IsSigned ? ISD::SMIN : ISD::UMIN, DL, VT, CVT, 5966 DAG.getConstant((1 << BW) - 1, DL, VT)); 5967 if (IsSigned) 5968 Max = DAG.getNode(ISD::SMAX, DL, VT, Max, 5969 DAG.getConstant(-(1 << BW), DL, VT)); 5970 return Max; 5971 } 5972 5973 static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) { 5974 EVT VT = Op.getValueType(); 5975 SDLoc dl(Op); 5976 5977 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) { 5978 if (VT.getVectorElementType() == MVT::f32) 5979 return Op; 5980 return DAG.UnrollVectorOp(Op.getNode()); 5981 } 5982 5983 assert((Op.getOperand(0).getValueType() == MVT::v4i16 || 5984 Op.getOperand(0).getValueType() == MVT::v8i16) && 5985 "Invalid type for custom lowering!"); 5986 5987 const bool HasFullFP16 = DAG.getSubtarget<ARMSubtarget>().hasFullFP16(); 5988 5989 EVT DestVecType; 5990 if (VT == MVT::v4f32) 5991 DestVecType = MVT::v4i32; 5992 else if (VT == MVT::v4f16 && HasFullFP16) 5993 DestVecType = MVT::v4i16; 5994 else if (VT == MVT::v8f16 && HasFullFP16) 5995 DestVecType = MVT::v8i16; 5996 else 5997 return DAG.UnrollVectorOp(Op.getNode()); 5998 5999 unsigned CastOpc; 6000 unsigned Opc; 6001 switch (Op.getOpcode()) { 6002 default: llvm_unreachable("Invalid opcode!"); 6003 case ISD::SINT_TO_FP: 6004 CastOpc = ISD::SIGN_EXTEND; 6005 Opc = ISD::SINT_TO_FP; 6006 break; 6007 case ISD::UINT_TO_FP: 6008 CastOpc = ISD::ZERO_EXTEND; 6009 Opc = ISD::UINT_TO_FP; 6010 break; 6011 } 6012 6013 Op = DAG.getNode(CastOpc, dl, DestVecType, Op.getOperand(0)); 6014 return DAG.getNode(Opc, dl, VT, Op); 6015 } 6016 6017 SDValue ARMTargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const { 6018 EVT VT = Op.getValueType(); 6019 if (VT.isVector()) 6020 return LowerVectorINT_TO_FP(Op, DAG); 6021 if (isUnsupportedFloatingType(VT)) { 6022 RTLIB::Libcall LC; 6023 if (Op.getOpcode() == ISD::SINT_TO_FP) 6024 LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), 6025 Op.getValueType()); 6026 else 6027 LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), 6028 Op.getValueType()); 6029 MakeLibCallOptions CallOptions; 6030 return makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(0), 6031 CallOptions, SDLoc(Op)).first; 6032 } 6033 6034 return Op; 6035 } 6036 6037 SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const { 6038 // Implement fcopysign with a fabs and a conditional fneg. 6039 SDValue Tmp0 = Op.getOperand(0); 6040 SDValue Tmp1 = Op.getOperand(1); 6041 SDLoc dl(Op); 6042 EVT VT = Op.getValueType(); 6043 EVT SrcVT = Tmp1.getValueType(); 6044 bool InGPR = Tmp0.getOpcode() == ISD::BITCAST || 6045 Tmp0.getOpcode() == ARMISD::VMOVDRR; 6046 bool UseNEON = !InGPR && Subtarget->hasNEON(); 6047 6048 if (UseNEON) { 6049 // Use VBSL to copy the sign bit. 6050 unsigned EncodedVal = ARM_AM::createVMOVModImm(0x6, 0x80); 6051 SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32, 6052 DAG.getTargetConstant(EncodedVal, dl, MVT::i32)); 6053 EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64; 6054 if (VT == MVT::f64) 6055 Mask = DAG.getNode(ARMISD::VSHLIMM, dl, OpVT, 6056 DAG.getNode(ISD::BITCAST, dl, OpVT, Mask), 6057 DAG.getConstant(32, dl, MVT::i32)); 6058 else /*if (VT == MVT::f32)*/ 6059 Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0); 6060 if (SrcVT == MVT::f32) { 6061 Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1); 6062 if (VT == MVT::f64) 6063 Tmp1 = DAG.getNode(ARMISD::VSHLIMM, dl, OpVT, 6064 DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1), 6065 DAG.getConstant(32, dl, MVT::i32)); 6066 } else if (VT == MVT::f32) 6067 Tmp1 = DAG.getNode(ARMISD::VSHRuIMM, dl, MVT::v1i64, 6068 DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1), 6069 DAG.getConstant(32, dl, MVT::i32)); 6070 Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0); 6071 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1); 6072 6073 SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0xff), 6074 dl, MVT::i32); 6075 AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes); 6076 SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask, 6077 DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes)); 6078 6079 SDValue Res = DAG.getNode(ISD::OR, dl, OpVT, 6080 DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask), 6081 DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot)); 6082 if (VT == MVT::f32) { 6083 Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res); 6084 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res, 6085 DAG.getConstant(0, dl, MVT::i32)); 6086 } else { 6087 Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res); 6088 } 6089 6090 return Res; 6091 } 6092 6093 // Bitcast operand 1 to i32. 6094 if (SrcVT == MVT::f64) 6095 Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32), 6096 Tmp1).getValue(1); 6097 Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1); 6098 6099 // Or in the signbit with integer operations. 6100 SDValue Mask1 = DAG.getConstant(0x80000000, dl, MVT::i32); 6101 SDValue Mask2 = DAG.getConstant(0x7fffffff, dl, MVT::i32); 6102 Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1); 6103 if (VT == MVT::f32) { 6104 Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32, 6105 DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2); 6106 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 6107 DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1)); 6108 } 6109 6110 // f64: Or the high part with signbit and then combine two parts. 6111 Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32), 6112 Tmp0); 6113 SDValue Lo = Tmp0.getValue(0); 6114 SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2); 6115 Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1); 6116 return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi); 6117 } 6118 6119 SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{ 6120 MachineFunction &MF = DAG.getMachineFunction(); 6121 MachineFrameInfo &MFI = MF.getFrameInfo(); 6122 MFI.setReturnAddressIsTaken(true); 6123 6124 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 6125 return SDValue(); 6126 6127 EVT VT = Op.getValueType(); 6128 SDLoc dl(Op); 6129 unsigned Depth = Op.getConstantOperandVal(0); 6130 if (Depth) { 6131 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 6132 SDValue Offset = DAG.getConstant(4, dl, MVT::i32); 6133 return DAG.getLoad(VT, dl, DAG.getEntryNode(), 6134 DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset), 6135 MachinePointerInfo()); 6136 } 6137 6138 // Return LR, which contains the return address. Mark it an implicit live-in. 6139 Register Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32)); 6140 return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT); 6141 } 6142 6143 SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const { 6144 const ARMBaseRegisterInfo &ARI = 6145 *static_cast<const ARMBaseRegisterInfo*>(RegInfo); 6146 MachineFunction &MF = DAG.getMachineFunction(); 6147 MachineFrameInfo &MFI = MF.getFrameInfo(); 6148 MFI.setFrameAddressIsTaken(true); 6149 6150 EVT VT = Op.getValueType(); 6151 SDLoc dl(Op); // FIXME probably not meaningful 6152 unsigned Depth = Op.getConstantOperandVal(0); 6153 Register FrameReg = ARI.getFrameRegister(MF); 6154 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT); 6155 while (Depth--) 6156 FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, 6157 MachinePointerInfo()); 6158 return FrameAddr; 6159 } 6160 6161 // FIXME? Maybe this could be a TableGen attribute on some registers and 6162 // this table could be generated automatically from RegInfo. 6163 Register ARMTargetLowering::getRegisterByName(const char* RegName, LLT VT, 6164 const MachineFunction &MF) const { 6165 Register Reg = StringSwitch<unsigned>(RegName) 6166 .Case("sp", ARM::SP) 6167 .Default(0); 6168 if (Reg) 6169 return Reg; 6170 report_fatal_error(Twine("Invalid register name \"" 6171 + StringRef(RegName) + "\".")); 6172 } 6173 6174 // Result is 64 bit value so split into two 32 bit values and return as a 6175 // pair of values. 6176 static void ExpandREAD_REGISTER(SDNode *N, SmallVectorImpl<SDValue> &Results, 6177 SelectionDAG &DAG) { 6178 SDLoc DL(N); 6179 6180 // This function is only supposed to be called for i64 type destination. 6181 assert(N->getValueType(0) == MVT::i64 6182 && "ExpandREAD_REGISTER called for non-i64 type result."); 6183 6184 SDValue Read = DAG.getNode(ISD::READ_REGISTER, DL, 6185 DAG.getVTList(MVT::i32, MVT::i32, MVT::Other), 6186 N->getOperand(0), 6187 N->getOperand(1)); 6188 6189 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Read.getValue(0), 6190 Read.getValue(1))); 6191 Results.push_back(Read.getOperand(0)); 6192 } 6193 6194 /// \p BC is a bitcast that is about to be turned into a VMOVDRR. 6195 /// When \p DstVT, the destination type of \p BC, is on the vector 6196 /// register bank and the source of bitcast, \p Op, operates on the same bank, 6197 /// it might be possible to combine them, such that everything stays on the 6198 /// vector register bank. 6199 /// \p return The node that would replace \p BT, if the combine 6200 /// is possible. 6201 static SDValue CombineVMOVDRRCandidateWithVecOp(const SDNode *BC, 6202 SelectionDAG &DAG) { 6203 SDValue Op = BC->getOperand(0); 6204 EVT DstVT = BC->getValueType(0); 6205 6206 // The only vector instruction that can produce a scalar (remember, 6207 // since the bitcast was about to be turned into VMOVDRR, the source 6208 // type is i64) from a vector is EXTRACT_VECTOR_ELT. 6209 // Moreover, we can do this combine only if there is one use. 6210 // Finally, if the destination type is not a vector, there is not 6211 // much point on forcing everything on the vector bank. 6212 if (!DstVT.isVector() || Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 6213 !Op.hasOneUse()) 6214 return SDValue(); 6215 6216 // If the index is not constant, we will introduce an additional 6217 // multiply that will stick. 6218 // Give up in that case. 6219 ConstantSDNode *Index = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 6220 if (!Index) 6221 return SDValue(); 6222 unsigned DstNumElt = DstVT.getVectorNumElements(); 6223 6224 // Compute the new index. 6225 const APInt &APIntIndex = Index->getAPIntValue(); 6226 APInt NewIndex(APIntIndex.getBitWidth(), DstNumElt); 6227 NewIndex *= APIntIndex; 6228 // Check if the new constant index fits into i32. 6229 if (NewIndex.getBitWidth() > 32) 6230 return SDValue(); 6231 6232 // vMTy bitcast(i64 extractelt vNi64 src, i32 index) -> 6233 // vMTy extractsubvector vNxMTy (bitcast vNi64 src), i32 index*M) 6234 SDLoc dl(Op); 6235 SDValue ExtractSrc = Op.getOperand(0); 6236 EVT VecVT = EVT::getVectorVT( 6237 *DAG.getContext(), DstVT.getScalarType(), 6238 ExtractSrc.getValueType().getVectorNumElements() * DstNumElt); 6239 SDValue BitCast = DAG.getNode(ISD::BITCAST, dl, VecVT, ExtractSrc); 6240 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DstVT, BitCast, 6241 DAG.getConstant(NewIndex.getZExtValue(), dl, MVT::i32)); 6242 } 6243 6244 /// ExpandBITCAST - If the target supports VFP, this function is called to 6245 /// expand a bit convert where either the source or destination type is i64 to 6246 /// use a VMOVDRR or VMOVRRD node. This should not be done when the non-i64 6247 /// operand type is illegal (e.g., v2f32 for a target that doesn't support 6248 /// vectors), since the legalizer won't know what to do with that. 6249 SDValue ARMTargetLowering::ExpandBITCAST(SDNode *N, SelectionDAG &DAG, 6250 const ARMSubtarget *Subtarget) const { 6251 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6252 SDLoc dl(N); 6253 SDValue Op = N->getOperand(0); 6254 6255 // This function is only supposed to be called for i16 and i64 types, either 6256 // as the source or destination of the bit convert. 6257 EVT SrcVT = Op.getValueType(); 6258 EVT DstVT = N->getValueType(0); 6259 6260 if ((SrcVT == MVT::i16 || SrcVT == MVT::i32) && 6261 (DstVT == MVT::f16 || DstVT == MVT::bf16)) 6262 return MoveToHPR(SDLoc(N), DAG, MVT::i32, DstVT.getSimpleVT(), 6263 DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), MVT::i32, Op)); 6264 6265 if ((DstVT == MVT::i16 || DstVT == MVT::i32) && 6266 (SrcVT == MVT::f16 || SrcVT == MVT::bf16)) 6267 return DAG.getNode( 6268 ISD::TRUNCATE, SDLoc(N), DstVT, 6269 MoveFromHPR(SDLoc(N), DAG, MVT::i32, SrcVT.getSimpleVT(), Op)); 6270 6271 if (!(SrcVT == MVT::i64 || DstVT == MVT::i64)) 6272 return SDValue(); 6273 6274 // Turn i64->f64 into VMOVDRR. 6275 if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) { 6276 // Do not force values to GPRs (this is what VMOVDRR does for the inputs) 6277 // if we can combine the bitcast with its source. 6278 if (SDValue Val = CombineVMOVDRRCandidateWithVecOp(N, DAG)) 6279 return Val; 6280 SDValue Lo, Hi; 6281 std::tie(Lo, Hi) = DAG.SplitScalar(Op, dl, MVT::i32, MVT::i32); 6282 return DAG.getNode(ISD::BITCAST, dl, DstVT, 6283 DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi)); 6284 } 6285 6286 // Turn f64->i64 into VMOVRRD. 6287 if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) { 6288 SDValue Cvt; 6289 if (DAG.getDataLayout().isBigEndian() && SrcVT.isVector() && 6290 SrcVT.getVectorNumElements() > 1) 6291 Cvt = DAG.getNode(ARMISD::VMOVRRD, dl, 6292 DAG.getVTList(MVT::i32, MVT::i32), 6293 DAG.getNode(ARMISD::VREV64, dl, SrcVT, Op)); 6294 else 6295 Cvt = DAG.getNode(ARMISD::VMOVRRD, dl, 6296 DAG.getVTList(MVT::i32, MVT::i32), Op); 6297 // Merge the pieces into a single i64 value. 6298 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1)); 6299 } 6300 6301 return SDValue(); 6302 } 6303 6304 /// getZeroVector - Returns a vector of specified type with all zero elements. 6305 /// Zero vectors are used to represent vector negation and in those cases 6306 /// will be implemented with the NEON VNEG instruction. However, VNEG does 6307 /// not support i64 elements, so sometimes the zero vectors will need to be 6308 /// explicitly constructed. Regardless, use a canonical VMOV to create the 6309 /// zero vector. 6310 static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, const SDLoc &dl) { 6311 assert(VT.isVector() && "Expected a vector type"); 6312 // The canonical modified immediate encoding of a zero vector is....0! 6313 SDValue EncodedVal = DAG.getTargetConstant(0, dl, MVT::i32); 6314 EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32; 6315 SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal); 6316 return DAG.getNode(ISD::BITCAST, dl, VT, Vmov); 6317 } 6318 6319 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two 6320 /// i32 values and take a 2 x i32 value to shift plus a shift amount. 6321 SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op, 6322 SelectionDAG &DAG) const { 6323 assert(Op.getNumOperands() == 3 && "Not a double-shift!"); 6324 EVT VT = Op.getValueType(); 6325 unsigned VTBits = VT.getSizeInBits(); 6326 SDLoc dl(Op); 6327 SDValue ShOpLo = Op.getOperand(0); 6328 SDValue ShOpHi = Op.getOperand(1); 6329 SDValue ShAmt = Op.getOperand(2); 6330 SDValue ARMcc; 6331 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); 6332 unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL; 6333 6334 assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS); 6335 6336 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, 6337 DAG.getConstant(VTBits, dl, MVT::i32), ShAmt); 6338 SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt); 6339 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt, 6340 DAG.getConstant(VTBits, dl, MVT::i32)); 6341 SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt); 6342 SDValue LoSmallShift = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); 6343 SDValue LoBigShift = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt); 6344 SDValue CmpLo = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32), 6345 ISD::SETGE, ARMcc, DAG, dl); 6346 SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, LoSmallShift, LoBigShift, 6347 ARMcc, CCR, CmpLo); 6348 6349 SDValue HiSmallShift = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt); 6350 SDValue HiBigShift = Opc == ISD::SRA 6351 ? DAG.getNode(Opc, dl, VT, ShOpHi, 6352 DAG.getConstant(VTBits - 1, dl, VT)) 6353 : DAG.getConstant(0, dl, VT); 6354 SDValue CmpHi = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32), 6355 ISD::SETGE, ARMcc, DAG, dl); 6356 SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, HiSmallShift, HiBigShift, 6357 ARMcc, CCR, CmpHi); 6358 6359 SDValue Ops[2] = { Lo, Hi }; 6360 return DAG.getMergeValues(Ops, dl); 6361 } 6362 6363 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two 6364 /// i32 values and take a 2 x i32 value to shift plus a shift amount. 6365 SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op, 6366 SelectionDAG &DAG) const { 6367 assert(Op.getNumOperands() == 3 && "Not a double-shift!"); 6368 EVT VT = Op.getValueType(); 6369 unsigned VTBits = VT.getSizeInBits(); 6370 SDLoc dl(Op); 6371 SDValue ShOpLo = Op.getOperand(0); 6372 SDValue ShOpHi = Op.getOperand(1); 6373 SDValue ShAmt = Op.getOperand(2); 6374 SDValue ARMcc; 6375 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); 6376 6377 assert(Op.getOpcode() == ISD::SHL_PARTS); 6378 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, 6379 DAG.getConstant(VTBits, dl, MVT::i32), ShAmt); 6380 SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt); 6381 SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt); 6382 SDValue HiSmallShift = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); 6383 6384 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt, 6385 DAG.getConstant(VTBits, dl, MVT::i32)); 6386 SDValue HiBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt); 6387 SDValue CmpHi = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32), 6388 ISD::SETGE, ARMcc, DAG, dl); 6389 SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, HiSmallShift, HiBigShift, 6390 ARMcc, CCR, CmpHi); 6391 6392 SDValue CmpLo = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32), 6393 ISD::SETGE, ARMcc, DAG, dl); 6394 SDValue LoSmallShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt); 6395 SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, LoSmallShift, 6396 DAG.getConstant(0, dl, VT), ARMcc, CCR, CmpLo); 6397 6398 SDValue Ops[2] = { Lo, Hi }; 6399 return DAG.getMergeValues(Ops, dl); 6400 } 6401 6402 SDValue ARMTargetLowering::LowerGET_ROUNDING(SDValue Op, 6403 SelectionDAG &DAG) const { 6404 // The rounding mode is in bits 23:22 of the FPSCR. 6405 // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0 6406 // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3) 6407 // so that the shift + and get folded into a bitfield extract. 6408 SDLoc dl(Op); 6409 SDValue Chain = Op.getOperand(0); 6410 SDValue Ops[] = {Chain, 6411 DAG.getConstant(Intrinsic::arm_get_fpscr, dl, MVT::i32)}; 6412 6413 SDValue FPSCR = 6414 DAG.getNode(ISD::INTRINSIC_W_CHAIN, dl, {MVT::i32, MVT::Other}, Ops); 6415 Chain = FPSCR.getValue(1); 6416 SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR, 6417 DAG.getConstant(1U << 22, dl, MVT::i32)); 6418 SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds, 6419 DAG.getConstant(22, dl, MVT::i32)); 6420 SDValue And = DAG.getNode(ISD::AND, dl, MVT::i32, RMODE, 6421 DAG.getConstant(3, dl, MVT::i32)); 6422 return DAG.getMergeValues({And, Chain}, dl); 6423 } 6424 6425 SDValue ARMTargetLowering::LowerSET_ROUNDING(SDValue Op, 6426 SelectionDAG &DAG) const { 6427 SDLoc DL(Op); 6428 SDValue Chain = Op->getOperand(0); 6429 SDValue RMValue = Op->getOperand(1); 6430 6431 // The rounding mode is in bits 23:22 of the FPSCR. 6432 // The llvm.set.rounding argument value to ARM rounding mode value mapping 6433 // is 0->3, 1->0, 2->1, 3->2. The formula we use to implement this is 6434 // ((arg - 1) & 3) << 22). 6435 // 6436 // It is expected that the argument of llvm.set.rounding is within the 6437 // segment [0, 3], so NearestTiesToAway (4) is not handled here. It is 6438 // responsibility of the code generated llvm.set.rounding to ensure this 6439 // condition. 6440 6441 // Calculate new value of FPSCR[23:22]. 6442 RMValue = DAG.getNode(ISD::SUB, DL, MVT::i32, RMValue, 6443 DAG.getConstant(1, DL, MVT::i32)); 6444 RMValue = DAG.getNode(ISD::AND, DL, MVT::i32, RMValue, 6445 DAG.getConstant(0x3, DL, MVT::i32)); 6446 RMValue = DAG.getNode(ISD::SHL, DL, MVT::i32, RMValue, 6447 DAG.getConstant(ARM::RoundingBitsPos, DL, MVT::i32)); 6448 6449 // Get current value of FPSCR. 6450 SDValue Ops[] = {Chain, 6451 DAG.getConstant(Intrinsic::arm_get_fpscr, DL, MVT::i32)}; 6452 SDValue FPSCR = 6453 DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL, {MVT::i32, MVT::Other}, Ops); 6454 Chain = FPSCR.getValue(1); 6455 FPSCR = FPSCR.getValue(0); 6456 6457 // Put new rounding mode into FPSCR[23:22]. 6458 const unsigned RMMask = ~(ARM::Rounding::rmMask << ARM::RoundingBitsPos); 6459 FPSCR = DAG.getNode(ISD::AND, DL, MVT::i32, FPSCR, 6460 DAG.getConstant(RMMask, DL, MVT::i32)); 6461 FPSCR = DAG.getNode(ISD::OR, DL, MVT::i32, FPSCR, RMValue); 6462 SDValue Ops2[] = { 6463 Chain, DAG.getConstant(Intrinsic::arm_set_fpscr, DL, MVT::i32), FPSCR}; 6464 return DAG.getNode(ISD::INTRINSIC_VOID, DL, MVT::Other, Ops2); 6465 } 6466 6467 SDValue ARMTargetLowering::LowerSET_FPMODE(SDValue Op, 6468 SelectionDAG &DAG) const { 6469 SDLoc DL(Op); 6470 SDValue Chain = Op->getOperand(0); 6471 SDValue Mode = Op->getOperand(1); 6472 6473 // Generate nodes to build: 6474 // FPSCR = (FPSCR & FPStatusBits) | (Mode & ~FPStatusBits) 6475 SDValue Ops[] = {Chain, 6476 DAG.getConstant(Intrinsic::arm_get_fpscr, DL, MVT::i32)}; 6477 SDValue FPSCR = 6478 DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL, {MVT::i32, MVT::Other}, Ops); 6479 Chain = FPSCR.getValue(1); 6480 FPSCR = FPSCR.getValue(0); 6481 6482 SDValue FPSCRMasked = 6483 DAG.getNode(ISD::AND, DL, MVT::i32, FPSCR, 6484 DAG.getConstant(ARM::FPStatusBits, DL, MVT::i32)); 6485 SDValue InputMasked = 6486 DAG.getNode(ISD::AND, DL, MVT::i32, Mode, 6487 DAG.getConstant(~ARM::FPStatusBits, DL, MVT::i32)); 6488 FPSCR = DAG.getNode(ISD::OR, DL, MVT::i32, FPSCRMasked, InputMasked); 6489 6490 SDValue Ops2[] = { 6491 Chain, DAG.getConstant(Intrinsic::arm_set_fpscr, DL, MVT::i32), FPSCR}; 6492 return DAG.getNode(ISD::INTRINSIC_VOID, DL, MVT::Other, Ops2); 6493 } 6494 6495 SDValue ARMTargetLowering::LowerRESET_FPMODE(SDValue Op, 6496 SelectionDAG &DAG) const { 6497 SDLoc DL(Op); 6498 SDValue Chain = Op->getOperand(0); 6499 6500 // To get the default FP mode all control bits are cleared: 6501 // FPSCR = FPSCR & (FPStatusBits | FPReservedBits) 6502 SDValue Ops[] = {Chain, 6503 DAG.getConstant(Intrinsic::arm_get_fpscr, DL, MVT::i32)}; 6504 SDValue FPSCR = 6505 DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL, {MVT::i32, MVT::Other}, Ops); 6506 Chain = FPSCR.getValue(1); 6507 FPSCR = FPSCR.getValue(0); 6508 6509 SDValue FPSCRMasked = DAG.getNode( 6510 ISD::AND, DL, MVT::i32, FPSCR, 6511 DAG.getConstant(ARM::FPStatusBits | ARM::FPReservedBits, DL, MVT::i32)); 6512 SDValue Ops2[] = {Chain, 6513 DAG.getConstant(Intrinsic::arm_set_fpscr, DL, MVT::i32), 6514 FPSCRMasked}; 6515 return DAG.getNode(ISD::INTRINSIC_VOID, DL, MVT::Other, Ops2); 6516 } 6517 6518 static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG, 6519 const ARMSubtarget *ST) { 6520 SDLoc dl(N); 6521 EVT VT = N->getValueType(0); 6522 if (VT.isVector() && ST->hasNEON()) { 6523 6524 // Compute the least significant set bit: LSB = X & -X 6525 SDValue X = N->getOperand(0); 6526 SDValue NX = DAG.getNode(ISD::SUB, dl, VT, getZeroVector(VT, DAG, dl), X); 6527 SDValue LSB = DAG.getNode(ISD::AND, dl, VT, X, NX); 6528 6529 EVT ElemTy = VT.getVectorElementType(); 6530 6531 if (ElemTy == MVT::i8) { 6532 // Compute with: cttz(x) = ctpop(lsb - 1) 6533 SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT, 6534 DAG.getTargetConstant(1, dl, ElemTy)); 6535 SDValue Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One); 6536 return DAG.getNode(ISD::CTPOP, dl, VT, Bits); 6537 } 6538 6539 if ((ElemTy == MVT::i16 || ElemTy == MVT::i32) && 6540 (N->getOpcode() == ISD::CTTZ_ZERO_UNDEF)) { 6541 // Compute with: cttz(x) = (width - 1) - ctlz(lsb), if x != 0 6542 unsigned NumBits = ElemTy.getSizeInBits(); 6543 SDValue WidthMinus1 = 6544 DAG.getNode(ARMISD::VMOVIMM, dl, VT, 6545 DAG.getTargetConstant(NumBits - 1, dl, ElemTy)); 6546 SDValue CTLZ = DAG.getNode(ISD::CTLZ, dl, VT, LSB); 6547 return DAG.getNode(ISD::SUB, dl, VT, WidthMinus1, CTLZ); 6548 } 6549 6550 // Compute with: cttz(x) = ctpop(lsb - 1) 6551 6552 // Compute LSB - 1. 6553 SDValue Bits; 6554 if (ElemTy == MVT::i64) { 6555 // Load constant 0xffff'ffff'ffff'ffff to register. 6556 SDValue FF = DAG.getNode(ARMISD::VMOVIMM, dl, VT, 6557 DAG.getTargetConstant(0x1eff, dl, MVT::i32)); 6558 Bits = DAG.getNode(ISD::ADD, dl, VT, LSB, FF); 6559 } else { 6560 SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT, 6561 DAG.getTargetConstant(1, dl, ElemTy)); 6562 Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One); 6563 } 6564 return DAG.getNode(ISD::CTPOP, dl, VT, Bits); 6565 } 6566 6567 if (!ST->hasV6T2Ops()) 6568 return SDValue(); 6569 6570 SDValue rbit = DAG.getNode(ISD::BITREVERSE, dl, VT, N->getOperand(0)); 6571 return DAG.getNode(ISD::CTLZ, dl, VT, rbit); 6572 } 6573 6574 static SDValue LowerCTPOP(SDNode *N, SelectionDAG &DAG, 6575 const ARMSubtarget *ST) { 6576 EVT VT = N->getValueType(0); 6577 SDLoc DL(N); 6578 6579 assert(ST->hasNEON() && "Custom ctpop lowering requires NEON."); 6580 assert((VT == MVT::v1i64 || VT == MVT::v2i64 || VT == MVT::v2i32 || 6581 VT == MVT::v4i32 || VT == MVT::v4i16 || VT == MVT::v8i16) && 6582 "Unexpected type for custom ctpop lowering"); 6583 6584 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6585 EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8; 6586 SDValue Res = DAG.getBitcast(VT8Bit, N->getOperand(0)); 6587 Res = DAG.getNode(ISD::CTPOP, DL, VT8Bit, Res); 6588 6589 // Widen v8i8/v16i8 CTPOP result to VT by repeatedly widening pairwise adds. 6590 unsigned EltSize = 8; 6591 unsigned NumElts = VT.is64BitVector() ? 8 : 16; 6592 while (EltSize != VT.getScalarSizeInBits()) { 6593 SmallVector<SDValue, 8> Ops; 6594 Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddlu, DL, 6595 TLI.getPointerTy(DAG.getDataLayout()))); 6596 Ops.push_back(Res); 6597 6598 EltSize *= 2; 6599 NumElts /= 2; 6600 MVT WidenVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize), NumElts); 6601 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, WidenVT, Ops); 6602 } 6603 6604 return Res; 6605 } 6606 6607 /// Getvshiftimm - Check if this is a valid build_vector for the immediate 6608 /// operand of a vector shift operation, where all the elements of the 6609 /// build_vector must have the same constant integer value. 6610 static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) { 6611 // Ignore bit_converts. 6612 while (Op.getOpcode() == ISD::BITCAST) 6613 Op = Op.getOperand(0); 6614 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 6615 APInt SplatBits, SplatUndef; 6616 unsigned SplatBitSize; 6617 bool HasAnyUndefs; 6618 if (!BVN || 6619 !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 6620 ElementBits) || 6621 SplatBitSize > ElementBits) 6622 return false; 6623 Cnt = SplatBits.getSExtValue(); 6624 return true; 6625 } 6626 6627 /// isVShiftLImm - Check if this is a valid build_vector for the immediate 6628 /// operand of a vector shift left operation. That value must be in the range: 6629 /// 0 <= Value < ElementBits for a left shift; or 6630 /// 0 <= Value <= ElementBits for a long left shift. 6631 static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) { 6632 assert(VT.isVector() && "vector shift count is not a vector type"); 6633 int64_t ElementBits = VT.getScalarSizeInBits(); 6634 if (!getVShiftImm(Op, ElementBits, Cnt)) 6635 return false; 6636 return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits); 6637 } 6638 6639 /// isVShiftRImm - Check if this is a valid build_vector for the immediate 6640 /// operand of a vector shift right operation. For a shift opcode, the value 6641 /// is positive, but for an intrinsic the value count must be negative. The 6642 /// absolute value must be in the range: 6643 /// 1 <= |Value| <= ElementBits for a right shift; or 6644 /// 1 <= |Value| <= ElementBits/2 for a narrow right shift. 6645 static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic, 6646 int64_t &Cnt) { 6647 assert(VT.isVector() && "vector shift count is not a vector type"); 6648 int64_t ElementBits = VT.getScalarSizeInBits(); 6649 if (!getVShiftImm(Op, ElementBits, Cnt)) 6650 return false; 6651 if (!isIntrinsic) 6652 return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits)); 6653 if (Cnt >= -(isNarrow ? ElementBits / 2 : ElementBits) && Cnt <= -1) { 6654 Cnt = -Cnt; 6655 return true; 6656 } 6657 return false; 6658 } 6659 6660 static SDValue LowerShift(SDNode *N, SelectionDAG &DAG, 6661 const ARMSubtarget *ST) { 6662 EVT VT = N->getValueType(0); 6663 SDLoc dl(N); 6664 int64_t Cnt; 6665 6666 if (!VT.isVector()) 6667 return SDValue(); 6668 6669 // We essentially have two forms here. Shift by an immediate and shift by a 6670 // vector register (there are also shift by a gpr, but that is just handled 6671 // with a tablegen pattern). We cannot easily match shift by an immediate in 6672 // tablegen so we do that here and generate a VSHLIMM/VSHRsIMM/VSHRuIMM. 6673 // For shifting by a vector, we don't have VSHR, only VSHL (which can be 6674 // signed or unsigned, and a negative shift indicates a shift right). 6675 if (N->getOpcode() == ISD::SHL) { 6676 if (isVShiftLImm(N->getOperand(1), VT, false, Cnt)) 6677 return DAG.getNode(ARMISD::VSHLIMM, dl, VT, N->getOperand(0), 6678 DAG.getConstant(Cnt, dl, MVT::i32)); 6679 return DAG.getNode(ARMISD::VSHLu, dl, VT, N->getOperand(0), 6680 N->getOperand(1)); 6681 } 6682 6683 assert((N->getOpcode() == ISD::SRA || N->getOpcode() == ISD::SRL) && 6684 "unexpected vector shift opcode"); 6685 6686 if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) { 6687 unsigned VShiftOpc = 6688 (N->getOpcode() == ISD::SRA ? ARMISD::VSHRsIMM : ARMISD::VSHRuIMM); 6689 return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0), 6690 DAG.getConstant(Cnt, dl, MVT::i32)); 6691 } 6692 6693 // Other right shifts we don't have operations for (we use a shift left by a 6694 // negative number). 6695 EVT ShiftVT = N->getOperand(1).getValueType(); 6696 SDValue NegatedCount = DAG.getNode( 6697 ISD::SUB, dl, ShiftVT, getZeroVector(ShiftVT, DAG, dl), N->getOperand(1)); 6698 unsigned VShiftOpc = 6699 (N->getOpcode() == ISD::SRA ? ARMISD::VSHLs : ARMISD::VSHLu); 6700 return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0), NegatedCount); 6701 } 6702 6703 static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG, 6704 const ARMSubtarget *ST) { 6705 EVT VT = N->getValueType(0); 6706 SDLoc dl(N); 6707 6708 // We can get here for a node like i32 = ISD::SHL i32, i64 6709 if (VT != MVT::i64) 6710 return SDValue(); 6711 6712 assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA || 6713 N->getOpcode() == ISD::SHL) && 6714 "Unknown shift to lower!"); 6715 6716 unsigned ShOpc = N->getOpcode(); 6717 if (ST->hasMVEIntegerOps()) { 6718 SDValue ShAmt = N->getOperand(1); 6719 unsigned ShPartsOpc = ARMISD::LSLL; 6720 ConstantSDNode *Con = dyn_cast<ConstantSDNode>(ShAmt); 6721 6722 // If the shift amount is greater than 32 or has a greater bitwidth than 64 6723 // then do the default optimisation 6724 if ((!Con && ShAmt->getValueType(0).getSizeInBits() > 64) || 6725 (Con && (Con->getAPIntValue() == 0 || Con->getAPIntValue().uge(32)))) 6726 return SDValue(); 6727 6728 // Extract the lower 32 bits of the shift amount if it's not an i32 6729 if (ShAmt->getValueType(0) != MVT::i32) 6730 ShAmt = DAG.getZExtOrTrunc(ShAmt, dl, MVT::i32); 6731 6732 if (ShOpc == ISD::SRL) { 6733 if (!Con) 6734 // There is no t2LSRLr instruction so negate and perform an lsll if the 6735 // shift amount is in a register, emulating a right shift. 6736 ShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, 6737 DAG.getConstant(0, dl, MVT::i32), ShAmt); 6738 else 6739 // Else generate an lsrl on the immediate shift amount 6740 ShPartsOpc = ARMISD::LSRL; 6741 } else if (ShOpc == ISD::SRA) 6742 ShPartsOpc = ARMISD::ASRL; 6743 6744 // Split Lower/Upper 32 bits of the destination/source 6745 SDValue Lo, Hi; 6746 std::tie(Lo, Hi) = 6747 DAG.SplitScalar(N->getOperand(0), dl, MVT::i32, MVT::i32); 6748 // Generate the shift operation as computed above 6749 Lo = DAG.getNode(ShPartsOpc, dl, DAG.getVTList(MVT::i32, MVT::i32), Lo, Hi, 6750 ShAmt); 6751 // The upper 32 bits come from the second return value of lsll 6752 Hi = SDValue(Lo.getNode(), 1); 6753 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 6754 } 6755 6756 // We only lower SRA, SRL of 1 here, all others use generic lowering. 6757 if (!isOneConstant(N->getOperand(1)) || N->getOpcode() == ISD::SHL) 6758 return SDValue(); 6759 6760 // If we are in thumb mode, we don't have RRX. 6761 if (ST->isThumb1Only()) 6762 return SDValue(); 6763 6764 // Okay, we have a 64-bit SRA or SRL of 1. Lower this to an RRX expr. 6765 SDValue Lo, Hi; 6766 std::tie(Lo, Hi) = DAG.SplitScalar(N->getOperand(0), dl, MVT::i32, MVT::i32); 6767 6768 // First, build a SRA_GLUE/SRL_GLUE op, which shifts the top part by one and 6769 // captures the result into a carry flag. 6770 unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_GLUE:ARMISD::SRA_GLUE; 6771 Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), Hi); 6772 6773 // The low part is an ARMISD::RRX operand, which shifts the carry in. 6774 Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1)); 6775 6776 // Merge the pieces into a single i64 value. 6777 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 6778 } 6779 6780 static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG, 6781 const ARMSubtarget *ST) { 6782 bool Invert = false; 6783 bool Swap = false; 6784 unsigned Opc = ARMCC::AL; 6785 6786 SDValue Op0 = Op.getOperand(0); 6787 SDValue Op1 = Op.getOperand(1); 6788 SDValue CC = Op.getOperand(2); 6789 EVT VT = Op.getValueType(); 6790 ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get(); 6791 SDLoc dl(Op); 6792 6793 EVT CmpVT; 6794 if (ST->hasNEON()) 6795 CmpVT = Op0.getValueType().changeVectorElementTypeToInteger(); 6796 else { 6797 assert(ST->hasMVEIntegerOps() && 6798 "No hardware support for integer vector comparison!"); 6799 6800 if (Op.getValueType().getVectorElementType() != MVT::i1) 6801 return SDValue(); 6802 6803 // Make sure we expand floating point setcc to scalar if we do not have 6804 // mve.fp, so that we can handle them from there. 6805 if (Op0.getValueType().isFloatingPoint() && !ST->hasMVEFloatOps()) 6806 return SDValue(); 6807 6808 CmpVT = VT; 6809 } 6810 6811 if (Op0.getValueType().getVectorElementType() == MVT::i64 && 6812 (SetCCOpcode == ISD::SETEQ || SetCCOpcode == ISD::SETNE)) { 6813 // Special-case integer 64-bit equality comparisons. They aren't legal, 6814 // but they can be lowered with a few vector instructions. 6815 unsigned CmpElements = CmpVT.getVectorNumElements() * 2; 6816 EVT SplitVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, CmpElements); 6817 SDValue CastOp0 = DAG.getNode(ISD::BITCAST, dl, SplitVT, Op0); 6818 SDValue CastOp1 = DAG.getNode(ISD::BITCAST, dl, SplitVT, Op1); 6819 SDValue Cmp = DAG.getNode(ISD::SETCC, dl, SplitVT, CastOp0, CastOp1, 6820 DAG.getCondCode(ISD::SETEQ)); 6821 SDValue Reversed = DAG.getNode(ARMISD::VREV64, dl, SplitVT, Cmp); 6822 SDValue Merged = DAG.getNode(ISD::AND, dl, SplitVT, Cmp, Reversed); 6823 Merged = DAG.getNode(ISD::BITCAST, dl, CmpVT, Merged); 6824 if (SetCCOpcode == ISD::SETNE) 6825 Merged = DAG.getNOT(dl, Merged, CmpVT); 6826 Merged = DAG.getSExtOrTrunc(Merged, dl, VT); 6827 return Merged; 6828 } 6829 6830 if (CmpVT.getVectorElementType() == MVT::i64) 6831 // 64-bit comparisons are not legal in general. 6832 return SDValue(); 6833 6834 if (Op1.getValueType().isFloatingPoint()) { 6835 switch (SetCCOpcode) { 6836 default: llvm_unreachable("Illegal FP comparison"); 6837 case ISD::SETUNE: 6838 case ISD::SETNE: 6839 if (ST->hasMVEFloatOps()) { 6840 Opc = ARMCC::NE; break; 6841 } else { 6842 Invert = true; [[fallthrough]]; 6843 } 6844 case ISD::SETOEQ: 6845 case ISD::SETEQ: Opc = ARMCC::EQ; break; 6846 case ISD::SETOLT: 6847 case ISD::SETLT: Swap = true; [[fallthrough]]; 6848 case ISD::SETOGT: 6849 case ISD::SETGT: Opc = ARMCC::GT; break; 6850 case ISD::SETOLE: 6851 case ISD::SETLE: Swap = true; [[fallthrough]]; 6852 case ISD::SETOGE: 6853 case ISD::SETGE: Opc = ARMCC::GE; break; 6854 case ISD::SETUGE: Swap = true; [[fallthrough]]; 6855 case ISD::SETULE: Invert = true; Opc = ARMCC::GT; break; 6856 case ISD::SETUGT: Swap = true; [[fallthrough]]; 6857 case ISD::SETULT: Invert = true; Opc = ARMCC::GE; break; 6858 case ISD::SETUEQ: Invert = true; [[fallthrough]]; 6859 case ISD::SETONE: { 6860 // Expand this to (OLT | OGT). 6861 SDValue TmpOp0 = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op1, Op0, 6862 DAG.getConstant(ARMCC::GT, dl, MVT::i32)); 6863 SDValue TmpOp1 = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op0, Op1, 6864 DAG.getConstant(ARMCC::GT, dl, MVT::i32)); 6865 SDValue Result = DAG.getNode(ISD::OR, dl, CmpVT, TmpOp0, TmpOp1); 6866 if (Invert) 6867 Result = DAG.getNOT(dl, Result, VT); 6868 return Result; 6869 } 6870 case ISD::SETUO: Invert = true; [[fallthrough]]; 6871 case ISD::SETO: { 6872 // Expand this to (OLT | OGE). 6873 SDValue TmpOp0 = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op1, Op0, 6874 DAG.getConstant(ARMCC::GT, dl, MVT::i32)); 6875 SDValue TmpOp1 = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op0, Op1, 6876 DAG.getConstant(ARMCC::GE, dl, MVT::i32)); 6877 SDValue Result = DAG.getNode(ISD::OR, dl, CmpVT, TmpOp0, TmpOp1); 6878 if (Invert) 6879 Result = DAG.getNOT(dl, Result, VT); 6880 return Result; 6881 } 6882 } 6883 } else { 6884 // Integer comparisons. 6885 switch (SetCCOpcode) { 6886 default: llvm_unreachable("Illegal integer comparison"); 6887 case ISD::SETNE: 6888 if (ST->hasMVEIntegerOps()) { 6889 Opc = ARMCC::NE; break; 6890 } else { 6891 Invert = true; [[fallthrough]]; 6892 } 6893 case ISD::SETEQ: Opc = ARMCC::EQ; break; 6894 case ISD::SETLT: Swap = true; [[fallthrough]]; 6895 case ISD::SETGT: Opc = ARMCC::GT; break; 6896 case ISD::SETLE: Swap = true; [[fallthrough]]; 6897 case ISD::SETGE: Opc = ARMCC::GE; break; 6898 case ISD::SETULT: Swap = true; [[fallthrough]]; 6899 case ISD::SETUGT: Opc = ARMCC::HI; break; 6900 case ISD::SETULE: Swap = true; [[fallthrough]]; 6901 case ISD::SETUGE: Opc = ARMCC::HS; break; 6902 } 6903 6904 // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero). 6905 if (ST->hasNEON() && Opc == ARMCC::EQ) { 6906 SDValue AndOp; 6907 if (ISD::isBuildVectorAllZeros(Op1.getNode())) 6908 AndOp = Op0; 6909 else if (ISD::isBuildVectorAllZeros(Op0.getNode())) 6910 AndOp = Op1; 6911 6912 // Ignore bitconvert. 6913 if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST) 6914 AndOp = AndOp.getOperand(0); 6915 6916 if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) { 6917 Op0 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(0)); 6918 Op1 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(1)); 6919 SDValue Result = DAG.getNode(ARMISD::VTST, dl, CmpVT, Op0, Op1); 6920 if (!Invert) 6921 Result = DAG.getNOT(dl, Result, VT); 6922 return Result; 6923 } 6924 } 6925 } 6926 6927 if (Swap) 6928 std::swap(Op0, Op1); 6929 6930 // If one of the operands is a constant vector zero, attempt to fold the 6931 // comparison to a specialized compare-against-zero form. 6932 if (ISD::isBuildVectorAllZeros(Op0.getNode()) && 6933 (Opc == ARMCC::GE || Opc == ARMCC::GT || Opc == ARMCC::EQ || 6934 Opc == ARMCC::NE)) { 6935 if (Opc == ARMCC::GE) 6936 Opc = ARMCC::LE; 6937 else if (Opc == ARMCC::GT) 6938 Opc = ARMCC::LT; 6939 std::swap(Op0, Op1); 6940 } 6941 6942 SDValue Result; 6943 if (ISD::isBuildVectorAllZeros(Op1.getNode()) && 6944 (Opc == ARMCC::GE || Opc == ARMCC::GT || Opc == ARMCC::LE || 6945 Opc == ARMCC::LT || Opc == ARMCC::NE || Opc == ARMCC::EQ)) 6946 Result = DAG.getNode(ARMISD::VCMPZ, dl, CmpVT, Op0, 6947 DAG.getConstant(Opc, dl, MVT::i32)); 6948 else 6949 Result = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op0, Op1, 6950 DAG.getConstant(Opc, dl, MVT::i32)); 6951 6952 Result = DAG.getSExtOrTrunc(Result, dl, VT); 6953 6954 if (Invert) 6955 Result = DAG.getNOT(dl, Result, VT); 6956 6957 return Result; 6958 } 6959 6960 static SDValue LowerSETCCCARRY(SDValue Op, SelectionDAG &DAG) { 6961 SDValue LHS = Op.getOperand(0); 6962 SDValue RHS = Op.getOperand(1); 6963 SDValue Carry = Op.getOperand(2); 6964 SDValue Cond = Op.getOperand(3); 6965 SDLoc DL(Op); 6966 6967 assert(LHS.getSimpleValueType().isInteger() && "SETCCCARRY is integer only."); 6968 6969 // ARMISD::SUBE expects a carry not a borrow like ISD::USUBO_CARRY so we 6970 // have to invert the carry first. 6971 Carry = DAG.getNode(ISD::SUB, DL, MVT::i32, 6972 DAG.getConstant(1, DL, MVT::i32), Carry); 6973 // This converts the boolean value carry into the carry flag. 6974 Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG); 6975 6976 SDVTList VTs = DAG.getVTList(LHS.getValueType(), MVT::i32); 6977 SDValue Cmp = DAG.getNode(ARMISD::SUBE, DL, VTs, LHS, RHS, Carry); 6978 6979 SDValue FVal = DAG.getConstant(0, DL, MVT::i32); 6980 SDValue TVal = DAG.getConstant(1, DL, MVT::i32); 6981 SDValue ARMcc = DAG.getConstant( 6982 IntCCToARMCC(cast<CondCodeSDNode>(Cond)->get()), DL, MVT::i32); 6983 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); 6984 SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, ARM::CPSR, 6985 Cmp.getValue(1), SDValue()); 6986 return DAG.getNode(ARMISD::CMOV, DL, Op.getValueType(), FVal, TVal, ARMcc, 6987 CCR, Chain.getValue(1)); 6988 } 6989 6990 /// isVMOVModifiedImm - Check if the specified splat value corresponds to a 6991 /// valid vector constant for a NEON or MVE instruction with a "modified 6992 /// immediate" operand (e.g., VMOV). If so, return the encoded value. 6993 static SDValue isVMOVModifiedImm(uint64_t SplatBits, uint64_t SplatUndef, 6994 unsigned SplatBitSize, SelectionDAG &DAG, 6995 const SDLoc &dl, EVT &VT, EVT VectorVT, 6996 VMOVModImmType type) { 6997 unsigned OpCmode, Imm; 6998 bool is128Bits = VectorVT.is128BitVector(); 6999 7000 // SplatBitSize is set to the smallest size that splats the vector, so a 7001 // zero vector will always have SplatBitSize == 8. However, NEON modified 7002 // immediate instructions others than VMOV do not support the 8-bit encoding 7003 // of a zero vector, and the default encoding of zero is supposed to be the 7004 // 32-bit version. 7005 if (SplatBits == 0) 7006 SplatBitSize = 32; 7007 7008 switch (SplatBitSize) { 7009 case 8: 7010 if (type != VMOVModImm) 7011 return SDValue(); 7012 // Any 1-byte value is OK. Op=0, Cmode=1110. 7013 assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big"); 7014 OpCmode = 0xe; 7015 Imm = SplatBits; 7016 VT = is128Bits ? MVT::v16i8 : MVT::v8i8; 7017 break; 7018 7019 case 16: 7020 // NEON's 16-bit VMOV supports splat values where only one byte is nonzero. 7021 VT = is128Bits ? MVT::v8i16 : MVT::v4i16; 7022 if ((SplatBits & ~0xff) == 0) { 7023 // Value = 0x00nn: Op=x, Cmode=100x. 7024 OpCmode = 0x8; 7025 Imm = SplatBits; 7026 break; 7027 } 7028 if ((SplatBits & ~0xff00) == 0) { 7029 // Value = 0xnn00: Op=x, Cmode=101x. 7030 OpCmode = 0xa; 7031 Imm = SplatBits >> 8; 7032 break; 7033 } 7034 return SDValue(); 7035 7036 case 32: 7037 // NEON's 32-bit VMOV supports splat values where: 7038 // * only one byte is nonzero, or 7039 // * the least significant byte is 0xff and the second byte is nonzero, or 7040 // * the least significant 2 bytes are 0xff and the third is nonzero. 7041 VT = is128Bits ? MVT::v4i32 : MVT::v2i32; 7042 if ((SplatBits & ~0xff) == 0) { 7043 // Value = 0x000000nn: Op=x, Cmode=000x. 7044 OpCmode = 0; 7045 Imm = SplatBits; 7046 break; 7047 } 7048 if ((SplatBits & ~0xff00) == 0) { 7049 // Value = 0x0000nn00: Op=x, Cmode=001x. 7050 OpCmode = 0x2; 7051 Imm = SplatBits >> 8; 7052 break; 7053 } 7054 if ((SplatBits & ~0xff0000) == 0) { 7055 // Value = 0x00nn0000: Op=x, Cmode=010x. 7056 OpCmode = 0x4; 7057 Imm = SplatBits >> 16; 7058 break; 7059 } 7060 if ((SplatBits & ~0xff000000) == 0) { 7061 // Value = 0xnn000000: Op=x, Cmode=011x. 7062 OpCmode = 0x6; 7063 Imm = SplatBits >> 24; 7064 break; 7065 } 7066 7067 // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC 7068 if (type == OtherModImm) return SDValue(); 7069 7070 if ((SplatBits & ~0xffff) == 0 && 7071 ((SplatBits | SplatUndef) & 0xff) == 0xff) { 7072 // Value = 0x0000nnff: Op=x, Cmode=1100. 7073 OpCmode = 0xc; 7074 Imm = SplatBits >> 8; 7075 break; 7076 } 7077 7078 // cmode == 0b1101 is not supported for MVE VMVN 7079 if (type == MVEVMVNModImm) 7080 return SDValue(); 7081 7082 if ((SplatBits & ~0xffffff) == 0 && 7083 ((SplatBits | SplatUndef) & 0xffff) == 0xffff) { 7084 // Value = 0x00nnffff: Op=x, Cmode=1101. 7085 OpCmode = 0xd; 7086 Imm = SplatBits >> 16; 7087 break; 7088 } 7089 7090 // Note: there are a few 32-bit splat values (specifically: 00ffff00, 7091 // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not 7092 // VMOV.I32. A (very) minor optimization would be to replicate the value 7093 // and fall through here to test for a valid 64-bit splat. But, then the 7094 // caller would also need to check and handle the change in size. 7095 return SDValue(); 7096 7097 case 64: { 7098 if (type != VMOVModImm) 7099 return SDValue(); 7100 // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff. 7101 uint64_t BitMask = 0xff; 7102 unsigned ImmMask = 1; 7103 Imm = 0; 7104 for (int ByteNum = 0; ByteNum < 8; ++ByteNum) { 7105 if (((SplatBits | SplatUndef) & BitMask) == BitMask) { 7106 Imm |= ImmMask; 7107 } else if ((SplatBits & BitMask) != 0) { 7108 return SDValue(); 7109 } 7110 BitMask <<= 8; 7111 ImmMask <<= 1; 7112 } 7113 7114 if (DAG.getDataLayout().isBigEndian()) { 7115 // Reverse the order of elements within the vector. 7116 unsigned BytesPerElem = VectorVT.getScalarSizeInBits() / 8; 7117 unsigned Mask = (1 << BytesPerElem) - 1; 7118 unsigned NumElems = 8 / BytesPerElem; 7119 unsigned NewImm = 0; 7120 for (unsigned ElemNum = 0; ElemNum < NumElems; ++ElemNum) { 7121 unsigned Elem = ((Imm >> ElemNum * BytesPerElem) & Mask); 7122 NewImm |= Elem << (NumElems - ElemNum - 1) * BytesPerElem; 7123 } 7124 Imm = NewImm; 7125 } 7126 7127 // Op=1, Cmode=1110. 7128 OpCmode = 0x1e; 7129 VT = is128Bits ? MVT::v2i64 : MVT::v1i64; 7130 break; 7131 } 7132 7133 default: 7134 llvm_unreachable("unexpected size for isVMOVModifiedImm"); 7135 } 7136 7137 unsigned EncodedVal = ARM_AM::createVMOVModImm(OpCmode, Imm); 7138 return DAG.getTargetConstant(EncodedVal, dl, MVT::i32); 7139 } 7140 7141 SDValue ARMTargetLowering::LowerConstantFP(SDValue Op, SelectionDAG &DAG, 7142 const ARMSubtarget *ST) const { 7143 EVT VT = Op.getValueType(); 7144 bool IsDouble = (VT == MVT::f64); 7145 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Op); 7146 const APFloat &FPVal = CFP->getValueAPF(); 7147 7148 // Prevent floating-point constants from using literal loads 7149 // when execute-only is enabled. 7150 if (ST->genExecuteOnly()) { 7151 // We shouldn't trigger this for v6m execute-only 7152 assert((!ST->isThumb1Only() || ST->hasV8MBaselineOps()) && 7153 "Unexpected architecture"); 7154 7155 // If we can represent the constant as an immediate, don't lower it 7156 if (isFPImmLegal(FPVal, VT)) 7157 return Op; 7158 // Otherwise, construct as integer, and move to float register 7159 APInt INTVal = FPVal.bitcastToAPInt(); 7160 SDLoc DL(CFP); 7161 switch (VT.getSimpleVT().SimpleTy) { 7162 default: 7163 llvm_unreachable("Unknown floating point type!"); 7164 break; 7165 case MVT::f64: { 7166 SDValue Lo = DAG.getConstant(INTVal.trunc(32), DL, MVT::i32); 7167 SDValue Hi = DAG.getConstant(INTVal.lshr(32).trunc(32), DL, MVT::i32); 7168 return DAG.getNode(ARMISD::VMOVDRR, DL, MVT::f64, Lo, Hi); 7169 } 7170 case MVT::f32: 7171 return DAG.getNode(ARMISD::VMOVSR, DL, VT, 7172 DAG.getConstant(INTVal, DL, MVT::i32)); 7173 } 7174 } 7175 7176 if (!ST->hasVFP3Base()) 7177 return SDValue(); 7178 7179 // Use the default (constant pool) lowering for double constants when we have 7180 // an SP-only FPU 7181 if (IsDouble && !Subtarget->hasFP64()) 7182 return SDValue(); 7183 7184 // Try splatting with a VMOV.f32... 7185 int ImmVal = IsDouble ? ARM_AM::getFP64Imm(FPVal) : ARM_AM::getFP32Imm(FPVal); 7186 7187 if (ImmVal != -1) { 7188 if (IsDouble || !ST->useNEONForSinglePrecisionFP()) { 7189 // We have code in place to select a valid ConstantFP already, no need to 7190 // do any mangling. 7191 return Op; 7192 } 7193 7194 // It's a float and we are trying to use NEON operations where 7195 // possible. Lower it to a splat followed by an extract. 7196 SDLoc DL(Op); 7197 SDValue NewVal = DAG.getTargetConstant(ImmVal, DL, MVT::i32); 7198 SDValue VecConstant = DAG.getNode(ARMISD::VMOVFPIMM, DL, MVT::v2f32, 7199 NewVal); 7200 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecConstant, 7201 DAG.getConstant(0, DL, MVT::i32)); 7202 } 7203 7204 // The rest of our options are NEON only, make sure that's allowed before 7205 // proceeding.. 7206 if (!ST->hasNEON() || (!IsDouble && !ST->useNEONForSinglePrecisionFP())) 7207 return SDValue(); 7208 7209 EVT VMovVT; 7210 uint64_t iVal = FPVal.bitcastToAPInt().getZExtValue(); 7211 7212 // It wouldn't really be worth bothering for doubles except for one very 7213 // important value, which does happen to match: 0.0. So make sure we don't do 7214 // anything stupid. 7215 if (IsDouble && (iVal & 0xffffffff) != (iVal >> 32)) 7216 return SDValue(); 7217 7218 // Try a VMOV.i32 (FIXME: i8, i16, or i64 could work too). 7219 SDValue NewVal = isVMOVModifiedImm(iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op), 7220 VMovVT, VT, VMOVModImm); 7221 if (NewVal != SDValue()) { 7222 SDLoc DL(Op); 7223 SDValue VecConstant = DAG.getNode(ARMISD::VMOVIMM, DL, VMovVT, 7224 NewVal); 7225 if (IsDouble) 7226 return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant); 7227 7228 // It's a float: cast and extract a vector element. 7229 SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32, 7230 VecConstant); 7231 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant, 7232 DAG.getConstant(0, DL, MVT::i32)); 7233 } 7234 7235 // Finally, try a VMVN.i32 7236 NewVal = isVMOVModifiedImm(~iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op), VMovVT, 7237 VT, VMVNModImm); 7238 if (NewVal != SDValue()) { 7239 SDLoc DL(Op); 7240 SDValue VecConstant = DAG.getNode(ARMISD::VMVNIMM, DL, VMovVT, NewVal); 7241 7242 if (IsDouble) 7243 return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant); 7244 7245 // It's a float: cast and extract a vector element. 7246 SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32, 7247 VecConstant); 7248 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant, 7249 DAG.getConstant(0, DL, MVT::i32)); 7250 } 7251 7252 return SDValue(); 7253 } 7254 7255 // check if an VEXT instruction can handle the shuffle mask when the 7256 // vector sources of the shuffle are the same. 7257 static bool isSingletonVEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) { 7258 unsigned NumElts = VT.getVectorNumElements(); 7259 7260 // Assume that the first shuffle index is not UNDEF. Fail if it is. 7261 if (M[0] < 0) 7262 return false; 7263 7264 Imm = M[0]; 7265 7266 // If this is a VEXT shuffle, the immediate value is the index of the first 7267 // element. The other shuffle indices must be the successive elements after 7268 // the first one. 7269 unsigned ExpectedElt = Imm; 7270 for (unsigned i = 1; i < NumElts; ++i) { 7271 // Increment the expected index. If it wraps around, just follow it 7272 // back to index zero and keep going. 7273 ++ExpectedElt; 7274 if (ExpectedElt == NumElts) 7275 ExpectedElt = 0; 7276 7277 if (M[i] < 0) continue; // ignore UNDEF indices 7278 if (ExpectedElt != static_cast<unsigned>(M[i])) 7279 return false; 7280 } 7281 7282 return true; 7283 } 7284 7285 static bool isVEXTMask(ArrayRef<int> M, EVT VT, 7286 bool &ReverseVEXT, unsigned &Imm) { 7287 unsigned NumElts = VT.getVectorNumElements(); 7288 ReverseVEXT = false; 7289 7290 // Assume that the first shuffle index is not UNDEF. Fail if it is. 7291 if (M[0] < 0) 7292 return false; 7293 7294 Imm = M[0]; 7295 7296 // If this is a VEXT shuffle, the immediate value is the index of the first 7297 // element. The other shuffle indices must be the successive elements after 7298 // the first one. 7299 unsigned ExpectedElt = Imm; 7300 for (unsigned i = 1; i < NumElts; ++i) { 7301 // Increment the expected index. If it wraps around, it may still be 7302 // a VEXT but the source vectors must be swapped. 7303 ExpectedElt += 1; 7304 if (ExpectedElt == NumElts * 2) { 7305 ExpectedElt = 0; 7306 ReverseVEXT = true; 7307 } 7308 7309 if (M[i] < 0) continue; // ignore UNDEF indices 7310 if (ExpectedElt != static_cast<unsigned>(M[i])) 7311 return false; 7312 } 7313 7314 // Adjust the index value if the source operands will be swapped. 7315 if (ReverseVEXT) 7316 Imm -= NumElts; 7317 7318 return true; 7319 } 7320 7321 static bool isVTBLMask(ArrayRef<int> M, EVT VT) { 7322 // We can handle <8 x i8> vector shuffles. If the index in the mask is out of 7323 // range, then 0 is placed into the resulting vector. So pretty much any mask 7324 // of 8 elements can work here. 7325 return VT == MVT::v8i8 && M.size() == 8; 7326 } 7327 7328 static unsigned SelectPairHalf(unsigned Elements, ArrayRef<int> Mask, 7329 unsigned Index) { 7330 if (Mask.size() == Elements * 2) 7331 return Index / Elements; 7332 return Mask[Index] == 0 ? 0 : 1; 7333 } 7334 7335 // Checks whether the shuffle mask represents a vector transpose (VTRN) by 7336 // checking that pairs of elements in the shuffle mask represent the same index 7337 // in each vector, incrementing the expected index by 2 at each step. 7338 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 2, 6] 7339 // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,c,g} 7340 // v2={e,f,g,h} 7341 // WhichResult gives the offset for each element in the mask based on which 7342 // of the two results it belongs to. 7343 // 7344 // The transpose can be represented either as: 7345 // result1 = shufflevector v1, v2, result1_shuffle_mask 7346 // result2 = shufflevector v1, v2, result2_shuffle_mask 7347 // where v1/v2 and the shuffle masks have the same number of elements 7348 // (here WhichResult (see below) indicates which result is being checked) 7349 // 7350 // or as: 7351 // results = shufflevector v1, v2, shuffle_mask 7352 // where both results are returned in one vector and the shuffle mask has twice 7353 // as many elements as v1/v2 (here WhichResult will always be 0 if true) here we 7354 // want to check the low half and high half of the shuffle mask as if it were 7355 // the other case 7356 static bool isVTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { 7357 unsigned EltSz = VT.getScalarSizeInBits(); 7358 if (EltSz == 64) 7359 return false; 7360 7361 unsigned NumElts = VT.getVectorNumElements(); 7362 if (M.size() != NumElts && M.size() != NumElts*2) 7363 return false; 7364 7365 // If the mask is twice as long as the input vector then we need to check the 7366 // upper and lower parts of the mask with a matching value for WhichResult 7367 // FIXME: A mask with only even values will be rejected in case the first 7368 // element is undefined, e.g. [-1, 4, 2, 6] will be rejected, because only 7369 // M[0] is used to determine WhichResult 7370 for (unsigned i = 0; i < M.size(); i += NumElts) { 7371 WhichResult = SelectPairHalf(NumElts, M, i); 7372 for (unsigned j = 0; j < NumElts; j += 2) { 7373 if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) || 7374 (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + NumElts + WhichResult)) 7375 return false; 7376 } 7377 } 7378 7379 if (M.size() == NumElts*2) 7380 WhichResult = 0; 7381 7382 return true; 7383 } 7384 7385 /// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of 7386 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". 7387 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>. 7388 static bool isVTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){ 7389 unsigned EltSz = VT.getScalarSizeInBits(); 7390 if (EltSz == 64) 7391 return false; 7392 7393 unsigned NumElts = VT.getVectorNumElements(); 7394 if (M.size() != NumElts && M.size() != NumElts*2) 7395 return false; 7396 7397 for (unsigned i = 0; i < M.size(); i += NumElts) { 7398 WhichResult = SelectPairHalf(NumElts, M, i); 7399 for (unsigned j = 0; j < NumElts; j += 2) { 7400 if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) || 7401 (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + WhichResult)) 7402 return false; 7403 } 7404 } 7405 7406 if (M.size() == NumElts*2) 7407 WhichResult = 0; 7408 7409 return true; 7410 } 7411 7412 // Checks whether the shuffle mask represents a vector unzip (VUZP) by checking 7413 // that the mask elements are either all even and in steps of size 2 or all odd 7414 // and in steps of size 2. 7415 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 2, 4, 6] 7416 // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,c,e,g} 7417 // v2={e,f,g,h} 7418 // Requires similar checks to that of isVTRNMask with 7419 // respect the how results are returned. 7420 static bool isVUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { 7421 unsigned EltSz = VT.getScalarSizeInBits(); 7422 if (EltSz == 64) 7423 return false; 7424 7425 unsigned NumElts = VT.getVectorNumElements(); 7426 if (M.size() != NumElts && M.size() != NumElts*2) 7427 return false; 7428 7429 for (unsigned i = 0; i < M.size(); i += NumElts) { 7430 WhichResult = SelectPairHalf(NumElts, M, i); 7431 for (unsigned j = 0; j < NumElts; ++j) { 7432 if (M[i+j] >= 0 && (unsigned) M[i+j] != 2 * j + WhichResult) 7433 return false; 7434 } 7435 } 7436 7437 if (M.size() == NumElts*2) 7438 WhichResult = 0; 7439 7440 // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32. 7441 if (VT.is64BitVector() && EltSz == 32) 7442 return false; 7443 7444 return true; 7445 } 7446 7447 /// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of 7448 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". 7449 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>, 7450 static bool isVUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){ 7451 unsigned EltSz = VT.getScalarSizeInBits(); 7452 if (EltSz == 64) 7453 return false; 7454 7455 unsigned NumElts = VT.getVectorNumElements(); 7456 if (M.size() != NumElts && M.size() != NumElts*2) 7457 return false; 7458 7459 unsigned Half = NumElts / 2; 7460 for (unsigned i = 0; i < M.size(); i += NumElts) { 7461 WhichResult = SelectPairHalf(NumElts, M, i); 7462 for (unsigned j = 0; j < NumElts; j += Half) { 7463 unsigned Idx = WhichResult; 7464 for (unsigned k = 0; k < Half; ++k) { 7465 int MIdx = M[i + j + k]; 7466 if (MIdx >= 0 && (unsigned) MIdx != Idx) 7467 return false; 7468 Idx += 2; 7469 } 7470 } 7471 } 7472 7473 if (M.size() == NumElts*2) 7474 WhichResult = 0; 7475 7476 // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32. 7477 if (VT.is64BitVector() && EltSz == 32) 7478 return false; 7479 7480 return true; 7481 } 7482 7483 // Checks whether the shuffle mask represents a vector zip (VZIP) by checking 7484 // that pairs of elements of the shufflemask represent the same index in each 7485 // vector incrementing sequentially through the vectors. 7486 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 1, 5] 7487 // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,b,f} 7488 // v2={e,f,g,h} 7489 // Requires similar checks to that of isVTRNMask with respect the how results 7490 // are returned. 7491 static bool isVZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { 7492 unsigned EltSz = VT.getScalarSizeInBits(); 7493 if (EltSz == 64) 7494 return false; 7495 7496 unsigned NumElts = VT.getVectorNumElements(); 7497 if (M.size() != NumElts && M.size() != NumElts*2) 7498 return false; 7499 7500 for (unsigned i = 0; i < M.size(); i += NumElts) { 7501 WhichResult = SelectPairHalf(NumElts, M, i); 7502 unsigned Idx = WhichResult * NumElts / 2; 7503 for (unsigned j = 0; j < NumElts; j += 2) { 7504 if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) || 7505 (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx + NumElts)) 7506 return false; 7507 Idx += 1; 7508 } 7509 } 7510 7511 if (M.size() == NumElts*2) 7512 WhichResult = 0; 7513 7514 // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32. 7515 if (VT.is64BitVector() && EltSz == 32) 7516 return false; 7517 7518 return true; 7519 } 7520 7521 /// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of 7522 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". 7523 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>. 7524 static bool isVZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){ 7525 unsigned EltSz = VT.getScalarSizeInBits(); 7526 if (EltSz == 64) 7527 return false; 7528 7529 unsigned NumElts = VT.getVectorNumElements(); 7530 if (M.size() != NumElts && M.size() != NumElts*2) 7531 return false; 7532 7533 for (unsigned i = 0; i < M.size(); i += NumElts) { 7534 WhichResult = SelectPairHalf(NumElts, M, i); 7535 unsigned Idx = WhichResult * NumElts / 2; 7536 for (unsigned j = 0; j < NumElts; j += 2) { 7537 if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) || 7538 (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx)) 7539 return false; 7540 Idx += 1; 7541 } 7542 } 7543 7544 if (M.size() == NumElts*2) 7545 WhichResult = 0; 7546 7547 // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32. 7548 if (VT.is64BitVector() && EltSz == 32) 7549 return false; 7550 7551 return true; 7552 } 7553 7554 /// Check if \p ShuffleMask is a NEON two-result shuffle (VZIP, VUZP, VTRN), 7555 /// and return the corresponding ARMISD opcode if it is, or 0 if it isn't. 7556 static unsigned isNEONTwoResultShuffleMask(ArrayRef<int> ShuffleMask, EVT VT, 7557 unsigned &WhichResult, 7558 bool &isV_UNDEF) { 7559 isV_UNDEF = false; 7560 if (isVTRNMask(ShuffleMask, VT, WhichResult)) 7561 return ARMISD::VTRN; 7562 if (isVUZPMask(ShuffleMask, VT, WhichResult)) 7563 return ARMISD::VUZP; 7564 if (isVZIPMask(ShuffleMask, VT, WhichResult)) 7565 return ARMISD::VZIP; 7566 7567 isV_UNDEF = true; 7568 if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) 7569 return ARMISD::VTRN; 7570 if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) 7571 return ARMISD::VUZP; 7572 if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult)) 7573 return ARMISD::VZIP; 7574 7575 return 0; 7576 } 7577 7578 /// \return true if this is a reverse operation on an vector. 7579 static bool isReverseMask(ArrayRef<int> M, EVT VT) { 7580 unsigned NumElts = VT.getVectorNumElements(); 7581 // Make sure the mask has the right size. 7582 if (NumElts != M.size()) 7583 return false; 7584 7585 // Look for <15, ..., 3, -1, 1, 0>. 7586 for (unsigned i = 0; i != NumElts; ++i) 7587 if (M[i] >= 0 && M[i] != (int) (NumElts - 1 - i)) 7588 return false; 7589 7590 return true; 7591 } 7592 7593 static bool isTruncMask(ArrayRef<int> M, EVT VT, bool Top, bool SingleSource) { 7594 unsigned NumElts = VT.getVectorNumElements(); 7595 // Make sure the mask has the right size. 7596 if (NumElts != M.size() || (VT != MVT::v8i16 && VT != MVT::v16i8)) 7597 return false; 7598 7599 // Half-width truncation patterns (e.g. v4i32 -> v8i16): 7600 // !Top && SingleSource: <0, 2, 4, 6, 0, 2, 4, 6> 7601 // !Top && !SingleSource: <0, 2, 4, 6, 8, 10, 12, 14> 7602 // Top && SingleSource: <1, 3, 5, 7, 1, 3, 5, 7> 7603 // Top && !SingleSource: <1, 3, 5, 7, 9, 11, 13, 15> 7604 int Ofs = Top ? 1 : 0; 7605 int Upper = SingleSource ? 0 : NumElts; 7606 for (int i = 0, e = NumElts / 2; i != e; ++i) { 7607 if (M[i] >= 0 && M[i] != (i * 2) + Ofs) 7608 return false; 7609 if (M[i + e] >= 0 && M[i + e] != (i * 2) + Ofs + Upper) 7610 return false; 7611 } 7612 return true; 7613 } 7614 7615 static bool isVMOVNMask(ArrayRef<int> M, EVT VT, bool Top, bool SingleSource) { 7616 unsigned NumElts = VT.getVectorNumElements(); 7617 // Make sure the mask has the right size. 7618 if (NumElts != M.size() || (VT != MVT::v8i16 && VT != MVT::v16i8)) 7619 return false; 7620 7621 // If Top 7622 // Look for <0, N, 2, N+2, 4, N+4, ..>. 7623 // This inserts Input2 into Input1 7624 // else if not Top 7625 // Look for <0, N+1, 2, N+3, 4, N+5, ..> 7626 // This inserts Input1 into Input2 7627 unsigned Offset = Top ? 0 : 1; 7628 unsigned N = SingleSource ? 0 : NumElts; 7629 for (unsigned i = 0; i < NumElts; i += 2) { 7630 if (M[i] >= 0 && M[i] != (int)i) 7631 return false; 7632 if (M[i + 1] >= 0 && M[i + 1] != (int)(N + i + Offset)) 7633 return false; 7634 } 7635 7636 return true; 7637 } 7638 7639 static bool isVMOVNTruncMask(ArrayRef<int> M, EVT ToVT, bool rev) { 7640 unsigned NumElts = ToVT.getVectorNumElements(); 7641 if (NumElts != M.size()) 7642 return false; 7643 7644 // Test if the Trunc can be convertable to a VMOVN with this shuffle. We are 7645 // looking for patterns of: 7646 // !rev: 0 N/2 1 N/2+1 2 N/2+2 ... 7647 // rev: N/2 0 N/2+1 1 N/2+2 2 ... 7648 7649 unsigned Off0 = rev ? NumElts / 2 : 0; 7650 unsigned Off1 = rev ? 0 : NumElts / 2; 7651 for (unsigned i = 0; i < NumElts; i += 2) { 7652 if (M[i] >= 0 && M[i] != (int)(Off0 + i / 2)) 7653 return false; 7654 if (M[i + 1] >= 0 && M[i + 1] != (int)(Off1 + i / 2)) 7655 return false; 7656 } 7657 7658 return true; 7659 } 7660 7661 // Reconstruct an MVE VCVT from a BuildVector of scalar fptrunc, all extracted 7662 // from a pair of inputs. For example: 7663 // BUILDVECTOR(FP_ROUND(EXTRACT_ELT(X, 0), 7664 // FP_ROUND(EXTRACT_ELT(Y, 0), 7665 // FP_ROUND(EXTRACT_ELT(X, 1), 7666 // FP_ROUND(EXTRACT_ELT(Y, 1), ...) 7667 static SDValue LowerBuildVectorOfFPTrunc(SDValue BV, SelectionDAG &DAG, 7668 const ARMSubtarget *ST) { 7669 assert(BV.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!"); 7670 if (!ST->hasMVEFloatOps()) 7671 return SDValue(); 7672 7673 SDLoc dl(BV); 7674 EVT VT = BV.getValueType(); 7675 if (VT != MVT::v8f16) 7676 return SDValue(); 7677 7678 // We are looking for a buildvector of fptrunc elements, where all the 7679 // elements are interleavingly extracted from two sources. Check the first two 7680 // items are valid enough and extract some info from them (they are checked 7681 // properly in the loop below). 7682 if (BV.getOperand(0).getOpcode() != ISD::FP_ROUND || 7683 BV.getOperand(0).getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT || 7684 BV.getOperand(0).getOperand(0).getConstantOperandVal(1) != 0) 7685 return SDValue(); 7686 if (BV.getOperand(1).getOpcode() != ISD::FP_ROUND || 7687 BV.getOperand(1).getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT || 7688 BV.getOperand(1).getOperand(0).getConstantOperandVal(1) != 0) 7689 return SDValue(); 7690 SDValue Op0 = BV.getOperand(0).getOperand(0).getOperand(0); 7691 SDValue Op1 = BV.getOperand(1).getOperand(0).getOperand(0); 7692 if (Op0.getValueType() != MVT::v4f32 || Op1.getValueType() != MVT::v4f32) 7693 return SDValue(); 7694 7695 // Check all the values in the BuildVector line up with our expectations. 7696 for (unsigned i = 1; i < 4; i++) { 7697 auto Check = [](SDValue Trunc, SDValue Op, unsigned Idx) { 7698 return Trunc.getOpcode() == ISD::FP_ROUND && 7699 Trunc.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT && 7700 Trunc.getOperand(0).getOperand(0) == Op && 7701 Trunc.getOperand(0).getConstantOperandVal(1) == Idx; 7702 }; 7703 if (!Check(BV.getOperand(i * 2 + 0), Op0, i)) 7704 return SDValue(); 7705 if (!Check(BV.getOperand(i * 2 + 1), Op1, i)) 7706 return SDValue(); 7707 } 7708 7709 SDValue N1 = DAG.getNode(ARMISD::VCVTN, dl, VT, DAG.getUNDEF(VT), Op0, 7710 DAG.getConstant(0, dl, MVT::i32)); 7711 return DAG.getNode(ARMISD::VCVTN, dl, VT, N1, Op1, 7712 DAG.getConstant(1, dl, MVT::i32)); 7713 } 7714 7715 // Reconstruct an MVE VCVT from a BuildVector of scalar fpext, all extracted 7716 // from a single input on alternating lanes. For example: 7717 // BUILDVECTOR(FP_ROUND(EXTRACT_ELT(X, 0), 7718 // FP_ROUND(EXTRACT_ELT(X, 2), 7719 // FP_ROUND(EXTRACT_ELT(X, 4), ...) 7720 static SDValue LowerBuildVectorOfFPExt(SDValue BV, SelectionDAG &DAG, 7721 const ARMSubtarget *ST) { 7722 assert(BV.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!"); 7723 if (!ST->hasMVEFloatOps()) 7724 return SDValue(); 7725 7726 SDLoc dl(BV); 7727 EVT VT = BV.getValueType(); 7728 if (VT != MVT::v4f32) 7729 return SDValue(); 7730 7731 // We are looking for a buildvector of fptext elements, where all the 7732 // elements are alternating lanes from a single source. For example <0,2,4,6> 7733 // or <1,3,5,7>. Check the first two items are valid enough and extract some 7734 // info from them (they are checked properly in the loop below). 7735 if (BV.getOperand(0).getOpcode() != ISD::FP_EXTEND || 7736 BV.getOperand(0).getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT) 7737 return SDValue(); 7738 SDValue Op0 = BV.getOperand(0).getOperand(0).getOperand(0); 7739 int Offset = BV.getOperand(0).getOperand(0).getConstantOperandVal(1); 7740 if (Op0.getValueType() != MVT::v8f16 || (Offset != 0 && Offset != 1)) 7741 return SDValue(); 7742 7743 // Check all the values in the BuildVector line up with our expectations. 7744 for (unsigned i = 1; i < 4; i++) { 7745 auto Check = [](SDValue Trunc, SDValue Op, unsigned Idx) { 7746 return Trunc.getOpcode() == ISD::FP_EXTEND && 7747 Trunc.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT && 7748 Trunc.getOperand(0).getOperand(0) == Op && 7749 Trunc.getOperand(0).getConstantOperandVal(1) == Idx; 7750 }; 7751 if (!Check(BV.getOperand(i), Op0, 2 * i + Offset)) 7752 return SDValue(); 7753 } 7754 7755 return DAG.getNode(ARMISD::VCVTL, dl, VT, Op0, 7756 DAG.getConstant(Offset, dl, MVT::i32)); 7757 } 7758 7759 // If N is an integer constant that can be moved into a register in one 7760 // instruction, return an SDValue of such a constant (will become a MOV 7761 // instruction). Otherwise return null. 7762 static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG, 7763 const ARMSubtarget *ST, const SDLoc &dl) { 7764 uint64_t Val; 7765 if (!isa<ConstantSDNode>(N)) 7766 return SDValue(); 7767 Val = N->getAsZExtVal(); 7768 7769 if (ST->isThumb1Only()) { 7770 if (Val <= 255 || ~Val <= 255) 7771 return DAG.getConstant(Val, dl, MVT::i32); 7772 } else { 7773 if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1) 7774 return DAG.getConstant(Val, dl, MVT::i32); 7775 } 7776 return SDValue(); 7777 } 7778 7779 static SDValue LowerBUILD_VECTOR_i1(SDValue Op, SelectionDAG &DAG, 7780 const ARMSubtarget *ST) { 7781 SDLoc dl(Op); 7782 EVT VT = Op.getValueType(); 7783 7784 assert(ST->hasMVEIntegerOps() && "LowerBUILD_VECTOR_i1 called without MVE!"); 7785 7786 unsigned NumElts = VT.getVectorNumElements(); 7787 unsigned BoolMask; 7788 unsigned BitsPerBool; 7789 if (NumElts == 2) { 7790 BitsPerBool = 8; 7791 BoolMask = 0xff; 7792 } else if (NumElts == 4) { 7793 BitsPerBool = 4; 7794 BoolMask = 0xf; 7795 } else if (NumElts == 8) { 7796 BitsPerBool = 2; 7797 BoolMask = 0x3; 7798 } else if (NumElts == 16) { 7799 BitsPerBool = 1; 7800 BoolMask = 0x1; 7801 } else 7802 return SDValue(); 7803 7804 // If this is a single value copied into all lanes (a splat), we can just sign 7805 // extend that single value 7806 SDValue FirstOp = Op.getOperand(0); 7807 if (!isa<ConstantSDNode>(FirstOp) && 7808 llvm::all_of(llvm::drop_begin(Op->ops()), [&FirstOp](const SDUse &U) { 7809 return U.get().isUndef() || U.get() == FirstOp; 7810 })) { 7811 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::i32, FirstOp, 7812 DAG.getValueType(MVT::i1)); 7813 return DAG.getNode(ARMISD::PREDICATE_CAST, dl, Op.getValueType(), Ext); 7814 } 7815 7816 // First create base with bits set where known 7817 unsigned Bits32 = 0; 7818 for (unsigned i = 0; i < NumElts; ++i) { 7819 SDValue V = Op.getOperand(i); 7820 if (!isa<ConstantSDNode>(V) && !V.isUndef()) 7821 continue; 7822 bool BitSet = V.isUndef() ? false : V->getAsZExtVal(); 7823 if (BitSet) 7824 Bits32 |= BoolMask << (i * BitsPerBool); 7825 } 7826 7827 // Add in unknown nodes 7828 SDValue Base = DAG.getNode(ARMISD::PREDICATE_CAST, dl, VT, 7829 DAG.getConstant(Bits32, dl, MVT::i32)); 7830 for (unsigned i = 0; i < NumElts; ++i) { 7831 SDValue V = Op.getOperand(i); 7832 if (isa<ConstantSDNode>(V) || V.isUndef()) 7833 continue; 7834 Base = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Base, V, 7835 DAG.getConstant(i, dl, MVT::i32)); 7836 } 7837 7838 return Base; 7839 } 7840 7841 static SDValue LowerBUILD_VECTORToVIDUP(SDValue Op, SelectionDAG &DAG, 7842 const ARMSubtarget *ST) { 7843 if (!ST->hasMVEIntegerOps()) 7844 return SDValue(); 7845 7846 // We are looking for a buildvector where each element is Op[0] + i*N 7847 EVT VT = Op.getValueType(); 7848 SDValue Op0 = Op.getOperand(0); 7849 unsigned NumElts = VT.getVectorNumElements(); 7850 7851 // Get the increment value from operand 1 7852 SDValue Op1 = Op.getOperand(1); 7853 if (Op1.getOpcode() != ISD::ADD || Op1.getOperand(0) != Op0 || 7854 !isa<ConstantSDNode>(Op1.getOperand(1))) 7855 return SDValue(); 7856 unsigned N = Op1.getConstantOperandVal(1); 7857 if (N != 1 && N != 2 && N != 4 && N != 8) 7858 return SDValue(); 7859 7860 // Check that each other operand matches 7861 for (unsigned I = 2; I < NumElts; I++) { 7862 SDValue OpI = Op.getOperand(I); 7863 if (OpI.getOpcode() != ISD::ADD || OpI.getOperand(0) != Op0 || 7864 !isa<ConstantSDNode>(OpI.getOperand(1)) || 7865 OpI.getConstantOperandVal(1) != I * N) 7866 return SDValue(); 7867 } 7868 7869 SDLoc DL(Op); 7870 return DAG.getNode(ARMISD::VIDUP, DL, DAG.getVTList(VT, MVT::i32), Op0, 7871 DAG.getConstant(N, DL, MVT::i32)); 7872 } 7873 7874 // Returns true if the operation N can be treated as qr instruction variant at 7875 // operand Op. 7876 static bool IsQRMVEInstruction(const SDNode *N, const SDNode *Op) { 7877 switch (N->getOpcode()) { 7878 case ISD::ADD: 7879 case ISD::MUL: 7880 case ISD::SADDSAT: 7881 case ISD::UADDSAT: 7882 return true; 7883 case ISD::SUB: 7884 case ISD::SSUBSAT: 7885 case ISD::USUBSAT: 7886 return N->getOperand(1).getNode() == Op; 7887 case ISD::INTRINSIC_WO_CHAIN: 7888 switch (N->getConstantOperandVal(0)) { 7889 case Intrinsic::arm_mve_add_predicated: 7890 case Intrinsic::arm_mve_mul_predicated: 7891 case Intrinsic::arm_mve_qadd_predicated: 7892 case Intrinsic::arm_mve_vhadd: 7893 case Intrinsic::arm_mve_hadd_predicated: 7894 case Intrinsic::arm_mve_vqdmulh: 7895 case Intrinsic::arm_mve_qdmulh_predicated: 7896 case Intrinsic::arm_mve_vqrdmulh: 7897 case Intrinsic::arm_mve_qrdmulh_predicated: 7898 case Intrinsic::arm_mve_vqdmull: 7899 case Intrinsic::arm_mve_vqdmull_predicated: 7900 return true; 7901 case Intrinsic::arm_mve_sub_predicated: 7902 case Intrinsic::arm_mve_qsub_predicated: 7903 case Intrinsic::arm_mve_vhsub: 7904 case Intrinsic::arm_mve_hsub_predicated: 7905 return N->getOperand(2).getNode() == Op; 7906 default: 7907 return false; 7908 } 7909 default: 7910 return false; 7911 } 7912 } 7913 7914 // If this is a case we can't handle, return null and let the default 7915 // expansion code take care of it. 7916 SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, 7917 const ARMSubtarget *ST) const { 7918 BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode()); 7919 SDLoc dl(Op); 7920 EVT VT = Op.getValueType(); 7921 7922 if (ST->hasMVEIntegerOps() && VT.getScalarSizeInBits() == 1) 7923 return LowerBUILD_VECTOR_i1(Op, DAG, ST); 7924 7925 if (SDValue R = LowerBUILD_VECTORToVIDUP(Op, DAG, ST)) 7926 return R; 7927 7928 APInt SplatBits, SplatUndef; 7929 unsigned SplatBitSize; 7930 bool HasAnyUndefs; 7931 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) { 7932 if (SplatUndef.isAllOnes()) 7933 return DAG.getUNDEF(VT); 7934 7935 // If all the users of this constant splat are qr instruction variants, 7936 // generate a vdup of the constant. 7937 if (ST->hasMVEIntegerOps() && VT.getScalarSizeInBits() == SplatBitSize && 7938 (SplatBitSize == 8 || SplatBitSize == 16 || SplatBitSize == 32) && 7939 all_of(BVN->uses(), 7940 [BVN](const SDNode *U) { return IsQRMVEInstruction(U, BVN); })) { 7941 EVT DupVT = SplatBitSize == 32 ? MVT::v4i32 7942 : SplatBitSize == 16 ? MVT::v8i16 7943 : MVT::v16i8; 7944 SDValue Const = DAG.getConstant(SplatBits.getZExtValue(), dl, MVT::i32); 7945 SDValue VDup = DAG.getNode(ARMISD::VDUP, dl, DupVT, Const); 7946 return DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, VT, VDup); 7947 } 7948 7949 if ((ST->hasNEON() && SplatBitSize <= 64) || 7950 (ST->hasMVEIntegerOps() && SplatBitSize <= 64)) { 7951 // Check if an immediate VMOV works. 7952 EVT VmovVT; 7953 SDValue Val = 7954 isVMOVModifiedImm(SplatBits.getZExtValue(), SplatUndef.getZExtValue(), 7955 SplatBitSize, DAG, dl, VmovVT, VT, VMOVModImm); 7956 7957 if (Val.getNode()) { 7958 SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val); 7959 return DAG.getNode(ISD::BITCAST, dl, VT, Vmov); 7960 } 7961 7962 // Try an immediate VMVN. 7963 uint64_t NegatedImm = (~SplatBits).getZExtValue(); 7964 Val = isVMOVModifiedImm( 7965 NegatedImm, SplatUndef.getZExtValue(), SplatBitSize, DAG, dl, VmovVT, 7966 VT, ST->hasMVEIntegerOps() ? MVEVMVNModImm : VMVNModImm); 7967 if (Val.getNode()) { 7968 SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val); 7969 return DAG.getNode(ISD::BITCAST, dl, VT, Vmov); 7970 } 7971 7972 // Use vmov.f32 to materialize other v2f32 and v4f32 splats. 7973 if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) { 7974 int ImmVal = ARM_AM::getFP32Imm(SplatBits); 7975 if (ImmVal != -1) { 7976 SDValue Val = DAG.getTargetConstant(ImmVal, dl, MVT::i32); 7977 return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val); 7978 } 7979 } 7980 7981 // If we are under MVE, generate a VDUP(constant), bitcast to the original 7982 // type. 7983 if (ST->hasMVEIntegerOps() && 7984 (SplatBitSize == 8 || SplatBitSize == 16 || SplatBitSize == 32)) { 7985 EVT DupVT = SplatBitSize == 32 ? MVT::v4i32 7986 : SplatBitSize == 16 ? MVT::v8i16 7987 : MVT::v16i8; 7988 SDValue Const = DAG.getConstant(SplatBits.getZExtValue(), dl, MVT::i32); 7989 SDValue VDup = DAG.getNode(ARMISD::VDUP, dl, DupVT, Const); 7990 return DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, VT, VDup); 7991 } 7992 } 7993 } 7994 7995 // Scan through the operands to see if only one value is used. 7996 // 7997 // As an optimisation, even if more than one value is used it may be more 7998 // profitable to splat with one value then change some lanes. 7999 // 8000 // Heuristically we decide to do this if the vector has a "dominant" value, 8001 // defined as splatted to more than half of the lanes. 8002 unsigned NumElts = VT.getVectorNumElements(); 8003 bool isOnlyLowElement = true; 8004 bool usesOnlyOneValue = true; 8005 bool hasDominantValue = false; 8006 bool isConstant = true; 8007 8008 // Map of the number of times a particular SDValue appears in the 8009 // element list. 8010 DenseMap<SDValue, unsigned> ValueCounts; 8011 SDValue Value; 8012 for (unsigned i = 0; i < NumElts; ++i) { 8013 SDValue V = Op.getOperand(i); 8014 if (V.isUndef()) 8015 continue; 8016 if (i > 0) 8017 isOnlyLowElement = false; 8018 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) 8019 isConstant = false; 8020 8021 ValueCounts.insert(std::make_pair(V, 0)); 8022 unsigned &Count = ValueCounts[V]; 8023 8024 // Is this value dominant? (takes up more than half of the lanes) 8025 if (++Count > (NumElts / 2)) { 8026 hasDominantValue = true; 8027 Value = V; 8028 } 8029 } 8030 if (ValueCounts.size() != 1) 8031 usesOnlyOneValue = false; 8032 if (!Value.getNode() && !ValueCounts.empty()) 8033 Value = ValueCounts.begin()->first; 8034 8035 if (ValueCounts.empty()) 8036 return DAG.getUNDEF(VT); 8037 8038 // Loads are better lowered with insert_vector_elt/ARMISD::BUILD_VECTOR. 8039 // Keep going if we are hitting this case. 8040 if (isOnlyLowElement && !ISD::isNormalLoad(Value.getNode())) 8041 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value); 8042 8043 unsigned EltSize = VT.getScalarSizeInBits(); 8044 8045 // Use VDUP for non-constant splats. For f32 constant splats, reduce to 8046 // i32 and try again. 8047 if (hasDominantValue && EltSize <= 32) { 8048 if (!isConstant) { 8049 SDValue N; 8050 8051 // If we are VDUPing a value that comes directly from a vector, that will 8052 // cause an unnecessary move to and from a GPR, where instead we could 8053 // just use VDUPLANE. We can only do this if the lane being extracted 8054 // is at a constant index, as the VDUP from lane instructions only have 8055 // constant-index forms. 8056 ConstantSDNode *constIndex; 8057 if (Value->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 8058 (constIndex = dyn_cast<ConstantSDNode>(Value->getOperand(1)))) { 8059 // We need to create a new undef vector to use for the VDUPLANE if the 8060 // size of the vector from which we get the value is different than the 8061 // size of the vector that we need to create. We will insert the element 8062 // such that the register coalescer will remove unnecessary copies. 8063 if (VT != Value->getOperand(0).getValueType()) { 8064 unsigned index = constIndex->getAPIntValue().getLimitedValue() % 8065 VT.getVectorNumElements(); 8066 N = DAG.getNode(ARMISD::VDUPLANE, dl, VT, 8067 DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DAG.getUNDEF(VT), 8068 Value, DAG.getConstant(index, dl, MVT::i32)), 8069 DAG.getConstant(index, dl, MVT::i32)); 8070 } else 8071 N = DAG.getNode(ARMISD::VDUPLANE, dl, VT, 8072 Value->getOperand(0), Value->getOperand(1)); 8073 } else 8074 N = DAG.getNode(ARMISD::VDUP, dl, VT, Value); 8075 8076 if (!usesOnlyOneValue) { 8077 // The dominant value was splatted as 'N', but we now have to insert 8078 // all differing elements. 8079 for (unsigned I = 0; I < NumElts; ++I) { 8080 if (Op.getOperand(I) == Value) 8081 continue; 8082 SmallVector<SDValue, 3> Ops; 8083 Ops.push_back(N); 8084 Ops.push_back(Op.getOperand(I)); 8085 Ops.push_back(DAG.getConstant(I, dl, MVT::i32)); 8086 N = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Ops); 8087 } 8088 } 8089 return N; 8090 } 8091 if (VT.getVectorElementType().isFloatingPoint()) { 8092 SmallVector<SDValue, 8> Ops; 8093 MVT FVT = VT.getVectorElementType().getSimpleVT(); 8094 assert(FVT == MVT::f32 || FVT == MVT::f16); 8095 MVT IVT = (FVT == MVT::f32) ? MVT::i32 : MVT::i16; 8096 for (unsigned i = 0; i < NumElts; ++i) 8097 Ops.push_back(DAG.getNode(ISD::BITCAST, dl, IVT, 8098 Op.getOperand(i))); 8099 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), IVT, NumElts); 8100 SDValue Val = DAG.getBuildVector(VecVT, dl, Ops); 8101 Val = LowerBUILD_VECTOR(Val, DAG, ST); 8102 if (Val.getNode()) 8103 return DAG.getNode(ISD::BITCAST, dl, VT, Val); 8104 } 8105 if (usesOnlyOneValue) { 8106 SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl); 8107 if (isConstant && Val.getNode()) 8108 return DAG.getNode(ARMISD::VDUP, dl, VT, Val); 8109 } 8110 } 8111 8112 // If all elements are constants and the case above didn't get hit, fall back 8113 // to the default expansion, which will generate a load from the constant 8114 // pool. 8115 if (isConstant) 8116 return SDValue(); 8117 8118 // Reconstruct the BUILDVECTOR to one of the legal shuffles (such as vext and 8119 // vmovn). Empirical tests suggest this is rarely worth it for vectors of 8120 // length <= 2. 8121 if (NumElts >= 4) 8122 if (SDValue shuffle = ReconstructShuffle(Op, DAG)) 8123 return shuffle; 8124 8125 // Attempt to turn a buildvector of scalar fptrunc's or fpext's back into 8126 // VCVT's 8127 if (SDValue VCVT = LowerBuildVectorOfFPTrunc(Op, DAG, Subtarget)) 8128 return VCVT; 8129 if (SDValue VCVT = LowerBuildVectorOfFPExt(Op, DAG, Subtarget)) 8130 return VCVT; 8131 8132 if (ST->hasNEON() && VT.is128BitVector() && VT != MVT::v2f64 && VT != MVT::v4f32) { 8133 // If we haven't found an efficient lowering, try splitting a 128-bit vector 8134 // into two 64-bit vectors; we might discover a better way to lower it. 8135 SmallVector<SDValue, 64> Ops(Op->op_begin(), Op->op_begin() + NumElts); 8136 EVT ExtVT = VT.getVectorElementType(); 8137 EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElts / 2); 8138 SDValue Lower = DAG.getBuildVector(HVT, dl, ArrayRef(&Ops[0], NumElts / 2)); 8139 if (Lower.getOpcode() == ISD::BUILD_VECTOR) 8140 Lower = LowerBUILD_VECTOR(Lower, DAG, ST); 8141 SDValue Upper = 8142 DAG.getBuildVector(HVT, dl, ArrayRef(&Ops[NumElts / 2], NumElts / 2)); 8143 if (Upper.getOpcode() == ISD::BUILD_VECTOR) 8144 Upper = LowerBUILD_VECTOR(Upper, DAG, ST); 8145 if (Lower && Upper) 8146 return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Lower, Upper); 8147 } 8148 8149 // Vectors with 32- or 64-bit elements can be built by directly assigning 8150 // the subregisters. Lower it to an ARMISD::BUILD_VECTOR so the operands 8151 // will be legalized. 8152 if (EltSize >= 32) { 8153 // Do the expansion with floating-point types, since that is what the VFP 8154 // registers are defined to use, and since i64 is not legal. 8155 EVT EltVT = EVT::getFloatingPointVT(EltSize); 8156 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts); 8157 SmallVector<SDValue, 8> Ops; 8158 for (unsigned i = 0; i < NumElts; ++i) 8159 Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i))); 8160 SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops); 8161 return DAG.getNode(ISD::BITCAST, dl, VT, Val); 8162 } 8163 8164 // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we 8165 // know the default expansion would otherwise fall back on something even 8166 // worse. For a vector with one or two non-undef values, that's 8167 // scalar_to_vector for the elements followed by a shuffle (provided the 8168 // shuffle is valid for the target) and materialization element by element 8169 // on the stack followed by a load for everything else. 8170 if (!isConstant && !usesOnlyOneValue) { 8171 SDValue Vec = DAG.getUNDEF(VT); 8172 for (unsigned i = 0 ; i < NumElts; ++i) { 8173 SDValue V = Op.getOperand(i); 8174 if (V.isUndef()) 8175 continue; 8176 SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i32); 8177 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx); 8178 } 8179 return Vec; 8180 } 8181 8182 return SDValue(); 8183 } 8184 8185 // Gather data to see if the operation can be modelled as a 8186 // shuffle in combination with VEXTs. 8187 SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op, 8188 SelectionDAG &DAG) const { 8189 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!"); 8190 SDLoc dl(Op); 8191 EVT VT = Op.getValueType(); 8192 unsigned NumElts = VT.getVectorNumElements(); 8193 8194 struct ShuffleSourceInfo { 8195 SDValue Vec; 8196 unsigned MinElt = std::numeric_limits<unsigned>::max(); 8197 unsigned MaxElt = 0; 8198 8199 // We may insert some combination of BITCASTs and VEXT nodes to force Vec to 8200 // be compatible with the shuffle we intend to construct. As a result 8201 // ShuffleVec will be some sliding window into the original Vec. 8202 SDValue ShuffleVec; 8203 8204 // Code should guarantee that element i in Vec starts at element "WindowBase 8205 // + i * WindowScale in ShuffleVec". 8206 int WindowBase = 0; 8207 int WindowScale = 1; 8208 8209 ShuffleSourceInfo(SDValue Vec) : Vec(Vec), ShuffleVec(Vec) {} 8210 8211 bool operator ==(SDValue OtherVec) { return Vec == OtherVec; } 8212 }; 8213 8214 // First gather all vectors used as an immediate source for this BUILD_VECTOR 8215 // node. 8216 SmallVector<ShuffleSourceInfo, 2> Sources; 8217 for (unsigned i = 0; i < NumElts; ++i) { 8218 SDValue V = Op.getOperand(i); 8219 if (V.isUndef()) 8220 continue; 8221 else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) { 8222 // A shuffle can only come from building a vector from various 8223 // elements of other vectors. 8224 return SDValue(); 8225 } else if (!isa<ConstantSDNode>(V.getOperand(1))) { 8226 // Furthermore, shuffles require a constant mask, whereas extractelts 8227 // accept variable indices. 8228 return SDValue(); 8229 } 8230 8231 // Add this element source to the list if it's not already there. 8232 SDValue SourceVec = V.getOperand(0); 8233 auto Source = llvm::find(Sources, SourceVec); 8234 if (Source == Sources.end()) 8235 Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec)); 8236 8237 // Update the minimum and maximum lane number seen. 8238 unsigned EltNo = V.getConstantOperandVal(1); 8239 Source->MinElt = std::min(Source->MinElt, EltNo); 8240 Source->MaxElt = std::max(Source->MaxElt, EltNo); 8241 } 8242 8243 // Currently only do something sane when at most two source vectors 8244 // are involved. 8245 if (Sources.size() > 2) 8246 return SDValue(); 8247 8248 // Find out the smallest element size among result and two sources, and use 8249 // it as element size to build the shuffle_vector. 8250 EVT SmallestEltTy = VT.getVectorElementType(); 8251 for (auto &Source : Sources) { 8252 EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType(); 8253 if (SrcEltTy.bitsLT(SmallestEltTy)) 8254 SmallestEltTy = SrcEltTy; 8255 } 8256 unsigned ResMultiplier = 8257 VT.getScalarSizeInBits() / SmallestEltTy.getSizeInBits(); 8258 NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits(); 8259 EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts); 8260 8261 // If the source vector is too wide or too narrow, we may nevertheless be able 8262 // to construct a compatible shuffle either by concatenating it with UNDEF or 8263 // extracting a suitable range of elements. 8264 for (auto &Src : Sources) { 8265 EVT SrcVT = Src.ShuffleVec.getValueType(); 8266 8267 uint64_t SrcVTSize = SrcVT.getFixedSizeInBits(); 8268 uint64_t VTSize = VT.getFixedSizeInBits(); 8269 if (SrcVTSize == VTSize) 8270 continue; 8271 8272 // This stage of the search produces a source with the same element type as 8273 // the original, but with a total width matching the BUILD_VECTOR output. 8274 EVT EltVT = SrcVT.getVectorElementType(); 8275 unsigned NumSrcElts = VTSize / EltVT.getFixedSizeInBits(); 8276 EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts); 8277 8278 if (SrcVTSize < VTSize) { 8279 if (2 * SrcVTSize != VTSize) 8280 return SDValue(); 8281 // We can pad out the smaller vector for free, so if it's part of a 8282 // shuffle... 8283 Src.ShuffleVec = 8284 DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec, 8285 DAG.getUNDEF(Src.ShuffleVec.getValueType())); 8286 continue; 8287 } 8288 8289 if (SrcVTSize != 2 * VTSize) 8290 return SDValue(); 8291 8292 if (Src.MaxElt - Src.MinElt >= NumSrcElts) { 8293 // Span too large for a VEXT to cope 8294 return SDValue(); 8295 } 8296 8297 if (Src.MinElt >= NumSrcElts) { 8298 // The extraction can just take the second half 8299 Src.ShuffleVec = 8300 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec, 8301 DAG.getConstant(NumSrcElts, dl, MVT::i32)); 8302 Src.WindowBase = -NumSrcElts; 8303 } else if (Src.MaxElt < NumSrcElts) { 8304 // The extraction can just take the first half 8305 Src.ShuffleVec = 8306 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec, 8307 DAG.getConstant(0, dl, MVT::i32)); 8308 } else { 8309 // An actual VEXT is needed 8310 SDValue VEXTSrc1 = 8311 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec, 8312 DAG.getConstant(0, dl, MVT::i32)); 8313 SDValue VEXTSrc2 = 8314 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec, 8315 DAG.getConstant(NumSrcElts, dl, MVT::i32)); 8316 8317 Src.ShuffleVec = DAG.getNode(ARMISD::VEXT, dl, DestVT, VEXTSrc1, 8318 VEXTSrc2, 8319 DAG.getConstant(Src.MinElt, dl, MVT::i32)); 8320 Src.WindowBase = -Src.MinElt; 8321 } 8322 } 8323 8324 // Another possible incompatibility occurs from the vector element types. We 8325 // can fix this by bitcasting the source vectors to the same type we intend 8326 // for the shuffle. 8327 for (auto &Src : Sources) { 8328 EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType(); 8329 if (SrcEltTy == SmallestEltTy) 8330 continue; 8331 assert(ShuffleVT.getVectorElementType() == SmallestEltTy); 8332 Src.ShuffleVec = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, ShuffleVT, Src.ShuffleVec); 8333 Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits(); 8334 Src.WindowBase *= Src.WindowScale; 8335 } 8336 8337 // Final check before we try to actually produce a shuffle. 8338 LLVM_DEBUG(for (auto Src 8339 : Sources) 8340 assert(Src.ShuffleVec.getValueType() == ShuffleVT);); 8341 8342 // The stars all align, our next step is to produce the mask for the shuffle. 8343 SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1); 8344 int BitsPerShuffleLane = ShuffleVT.getScalarSizeInBits(); 8345 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) { 8346 SDValue Entry = Op.getOperand(i); 8347 if (Entry.isUndef()) 8348 continue; 8349 8350 auto Src = llvm::find(Sources, Entry.getOperand(0)); 8351 int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue(); 8352 8353 // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit 8354 // trunc. So only std::min(SrcBits, DestBits) actually get defined in this 8355 // segment. 8356 EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType(); 8357 int BitsDefined = std::min(OrigEltTy.getScalarSizeInBits(), 8358 VT.getScalarSizeInBits()); 8359 int LanesDefined = BitsDefined / BitsPerShuffleLane; 8360 8361 // This source is expected to fill ResMultiplier lanes of the final shuffle, 8362 // starting at the appropriate offset. 8363 int *LaneMask = &Mask[i * ResMultiplier]; 8364 8365 int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase; 8366 ExtractBase += NumElts * (Src - Sources.begin()); 8367 for (int j = 0; j < LanesDefined; ++j) 8368 LaneMask[j] = ExtractBase + j; 8369 } 8370 8371 8372 // We can't handle more than two sources. This should have already 8373 // been checked before this point. 8374 assert(Sources.size() <= 2 && "Too many sources!"); 8375 8376 SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) }; 8377 for (unsigned i = 0; i < Sources.size(); ++i) 8378 ShuffleOps[i] = Sources[i].ShuffleVec; 8379 8380 SDValue Shuffle = buildLegalVectorShuffle(ShuffleVT, dl, ShuffleOps[0], 8381 ShuffleOps[1], Mask, DAG); 8382 if (!Shuffle) 8383 return SDValue(); 8384 return DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, VT, Shuffle); 8385 } 8386 8387 enum ShuffleOpCodes { 8388 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 8389 OP_VREV, 8390 OP_VDUP0, 8391 OP_VDUP1, 8392 OP_VDUP2, 8393 OP_VDUP3, 8394 OP_VEXT1, 8395 OP_VEXT2, 8396 OP_VEXT3, 8397 OP_VUZPL, // VUZP, left result 8398 OP_VUZPR, // VUZP, right result 8399 OP_VZIPL, // VZIP, left result 8400 OP_VZIPR, // VZIP, right result 8401 OP_VTRNL, // VTRN, left result 8402 OP_VTRNR // VTRN, right result 8403 }; 8404 8405 static bool isLegalMVEShuffleOp(unsigned PFEntry) { 8406 unsigned OpNum = (PFEntry >> 26) & 0x0F; 8407 switch (OpNum) { 8408 case OP_COPY: 8409 case OP_VREV: 8410 case OP_VDUP0: 8411 case OP_VDUP1: 8412 case OP_VDUP2: 8413 case OP_VDUP3: 8414 return true; 8415 } 8416 return false; 8417 } 8418 8419 /// isShuffleMaskLegal - Targets can use this to indicate that they only 8420 /// support *some* VECTOR_SHUFFLE operations, those with specific masks. 8421 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values 8422 /// are assumed to be legal. 8423 bool ARMTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { 8424 if (VT.getVectorNumElements() == 4 && 8425 (VT.is128BitVector() || VT.is64BitVector())) { 8426 unsigned PFIndexes[4]; 8427 for (unsigned i = 0; i != 4; ++i) { 8428 if (M[i] < 0) 8429 PFIndexes[i] = 8; 8430 else 8431 PFIndexes[i] = M[i]; 8432 } 8433 8434 // Compute the index in the perfect shuffle table. 8435 unsigned PFTableIndex = 8436 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 8437 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 8438 unsigned Cost = (PFEntry >> 30); 8439 8440 if (Cost <= 4 && (Subtarget->hasNEON() || isLegalMVEShuffleOp(PFEntry))) 8441 return true; 8442 } 8443 8444 bool ReverseVEXT, isV_UNDEF; 8445 unsigned Imm, WhichResult; 8446 8447 unsigned EltSize = VT.getScalarSizeInBits(); 8448 if (EltSize >= 32 || 8449 ShuffleVectorSDNode::isSplatMask(&M[0], VT) || 8450 ShuffleVectorInst::isIdentityMask(M, M.size()) || 8451 isVREVMask(M, VT, 64) || 8452 isVREVMask(M, VT, 32) || 8453 isVREVMask(M, VT, 16)) 8454 return true; 8455 else if (Subtarget->hasNEON() && 8456 (isVEXTMask(M, VT, ReverseVEXT, Imm) || 8457 isVTBLMask(M, VT) || 8458 isNEONTwoResultShuffleMask(M, VT, WhichResult, isV_UNDEF))) 8459 return true; 8460 else if ((VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i8) && 8461 isReverseMask(M, VT)) 8462 return true; 8463 else if (Subtarget->hasMVEIntegerOps() && 8464 (isVMOVNMask(M, VT, true, false) || 8465 isVMOVNMask(M, VT, false, false) || isVMOVNMask(M, VT, true, true))) 8466 return true; 8467 else if (Subtarget->hasMVEIntegerOps() && 8468 (isTruncMask(M, VT, false, false) || 8469 isTruncMask(M, VT, false, true) || 8470 isTruncMask(M, VT, true, false) || isTruncMask(M, VT, true, true))) 8471 return true; 8472 else 8473 return false; 8474 } 8475 8476 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 8477 /// the specified operations to build the shuffle. 8478 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 8479 SDValue RHS, SelectionDAG &DAG, 8480 const SDLoc &dl) { 8481 unsigned OpNum = (PFEntry >> 26) & 0x0F; 8482 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 8483 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 8484 8485 if (OpNum == OP_COPY) { 8486 if (LHSID == (1*9+2)*9+3) return LHS; 8487 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 8488 return RHS; 8489 } 8490 8491 SDValue OpLHS, OpRHS; 8492 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 8493 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 8494 EVT VT = OpLHS.getValueType(); 8495 8496 switch (OpNum) { 8497 default: llvm_unreachable("Unknown shuffle opcode!"); 8498 case OP_VREV: 8499 // VREV divides the vector in half and swaps within the half. 8500 if (VT.getScalarSizeInBits() == 32) 8501 return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS); 8502 // vrev <4 x i16> -> VREV32 8503 if (VT.getScalarSizeInBits() == 16) 8504 return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS); 8505 // vrev <4 x i8> -> VREV16 8506 assert(VT.getScalarSizeInBits() == 8); 8507 return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS); 8508 case OP_VDUP0: 8509 case OP_VDUP1: 8510 case OP_VDUP2: 8511 case OP_VDUP3: 8512 return DAG.getNode(ARMISD::VDUPLANE, dl, VT, 8513 OpLHS, DAG.getConstant(OpNum-OP_VDUP0, dl, MVT::i32)); 8514 case OP_VEXT1: 8515 case OP_VEXT2: 8516 case OP_VEXT3: 8517 return DAG.getNode(ARMISD::VEXT, dl, VT, 8518 OpLHS, OpRHS, 8519 DAG.getConstant(OpNum - OP_VEXT1 + 1, dl, MVT::i32)); 8520 case OP_VUZPL: 8521 case OP_VUZPR: 8522 return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT), 8523 OpLHS, OpRHS).getValue(OpNum-OP_VUZPL); 8524 case OP_VZIPL: 8525 case OP_VZIPR: 8526 return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT), 8527 OpLHS, OpRHS).getValue(OpNum-OP_VZIPL); 8528 case OP_VTRNL: 8529 case OP_VTRNR: 8530 return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT), 8531 OpLHS, OpRHS).getValue(OpNum-OP_VTRNL); 8532 } 8533 } 8534 8535 static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op, 8536 ArrayRef<int> ShuffleMask, 8537 SelectionDAG &DAG) { 8538 // Check to see if we can use the VTBL instruction. 8539 SDValue V1 = Op.getOperand(0); 8540 SDValue V2 = Op.getOperand(1); 8541 SDLoc DL(Op); 8542 8543 SmallVector<SDValue, 8> VTBLMask; 8544 for (int I : ShuffleMask) 8545 VTBLMask.push_back(DAG.getConstant(I, DL, MVT::i32)); 8546 8547 if (V2.getNode()->isUndef()) 8548 return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1, 8549 DAG.getBuildVector(MVT::v8i8, DL, VTBLMask)); 8550 8551 return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2, 8552 DAG.getBuildVector(MVT::v8i8, DL, VTBLMask)); 8553 } 8554 8555 static SDValue LowerReverse_VECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) { 8556 SDLoc DL(Op); 8557 EVT VT = Op.getValueType(); 8558 8559 assert((VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i8) && 8560 "Expect an v8i16/v16i8 type"); 8561 SDValue OpLHS = DAG.getNode(ARMISD::VREV64, DL, VT, Op.getOperand(0)); 8562 // For a v16i8 type: After the VREV, we have got <7, ..., 0, 15, ..., 8>. Now, 8563 // extract the first 8 bytes into the top double word and the last 8 bytes 8564 // into the bottom double word, through a new vector shuffle that will be 8565 // turned into a VEXT on Neon, or a couple of VMOVDs on MVE. 8566 std::vector<int> NewMask; 8567 for (unsigned i = 0; i < VT.getVectorNumElements() / 2; i++) 8568 NewMask.push_back(VT.getVectorNumElements() / 2 + i); 8569 for (unsigned i = 0; i < VT.getVectorNumElements() / 2; i++) 8570 NewMask.push_back(i); 8571 return DAG.getVectorShuffle(VT, DL, OpLHS, OpLHS, NewMask); 8572 } 8573 8574 static EVT getVectorTyFromPredicateVector(EVT VT) { 8575 switch (VT.getSimpleVT().SimpleTy) { 8576 case MVT::v2i1: 8577 return MVT::v2f64; 8578 case MVT::v4i1: 8579 return MVT::v4i32; 8580 case MVT::v8i1: 8581 return MVT::v8i16; 8582 case MVT::v16i1: 8583 return MVT::v16i8; 8584 default: 8585 llvm_unreachable("Unexpected vector predicate type"); 8586 } 8587 } 8588 8589 static SDValue PromoteMVEPredVector(SDLoc dl, SDValue Pred, EVT VT, 8590 SelectionDAG &DAG) { 8591 // Converting from boolean predicates to integers involves creating a vector 8592 // of all ones or all zeroes and selecting the lanes based upon the real 8593 // predicate. 8594 SDValue AllOnes = 8595 DAG.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0xff), dl, MVT::i32); 8596 AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v16i8, AllOnes); 8597 8598 SDValue AllZeroes = 8599 DAG.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0x0), dl, MVT::i32); 8600 AllZeroes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v16i8, AllZeroes); 8601 8602 // Get full vector type from predicate type 8603 EVT NewVT = getVectorTyFromPredicateVector(VT); 8604 8605 SDValue RecastV1; 8606 // If the real predicate is an v8i1 or v4i1 (not v16i1) then we need to recast 8607 // this to a v16i1. This cannot be done with an ordinary bitcast because the 8608 // sizes are not the same. We have to use a MVE specific PREDICATE_CAST node, 8609 // since we know in hardware the sizes are really the same. 8610 if (VT != MVT::v16i1) 8611 RecastV1 = DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::v16i1, Pred); 8612 else 8613 RecastV1 = Pred; 8614 8615 // Select either all ones or zeroes depending upon the real predicate bits. 8616 SDValue PredAsVector = 8617 DAG.getNode(ISD::VSELECT, dl, MVT::v16i8, RecastV1, AllOnes, AllZeroes); 8618 8619 // Recast our new predicate-as-integer v16i8 vector into something 8620 // appropriate for the shuffle, i.e. v4i32 for a real v4i1 predicate. 8621 return DAG.getNode(ISD::BITCAST, dl, NewVT, PredAsVector); 8622 } 8623 8624 static SDValue LowerVECTOR_SHUFFLE_i1(SDValue Op, SelectionDAG &DAG, 8625 const ARMSubtarget *ST) { 8626 EVT VT = Op.getValueType(); 8627 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 8628 ArrayRef<int> ShuffleMask = SVN->getMask(); 8629 8630 assert(ST->hasMVEIntegerOps() && 8631 "No support for vector shuffle of boolean predicates"); 8632 8633 SDValue V1 = Op.getOperand(0); 8634 SDValue V2 = Op.getOperand(1); 8635 SDLoc dl(Op); 8636 if (isReverseMask(ShuffleMask, VT)) { 8637 SDValue cast = DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::i32, V1); 8638 SDValue rbit = DAG.getNode(ISD::BITREVERSE, dl, MVT::i32, cast); 8639 SDValue srl = DAG.getNode(ISD::SRL, dl, MVT::i32, rbit, 8640 DAG.getConstant(16, dl, MVT::i32)); 8641 return DAG.getNode(ARMISD::PREDICATE_CAST, dl, VT, srl); 8642 } 8643 8644 // Until we can come up with optimised cases for every single vector 8645 // shuffle in existence we have chosen the least painful strategy. This is 8646 // to essentially promote the boolean predicate to a 8-bit integer, where 8647 // each predicate represents a byte. Then we fall back on a normal integer 8648 // vector shuffle and convert the result back into a predicate vector. In 8649 // many cases the generated code might be even better than scalar code 8650 // operating on bits. Just imagine trying to shuffle 8 arbitrary 2-bit 8651 // fields in a register into 8 other arbitrary 2-bit fields! 8652 SDValue PredAsVector1 = PromoteMVEPredVector(dl, V1, VT, DAG); 8653 EVT NewVT = PredAsVector1.getValueType(); 8654 SDValue PredAsVector2 = V2.isUndef() ? DAG.getUNDEF(NewVT) 8655 : PromoteMVEPredVector(dl, V2, VT, DAG); 8656 assert(PredAsVector2.getValueType() == NewVT && 8657 "Expected identical vector type in expanded i1 shuffle!"); 8658 8659 // Do the shuffle! 8660 SDValue Shuffled = DAG.getVectorShuffle(NewVT, dl, PredAsVector1, 8661 PredAsVector2, ShuffleMask); 8662 8663 // Now return the result of comparing the shuffled vector with zero, 8664 // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1. For a v2i1 8665 // we convert to a v4i1 compare to fill in the two halves of the i64 as i32s. 8666 if (VT == MVT::v2i1) { 8667 SDValue BC = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, MVT::v4i32, Shuffled); 8668 SDValue Cmp = DAG.getNode(ARMISD::VCMPZ, dl, MVT::v4i1, BC, 8669 DAG.getConstant(ARMCC::NE, dl, MVT::i32)); 8670 return DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::v2i1, Cmp); 8671 } 8672 return DAG.getNode(ARMISD::VCMPZ, dl, VT, Shuffled, 8673 DAG.getConstant(ARMCC::NE, dl, MVT::i32)); 8674 } 8675 8676 static SDValue LowerVECTOR_SHUFFLEUsingMovs(SDValue Op, 8677 ArrayRef<int> ShuffleMask, 8678 SelectionDAG &DAG) { 8679 // Attempt to lower the vector shuffle using as many whole register movs as 8680 // possible. This is useful for types smaller than 32bits, which would 8681 // often otherwise become a series for grp movs. 8682 SDLoc dl(Op); 8683 EVT VT = Op.getValueType(); 8684 if (VT.getScalarSizeInBits() >= 32) 8685 return SDValue(); 8686 8687 assert((VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i8) && 8688 "Unexpected vector type"); 8689 int NumElts = VT.getVectorNumElements(); 8690 int QuarterSize = NumElts / 4; 8691 // The four final parts of the vector, as i32's 8692 SDValue Parts[4]; 8693 8694 // Look for full lane vmovs like <0,1,2,3> or <u,5,6,7> etc, (but not 8695 // <u,u,u,u>), returning the vmov lane index 8696 auto getMovIdx = [](ArrayRef<int> ShuffleMask, int Start, int Length) { 8697 // Detect which mov lane this would be from the first non-undef element. 8698 int MovIdx = -1; 8699 for (int i = 0; i < Length; i++) { 8700 if (ShuffleMask[Start + i] >= 0) { 8701 if (ShuffleMask[Start + i] % Length != i) 8702 return -1; 8703 MovIdx = ShuffleMask[Start + i] / Length; 8704 break; 8705 } 8706 } 8707 // If all items are undef, leave this for other combines 8708 if (MovIdx == -1) 8709 return -1; 8710 // Check the remaining values are the correct part of the same mov 8711 for (int i = 1; i < Length; i++) { 8712 if (ShuffleMask[Start + i] >= 0 && 8713 (ShuffleMask[Start + i] / Length != MovIdx || 8714 ShuffleMask[Start + i] % Length != i)) 8715 return -1; 8716 } 8717 return MovIdx; 8718 }; 8719 8720 for (int Part = 0; Part < 4; ++Part) { 8721 // Does this part look like a mov 8722 int Elt = getMovIdx(ShuffleMask, Part * QuarterSize, QuarterSize); 8723 if (Elt != -1) { 8724 SDValue Input = Op->getOperand(0); 8725 if (Elt >= 4) { 8726 Input = Op->getOperand(1); 8727 Elt -= 4; 8728 } 8729 SDValue BitCast = DAG.getBitcast(MVT::v4f32, Input); 8730 Parts[Part] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, BitCast, 8731 DAG.getConstant(Elt, dl, MVT::i32)); 8732 } 8733 } 8734 8735 // Nothing interesting found, just return 8736 if (!Parts[0] && !Parts[1] && !Parts[2] && !Parts[3]) 8737 return SDValue(); 8738 8739 // The other parts need to be built with the old shuffle vector, cast to a 8740 // v4i32 and extract_vector_elts 8741 if (!Parts[0] || !Parts[1] || !Parts[2] || !Parts[3]) { 8742 SmallVector<int, 16> NewShuffleMask; 8743 for (int Part = 0; Part < 4; ++Part) 8744 for (int i = 0; i < QuarterSize; i++) 8745 NewShuffleMask.push_back( 8746 Parts[Part] ? -1 : ShuffleMask[Part * QuarterSize + i]); 8747 SDValue NewShuffle = DAG.getVectorShuffle( 8748 VT, dl, Op->getOperand(0), Op->getOperand(1), NewShuffleMask); 8749 SDValue BitCast = DAG.getBitcast(MVT::v4f32, NewShuffle); 8750 8751 for (int Part = 0; Part < 4; ++Part) 8752 if (!Parts[Part]) 8753 Parts[Part] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, 8754 BitCast, DAG.getConstant(Part, dl, MVT::i32)); 8755 } 8756 // Build a vector out of the various parts and bitcast it back to the original 8757 // type. 8758 SDValue NewVec = DAG.getNode(ARMISD::BUILD_VECTOR, dl, MVT::v4f32, Parts); 8759 return DAG.getBitcast(VT, NewVec); 8760 } 8761 8762 static SDValue LowerVECTOR_SHUFFLEUsingOneOff(SDValue Op, 8763 ArrayRef<int> ShuffleMask, 8764 SelectionDAG &DAG) { 8765 SDValue V1 = Op.getOperand(0); 8766 SDValue V2 = Op.getOperand(1); 8767 EVT VT = Op.getValueType(); 8768 unsigned NumElts = VT.getVectorNumElements(); 8769 8770 // An One-Off Identity mask is one that is mostly an identity mask from as 8771 // single source but contains a single element out-of-place, either from a 8772 // different vector or from another position in the same vector. As opposed to 8773 // lowering this via a ARMISD::BUILD_VECTOR we can generate an extract/insert 8774 // pair directly. 8775 auto isOneOffIdentityMask = [](ArrayRef<int> Mask, EVT VT, int BaseOffset, 8776 int &OffElement) { 8777 OffElement = -1; 8778 int NonUndef = 0; 8779 for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) { 8780 if (Mask[i] == -1) 8781 continue; 8782 NonUndef++; 8783 if (Mask[i] != i + BaseOffset) { 8784 if (OffElement == -1) 8785 OffElement = i; 8786 else 8787 return false; 8788 } 8789 } 8790 return NonUndef > 2 && OffElement != -1; 8791 }; 8792 int OffElement; 8793 SDValue VInput; 8794 if (isOneOffIdentityMask(ShuffleMask, VT, 0, OffElement)) 8795 VInput = V1; 8796 else if (isOneOffIdentityMask(ShuffleMask, VT, NumElts, OffElement)) 8797 VInput = V2; 8798 else 8799 return SDValue(); 8800 8801 SDLoc dl(Op); 8802 EVT SVT = VT.getScalarType() == MVT::i8 || VT.getScalarType() == MVT::i16 8803 ? MVT::i32 8804 : VT.getScalarType(); 8805 SDValue Elt = DAG.getNode( 8806 ISD::EXTRACT_VECTOR_ELT, dl, SVT, 8807 ShuffleMask[OffElement] < (int)NumElts ? V1 : V2, 8808 DAG.getVectorIdxConstant(ShuffleMask[OffElement] % NumElts, dl)); 8809 return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, VInput, Elt, 8810 DAG.getVectorIdxConstant(OffElement % NumElts, dl)); 8811 } 8812 8813 static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG, 8814 const ARMSubtarget *ST) { 8815 SDValue V1 = Op.getOperand(0); 8816 SDValue V2 = Op.getOperand(1); 8817 SDLoc dl(Op); 8818 EVT VT = Op.getValueType(); 8819 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 8820 unsigned EltSize = VT.getScalarSizeInBits(); 8821 8822 if (ST->hasMVEIntegerOps() && EltSize == 1) 8823 return LowerVECTOR_SHUFFLE_i1(Op, DAG, ST); 8824 8825 // Convert shuffles that are directly supported on NEON to target-specific 8826 // DAG nodes, instead of keeping them as shuffles and matching them again 8827 // during code selection. This is more efficient and avoids the possibility 8828 // of inconsistencies between legalization and selection. 8829 // FIXME: floating-point vectors should be canonicalized to integer vectors 8830 // of the same time so that they get CSEd properly. 8831 ArrayRef<int> ShuffleMask = SVN->getMask(); 8832 8833 if (EltSize <= 32) { 8834 if (SVN->isSplat()) { 8835 int Lane = SVN->getSplatIndex(); 8836 // If this is undef splat, generate it via "just" vdup, if possible. 8837 if (Lane == -1) Lane = 0; 8838 8839 // Test if V1 is a SCALAR_TO_VECTOR. 8840 if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) { 8841 return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0)); 8842 } 8843 // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR 8844 // (and probably will turn into a SCALAR_TO_VECTOR once legalization 8845 // reaches it). 8846 if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR && 8847 !isa<ConstantSDNode>(V1.getOperand(0))) { 8848 bool IsScalarToVector = true; 8849 for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i) 8850 if (!V1.getOperand(i).isUndef()) { 8851 IsScalarToVector = false; 8852 break; 8853 } 8854 if (IsScalarToVector) 8855 return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0)); 8856 } 8857 return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1, 8858 DAG.getConstant(Lane, dl, MVT::i32)); 8859 } 8860 8861 bool ReverseVEXT = false; 8862 unsigned Imm = 0; 8863 if (ST->hasNEON() && isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) { 8864 if (ReverseVEXT) 8865 std::swap(V1, V2); 8866 return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2, 8867 DAG.getConstant(Imm, dl, MVT::i32)); 8868 } 8869 8870 if (isVREVMask(ShuffleMask, VT, 64)) 8871 return DAG.getNode(ARMISD::VREV64, dl, VT, V1); 8872 if (isVREVMask(ShuffleMask, VT, 32)) 8873 return DAG.getNode(ARMISD::VREV32, dl, VT, V1); 8874 if (isVREVMask(ShuffleMask, VT, 16)) 8875 return DAG.getNode(ARMISD::VREV16, dl, VT, V1); 8876 8877 if (ST->hasNEON() && V2->isUndef() && isSingletonVEXTMask(ShuffleMask, VT, Imm)) { 8878 return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V1, 8879 DAG.getConstant(Imm, dl, MVT::i32)); 8880 } 8881 8882 // Check for Neon shuffles that modify both input vectors in place. 8883 // If both results are used, i.e., if there are two shuffles with the same 8884 // source operands and with masks corresponding to both results of one of 8885 // these operations, DAG memoization will ensure that a single node is 8886 // used for both shuffles. 8887 unsigned WhichResult = 0; 8888 bool isV_UNDEF = false; 8889 if (ST->hasNEON()) { 8890 if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask( 8891 ShuffleMask, VT, WhichResult, isV_UNDEF)) { 8892 if (isV_UNDEF) 8893 V2 = V1; 8894 return DAG.getNode(ShuffleOpc, dl, DAG.getVTList(VT, VT), V1, V2) 8895 .getValue(WhichResult); 8896 } 8897 } 8898 if (ST->hasMVEIntegerOps()) { 8899 if (isVMOVNMask(ShuffleMask, VT, false, false)) 8900 return DAG.getNode(ARMISD::VMOVN, dl, VT, V2, V1, 8901 DAG.getConstant(0, dl, MVT::i32)); 8902 if (isVMOVNMask(ShuffleMask, VT, true, false)) 8903 return DAG.getNode(ARMISD::VMOVN, dl, VT, V1, V2, 8904 DAG.getConstant(1, dl, MVT::i32)); 8905 if (isVMOVNMask(ShuffleMask, VT, true, true)) 8906 return DAG.getNode(ARMISD::VMOVN, dl, VT, V1, V1, 8907 DAG.getConstant(1, dl, MVT::i32)); 8908 } 8909 8910 // Also check for these shuffles through CONCAT_VECTORS: we canonicalize 8911 // shuffles that produce a result larger than their operands with: 8912 // shuffle(concat(v1, undef), concat(v2, undef)) 8913 // -> 8914 // shuffle(concat(v1, v2), undef) 8915 // because we can access quad vectors (see PerformVECTOR_SHUFFLECombine). 8916 // 8917 // This is useful in the general case, but there are special cases where 8918 // native shuffles produce larger results: the two-result ops. 8919 // 8920 // Look through the concat when lowering them: 8921 // shuffle(concat(v1, v2), undef) 8922 // -> 8923 // concat(VZIP(v1, v2):0, :1) 8924 // 8925 if (ST->hasNEON() && V1->getOpcode() == ISD::CONCAT_VECTORS && V2->isUndef()) { 8926 SDValue SubV1 = V1->getOperand(0); 8927 SDValue SubV2 = V1->getOperand(1); 8928 EVT SubVT = SubV1.getValueType(); 8929 8930 // We expect these to have been canonicalized to -1. 8931 assert(llvm::all_of(ShuffleMask, [&](int i) { 8932 return i < (int)VT.getVectorNumElements(); 8933 }) && "Unexpected shuffle index into UNDEF operand!"); 8934 8935 if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask( 8936 ShuffleMask, SubVT, WhichResult, isV_UNDEF)) { 8937 if (isV_UNDEF) 8938 SubV2 = SubV1; 8939 assert((WhichResult == 0) && 8940 "In-place shuffle of concat can only have one result!"); 8941 SDValue Res = DAG.getNode(ShuffleOpc, dl, DAG.getVTList(SubVT, SubVT), 8942 SubV1, SubV2); 8943 return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Res.getValue(0), 8944 Res.getValue(1)); 8945 } 8946 } 8947 } 8948 8949 if (ST->hasMVEIntegerOps() && EltSize <= 32) { 8950 if (SDValue V = LowerVECTOR_SHUFFLEUsingOneOff(Op, ShuffleMask, DAG)) 8951 return V; 8952 8953 for (bool Top : {false, true}) { 8954 for (bool SingleSource : {false, true}) { 8955 if (isTruncMask(ShuffleMask, VT, Top, SingleSource)) { 8956 MVT FromSVT = MVT::getIntegerVT(EltSize * 2); 8957 MVT FromVT = MVT::getVectorVT(FromSVT, ShuffleMask.size() / 2); 8958 SDValue Lo = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, FromVT, V1); 8959 SDValue Hi = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, FromVT, 8960 SingleSource ? V1 : V2); 8961 if (Top) { 8962 SDValue Amt = DAG.getConstant(EltSize, dl, FromVT); 8963 Lo = DAG.getNode(ISD::SRL, dl, FromVT, Lo, Amt); 8964 Hi = DAG.getNode(ISD::SRL, dl, FromVT, Hi, Amt); 8965 } 8966 return DAG.getNode(ARMISD::MVETRUNC, dl, VT, Lo, Hi); 8967 } 8968 } 8969 } 8970 } 8971 8972 // If the shuffle is not directly supported and it has 4 elements, use 8973 // the PerfectShuffle-generated table to synthesize it from other shuffles. 8974 unsigned NumElts = VT.getVectorNumElements(); 8975 if (NumElts == 4) { 8976 unsigned PFIndexes[4]; 8977 for (unsigned i = 0; i != 4; ++i) { 8978 if (ShuffleMask[i] < 0) 8979 PFIndexes[i] = 8; 8980 else 8981 PFIndexes[i] = ShuffleMask[i]; 8982 } 8983 8984 // Compute the index in the perfect shuffle table. 8985 unsigned PFTableIndex = 8986 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 8987 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 8988 unsigned Cost = (PFEntry >> 30); 8989 8990 if (Cost <= 4) { 8991 if (ST->hasNEON()) 8992 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 8993 else if (isLegalMVEShuffleOp(PFEntry)) { 8994 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 8995 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 8996 unsigned PFEntryLHS = PerfectShuffleTable[LHSID]; 8997 unsigned PFEntryRHS = PerfectShuffleTable[RHSID]; 8998 if (isLegalMVEShuffleOp(PFEntryLHS) && isLegalMVEShuffleOp(PFEntryRHS)) 8999 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 9000 } 9001 } 9002 } 9003 9004 // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs. 9005 if (EltSize >= 32) { 9006 // Do the expansion with floating-point types, since that is what the VFP 9007 // registers are defined to use, and since i64 is not legal. 9008 EVT EltVT = EVT::getFloatingPointVT(EltSize); 9009 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts); 9010 V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1); 9011 V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2); 9012 SmallVector<SDValue, 8> Ops; 9013 for (unsigned i = 0; i < NumElts; ++i) { 9014 if (ShuffleMask[i] < 0) 9015 Ops.push_back(DAG.getUNDEF(EltVT)); 9016 else 9017 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, 9018 ShuffleMask[i] < (int)NumElts ? V1 : V2, 9019 DAG.getConstant(ShuffleMask[i] & (NumElts-1), 9020 dl, MVT::i32))); 9021 } 9022 SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops); 9023 return DAG.getNode(ISD::BITCAST, dl, VT, Val); 9024 } 9025 9026 if ((VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i8) && 9027 isReverseMask(ShuffleMask, VT)) 9028 return LowerReverse_VECTOR_SHUFFLE(Op, DAG); 9029 9030 if (ST->hasNEON() && VT == MVT::v8i8) 9031 if (SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG)) 9032 return NewOp; 9033 9034 if (ST->hasMVEIntegerOps()) 9035 if (SDValue NewOp = LowerVECTOR_SHUFFLEUsingMovs(Op, ShuffleMask, DAG)) 9036 return NewOp; 9037 9038 return SDValue(); 9039 } 9040 9041 static SDValue LowerINSERT_VECTOR_ELT_i1(SDValue Op, SelectionDAG &DAG, 9042 const ARMSubtarget *ST) { 9043 EVT VecVT = Op.getOperand(0).getValueType(); 9044 SDLoc dl(Op); 9045 9046 assert(ST->hasMVEIntegerOps() && 9047 "LowerINSERT_VECTOR_ELT_i1 called without MVE!"); 9048 9049 SDValue Conv = 9050 DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::i32, Op->getOperand(0)); 9051 unsigned Lane = Op.getConstantOperandVal(2); 9052 unsigned LaneWidth = 9053 getVectorTyFromPredicateVector(VecVT).getScalarSizeInBits() / 8; 9054 unsigned Mask = ((1 << LaneWidth) - 1) << Lane * LaneWidth; 9055 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::i32, 9056 Op.getOperand(1), DAG.getValueType(MVT::i1)); 9057 SDValue BFI = DAG.getNode(ARMISD::BFI, dl, MVT::i32, Conv, Ext, 9058 DAG.getConstant(~Mask, dl, MVT::i32)); 9059 return DAG.getNode(ARMISD::PREDICATE_CAST, dl, Op.getValueType(), BFI); 9060 } 9061 9062 SDValue ARMTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 9063 SelectionDAG &DAG) const { 9064 // INSERT_VECTOR_ELT is legal only for immediate indexes. 9065 SDValue Lane = Op.getOperand(2); 9066 if (!isa<ConstantSDNode>(Lane)) 9067 return SDValue(); 9068 9069 SDValue Elt = Op.getOperand(1); 9070 EVT EltVT = Elt.getValueType(); 9071 9072 if (Subtarget->hasMVEIntegerOps() && 9073 Op.getValueType().getScalarSizeInBits() == 1) 9074 return LowerINSERT_VECTOR_ELT_i1(Op, DAG, Subtarget); 9075 9076 if (getTypeAction(*DAG.getContext(), EltVT) == 9077 TargetLowering::TypeSoftPromoteHalf) { 9078 // INSERT_VECTOR_ELT doesn't want f16 operands promoting to f32, 9079 // but the type system will try to do that if we don't intervene. 9080 // Reinterpret any such vector-element insertion as one with the 9081 // corresponding integer types. 9082 9083 SDLoc dl(Op); 9084 9085 EVT IEltVT = MVT::getIntegerVT(EltVT.getScalarSizeInBits()); 9086 assert(getTypeAction(*DAG.getContext(), IEltVT) != 9087 TargetLowering::TypeSoftPromoteHalf); 9088 9089 SDValue VecIn = Op.getOperand(0); 9090 EVT VecVT = VecIn.getValueType(); 9091 EVT IVecVT = EVT::getVectorVT(*DAG.getContext(), IEltVT, 9092 VecVT.getVectorNumElements()); 9093 9094 SDValue IElt = DAG.getNode(ISD::BITCAST, dl, IEltVT, Elt); 9095 SDValue IVecIn = DAG.getNode(ISD::BITCAST, dl, IVecVT, VecIn); 9096 SDValue IVecOut = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, IVecVT, 9097 IVecIn, IElt, Lane); 9098 return DAG.getNode(ISD::BITCAST, dl, VecVT, IVecOut); 9099 } 9100 9101 return Op; 9102 } 9103 9104 static SDValue LowerEXTRACT_VECTOR_ELT_i1(SDValue Op, SelectionDAG &DAG, 9105 const ARMSubtarget *ST) { 9106 EVT VecVT = Op.getOperand(0).getValueType(); 9107 SDLoc dl(Op); 9108 9109 assert(ST->hasMVEIntegerOps() && 9110 "LowerINSERT_VECTOR_ELT_i1 called without MVE!"); 9111 9112 SDValue Conv = 9113 DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::i32, Op->getOperand(0)); 9114 unsigned Lane = Op.getConstantOperandVal(1); 9115 unsigned LaneWidth = 9116 getVectorTyFromPredicateVector(VecVT).getScalarSizeInBits() / 8; 9117 SDValue Shift = DAG.getNode(ISD::SRL, dl, MVT::i32, Conv, 9118 DAG.getConstant(Lane * LaneWidth, dl, MVT::i32)); 9119 return Shift; 9120 } 9121 9122 static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG, 9123 const ARMSubtarget *ST) { 9124 // EXTRACT_VECTOR_ELT is legal only for immediate indexes. 9125 SDValue Lane = Op.getOperand(1); 9126 if (!isa<ConstantSDNode>(Lane)) 9127 return SDValue(); 9128 9129 SDValue Vec = Op.getOperand(0); 9130 EVT VT = Vec.getValueType(); 9131 9132 if (ST->hasMVEIntegerOps() && VT.getScalarSizeInBits() == 1) 9133 return LowerEXTRACT_VECTOR_ELT_i1(Op, DAG, ST); 9134 9135 if (Op.getValueType() == MVT::i32 && Vec.getScalarValueSizeInBits() < 32) { 9136 SDLoc dl(Op); 9137 return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane); 9138 } 9139 9140 return Op; 9141 } 9142 9143 static SDValue LowerCONCAT_VECTORS_i1(SDValue Op, SelectionDAG &DAG, 9144 const ARMSubtarget *ST) { 9145 SDLoc dl(Op); 9146 assert(Op.getValueType().getScalarSizeInBits() == 1 && 9147 "Unexpected custom CONCAT_VECTORS lowering"); 9148 assert(isPowerOf2_32(Op.getNumOperands()) && 9149 "Unexpected custom CONCAT_VECTORS lowering"); 9150 assert(ST->hasMVEIntegerOps() && 9151 "CONCAT_VECTORS lowering only supported for MVE"); 9152 9153 auto ConcatPair = [&](SDValue V1, SDValue V2) { 9154 EVT Op1VT = V1.getValueType(); 9155 EVT Op2VT = V2.getValueType(); 9156 assert(Op1VT == Op2VT && "Operand types don't match!"); 9157 assert((Op1VT == MVT::v2i1 || Op1VT == MVT::v4i1 || Op1VT == MVT::v8i1) && 9158 "Unexpected i1 concat operations!"); 9159 EVT VT = Op1VT.getDoubleNumVectorElementsVT(*DAG.getContext()); 9160 9161 SDValue NewV1 = PromoteMVEPredVector(dl, V1, Op1VT, DAG); 9162 SDValue NewV2 = PromoteMVEPredVector(dl, V2, Op2VT, DAG); 9163 9164 // We now have Op1 + Op2 promoted to vectors of integers, where v8i1 gets 9165 // promoted to v8i16, etc. 9166 MVT ElType = 9167 getVectorTyFromPredicateVector(VT).getScalarType().getSimpleVT(); 9168 unsigned NumElts = 2 * Op1VT.getVectorNumElements(); 9169 9170 EVT ConcatVT = MVT::getVectorVT(ElType, NumElts); 9171 if (Op1VT == MVT::v4i1 || Op1VT == MVT::v8i1) { 9172 // Use MVETRUNC to truncate the combined NewV1::NewV2 into the smaller 9173 // ConcatVT. 9174 SDValue ConVec = 9175 DAG.getNode(ARMISD::MVETRUNC, dl, ConcatVT, NewV1, NewV2); 9176 return DAG.getNode(ARMISD::VCMPZ, dl, VT, ConVec, 9177 DAG.getConstant(ARMCC::NE, dl, MVT::i32)); 9178 } 9179 9180 // Extract the vector elements from Op1 and Op2 one by one and truncate them 9181 // to be the right size for the destination. For example, if Op1 is v4i1 9182 // then the promoted vector is v4i32. The result of concatenation gives a 9183 // v8i1, which when promoted is v8i16. That means each i32 element from Op1 9184 // needs truncating to i16 and inserting in the result. 9185 auto ExtractInto = [&DAG, &dl](SDValue NewV, SDValue ConVec, unsigned &j) { 9186 EVT NewVT = NewV.getValueType(); 9187 EVT ConcatVT = ConVec.getValueType(); 9188 unsigned ExtScale = 1; 9189 if (NewVT == MVT::v2f64) { 9190 NewV = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, MVT::v4i32, NewV); 9191 ExtScale = 2; 9192 } 9193 for (unsigned i = 0, e = NewVT.getVectorNumElements(); i < e; i++, j++) { 9194 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, NewV, 9195 DAG.getIntPtrConstant(i * ExtScale, dl)); 9196 ConVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ConcatVT, ConVec, Elt, 9197 DAG.getConstant(j, dl, MVT::i32)); 9198 } 9199 return ConVec; 9200 }; 9201 unsigned j = 0; 9202 SDValue ConVec = DAG.getNode(ISD::UNDEF, dl, ConcatVT); 9203 ConVec = ExtractInto(NewV1, ConVec, j); 9204 ConVec = ExtractInto(NewV2, ConVec, j); 9205 9206 // Now return the result of comparing the subvector with zero, which will 9207 // generate a real predicate, i.e. v4i1, v8i1 or v16i1. 9208 return DAG.getNode(ARMISD::VCMPZ, dl, VT, ConVec, 9209 DAG.getConstant(ARMCC::NE, dl, MVT::i32)); 9210 }; 9211 9212 // Concat each pair of subvectors and pack into the lower half of the array. 9213 SmallVector<SDValue> ConcatOps(Op->op_begin(), Op->op_end()); 9214 while (ConcatOps.size() > 1) { 9215 for (unsigned I = 0, E = ConcatOps.size(); I != E; I += 2) { 9216 SDValue V1 = ConcatOps[I]; 9217 SDValue V2 = ConcatOps[I + 1]; 9218 ConcatOps[I / 2] = ConcatPair(V1, V2); 9219 } 9220 ConcatOps.resize(ConcatOps.size() / 2); 9221 } 9222 return ConcatOps[0]; 9223 } 9224 9225 static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG, 9226 const ARMSubtarget *ST) { 9227 EVT VT = Op->getValueType(0); 9228 if (ST->hasMVEIntegerOps() && VT.getScalarSizeInBits() == 1) 9229 return LowerCONCAT_VECTORS_i1(Op, DAG, ST); 9230 9231 // The only time a CONCAT_VECTORS operation can have legal types is when 9232 // two 64-bit vectors are concatenated to a 128-bit vector. 9233 assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 && 9234 "unexpected CONCAT_VECTORS"); 9235 SDLoc dl(Op); 9236 SDValue Val = DAG.getUNDEF(MVT::v2f64); 9237 SDValue Op0 = Op.getOperand(0); 9238 SDValue Op1 = Op.getOperand(1); 9239 if (!Op0.isUndef()) 9240 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val, 9241 DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0), 9242 DAG.getIntPtrConstant(0, dl)); 9243 if (!Op1.isUndef()) 9244 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val, 9245 DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1), 9246 DAG.getIntPtrConstant(1, dl)); 9247 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val); 9248 } 9249 9250 static SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG, 9251 const ARMSubtarget *ST) { 9252 SDValue V1 = Op.getOperand(0); 9253 SDValue V2 = Op.getOperand(1); 9254 SDLoc dl(Op); 9255 EVT VT = Op.getValueType(); 9256 EVT Op1VT = V1.getValueType(); 9257 unsigned NumElts = VT.getVectorNumElements(); 9258 unsigned Index = V2->getAsZExtVal(); 9259 9260 assert(VT.getScalarSizeInBits() == 1 && 9261 "Unexpected custom EXTRACT_SUBVECTOR lowering"); 9262 assert(ST->hasMVEIntegerOps() && 9263 "EXTRACT_SUBVECTOR lowering only supported for MVE"); 9264 9265 SDValue NewV1 = PromoteMVEPredVector(dl, V1, Op1VT, DAG); 9266 9267 // We now have Op1 promoted to a vector of integers, where v8i1 gets 9268 // promoted to v8i16, etc. 9269 9270 MVT ElType = getVectorTyFromPredicateVector(VT).getScalarType().getSimpleVT(); 9271 9272 if (NumElts == 2) { 9273 EVT SubVT = MVT::v4i32; 9274 SDValue SubVec = DAG.getNode(ISD::UNDEF, dl, SubVT); 9275 for (unsigned i = Index, j = 0; i < (Index + NumElts); i++, j += 2) { 9276 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, NewV1, 9277 DAG.getIntPtrConstant(i, dl)); 9278 SubVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, SubVT, SubVec, Elt, 9279 DAG.getConstant(j, dl, MVT::i32)); 9280 SubVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, SubVT, SubVec, Elt, 9281 DAG.getConstant(j + 1, dl, MVT::i32)); 9282 } 9283 SDValue Cmp = DAG.getNode(ARMISD::VCMPZ, dl, MVT::v4i1, SubVec, 9284 DAG.getConstant(ARMCC::NE, dl, MVT::i32)); 9285 return DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::v2i1, Cmp); 9286 } 9287 9288 EVT SubVT = MVT::getVectorVT(ElType, NumElts); 9289 SDValue SubVec = DAG.getNode(ISD::UNDEF, dl, SubVT); 9290 for (unsigned i = Index, j = 0; i < (Index + NumElts); i++, j++) { 9291 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, NewV1, 9292 DAG.getIntPtrConstant(i, dl)); 9293 SubVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, SubVT, SubVec, Elt, 9294 DAG.getConstant(j, dl, MVT::i32)); 9295 } 9296 9297 // Now return the result of comparing the subvector with zero, 9298 // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1. 9299 return DAG.getNode(ARMISD::VCMPZ, dl, VT, SubVec, 9300 DAG.getConstant(ARMCC::NE, dl, MVT::i32)); 9301 } 9302 9303 // Turn a truncate into a predicate (an i1 vector) into icmp(and(x, 1), 0). 9304 static SDValue LowerTruncatei1(SDNode *N, SelectionDAG &DAG, 9305 const ARMSubtarget *ST) { 9306 assert(ST->hasMVEIntegerOps() && "Expected MVE!"); 9307 EVT VT = N->getValueType(0); 9308 assert((VT == MVT::v16i1 || VT == MVT::v8i1 || VT == MVT::v4i1) && 9309 "Expected a vector i1 type!"); 9310 SDValue Op = N->getOperand(0); 9311 EVT FromVT = Op.getValueType(); 9312 SDLoc DL(N); 9313 9314 SDValue And = 9315 DAG.getNode(ISD::AND, DL, FromVT, Op, DAG.getConstant(1, DL, FromVT)); 9316 return DAG.getNode(ISD::SETCC, DL, VT, And, DAG.getConstant(0, DL, FromVT), 9317 DAG.getCondCode(ISD::SETNE)); 9318 } 9319 9320 static SDValue LowerTruncate(SDNode *N, SelectionDAG &DAG, 9321 const ARMSubtarget *Subtarget) { 9322 if (!Subtarget->hasMVEIntegerOps()) 9323 return SDValue(); 9324 9325 EVT ToVT = N->getValueType(0); 9326 if (ToVT.getScalarType() == MVT::i1) 9327 return LowerTruncatei1(N, DAG, Subtarget); 9328 9329 // MVE does not have a single instruction to perform the truncation of a v4i32 9330 // into the lower half of a v8i16, in the same way that a NEON vmovn would. 9331 // Most of the instructions in MVE follow the 'Beats' system, where moving 9332 // values from different lanes is usually something that the instructions 9333 // avoid. 9334 // 9335 // Instead it has top/bottom instructions such as VMOVLT/B and VMOVNT/B, 9336 // which take a the top/bottom half of a larger lane and extend it (or do the 9337 // opposite, truncating into the top/bottom lane from a larger lane). Note 9338 // that because of the way we widen lanes, a v4i16 is really a v4i32 using the 9339 // bottom 16bits from each vector lane. This works really well with T/B 9340 // instructions, but that doesn't extend to v8i32->v8i16 where the lanes need 9341 // to move order. 9342 // 9343 // But truncates and sext/zext are always going to be fairly common from llvm. 9344 // We have several options for how to deal with them: 9345 // - Wherever possible combine them into an instruction that makes them 9346 // "free". This includes loads/stores, which can perform the trunc as part 9347 // of the memory operation. Or certain shuffles that can be turned into 9348 // VMOVN/VMOVL. 9349 // - Lane Interleaving to transform blocks surrounded by ext/trunc. So 9350 // trunc(mul(sext(a), sext(b))) may become 9351 // VMOVNT(VMUL(VMOVLB(a), VMOVLB(b)), VMUL(VMOVLT(a), VMOVLT(b))). (Which in 9352 // this case can use VMULL). This is performed in the 9353 // MVELaneInterleavingPass. 9354 // - Otherwise we have an option. By default we would expand the 9355 // zext/sext/trunc into a series of lane extract/inserts going via GPR 9356 // registers. One for each vector lane in the vector. This can obviously be 9357 // very expensive. 9358 // - The other option is to use the fact that loads/store can extend/truncate 9359 // to turn a trunc into two truncating stack stores and a stack reload. This 9360 // becomes 3 back-to-back memory operations, but at least that is less than 9361 // all the insert/extracts. 9362 // 9363 // In order to do the last, we convert certain trunc's into MVETRUNC, which 9364 // are either optimized where they can be, or eventually lowered into stack 9365 // stores/loads. This prevents us from splitting a v8i16 trunc into two stores 9366 // two early, where other instructions would be better, and stops us from 9367 // having to reconstruct multiple buildvector shuffles into loads/stores. 9368 if (ToVT != MVT::v8i16 && ToVT != MVT::v16i8) 9369 return SDValue(); 9370 EVT FromVT = N->getOperand(0).getValueType(); 9371 if (FromVT != MVT::v8i32 && FromVT != MVT::v16i16) 9372 return SDValue(); 9373 9374 SDValue Lo, Hi; 9375 std::tie(Lo, Hi) = DAG.SplitVectorOperand(N, 0); 9376 SDLoc DL(N); 9377 return DAG.getNode(ARMISD::MVETRUNC, DL, ToVT, Lo, Hi); 9378 } 9379 9380 static SDValue LowerVectorExtend(SDNode *N, SelectionDAG &DAG, 9381 const ARMSubtarget *Subtarget) { 9382 if (!Subtarget->hasMVEIntegerOps()) 9383 return SDValue(); 9384 9385 // See LowerTruncate above for an explanation of MVEEXT/MVETRUNC. 9386 9387 EVT ToVT = N->getValueType(0); 9388 if (ToVT != MVT::v16i32 && ToVT != MVT::v8i32 && ToVT != MVT::v16i16) 9389 return SDValue(); 9390 SDValue Op = N->getOperand(0); 9391 EVT FromVT = Op.getValueType(); 9392 if (FromVT != MVT::v8i16 && FromVT != MVT::v16i8) 9393 return SDValue(); 9394 9395 SDLoc DL(N); 9396 EVT ExtVT = ToVT.getHalfNumVectorElementsVT(*DAG.getContext()); 9397 if (ToVT.getScalarType() == MVT::i32 && FromVT.getScalarType() == MVT::i8) 9398 ExtVT = MVT::v8i16; 9399 9400 unsigned Opcode = 9401 N->getOpcode() == ISD::SIGN_EXTEND ? ARMISD::MVESEXT : ARMISD::MVEZEXT; 9402 SDValue Ext = DAG.getNode(Opcode, DL, DAG.getVTList(ExtVT, ExtVT), Op); 9403 SDValue Ext1 = Ext.getValue(1); 9404 9405 if (ToVT.getScalarType() == MVT::i32 && FromVT.getScalarType() == MVT::i8) { 9406 Ext = DAG.getNode(N->getOpcode(), DL, MVT::v8i32, Ext); 9407 Ext1 = DAG.getNode(N->getOpcode(), DL, MVT::v8i32, Ext1); 9408 } 9409 9410 return DAG.getNode(ISD::CONCAT_VECTORS, DL, ToVT, Ext, Ext1); 9411 } 9412 9413 /// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each 9414 /// element has been zero/sign-extended, depending on the isSigned parameter, 9415 /// from an integer type half its size. 9416 static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG, 9417 bool isSigned) { 9418 // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32. 9419 EVT VT = N->getValueType(0); 9420 if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) { 9421 SDNode *BVN = N->getOperand(0).getNode(); 9422 if (BVN->getValueType(0) != MVT::v4i32 || 9423 BVN->getOpcode() != ISD::BUILD_VECTOR) 9424 return false; 9425 unsigned LoElt = DAG.getDataLayout().isBigEndian() ? 1 : 0; 9426 unsigned HiElt = 1 - LoElt; 9427 ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt)); 9428 ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt)); 9429 ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2)); 9430 ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2)); 9431 if (!Lo0 || !Hi0 || !Lo1 || !Hi1) 9432 return false; 9433 if (isSigned) { 9434 if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 && 9435 Hi1->getSExtValue() == Lo1->getSExtValue() >> 32) 9436 return true; 9437 } else { 9438 if (Hi0->isZero() && Hi1->isZero()) 9439 return true; 9440 } 9441 return false; 9442 } 9443 9444 if (N->getOpcode() != ISD::BUILD_VECTOR) 9445 return false; 9446 9447 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 9448 SDNode *Elt = N->getOperand(i).getNode(); 9449 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) { 9450 unsigned EltSize = VT.getScalarSizeInBits(); 9451 unsigned HalfSize = EltSize / 2; 9452 if (isSigned) { 9453 if (!isIntN(HalfSize, C->getSExtValue())) 9454 return false; 9455 } else { 9456 if (!isUIntN(HalfSize, C->getZExtValue())) 9457 return false; 9458 } 9459 continue; 9460 } 9461 return false; 9462 } 9463 9464 return true; 9465 } 9466 9467 /// isSignExtended - Check if a node is a vector value that is sign-extended 9468 /// or a constant BUILD_VECTOR with sign-extended elements. 9469 static bool isSignExtended(SDNode *N, SelectionDAG &DAG) { 9470 if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N)) 9471 return true; 9472 if (isExtendedBUILD_VECTOR(N, DAG, true)) 9473 return true; 9474 return false; 9475 } 9476 9477 /// isZeroExtended - Check if a node is a vector value that is zero-extended (or 9478 /// any-extended) or a constant BUILD_VECTOR with zero-extended elements. 9479 static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) { 9480 if (N->getOpcode() == ISD::ZERO_EXTEND || N->getOpcode() == ISD::ANY_EXTEND || 9481 ISD::isZEXTLoad(N)) 9482 return true; 9483 if (isExtendedBUILD_VECTOR(N, DAG, false)) 9484 return true; 9485 return false; 9486 } 9487 9488 static EVT getExtensionTo64Bits(const EVT &OrigVT) { 9489 if (OrigVT.getSizeInBits() >= 64) 9490 return OrigVT; 9491 9492 assert(OrigVT.isSimple() && "Expecting a simple value type"); 9493 9494 MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy; 9495 switch (OrigSimpleTy) { 9496 default: llvm_unreachable("Unexpected Vector Type"); 9497 case MVT::v2i8: 9498 case MVT::v2i16: 9499 return MVT::v2i32; 9500 case MVT::v4i8: 9501 return MVT::v4i16; 9502 } 9503 } 9504 9505 /// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total 9506 /// value size to 64 bits. We need a 64-bit D register as an operand to VMULL. 9507 /// We insert the required extension here to get the vector to fill a D register. 9508 static SDValue AddRequiredExtensionForVMULL(SDValue N, SelectionDAG &DAG, 9509 const EVT &OrigTy, 9510 const EVT &ExtTy, 9511 unsigned ExtOpcode) { 9512 // The vector originally had a size of OrigTy. It was then extended to ExtTy. 9513 // We expect the ExtTy to be 128-bits total. If the OrigTy is less than 9514 // 64-bits we need to insert a new extension so that it will be 64-bits. 9515 assert(ExtTy.is128BitVector() && "Unexpected extension size"); 9516 if (OrigTy.getSizeInBits() >= 64) 9517 return N; 9518 9519 // Must extend size to at least 64 bits to be used as an operand for VMULL. 9520 EVT NewVT = getExtensionTo64Bits(OrigTy); 9521 9522 return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N); 9523 } 9524 9525 /// SkipLoadExtensionForVMULL - return a load of the original vector size that 9526 /// does not do any sign/zero extension. If the original vector is less 9527 /// than 64 bits, an appropriate extension will be added after the load to 9528 /// reach a total size of 64 bits. We have to add the extension separately 9529 /// because ARM does not have a sign/zero extending load for vectors. 9530 static SDValue SkipLoadExtensionForVMULL(LoadSDNode *LD, SelectionDAG& DAG) { 9531 EVT ExtendedTy = getExtensionTo64Bits(LD->getMemoryVT()); 9532 9533 // The load already has the right type. 9534 if (ExtendedTy == LD->getMemoryVT()) 9535 return DAG.getLoad(LD->getMemoryVT(), SDLoc(LD), LD->getChain(), 9536 LD->getBasePtr(), LD->getPointerInfo(), LD->getAlign(), 9537 LD->getMemOperand()->getFlags()); 9538 9539 // We need to create a zextload/sextload. We cannot just create a load 9540 // followed by a zext/zext node because LowerMUL is also run during normal 9541 // operation legalization where we can't create illegal types. 9542 return DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), ExtendedTy, 9543 LD->getChain(), LD->getBasePtr(), LD->getPointerInfo(), 9544 LD->getMemoryVT(), LD->getAlign(), 9545 LD->getMemOperand()->getFlags()); 9546 } 9547 9548 /// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND, 9549 /// ANY_EXTEND, extending load, or BUILD_VECTOR with extended elements, return 9550 /// the unextended value. The unextended vector should be 64 bits so that it can 9551 /// be used as an operand to a VMULL instruction. If the original vector size 9552 /// before extension is less than 64 bits we add a an extension to resize 9553 /// the vector to 64 bits. 9554 static SDValue SkipExtensionForVMULL(SDNode *N, SelectionDAG &DAG) { 9555 if (N->getOpcode() == ISD::SIGN_EXTEND || 9556 N->getOpcode() == ISD::ZERO_EXTEND || N->getOpcode() == ISD::ANY_EXTEND) 9557 return AddRequiredExtensionForVMULL(N->getOperand(0), DAG, 9558 N->getOperand(0)->getValueType(0), 9559 N->getValueType(0), 9560 N->getOpcode()); 9561 9562 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 9563 assert((ISD::isSEXTLoad(LD) || ISD::isZEXTLoad(LD)) && 9564 "Expected extending load"); 9565 9566 SDValue newLoad = SkipLoadExtensionForVMULL(LD, DAG); 9567 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), newLoad.getValue(1)); 9568 unsigned Opcode = ISD::isSEXTLoad(LD) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 9569 SDValue extLoad = 9570 DAG.getNode(Opcode, SDLoc(newLoad), LD->getValueType(0), newLoad); 9571 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 0), extLoad); 9572 9573 return newLoad; 9574 } 9575 9576 // Otherwise, the value must be a BUILD_VECTOR. For v2i64, it will 9577 // have been legalized as a BITCAST from v4i32. 9578 if (N->getOpcode() == ISD::BITCAST) { 9579 SDNode *BVN = N->getOperand(0).getNode(); 9580 assert(BVN->getOpcode() == ISD::BUILD_VECTOR && 9581 BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR"); 9582 unsigned LowElt = DAG.getDataLayout().isBigEndian() ? 1 : 0; 9583 return DAG.getBuildVector( 9584 MVT::v2i32, SDLoc(N), 9585 {BVN->getOperand(LowElt), BVN->getOperand(LowElt + 2)}); 9586 } 9587 // Construct a new BUILD_VECTOR with elements truncated to half the size. 9588 assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR"); 9589 EVT VT = N->getValueType(0); 9590 unsigned EltSize = VT.getScalarSizeInBits() / 2; 9591 unsigned NumElts = VT.getVectorNumElements(); 9592 MVT TruncVT = MVT::getIntegerVT(EltSize); 9593 SmallVector<SDValue, 8> Ops; 9594 SDLoc dl(N); 9595 for (unsigned i = 0; i != NumElts; ++i) { 9596 const APInt &CInt = N->getConstantOperandAPInt(i); 9597 // Element types smaller than 32 bits are not legal, so use i32 elements. 9598 // The values are implicitly truncated so sext vs. zext doesn't matter. 9599 Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32)); 9600 } 9601 return DAG.getBuildVector(MVT::getVectorVT(TruncVT, NumElts), dl, Ops); 9602 } 9603 9604 static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) { 9605 unsigned Opcode = N->getOpcode(); 9606 if (Opcode == ISD::ADD || Opcode == ISD::SUB) { 9607 SDNode *N0 = N->getOperand(0).getNode(); 9608 SDNode *N1 = N->getOperand(1).getNode(); 9609 return N0->hasOneUse() && N1->hasOneUse() && 9610 isSignExtended(N0, DAG) && isSignExtended(N1, DAG); 9611 } 9612 return false; 9613 } 9614 9615 static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) { 9616 unsigned Opcode = N->getOpcode(); 9617 if (Opcode == ISD::ADD || Opcode == ISD::SUB) { 9618 SDNode *N0 = N->getOperand(0).getNode(); 9619 SDNode *N1 = N->getOperand(1).getNode(); 9620 return N0->hasOneUse() && N1->hasOneUse() && 9621 isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG); 9622 } 9623 return false; 9624 } 9625 9626 static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) { 9627 // Multiplications are only custom-lowered for 128-bit vectors so that 9628 // VMULL can be detected. Otherwise v2i64 multiplications are not legal. 9629 EVT VT = Op.getValueType(); 9630 assert(VT.is128BitVector() && VT.isInteger() && 9631 "unexpected type for custom-lowering ISD::MUL"); 9632 SDNode *N0 = Op.getOperand(0).getNode(); 9633 SDNode *N1 = Op.getOperand(1).getNode(); 9634 unsigned NewOpc = 0; 9635 bool isMLA = false; 9636 bool isN0SExt = isSignExtended(N0, DAG); 9637 bool isN1SExt = isSignExtended(N1, DAG); 9638 if (isN0SExt && isN1SExt) 9639 NewOpc = ARMISD::VMULLs; 9640 else { 9641 bool isN0ZExt = isZeroExtended(N0, DAG); 9642 bool isN1ZExt = isZeroExtended(N1, DAG); 9643 if (isN0ZExt && isN1ZExt) 9644 NewOpc = ARMISD::VMULLu; 9645 else if (isN1SExt || isN1ZExt) { 9646 // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these 9647 // into (s/zext A * s/zext C) + (s/zext B * s/zext C) 9648 if (isN1SExt && isAddSubSExt(N0, DAG)) { 9649 NewOpc = ARMISD::VMULLs; 9650 isMLA = true; 9651 } else if (isN1ZExt && isAddSubZExt(N0, DAG)) { 9652 NewOpc = ARMISD::VMULLu; 9653 isMLA = true; 9654 } else if (isN0ZExt && isAddSubZExt(N1, DAG)) { 9655 std::swap(N0, N1); 9656 NewOpc = ARMISD::VMULLu; 9657 isMLA = true; 9658 } 9659 } 9660 9661 if (!NewOpc) { 9662 if (VT == MVT::v2i64) 9663 // Fall through to expand this. It is not legal. 9664 return SDValue(); 9665 else 9666 // Other vector multiplications are legal. 9667 return Op; 9668 } 9669 } 9670 9671 // Legalize to a VMULL instruction. 9672 SDLoc DL(Op); 9673 SDValue Op0; 9674 SDValue Op1 = SkipExtensionForVMULL(N1, DAG); 9675 if (!isMLA) { 9676 Op0 = SkipExtensionForVMULL(N0, DAG); 9677 assert(Op0.getValueType().is64BitVector() && 9678 Op1.getValueType().is64BitVector() && 9679 "unexpected types for extended operands to VMULL"); 9680 return DAG.getNode(NewOpc, DL, VT, Op0, Op1); 9681 } 9682 9683 // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during 9684 // isel lowering to take advantage of no-stall back to back vmul + vmla. 9685 // vmull q0, d4, d6 9686 // vmlal q0, d5, d6 9687 // is faster than 9688 // vaddl q0, d4, d5 9689 // vmovl q1, d6 9690 // vmul q0, q0, q1 9691 SDValue N00 = SkipExtensionForVMULL(N0->getOperand(0).getNode(), DAG); 9692 SDValue N01 = SkipExtensionForVMULL(N0->getOperand(1).getNode(), DAG); 9693 EVT Op1VT = Op1.getValueType(); 9694 return DAG.getNode(N0->getOpcode(), DL, VT, 9695 DAG.getNode(NewOpc, DL, VT, 9696 DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1), 9697 DAG.getNode(NewOpc, DL, VT, 9698 DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1)); 9699 } 9700 9701 static SDValue LowerSDIV_v4i8(SDValue X, SDValue Y, const SDLoc &dl, 9702 SelectionDAG &DAG) { 9703 // TODO: Should this propagate fast-math-flags? 9704 9705 // Convert to float 9706 // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo)); 9707 // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo)); 9708 X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X); 9709 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y); 9710 X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X); 9711 Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y); 9712 // Get reciprocal estimate. 9713 // float4 recip = vrecpeq_f32(yf); 9714 Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32, 9715 DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32), 9716 Y); 9717 // Because char has a smaller range than uchar, we can actually get away 9718 // without any newton steps. This requires that we use a weird bias 9719 // of 0xb000, however (again, this has been exhaustively tested). 9720 // float4 result = as_float4(as_int4(xf*recip) + 0xb000); 9721 X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y); 9722 X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X); 9723 Y = DAG.getConstant(0xb000, dl, MVT::v4i32); 9724 X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y); 9725 X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X); 9726 // Convert back to short. 9727 X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X); 9728 X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X); 9729 return X; 9730 } 9731 9732 static SDValue LowerSDIV_v4i16(SDValue N0, SDValue N1, const SDLoc &dl, 9733 SelectionDAG &DAG) { 9734 // TODO: Should this propagate fast-math-flags? 9735 9736 SDValue N2; 9737 // Convert to float. 9738 // float4 yf = vcvt_f32_s32(vmovl_s16(y)); 9739 // float4 xf = vcvt_f32_s32(vmovl_s16(x)); 9740 N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0); 9741 N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1); 9742 N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0); 9743 N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1); 9744 9745 // Use reciprocal estimate and one refinement step. 9746 // float4 recip = vrecpeq_f32(yf); 9747 // recip *= vrecpsq_f32(yf, recip); 9748 N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32, 9749 DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32), 9750 N1); 9751 N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32, 9752 DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32), 9753 N1, N2); 9754 N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2); 9755 // Because short has a smaller range than ushort, we can actually get away 9756 // with only a single newton step. This requires that we use a weird bias 9757 // of 89, however (again, this has been exhaustively tested). 9758 // float4 result = as_float4(as_int4(xf*recip) + 0x89); 9759 N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2); 9760 N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0); 9761 N1 = DAG.getConstant(0x89, dl, MVT::v4i32); 9762 N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1); 9763 N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0); 9764 // Convert back to integer and return. 9765 // return vmovn_s32(vcvt_s32_f32(result)); 9766 N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0); 9767 N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0); 9768 return N0; 9769 } 9770 9771 static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG, 9772 const ARMSubtarget *ST) { 9773 EVT VT = Op.getValueType(); 9774 assert((VT == MVT::v4i16 || VT == MVT::v8i8) && 9775 "unexpected type for custom-lowering ISD::SDIV"); 9776 9777 SDLoc dl(Op); 9778 SDValue N0 = Op.getOperand(0); 9779 SDValue N1 = Op.getOperand(1); 9780 SDValue N2, N3; 9781 9782 if (VT == MVT::v8i8) { 9783 N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0); 9784 N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1); 9785 9786 N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0, 9787 DAG.getIntPtrConstant(4, dl)); 9788 N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1, 9789 DAG.getIntPtrConstant(4, dl)); 9790 N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0, 9791 DAG.getIntPtrConstant(0, dl)); 9792 N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1, 9793 DAG.getIntPtrConstant(0, dl)); 9794 9795 N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16 9796 N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16 9797 9798 N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2); 9799 N0 = LowerCONCAT_VECTORS(N0, DAG, ST); 9800 9801 N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0); 9802 return N0; 9803 } 9804 return LowerSDIV_v4i16(N0, N1, dl, DAG); 9805 } 9806 9807 static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG, 9808 const ARMSubtarget *ST) { 9809 // TODO: Should this propagate fast-math-flags? 9810 EVT VT = Op.getValueType(); 9811 assert((VT == MVT::v4i16 || VT == MVT::v8i8) && 9812 "unexpected type for custom-lowering ISD::UDIV"); 9813 9814 SDLoc dl(Op); 9815 SDValue N0 = Op.getOperand(0); 9816 SDValue N1 = Op.getOperand(1); 9817 SDValue N2, N3; 9818 9819 if (VT == MVT::v8i8) { 9820 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0); 9821 N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1); 9822 9823 N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0, 9824 DAG.getIntPtrConstant(4, dl)); 9825 N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1, 9826 DAG.getIntPtrConstant(4, dl)); 9827 N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0, 9828 DAG.getIntPtrConstant(0, dl)); 9829 N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1, 9830 DAG.getIntPtrConstant(0, dl)); 9831 9832 N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16 9833 N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16 9834 9835 N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2); 9836 N0 = LowerCONCAT_VECTORS(N0, DAG, ST); 9837 9838 N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8, 9839 DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, dl, 9840 MVT::i32), 9841 N0); 9842 return N0; 9843 } 9844 9845 // v4i16 sdiv ... Convert to float. 9846 // float4 yf = vcvt_f32_s32(vmovl_u16(y)); 9847 // float4 xf = vcvt_f32_s32(vmovl_u16(x)); 9848 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0); 9849 N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1); 9850 N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0); 9851 SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1); 9852 9853 // Use reciprocal estimate and two refinement steps. 9854 // float4 recip = vrecpeq_f32(yf); 9855 // recip *= vrecpsq_f32(yf, recip); 9856 // recip *= vrecpsq_f32(yf, recip); 9857 N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32, 9858 DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32), 9859 BN1); 9860 N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32, 9861 DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32), 9862 BN1, N2); 9863 N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2); 9864 N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32, 9865 DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32), 9866 BN1, N2); 9867 N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2); 9868 // Simply multiplying by the reciprocal estimate can leave us a few ulps 9869 // too low, so we add 2 ulps (exhaustive testing shows that this is enough, 9870 // and that it will never cause us to return an answer too large). 9871 // float4 result = as_float4(as_int4(xf*recip) + 2); 9872 N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2); 9873 N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0); 9874 N1 = DAG.getConstant(2, dl, MVT::v4i32); 9875 N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1); 9876 N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0); 9877 // Convert back to integer and return. 9878 // return vmovn_u32(vcvt_s32_f32(result)); 9879 N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0); 9880 N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0); 9881 return N0; 9882 } 9883 9884 static SDValue LowerUADDSUBO_CARRY(SDValue Op, SelectionDAG &DAG) { 9885 SDNode *N = Op.getNode(); 9886 EVT VT = N->getValueType(0); 9887 SDVTList VTs = DAG.getVTList(VT, MVT::i32); 9888 9889 SDValue Carry = Op.getOperand(2); 9890 9891 SDLoc DL(Op); 9892 9893 SDValue Result; 9894 if (Op.getOpcode() == ISD::UADDO_CARRY) { 9895 // This converts the boolean value carry into the carry flag. 9896 Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG); 9897 9898 // Do the addition proper using the carry flag we wanted. 9899 Result = DAG.getNode(ARMISD::ADDE, DL, VTs, Op.getOperand(0), 9900 Op.getOperand(1), Carry); 9901 9902 // Now convert the carry flag into a boolean value. 9903 Carry = ConvertCarryFlagToBooleanCarry(Result.getValue(1), VT, DAG); 9904 } else { 9905 // ARMISD::SUBE expects a carry not a borrow like ISD::USUBO_CARRY so we 9906 // have to invert the carry first. 9907 Carry = DAG.getNode(ISD::SUB, DL, MVT::i32, 9908 DAG.getConstant(1, DL, MVT::i32), Carry); 9909 // This converts the boolean value carry into the carry flag. 9910 Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG); 9911 9912 // Do the subtraction proper using the carry flag we wanted. 9913 Result = DAG.getNode(ARMISD::SUBE, DL, VTs, Op.getOperand(0), 9914 Op.getOperand(1), Carry); 9915 9916 // Now convert the carry flag into a boolean value. 9917 Carry = ConvertCarryFlagToBooleanCarry(Result.getValue(1), VT, DAG); 9918 // But the carry returned by ARMISD::SUBE is not a borrow as expected 9919 // by ISD::USUBO_CARRY, so compute 1 - C. 9920 Carry = DAG.getNode(ISD::SUB, DL, MVT::i32, 9921 DAG.getConstant(1, DL, MVT::i32), Carry); 9922 } 9923 9924 // Return both values. 9925 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, Carry); 9926 } 9927 9928 SDValue ARMTargetLowering::LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const { 9929 assert(Subtarget->isTargetDarwin()); 9930 9931 // For iOS, we want to call an alternative entry point: __sincos_stret, 9932 // return values are passed via sret. 9933 SDLoc dl(Op); 9934 SDValue Arg = Op.getOperand(0); 9935 EVT ArgVT = Arg.getValueType(); 9936 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 9937 auto PtrVT = getPointerTy(DAG.getDataLayout()); 9938 9939 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 9940 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9941 9942 // Pair of floats / doubles used to pass the result. 9943 Type *RetTy = StructType::get(ArgTy, ArgTy); 9944 auto &DL = DAG.getDataLayout(); 9945 9946 ArgListTy Args; 9947 bool ShouldUseSRet = Subtarget->isAPCS_ABI(); 9948 SDValue SRet; 9949 if (ShouldUseSRet) { 9950 // Create stack object for sret. 9951 const uint64_t ByteSize = DL.getTypeAllocSize(RetTy); 9952 const Align StackAlign = DL.getPrefTypeAlign(RetTy); 9953 int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false); 9954 SRet = DAG.getFrameIndex(FrameIdx, TLI.getPointerTy(DL)); 9955 9956 ArgListEntry Entry; 9957 Entry.Node = SRet; 9958 Entry.Ty = PointerType::getUnqual(RetTy->getContext()); 9959 Entry.IsSExt = false; 9960 Entry.IsZExt = false; 9961 Entry.IsSRet = true; 9962 Args.push_back(Entry); 9963 RetTy = Type::getVoidTy(*DAG.getContext()); 9964 } 9965 9966 ArgListEntry Entry; 9967 Entry.Node = Arg; 9968 Entry.Ty = ArgTy; 9969 Entry.IsSExt = false; 9970 Entry.IsZExt = false; 9971 Args.push_back(Entry); 9972 9973 RTLIB::Libcall LC = 9974 (ArgVT == MVT::f64) ? RTLIB::SINCOS_STRET_F64 : RTLIB::SINCOS_STRET_F32; 9975 const char *LibcallName = getLibcallName(LC); 9976 CallingConv::ID CC = getLibcallCallingConv(LC); 9977 SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy(DL)); 9978 9979 TargetLowering::CallLoweringInfo CLI(DAG); 9980 CLI.setDebugLoc(dl) 9981 .setChain(DAG.getEntryNode()) 9982 .setCallee(CC, RetTy, Callee, std::move(Args)) 9983 .setDiscardResult(ShouldUseSRet); 9984 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 9985 9986 if (!ShouldUseSRet) 9987 return CallResult.first; 9988 9989 SDValue LoadSin = 9990 DAG.getLoad(ArgVT, dl, CallResult.second, SRet, MachinePointerInfo()); 9991 9992 // Address of cos field. 9993 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, SRet, 9994 DAG.getIntPtrConstant(ArgVT.getStoreSize(), dl)); 9995 SDValue LoadCos = 9996 DAG.getLoad(ArgVT, dl, LoadSin.getValue(1), Add, MachinePointerInfo()); 9997 9998 SDVTList Tys = DAG.getVTList(ArgVT, ArgVT); 9999 return DAG.getNode(ISD::MERGE_VALUES, dl, Tys, 10000 LoadSin.getValue(0), LoadCos.getValue(0)); 10001 } 10002 10003 SDValue ARMTargetLowering::LowerWindowsDIVLibCall(SDValue Op, SelectionDAG &DAG, 10004 bool Signed, 10005 SDValue &Chain) const { 10006 EVT VT = Op.getValueType(); 10007 assert((VT == MVT::i32 || VT == MVT::i64) && 10008 "unexpected type for custom lowering DIV"); 10009 SDLoc dl(Op); 10010 10011 const auto &DL = DAG.getDataLayout(); 10012 const auto &TLI = DAG.getTargetLoweringInfo(); 10013 10014 const char *Name = nullptr; 10015 if (Signed) 10016 Name = (VT == MVT::i32) ? "__rt_sdiv" : "__rt_sdiv64"; 10017 else 10018 Name = (VT == MVT::i32) ? "__rt_udiv" : "__rt_udiv64"; 10019 10020 SDValue ES = DAG.getExternalSymbol(Name, TLI.getPointerTy(DL)); 10021 10022 ARMTargetLowering::ArgListTy Args; 10023 10024 for (auto AI : {1, 0}) { 10025 ArgListEntry Arg; 10026 Arg.Node = Op.getOperand(AI); 10027 Arg.Ty = Arg.Node.getValueType().getTypeForEVT(*DAG.getContext()); 10028 Args.push_back(Arg); 10029 } 10030 10031 CallLoweringInfo CLI(DAG); 10032 CLI.setDebugLoc(dl) 10033 .setChain(Chain) 10034 .setCallee(CallingConv::ARM_AAPCS_VFP, VT.getTypeForEVT(*DAG.getContext()), 10035 ES, std::move(Args)); 10036 10037 return LowerCallTo(CLI).first; 10038 } 10039 10040 // This is a code size optimisation: return the original SDIV node to 10041 // DAGCombiner when we don't want to expand SDIV into a sequence of 10042 // instructions, and an empty node otherwise which will cause the 10043 // SDIV to be expanded in DAGCombine. 10044 SDValue 10045 ARMTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 10046 SelectionDAG &DAG, 10047 SmallVectorImpl<SDNode *> &Created) const { 10048 // TODO: Support SREM 10049 if (N->getOpcode() != ISD::SDIV) 10050 return SDValue(); 10051 10052 const auto &ST = DAG.getSubtarget<ARMSubtarget>(); 10053 const bool MinSize = ST.hasMinSize(); 10054 const bool HasDivide = ST.isThumb() ? ST.hasDivideInThumbMode() 10055 : ST.hasDivideInARMMode(); 10056 10057 // Don't touch vector types; rewriting this may lead to scalarizing 10058 // the int divs. 10059 if (N->getOperand(0).getValueType().isVector()) 10060 return SDValue(); 10061 10062 // Bail if MinSize is not set, and also for both ARM and Thumb mode we need 10063 // hwdiv support for this to be really profitable. 10064 if (!(MinSize && HasDivide)) 10065 return SDValue(); 10066 10067 // ARM mode is a bit simpler than Thumb: we can handle large power 10068 // of 2 immediates with 1 mov instruction; no further checks required, 10069 // just return the sdiv node. 10070 if (!ST.isThumb()) 10071 return SDValue(N, 0); 10072 10073 // In Thumb mode, immediates larger than 128 need a wide 4-byte MOV, 10074 // and thus lose the code size benefits of a MOVS that requires only 2. 10075 // TargetTransformInfo and 'getIntImmCodeSizeCost' could be helpful here, 10076 // but as it's doing exactly this, it's not worth the trouble to get TTI. 10077 if (Divisor.sgt(128)) 10078 return SDValue(); 10079 10080 return SDValue(N, 0); 10081 } 10082 10083 SDValue ARMTargetLowering::LowerDIV_Windows(SDValue Op, SelectionDAG &DAG, 10084 bool Signed) const { 10085 assert(Op.getValueType() == MVT::i32 && 10086 "unexpected type for custom lowering DIV"); 10087 SDLoc dl(Op); 10088 10089 SDValue DBZCHK = DAG.getNode(ARMISD::WIN__DBZCHK, dl, MVT::Other, 10090 DAG.getEntryNode(), Op.getOperand(1)); 10091 10092 return LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK); 10093 } 10094 10095 static SDValue WinDBZCheckDenominator(SelectionDAG &DAG, SDNode *N, SDValue InChain) { 10096 SDLoc DL(N); 10097 SDValue Op = N->getOperand(1); 10098 if (N->getValueType(0) == MVT::i32) 10099 return DAG.getNode(ARMISD::WIN__DBZCHK, DL, MVT::Other, InChain, Op); 10100 SDValue Lo, Hi; 10101 std::tie(Lo, Hi) = DAG.SplitScalar(Op, DL, MVT::i32, MVT::i32); 10102 return DAG.getNode(ARMISD::WIN__DBZCHK, DL, MVT::Other, InChain, 10103 DAG.getNode(ISD::OR, DL, MVT::i32, Lo, Hi)); 10104 } 10105 10106 void ARMTargetLowering::ExpandDIV_Windows( 10107 SDValue Op, SelectionDAG &DAG, bool Signed, 10108 SmallVectorImpl<SDValue> &Results) const { 10109 const auto &DL = DAG.getDataLayout(); 10110 const auto &TLI = DAG.getTargetLoweringInfo(); 10111 10112 assert(Op.getValueType() == MVT::i64 && 10113 "unexpected type for custom lowering DIV"); 10114 SDLoc dl(Op); 10115 10116 SDValue DBZCHK = WinDBZCheckDenominator(DAG, Op.getNode(), DAG.getEntryNode()); 10117 10118 SDValue Result = LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK); 10119 10120 SDValue Lower = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Result); 10121 SDValue Upper = DAG.getNode(ISD::SRL, dl, MVT::i64, Result, 10122 DAG.getConstant(32, dl, TLI.getPointerTy(DL))); 10123 Upper = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Upper); 10124 10125 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lower, Upper)); 10126 } 10127 10128 static SDValue LowerPredicateLoad(SDValue Op, SelectionDAG &DAG) { 10129 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); 10130 EVT MemVT = LD->getMemoryVT(); 10131 assert((MemVT == MVT::v2i1 || MemVT == MVT::v4i1 || MemVT == MVT::v8i1 || 10132 MemVT == MVT::v16i1) && 10133 "Expected a predicate type!"); 10134 assert(MemVT == Op.getValueType()); 10135 assert(LD->getExtensionType() == ISD::NON_EXTLOAD && 10136 "Expected a non-extending load"); 10137 assert(LD->isUnindexed() && "Expected a unindexed load"); 10138 10139 // The basic MVE VLDR on a v2i1/v4i1/v8i1 actually loads the entire 16bit 10140 // predicate, with the "v4i1" bits spread out over the 16 bits loaded. We 10141 // need to make sure that 8/4/2 bits are actually loaded into the correct 10142 // place, which means loading the value and then shuffling the values into 10143 // the bottom bits of the predicate. 10144 // Equally, VLDR for an v16i1 will actually load 32bits (so will be incorrect 10145 // for BE). 10146 // Speaking of BE, apparently the rest of llvm will assume a reverse order to 10147 // a natural VMSR(load), so needs to be reversed. 10148 10149 SDLoc dl(Op); 10150 SDValue Load = DAG.getExtLoad( 10151 ISD::EXTLOAD, dl, MVT::i32, LD->getChain(), LD->getBasePtr(), 10152 EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()), 10153 LD->getMemOperand()); 10154 SDValue Val = Load; 10155 if (DAG.getDataLayout().isBigEndian()) 10156 Val = DAG.getNode(ISD::SRL, dl, MVT::i32, 10157 DAG.getNode(ISD::BITREVERSE, dl, MVT::i32, Load), 10158 DAG.getConstant(32 - MemVT.getSizeInBits(), dl, MVT::i32)); 10159 SDValue Pred = DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::v16i1, Val); 10160 if (MemVT != MVT::v16i1) 10161 Pred = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MemVT, Pred, 10162 DAG.getConstant(0, dl, MVT::i32)); 10163 return DAG.getMergeValues({Pred, Load.getValue(1)}, dl); 10164 } 10165 10166 void ARMTargetLowering::LowerLOAD(SDNode *N, SmallVectorImpl<SDValue> &Results, 10167 SelectionDAG &DAG) const { 10168 LoadSDNode *LD = cast<LoadSDNode>(N); 10169 EVT MemVT = LD->getMemoryVT(); 10170 assert(LD->isUnindexed() && "Loads should be unindexed at this point."); 10171 10172 if (MemVT == MVT::i64 && Subtarget->hasV5TEOps() && 10173 !Subtarget->isThumb1Only() && LD->isVolatile() && 10174 LD->getAlign() >= Subtarget->getDualLoadStoreAlignment()) { 10175 SDLoc dl(N); 10176 SDValue Result = DAG.getMemIntrinsicNode( 10177 ARMISD::LDRD, dl, DAG.getVTList({MVT::i32, MVT::i32, MVT::Other}), 10178 {LD->getChain(), LD->getBasePtr()}, MemVT, LD->getMemOperand()); 10179 SDValue Lo = Result.getValue(DAG.getDataLayout().isLittleEndian() ? 0 : 1); 10180 SDValue Hi = Result.getValue(DAG.getDataLayout().isLittleEndian() ? 1 : 0); 10181 SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 10182 Results.append({Pair, Result.getValue(2)}); 10183 } 10184 } 10185 10186 static SDValue LowerPredicateStore(SDValue Op, SelectionDAG &DAG) { 10187 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); 10188 EVT MemVT = ST->getMemoryVT(); 10189 assert((MemVT == MVT::v2i1 || MemVT == MVT::v4i1 || MemVT == MVT::v8i1 || 10190 MemVT == MVT::v16i1) && 10191 "Expected a predicate type!"); 10192 assert(MemVT == ST->getValue().getValueType()); 10193 assert(!ST->isTruncatingStore() && "Expected a non-extending store"); 10194 assert(ST->isUnindexed() && "Expected a unindexed store"); 10195 10196 // Only store the v2i1 or v4i1 or v8i1 worth of bits, via a buildvector with 10197 // top bits unset and a scalar store. 10198 SDLoc dl(Op); 10199 SDValue Build = ST->getValue(); 10200 if (MemVT != MVT::v16i1) { 10201 SmallVector<SDValue, 16> Ops; 10202 for (unsigned I = 0; I < MemVT.getVectorNumElements(); I++) { 10203 unsigned Elt = DAG.getDataLayout().isBigEndian() 10204 ? MemVT.getVectorNumElements() - I - 1 10205 : I; 10206 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, Build, 10207 DAG.getConstant(Elt, dl, MVT::i32))); 10208 } 10209 for (unsigned I = MemVT.getVectorNumElements(); I < 16; I++) 10210 Ops.push_back(DAG.getUNDEF(MVT::i32)); 10211 Build = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i1, Ops); 10212 } 10213 SDValue GRP = DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::i32, Build); 10214 if (MemVT == MVT::v16i1 && DAG.getDataLayout().isBigEndian()) 10215 GRP = DAG.getNode(ISD::SRL, dl, MVT::i32, 10216 DAG.getNode(ISD::BITREVERSE, dl, MVT::i32, GRP), 10217 DAG.getConstant(16, dl, MVT::i32)); 10218 return DAG.getTruncStore( 10219 ST->getChain(), dl, GRP, ST->getBasePtr(), 10220 EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()), 10221 ST->getMemOperand()); 10222 } 10223 10224 static SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG, 10225 const ARMSubtarget *Subtarget) { 10226 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); 10227 EVT MemVT = ST->getMemoryVT(); 10228 assert(ST->isUnindexed() && "Stores should be unindexed at this point."); 10229 10230 if (MemVT == MVT::i64 && Subtarget->hasV5TEOps() && 10231 !Subtarget->isThumb1Only() && ST->isVolatile() && 10232 ST->getAlign() >= Subtarget->getDualLoadStoreAlignment()) { 10233 SDNode *N = Op.getNode(); 10234 SDLoc dl(N); 10235 10236 SDValue Lo = DAG.getNode( 10237 ISD::EXTRACT_ELEMENT, dl, MVT::i32, ST->getValue(), 10238 DAG.getTargetConstant(DAG.getDataLayout().isLittleEndian() ? 0 : 1, dl, 10239 MVT::i32)); 10240 SDValue Hi = DAG.getNode( 10241 ISD::EXTRACT_ELEMENT, dl, MVT::i32, ST->getValue(), 10242 DAG.getTargetConstant(DAG.getDataLayout().isLittleEndian() ? 1 : 0, dl, 10243 MVT::i32)); 10244 10245 return DAG.getMemIntrinsicNode(ARMISD::STRD, dl, DAG.getVTList(MVT::Other), 10246 {ST->getChain(), Lo, Hi, ST->getBasePtr()}, 10247 MemVT, ST->getMemOperand()); 10248 } else if (Subtarget->hasMVEIntegerOps() && 10249 ((MemVT == MVT::v2i1 || MemVT == MVT::v4i1 || MemVT == MVT::v8i1 || 10250 MemVT == MVT::v16i1))) { 10251 return LowerPredicateStore(Op, DAG); 10252 } 10253 10254 return SDValue(); 10255 } 10256 10257 static bool isZeroVector(SDValue N) { 10258 return (ISD::isBuildVectorAllZeros(N.getNode()) || 10259 (N->getOpcode() == ARMISD::VMOVIMM && 10260 isNullConstant(N->getOperand(0)))); 10261 } 10262 10263 static SDValue LowerMLOAD(SDValue Op, SelectionDAG &DAG) { 10264 MaskedLoadSDNode *N = cast<MaskedLoadSDNode>(Op.getNode()); 10265 MVT VT = Op.getSimpleValueType(); 10266 SDValue Mask = N->getMask(); 10267 SDValue PassThru = N->getPassThru(); 10268 SDLoc dl(Op); 10269 10270 if (isZeroVector(PassThru)) 10271 return Op; 10272 10273 // MVE Masked loads use zero as the passthru value. Here we convert undef to 10274 // zero too, and other values are lowered to a select. 10275 SDValue ZeroVec = DAG.getNode(ARMISD::VMOVIMM, dl, VT, 10276 DAG.getTargetConstant(0, dl, MVT::i32)); 10277 SDValue NewLoad = DAG.getMaskedLoad( 10278 VT, dl, N->getChain(), N->getBasePtr(), N->getOffset(), Mask, ZeroVec, 10279 N->getMemoryVT(), N->getMemOperand(), N->getAddressingMode(), 10280 N->getExtensionType(), N->isExpandingLoad()); 10281 SDValue Combo = NewLoad; 10282 bool PassThruIsCastZero = (PassThru.getOpcode() == ISD::BITCAST || 10283 PassThru.getOpcode() == ARMISD::VECTOR_REG_CAST) && 10284 isZeroVector(PassThru->getOperand(0)); 10285 if (!PassThru.isUndef() && !PassThruIsCastZero) 10286 Combo = DAG.getNode(ISD::VSELECT, dl, VT, Mask, NewLoad, PassThru); 10287 return DAG.getMergeValues({Combo, NewLoad.getValue(1)}, dl); 10288 } 10289 10290 static SDValue LowerVecReduce(SDValue Op, SelectionDAG &DAG, 10291 const ARMSubtarget *ST) { 10292 if (!ST->hasMVEIntegerOps()) 10293 return SDValue(); 10294 10295 SDLoc dl(Op); 10296 unsigned BaseOpcode = 0; 10297 switch (Op->getOpcode()) { 10298 default: llvm_unreachable("Expected VECREDUCE opcode"); 10299 case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break; 10300 case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break; 10301 case ISD::VECREDUCE_MUL: BaseOpcode = ISD::MUL; break; 10302 case ISD::VECREDUCE_AND: BaseOpcode = ISD::AND; break; 10303 case ISD::VECREDUCE_OR: BaseOpcode = ISD::OR; break; 10304 case ISD::VECREDUCE_XOR: BaseOpcode = ISD::XOR; break; 10305 case ISD::VECREDUCE_FMAX: BaseOpcode = ISD::FMAXNUM; break; 10306 case ISD::VECREDUCE_FMIN: BaseOpcode = ISD::FMINNUM; break; 10307 } 10308 10309 SDValue Op0 = Op->getOperand(0); 10310 EVT VT = Op0.getValueType(); 10311 EVT EltVT = VT.getVectorElementType(); 10312 unsigned NumElts = VT.getVectorNumElements(); 10313 unsigned NumActiveLanes = NumElts; 10314 10315 assert((NumActiveLanes == 16 || NumActiveLanes == 8 || NumActiveLanes == 4 || 10316 NumActiveLanes == 2) && 10317 "Only expected a power 2 vector size"); 10318 10319 // Use Mul(X, Rev(X)) until 4 items remain. Going down to 4 vector elements 10320 // allows us to easily extract vector elements from the lanes. 10321 while (NumActiveLanes > 4) { 10322 unsigned RevOpcode = NumActiveLanes == 16 ? ARMISD::VREV16 : ARMISD::VREV32; 10323 SDValue Rev = DAG.getNode(RevOpcode, dl, VT, Op0); 10324 Op0 = DAG.getNode(BaseOpcode, dl, VT, Op0, Rev); 10325 NumActiveLanes /= 2; 10326 } 10327 10328 SDValue Res; 10329 if (NumActiveLanes == 4) { 10330 // The remaining 4 elements are summed sequentially 10331 SDValue Ext0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0, 10332 DAG.getConstant(0 * NumElts / 4, dl, MVT::i32)); 10333 SDValue Ext1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0, 10334 DAG.getConstant(1 * NumElts / 4, dl, MVT::i32)); 10335 SDValue Ext2 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0, 10336 DAG.getConstant(2 * NumElts / 4, dl, MVT::i32)); 10337 SDValue Ext3 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0, 10338 DAG.getConstant(3 * NumElts / 4, dl, MVT::i32)); 10339 SDValue Res0 = DAG.getNode(BaseOpcode, dl, EltVT, Ext0, Ext1, Op->getFlags()); 10340 SDValue Res1 = DAG.getNode(BaseOpcode, dl, EltVT, Ext2, Ext3, Op->getFlags()); 10341 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res0, Res1, Op->getFlags()); 10342 } else { 10343 SDValue Ext0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0, 10344 DAG.getConstant(0, dl, MVT::i32)); 10345 SDValue Ext1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0, 10346 DAG.getConstant(1, dl, MVT::i32)); 10347 Res = DAG.getNode(BaseOpcode, dl, EltVT, Ext0, Ext1, Op->getFlags()); 10348 } 10349 10350 // Result type may be wider than element type. 10351 if (EltVT != Op->getValueType(0)) 10352 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Op->getValueType(0), Res); 10353 return Res; 10354 } 10355 10356 static SDValue LowerVecReduceF(SDValue Op, SelectionDAG &DAG, 10357 const ARMSubtarget *ST) { 10358 if (!ST->hasMVEFloatOps()) 10359 return SDValue(); 10360 return LowerVecReduce(Op, DAG, ST); 10361 } 10362 10363 static SDValue LowerVecReduceMinMax(SDValue Op, SelectionDAG &DAG, 10364 const ARMSubtarget *ST) { 10365 if (!ST->hasNEON()) 10366 return SDValue(); 10367 10368 SDLoc dl(Op); 10369 SDValue Op0 = Op->getOperand(0); 10370 EVT VT = Op0.getValueType(); 10371 EVT EltVT = VT.getVectorElementType(); 10372 10373 unsigned PairwiseIntrinsic = 0; 10374 switch (Op->getOpcode()) { 10375 default: 10376 llvm_unreachable("Expected VECREDUCE opcode"); 10377 case ISD::VECREDUCE_UMIN: 10378 PairwiseIntrinsic = Intrinsic::arm_neon_vpminu; 10379 break; 10380 case ISD::VECREDUCE_UMAX: 10381 PairwiseIntrinsic = Intrinsic::arm_neon_vpmaxu; 10382 break; 10383 case ISD::VECREDUCE_SMIN: 10384 PairwiseIntrinsic = Intrinsic::arm_neon_vpmins; 10385 break; 10386 case ISD::VECREDUCE_SMAX: 10387 PairwiseIntrinsic = Intrinsic::arm_neon_vpmaxs; 10388 break; 10389 } 10390 SDValue PairwiseOp = DAG.getConstant(PairwiseIntrinsic, dl, MVT::i32); 10391 10392 unsigned NumElts = VT.getVectorNumElements(); 10393 unsigned NumActiveLanes = NumElts; 10394 10395 assert((NumActiveLanes == 16 || NumActiveLanes == 8 || NumActiveLanes == 4 || 10396 NumActiveLanes == 2) && 10397 "Only expected a power 2 vector size"); 10398 10399 // Split 128-bit vectors, since vpmin/max takes 2 64-bit vectors. 10400 if (VT.is128BitVector()) { 10401 SDValue Lo, Hi; 10402 std::tie(Lo, Hi) = DAG.SplitVector(Op0, dl); 10403 VT = Lo.getValueType(); 10404 Op0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, {PairwiseOp, Lo, Hi}); 10405 NumActiveLanes /= 2; 10406 } 10407 10408 // Use pairwise reductions until one lane remains 10409 while (NumActiveLanes > 1) { 10410 Op0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, {PairwiseOp, Op0, Op0}); 10411 NumActiveLanes /= 2; 10412 } 10413 10414 SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0, 10415 DAG.getConstant(0, dl, MVT::i32)); 10416 10417 // Result type may be wider than element type. 10418 if (EltVT != Op.getValueType()) { 10419 unsigned Extend = 0; 10420 switch (Op->getOpcode()) { 10421 default: 10422 llvm_unreachable("Expected VECREDUCE opcode"); 10423 case ISD::VECREDUCE_UMIN: 10424 case ISD::VECREDUCE_UMAX: 10425 Extend = ISD::ZERO_EXTEND; 10426 break; 10427 case ISD::VECREDUCE_SMIN: 10428 case ISD::VECREDUCE_SMAX: 10429 Extend = ISD::SIGN_EXTEND; 10430 break; 10431 } 10432 Res = DAG.getNode(Extend, dl, Op.getValueType(), Res); 10433 } 10434 return Res; 10435 } 10436 10437 static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) { 10438 if (isStrongerThanMonotonic(cast<AtomicSDNode>(Op)->getSuccessOrdering())) 10439 // Acquire/Release load/store is not legal for targets without a dmb or 10440 // equivalent available. 10441 return SDValue(); 10442 10443 // Monotonic load/store is legal for all targets. 10444 return Op; 10445 } 10446 10447 static void ReplaceREADCYCLECOUNTER(SDNode *N, 10448 SmallVectorImpl<SDValue> &Results, 10449 SelectionDAG &DAG, 10450 const ARMSubtarget *Subtarget) { 10451 SDLoc DL(N); 10452 // Under Power Management extensions, the cycle-count is: 10453 // mrc p15, #0, <Rt>, c9, c13, #0 10454 SDValue Ops[] = { N->getOperand(0), // Chain 10455 DAG.getTargetConstant(Intrinsic::arm_mrc, DL, MVT::i32), 10456 DAG.getTargetConstant(15, DL, MVT::i32), 10457 DAG.getTargetConstant(0, DL, MVT::i32), 10458 DAG.getTargetConstant(9, DL, MVT::i32), 10459 DAG.getTargetConstant(13, DL, MVT::i32), 10460 DAG.getTargetConstant(0, DL, MVT::i32) 10461 }; 10462 10463 SDValue Cycles32 = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL, 10464 DAG.getVTList(MVT::i32, MVT::Other), Ops); 10465 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Cycles32, 10466 DAG.getConstant(0, DL, MVT::i32))); 10467 Results.push_back(Cycles32.getValue(1)); 10468 } 10469 10470 static SDValue createGPRPairNode(SelectionDAG &DAG, SDValue V) { 10471 SDLoc dl(V.getNode()); 10472 auto [VLo, VHi] = DAG.SplitScalar(V, dl, MVT::i32, MVT::i32); 10473 bool isBigEndian = DAG.getDataLayout().isBigEndian(); 10474 if (isBigEndian) 10475 std::swap (VLo, VHi); 10476 SDValue RegClass = 10477 DAG.getTargetConstant(ARM::GPRPairRegClassID, dl, MVT::i32); 10478 SDValue SubReg0 = DAG.getTargetConstant(ARM::gsub_0, dl, MVT::i32); 10479 SDValue SubReg1 = DAG.getTargetConstant(ARM::gsub_1, dl, MVT::i32); 10480 const SDValue Ops[] = { RegClass, VLo, SubReg0, VHi, SubReg1 }; 10481 return SDValue( 10482 DAG.getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::Untyped, Ops), 0); 10483 } 10484 10485 static void ReplaceCMP_SWAP_64Results(SDNode *N, 10486 SmallVectorImpl<SDValue> & Results, 10487 SelectionDAG &DAG) { 10488 assert(N->getValueType(0) == MVT::i64 && 10489 "AtomicCmpSwap on types less than 64 should be legal"); 10490 SDValue Ops[] = {N->getOperand(1), 10491 createGPRPairNode(DAG, N->getOperand(2)), 10492 createGPRPairNode(DAG, N->getOperand(3)), 10493 N->getOperand(0)}; 10494 SDNode *CmpSwap = DAG.getMachineNode( 10495 ARM::CMP_SWAP_64, SDLoc(N), 10496 DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other), Ops); 10497 10498 MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand(); 10499 DAG.setNodeMemRefs(cast<MachineSDNode>(CmpSwap), {MemOp}); 10500 10501 bool isBigEndian = DAG.getDataLayout().isBigEndian(); 10502 10503 SDValue Lo = 10504 DAG.getTargetExtractSubreg(isBigEndian ? ARM::gsub_1 : ARM::gsub_0, 10505 SDLoc(N), MVT::i32, SDValue(CmpSwap, 0)); 10506 SDValue Hi = 10507 DAG.getTargetExtractSubreg(isBigEndian ? ARM::gsub_0 : ARM::gsub_1, 10508 SDLoc(N), MVT::i32, SDValue(CmpSwap, 0)); 10509 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, SDLoc(N), MVT::i64, Lo, Hi)); 10510 Results.push_back(SDValue(CmpSwap, 2)); 10511 } 10512 10513 SDValue ARMTargetLowering::LowerFSETCC(SDValue Op, SelectionDAG &DAG) const { 10514 SDLoc dl(Op); 10515 EVT VT = Op.getValueType(); 10516 SDValue Chain = Op.getOperand(0); 10517 SDValue LHS = Op.getOperand(1); 10518 SDValue RHS = Op.getOperand(2); 10519 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get(); 10520 bool IsSignaling = Op.getOpcode() == ISD::STRICT_FSETCCS; 10521 10522 // If we don't have instructions of this float type then soften to a libcall 10523 // and use SETCC instead. 10524 if (isUnsupportedFloatingType(LHS.getValueType())) { 10525 DAG.getTargetLoweringInfo().softenSetCCOperands( 10526 DAG, LHS.getValueType(), LHS, RHS, CC, dl, LHS, RHS, Chain, IsSignaling); 10527 if (!RHS.getNode()) { 10528 RHS = DAG.getConstant(0, dl, LHS.getValueType()); 10529 CC = ISD::SETNE; 10530 } 10531 SDValue Result = DAG.getNode(ISD::SETCC, dl, VT, LHS, RHS, 10532 DAG.getCondCode(CC)); 10533 return DAG.getMergeValues({Result, Chain}, dl); 10534 } 10535 10536 ARMCC::CondCodes CondCode, CondCode2; 10537 FPCCToARMCC(CC, CondCode, CondCode2); 10538 10539 // FIXME: Chain is not handled correctly here. Currently the FPSCR is implicit 10540 // in CMPFP and CMPFPE, but instead it should be made explicit by these 10541 // instructions using a chain instead of glue. This would also fix the problem 10542 // here (and also in LowerSELECT_CC) where we generate two comparisons when 10543 // CondCode2 != AL. 10544 SDValue True = DAG.getConstant(1, dl, VT); 10545 SDValue False = DAG.getConstant(0, dl, VT); 10546 SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32); 10547 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); 10548 SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl, IsSignaling); 10549 SDValue Result = getCMOV(dl, VT, False, True, ARMcc, CCR, Cmp, DAG); 10550 if (CondCode2 != ARMCC::AL) { 10551 ARMcc = DAG.getConstant(CondCode2, dl, MVT::i32); 10552 Cmp = getVFPCmp(LHS, RHS, DAG, dl, IsSignaling); 10553 Result = getCMOV(dl, VT, Result, True, ARMcc, CCR, Cmp, DAG); 10554 } 10555 return DAG.getMergeValues({Result, Chain}, dl); 10556 } 10557 10558 SDValue ARMTargetLowering::LowerSPONENTRY(SDValue Op, SelectionDAG &DAG) const { 10559 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10560 10561 EVT VT = getPointerTy(DAG.getDataLayout()); 10562 SDLoc DL(Op); 10563 int FI = MFI.CreateFixedObject(4, 0, false); 10564 return DAG.getFrameIndex(FI, VT); 10565 } 10566 10567 SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 10568 LLVM_DEBUG(dbgs() << "Lowering node: "; Op.dump()); 10569 switch (Op.getOpcode()) { 10570 default: llvm_unreachable("Don't know how to custom lower this!"); 10571 case ISD::WRITE_REGISTER: return LowerWRITE_REGISTER(Op, DAG); 10572 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 10573 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 10574 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 10575 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 10576 case ISD::SELECT: return LowerSELECT(Op, DAG); 10577 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 10578 case ISD::BRCOND: return LowerBRCOND(Op, DAG); 10579 case ISD::BR_CC: return LowerBR_CC(Op, DAG); 10580 case ISD::BR_JT: return LowerBR_JT(Op, DAG); 10581 case ISD::VASTART: return LowerVASTART(Op, DAG); 10582 case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG, Subtarget); 10583 case ISD::PREFETCH: return LowerPREFETCH(Op, DAG, Subtarget); 10584 case ISD::SINT_TO_FP: 10585 case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 10586 case ISD::STRICT_FP_TO_SINT: 10587 case ISD::STRICT_FP_TO_UINT: 10588 case ISD::FP_TO_SINT: 10589 case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG); 10590 case ISD::FP_TO_SINT_SAT: 10591 case ISD::FP_TO_UINT_SAT: return LowerFP_TO_INT_SAT(Op, DAG, Subtarget); 10592 case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG); 10593 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 10594 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 10595 case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG); 10596 case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG); 10597 case ISD::EH_SJLJ_SETUP_DISPATCH: return LowerEH_SJLJ_SETUP_DISPATCH(Op, DAG); 10598 case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG, Subtarget); 10599 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG, 10600 Subtarget); 10601 case ISD::BITCAST: return ExpandBITCAST(Op.getNode(), DAG, Subtarget); 10602 case ISD::SHL: 10603 case ISD::SRL: 10604 case ISD::SRA: return LowerShift(Op.getNode(), DAG, Subtarget); 10605 case ISD::SREM: return LowerREM(Op.getNode(), DAG); 10606 case ISD::UREM: return LowerREM(Op.getNode(), DAG); 10607 case ISD::SHL_PARTS: return LowerShiftLeftParts(Op, DAG); 10608 case ISD::SRL_PARTS: 10609 case ISD::SRA_PARTS: return LowerShiftRightParts(Op, DAG); 10610 case ISD::CTTZ: 10611 case ISD::CTTZ_ZERO_UNDEF: return LowerCTTZ(Op.getNode(), DAG, Subtarget); 10612 case ISD::CTPOP: return LowerCTPOP(Op.getNode(), DAG, Subtarget); 10613 case ISD::SETCC: return LowerVSETCC(Op, DAG, Subtarget); 10614 case ISD::SETCCCARRY: return LowerSETCCCARRY(Op, DAG); 10615 case ISD::ConstantFP: return LowerConstantFP(Op, DAG, Subtarget); 10616 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG, Subtarget); 10617 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG, Subtarget); 10618 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG, Subtarget); 10619 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 10620 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG, Subtarget); 10621 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG, Subtarget); 10622 case ISD::TRUNCATE: return LowerTruncate(Op.getNode(), DAG, Subtarget); 10623 case ISD::SIGN_EXTEND: 10624 case ISD::ZERO_EXTEND: return LowerVectorExtend(Op.getNode(), DAG, Subtarget); 10625 case ISD::GET_ROUNDING: return LowerGET_ROUNDING(Op, DAG); 10626 case ISD::SET_ROUNDING: return LowerSET_ROUNDING(Op, DAG); 10627 case ISD::SET_FPMODE: 10628 return LowerSET_FPMODE(Op, DAG); 10629 case ISD::RESET_FPMODE: 10630 return LowerRESET_FPMODE(Op, DAG); 10631 case ISD::MUL: return LowerMUL(Op, DAG); 10632 case ISD::SDIV: 10633 if (Subtarget->isTargetWindows() && !Op.getValueType().isVector()) 10634 return LowerDIV_Windows(Op, DAG, /* Signed */ true); 10635 return LowerSDIV(Op, DAG, Subtarget); 10636 case ISD::UDIV: 10637 if (Subtarget->isTargetWindows() && !Op.getValueType().isVector()) 10638 return LowerDIV_Windows(Op, DAG, /* Signed */ false); 10639 return LowerUDIV(Op, DAG, Subtarget); 10640 case ISD::UADDO_CARRY: 10641 case ISD::USUBO_CARRY: 10642 return LowerUADDSUBO_CARRY(Op, DAG); 10643 case ISD::SADDO: 10644 case ISD::SSUBO: 10645 return LowerSignedALUO(Op, DAG); 10646 case ISD::UADDO: 10647 case ISD::USUBO: 10648 return LowerUnsignedALUO(Op, DAG); 10649 case ISD::SADDSAT: 10650 case ISD::SSUBSAT: 10651 case ISD::UADDSAT: 10652 case ISD::USUBSAT: 10653 return LowerADDSUBSAT(Op, DAG, Subtarget); 10654 case ISD::LOAD: 10655 return LowerPredicateLoad(Op, DAG); 10656 case ISD::STORE: 10657 return LowerSTORE(Op, DAG, Subtarget); 10658 case ISD::MLOAD: 10659 return LowerMLOAD(Op, DAG); 10660 case ISD::VECREDUCE_MUL: 10661 case ISD::VECREDUCE_AND: 10662 case ISD::VECREDUCE_OR: 10663 case ISD::VECREDUCE_XOR: 10664 return LowerVecReduce(Op, DAG, Subtarget); 10665 case ISD::VECREDUCE_FADD: 10666 case ISD::VECREDUCE_FMUL: 10667 case ISD::VECREDUCE_FMIN: 10668 case ISD::VECREDUCE_FMAX: 10669 return LowerVecReduceF(Op, DAG, Subtarget); 10670 case ISD::VECREDUCE_UMIN: 10671 case ISD::VECREDUCE_UMAX: 10672 case ISD::VECREDUCE_SMIN: 10673 case ISD::VECREDUCE_SMAX: 10674 return LowerVecReduceMinMax(Op, DAG, Subtarget); 10675 case ISD::ATOMIC_LOAD: 10676 case ISD::ATOMIC_STORE: return LowerAtomicLoadStore(Op, DAG); 10677 case ISD::FSINCOS: return LowerFSINCOS(Op, DAG); 10678 case ISD::SDIVREM: 10679 case ISD::UDIVREM: return LowerDivRem(Op, DAG); 10680 case ISD::DYNAMIC_STACKALLOC: 10681 if (Subtarget->isTargetWindows()) 10682 return LowerDYNAMIC_STACKALLOC(Op, DAG); 10683 llvm_unreachable("Don't know how to custom lower this!"); 10684 case ISD::STRICT_FP_ROUND: 10685 case ISD::FP_ROUND: return LowerFP_ROUND(Op, DAG); 10686 case ISD::STRICT_FP_EXTEND: 10687 case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); 10688 case ISD::STRICT_FSETCC: 10689 case ISD::STRICT_FSETCCS: return LowerFSETCC(Op, DAG); 10690 case ISD::SPONENTRY: 10691 return LowerSPONENTRY(Op, DAG); 10692 case ARMISD::WIN__DBZCHK: return SDValue(); 10693 } 10694 } 10695 10696 static void ReplaceLongIntrinsic(SDNode *N, SmallVectorImpl<SDValue> &Results, 10697 SelectionDAG &DAG) { 10698 unsigned IntNo = N->getConstantOperandVal(0); 10699 unsigned Opc = 0; 10700 if (IntNo == Intrinsic::arm_smlald) 10701 Opc = ARMISD::SMLALD; 10702 else if (IntNo == Intrinsic::arm_smlaldx) 10703 Opc = ARMISD::SMLALDX; 10704 else if (IntNo == Intrinsic::arm_smlsld) 10705 Opc = ARMISD::SMLSLD; 10706 else if (IntNo == Intrinsic::arm_smlsldx) 10707 Opc = ARMISD::SMLSLDX; 10708 else 10709 return; 10710 10711 SDLoc dl(N); 10712 SDValue Lo, Hi; 10713 std::tie(Lo, Hi) = DAG.SplitScalar(N->getOperand(3), dl, MVT::i32, MVT::i32); 10714 10715 SDValue LongMul = DAG.getNode(Opc, dl, 10716 DAG.getVTList(MVT::i32, MVT::i32), 10717 N->getOperand(1), N->getOperand(2), 10718 Lo, Hi); 10719 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, 10720 LongMul.getValue(0), LongMul.getValue(1))); 10721 } 10722 10723 /// ReplaceNodeResults - Replace the results of node with an illegal result 10724 /// type with new values built out of custom code. 10725 void ARMTargetLowering::ReplaceNodeResults(SDNode *N, 10726 SmallVectorImpl<SDValue> &Results, 10727 SelectionDAG &DAG) const { 10728 SDValue Res; 10729 switch (N->getOpcode()) { 10730 default: 10731 llvm_unreachable("Don't know how to custom expand this!"); 10732 case ISD::READ_REGISTER: 10733 ExpandREAD_REGISTER(N, Results, DAG); 10734 break; 10735 case ISD::BITCAST: 10736 Res = ExpandBITCAST(N, DAG, Subtarget); 10737 break; 10738 case ISD::SRL: 10739 case ISD::SRA: 10740 case ISD::SHL: 10741 Res = Expand64BitShift(N, DAG, Subtarget); 10742 break; 10743 case ISD::SREM: 10744 case ISD::UREM: 10745 Res = LowerREM(N, DAG); 10746 break; 10747 case ISD::SDIVREM: 10748 case ISD::UDIVREM: 10749 Res = LowerDivRem(SDValue(N, 0), DAG); 10750 assert(Res.getNumOperands() == 2 && "DivRem needs two values"); 10751 Results.push_back(Res.getValue(0)); 10752 Results.push_back(Res.getValue(1)); 10753 return; 10754 case ISD::SADDSAT: 10755 case ISD::SSUBSAT: 10756 case ISD::UADDSAT: 10757 case ISD::USUBSAT: 10758 Res = LowerADDSUBSAT(SDValue(N, 0), DAG, Subtarget); 10759 break; 10760 case ISD::READCYCLECOUNTER: 10761 ReplaceREADCYCLECOUNTER(N, Results, DAG, Subtarget); 10762 return; 10763 case ISD::UDIV: 10764 case ISD::SDIV: 10765 assert(Subtarget->isTargetWindows() && "can only expand DIV on Windows"); 10766 return ExpandDIV_Windows(SDValue(N, 0), DAG, N->getOpcode() == ISD::SDIV, 10767 Results); 10768 case ISD::ATOMIC_CMP_SWAP: 10769 ReplaceCMP_SWAP_64Results(N, Results, DAG); 10770 return; 10771 case ISD::INTRINSIC_WO_CHAIN: 10772 return ReplaceLongIntrinsic(N, Results, DAG); 10773 case ISD::LOAD: 10774 LowerLOAD(N, Results, DAG); 10775 break; 10776 case ISD::TRUNCATE: 10777 Res = LowerTruncate(N, DAG, Subtarget); 10778 break; 10779 case ISD::SIGN_EXTEND: 10780 case ISD::ZERO_EXTEND: 10781 Res = LowerVectorExtend(N, DAG, Subtarget); 10782 break; 10783 case ISD::FP_TO_SINT_SAT: 10784 case ISD::FP_TO_UINT_SAT: 10785 Res = LowerFP_TO_INT_SAT(SDValue(N, 0), DAG, Subtarget); 10786 break; 10787 } 10788 if (Res.getNode()) 10789 Results.push_back(Res); 10790 } 10791 10792 //===----------------------------------------------------------------------===// 10793 // ARM Scheduler Hooks 10794 //===----------------------------------------------------------------------===// 10795 10796 /// SetupEntryBlockForSjLj - Insert code into the entry block that creates and 10797 /// registers the function context. 10798 void ARMTargetLowering::SetupEntryBlockForSjLj(MachineInstr &MI, 10799 MachineBasicBlock *MBB, 10800 MachineBasicBlock *DispatchBB, 10801 int FI) const { 10802 assert(!Subtarget->isROPI() && !Subtarget->isRWPI() && 10803 "ROPI/RWPI not currently supported with SjLj"); 10804 const TargetInstrInfo *TII = Subtarget->getInstrInfo(); 10805 DebugLoc dl = MI.getDebugLoc(); 10806 MachineFunction *MF = MBB->getParent(); 10807 MachineRegisterInfo *MRI = &MF->getRegInfo(); 10808 MachineConstantPool *MCP = MF->getConstantPool(); 10809 ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>(); 10810 const Function &F = MF->getFunction(); 10811 10812 bool isThumb = Subtarget->isThumb(); 10813 bool isThumb2 = Subtarget->isThumb2(); 10814 10815 unsigned PCLabelId = AFI->createPICLabelUId(); 10816 unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8; 10817 ARMConstantPoolValue *CPV = 10818 ARMConstantPoolMBB::Create(F.getContext(), DispatchBB, PCLabelId, PCAdj); 10819 unsigned CPI = MCP->getConstantPoolIndex(CPV, Align(4)); 10820 10821 const TargetRegisterClass *TRC = isThumb ? &ARM::tGPRRegClass 10822 : &ARM::GPRRegClass; 10823 10824 // Grab constant pool and fixed stack memory operands. 10825 MachineMemOperand *CPMMO = 10826 MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF), 10827 MachineMemOperand::MOLoad, 4, Align(4)); 10828 10829 MachineMemOperand *FIMMOSt = 10830 MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI), 10831 MachineMemOperand::MOStore, 4, Align(4)); 10832 10833 // Load the address of the dispatch MBB into the jump buffer. 10834 if (isThumb2) { 10835 // Incoming value: jbuf 10836 // ldr.n r5, LCPI1_1 10837 // orr r5, r5, #1 10838 // add r5, pc 10839 // str r5, [$jbuf, #+4] ; &jbuf[1] 10840 Register NewVReg1 = MRI->createVirtualRegister(TRC); 10841 BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1) 10842 .addConstantPoolIndex(CPI) 10843 .addMemOperand(CPMMO) 10844 .add(predOps(ARMCC::AL)); 10845 // Set the low bit because of thumb mode. 10846 Register NewVReg2 = MRI->createVirtualRegister(TRC); 10847 BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2) 10848 .addReg(NewVReg1, RegState::Kill) 10849 .addImm(0x01) 10850 .add(predOps(ARMCC::AL)) 10851 .add(condCodeOp()); 10852 Register NewVReg3 = MRI->createVirtualRegister(TRC); 10853 BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3) 10854 .addReg(NewVReg2, RegState::Kill) 10855 .addImm(PCLabelId); 10856 BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12)) 10857 .addReg(NewVReg3, RegState::Kill) 10858 .addFrameIndex(FI) 10859 .addImm(36) // &jbuf[1] :: pc 10860 .addMemOperand(FIMMOSt) 10861 .add(predOps(ARMCC::AL)); 10862 } else if (isThumb) { 10863 // Incoming value: jbuf 10864 // ldr.n r1, LCPI1_4 10865 // add r1, pc 10866 // mov r2, #1 10867 // orrs r1, r2 10868 // add r2, $jbuf, #+4 ; &jbuf[1] 10869 // str r1, [r2] 10870 Register NewVReg1 = MRI->createVirtualRegister(TRC); 10871 BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1) 10872 .addConstantPoolIndex(CPI) 10873 .addMemOperand(CPMMO) 10874 .add(predOps(ARMCC::AL)); 10875 Register NewVReg2 = MRI->createVirtualRegister(TRC); 10876 BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2) 10877 .addReg(NewVReg1, RegState::Kill) 10878 .addImm(PCLabelId); 10879 // Set the low bit because of thumb mode. 10880 Register NewVReg3 = MRI->createVirtualRegister(TRC); 10881 BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3) 10882 .addReg(ARM::CPSR, RegState::Define) 10883 .addImm(1) 10884 .add(predOps(ARMCC::AL)); 10885 Register NewVReg4 = MRI->createVirtualRegister(TRC); 10886 BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4) 10887 .addReg(ARM::CPSR, RegState::Define) 10888 .addReg(NewVReg2, RegState::Kill) 10889 .addReg(NewVReg3, RegState::Kill) 10890 .add(predOps(ARMCC::AL)); 10891 Register NewVReg5 = MRI->createVirtualRegister(TRC); 10892 BuildMI(*MBB, MI, dl, TII->get(ARM::tADDframe), NewVReg5) 10893 .addFrameIndex(FI) 10894 .addImm(36); // &jbuf[1] :: pc 10895 BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi)) 10896 .addReg(NewVReg4, RegState::Kill) 10897 .addReg(NewVReg5, RegState::Kill) 10898 .addImm(0) 10899 .addMemOperand(FIMMOSt) 10900 .add(predOps(ARMCC::AL)); 10901 } else { 10902 // Incoming value: jbuf 10903 // ldr r1, LCPI1_1 10904 // add r1, pc, r1 10905 // str r1, [$jbuf, #+4] ; &jbuf[1] 10906 Register NewVReg1 = MRI->createVirtualRegister(TRC); 10907 BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12), NewVReg1) 10908 .addConstantPoolIndex(CPI) 10909 .addImm(0) 10910 .addMemOperand(CPMMO) 10911 .add(predOps(ARMCC::AL)); 10912 Register NewVReg2 = MRI->createVirtualRegister(TRC); 10913 BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2) 10914 .addReg(NewVReg1, RegState::Kill) 10915 .addImm(PCLabelId) 10916 .add(predOps(ARMCC::AL)); 10917 BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12)) 10918 .addReg(NewVReg2, RegState::Kill) 10919 .addFrameIndex(FI) 10920 .addImm(36) // &jbuf[1] :: pc 10921 .addMemOperand(FIMMOSt) 10922 .add(predOps(ARMCC::AL)); 10923 } 10924 } 10925 10926 void ARMTargetLowering::EmitSjLjDispatchBlock(MachineInstr &MI, 10927 MachineBasicBlock *MBB) const { 10928 const TargetInstrInfo *TII = Subtarget->getInstrInfo(); 10929 DebugLoc dl = MI.getDebugLoc(); 10930 MachineFunction *MF = MBB->getParent(); 10931 MachineRegisterInfo *MRI = &MF->getRegInfo(); 10932 MachineFrameInfo &MFI = MF->getFrameInfo(); 10933 int FI = MFI.getFunctionContextIndex(); 10934 10935 const TargetRegisterClass *TRC = Subtarget->isThumb() ? &ARM::tGPRRegClass 10936 : &ARM::GPRnopcRegClass; 10937 10938 // Get a mapping of the call site numbers to all of the landing pads they're 10939 // associated with. 10940 DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2>> CallSiteNumToLPad; 10941 unsigned MaxCSNum = 0; 10942 for (MachineBasicBlock &BB : *MF) { 10943 if (!BB.isEHPad()) 10944 continue; 10945 10946 // FIXME: We should assert that the EH_LABEL is the first MI in the landing 10947 // pad. 10948 for (MachineInstr &II : BB) { 10949 if (!II.isEHLabel()) 10950 continue; 10951 10952 MCSymbol *Sym = II.getOperand(0).getMCSymbol(); 10953 if (!MF->hasCallSiteLandingPad(Sym)) continue; 10954 10955 SmallVectorImpl<unsigned> &CallSiteIdxs = MF->getCallSiteLandingPad(Sym); 10956 for (unsigned Idx : CallSiteIdxs) { 10957 CallSiteNumToLPad[Idx].push_back(&BB); 10958 MaxCSNum = std::max(MaxCSNum, Idx); 10959 } 10960 break; 10961 } 10962 } 10963 10964 // Get an ordered list of the machine basic blocks for the jump table. 10965 std::vector<MachineBasicBlock*> LPadList; 10966 SmallPtrSet<MachineBasicBlock*, 32> InvokeBBs; 10967 LPadList.reserve(CallSiteNumToLPad.size()); 10968 for (unsigned I = 1; I <= MaxCSNum; ++I) { 10969 SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I]; 10970 for (MachineBasicBlock *MBB : MBBList) { 10971 LPadList.push_back(MBB); 10972 InvokeBBs.insert(MBB->pred_begin(), MBB->pred_end()); 10973 } 10974 } 10975 10976 assert(!LPadList.empty() && 10977 "No landing pad destinations for the dispatch jump table!"); 10978 10979 // Create the jump table and associated information. 10980 MachineJumpTableInfo *JTI = 10981 MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline); 10982 unsigned MJTI = JTI->createJumpTableIndex(LPadList); 10983 10984 // Create the MBBs for the dispatch code. 10985 10986 // Shove the dispatch's address into the return slot in the function context. 10987 MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock(); 10988 DispatchBB->setIsEHPad(); 10989 10990 MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock(); 10991 unsigned trap_opcode; 10992 if (Subtarget->isThumb()) 10993 trap_opcode = ARM::tTRAP; 10994 else 10995 trap_opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP; 10996 10997 BuildMI(TrapBB, dl, TII->get(trap_opcode)); 10998 DispatchBB->addSuccessor(TrapBB); 10999 11000 MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock(); 11001 DispatchBB->addSuccessor(DispContBB); 11002 11003 // Insert and MBBs. 11004 MF->insert(MF->end(), DispatchBB); 11005 MF->insert(MF->end(), DispContBB); 11006 MF->insert(MF->end(), TrapBB); 11007 11008 // Insert code into the entry block that creates and registers the function 11009 // context. 11010 SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI); 11011 11012 MachineMemOperand *FIMMOLd = MF->getMachineMemOperand( 11013 MachinePointerInfo::getFixedStack(*MF, FI), 11014 MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile, 4, Align(4)); 11015 11016 MachineInstrBuilder MIB; 11017 MIB = BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup)); 11018 11019 const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII); 11020 const ARMBaseRegisterInfo &RI = AII->getRegisterInfo(); 11021 11022 // Add a register mask with no preserved registers. This results in all 11023 // registers being marked as clobbered. This can't work if the dispatch block 11024 // is in a Thumb1 function and is linked with ARM code which uses the FP 11025 // registers, as there is no way to preserve the FP registers in Thumb1 mode. 11026 MIB.addRegMask(RI.getSjLjDispatchPreservedMask(*MF)); 11027 11028 bool IsPositionIndependent = isPositionIndependent(); 11029 unsigned NumLPads = LPadList.size(); 11030 if (Subtarget->isThumb2()) { 11031 Register NewVReg1 = MRI->createVirtualRegister(TRC); 11032 BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1) 11033 .addFrameIndex(FI) 11034 .addImm(4) 11035 .addMemOperand(FIMMOLd) 11036 .add(predOps(ARMCC::AL)); 11037 11038 if (NumLPads < 256) { 11039 BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri)) 11040 .addReg(NewVReg1) 11041 .addImm(LPadList.size()) 11042 .add(predOps(ARMCC::AL)); 11043 } else { 11044 Register VReg1 = MRI->createVirtualRegister(TRC); 11045 BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1) 11046 .addImm(NumLPads & 0xFFFF) 11047 .add(predOps(ARMCC::AL)); 11048 11049 unsigned VReg2 = VReg1; 11050 if ((NumLPads & 0xFFFF0000) != 0) { 11051 VReg2 = MRI->createVirtualRegister(TRC); 11052 BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2) 11053 .addReg(VReg1) 11054 .addImm(NumLPads >> 16) 11055 .add(predOps(ARMCC::AL)); 11056 } 11057 11058 BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr)) 11059 .addReg(NewVReg1) 11060 .addReg(VReg2) 11061 .add(predOps(ARMCC::AL)); 11062 } 11063 11064 BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc)) 11065 .addMBB(TrapBB) 11066 .addImm(ARMCC::HI) 11067 .addReg(ARM::CPSR); 11068 11069 Register NewVReg3 = MRI->createVirtualRegister(TRC); 11070 BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT), NewVReg3) 11071 .addJumpTableIndex(MJTI) 11072 .add(predOps(ARMCC::AL)); 11073 11074 Register NewVReg4 = MRI->createVirtualRegister(TRC); 11075 BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4) 11076 .addReg(NewVReg3, RegState::Kill) 11077 .addReg(NewVReg1) 11078 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2)) 11079 .add(predOps(ARMCC::AL)) 11080 .add(condCodeOp()); 11081 11082 BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT)) 11083 .addReg(NewVReg4, RegState::Kill) 11084 .addReg(NewVReg1) 11085 .addJumpTableIndex(MJTI); 11086 } else if (Subtarget->isThumb()) { 11087 Register NewVReg1 = MRI->createVirtualRegister(TRC); 11088 BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1) 11089 .addFrameIndex(FI) 11090 .addImm(1) 11091 .addMemOperand(FIMMOLd) 11092 .add(predOps(ARMCC::AL)); 11093 11094 if (NumLPads < 256) { 11095 BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8)) 11096 .addReg(NewVReg1) 11097 .addImm(NumLPads) 11098 .add(predOps(ARMCC::AL)); 11099 } else { 11100 MachineConstantPool *ConstantPool = MF->getConstantPool(); 11101 Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext()); 11102 const Constant *C = ConstantInt::get(Int32Ty, NumLPads); 11103 11104 // MachineConstantPool wants an explicit alignment. 11105 Align Alignment = MF->getDataLayout().getPrefTypeAlign(Int32Ty); 11106 unsigned Idx = ConstantPool->getConstantPoolIndex(C, Alignment); 11107 11108 Register VReg1 = MRI->createVirtualRegister(TRC); 11109 BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci)) 11110 .addReg(VReg1, RegState::Define) 11111 .addConstantPoolIndex(Idx) 11112 .add(predOps(ARMCC::AL)); 11113 BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr)) 11114 .addReg(NewVReg1) 11115 .addReg(VReg1) 11116 .add(predOps(ARMCC::AL)); 11117 } 11118 11119 BuildMI(DispatchBB, dl, TII->get(ARM::tBcc)) 11120 .addMBB(TrapBB) 11121 .addImm(ARMCC::HI) 11122 .addReg(ARM::CPSR); 11123 11124 Register NewVReg2 = MRI->createVirtualRegister(TRC); 11125 BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2) 11126 .addReg(ARM::CPSR, RegState::Define) 11127 .addReg(NewVReg1) 11128 .addImm(2) 11129 .add(predOps(ARMCC::AL)); 11130 11131 Register NewVReg3 = MRI->createVirtualRegister(TRC); 11132 BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3) 11133 .addJumpTableIndex(MJTI) 11134 .add(predOps(ARMCC::AL)); 11135 11136 Register NewVReg4 = MRI->createVirtualRegister(TRC); 11137 BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4) 11138 .addReg(ARM::CPSR, RegState::Define) 11139 .addReg(NewVReg2, RegState::Kill) 11140 .addReg(NewVReg3) 11141 .add(predOps(ARMCC::AL)); 11142 11143 MachineMemOperand *JTMMOLd = 11144 MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(*MF), 11145 MachineMemOperand::MOLoad, 4, Align(4)); 11146 11147 Register NewVReg5 = MRI->createVirtualRegister(TRC); 11148 BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5) 11149 .addReg(NewVReg4, RegState::Kill) 11150 .addImm(0) 11151 .addMemOperand(JTMMOLd) 11152 .add(predOps(ARMCC::AL)); 11153 11154 unsigned NewVReg6 = NewVReg5; 11155 if (IsPositionIndependent) { 11156 NewVReg6 = MRI->createVirtualRegister(TRC); 11157 BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6) 11158 .addReg(ARM::CPSR, RegState::Define) 11159 .addReg(NewVReg5, RegState::Kill) 11160 .addReg(NewVReg3) 11161 .add(predOps(ARMCC::AL)); 11162 } 11163 11164 BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr)) 11165 .addReg(NewVReg6, RegState::Kill) 11166 .addJumpTableIndex(MJTI); 11167 } else { 11168 Register NewVReg1 = MRI->createVirtualRegister(TRC); 11169 BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1) 11170 .addFrameIndex(FI) 11171 .addImm(4) 11172 .addMemOperand(FIMMOLd) 11173 .add(predOps(ARMCC::AL)); 11174 11175 if (NumLPads < 256) { 11176 BuildMI(DispatchBB, dl, TII->get(ARM::CMPri)) 11177 .addReg(NewVReg1) 11178 .addImm(NumLPads) 11179 .add(predOps(ARMCC::AL)); 11180 } else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) { 11181 Register VReg1 = MRI->createVirtualRegister(TRC); 11182 BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1) 11183 .addImm(NumLPads & 0xFFFF) 11184 .add(predOps(ARMCC::AL)); 11185 11186 unsigned VReg2 = VReg1; 11187 if ((NumLPads & 0xFFFF0000) != 0) { 11188 VReg2 = MRI->createVirtualRegister(TRC); 11189 BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2) 11190 .addReg(VReg1) 11191 .addImm(NumLPads >> 16) 11192 .add(predOps(ARMCC::AL)); 11193 } 11194 11195 BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr)) 11196 .addReg(NewVReg1) 11197 .addReg(VReg2) 11198 .add(predOps(ARMCC::AL)); 11199 } else { 11200 MachineConstantPool *ConstantPool = MF->getConstantPool(); 11201 Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext()); 11202 const Constant *C = ConstantInt::get(Int32Ty, NumLPads); 11203 11204 // MachineConstantPool wants an explicit alignment. 11205 Align Alignment = MF->getDataLayout().getPrefTypeAlign(Int32Ty); 11206 unsigned Idx = ConstantPool->getConstantPoolIndex(C, Alignment); 11207 11208 Register VReg1 = MRI->createVirtualRegister(TRC); 11209 BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp)) 11210 .addReg(VReg1, RegState::Define) 11211 .addConstantPoolIndex(Idx) 11212 .addImm(0) 11213 .add(predOps(ARMCC::AL)); 11214 BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr)) 11215 .addReg(NewVReg1) 11216 .addReg(VReg1, RegState::Kill) 11217 .add(predOps(ARMCC::AL)); 11218 } 11219 11220 BuildMI(DispatchBB, dl, TII->get(ARM::Bcc)) 11221 .addMBB(TrapBB) 11222 .addImm(ARMCC::HI) 11223 .addReg(ARM::CPSR); 11224 11225 Register NewVReg3 = MRI->createVirtualRegister(TRC); 11226 BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3) 11227 .addReg(NewVReg1) 11228 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2)) 11229 .add(predOps(ARMCC::AL)) 11230 .add(condCodeOp()); 11231 Register NewVReg4 = MRI->createVirtualRegister(TRC); 11232 BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4) 11233 .addJumpTableIndex(MJTI) 11234 .add(predOps(ARMCC::AL)); 11235 11236 MachineMemOperand *JTMMOLd = 11237 MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(*MF), 11238 MachineMemOperand::MOLoad, 4, Align(4)); 11239 Register NewVReg5 = MRI->createVirtualRegister(TRC); 11240 BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5) 11241 .addReg(NewVReg3, RegState::Kill) 11242 .addReg(NewVReg4) 11243 .addImm(0) 11244 .addMemOperand(JTMMOLd) 11245 .add(predOps(ARMCC::AL)); 11246 11247 if (IsPositionIndependent) { 11248 BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd)) 11249 .addReg(NewVReg5, RegState::Kill) 11250 .addReg(NewVReg4) 11251 .addJumpTableIndex(MJTI); 11252 } else { 11253 BuildMI(DispContBB, dl, TII->get(ARM::BR_JTr)) 11254 .addReg(NewVReg5, RegState::Kill) 11255 .addJumpTableIndex(MJTI); 11256 } 11257 } 11258 11259 // Add the jump table entries as successors to the MBB. 11260 SmallPtrSet<MachineBasicBlock*, 8> SeenMBBs; 11261 for (MachineBasicBlock *CurMBB : LPadList) { 11262 if (SeenMBBs.insert(CurMBB).second) 11263 DispContBB->addSuccessor(CurMBB); 11264 } 11265 11266 // N.B. the order the invoke BBs are processed in doesn't matter here. 11267 const MCPhysReg *SavedRegs = RI.getCalleeSavedRegs(MF); 11268 SmallVector<MachineBasicBlock*, 64> MBBLPads; 11269 for (MachineBasicBlock *BB : InvokeBBs) { 11270 11271 // Remove the landing pad successor from the invoke block and replace it 11272 // with the new dispatch block. 11273 SmallVector<MachineBasicBlock*, 4> Successors(BB->successors()); 11274 while (!Successors.empty()) { 11275 MachineBasicBlock *SMBB = Successors.pop_back_val(); 11276 if (SMBB->isEHPad()) { 11277 BB->removeSuccessor(SMBB); 11278 MBBLPads.push_back(SMBB); 11279 } 11280 } 11281 11282 BB->addSuccessor(DispatchBB, BranchProbability::getZero()); 11283 BB->normalizeSuccProbs(); 11284 11285 // Find the invoke call and mark all of the callee-saved registers as 11286 // 'implicit defined' so that they're spilled. This prevents code from 11287 // moving instructions to before the EH block, where they will never be 11288 // executed. 11289 for (MachineBasicBlock::reverse_iterator 11290 II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) { 11291 if (!II->isCall()) continue; 11292 11293 DenseMap<unsigned, bool> DefRegs; 11294 for (MachineInstr::mop_iterator 11295 OI = II->operands_begin(), OE = II->operands_end(); 11296 OI != OE; ++OI) { 11297 if (!OI->isReg()) continue; 11298 DefRegs[OI->getReg()] = true; 11299 } 11300 11301 MachineInstrBuilder MIB(*MF, &*II); 11302 11303 for (unsigned i = 0; SavedRegs[i] != 0; ++i) { 11304 unsigned Reg = SavedRegs[i]; 11305 if (Subtarget->isThumb2() && 11306 !ARM::tGPRRegClass.contains(Reg) && 11307 !ARM::hGPRRegClass.contains(Reg)) 11308 continue; 11309 if (Subtarget->isThumb1Only() && !ARM::tGPRRegClass.contains(Reg)) 11310 continue; 11311 if (!Subtarget->isThumb() && !ARM::GPRRegClass.contains(Reg)) 11312 continue; 11313 if (!DefRegs[Reg]) 11314 MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead); 11315 } 11316 11317 break; 11318 } 11319 } 11320 11321 // Mark all former landing pads as non-landing pads. The dispatch is the only 11322 // landing pad now. 11323 for (MachineBasicBlock *MBBLPad : MBBLPads) 11324 MBBLPad->setIsEHPad(false); 11325 11326 // The instruction is gone now. 11327 MI.eraseFromParent(); 11328 } 11329 11330 static 11331 MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) { 11332 for (MachineBasicBlock *S : MBB->successors()) 11333 if (S != Succ) 11334 return S; 11335 llvm_unreachable("Expecting a BB with two successors!"); 11336 } 11337 11338 /// Return the load opcode for a given load size. If load size >= 8, 11339 /// neon opcode will be returned. 11340 static unsigned getLdOpcode(unsigned LdSize, bool IsThumb1, bool IsThumb2) { 11341 if (LdSize >= 8) 11342 return LdSize == 16 ? ARM::VLD1q32wb_fixed 11343 : LdSize == 8 ? ARM::VLD1d32wb_fixed : 0; 11344 if (IsThumb1) 11345 return LdSize == 4 ? ARM::tLDRi 11346 : LdSize == 2 ? ARM::tLDRHi 11347 : LdSize == 1 ? ARM::tLDRBi : 0; 11348 if (IsThumb2) 11349 return LdSize == 4 ? ARM::t2LDR_POST 11350 : LdSize == 2 ? ARM::t2LDRH_POST 11351 : LdSize == 1 ? ARM::t2LDRB_POST : 0; 11352 return LdSize == 4 ? ARM::LDR_POST_IMM 11353 : LdSize == 2 ? ARM::LDRH_POST 11354 : LdSize == 1 ? ARM::LDRB_POST_IMM : 0; 11355 } 11356 11357 /// Return the store opcode for a given store size. If store size >= 8, 11358 /// neon opcode will be returned. 11359 static unsigned getStOpcode(unsigned StSize, bool IsThumb1, bool IsThumb2) { 11360 if (StSize >= 8) 11361 return StSize == 16 ? ARM::VST1q32wb_fixed 11362 : StSize == 8 ? ARM::VST1d32wb_fixed : 0; 11363 if (IsThumb1) 11364 return StSize == 4 ? ARM::tSTRi 11365 : StSize == 2 ? ARM::tSTRHi 11366 : StSize == 1 ? ARM::tSTRBi : 0; 11367 if (IsThumb2) 11368 return StSize == 4 ? ARM::t2STR_POST 11369 : StSize == 2 ? ARM::t2STRH_POST 11370 : StSize == 1 ? ARM::t2STRB_POST : 0; 11371 return StSize == 4 ? ARM::STR_POST_IMM 11372 : StSize == 2 ? ARM::STRH_POST 11373 : StSize == 1 ? ARM::STRB_POST_IMM : 0; 11374 } 11375 11376 /// Emit a post-increment load operation with given size. The instructions 11377 /// will be added to BB at Pos. 11378 static void emitPostLd(MachineBasicBlock *BB, MachineBasicBlock::iterator Pos, 11379 const TargetInstrInfo *TII, const DebugLoc &dl, 11380 unsigned LdSize, unsigned Data, unsigned AddrIn, 11381 unsigned AddrOut, bool IsThumb1, bool IsThumb2) { 11382 unsigned LdOpc = getLdOpcode(LdSize, IsThumb1, IsThumb2); 11383 assert(LdOpc != 0 && "Should have a load opcode"); 11384 if (LdSize >= 8) { 11385 BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data) 11386 .addReg(AddrOut, RegState::Define) 11387 .addReg(AddrIn) 11388 .addImm(0) 11389 .add(predOps(ARMCC::AL)); 11390 } else if (IsThumb1) { 11391 // load + update AddrIn 11392 BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data) 11393 .addReg(AddrIn) 11394 .addImm(0) 11395 .add(predOps(ARMCC::AL)); 11396 BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut) 11397 .add(t1CondCodeOp()) 11398 .addReg(AddrIn) 11399 .addImm(LdSize) 11400 .add(predOps(ARMCC::AL)); 11401 } else if (IsThumb2) { 11402 BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data) 11403 .addReg(AddrOut, RegState::Define) 11404 .addReg(AddrIn) 11405 .addImm(LdSize) 11406 .add(predOps(ARMCC::AL)); 11407 } else { // arm 11408 BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data) 11409 .addReg(AddrOut, RegState::Define) 11410 .addReg(AddrIn) 11411 .addReg(0) 11412 .addImm(LdSize) 11413 .add(predOps(ARMCC::AL)); 11414 } 11415 } 11416 11417 /// Emit a post-increment store operation with given size. The instructions 11418 /// will be added to BB at Pos. 11419 static void emitPostSt(MachineBasicBlock *BB, MachineBasicBlock::iterator Pos, 11420 const TargetInstrInfo *TII, const DebugLoc &dl, 11421 unsigned StSize, unsigned Data, unsigned AddrIn, 11422 unsigned AddrOut, bool IsThumb1, bool IsThumb2) { 11423 unsigned StOpc = getStOpcode(StSize, IsThumb1, IsThumb2); 11424 assert(StOpc != 0 && "Should have a store opcode"); 11425 if (StSize >= 8) { 11426 BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut) 11427 .addReg(AddrIn) 11428 .addImm(0) 11429 .addReg(Data) 11430 .add(predOps(ARMCC::AL)); 11431 } else if (IsThumb1) { 11432 // store + update AddrIn 11433 BuildMI(*BB, Pos, dl, TII->get(StOpc)) 11434 .addReg(Data) 11435 .addReg(AddrIn) 11436 .addImm(0) 11437 .add(predOps(ARMCC::AL)); 11438 BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut) 11439 .add(t1CondCodeOp()) 11440 .addReg(AddrIn) 11441 .addImm(StSize) 11442 .add(predOps(ARMCC::AL)); 11443 } else if (IsThumb2) { 11444 BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut) 11445 .addReg(Data) 11446 .addReg(AddrIn) 11447 .addImm(StSize) 11448 .add(predOps(ARMCC::AL)); 11449 } else { // arm 11450 BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut) 11451 .addReg(Data) 11452 .addReg(AddrIn) 11453 .addReg(0) 11454 .addImm(StSize) 11455 .add(predOps(ARMCC::AL)); 11456 } 11457 } 11458 11459 MachineBasicBlock * 11460 ARMTargetLowering::EmitStructByval(MachineInstr &MI, 11461 MachineBasicBlock *BB) const { 11462 // This pseudo instruction has 3 operands: dst, src, size 11463 // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold(). 11464 // Otherwise, we will generate unrolled scalar copies. 11465 const TargetInstrInfo *TII = Subtarget->getInstrInfo(); 11466 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11467 MachineFunction::iterator It = ++BB->getIterator(); 11468 11469 Register dest = MI.getOperand(0).getReg(); 11470 Register src = MI.getOperand(1).getReg(); 11471 unsigned SizeVal = MI.getOperand(2).getImm(); 11472 unsigned Alignment = MI.getOperand(3).getImm(); 11473 DebugLoc dl = MI.getDebugLoc(); 11474 11475 MachineFunction *MF = BB->getParent(); 11476 MachineRegisterInfo &MRI = MF->getRegInfo(); 11477 unsigned UnitSize = 0; 11478 const TargetRegisterClass *TRC = nullptr; 11479 const TargetRegisterClass *VecTRC = nullptr; 11480 11481 bool IsThumb1 = Subtarget->isThumb1Only(); 11482 bool IsThumb2 = Subtarget->isThumb2(); 11483 bool IsThumb = Subtarget->isThumb(); 11484 11485 if (Alignment & 1) { 11486 UnitSize = 1; 11487 } else if (Alignment & 2) { 11488 UnitSize = 2; 11489 } else { 11490 // Check whether we can use NEON instructions. 11491 if (!MF->getFunction().hasFnAttribute(Attribute::NoImplicitFloat) && 11492 Subtarget->hasNEON()) { 11493 if ((Alignment % 16 == 0) && SizeVal >= 16) 11494 UnitSize = 16; 11495 else if ((Alignment % 8 == 0) && SizeVal >= 8) 11496 UnitSize = 8; 11497 } 11498 // Can't use NEON instructions. 11499 if (UnitSize == 0) 11500 UnitSize = 4; 11501 } 11502 11503 // Select the correct opcode and register class for unit size load/store 11504 bool IsNeon = UnitSize >= 8; 11505 TRC = IsThumb ? &ARM::tGPRRegClass : &ARM::GPRRegClass; 11506 if (IsNeon) 11507 VecTRC = UnitSize == 16 ? &ARM::DPairRegClass 11508 : UnitSize == 8 ? &ARM::DPRRegClass 11509 : nullptr; 11510 11511 unsigned BytesLeft = SizeVal % UnitSize; 11512 unsigned LoopSize = SizeVal - BytesLeft; 11513 11514 if (SizeVal <= Subtarget->getMaxInlineSizeThreshold()) { 11515 // Use LDR and STR to copy. 11516 // [scratch, srcOut] = LDR_POST(srcIn, UnitSize) 11517 // [destOut] = STR_POST(scratch, destIn, UnitSize) 11518 unsigned srcIn = src; 11519 unsigned destIn = dest; 11520 for (unsigned i = 0; i < LoopSize; i+=UnitSize) { 11521 Register srcOut = MRI.createVirtualRegister(TRC); 11522 Register destOut = MRI.createVirtualRegister(TRC); 11523 Register scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC); 11524 emitPostLd(BB, MI, TII, dl, UnitSize, scratch, srcIn, srcOut, 11525 IsThumb1, IsThumb2); 11526 emitPostSt(BB, MI, TII, dl, UnitSize, scratch, destIn, destOut, 11527 IsThumb1, IsThumb2); 11528 srcIn = srcOut; 11529 destIn = destOut; 11530 } 11531 11532 // Handle the leftover bytes with LDRB and STRB. 11533 // [scratch, srcOut] = LDRB_POST(srcIn, 1) 11534 // [destOut] = STRB_POST(scratch, destIn, 1) 11535 for (unsigned i = 0; i < BytesLeft; i++) { 11536 Register srcOut = MRI.createVirtualRegister(TRC); 11537 Register destOut = MRI.createVirtualRegister(TRC); 11538 Register scratch = MRI.createVirtualRegister(TRC); 11539 emitPostLd(BB, MI, TII, dl, 1, scratch, srcIn, srcOut, 11540 IsThumb1, IsThumb2); 11541 emitPostSt(BB, MI, TII, dl, 1, scratch, destIn, destOut, 11542 IsThumb1, IsThumb2); 11543 srcIn = srcOut; 11544 destIn = destOut; 11545 } 11546 MI.eraseFromParent(); // The instruction is gone now. 11547 return BB; 11548 } 11549 11550 // Expand the pseudo op to a loop. 11551 // thisMBB: 11552 // ... 11553 // movw varEnd, # --> with thumb2 11554 // movt varEnd, # 11555 // ldrcp varEnd, idx --> without thumb2 11556 // fallthrough --> loopMBB 11557 // loopMBB: 11558 // PHI varPhi, varEnd, varLoop 11559 // PHI srcPhi, src, srcLoop 11560 // PHI destPhi, dst, destLoop 11561 // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize) 11562 // [destLoop] = STR_POST(scratch, destPhi, UnitSize) 11563 // subs varLoop, varPhi, #UnitSize 11564 // bne loopMBB 11565 // fallthrough --> exitMBB 11566 // exitMBB: 11567 // epilogue to handle left-over bytes 11568 // [scratch, srcOut] = LDRB_POST(srcLoop, 1) 11569 // [destOut] = STRB_POST(scratch, destLoop, 1) 11570 MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB); 11571 MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); 11572 MF->insert(It, loopMBB); 11573 MF->insert(It, exitMBB); 11574 11575 // Set the call frame size on entry to the new basic blocks. 11576 unsigned CallFrameSize = TII->getCallFrameSizeAt(MI); 11577 loopMBB->setCallFrameSize(CallFrameSize); 11578 exitMBB->setCallFrameSize(CallFrameSize); 11579 11580 // Transfer the remainder of BB and its successor edges to exitMBB. 11581 exitMBB->splice(exitMBB->begin(), BB, 11582 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11583 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11584 11585 // Load an immediate to varEnd. 11586 Register varEnd = MRI.createVirtualRegister(TRC); 11587 if (Subtarget->useMovt()) { 11588 BuildMI(BB, dl, TII->get(IsThumb ? ARM::t2MOVi32imm : ARM::MOVi32imm), 11589 varEnd) 11590 .addImm(LoopSize); 11591 } else if (Subtarget->genExecuteOnly()) { 11592 assert(IsThumb && "Non-thumb expected to have used movt"); 11593 BuildMI(BB, dl, TII->get(ARM::tMOVi32imm), varEnd).addImm(LoopSize); 11594 } else { 11595 MachineConstantPool *ConstantPool = MF->getConstantPool(); 11596 Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext()); 11597 const Constant *C = ConstantInt::get(Int32Ty, LoopSize); 11598 11599 // MachineConstantPool wants an explicit alignment. 11600 Align Alignment = MF->getDataLayout().getPrefTypeAlign(Int32Ty); 11601 unsigned Idx = ConstantPool->getConstantPoolIndex(C, Alignment); 11602 MachineMemOperand *CPMMO = 11603 MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF), 11604 MachineMemOperand::MOLoad, 4, Align(4)); 11605 11606 if (IsThumb) 11607 BuildMI(*BB, MI, dl, TII->get(ARM::tLDRpci)) 11608 .addReg(varEnd, RegState::Define) 11609 .addConstantPoolIndex(Idx) 11610 .add(predOps(ARMCC::AL)) 11611 .addMemOperand(CPMMO); 11612 else 11613 BuildMI(*BB, MI, dl, TII->get(ARM::LDRcp)) 11614 .addReg(varEnd, RegState::Define) 11615 .addConstantPoolIndex(Idx) 11616 .addImm(0) 11617 .add(predOps(ARMCC::AL)) 11618 .addMemOperand(CPMMO); 11619 } 11620 BB->addSuccessor(loopMBB); 11621 11622 // Generate the loop body: 11623 // varPhi = PHI(varLoop, varEnd) 11624 // srcPhi = PHI(srcLoop, src) 11625 // destPhi = PHI(destLoop, dst) 11626 MachineBasicBlock *entryBB = BB; 11627 BB = loopMBB; 11628 Register varLoop = MRI.createVirtualRegister(TRC); 11629 Register varPhi = MRI.createVirtualRegister(TRC); 11630 Register srcLoop = MRI.createVirtualRegister(TRC); 11631 Register srcPhi = MRI.createVirtualRegister(TRC); 11632 Register destLoop = MRI.createVirtualRegister(TRC); 11633 Register destPhi = MRI.createVirtualRegister(TRC); 11634 11635 BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), varPhi) 11636 .addReg(varLoop).addMBB(loopMBB) 11637 .addReg(varEnd).addMBB(entryBB); 11638 BuildMI(BB, dl, TII->get(ARM::PHI), srcPhi) 11639 .addReg(srcLoop).addMBB(loopMBB) 11640 .addReg(src).addMBB(entryBB); 11641 BuildMI(BB, dl, TII->get(ARM::PHI), destPhi) 11642 .addReg(destLoop).addMBB(loopMBB) 11643 .addReg(dest).addMBB(entryBB); 11644 11645 // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize) 11646 // [destLoop] = STR_POST(scratch, destPhi, UnitSiz) 11647 Register scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC); 11648 emitPostLd(BB, BB->end(), TII, dl, UnitSize, scratch, srcPhi, srcLoop, 11649 IsThumb1, IsThumb2); 11650 emitPostSt(BB, BB->end(), TII, dl, UnitSize, scratch, destPhi, destLoop, 11651 IsThumb1, IsThumb2); 11652 11653 // Decrement loop variable by UnitSize. 11654 if (IsThumb1) { 11655 BuildMI(*BB, BB->end(), dl, TII->get(ARM::tSUBi8), varLoop) 11656 .add(t1CondCodeOp()) 11657 .addReg(varPhi) 11658 .addImm(UnitSize) 11659 .add(predOps(ARMCC::AL)); 11660 } else { 11661 MachineInstrBuilder MIB = 11662 BuildMI(*BB, BB->end(), dl, 11663 TII->get(IsThumb2 ? ARM::t2SUBri : ARM::SUBri), varLoop); 11664 MIB.addReg(varPhi) 11665 .addImm(UnitSize) 11666 .add(predOps(ARMCC::AL)) 11667 .add(condCodeOp()); 11668 MIB->getOperand(5).setReg(ARM::CPSR); 11669 MIB->getOperand(5).setIsDef(true); 11670 } 11671 BuildMI(*BB, BB->end(), dl, 11672 TII->get(IsThumb1 ? ARM::tBcc : IsThumb2 ? ARM::t2Bcc : ARM::Bcc)) 11673 .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR); 11674 11675 // loopMBB can loop back to loopMBB or fall through to exitMBB. 11676 BB->addSuccessor(loopMBB); 11677 BB->addSuccessor(exitMBB); 11678 11679 // Add epilogue to handle BytesLeft. 11680 BB = exitMBB; 11681 auto StartOfExit = exitMBB->begin(); 11682 11683 // [scratch, srcOut] = LDRB_POST(srcLoop, 1) 11684 // [destOut] = STRB_POST(scratch, destLoop, 1) 11685 unsigned srcIn = srcLoop; 11686 unsigned destIn = destLoop; 11687 for (unsigned i = 0; i < BytesLeft; i++) { 11688 Register srcOut = MRI.createVirtualRegister(TRC); 11689 Register destOut = MRI.createVirtualRegister(TRC); 11690 Register scratch = MRI.createVirtualRegister(TRC); 11691 emitPostLd(BB, StartOfExit, TII, dl, 1, scratch, srcIn, srcOut, 11692 IsThumb1, IsThumb2); 11693 emitPostSt(BB, StartOfExit, TII, dl, 1, scratch, destIn, destOut, 11694 IsThumb1, IsThumb2); 11695 srcIn = srcOut; 11696 destIn = destOut; 11697 } 11698 11699 MI.eraseFromParent(); // The instruction is gone now. 11700 return BB; 11701 } 11702 11703 MachineBasicBlock * 11704 ARMTargetLowering::EmitLowered__chkstk(MachineInstr &MI, 11705 MachineBasicBlock *MBB) const { 11706 const TargetMachine &TM = getTargetMachine(); 11707 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 11708 DebugLoc DL = MI.getDebugLoc(); 11709 11710 assert(Subtarget->isTargetWindows() && 11711 "__chkstk is only supported on Windows"); 11712 assert(Subtarget->isThumb2() && "Windows on ARM requires Thumb-2 mode"); 11713 11714 // __chkstk takes the number of words to allocate on the stack in R4, and 11715 // returns the stack adjustment in number of bytes in R4. This will not 11716 // clober any other registers (other than the obvious lr). 11717 // 11718 // Although, technically, IP should be considered a register which may be 11719 // clobbered, the call itself will not touch it. Windows on ARM is a pure 11720 // thumb-2 environment, so there is no interworking required. As a result, we 11721 // do not expect a veneer to be emitted by the linker, clobbering IP. 11722 // 11723 // Each module receives its own copy of __chkstk, so no import thunk is 11724 // required, again, ensuring that IP is not clobbered. 11725 // 11726 // Finally, although some linkers may theoretically provide a trampoline for 11727 // out of range calls (which is quite common due to a 32M range limitation of 11728 // branches for Thumb), we can generate the long-call version via 11729 // -mcmodel=large, alleviating the need for the trampoline which may clobber 11730 // IP. 11731 11732 switch (TM.getCodeModel()) { 11733 case CodeModel::Tiny: 11734 llvm_unreachable("Tiny code model not available on ARM."); 11735 case CodeModel::Small: 11736 case CodeModel::Medium: 11737 case CodeModel::Kernel: 11738 BuildMI(*MBB, MI, DL, TII.get(ARM::tBL)) 11739 .add(predOps(ARMCC::AL)) 11740 .addExternalSymbol("__chkstk") 11741 .addReg(ARM::R4, RegState::Implicit | RegState::Kill) 11742 .addReg(ARM::R4, RegState::Implicit | RegState::Define) 11743 .addReg(ARM::R12, 11744 RegState::Implicit | RegState::Define | RegState::Dead) 11745 .addReg(ARM::CPSR, 11746 RegState::Implicit | RegState::Define | RegState::Dead); 11747 break; 11748 case CodeModel::Large: { 11749 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 11750 Register Reg = MRI.createVirtualRegister(&ARM::rGPRRegClass); 11751 11752 BuildMI(*MBB, MI, DL, TII.get(ARM::t2MOVi32imm), Reg) 11753 .addExternalSymbol("__chkstk"); 11754 BuildMI(*MBB, MI, DL, TII.get(gettBLXrOpcode(*MBB->getParent()))) 11755 .add(predOps(ARMCC::AL)) 11756 .addReg(Reg, RegState::Kill) 11757 .addReg(ARM::R4, RegState::Implicit | RegState::Kill) 11758 .addReg(ARM::R4, RegState::Implicit | RegState::Define) 11759 .addReg(ARM::R12, 11760 RegState::Implicit | RegState::Define | RegState::Dead) 11761 .addReg(ARM::CPSR, 11762 RegState::Implicit | RegState::Define | RegState::Dead); 11763 break; 11764 } 11765 } 11766 11767 BuildMI(*MBB, MI, DL, TII.get(ARM::t2SUBrr), ARM::SP) 11768 .addReg(ARM::SP, RegState::Kill) 11769 .addReg(ARM::R4, RegState::Kill) 11770 .setMIFlags(MachineInstr::FrameSetup) 11771 .add(predOps(ARMCC::AL)) 11772 .add(condCodeOp()); 11773 11774 MI.eraseFromParent(); 11775 return MBB; 11776 } 11777 11778 MachineBasicBlock * 11779 ARMTargetLowering::EmitLowered__dbzchk(MachineInstr &MI, 11780 MachineBasicBlock *MBB) const { 11781 DebugLoc DL = MI.getDebugLoc(); 11782 MachineFunction *MF = MBB->getParent(); 11783 const TargetInstrInfo *TII = Subtarget->getInstrInfo(); 11784 11785 MachineBasicBlock *ContBB = MF->CreateMachineBasicBlock(); 11786 MF->insert(++MBB->getIterator(), ContBB); 11787 ContBB->splice(ContBB->begin(), MBB, 11788 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 11789 ContBB->transferSuccessorsAndUpdatePHIs(MBB); 11790 MBB->addSuccessor(ContBB); 11791 11792 MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock(); 11793 BuildMI(TrapBB, DL, TII->get(ARM::t__brkdiv0)); 11794 MF->push_back(TrapBB); 11795 MBB->addSuccessor(TrapBB); 11796 11797 BuildMI(*MBB, MI, DL, TII->get(ARM::tCMPi8)) 11798 .addReg(MI.getOperand(0).getReg()) 11799 .addImm(0) 11800 .add(predOps(ARMCC::AL)); 11801 BuildMI(*MBB, MI, DL, TII->get(ARM::t2Bcc)) 11802 .addMBB(TrapBB) 11803 .addImm(ARMCC::EQ) 11804 .addReg(ARM::CPSR); 11805 11806 MI.eraseFromParent(); 11807 return ContBB; 11808 } 11809 11810 // The CPSR operand of SelectItr might be missing a kill marker 11811 // because there were multiple uses of CPSR, and ISel didn't know 11812 // which to mark. Figure out whether SelectItr should have had a 11813 // kill marker, and set it if it should. Returns the correct kill 11814 // marker value. 11815 static bool checkAndUpdateCPSRKill(MachineBasicBlock::iterator SelectItr, 11816 MachineBasicBlock* BB, 11817 const TargetRegisterInfo* TRI) { 11818 // Scan forward through BB for a use/def of CPSR. 11819 MachineBasicBlock::iterator miI(std::next(SelectItr)); 11820 for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) { 11821 const MachineInstr& mi = *miI; 11822 if (mi.readsRegister(ARM::CPSR, /*TRI=*/nullptr)) 11823 return false; 11824 if (mi.definesRegister(ARM::CPSR, /*TRI=*/nullptr)) 11825 break; // Should have kill-flag - update below. 11826 } 11827 11828 // If we hit the end of the block, check whether CPSR is live into a 11829 // successor. 11830 if (miI == BB->end()) { 11831 for (MachineBasicBlock *Succ : BB->successors()) 11832 if (Succ->isLiveIn(ARM::CPSR)) 11833 return false; 11834 } 11835 11836 // We found a def, or hit the end of the basic block and CPSR wasn't live 11837 // out. SelectMI should have a kill flag on CPSR. 11838 SelectItr->addRegisterKilled(ARM::CPSR, TRI); 11839 return true; 11840 } 11841 11842 /// Adds logic in loop entry MBB to calculate loop iteration count and adds 11843 /// t2WhileLoopSetup and t2WhileLoopStart to generate WLS loop 11844 static Register genTPEntry(MachineBasicBlock *TpEntry, 11845 MachineBasicBlock *TpLoopBody, 11846 MachineBasicBlock *TpExit, Register OpSizeReg, 11847 const TargetInstrInfo *TII, DebugLoc Dl, 11848 MachineRegisterInfo &MRI) { 11849 // Calculates loop iteration count = ceil(n/16) = (n + 15) >> 4. 11850 Register AddDestReg = MRI.createVirtualRegister(&ARM::rGPRRegClass); 11851 BuildMI(TpEntry, Dl, TII->get(ARM::t2ADDri), AddDestReg) 11852 .addUse(OpSizeReg) 11853 .addImm(15) 11854 .add(predOps(ARMCC::AL)) 11855 .addReg(0); 11856 11857 Register LsrDestReg = MRI.createVirtualRegister(&ARM::rGPRRegClass); 11858 BuildMI(TpEntry, Dl, TII->get(ARM::t2LSRri), LsrDestReg) 11859 .addUse(AddDestReg, RegState::Kill) 11860 .addImm(4) 11861 .add(predOps(ARMCC::AL)) 11862 .addReg(0); 11863 11864 Register TotalIterationsReg = MRI.createVirtualRegister(&ARM::GPRlrRegClass); 11865 BuildMI(TpEntry, Dl, TII->get(ARM::t2WhileLoopSetup), TotalIterationsReg) 11866 .addUse(LsrDestReg, RegState::Kill); 11867 11868 BuildMI(TpEntry, Dl, TII->get(ARM::t2WhileLoopStart)) 11869 .addUse(TotalIterationsReg) 11870 .addMBB(TpExit); 11871 11872 BuildMI(TpEntry, Dl, TII->get(ARM::t2B)) 11873 .addMBB(TpLoopBody) 11874 .add(predOps(ARMCC::AL)); 11875 11876 return TotalIterationsReg; 11877 } 11878 11879 /// Adds logic in the loopBody MBB to generate MVE_VCTP, t2DoLoopDec and 11880 /// t2DoLoopEnd. These are used by later passes to generate tail predicated 11881 /// loops. 11882 static void genTPLoopBody(MachineBasicBlock *TpLoopBody, 11883 MachineBasicBlock *TpEntry, MachineBasicBlock *TpExit, 11884 const TargetInstrInfo *TII, DebugLoc Dl, 11885 MachineRegisterInfo &MRI, Register OpSrcReg, 11886 Register OpDestReg, Register ElementCountReg, 11887 Register TotalIterationsReg, bool IsMemcpy) { 11888 // First insert 4 PHI nodes for: Current pointer to Src (if memcpy), Dest 11889 // array, loop iteration counter, predication counter. 11890 11891 Register SrcPhiReg, CurrSrcReg; 11892 if (IsMemcpy) { 11893 // Current position in the src array 11894 SrcPhiReg = MRI.createVirtualRegister(&ARM::rGPRRegClass); 11895 CurrSrcReg = MRI.createVirtualRegister(&ARM::rGPRRegClass); 11896 BuildMI(TpLoopBody, Dl, TII->get(ARM::PHI), SrcPhiReg) 11897 .addUse(OpSrcReg) 11898 .addMBB(TpEntry) 11899 .addUse(CurrSrcReg) 11900 .addMBB(TpLoopBody); 11901 } 11902 11903 // Current position in the dest array 11904 Register DestPhiReg = MRI.createVirtualRegister(&ARM::rGPRRegClass); 11905 Register CurrDestReg = MRI.createVirtualRegister(&ARM::rGPRRegClass); 11906 BuildMI(TpLoopBody, Dl, TII->get(ARM::PHI), DestPhiReg) 11907 .addUse(OpDestReg) 11908 .addMBB(TpEntry) 11909 .addUse(CurrDestReg) 11910 .addMBB(TpLoopBody); 11911 11912 // Current loop counter 11913 Register LoopCounterPhiReg = MRI.createVirtualRegister(&ARM::GPRlrRegClass); 11914 Register RemainingLoopIterationsReg = 11915 MRI.createVirtualRegister(&ARM::GPRlrRegClass); 11916 BuildMI(TpLoopBody, Dl, TII->get(ARM::PHI), LoopCounterPhiReg) 11917 .addUse(TotalIterationsReg) 11918 .addMBB(TpEntry) 11919 .addUse(RemainingLoopIterationsReg) 11920 .addMBB(TpLoopBody); 11921 11922 // Predication counter 11923 Register PredCounterPhiReg = MRI.createVirtualRegister(&ARM::rGPRRegClass); 11924 Register RemainingElementsReg = MRI.createVirtualRegister(&ARM::rGPRRegClass); 11925 BuildMI(TpLoopBody, Dl, TII->get(ARM::PHI), PredCounterPhiReg) 11926 .addUse(ElementCountReg) 11927 .addMBB(TpEntry) 11928 .addUse(RemainingElementsReg) 11929 .addMBB(TpLoopBody); 11930 11931 // Pass predication counter to VCTP 11932 Register VccrReg = MRI.createVirtualRegister(&ARM::VCCRRegClass); 11933 BuildMI(TpLoopBody, Dl, TII->get(ARM::MVE_VCTP8), VccrReg) 11934 .addUse(PredCounterPhiReg) 11935 .addImm(ARMVCC::None) 11936 .addReg(0) 11937 .addReg(0); 11938 11939 BuildMI(TpLoopBody, Dl, TII->get(ARM::t2SUBri), RemainingElementsReg) 11940 .addUse(PredCounterPhiReg) 11941 .addImm(16) 11942 .add(predOps(ARMCC::AL)) 11943 .addReg(0); 11944 11945 // VLDRB (only if memcpy) and VSTRB instructions, predicated using VPR 11946 Register SrcValueReg; 11947 if (IsMemcpy) { 11948 SrcValueReg = MRI.createVirtualRegister(&ARM::MQPRRegClass); 11949 BuildMI(TpLoopBody, Dl, TII->get(ARM::MVE_VLDRBU8_post)) 11950 .addDef(CurrSrcReg) 11951 .addDef(SrcValueReg) 11952 .addReg(SrcPhiReg) 11953 .addImm(16) 11954 .addImm(ARMVCC::Then) 11955 .addUse(VccrReg) 11956 .addReg(0); 11957 } else 11958 SrcValueReg = OpSrcReg; 11959 11960 BuildMI(TpLoopBody, Dl, TII->get(ARM::MVE_VSTRBU8_post)) 11961 .addDef(CurrDestReg) 11962 .addUse(SrcValueReg) 11963 .addReg(DestPhiReg) 11964 .addImm(16) 11965 .addImm(ARMVCC::Then) 11966 .addUse(VccrReg) 11967 .addReg(0); 11968 11969 // Add the pseudoInstrs for decrementing the loop counter and marking the 11970 // end:t2DoLoopDec and t2DoLoopEnd 11971 BuildMI(TpLoopBody, Dl, TII->get(ARM::t2LoopDec), RemainingLoopIterationsReg) 11972 .addUse(LoopCounterPhiReg) 11973 .addImm(1); 11974 11975 BuildMI(TpLoopBody, Dl, TII->get(ARM::t2LoopEnd)) 11976 .addUse(RemainingLoopIterationsReg) 11977 .addMBB(TpLoopBody); 11978 11979 BuildMI(TpLoopBody, Dl, TII->get(ARM::t2B)) 11980 .addMBB(TpExit) 11981 .add(predOps(ARMCC::AL)); 11982 } 11983 11984 MachineBasicBlock * 11985 ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 11986 MachineBasicBlock *BB) const { 11987 const TargetInstrInfo *TII = Subtarget->getInstrInfo(); 11988 DebugLoc dl = MI.getDebugLoc(); 11989 bool isThumb2 = Subtarget->isThumb2(); 11990 switch (MI.getOpcode()) { 11991 default: { 11992 MI.print(errs()); 11993 llvm_unreachable("Unexpected instr type to insert"); 11994 } 11995 11996 // Thumb1 post-indexed loads are really just single-register LDMs. 11997 case ARM::tLDR_postidx: { 11998 MachineOperand Def(MI.getOperand(1)); 11999 BuildMI(*BB, MI, dl, TII->get(ARM::tLDMIA_UPD)) 12000 .add(Def) // Rn_wb 12001 .add(MI.getOperand(2)) // Rn 12002 .add(MI.getOperand(3)) // PredImm 12003 .add(MI.getOperand(4)) // PredReg 12004 .add(MI.getOperand(0)) // Rt 12005 .cloneMemRefs(MI); 12006 MI.eraseFromParent(); 12007 return BB; 12008 } 12009 12010 case ARM::MVE_MEMCPYLOOPINST: 12011 case ARM::MVE_MEMSETLOOPINST: { 12012 12013 // Transformation below expands MVE_MEMCPYLOOPINST/MVE_MEMSETLOOPINST Pseudo 12014 // into a Tail Predicated (TP) Loop. It adds the instructions to calculate 12015 // the iteration count =ceil(size_in_bytes/16)) in the TP entry block and 12016 // adds the relevant instructions in the TP loop Body for generation of a 12017 // WLSTP loop. 12018 12019 // Below is relevant portion of the CFG after the transformation. 12020 // The Machine Basic Blocks are shown along with branch conditions (in 12021 // brackets). Note that TP entry/exit MBBs depict the entry/exit of this 12022 // portion of the CFG and may not necessarily be the entry/exit of the 12023 // function. 12024 12025 // (Relevant) CFG after transformation: 12026 // TP entry MBB 12027 // | 12028 // |-----------------| 12029 // (n <= 0) (n > 0) 12030 // | | 12031 // | TP loop Body MBB<--| 12032 // | | | 12033 // \ |___________| 12034 // \ / 12035 // TP exit MBB 12036 12037 MachineFunction *MF = BB->getParent(); 12038 MachineFunctionProperties &Properties = MF->getProperties(); 12039 MachineRegisterInfo &MRI = MF->getRegInfo(); 12040 12041 Register OpDestReg = MI.getOperand(0).getReg(); 12042 Register OpSrcReg = MI.getOperand(1).getReg(); 12043 Register OpSizeReg = MI.getOperand(2).getReg(); 12044 12045 // Allocate the required MBBs and add to parent function. 12046 MachineBasicBlock *TpEntry = BB; 12047 MachineBasicBlock *TpLoopBody = MF->CreateMachineBasicBlock(); 12048 MachineBasicBlock *TpExit; 12049 12050 MF->push_back(TpLoopBody); 12051 12052 // If any instructions are present in the current block after 12053 // MVE_MEMCPYLOOPINST or MVE_MEMSETLOOPINST, split the current block and 12054 // move the instructions into the newly created exit block. If there are no 12055 // instructions add an explicit branch to the FallThrough block and then 12056 // split. 12057 // 12058 // The split is required for two reasons: 12059 // 1) A terminator(t2WhileLoopStart) will be placed at that site. 12060 // 2) Since a TPLoopBody will be added later, any phis in successive blocks 12061 // need to be updated. splitAt() already handles this. 12062 TpExit = BB->splitAt(MI, false); 12063 if (TpExit == BB) { 12064 assert(BB->canFallThrough() && "Exit Block must be Fallthrough of the " 12065 "block containing memcpy/memset Pseudo"); 12066 TpExit = BB->getFallThrough(); 12067 BuildMI(BB, dl, TII->get(ARM::t2B)) 12068 .addMBB(TpExit) 12069 .add(predOps(ARMCC::AL)); 12070 TpExit = BB->splitAt(MI, false); 12071 } 12072 12073 // Add logic for iteration count 12074 Register TotalIterationsReg = 12075 genTPEntry(TpEntry, TpLoopBody, TpExit, OpSizeReg, TII, dl, MRI); 12076 12077 // Add the vectorized (and predicated) loads/store instructions 12078 bool IsMemcpy = MI.getOpcode() == ARM::MVE_MEMCPYLOOPINST; 12079 genTPLoopBody(TpLoopBody, TpEntry, TpExit, TII, dl, MRI, OpSrcReg, 12080 OpDestReg, OpSizeReg, TotalIterationsReg, IsMemcpy); 12081 12082 // Required to avoid conflict with the MachineVerifier during testing. 12083 Properties.reset(MachineFunctionProperties::Property::NoPHIs); 12084 12085 // Connect the blocks 12086 TpEntry->addSuccessor(TpLoopBody); 12087 TpLoopBody->addSuccessor(TpLoopBody); 12088 TpLoopBody->addSuccessor(TpExit); 12089 12090 // Reorder for a more natural layout 12091 TpLoopBody->moveAfter(TpEntry); 12092 TpExit->moveAfter(TpLoopBody); 12093 12094 // Finally, remove the memcpy Pseudo Instruction 12095 MI.eraseFromParent(); 12096 12097 // Return the exit block as it may contain other instructions requiring a 12098 // custom inserter 12099 return TpExit; 12100 } 12101 12102 // The Thumb2 pre-indexed stores have the same MI operands, they just 12103 // define them differently in the .td files from the isel patterns, so 12104 // they need pseudos. 12105 case ARM::t2STR_preidx: 12106 MI.setDesc(TII->get(ARM::t2STR_PRE)); 12107 return BB; 12108 case ARM::t2STRB_preidx: 12109 MI.setDesc(TII->get(ARM::t2STRB_PRE)); 12110 return BB; 12111 case ARM::t2STRH_preidx: 12112 MI.setDesc(TII->get(ARM::t2STRH_PRE)); 12113 return BB; 12114 12115 case ARM::STRi_preidx: 12116 case ARM::STRBi_preidx: { 12117 unsigned NewOpc = MI.getOpcode() == ARM::STRi_preidx ? ARM::STR_PRE_IMM 12118 : ARM::STRB_PRE_IMM; 12119 // Decode the offset. 12120 unsigned Offset = MI.getOperand(4).getImm(); 12121 bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub; 12122 Offset = ARM_AM::getAM2Offset(Offset); 12123 if (isSub) 12124 Offset = -Offset; 12125 12126 MachineMemOperand *MMO = *MI.memoperands_begin(); 12127 BuildMI(*BB, MI, dl, TII->get(NewOpc)) 12128 .add(MI.getOperand(0)) // Rn_wb 12129 .add(MI.getOperand(1)) // Rt 12130 .add(MI.getOperand(2)) // Rn 12131 .addImm(Offset) // offset (skip GPR==zero_reg) 12132 .add(MI.getOperand(5)) // pred 12133 .add(MI.getOperand(6)) 12134 .addMemOperand(MMO); 12135 MI.eraseFromParent(); 12136 return BB; 12137 } 12138 case ARM::STRr_preidx: 12139 case ARM::STRBr_preidx: 12140 case ARM::STRH_preidx: { 12141 unsigned NewOpc; 12142 switch (MI.getOpcode()) { 12143 default: llvm_unreachable("unexpected opcode!"); 12144 case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break; 12145 case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break; 12146 case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break; 12147 } 12148 MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc)); 12149 for (const MachineOperand &MO : MI.operands()) 12150 MIB.add(MO); 12151 MI.eraseFromParent(); 12152 return BB; 12153 } 12154 12155 case ARM::tMOVCCr_pseudo: { 12156 // To "insert" a SELECT_CC instruction, we actually have to insert the 12157 // diamond control-flow pattern. The incoming instruction knows the 12158 // destination vreg to set, the condition code register to branch on, the 12159 // true/false values to select between, and a branch opcode to use. 12160 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 12161 MachineFunction::iterator It = ++BB->getIterator(); 12162 12163 // thisMBB: 12164 // ... 12165 // TrueVal = ... 12166 // cmpTY ccX, r1, r2 12167 // bCC copy1MBB 12168 // fallthrough --> copy0MBB 12169 MachineBasicBlock *thisMBB = BB; 12170 MachineFunction *F = BB->getParent(); 12171 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 12172 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 12173 F->insert(It, copy0MBB); 12174 F->insert(It, sinkMBB); 12175 12176 // Set the call frame size on entry to the new basic blocks. 12177 unsigned CallFrameSize = TII->getCallFrameSizeAt(MI); 12178 copy0MBB->setCallFrameSize(CallFrameSize); 12179 sinkMBB->setCallFrameSize(CallFrameSize); 12180 12181 // Check whether CPSR is live past the tMOVCCr_pseudo. 12182 const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo(); 12183 if (!MI.killsRegister(ARM::CPSR, /*TRI=*/nullptr) && 12184 !checkAndUpdateCPSRKill(MI, thisMBB, TRI)) { 12185 copy0MBB->addLiveIn(ARM::CPSR); 12186 sinkMBB->addLiveIn(ARM::CPSR); 12187 } 12188 12189 // Transfer the remainder of BB and its successor edges to sinkMBB. 12190 sinkMBB->splice(sinkMBB->begin(), BB, 12191 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12192 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 12193 12194 BB->addSuccessor(copy0MBB); 12195 BB->addSuccessor(sinkMBB); 12196 12197 BuildMI(BB, dl, TII->get(ARM::tBcc)) 12198 .addMBB(sinkMBB) 12199 .addImm(MI.getOperand(3).getImm()) 12200 .addReg(MI.getOperand(4).getReg()); 12201 12202 // copy0MBB: 12203 // %FalseValue = ... 12204 // # fallthrough to sinkMBB 12205 BB = copy0MBB; 12206 12207 // Update machine-CFG edges 12208 BB->addSuccessor(sinkMBB); 12209 12210 // sinkMBB: 12211 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 12212 // ... 12213 BB = sinkMBB; 12214 BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), MI.getOperand(0).getReg()) 12215 .addReg(MI.getOperand(1).getReg()) 12216 .addMBB(copy0MBB) 12217 .addReg(MI.getOperand(2).getReg()) 12218 .addMBB(thisMBB); 12219 12220 MI.eraseFromParent(); // The pseudo instruction is gone now. 12221 return BB; 12222 } 12223 12224 case ARM::BCCi64: 12225 case ARM::BCCZi64: { 12226 // If there is an unconditional branch to the other successor, remove it. 12227 BB->erase(std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12228 12229 // Compare both parts that make up the double comparison separately for 12230 // equality. 12231 bool RHSisZero = MI.getOpcode() == ARM::BCCZi64; 12232 12233 Register LHS1 = MI.getOperand(1).getReg(); 12234 Register LHS2 = MI.getOperand(2).getReg(); 12235 if (RHSisZero) { 12236 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri)) 12237 .addReg(LHS1) 12238 .addImm(0) 12239 .add(predOps(ARMCC::AL)); 12240 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri)) 12241 .addReg(LHS2).addImm(0) 12242 .addImm(ARMCC::EQ).addReg(ARM::CPSR); 12243 } else { 12244 Register RHS1 = MI.getOperand(3).getReg(); 12245 Register RHS2 = MI.getOperand(4).getReg(); 12246 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr)) 12247 .addReg(LHS1) 12248 .addReg(RHS1) 12249 .add(predOps(ARMCC::AL)); 12250 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr)) 12251 .addReg(LHS2).addReg(RHS2) 12252 .addImm(ARMCC::EQ).addReg(ARM::CPSR); 12253 } 12254 12255 MachineBasicBlock *destMBB = MI.getOperand(RHSisZero ? 3 : 5).getMBB(); 12256 MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB); 12257 if (MI.getOperand(0).getImm() == ARMCC::NE) 12258 std::swap(destMBB, exitMBB); 12259 12260 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)) 12261 .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR); 12262 if (isThumb2) 12263 BuildMI(BB, dl, TII->get(ARM::t2B)) 12264 .addMBB(exitMBB) 12265 .add(predOps(ARMCC::AL)); 12266 else 12267 BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB); 12268 12269 MI.eraseFromParent(); // The pseudo instruction is gone now. 12270 return BB; 12271 } 12272 12273 case ARM::Int_eh_sjlj_setjmp: 12274 case ARM::Int_eh_sjlj_setjmp_nofp: 12275 case ARM::tInt_eh_sjlj_setjmp: 12276 case ARM::t2Int_eh_sjlj_setjmp: 12277 case ARM::t2Int_eh_sjlj_setjmp_nofp: 12278 return BB; 12279 12280 case ARM::Int_eh_sjlj_setup_dispatch: 12281 EmitSjLjDispatchBlock(MI, BB); 12282 return BB; 12283 12284 case ARM::ABS: 12285 case ARM::t2ABS: { 12286 // To insert an ABS instruction, we have to insert the 12287 // diamond control-flow pattern. The incoming instruction knows the 12288 // source vreg to test against 0, the destination vreg to set, 12289 // the condition code register to branch on, the 12290 // true/false values to select between, and a branch opcode to use. 12291 // It transforms 12292 // V1 = ABS V0 12293 // into 12294 // V2 = MOVS V0 12295 // BCC (branch to SinkBB if V0 >= 0) 12296 // RSBBB: V3 = RSBri V2, 0 (compute ABS if V2 < 0) 12297 // SinkBB: V1 = PHI(V2, V3) 12298 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 12299 MachineFunction::iterator BBI = ++BB->getIterator(); 12300 MachineFunction *Fn = BB->getParent(); 12301 MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB); 12302 MachineBasicBlock *SinkBB = Fn->CreateMachineBasicBlock(LLVM_BB); 12303 Fn->insert(BBI, RSBBB); 12304 Fn->insert(BBI, SinkBB); 12305 12306 Register ABSSrcReg = MI.getOperand(1).getReg(); 12307 Register ABSDstReg = MI.getOperand(0).getReg(); 12308 bool ABSSrcKIll = MI.getOperand(1).isKill(); 12309 bool isThumb2 = Subtarget->isThumb2(); 12310 MachineRegisterInfo &MRI = Fn->getRegInfo(); 12311 // In Thumb mode S must not be specified if source register is the SP or 12312 // PC and if destination register is the SP, so restrict register class 12313 Register NewRsbDstReg = MRI.createVirtualRegister( 12314 isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass); 12315 12316 // Transfer the remainder of BB and its successor edges to sinkMBB. 12317 SinkBB->splice(SinkBB->begin(), BB, 12318 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12319 SinkBB->transferSuccessorsAndUpdatePHIs(BB); 12320 12321 BB->addSuccessor(RSBBB); 12322 BB->addSuccessor(SinkBB); 12323 12324 // fall through to SinkMBB 12325 RSBBB->addSuccessor(SinkBB); 12326 12327 // insert a cmp at the end of BB 12328 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri)) 12329 .addReg(ABSSrcReg) 12330 .addImm(0) 12331 .add(predOps(ARMCC::AL)); 12332 12333 // insert a bcc with opposite CC to ARMCC::MI at the end of BB 12334 BuildMI(BB, dl, 12335 TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB) 12336 .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR); 12337 12338 // insert rsbri in RSBBB 12339 // Note: BCC and rsbri will be converted into predicated rsbmi 12340 // by if-conversion pass 12341 BuildMI(*RSBBB, RSBBB->begin(), dl, 12342 TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg) 12343 .addReg(ABSSrcReg, ABSSrcKIll ? RegState::Kill : 0) 12344 .addImm(0) 12345 .add(predOps(ARMCC::AL)) 12346 .add(condCodeOp()); 12347 12348 // insert PHI in SinkBB, 12349 // reuse ABSDstReg to not change uses of ABS instruction 12350 BuildMI(*SinkBB, SinkBB->begin(), dl, 12351 TII->get(ARM::PHI), ABSDstReg) 12352 .addReg(NewRsbDstReg).addMBB(RSBBB) 12353 .addReg(ABSSrcReg).addMBB(BB); 12354 12355 // remove ABS instruction 12356 MI.eraseFromParent(); 12357 12358 // return last added BB 12359 return SinkBB; 12360 } 12361 case ARM::COPY_STRUCT_BYVAL_I32: 12362 ++NumLoopByVals; 12363 return EmitStructByval(MI, BB); 12364 case ARM::WIN__CHKSTK: 12365 return EmitLowered__chkstk(MI, BB); 12366 case ARM::WIN__DBZCHK: 12367 return EmitLowered__dbzchk(MI, BB); 12368 } 12369 } 12370 12371 /// Attaches vregs to MEMCPY that it will use as scratch registers 12372 /// when it is expanded into LDM/STM. This is done as a post-isel lowering 12373 /// instead of as a custom inserter because we need the use list from the SDNode. 12374 static void attachMEMCPYScratchRegs(const ARMSubtarget *Subtarget, 12375 MachineInstr &MI, const SDNode *Node) { 12376 bool isThumb1 = Subtarget->isThumb1Only(); 12377 12378 DebugLoc DL = MI.getDebugLoc(); 12379 MachineFunction *MF = MI.getParent()->getParent(); 12380 MachineRegisterInfo &MRI = MF->getRegInfo(); 12381 MachineInstrBuilder MIB(*MF, MI); 12382 12383 // If the new dst/src is unused mark it as dead. 12384 if (!Node->hasAnyUseOfValue(0)) { 12385 MI.getOperand(0).setIsDead(true); 12386 } 12387 if (!Node->hasAnyUseOfValue(1)) { 12388 MI.getOperand(1).setIsDead(true); 12389 } 12390 12391 // The MEMCPY both defines and kills the scratch registers. 12392 for (unsigned I = 0; I != MI.getOperand(4).getImm(); ++I) { 12393 Register TmpReg = MRI.createVirtualRegister(isThumb1 ? &ARM::tGPRRegClass 12394 : &ARM::GPRRegClass); 12395 MIB.addReg(TmpReg, RegState::Define|RegState::Dead); 12396 } 12397 } 12398 12399 void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, 12400 SDNode *Node) const { 12401 if (MI.getOpcode() == ARM::MEMCPY) { 12402 attachMEMCPYScratchRegs(Subtarget, MI, Node); 12403 return; 12404 } 12405 12406 const MCInstrDesc *MCID = &MI.getDesc(); 12407 // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB, 12408 // RSC. Coming out of isel, they have an implicit CPSR def, but the optional 12409 // operand is still set to noreg. If needed, set the optional operand's 12410 // register to CPSR, and remove the redundant implicit def. 12411 // 12412 // e.g. ADCS (..., implicit-def CPSR) -> ADC (... opt:def CPSR). 12413 12414 // Rename pseudo opcodes. 12415 unsigned NewOpc = convertAddSubFlagsOpcode(MI.getOpcode()); 12416 unsigned ccOutIdx; 12417 if (NewOpc) { 12418 const ARMBaseInstrInfo *TII = Subtarget->getInstrInfo(); 12419 MCID = &TII->get(NewOpc); 12420 12421 assert(MCID->getNumOperands() == 12422 MI.getDesc().getNumOperands() + 5 - MI.getDesc().getSize() 12423 && "converted opcode should be the same except for cc_out" 12424 " (and, on Thumb1, pred)"); 12425 12426 MI.setDesc(*MCID); 12427 12428 // Add the optional cc_out operand 12429 MI.addOperand(MachineOperand::CreateReg(0, /*isDef=*/true)); 12430 12431 // On Thumb1, move all input operands to the end, then add the predicate 12432 if (Subtarget->isThumb1Only()) { 12433 for (unsigned c = MCID->getNumOperands() - 4; c--;) { 12434 MI.addOperand(MI.getOperand(1)); 12435 MI.removeOperand(1); 12436 } 12437 12438 // Restore the ties 12439 for (unsigned i = MI.getNumOperands(); i--;) { 12440 const MachineOperand& op = MI.getOperand(i); 12441 if (op.isReg() && op.isUse()) { 12442 int DefIdx = MCID->getOperandConstraint(i, MCOI::TIED_TO); 12443 if (DefIdx != -1) 12444 MI.tieOperands(DefIdx, i); 12445 } 12446 } 12447 12448 MI.addOperand(MachineOperand::CreateImm(ARMCC::AL)); 12449 MI.addOperand(MachineOperand::CreateReg(0, /*isDef=*/false)); 12450 ccOutIdx = 1; 12451 } else 12452 ccOutIdx = MCID->getNumOperands() - 1; 12453 } else 12454 ccOutIdx = MCID->getNumOperands() - 1; 12455 12456 // Any ARM instruction that sets the 's' bit should specify an optional 12457 // "cc_out" operand in the last operand position. 12458 if (!MI.hasOptionalDef() || !MCID->operands()[ccOutIdx].isOptionalDef()) { 12459 assert(!NewOpc && "Optional cc_out operand required"); 12460 return; 12461 } 12462 // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it 12463 // since we already have an optional CPSR def. 12464 bool definesCPSR = false; 12465 bool deadCPSR = false; 12466 for (unsigned i = MCID->getNumOperands(), e = MI.getNumOperands(); i != e; 12467 ++i) { 12468 const MachineOperand &MO = MI.getOperand(i); 12469 if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) { 12470 definesCPSR = true; 12471 if (MO.isDead()) 12472 deadCPSR = true; 12473 MI.removeOperand(i); 12474 break; 12475 } 12476 } 12477 if (!definesCPSR) { 12478 assert(!NewOpc && "Optional cc_out operand required"); 12479 return; 12480 } 12481 assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag"); 12482 if (deadCPSR) { 12483 assert(!MI.getOperand(ccOutIdx).getReg() && 12484 "expect uninitialized optional cc_out operand"); 12485 // Thumb1 instructions must have the S bit even if the CPSR is dead. 12486 if (!Subtarget->isThumb1Only()) 12487 return; 12488 } 12489 12490 // If this instruction was defined with an optional CPSR def and its dag node 12491 // had a live implicit CPSR def, then activate the optional CPSR def. 12492 MachineOperand &MO = MI.getOperand(ccOutIdx); 12493 MO.setReg(ARM::CPSR); 12494 MO.setIsDef(true); 12495 } 12496 12497 //===----------------------------------------------------------------------===// 12498 // ARM Optimization Hooks 12499 //===----------------------------------------------------------------------===// 12500 12501 // Helper function that checks if N is a null or all ones constant. 12502 static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) { 12503 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); 12504 } 12505 12506 // Return true if N is conditionally 0 or all ones. 12507 // Detects these expressions where cc is an i1 value: 12508 // 12509 // (select cc 0, y) [AllOnes=0] 12510 // (select cc y, 0) [AllOnes=0] 12511 // (zext cc) [AllOnes=0] 12512 // (sext cc) [AllOnes=0/1] 12513 // (select cc -1, y) [AllOnes=1] 12514 // (select cc y, -1) [AllOnes=1] 12515 // 12516 // Invert is set when N is the null/all ones constant when CC is false. 12517 // OtherOp is set to the alternative value of N. 12518 static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes, 12519 SDValue &CC, bool &Invert, 12520 SDValue &OtherOp, 12521 SelectionDAG &DAG) { 12522 switch (N->getOpcode()) { 12523 default: return false; 12524 case ISD::SELECT: { 12525 CC = N->getOperand(0); 12526 SDValue N1 = N->getOperand(1); 12527 SDValue N2 = N->getOperand(2); 12528 if (isZeroOrAllOnes(N1, AllOnes)) { 12529 Invert = false; 12530 OtherOp = N2; 12531 return true; 12532 } 12533 if (isZeroOrAllOnes(N2, AllOnes)) { 12534 Invert = true; 12535 OtherOp = N1; 12536 return true; 12537 } 12538 return false; 12539 } 12540 case ISD::ZERO_EXTEND: 12541 // (zext cc) can never be the all ones value. 12542 if (AllOnes) 12543 return false; 12544 [[fallthrough]]; 12545 case ISD::SIGN_EXTEND: { 12546 SDLoc dl(N); 12547 EVT VT = N->getValueType(0); 12548 CC = N->getOperand(0); 12549 if (CC.getValueType() != MVT::i1 || CC.getOpcode() != ISD::SETCC) 12550 return false; 12551 Invert = !AllOnes; 12552 if (AllOnes) 12553 // When looking for an AllOnes constant, N is an sext, and the 'other' 12554 // value is 0. 12555 OtherOp = DAG.getConstant(0, dl, VT); 12556 else if (N->getOpcode() == ISD::ZERO_EXTEND) 12557 // When looking for a 0 constant, N can be zext or sext. 12558 OtherOp = DAG.getConstant(1, dl, VT); 12559 else 12560 OtherOp = DAG.getAllOnesConstant(dl, VT); 12561 return true; 12562 } 12563 } 12564 } 12565 12566 // Combine a constant select operand into its use: 12567 // 12568 // (add (select cc, 0, c), x) -> (select cc, x, (add, x, c)) 12569 // (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c)) 12570 // (and (select cc, -1, c), x) -> (select cc, x, (and, x, c)) [AllOnes=1] 12571 // (or (select cc, 0, c), x) -> (select cc, x, (or, x, c)) 12572 // (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c)) 12573 // 12574 // The transform is rejected if the select doesn't have a constant operand that 12575 // is null, or all ones when AllOnes is set. 12576 // 12577 // Also recognize sext/zext from i1: 12578 // 12579 // (add (zext cc), x) -> (select cc (add x, 1), x) 12580 // (add (sext cc), x) -> (select cc (add x, -1), x) 12581 // 12582 // These transformations eventually create predicated instructions. 12583 // 12584 // @param N The node to transform. 12585 // @param Slct The N operand that is a select. 12586 // @param OtherOp The other N operand (x above). 12587 // @param DCI Context. 12588 // @param AllOnes Require the select constant to be all ones instead of null. 12589 // @returns The new node, or SDValue() on failure. 12590 static 12591 SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, 12592 TargetLowering::DAGCombinerInfo &DCI, 12593 bool AllOnes = false) { 12594 SelectionDAG &DAG = DCI.DAG; 12595 EVT VT = N->getValueType(0); 12596 SDValue NonConstantVal; 12597 SDValue CCOp; 12598 bool SwapSelectOps; 12599 if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps, 12600 NonConstantVal, DAG)) 12601 return SDValue(); 12602 12603 // Slct is now know to be the desired identity constant when CC is true. 12604 SDValue TrueVal = OtherOp; 12605 SDValue FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, 12606 OtherOp, NonConstantVal); 12607 // Unless SwapSelectOps says CC should be false. 12608 if (SwapSelectOps) 12609 std::swap(TrueVal, FalseVal); 12610 12611 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, 12612 CCOp, TrueVal, FalseVal); 12613 } 12614 12615 // Attempt combineSelectAndUse on each operand of a commutative operator N. 12616 static 12617 SDValue combineSelectAndUseCommutative(SDNode *N, bool AllOnes, 12618 TargetLowering::DAGCombinerInfo &DCI) { 12619 SDValue N0 = N->getOperand(0); 12620 SDValue N1 = N->getOperand(1); 12621 if (N0.getNode()->hasOneUse()) 12622 if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes)) 12623 return Result; 12624 if (N1.getNode()->hasOneUse()) 12625 if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes)) 12626 return Result; 12627 return SDValue(); 12628 } 12629 12630 static bool IsVUZPShuffleNode(SDNode *N) { 12631 // VUZP shuffle node. 12632 if (N->getOpcode() == ARMISD::VUZP) 12633 return true; 12634 12635 // "VUZP" on i32 is an alias for VTRN. 12636 if (N->getOpcode() == ARMISD::VTRN && N->getValueType(0) == MVT::v2i32) 12637 return true; 12638 12639 return false; 12640 } 12641 12642 static SDValue AddCombineToVPADD(SDNode *N, SDValue N0, SDValue N1, 12643 TargetLowering::DAGCombinerInfo &DCI, 12644 const ARMSubtarget *Subtarget) { 12645 // Look for ADD(VUZP.0, VUZP.1). 12646 if (!IsVUZPShuffleNode(N0.getNode()) || N0.getNode() != N1.getNode() || 12647 N0 == N1) 12648 return SDValue(); 12649 12650 // Make sure the ADD is a 64-bit add; there is no 128-bit VPADD. 12651 if (!N->getValueType(0).is64BitVector()) 12652 return SDValue(); 12653 12654 // Generate vpadd. 12655 SelectionDAG &DAG = DCI.DAG; 12656 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12657 SDLoc dl(N); 12658 SDNode *Unzip = N0.getNode(); 12659 EVT VT = N->getValueType(0); 12660 12661 SmallVector<SDValue, 8> Ops; 12662 Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpadd, dl, 12663 TLI.getPointerTy(DAG.getDataLayout()))); 12664 Ops.push_back(Unzip->getOperand(0)); 12665 Ops.push_back(Unzip->getOperand(1)); 12666 12667 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, Ops); 12668 } 12669 12670 static SDValue AddCombineVUZPToVPADDL(SDNode *N, SDValue N0, SDValue N1, 12671 TargetLowering::DAGCombinerInfo &DCI, 12672 const ARMSubtarget *Subtarget) { 12673 // Check for two extended operands. 12674 if (!(N0.getOpcode() == ISD::SIGN_EXTEND && 12675 N1.getOpcode() == ISD::SIGN_EXTEND) && 12676 !(N0.getOpcode() == ISD::ZERO_EXTEND && 12677 N1.getOpcode() == ISD::ZERO_EXTEND)) 12678 return SDValue(); 12679 12680 SDValue N00 = N0.getOperand(0); 12681 SDValue N10 = N1.getOperand(0); 12682 12683 // Look for ADD(SEXT(VUZP.0), SEXT(VUZP.1)) 12684 if (!IsVUZPShuffleNode(N00.getNode()) || N00.getNode() != N10.getNode() || 12685 N00 == N10) 12686 return SDValue(); 12687 12688 // We only recognize Q register paddl here; this can't be reached until 12689 // after type legalization. 12690 if (!N00.getValueType().is64BitVector() || 12691 !N0.getValueType().is128BitVector()) 12692 return SDValue(); 12693 12694 // Generate vpaddl. 12695 SelectionDAG &DAG = DCI.DAG; 12696 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12697 SDLoc dl(N); 12698 EVT VT = N->getValueType(0); 12699 12700 SmallVector<SDValue, 8> Ops; 12701 // Form vpaddl.sN or vpaddl.uN depending on the kind of extension. 12702 unsigned Opcode; 12703 if (N0.getOpcode() == ISD::SIGN_EXTEND) 12704 Opcode = Intrinsic::arm_neon_vpaddls; 12705 else 12706 Opcode = Intrinsic::arm_neon_vpaddlu; 12707 Ops.push_back(DAG.getConstant(Opcode, dl, 12708 TLI.getPointerTy(DAG.getDataLayout()))); 12709 EVT ElemTy = N00.getValueType().getVectorElementType(); 12710 unsigned NumElts = VT.getVectorNumElements(); 12711 EVT ConcatVT = EVT::getVectorVT(*DAG.getContext(), ElemTy, NumElts * 2); 12712 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), ConcatVT, 12713 N00.getOperand(0), N00.getOperand(1)); 12714 Ops.push_back(Concat); 12715 12716 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, Ops); 12717 } 12718 12719 // FIXME: This function shouldn't be necessary; if we lower BUILD_VECTOR in 12720 // an appropriate manner, we end up with ADD(VUZP(ZEXT(N))), which is 12721 // much easier to match. 12722 static SDValue 12723 AddCombineBUILD_VECTORToVPADDL(SDNode *N, SDValue N0, SDValue N1, 12724 TargetLowering::DAGCombinerInfo &DCI, 12725 const ARMSubtarget *Subtarget) { 12726 // Only perform optimization if after legalize, and if NEON is available. We 12727 // also expected both operands to be BUILD_VECTORs. 12728 if (DCI.isBeforeLegalize() || !Subtarget->hasNEON() 12729 || N0.getOpcode() != ISD::BUILD_VECTOR 12730 || N1.getOpcode() != ISD::BUILD_VECTOR) 12731 return SDValue(); 12732 12733 // Check output type since VPADDL operand elements can only be 8, 16, or 32. 12734 EVT VT = N->getValueType(0); 12735 if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64) 12736 return SDValue(); 12737 12738 // Check that the vector operands are of the right form. 12739 // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR 12740 // operands, where N is the size of the formed vector. 12741 // Each EXTRACT_VECTOR should have the same input vector and odd or even 12742 // index such that we have a pair wise add pattern. 12743 12744 // Grab the vector that all EXTRACT_VECTOR nodes should be referencing. 12745 if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 12746 return SDValue(); 12747 SDValue Vec = N0->getOperand(0)->getOperand(0); 12748 SDNode *V = Vec.getNode(); 12749 unsigned nextIndex = 0; 12750 12751 // For each operands to the ADD which are BUILD_VECTORs, 12752 // check to see if each of their operands are an EXTRACT_VECTOR with 12753 // the same vector and appropriate index. 12754 for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) { 12755 if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT 12756 && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 12757 12758 SDValue ExtVec0 = N0->getOperand(i); 12759 SDValue ExtVec1 = N1->getOperand(i); 12760 12761 // First operand is the vector, verify its the same. 12762 if (V != ExtVec0->getOperand(0).getNode() || 12763 V != ExtVec1->getOperand(0).getNode()) 12764 return SDValue(); 12765 12766 // Second is the constant, verify its correct. 12767 ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1)); 12768 ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1)); 12769 12770 // For the constant, we want to see all the even or all the odd. 12771 if (!C0 || !C1 || C0->getZExtValue() != nextIndex 12772 || C1->getZExtValue() != nextIndex+1) 12773 return SDValue(); 12774 12775 // Increment index. 12776 nextIndex+=2; 12777 } else 12778 return SDValue(); 12779 } 12780 12781 // Don't generate vpaddl+vmovn; we'll match it to vpadd later. Also make sure 12782 // we're using the entire input vector, otherwise there's a size/legality 12783 // mismatch somewhere. 12784 if (nextIndex != Vec.getValueType().getVectorNumElements() || 12785 Vec.getValueType().getVectorElementType() == VT.getVectorElementType()) 12786 return SDValue(); 12787 12788 // Create VPADDL node. 12789 SelectionDAG &DAG = DCI.DAG; 12790 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12791 12792 SDLoc dl(N); 12793 12794 // Build operand list. 12795 SmallVector<SDValue, 8> Ops; 12796 Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls, dl, 12797 TLI.getPointerTy(DAG.getDataLayout()))); 12798 12799 // Input is the vector. 12800 Ops.push_back(Vec); 12801 12802 // Get widened type and narrowed type. 12803 MVT widenType; 12804 unsigned numElem = VT.getVectorNumElements(); 12805 12806 EVT inputLaneType = Vec.getValueType().getVectorElementType(); 12807 switch (inputLaneType.getSimpleVT().SimpleTy) { 12808 case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break; 12809 case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break; 12810 case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break; 12811 default: 12812 llvm_unreachable("Invalid vector element type for padd optimization."); 12813 } 12814 12815 SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, widenType, Ops); 12816 unsigned ExtOp = VT.bitsGT(tmp.getValueType()) ? ISD::ANY_EXTEND : ISD::TRUNCATE; 12817 return DAG.getNode(ExtOp, dl, VT, tmp); 12818 } 12819 12820 static SDValue findMUL_LOHI(SDValue V) { 12821 if (V->getOpcode() == ISD::UMUL_LOHI || 12822 V->getOpcode() == ISD::SMUL_LOHI) 12823 return V; 12824 return SDValue(); 12825 } 12826 12827 static SDValue AddCombineTo64BitSMLAL16(SDNode *AddcNode, SDNode *AddeNode, 12828 TargetLowering::DAGCombinerInfo &DCI, 12829 const ARMSubtarget *Subtarget) { 12830 if (!Subtarget->hasBaseDSP()) 12831 return SDValue(); 12832 12833 // SMLALBB, SMLALBT, SMLALTB, SMLALTT multiply two 16-bit values and 12834 // accumulates the product into a 64-bit value. The 16-bit values will 12835 // be sign extended somehow or SRA'd into 32-bit values 12836 // (addc (adde (mul 16bit, 16bit), lo), hi) 12837 SDValue Mul = AddcNode->getOperand(0); 12838 SDValue Lo = AddcNode->getOperand(1); 12839 if (Mul.getOpcode() != ISD::MUL) { 12840 Lo = AddcNode->getOperand(0); 12841 Mul = AddcNode->getOperand(1); 12842 if (Mul.getOpcode() != ISD::MUL) 12843 return SDValue(); 12844 } 12845 12846 SDValue SRA = AddeNode->getOperand(0); 12847 SDValue Hi = AddeNode->getOperand(1); 12848 if (SRA.getOpcode() != ISD::SRA) { 12849 SRA = AddeNode->getOperand(1); 12850 Hi = AddeNode->getOperand(0); 12851 if (SRA.getOpcode() != ISD::SRA) 12852 return SDValue(); 12853 } 12854 if (auto Const = dyn_cast<ConstantSDNode>(SRA.getOperand(1))) { 12855 if (Const->getZExtValue() != 31) 12856 return SDValue(); 12857 } else 12858 return SDValue(); 12859 12860 if (SRA.getOperand(0) != Mul) 12861 return SDValue(); 12862 12863 SelectionDAG &DAG = DCI.DAG; 12864 SDLoc dl(AddcNode); 12865 unsigned Opcode = 0; 12866 SDValue Op0; 12867 SDValue Op1; 12868 12869 if (isS16(Mul.getOperand(0), DAG) && isS16(Mul.getOperand(1), DAG)) { 12870 Opcode = ARMISD::SMLALBB; 12871 Op0 = Mul.getOperand(0); 12872 Op1 = Mul.getOperand(1); 12873 } else if (isS16(Mul.getOperand(0), DAG) && isSRA16(Mul.getOperand(1))) { 12874 Opcode = ARMISD::SMLALBT; 12875 Op0 = Mul.getOperand(0); 12876 Op1 = Mul.getOperand(1).getOperand(0); 12877 } else if (isSRA16(Mul.getOperand(0)) && isS16(Mul.getOperand(1), DAG)) { 12878 Opcode = ARMISD::SMLALTB; 12879 Op0 = Mul.getOperand(0).getOperand(0); 12880 Op1 = Mul.getOperand(1); 12881 } else if (isSRA16(Mul.getOperand(0)) && isSRA16(Mul.getOperand(1))) { 12882 Opcode = ARMISD::SMLALTT; 12883 Op0 = Mul->getOperand(0).getOperand(0); 12884 Op1 = Mul->getOperand(1).getOperand(0); 12885 } 12886 12887 if (!Op0 || !Op1) 12888 return SDValue(); 12889 12890 SDValue SMLAL = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32), 12891 Op0, Op1, Lo, Hi); 12892 // Replace the ADDs' nodes uses by the MLA node's values. 12893 SDValue HiMLALResult(SMLAL.getNode(), 1); 12894 SDValue LoMLALResult(SMLAL.getNode(), 0); 12895 12896 DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), LoMLALResult); 12897 DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), HiMLALResult); 12898 12899 // Return original node to notify the driver to stop replacing. 12900 SDValue resNode(AddcNode, 0); 12901 return resNode; 12902 } 12903 12904 static SDValue AddCombineTo64bitMLAL(SDNode *AddeSubeNode, 12905 TargetLowering::DAGCombinerInfo &DCI, 12906 const ARMSubtarget *Subtarget) { 12907 // Look for multiply add opportunities. 12908 // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where 12909 // each add nodes consumes a value from ISD::UMUL_LOHI and there is 12910 // a glue link from the first add to the second add. 12911 // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by 12912 // a S/UMLAL instruction. 12913 // UMUL_LOHI 12914 // / :lo \ :hi 12915 // V \ [no multiline comment] 12916 // loAdd -> ADDC | 12917 // \ :carry / 12918 // V V 12919 // ADDE <- hiAdd 12920 // 12921 // In the special case where only the higher part of a signed result is used 12922 // and the add to the low part of the result of ISD::UMUL_LOHI adds or subtracts 12923 // a constant with the exact value of 0x80000000, we recognize we are dealing 12924 // with a "rounded multiply and add" (or subtract) and transform it into 12925 // either a ARMISD::SMMLAR or ARMISD::SMMLSR respectively. 12926 12927 assert((AddeSubeNode->getOpcode() == ARMISD::ADDE || 12928 AddeSubeNode->getOpcode() == ARMISD::SUBE) && 12929 "Expect an ADDE or SUBE"); 12930 12931 assert(AddeSubeNode->getNumOperands() == 3 && 12932 AddeSubeNode->getOperand(2).getValueType() == MVT::i32 && 12933 "ADDE node has the wrong inputs"); 12934 12935 // Check that we are chained to the right ADDC or SUBC node. 12936 SDNode *AddcSubcNode = AddeSubeNode->getOperand(2).getNode(); 12937 if ((AddeSubeNode->getOpcode() == ARMISD::ADDE && 12938 AddcSubcNode->getOpcode() != ARMISD::ADDC) || 12939 (AddeSubeNode->getOpcode() == ARMISD::SUBE && 12940 AddcSubcNode->getOpcode() != ARMISD::SUBC)) 12941 return SDValue(); 12942 12943 SDValue AddcSubcOp0 = AddcSubcNode->getOperand(0); 12944 SDValue AddcSubcOp1 = AddcSubcNode->getOperand(1); 12945 12946 // Check if the two operands are from the same mul_lohi node. 12947 if (AddcSubcOp0.getNode() == AddcSubcOp1.getNode()) 12948 return SDValue(); 12949 12950 assert(AddcSubcNode->getNumValues() == 2 && 12951 AddcSubcNode->getValueType(0) == MVT::i32 && 12952 "Expect ADDC with two result values. First: i32"); 12953 12954 // Check that the ADDC adds the low result of the S/UMUL_LOHI. If not, it 12955 // maybe a SMLAL which multiplies two 16-bit values. 12956 if (AddeSubeNode->getOpcode() == ARMISD::ADDE && 12957 AddcSubcOp0->getOpcode() != ISD::UMUL_LOHI && 12958 AddcSubcOp0->getOpcode() != ISD::SMUL_LOHI && 12959 AddcSubcOp1->getOpcode() != ISD::UMUL_LOHI && 12960 AddcSubcOp1->getOpcode() != ISD::SMUL_LOHI) 12961 return AddCombineTo64BitSMLAL16(AddcSubcNode, AddeSubeNode, DCI, Subtarget); 12962 12963 // Check for the triangle shape. 12964 SDValue AddeSubeOp0 = AddeSubeNode->getOperand(0); 12965 SDValue AddeSubeOp1 = AddeSubeNode->getOperand(1); 12966 12967 // Make sure that the ADDE/SUBE operands are not coming from the same node. 12968 if (AddeSubeOp0.getNode() == AddeSubeOp1.getNode()) 12969 return SDValue(); 12970 12971 // Find the MUL_LOHI node walking up ADDE/SUBE's operands. 12972 bool IsLeftOperandMUL = false; 12973 SDValue MULOp = findMUL_LOHI(AddeSubeOp0); 12974 if (MULOp == SDValue()) 12975 MULOp = findMUL_LOHI(AddeSubeOp1); 12976 else 12977 IsLeftOperandMUL = true; 12978 if (MULOp == SDValue()) 12979 return SDValue(); 12980 12981 // Figure out the right opcode. 12982 unsigned Opc = MULOp->getOpcode(); 12983 unsigned FinalOpc = (Opc == ISD::SMUL_LOHI) ? ARMISD::SMLAL : ARMISD::UMLAL; 12984 12985 // Figure out the high and low input values to the MLAL node. 12986 SDValue *HiAddSub = nullptr; 12987 SDValue *LoMul = nullptr; 12988 SDValue *LowAddSub = nullptr; 12989 12990 // Ensure that ADDE/SUBE is from high result of ISD::xMUL_LOHI. 12991 if ((AddeSubeOp0 != MULOp.getValue(1)) && (AddeSubeOp1 != MULOp.getValue(1))) 12992 return SDValue(); 12993 12994 if (IsLeftOperandMUL) 12995 HiAddSub = &AddeSubeOp1; 12996 else 12997 HiAddSub = &AddeSubeOp0; 12998 12999 // Ensure that LoMul and LowAddSub are taken from correct ISD::SMUL_LOHI node 13000 // whose low result is fed to the ADDC/SUBC we are checking. 13001 13002 if (AddcSubcOp0 == MULOp.getValue(0)) { 13003 LoMul = &AddcSubcOp0; 13004 LowAddSub = &AddcSubcOp1; 13005 } 13006 if (AddcSubcOp1 == MULOp.getValue(0)) { 13007 LoMul = &AddcSubcOp1; 13008 LowAddSub = &AddcSubcOp0; 13009 } 13010 13011 if (!LoMul) 13012 return SDValue(); 13013 13014 // If HiAddSub is the same node as ADDC/SUBC or is a predecessor of ADDC/SUBC 13015 // the replacement below will create a cycle. 13016 if (AddcSubcNode == HiAddSub->getNode() || 13017 AddcSubcNode->isPredecessorOf(HiAddSub->getNode())) 13018 return SDValue(); 13019 13020 // Create the merged node. 13021 SelectionDAG &DAG = DCI.DAG; 13022 13023 // Start building operand list. 13024 SmallVector<SDValue, 8> Ops; 13025 Ops.push_back(LoMul->getOperand(0)); 13026 Ops.push_back(LoMul->getOperand(1)); 13027 13028 // Check whether we can use SMMLAR, SMMLSR or SMMULR instead. For this to be 13029 // the case, we must be doing signed multiplication and only use the higher 13030 // part of the result of the MLAL, furthermore the LowAddSub must be a constant 13031 // addition or subtraction with the value of 0x800000. 13032 if (Subtarget->hasV6Ops() && Subtarget->hasDSP() && Subtarget->useMulOps() && 13033 FinalOpc == ARMISD::SMLAL && !AddeSubeNode->hasAnyUseOfValue(1) && 13034 LowAddSub->getNode()->getOpcode() == ISD::Constant && 13035 static_cast<ConstantSDNode *>(LowAddSub->getNode())->getZExtValue() == 13036 0x80000000) { 13037 Ops.push_back(*HiAddSub); 13038 if (AddcSubcNode->getOpcode() == ARMISD::SUBC) { 13039 FinalOpc = ARMISD::SMMLSR; 13040 } else { 13041 FinalOpc = ARMISD::SMMLAR; 13042 } 13043 SDValue NewNode = DAG.getNode(FinalOpc, SDLoc(AddcSubcNode), MVT::i32, Ops); 13044 DAG.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode, 0), NewNode); 13045 13046 return SDValue(AddeSubeNode, 0); 13047 } else if (AddcSubcNode->getOpcode() == ARMISD::SUBC) 13048 // SMMLS is generated during instruction selection and the rest of this 13049 // function can not handle the case where AddcSubcNode is a SUBC. 13050 return SDValue(); 13051 13052 // Finish building the operand list for {U/S}MLAL 13053 Ops.push_back(*LowAddSub); 13054 Ops.push_back(*HiAddSub); 13055 13056 SDValue MLALNode = DAG.getNode(FinalOpc, SDLoc(AddcSubcNode), 13057 DAG.getVTList(MVT::i32, MVT::i32), Ops); 13058 13059 // Replace the ADDs' nodes uses by the MLA node's values. 13060 SDValue HiMLALResult(MLALNode.getNode(), 1); 13061 DAG.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode, 0), HiMLALResult); 13062 13063 SDValue LoMLALResult(MLALNode.getNode(), 0); 13064 DAG.ReplaceAllUsesOfValueWith(SDValue(AddcSubcNode, 0), LoMLALResult); 13065 13066 // Return original node to notify the driver to stop replacing. 13067 return SDValue(AddeSubeNode, 0); 13068 } 13069 13070 static SDValue AddCombineTo64bitUMAAL(SDNode *AddeNode, 13071 TargetLowering::DAGCombinerInfo &DCI, 13072 const ARMSubtarget *Subtarget) { 13073 // UMAAL is similar to UMLAL except that it adds two unsigned values. 13074 // While trying to combine for the other MLAL nodes, first search for the 13075 // chance to use UMAAL. Check if Addc uses a node which has already 13076 // been combined into a UMLAL. The other pattern is UMLAL using Addc/Adde 13077 // as the addend, and it's handled in PerformUMLALCombine. 13078 13079 if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP()) 13080 return AddCombineTo64bitMLAL(AddeNode, DCI, Subtarget); 13081 13082 // Check that we have a glued ADDC node. 13083 SDNode* AddcNode = AddeNode->getOperand(2).getNode(); 13084 if (AddcNode->getOpcode() != ARMISD::ADDC) 13085 return SDValue(); 13086 13087 // Find the converted UMAAL or quit if it doesn't exist. 13088 SDNode *UmlalNode = nullptr; 13089 SDValue AddHi; 13090 if (AddcNode->getOperand(0).getOpcode() == ARMISD::UMLAL) { 13091 UmlalNode = AddcNode->getOperand(0).getNode(); 13092 AddHi = AddcNode->getOperand(1); 13093 } else if (AddcNode->getOperand(1).getOpcode() == ARMISD::UMLAL) { 13094 UmlalNode = AddcNode->getOperand(1).getNode(); 13095 AddHi = AddcNode->getOperand(0); 13096 } else { 13097 return AddCombineTo64bitMLAL(AddeNode, DCI, Subtarget); 13098 } 13099 13100 // The ADDC should be glued to an ADDE node, which uses the same UMLAL as 13101 // the ADDC as well as Zero. 13102 if (!isNullConstant(UmlalNode->getOperand(3))) 13103 return SDValue(); 13104 13105 if ((isNullConstant(AddeNode->getOperand(0)) && 13106 AddeNode->getOperand(1).getNode() == UmlalNode) || 13107 (AddeNode->getOperand(0).getNode() == UmlalNode && 13108 isNullConstant(AddeNode->getOperand(1)))) { 13109 SelectionDAG &DAG = DCI.DAG; 13110 SDValue Ops[] = { UmlalNode->getOperand(0), UmlalNode->getOperand(1), 13111 UmlalNode->getOperand(2), AddHi }; 13112 SDValue UMAAL = DAG.getNode(ARMISD::UMAAL, SDLoc(AddcNode), 13113 DAG.getVTList(MVT::i32, MVT::i32), Ops); 13114 13115 // Replace the ADDs' nodes uses by the UMAAL node's values. 13116 DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), SDValue(UMAAL.getNode(), 1)); 13117 DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), SDValue(UMAAL.getNode(), 0)); 13118 13119 // Return original node to notify the driver to stop replacing. 13120 return SDValue(AddeNode, 0); 13121 } 13122 return SDValue(); 13123 } 13124 13125 static SDValue PerformUMLALCombine(SDNode *N, SelectionDAG &DAG, 13126 const ARMSubtarget *Subtarget) { 13127 if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP()) 13128 return SDValue(); 13129 13130 // Check that we have a pair of ADDC and ADDE as operands. 13131 // Both addends of the ADDE must be zero. 13132 SDNode* AddcNode = N->getOperand(2).getNode(); 13133 SDNode* AddeNode = N->getOperand(3).getNode(); 13134 if ((AddcNode->getOpcode() == ARMISD::ADDC) && 13135 (AddeNode->getOpcode() == ARMISD::ADDE) && 13136 isNullConstant(AddeNode->getOperand(0)) && 13137 isNullConstant(AddeNode->getOperand(1)) && 13138 (AddeNode->getOperand(2).getNode() == AddcNode)) 13139 return DAG.getNode(ARMISD::UMAAL, SDLoc(N), 13140 DAG.getVTList(MVT::i32, MVT::i32), 13141 {N->getOperand(0), N->getOperand(1), 13142 AddcNode->getOperand(0), AddcNode->getOperand(1)}); 13143 else 13144 return SDValue(); 13145 } 13146 13147 static SDValue PerformAddcSubcCombine(SDNode *N, 13148 TargetLowering::DAGCombinerInfo &DCI, 13149 const ARMSubtarget *Subtarget) { 13150 SelectionDAG &DAG(DCI.DAG); 13151 13152 if (N->getOpcode() == ARMISD::SUBC && N->hasAnyUseOfValue(1)) { 13153 // (SUBC (ADDE 0, 0, C), 1) -> C 13154 SDValue LHS = N->getOperand(0); 13155 SDValue RHS = N->getOperand(1); 13156 if (LHS->getOpcode() == ARMISD::ADDE && 13157 isNullConstant(LHS->getOperand(0)) && 13158 isNullConstant(LHS->getOperand(1)) && isOneConstant(RHS)) { 13159 return DCI.CombineTo(N, SDValue(N, 0), LHS->getOperand(2)); 13160 } 13161 } 13162 13163 if (Subtarget->isThumb1Only()) { 13164 SDValue RHS = N->getOperand(1); 13165 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) { 13166 int32_t imm = C->getSExtValue(); 13167 if (imm < 0 && imm > std::numeric_limits<int>::min()) { 13168 SDLoc DL(N); 13169 RHS = DAG.getConstant(-imm, DL, MVT::i32); 13170 unsigned Opcode = (N->getOpcode() == ARMISD::ADDC) ? ARMISD::SUBC 13171 : ARMISD::ADDC; 13172 return DAG.getNode(Opcode, DL, N->getVTList(), N->getOperand(0), RHS); 13173 } 13174 } 13175 } 13176 13177 return SDValue(); 13178 } 13179 13180 static SDValue PerformAddeSubeCombine(SDNode *N, 13181 TargetLowering::DAGCombinerInfo &DCI, 13182 const ARMSubtarget *Subtarget) { 13183 if (Subtarget->isThumb1Only()) { 13184 SelectionDAG &DAG = DCI.DAG; 13185 SDValue RHS = N->getOperand(1); 13186 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) { 13187 int64_t imm = C->getSExtValue(); 13188 if (imm < 0) { 13189 SDLoc DL(N); 13190 13191 // The with-carry-in form matches bitwise not instead of the negation. 13192 // Effectively, the inverse interpretation of the carry flag already 13193 // accounts for part of the negation. 13194 RHS = DAG.getConstant(~imm, DL, MVT::i32); 13195 13196 unsigned Opcode = (N->getOpcode() == ARMISD::ADDE) ? ARMISD::SUBE 13197 : ARMISD::ADDE; 13198 return DAG.getNode(Opcode, DL, N->getVTList(), 13199 N->getOperand(0), RHS, N->getOperand(2)); 13200 } 13201 } 13202 } else if (N->getOperand(1)->getOpcode() == ISD::SMUL_LOHI) { 13203 return AddCombineTo64bitMLAL(N, DCI, Subtarget); 13204 } 13205 return SDValue(); 13206 } 13207 13208 static SDValue PerformSELECTCombine(SDNode *N, 13209 TargetLowering::DAGCombinerInfo &DCI, 13210 const ARMSubtarget *Subtarget) { 13211 if (!Subtarget->hasMVEIntegerOps()) 13212 return SDValue(); 13213 13214 SDLoc dl(N); 13215 SDValue SetCC; 13216 SDValue LHS; 13217 SDValue RHS; 13218 ISD::CondCode CC; 13219 SDValue TrueVal; 13220 SDValue FalseVal; 13221 13222 if (N->getOpcode() == ISD::SELECT && 13223 N->getOperand(0)->getOpcode() == ISD::SETCC) { 13224 SetCC = N->getOperand(0); 13225 LHS = SetCC->getOperand(0); 13226 RHS = SetCC->getOperand(1); 13227 CC = cast<CondCodeSDNode>(SetCC->getOperand(2))->get(); 13228 TrueVal = N->getOperand(1); 13229 FalseVal = N->getOperand(2); 13230 } else if (N->getOpcode() == ISD::SELECT_CC) { 13231 LHS = N->getOperand(0); 13232 RHS = N->getOperand(1); 13233 CC = cast<CondCodeSDNode>(N->getOperand(4))->get(); 13234 TrueVal = N->getOperand(2); 13235 FalseVal = N->getOperand(3); 13236 } else { 13237 return SDValue(); 13238 } 13239 13240 unsigned int Opcode = 0; 13241 if ((TrueVal->getOpcode() == ISD::VECREDUCE_UMIN || 13242 FalseVal->getOpcode() == ISD::VECREDUCE_UMIN) && 13243 (CC == ISD::SETULT || CC == ISD::SETUGT)) { 13244 Opcode = ARMISD::VMINVu; 13245 if (CC == ISD::SETUGT) 13246 std::swap(TrueVal, FalseVal); 13247 } else if ((TrueVal->getOpcode() == ISD::VECREDUCE_SMIN || 13248 FalseVal->getOpcode() == ISD::VECREDUCE_SMIN) && 13249 (CC == ISD::SETLT || CC == ISD::SETGT)) { 13250 Opcode = ARMISD::VMINVs; 13251 if (CC == ISD::SETGT) 13252 std::swap(TrueVal, FalseVal); 13253 } else if ((TrueVal->getOpcode() == ISD::VECREDUCE_UMAX || 13254 FalseVal->getOpcode() == ISD::VECREDUCE_UMAX) && 13255 (CC == ISD::SETUGT || CC == ISD::SETULT)) { 13256 Opcode = ARMISD::VMAXVu; 13257 if (CC == ISD::SETULT) 13258 std::swap(TrueVal, FalseVal); 13259 } else if ((TrueVal->getOpcode() == ISD::VECREDUCE_SMAX || 13260 FalseVal->getOpcode() == ISD::VECREDUCE_SMAX) && 13261 (CC == ISD::SETGT || CC == ISD::SETLT)) { 13262 Opcode = ARMISD::VMAXVs; 13263 if (CC == ISD::SETLT) 13264 std::swap(TrueVal, FalseVal); 13265 } else 13266 return SDValue(); 13267 13268 // Normalise to the right hand side being the vector reduction 13269 switch (TrueVal->getOpcode()) { 13270 case ISD::VECREDUCE_UMIN: 13271 case ISD::VECREDUCE_SMIN: 13272 case ISD::VECREDUCE_UMAX: 13273 case ISD::VECREDUCE_SMAX: 13274 std::swap(LHS, RHS); 13275 std::swap(TrueVal, FalseVal); 13276 break; 13277 } 13278 13279 EVT VectorType = FalseVal->getOperand(0).getValueType(); 13280 13281 if (VectorType != MVT::v16i8 && VectorType != MVT::v8i16 && 13282 VectorType != MVT::v4i32) 13283 return SDValue(); 13284 13285 EVT VectorScalarType = VectorType.getVectorElementType(); 13286 13287 // The values being selected must also be the ones being compared 13288 if (TrueVal != LHS || FalseVal != RHS) 13289 return SDValue(); 13290 13291 EVT LeftType = LHS->getValueType(0); 13292 EVT RightType = RHS->getValueType(0); 13293 13294 // The types must match the reduced type too 13295 if (LeftType != VectorScalarType || RightType != VectorScalarType) 13296 return SDValue(); 13297 13298 // Legalise the scalar to an i32 13299 if (VectorScalarType != MVT::i32) 13300 LHS = DCI.DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS); 13301 13302 // Generate the reduction as an i32 for legalisation purposes 13303 auto Reduction = 13304 DCI.DAG.getNode(Opcode, dl, MVT::i32, LHS, RHS->getOperand(0)); 13305 13306 // The result isn't actually an i32 so truncate it back to its original type 13307 if (VectorScalarType != MVT::i32) 13308 Reduction = DCI.DAG.getNode(ISD::TRUNCATE, dl, VectorScalarType, Reduction); 13309 13310 return Reduction; 13311 } 13312 13313 // A special combine for the vqdmulh family of instructions. This is one of the 13314 // potential set of patterns that could patch this instruction. The base pattern 13315 // you would expect to be min(max(ashr(mul(mul(sext(x), 2), sext(y)), 16))). 13316 // This matches the different min(max(ashr(mul(mul(sext(x), sext(y)), 2), 16))), 13317 // which llvm will have optimized to min(ashr(mul(sext(x), sext(y)), 15))) as 13318 // the max is unnecessary. 13319 static SDValue PerformVQDMULHCombine(SDNode *N, SelectionDAG &DAG) { 13320 EVT VT = N->getValueType(0); 13321 SDValue Shft; 13322 ConstantSDNode *Clamp; 13323 13324 if (!VT.isVector() || VT.getScalarSizeInBits() > 64) 13325 return SDValue(); 13326 13327 if (N->getOpcode() == ISD::SMIN) { 13328 Shft = N->getOperand(0); 13329 Clamp = isConstOrConstSplat(N->getOperand(1)); 13330 } else if (N->getOpcode() == ISD::VSELECT) { 13331 // Detect a SMIN, which for an i64 node will be a vselect/setcc, not a smin. 13332 SDValue Cmp = N->getOperand(0); 13333 if (Cmp.getOpcode() != ISD::SETCC || 13334 cast<CondCodeSDNode>(Cmp.getOperand(2))->get() != ISD::SETLT || 13335 Cmp.getOperand(0) != N->getOperand(1) || 13336 Cmp.getOperand(1) != N->getOperand(2)) 13337 return SDValue(); 13338 Shft = N->getOperand(1); 13339 Clamp = isConstOrConstSplat(N->getOperand(2)); 13340 } else 13341 return SDValue(); 13342 13343 if (!Clamp) 13344 return SDValue(); 13345 13346 MVT ScalarType; 13347 int ShftAmt = 0; 13348 switch (Clamp->getSExtValue()) { 13349 case (1 << 7) - 1: 13350 ScalarType = MVT::i8; 13351 ShftAmt = 7; 13352 break; 13353 case (1 << 15) - 1: 13354 ScalarType = MVT::i16; 13355 ShftAmt = 15; 13356 break; 13357 case (1ULL << 31) - 1: 13358 ScalarType = MVT::i32; 13359 ShftAmt = 31; 13360 break; 13361 default: 13362 return SDValue(); 13363 } 13364 13365 if (Shft.getOpcode() != ISD::SRA) 13366 return SDValue(); 13367 ConstantSDNode *N1 = isConstOrConstSplat(Shft.getOperand(1)); 13368 if (!N1 || N1->getSExtValue() != ShftAmt) 13369 return SDValue(); 13370 13371 SDValue Mul = Shft.getOperand(0); 13372 if (Mul.getOpcode() != ISD::MUL) 13373 return SDValue(); 13374 13375 SDValue Ext0 = Mul.getOperand(0); 13376 SDValue Ext1 = Mul.getOperand(1); 13377 if (Ext0.getOpcode() != ISD::SIGN_EXTEND || 13378 Ext1.getOpcode() != ISD::SIGN_EXTEND) 13379 return SDValue(); 13380 EVT VecVT = Ext0.getOperand(0).getValueType(); 13381 if (!VecVT.isPow2VectorType() || VecVT.getVectorNumElements() == 1) 13382 return SDValue(); 13383 if (Ext1.getOperand(0).getValueType() != VecVT || 13384 VecVT.getScalarType() != ScalarType || 13385 VT.getScalarSizeInBits() < ScalarType.getScalarSizeInBits() * 2) 13386 return SDValue(); 13387 13388 SDLoc DL(Mul); 13389 unsigned LegalLanes = 128 / (ShftAmt + 1); 13390 EVT LegalVecVT = MVT::getVectorVT(ScalarType, LegalLanes); 13391 // For types smaller than legal vectors extend to be legal and only use needed 13392 // lanes. 13393 if (VecVT.getSizeInBits() < 128) { 13394 EVT ExtVecVT = 13395 MVT::getVectorVT(MVT::getIntegerVT(128 / VecVT.getVectorNumElements()), 13396 VecVT.getVectorNumElements()); 13397 SDValue Inp0 = 13398 DAG.getNode(ISD::ANY_EXTEND, DL, ExtVecVT, Ext0.getOperand(0)); 13399 SDValue Inp1 = 13400 DAG.getNode(ISD::ANY_EXTEND, DL, ExtVecVT, Ext1.getOperand(0)); 13401 Inp0 = DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, LegalVecVT, Inp0); 13402 Inp1 = DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, LegalVecVT, Inp1); 13403 SDValue VQDMULH = DAG.getNode(ARMISD::VQDMULH, DL, LegalVecVT, Inp0, Inp1); 13404 SDValue Trunc = DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, ExtVecVT, VQDMULH); 13405 Trunc = DAG.getNode(ISD::TRUNCATE, DL, VecVT, Trunc); 13406 return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Trunc); 13407 } 13408 13409 // For larger types, split into legal sized chunks. 13410 assert(VecVT.getSizeInBits() % 128 == 0 && "Expected a power2 type"); 13411 unsigned NumParts = VecVT.getSizeInBits() / 128; 13412 SmallVector<SDValue> Parts; 13413 for (unsigned I = 0; I < NumParts; ++I) { 13414 SDValue Inp0 = 13415 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LegalVecVT, Ext0.getOperand(0), 13416 DAG.getVectorIdxConstant(I * LegalLanes, DL)); 13417 SDValue Inp1 = 13418 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LegalVecVT, Ext1.getOperand(0), 13419 DAG.getVectorIdxConstant(I * LegalLanes, DL)); 13420 SDValue VQDMULH = DAG.getNode(ARMISD::VQDMULH, DL, LegalVecVT, Inp0, Inp1); 13421 Parts.push_back(VQDMULH); 13422 } 13423 return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, 13424 DAG.getNode(ISD::CONCAT_VECTORS, DL, VecVT, Parts)); 13425 } 13426 13427 static SDValue PerformVSELECTCombine(SDNode *N, 13428 TargetLowering::DAGCombinerInfo &DCI, 13429 const ARMSubtarget *Subtarget) { 13430 if (!Subtarget->hasMVEIntegerOps()) 13431 return SDValue(); 13432 13433 if (SDValue V = PerformVQDMULHCombine(N, DCI.DAG)) 13434 return V; 13435 13436 // Transforms vselect(not(cond), lhs, rhs) into vselect(cond, rhs, lhs). 13437 // 13438 // We need to re-implement this optimization here as the implementation in the 13439 // Target-Independent DAGCombiner does not handle the kind of constant we make 13440 // (it calls isConstOrConstSplat with AllowTruncation set to false - and for 13441 // good reason, allowing truncation there would break other targets). 13442 // 13443 // Currently, this is only done for MVE, as it's the only target that benefits 13444 // from this transformation (e.g. VPNOT+VPSEL becomes a single VPSEL). 13445 if (N->getOperand(0).getOpcode() != ISD::XOR) 13446 return SDValue(); 13447 SDValue XOR = N->getOperand(0); 13448 13449 // Check if the XOR's RHS is either a 1, or a BUILD_VECTOR of 1s. 13450 // It is important to check with truncation allowed as the BUILD_VECTORs we 13451 // generate in those situations will truncate their operands. 13452 ConstantSDNode *Const = 13453 isConstOrConstSplat(XOR->getOperand(1), /*AllowUndefs*/ false, 13454 /*AllowTruncation*/ true); 13455 if (!Const || !Const->isOne()) 13456 return SDValue(); 13457 13458 // Rewrite into vselect(cond, rhs, lhs). 13459 SDValue Cond = XOR->getOperand(0); 13460 SDValue LHS = N->getOperand(1); 13461 SDValue RHS = N->getOperand(2); 13462 EVT Type = N->getValueType(0); 13463 return DCI.DAG.getNode(ISD::VSELECT, SDLoc(N), Type, Cond, RHS, LHS); 13464 } 13465 13466 // Convert vsetcc([0,1,2,..], splat(n), ult) -> vctp n 13467 static SDValue PerformVSetCCToVCTPCombine(SDNode *N, 13468 TargetLowering::DAGCombinerInfo &DCI, 13469 const ARMSubtarget *Subtarget) { 13470 SDValue Op0 = N->getOperand(0); 13471 SDValue Op1 = N->getOperand(1); 13472 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 13473 EVT VT = N->getValueType(0); 13474 13475 if (!Subtarget->hasMVEIntegerOps() || 13476 !DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT)) 13477 return SDValue(); 13478 13479 if (CC == ISD::SETUGE) { 13480 std::swap(Op0, Op1); 13481 CC = ISD::SETULT; 13482 } 13483 13484 if (CC != ISD::SETULT || VT.getScalarSizeInBits() != 1 || 13485 Op0.getOpcode() != ISD::BUILD_VECTOR) 13486 return SDValue(); 13487 13488 // Check first operand is BuildVector of 0,1,2,... 13489 for (unsigned I = 0; I < VT.getVectorNumElements(); I++) { 13490 if (!Op0.getOperand(I).isUndef() && 13491 !(isa<ConstantSDNode>(Op0.getOperand(I)) && 13492 Op0.getConstantOperandVal(I) == I)) 13493 return SDValue(); 13494 } 13495 13496 // The second is a Splat of Op1S 13497 SDValue Op1S = DCI.DAG.getSplatValue(Op1); 13498 if (!Op1S) 13499 return SDValue(); 13500 13501 unsigned Opc; 13502 switch (VT.getVectorNumElements()) { 13503 case 2: 13504 Opc = Intrinsic::arm_mve_vctp64; 13505 break; 13506 case 4: 13507 Opc = Intrinsic::arm_mve_vctp32; 13508 break; 13509 case 8: 13510 Opc = Intrinsic::arm_mve_vctp16; 13511 break; 13512 case 16: 13513 Opc = Intrinsic::arm_mve_vctp8; 13514 break; 13515 default: 13516 return SDValue(); 13517 } 13518 13519 SDLoc DL(N); 13520 return DCI.DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, 13521 DCI.DAG.getConstant(Opc, DL, MVT::i32), 13522 DCI.DAG.getZExtOrTrunc(Op1S, DL, MVT::i32)); 13523 } 13524 13525 /// PerformADDECombine - Target-specific dag combine transform from 13526 /// ARMISD::ADDC, ARMISD::ADDE, and ISD::MUL_LOHI to MLAL or 13527 /// ARMISD::ADDC, ARMISD::ADDE and ARMISD::UMLAL to ARMISD::UMAAL 13528 static SDValue PerformADDECombine(SDNode *N, 13529 TargetLowering::DAGCombinerInfo &DCI, 13530 const ARMSubtarget *Subtarget) { 13531 // Only ARM and Thumb2 support UMLAL/SMLAL. 13532 if (Subtarget->isThumb1Only()) 13533 return PerformAddeSubeCombine(N, DCI, Subtarget); 13534 13535 // Only perform the checks after legalize when the pattern is available. 13536 if (DCI.isBeforeLegalize()) return SDValue(); 13537 13538 return AddCombineTo64bitUMAAL(N, DCI, Subtarget); 13539 } 13540 13541 /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with 13542 /// operands N0 and N1. This is a helper for PerformADDCombine that is 13543 /// called with the default operands, and if that fails, with commuted 13544 /// operands. 13545 static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1, 13546 TargetLowering::DAGCombinerInfo &DCI, 13547 const ARMSubtarget *Subtarget){ 13548 // Attempt to create vpadd for this add. 13549 if (SDValue Result = AddCombineToVPADD(N, N0, N1, DCI, Subtarget)) 13550 return Result; 13551 13552 // Attempt to create vpaddl for this add. 13553 if (SDValue Result = AddCombineVUZPToVPADDL(N, N0, N1, DCI, Subtarget)) 13554 return Result; 13555 if (SDValue Result = AddCombineBUILD_VECTORToVPADDL(N, N0, N1, DCI, 13556 Subtarget)) 13557 return Result; 13558 13559 // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c)) 13560 if (N0.getNode()->hasOneUse()) 13561 if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI)) 13562 return Result; 13563 return SDValue(); 13564 } 13565 13566 static SDValue TryDistrubutionADDVecReduce(SDNode *N, SelectionDAG &DAG) { 13567 EVT VT = N->getValueType(0); 13568 SDValue N0 = N->getOperand(0); 13569 SDValue N1 = N->getOperand(1); 13570 SDLoc dl(N); 13571 13572 auto IsVecReduce = [](SDValue Op) { 13573 switch (Op.getOpcode()) { 13574 case ISD::VECREDUCE_ADD: 13575 case ARMISD::VADDVs: 13576 case ARMISD::VADDVu: 13577 case ARMISD::VMLAVs: 13578 case ARMISD::VMLAVu: 13579 return true; 13580 } 13581 return false; 13582 }; 13583 13584 auto DistrubuteAddAddVecReduce = [&](SDValue N0, SDValue N1) { 13585 // Distribute add(X, add(vecreduce(Y), vecreduce(Z))) -> 13586 // add(add(X, vecreduce(Y)), vecreduce(Z)) 13587 // to make better use of vaddva style instructions. 13588 if (VT == MVT::i32 && N1.getOpcode() == ISD::ADD && !IsVecReduce(N0) && 13589 IsVecReduce(N1.getOperand(0)) && IsVecReduce(N1.getOperand(1)) && 13590 !isa<ConstantSDNode>(N0) && N1->hasOneUse()) { 13591 SDValue Add0 = DAG.getNode(ISD::ADD, dl, VT, N0, N1.getOperand(0)); 13592 return DAG.getNode(ISD::ADD, dl, VT, Add0, N1.getOperand(1)); 13593 } 13594 // And turn add(add(A, reduce(B)), add(C, reduce(D))) -> 13595 // add(add(add(A, C), reduce(B)), reduce(D)) 13596 if (VT == MVT::i32 && N0.getOpcode() == ISD::ADD && 13597 N1.getOpcode() == ISD::ADD && N0->hasOneUse() && N1->hasOneUse()) { 13598 unsigned N0RedOp = 0; 13599 if (!IsVecReduce(N0.getOperand(N0RedOp))) { 13600 N0RedOp = 1; 13601 if (!IsVecReduce(N0.getOperand(N0RedOp))) 13602 return SDValue(); 13603 } 13604 13605 unsigned N1RedOp = 0; 13606 if (!IsVecReduce(N1.getOperand(N1RedOp))) 13607 N1RedOp = 1; 13608 if (!IsVecReduce(N1.getOperand(N1RedOp))) 13609 return SDValue(); 13610 13611 SDValue Add0 = DAG.getNode(ISD::ADD, dl, VT, N0.getOperand(1 - N0RedOp), 13612 N1.getOperand(1 - N1RedOp)); 13613 SDValue Add1 = 13614 DAG.getNode(ISD::ADD, dl, VT, Add0, N0.getOperand(N0RedOp)); 13615 return DAG.getNode(ISD::ADD, dl, VT, Add1, N1.getOperand(N1RedOp)); 13616 } 13617 return SDValue(); 13618 }; 13619 if (SDValue R = DistrubuteAddAddVecReduce(N0, N1)) 13620 return R; 13621 if (SDValue R = DistrubuteAddAddVecReduce(N1, N0)) 13622 return R; 13623 13624 // Distribute add(vecreduce(load(Y)), vecreduce(load(Z))) 13625 // Or add(add(X, vecreduce(load(Y))), vecreduce(load(Z))) 13626 // by ascending load offsets. This can help cores prefetch if the order of 13627 // loads is more predictable. 13628 auto DistrubuteVecReduceLoad = [&](SDValue N0, SDValue N1, bool IsForward) { 13629 // Check if two reductions are known to load data where one is before/after 13630 // another. Return negative if N0 loads data before N1, positive if N1 is 13631 // before N0 and 0 otherwise if nothing is known. 13632 auto IsKnownOrderedLoad = [&](SDValue N0, SDValue N1) { 13633 // Look through to the first operand of a MUL, for the VMLA case. 13634 // Currently only looks at the first operand, in the hope they are equal. 13635 if (N0.getOpcode() == ISD::MUL) 13636 N0 = N0.getOperand(0); 13637 if (N1.getOpcode() == ISD::MUL) 13638 N1 = N1.getOperand(0); 13639 13640 // Return true if the two operands are loads to the same object and the 13641 // offset of the first is known to be less than the offset of the second. 13642 LoadSDNode *Load0 = dyn_cast<LoadSDNode>(N0); 13643 LoadSDNode *Load1 = dyn_cast<LoadSDNode>(N1); 13644 if (!Load0 || !Load1 || Load0->getChain() != Load1->getChain() || 13645 !Load0->isSimple() || !Load1->isSimple() || Load0->isIndexed() || 13646 Load1->isIndexed()) 13647 return 0; 13648 13649 auto BaseLocDecomp0 = BaseIndexOffset::match(Load0, DAG); 13650 auto BaseLocDecomp1 = BaseIndexOffset::match(Load1, DAG); 13651 13652 if (!BaseLocDecomp0.getBase() || 13653 BaseLocDecomp0.getBase() != BaseLocDecomp1.getBase() || 13654 !BaseLocDecomp0.hasValidOffset() || !BaseLocDecomp1.hasValidOffset()) 13655 return 0; 13656 if (BaseLocDecomp0.getOffset() < BaseLocDecomp1.getOffset()) 13657 return -1; 13658 if (BaseLocDecomp0.getOffset() > BaseLocDecomp1.getOffset()) 13659 return 1; 13660 return 0; 13661 }; 13662 13663 SDValue X; 13664 if (N0.getOpcode() == ISD::ADD && N0->hasOneUse()) { 13665 if (IsVecReduce(N0.getOperand(0)) && IsVecReduce(N0.getOperand(1))) { 13666 int IsBefore = IsKnownOrderedLoad(N0.getOperand(0).getOperand(0), 13667 N0.getOperand(1).getOperand(0)); 13668 if (IsBefore < 0) { 13669 X = N0.getOperand(0); 13670 N0 = N0.getOperand(1); 13671 } else if (IsBefore > 0) { 13672 X = N0.getOperand(1); 13673 N0 = N0.getOperand(0); 13674 } else 13675 return SDValue(); 13676 } else if (IsVecReduce(N0.getOperand(0))) { 13677 X = N0.getOperand(1); 13678 N0 = N0.getOperand(0); 13679 } else if (IsVecReduce(N0.getOperand(1))) { 13680 X = N0.getOperand(0); 13681 N0 = N0.getOperand(1); 13682 } else 13683 return SDValue(); 13684 } else if (IsForward && IsVecReduce(N0) && IsVecReduce(N1) && 13685 IsKnownOrderedLoad(N0.getOperand(0), N1.getOperand(0)) < 0) { 13686 // Note this is backward to how you would expect. We create 13687 // add(reduce(load + 16), reduce(load + 0)) so that the 13688 // add(reduce(load+16), X) is combined into VADDVA(X, load+16)), leaving 13689 // the X as VADDV(load + 0) 13690 return DAG.getNode(ISD::ADD, dl, VT, N1, N0); 13691 } else 13692 return SDValue(); 13693 13694 if (!IsVecReduce(N0) || !IsVecReduce(N1)) 13695 return SDValue(); 13696 13697 if (IsKnownOrderedLoad(N1.getOperand(0), N0.getOperand(0)) >= 0) 13698 return SDValue(); 13699 13700 // Switch from add(add(X, N0), N1) to add(add(X, N1), N0) 13701 SDValue Add0 = DAG.getNode(ISD::ADD, dl, VT, X, N1); 13702 return DAG.getNode(ISD::ADD, dl, VT, Add0, N0); 13703 }; 13704 if (SDValue R = DistrubuteVecReduceLoad(N0, N1, true)) 13705 return R; 13706 if (SDValue R = DistrubuteVecReduceLoad(N1, N0, false)) 13707 return R; 13708 return SDValue(); 13709 } 13710 13711 static SDValue PerformADDVecReduce(SDNode *N, SelectionDAG &DAG, 13712 const ARMSubtarget *Subtarget) { 13713 if (!Subtarget->hasMVEIntegerOps()) 13714 return SDValue(); 13715 13716 if (SDValue R = TryDistrubutionADDVecReduce(N, DAG)) 13717 return R; 13718 13719 EVT VT = N->getValueType(0); 13720 SDValue N0 = N->getOperand(0); 13721 SDValue N1 = N->getOperand(1); 13722 SDLoc dl(N); 13723 13724 if (VT != MVT::i64) 13725 return SDValue(); 13726 13727 // We are looking for a i64 add of a VADDLVx. Due to these being i64's, this 13728 // will look like: 13729 // t1: i32,i32 = ARMISD::VADDLVs x 13730 // t2: i64 = build_pair t1, t1:1 13731 // t3: i64 = add t2, y 13732 // Otherwise we try to push the add up above VADDLVAx, to potentially allow 13733 // the add to be simplified separately. 13734 // We also need to check for sext / zext and commutitive adds. 13735 auto MakeVecReduce = [&](unsigned Opcode, unsigned OpcodeA, SDValue NA, 13736 SDValue NB) { 13737 if (NB->getOpcode() != ISD::BUILD_PAIR) 13738 return SDValue(); 13739 SDValue VecRed = NB->getOperand(0); 13740 if ((VecRed->getOpcode() != Opcode && VecRed->getOpcode() != OpcodeA) || 13741 VecRed.getResNo() != 0 || 13742 NB->getOperand(1) != SDValue(VecRed.getNode(), 1)) 13743 return SDValue(); 13744 13745 if (VecRed->getOpcode() == OpcodeA) { 13746 // add(NA, VADDLVA(Inp), Y) -> VADDLVA(add(NA, Inp), Y) 13747 SDValue Inp = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, 13748 VecRed.getOperand(0), VecRed.getOperand(1)); 13749 NA = DAG.getNode(ISD::ADD, dl, MVT::i64, Inp, NA); 13750 } 13751 13752 SmallVector<SDValue, 4> Ops(2); 13753 std::tie(Ops[0], Ops[1]) = DAG.SplitScalar(NA, dl, MVT::i32, MVT::i32); 13754 13755 unsigned S = VecRed->getOpcode() == OpcodeA ? 2 : 0; 13756 for (unsigned I = S, E = VecRed.getNumOperands(); I < E; I++) 13757 Ops.push_back(VecRed->getOperand(I)); 13758 SDValue Red = 13759 DAG.getNode(OpcodeA, dl, DAG.getVTList({MVT::i32, MVT::i32}), Ops); 13760 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Red, 13761 SDValue(Red.getNode(), 1)); 13762 }; 13763 13764 if (SDValue M = MakeVecReduce(ARMISD::VADDLVs, ARMISD::VADDLVAs, N0, N1)) 13765 return M; 13766 if (SDValue M = MakeVecReduce(ARMISD::VADDLVu, ARMISD::VADDLVAu, N0, N1)) 13767 return M; 13768 if (SDValue M = MakeVecReduce(ARMISD::VADDLVs, ARMISD::VADDLVAs, N1, N0)) 13769 return M; 13770 if (SDValue M = MakeVecReduce(ARMISD::VADDLVu, ARMISD::VADDLVAu, N1, N0)) 13771 return M; 13772 if (SDValue M = MakeVecReduce(ARMISD::VADDLVps, ARMISD::VADDLVAps, N0, N1)) 13773 return M; 13774 if (SDValue M = MakeVecReduce(ARMISD::VADDLVpu, ARMISD::VADDLVApu, N0, N1)) 13775 return M; 13776 if (SDValue M = MakeVecReduce(ARMISD::VADDLVps, ARMISD::VADDLVAps, N1, N0)) 13777 return M; 13778 if (SDValue M = MakeVecReduce(ARMISD::VADDLVpu, ARMISD::VADDLVApu, N1, N0)) 13779 return M; 13780 if (SDValue M = MakeVecReduce(ARMISD::VMLALVs, ARMISD::VMLALVAs, N0, N1)) 13781 return M; 13782 if (SDValue M = MakeVecReduce(ARMISD::VMLALVu, ARMISD::VMLALVAu, N0, N1)) 13783 return M; 13784 if (SDValue M = MakeVecReduce(ARMISD::VMLALVs, ARMISD::VMLALVAs, N1, N0)) 13785 return M; 13786 if (SDValue M = MakeVecReduce(ARMISD::VMLALVu, ARMISD::VMLALVAu, N1, N0)) 13787 return M; 13788 if (SDValue M = MakeVecReduce(ARMISD::VMLALVps, ARMISD::VMLALVAps, N0, N1)) 13789 return M; 13790 if (SDValue M = MakeVecReduce(ARMISD::VMLALVpu, ARMISD::VMLALVApu, N0, N1)) 13791 return M; 13792 if (SDValue M = MakeVecReduce(ARMISD::VMLALVps, ARMISD::VMLALVAps, N1, N0)) 13793 return M; 13794 if (SDValue M = MakeVecReduce(ARMISD::VMLALVpu, ARMISD::VMLALVApu, N1, N0)) 13795 return M; 13796 return SDValue(); 13797 } 13798 13799 bool 13800 ARMTargetLowering::isDesirableToCommuteWithShift(const SDNode *N, 13801 CombineLevel Level) const { 13802 assert((N->getOpcode() == ISD::SHL || N->getOpcode() == ISD::SRA || 13803 N->getOpcode() == ISD::SRL) && 13804 "Expected shift op"); 13805 13806 if (Level == BeforeLegalizeTypes) 13807 return true; 13808 13809 if (N->getOpcode() != ISD::SHL) 13810 return true; 13811 13812 if (Subtarget->isThumb1Only()) { 13813 // Avoid making expensive immediates by commuting shifts. (This logic 13814 // only applies to Thumb1 because ARM and Thumb2 immediates can be shifted 13815 // for free.) 13816 if (N->getOpcode() != ISD::SHL) 13817 return true; 13818 SDValue N1 = N->getOperand(0); 13819 if (N1->getOpcode() != ISD::ADD && N1->getOpcode() != ISD::AND && 13820 N1->getOpcode() != ISD::OR && N1->getOpcode() != ISD::XOR) 13821 return true; 13822 if (auto *Const = dyn_cast<ConstantSDNode>(N1->getOperand(1))) { 13823 if (Const->getAPIntValue().ult(256)) 13824 return false; 13825 if (N1->getOpcode() == ISD::ADD && Const->getAPIntValue().slt(0) && 13826 Const->getAPIntValue().sgt(-256)) 13827 return false; 13828 } 13829 return true; 13830 } 13831 13832 // Turn off commute-with-shift transform after legalization, so it doesn't 13833 // conflict with PerformSHLSimplify. (We could try to detect when 13834 // PerformSHLSimplify would trigger more precisely, but it isn't 13835 // really necessary.) 13836 return false; 13837 } 13838 13839 bool ARMTargetLowering::isDesirableToCommuteXorWithShift( 13840 const SDNode *N) const { 13841 assert(N->getOpcode() == ISD::XOR && 13842 (N->getOperand(0).getOpcode() == ISD::SHL || 13843 N->getOperand(0).getOpcode() == ISD::SRL) && 13844 "Expected XOR(SHIFT) pattern"); 13845 13846 // Only commute if the entire NOT mask is a hidden shifted mask. 13847 auto *XorC = dyn_cast<ConstantSDNode>(N->getOperand(1)); 13848 auto *ShiftC = dyn_cast<ConstantSDNode>(N->getOperand(0).getOperand(1)); 13849 if (XorC && ShiftC) { 13850 unsigned MaskIdx, MaskLen; 13851 if (XorC->getAPIntValue().isShiftedMask(MaskIdx, MaskLen)) { 13852 unsigned ShiftAmt = ShiftC->getZExtValue(); 13853 unsigned BitWidth = N->getValueType(0).getScalarSizeInBits(); 13854 if (N->getOperand(0).getOpcode() == ISD::SHL) 13855 return MaskIdx == ShiftAmt && MaskLen == (BitWidth - ShiftAmt); 13856 return MaskIdx == 0 && MaskLen == (BitWidth - ShiftAmt); 13857 } 13858 } 13859 13860 return false; 13861 } 13862 13863 bool ARMTargetLowering::shouldFoldConstantShiftPairToMask( 13864 const SDNode *N, CombineLevel Level) const { 13865 assert(((N->getOpcode() == ISD::SHL && 13866 N->getOperand(0).getOpcode() == ISD::SRL) || 13867 (N->getOpcode() == ISD::SRL && 13868 N->getOperand(0).getOpcode() == ISD::SHL)) && 13869 "Expected shift-shift mask"); 13870 13871 if (!Subtarget->isThumb1Only()) 13872 return true; 13873 13874 if (Level == BeforeLegalizeTypes) 13875 return true; 13876 13877 return false; 13878 } 13879 13880 bool ARMTargetLowering::shouldFoldSelectWithIdentityConstant(unsigned BinOpcode, 13881 EVT VT) const { 13882 return Subtarget->hasMVEIntegerOps() && isTypeLegal(VT); 13883 } 13884 13885 bool ARMTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const { 13886 if (!Subtarget->hasNEON()) { 13887 if (Subtarget->isThumb1Only()) 13888 return VT.getScalarSizeInBits() <= 32; 13889 return true; 13890 } 13891 return VT.isScalarInteger(); 13892 } 13893 13894 bool ARMTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT, 13895 EVT VT) const { 13896 if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple()) 13897 return false; 13898 13899 switch (FPVT.getSimpleVT().SimpleTy) { 13900 case MVT::f16: 13901 return Subtarget->hasVFP2Base(); 13902 case MVT::f32: 13903 return Subtarget->hasVFP2Base(); 13904 case MVT::f64: 13905 return Subtarget->hasFP64(); 13906 case MVT::v4f32: 13907 case MVT::v8f16: 13908 return Subtarget->hasMVEFloatOps(); 13909 default: 13910 return false; 13911 } 13912 } 13913 13914 static SDValue PerformSHLSimplify(SDNode *N, 13915 TargetLowering::DAGCombinerInfo &DCI, 13916 const ARMSubtarget *ST) { 13917 // Allow the generic combiner to identify potential bswaps. 13918 if (DCI.isBeforeLegalize()) 13919 return SDValue(); 13920 13921 // DAG combiner will fold: 13922 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 13923 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2 13924 // Other code patterns that can be also be modified have the following form: 13925 // b + ((a << 1) | 510) 13926 // b + ((a << 1) & 510) 13927 // b + ((a << 1) ^ 510) 13928 // b + ((a << 1) + 510) 13929 13930 // Many instructions can perform the shift for free, but it requires both 13931 // the operands to be registers. If c1 << c2 is too large, a mov immediate 13932 // instruction will needed. So, unfold back to the original pattern if: 13933 // - if c1 and c2 are small enough that they don't require mov imms. 13934 // - the user(s) of the node can perform an shl 13935 13936 // No shifted operands for 16-bit instructions. 13937 if (ST->isThumb() && ST->isThumb1Only()) 13938 return SDValue(); 13939 13940 // Check that all the users could perform the shl themselves. 13941 for (auto *U : N->uses()) { 13942 switch(U->getOpcode()) { 13943 default: 13944 return SDValue(); 13945 case ISD::SUB: 13946 case ISD::ADD: 13947 case ISD::AND: 13948 case ISD::OR: 13949 case ISD::XOR: 13950 case ISD::SETCC: 13951 case ARMISD::CMP: 13952 // Check that the user isn't already using a constant because there 13953 // aren't any instructions that support an immediate operand and a 13954 // shifted operand. 13955 if (isa<ConstantSDNode>(U->getOperand(0)) || 13956 isa<ConstantSDNode>(U->getOperand(1))) 13957 return SDValue(); 13958 13959 // Check that it's not already using a shift. 13960 if (U->getOperand(0).getOpcode() == ISD::SHL || 13961 U->getOperand(1).getOpcode() == ISD::SHL) 13962 return SDValue(); 13963 break; 13964 } 13965 } 13966 13967 if (N->getOpcode() != ISD::ADD && N->getOpcode() != ISD::OR && 13968 N->getOpcode() != ISD::XOR && N->getOpcode() != ISD::AND) 13969 return SDValue(); 13970 13971 if (N->getOperand(0).getOpcode() != ISD::SHL) 13972 return SDValue(); 13973 13974 SDValue SHL = N->getOperand(0); 13975 13976 auto *C1ShlC2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 13977 auto *C2 = dyn_cast<ConstantSDNode>(SHL.getOperand(1)); 13978 if (!C1ShlC2 || !C2) 13979 return SDValue(); 13980 13981 APInt C2Int = C2->getAPIntValue(); 13982 APInt C1Int = C1ShlC2->getAPIntValue(); 13983 unsigned C2Width = C2Int.getBitWidth(); 13984 if (C2Int.uge(C2Width)) 13985 return SDValue(); 13986 uint64_t C2Value = C2Int.getZExtValue(); 13987 13988 // Check that performing a lshr will not lose any information. 13989 APInt Mask = APInt::getHighBitsSet(C2Width, C2Width - C2Value); 13990 if ((C1Int & Mask) != C1Int) 13991 return SDValue(); 13992 13993 // Shift the first constant. 13994 C1Int.lshrInPlace(C2Int); 13995 13996 // The immediates are encoded as an 8-bit value that can be rotated. 13997 auto LargeImm = [](const APInt &Imm) { 13998 unsigned Zeros = Imm.countl_zero() + Imm.countr_zero(); 13999 return Imm.getBitWidth() - Zeros > 8; 14000 }; 14001 14002 if (LargeImm(C1Int) || LargeImm(C2Int)) 14003 return SDValue(); 14004 14005 SelectionDAG &DAG = DCI.DAG; 14006 SDLoc dl(N); 14007 SDValue X = SHL.getOperand(0); 14008 SDValue BinOp = DAG.getNode(N->getOpcode(), dl, MVT::i32, X, 14009 DAG.getConstant(C1Int, dl, MVT::i32)); 14010 // Shift left to compensate for the lshr of C1Int. 14011 SDValue Res = DAG.getNode(ISD::SHL, dl, MVT::i32, BinOp, SHL.getOperand(1)); 14012 14013 LLVM_DEBUG(dbgs() << "Simplify shl use:\n"; SHL.getOperand(0).dump(); 14014 SHL.dump(); N->dump()); 14015 LLVM_DEBUG(dbgs() << "Into:\n"; X.dump(); BinOp.dump(); Res.dump()); 14016 return Res; 14017 } 14018 14019 14020 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD. 14021 /// 14022 static SDValue PerformADDCombine(SDNode *N, 14023 TargetLowering::DAGCombinerInfo &DCI, 14024 const ARMSubtarget *Subtarget) { 14025 SDValue N0 = N->getOperand(0); 14026 SDValue N1 = N->getOperand(1); 14027 14028 // Only works one way, because it needs an immediate operand. 14029 if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget)) 14030 return Result; 14031 14032 if (SDValue Result = PerformADDVecReduce(N, DCI.DAG, Subtarget)) 14033 return Result; 14034 14035 // First try with the default operand order. 14036 if (SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget)) 14037 return Result; 14038 14039 // If that didn't work, try again with the operands commuted. 14040 return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget); 14041 } 14042 14043 // Combine (sub 0, (csinc X, Y, CC)) -> (csinv -X, Y, CC) 14044 // providing -X is as cheap as X (currently, just a constant). 14045 static SDValue PerformSubCSINCCombine(SDNode *N, SelectionDAG &DAG) { 14046 if (N->getValueType(0) != MVT::i32 || !isNullConstant(N->getOperand(0))) 14047 return SDValue(); 14048 SDValue CSINC = N->getOperand(1); 14049 if (CSINC.getOpcode() != ARMISD::CSINC || !CSINC.hasOneUse()) 14050 return SDValue(); 14051 14052 ConstantSDNode *X = dyn_cast<ConstantSDNode>(CSINC.getOperand(0)); 14053 if (!X) 14054 return SDValue(); 14055 14056 return DAG.getNode(ARMISD::CSINV, SDLoc(N), MVT::i32, 14057 DAG.getNode(ISD::SUB, SDLoc(N), MVT::i32, N->getOperand(0), 14058 CSINC.getOperand(0)), 14059 CSINC.getOperand(1), CSINC.getOperand(2), 14060 CSINC.getOperand(3)); 14061 } 14062 14063 /// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB. 14064 /// 14065 static SDValue PerformSUBCombine(SDNode *N, 14066 TargetLowering::DAGCombinerInfo &DCI, 14067 const ARMSubtarget *Subtarget) { 14068 SDValue N0 = N->getOperand(0); 14069 SDValue N1 = N->getOperand(1); 14070 14071 // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c)) 14072 if (N1.getNode()->hasOneUse()) 14073 if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI)) 14074 return Result; 14075 14076 if (SDValue R = PerformSubCSINCCombine(N, DCI.DAG)) 14077 return R; 14078 14079 if (!Subtarget->hasMVEIntegerOps() || !N->getValueType(0).isVector()) 14080 return SDValue(); 14081 14082 // Fold (sub (ARMvmovImm 0), (ARMvdup x)) -> (ARMvdup (sub 0, x)) 14083 // so that we can readily pattern match more mve instructions which can use 14084 // a scalar operand. 14085 SDValue VDup = N->getOperand(1); 14086 if (VDup->getOpcode() != ARMISD::VDUP) 14087 return SDValue(); 14088 14089 SDValue VMov = N->getOperand(0); 14090 if (VMov->getOpcode() == ISD::BITCAST) 14091 VMov = VMov->getOperand(0); 14092 14093 if (VMov->getOpcode() != ARMISD::VMOVIMM || !isZeroVector(VMov)) 14094 return SDValue(); 14095 14096 SDLoc dl(N); 14097 SDValue Negate = DCI.DAG.getNode(ISD::SUB, dl, MVT::i32, 14098 DCI.DAG.getConstant(0, dl, MVT::i32), 14099 VDup->getOperand(0)); 14100 return DCI.DAG.getNode(ARMISD::VDUP, dl, N->getValueType(0), Negate); 14101 } 14102 14103 /// PerformVMULCombine 14104 /// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the 14105 /// special multiplier accumulator forwarding. 14106 /// vmul d3, d0, d2 14107 /// vmla d3, d1, d2 14108 /// is faster than 14109 /// vadd d3, d0, d1 14110 /// vmul d3, d3, d2 14111 // However, for (A + B) * (A + B), 14112 // vadd d2, d0, d1 14113 // vmul d3, d0, d2 14114 // vmla d3, d1, d2 14115 // is slower than 14116 // vadd d2, d0, d1 14117 // vmul d3, d2, d2 14118 static SDValue PerformVMULCombine(SDNode *N, 14119 TargetLowering::DAGCombinerInfo &DCI, 14120 const ARMSubtarget *Subtarget) { 14121 if (!Subtarget->hasVMLxForwarding()) 14122 return SDValue(); 14123 14124 SelectionDAG &DAG = DCI.DAG; 14125 SDValue N0 = N->getOperand(0); 14126 SDValue N1 = N->getOperand(1); 14127 unsigned Opcode = N0.getOpcode(); 14128 if (Opcode != ISD::ADD && Opcode != ISD::SUB && 14129 Opcode != ISD::FADD && Opcode != ISD::FSUB) { 14130 Opcode = N1.getOpcode(); 14131 if (Opcode != ISD::ADD && Opcode != ISD::SUB && 14132 Opcode != ISD::FADD && Opcode != ISD::FSUB) 14133 return SDValue(); 14134 std::swap(N0, N1); 14135 } 14136 14137 if (N0 == N1) 14138 return SDValue(); 14139 14140 EVT VT = N->getValueType(0); 14141 SDLoc DL(N); 14142 SDValue N00 = N0->getOperand(0); 14143 SDValue N01 = N0->getOperand(1); 14144 return DAG.getNode(Opcode, DL, VT, 14145 DAG.getNode(ISD::MUL, DL, VT, N00, N1), 14146 DAG.getNode(ISD::MUL, DL, VT, N01, N1)); 14147 } 14148 14149 static SDValue PerformMVEVMULLCombine(SDNode *N, SelectionDAG &DAG, 14150 const ARMSubtarget *Subtarget) { 14151 EVT VT = N->getValueType(0); 14152 if (VT != MVT::v2i64) 14153 return SDValue(); 14154 14155 SDValue N0 = N->getOperand(0); 14156 SDValue N1 = N->getOperand(1); 14157 14158 auto IsSignExt = [&](SDValue Op) { 14159 if (Op->getOpcode() != ISD::SIGN_EXTEND_INREG) 14160 return SDValue(); 14161 EVT VT = cast<VTSDNode>(Op->getOperand(1))->getVT(); 14162 if (VT.getScalarSizeInBits() == 32) 14163 return Op->getOperand(0); 14164 return SDValue(); 14165 }; 14166 auto IsZeroExt = [&](SDValue Op) { 14167 // Zero extends are a little more awkward. At the point we are matching 14168 // this, we are looking for an AND with a (-1, 0, -1, 0) buildvector mask. 14169 // That might be before of after a bitcast depending on how the and is 14170 // placed. Because this has to look through bitcasts, it is currently only 14171 // supported on LE. 14172 if (!Subtarget->isLittle()) 14173 return SDValue(); 14174 14175 SDValue And = Op; 14176 if (And->getOpcode() == ISD::BITCAST) 14177 And = And->getOperand(0); 14178 if (And->getOpcode() != ISD::AND) 14179 return SDValue(); 14180 SDValue Mask = And->getOperand(1); 14181 if (Mask->getOpcode() == ISD::BITCAST) 14182 Mask = Mask->getOperand(0); 14183 14184 if (Mask->getOpcode() != ISD::BUILD_VECTOR || 14185 Mask.getValueType() != MVT::v4i32) 14186 return SDValue(); 14187 if (isAllOnesConstant(Mask->getOperand(0)) && 14188 isNullConstant(Mask->getOperand(1)) && 14189 isAllOnesConstant(Mask->getOperand(2)) && 14190 isNullConstant(Mask->getOperand(3))) 14191 return And->getOperand(0); 14192 return SDValue(); 14193 }; 14194 14195 SDLoc dl(N); 14196 if (SDValue Op0 = IsSignExt(N0)) { 14197 if (SDValue Op1 = IsSignExt(N1)) { 14198 SDValue New0a = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, MVT::v4i32, Op0); 14199 SDValue New1a = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, MVT::v4i32, Op1); 14200 return DAG.getNode(ARMISD::VMULLs, dl, VT, New0a, New1a); 14201 } 14202 } 14203 if (SDValue Op0 = IsZeroExt(N0)) { 14204 if (SDValue Op1 = IsZeroExt(N1)) { 14205 SDValue New0a = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, MVT::v4i32, Op0); 14206 SDValue New1a = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, MVT::v4i32, Op1); 14207 return DAG.getNode(ARMISD::VMULLu, dl, VT, New0a, New1a); 14208 } 14209 } 14210 14211 return SDValue(); 14212 } 14213 14214 static SDValue PerformMULCombine(SDNode *N, 14215 TargetLowering::DAGCombinerInfo &DCI, 14216 const ARMSubtarget *Subtarget) { 14217 SelectionDAG &DAG = DCI.DAG; 14218 14219 EVT VT = N->getValueType(0); 14220 if (Subtarget->hasMVEIntegerOps() && VT == MVT::v2i64) 14221 return PerformMVEVMULLCombine(N, DAG, Subtarget); 14222 14223 if (Subtarget->isThumb1Only()) 14224 return SDValue(); 14225 14226 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer()) 14227 return SDValue(); 14228 14229 if (VT.is64BitVector() || VT.is128BitVector()) 14230 return PerformVMULCombine(N, DCI, Subtarget); 14231 if (VT != MVT::i32) 14232 return SDValue(); 14233 14234 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 14235 if (!C) 14236 return SDValue(); 14237 14238 int64_t MulAmt = C->getSExtValue(); 14239 unsigned ShiftAmt = llvm::countr_zero<uint64_t>(MulAmt); 14240 14241 ShiftAmt = ShiftAmt & (32 - 1); 14242 SDValue V = N->getOperand(0); 14243 SDLoc DL(N); 14244 14245 SDValue Res; 14246 MulAmt >>= ShiftAmt; 14247 14248 if (MulAmt >= 0) { 14249 if (llvm::has_single_bit<uint32_t>(MulAmt - 1)) { 14250 // (mul x, 2^N + 1) => (add (shl x, N), x) 14251 Res = DAG.getNode(ISD::ADD, DL, VT, 14252 V, 14253 DAG.getNode(ISD::SHL, DL, VT, 14254 V, 14255 DAG.getConstant(Log2_32(MulAmt - 1), DL, 14256 MVT::i32))); 14257 } else if (llvm::has_single_bit<uint32_t>(MulAmt + 1)) { 14258 // (mul x, 2^N - 1) => (sub (shl x, N), x) 14259 Res = DAG.getNode(ISD::SUB, DL, VT, 14260 DAG.getNode(ISD::SHL, DL, VT, 14261 V, 14262 DAG.getConstant(Log2_32(MulAmt + 1), DL, 14263 MVT::i32)), 14264 V); 14265 } else 14266 return SDValue(); 14267 } else { 14268 uint64_t MulAmtAbs = -MulAmt; 14269 if (llvm::has_single_bit<uint32_t>(MulAmtAbs + 1)) { 14270 // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) 14271 Res = DAG.getNode(ISD::SUB, DL, VT, 14272 V, 14273 DAG.getNode(ISD::SHL, DL, VT, 14274 V, 14275 DAG.getConstant(Log2_32(MulAmtAbs + 1), DL, 14276 MVT::i32))); 14277 } else if (llvm::has_single_bit<uint32_t>(MulAmtAbs - 1)) { 14278 // (mul x, -(2^N + 1)) => - (add (shl x, N), x) 14279 Res = DAG.getNode(ISD::ADD, DL, VT, 14280 V, 14281 DAG.getNode(ISD::SHL, DL, VT, 14282 V, 14283 DAG.getConstant(Log2_32(MulAmtAbs - 1), DL, 14284 MVT::i32))); 14285 Res = DAG.getNode(ISD::SUB, DL, VT, 14286 DAG.getConstant(0, DL, MVT::i32), Res); 14287 } else 14288 return SDValue(); 14289 } 14290 14291 if (ShiftAmt != 0) 14292 Res = DAG.getNode(ISD::SHL, DL, VT, 14293 Res, DAG.getConstant(ShiftAmt, DL, MVT::i32)); 14294 14295 // Do not add new nodes to DAG combiner worklist. 14296 DCI.CombineTo(N, Res, false); 14297 return SDValue(); 14298 } 14299 14300 static SDValue CombineANDShift(SDNode *N, 14301 TargetLowering::DAGCombinerInfo &DCI, 14302 const ARMSubtarget *Subtarget) { 14303 // Allow DAGCombine to pattern-match before we touch the canonical form. 14304 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer()) 14305 return SDValue(); 14306 14307 if (N->getValueType(0) != MVT::i32) 14308 return SDValue(); 14309 14310 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 14311 if (!N1C) 14312 return SDValue(); 14313 14314 uint32_t C1 = (uint32_t)N1C->getZExtValue(); 14315 // Don't transform uxtb/uxth. 14316 if (C1 == 255 || C1 == 65535) 14317 return SDValue(); 14318 14319 SDNode *N0 = N->getOperand(0).getNode(); 14320 if (!N0->hasOneUse()) 14321 return SDValue(); 14322 14323 if (N0->getOpcode() != ISD::SHL && N0->getOpcode() != ISD::SRL) 14324 return SDValue(); 14325 14326 bool LeftShift = N0->getOpcode() == ISD::SHL; 14327 14328 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 14329 if (!N01C) 14330 return SDValue(); 14331 14332 uint32_t C2 = (uint32_t)N01C->getZExtValue(); 14333 if (!C2 || C2 >= 32) 14334 return SDValue(); 14335 14336 // Clear irrelevant bits in the mask. 14337 if (LeftShift) 14338 C1 &= (-1U << C2); 14339 else 14340 C1 &= (-1U >> C2); 14341 14342 SelectionDAG &DAG = DCI.DAG; 14343 SDLoc DL(N); 14344 14345 // We have a pattern of the form "(and (shl x, c2) c1)" or 14346 // "(and (srl x, c2) c1)", where c1 is a shifted mask. Try to 14347 // transform to a pair of shifts, to save materializing c1. 14348 14349 // First pattern: right shift, then mask off leading bits. 14350 // FIXME: Use demanded bits? 14351 if (!LeftShift && isMask_32(C1)) { 14352 uint32_t C3 = llvm::countl_zero(C1); 14353 if (C2 < C3) { 14354 SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, N0->getOperand(0), 14355 DAG.getConstant(C3 - C2, DL, MVT::i32)); 14356 return DAG.getNode(ISD::SRL, DL, MVT::i32, SHL, 14357 DAG.getConstant(C3, DL, MVT::i32)); 14358 } 14359 } 14360 14361 // First pattern, reversed: left shift, then mask off trailing bits. 14362 if (LeftShift && isMask_32(~C1)) { 14363 uint32_t C3 = llvm::countr_zero(C1); 14364 if (C2 < C3) { 14365 SDValue SHL = DAG.getNode(ISD::SRL, DL, MVT::i32, N0->getOperand(0), 14366 DAG.getConstant(C3 - C2, DL, MVT::i32)); 14367 return DAG.getNode(ISD::SHL, DL, MVT::i32, SHL, 14368 DAG.getConstant(C3, DL, MVT::i32)); 14369 } 14370 } 14371 14372 // Second pattern: left shift, then mask off leading bits. 14373 // FIXME: Use demanded bits? 14374 if (LeftShift && isShiftedMask_32(C1)) { 14375 uint32_t Trailing = llvm::countr_zero(C1); 14376 uint32_t C3 = llvm::countl_zero(C1); 14377 if (Trailing == C2 && C2 + C3 < 32) { 14378 SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, N0->getOperand(0), 14379 DAG.getConstant(C2 + C3, DL, MVT::i32)); 14380 return DAG.getNode(ISD::SRL, DL, MVT::i32, SHL, 14381 DAG.getConstant(C3, DL, MVT::i32)); 14382 } 14383 } 14384 14385 // Second pattern, reversed: right shift, then mask off trailing bits. 14386 // FIXME: Handle other patterns of known/demanded bits. 14387 if (!LeftShift && isShiftedMask_32(C1)) { 14388 uint32_t Leading = llvm::countl_zero(C1); 14389 uint32_t C3 = llvm::countr_zero(C1); 14390 if (Leading == C2 && C2 + C3 < 32) { 14391 SDValue SHL = DAG.getNode(ISD::SRL, DL, MVT::i32, N0->getOperand(0), 14392 DAG.getConstant(C2 + C3, DL, MVT::i32)); 14393 return DAG.getNode(ISD::SHL, DL, MVT::i32, SHL, 14394 DAG.getConstant(C3, DL, MVT::i32)); 14395 } 14396 } 14397 14398 // Transform "(and (shl x, c2) c1)" into "(shl (and x, c1>>c2), c2)" 14399 // if "c1 >> c2" is a cheaper immediate than "c1" 14400 if (LeftShift && 14401 HasLowerConstantMaterializationCost(C1 >> C2, C1, Subtarget)) { 14402 14403 SDValue And = DAG.getNode(ISD::AND, DL, MVT::i32, N0->getOperand(0), 14404 DAG.getConstant(C1 >> C2, DL, MVT::i32)); 14405 return DAG.getNode(ISD::SHL, DL, MVT::i32, And, 14406 DAG.getConstant(C2, DL, MVT::i32)); 14407 } 14408 14409 return SDValue(); 14410 } 14411 14412 static SDValue PerformANDCombine(SDNode *N, 14413 TargetLowering::DAGCombinerInfo &DCI, 14414 const ARMSubtarget *Subtarget) { 14415 // Attempt to use immediate-form VBIC 14416 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1)); 14417 SDLoc dl(N); 14418 EVT VT = N->getValueType(0); 14419 SelectionDAG &DAG = DCI.DAG; 14420 14421 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT) || VT == MVT::v2i1 || 14422 VT == MVT::v4i1 || VT == MVT::v8i1 || VT == MVT::v16i1) 14423 return SDValue(); 14424 14425 APInt SplatBits, SplatUndef; 14426 unsigned SplatBitSize; 14427 bool HasAnyUndefs; 14428 if (BVN && (Subtarget->hasNEON() || Subtarget->hasMVEIntegerOps()) && 14429 BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) { 14430 if (SplatBitSize == 8 || SplatBitSize == 16 || SplatBitSize == 32 || 14431 SplatBitSize == 64) { 14432 EVT VbicVT; 14433 SDValue Val = isVMOVModifiedImm((~SplatBits).getZExtValue(), 14434 SplatUndef.getZExtValue(), SplatBitSize, 14435 DAG, dl, VbicVT, VT, OtherModImm); 14436 if (Val.getNode()) { 14437 SDValue Input = 14438 DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0)); 14439 SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val); 14440 return DAG.getNode(ISD::BITCAST, dl, VT, Vbic); 14441 } 14442 } 14443 } 14444 14445 if (!Subtarget->isThumb1Only()) { 14446 // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c)) 14447 if (SDValue Result = combineSelectAndUseCommutative(N, true, DCI)) 14448 return Result; 14449 14450 if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget)) 14451 return Result; 14452 } 14453 14454 if (Subtarget->isThumb1Only()) 14455 if (SDValue Result = CombineANDShift(N, DCI, Subtarget)) 14456 return Result; 14457 14458 return SDValue(); 14459 } 14460 14461 // Try combining OR nodes to SMULWB, SMULWT. 14462 static SDValue PerformORCombineToSMULWBT(SDNode *OR, 14463 TargetLowering::DAGCombinerInfo &DCI, 14464 const ARMSubtarget *Subtarget) { 14465 if (!Subtarget->hasV6Ops() || 14466 (Subtarget->isThumb() && 14467 (!Subtarget->hasThumb2() || !Subtarget->hasDSP()))) 14468 return SDValue(); 14469 14470 SDValue SRL = OR->getOperand(0); 14471 SDValue SHL = OR->getOperand(1); 14472 14473 if (SRL.getOpcode() != ISD::SRL || SHL.getOpcode() != ISD::SHL) { 14474 SRL = OR->getOperand(1); 14475 SHL = OR->getOperand(0); 14476 } 14477 if (!isSRL16(SRL) || !isSHL16(SHL)) 14478 return SDValue(); 14479 14480 // The first operands to the shifts need to be the two results from the 14481 // same smul_lohi node. 14482 if ((SRL.getOperand(0).getNode() != SHL.getOperand(0).getNode()) || 14483 SRL.getOperand(0).getOpcode() != ISD::SMUL_LOHI) 14484 return SDValue(); 14485 14486 SDNode *SMULLOHI = SRL.getOperand(0).getNode(); 14487 if (SRL.getOperand(0) != SDValue(SMULLOHI, 0) || 14488 SHL.getOperand(0) != SDValue(SMULLOHI, 1)) 14489 return SDValue(); 14490 14491 // Now we have: 14492 // (or (srl (smul_lohi ?, ?), 16), (shl (smul_lohi ?, ?), 16))) 14493 // For SMUL[B|T] smul_lohi will take a 32-bit and a 16-bit arguments. 14494 // For SMUWB the 16-bit value will signed extended somehow. 14495 // For SMULWT only the SRA is required. 14496 // Check both sides of SMUL_LOHI 14497 SDValue OpS16 = SMULLOHI->getOperand(0); 14498 SDValue OpS32 = SMULLOHI->getOperand(1); 14499 14500 SelectionDAG &DAG = DCI.DAG; 14501 if (!isS16(OpS16, DAG) && !isSRA16(OpS16)) { 14502 OpS16 = OpS32; 14503 OpS32 = SMULLOHI->getOperand(0); 14504 } 14505 14506 SDLoc dl(OR); 14507 unsigned Opcode = 0; 14508 if (isS16(OpS16, DAG)) 14509 Opcode = ARMISD::SMULWB; 14510 else if (isSRA16(OpS16)) { 14511 Opcode = ARMISD::SMULWT; 14512 OpS16 = OpS16->getOperand(0); 14513 } 14514 else 14515 return SDValue(); 14516 14517 SDValue Res = DAG.getNode(Opcode, dl, MVT::i32, OpS32, OpS16); 14518 DAG.ReplaceAllUsesOfValueWith(SDValue(OR, 0), Res); 14519 return SDValue(OR, 0); 14520 } 14521 14522 static SDValue PerformORCombineToBFI(SDNode *N, 14523 TargetLowering::DAGCombinerInfo &DCI, 14524 const ARMSubtarget *Subtarget) { 14525 // BFI is only available on V6T2+ 14526 if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops()) 14527 return SDValue(); 14528 14529 EVT VT = N->getValueType(0); 14530 SDValue N0 = N->getOperand(0); 14531 SDValue N1 = N->getOperand(1); 14532 SelectionDAG &DAG = DCI.DAG; 14533 SDLoc DL(N); 14534 // 1) or (and A, mask), val => ARMbfi A, val, mask 14535 // iff (val & mask) == val 14536 // 14537 // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask 14538 // 2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2) 14539 // && mask == ~mask2 14540 // 2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2) 14541 // && ~mask == mask2 14542 // (i.e., copy a bitfield value into another bitfield of the same width) 14543 14544 if (VT != MVT::i32) 14545 return SDValue(); 14546 14547 SDValue N00 = N0.getOperand(0); 14548 14549 // The value and the mask need to be constants so we can verify this is 14550 // actually a bitfield set. If the mask is 0xffff, we can do better 14551 // via a movt instruction, so don't use BFI in that case. 14552 SDValue MaskOp = N0.getOperand(1); 14553 ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp); 14554 if (!MaskC) 14555 return SDValue(); 14556 unsigned Mask = MaskC->getZExtValue(); 14557 if (Mask == 0xffff) 14558 return SDValue(); 14559 SDValue Res; 14560 // Case (1): or (and A, mask), val => ARMbfi A, val, mask 14561 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 14562 if (N1C) { 14563 unsigned Val = N1C->getZExtValue(); 14564 if ((Val & ~Mask) != Val) 14565 return SDValue(); 14566 14567 if (ARM::isBitFieldInvertedMask(Mask)) { 14568 Val >>= llvm::countr_zero(~Mask); 14569 14570 Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, 14571 DAG.getConstant(Val, DL, MVT::i32), 14572 DAG.getConstant(Mask, DL, MVT::i32)); 14573 14574 DCI.CombineTo(N, Res, false); 14575 // Return value from the original node to inform the combiner than N is 14576 // now dead. 14577 return SDValue(N, 0); 14578 } 14579 } else if (N1.getOpcode() == ISD::AND) { 14580 // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask 14581 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); 14582 if (!N11C) 14583 return SDValue(); 14584 unsigned Mask2 = N11C->getZExtValue(); 14585 14586 // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern 14587 // as is to match. 14588 if (ARM::isBitFieldInvertedMask(Mask) && 14589 (Mask == ~Mask2)) { 14590 // The pack halfword instruction works better for masks that fit it, 14591 // so use that when it's available. 14592 if (Subtarget->hasDSP() && 14593 (Mask == 0xffff || Mask == 0xffff0000)) 14594 return SDValue(); 14595 // 2a 14596 unsigned amt = llvm::countr_zero(Mask2); 14597 Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0), 14598 DAG.getConstant(amt, DL, MVT::i32)); 14599 Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res, 14600 DAG.getConstant(Mask, DL, MVT::i32)); 14601 DCI.CombineTo(N, Res, false); 14602 // Return value from the original node to inform the combiner than N is 14603 // now dead. 14604 return SDValue(N, 0); 14605 } else if (ARM::isBitFieldInvertedMask(~Mask) && 14606 (~Mask == Mask2)) { 14607 // The pack halfword instruction works better for masks that fit it, 14608 // so use that when it's available. 14609 if (Subtarget->hasDSP() && 14610 (Mask2 == 0xffff || Mask2 == 0xffff0000)) 14611 return SDValue(); 14612 // 2b 14613 unsigned lsb = llvm::countr_zero(Mask); 14614 Res = DAG.getNode(ISD::SRL, DL, VT, N00, 14615 DAG.getConstant(lsb, DL, MVT::i32)); 14616 Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res, 14617 DAG.getConstant(Mask2, DL, MVT::i32)); 14618 DCI.CombineTo(N, Res, false); 14619 // Return value from the original node to inform the combiner than N is 14620 // now dead. 14621 return SDValue(N, 0); 14622 } 14623 } 14624 14625 if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) && 14626 N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) && 14627 ARM::isBitFieldInvertedMask(~Mask)) { 14628 // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask 14629 // where lsb(mask) == #shamt and masked bits of B are known zero. 14630 SDValue ShAmt = N00.getOperand(1); 14631 unsigned ShAmtC = ShAmt->getAsZExtVal(); 14632 unsigned LSB = llvm::countr_zero(Mask); 14633 if (ShAmtC != LSB) 14634 return SDValue(); 14635 14636 Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0), 14637 DAG.getConstant(~Mask, DL, MVT::i32)); 14638 14639 DCI.CombineTo(N, Res, false); 14640 // Return value from the original node to inform the combiner than N is 14641 // now dead. 14642 return SDValue(N, 0); 14643 } 14644 14645 return SDValue(); 14646 } 14647 14648 static bool isValidMVECond(unsigned CC, bool IsFloat) { 14649 switch (CC) { 14650 case ARMCC::EQ: 14651 case ARMCC::NE: 14652 case ARMCC::LE: 14653 case ARMCC::GT: 14654 case ARMCC::GE: 14655 case ARMCC::LT: 14656 return true; 14657 case ARMCC::HS: 14658 case ARMCC::HI: 14659 return !IsFloat; 14660 default: 14661 return false; 14662 }; 14663 } 14664 14665 static ARMCC::CondCodes getVCMPCondCode(SDValue N) { 14666 if (N->getOpcode() == ARMISD::VCMP) 14667 return (ARMCC::CondCodes)N->getConstantOperandVal(2); 14668 else if (N->getOpcode() == ARMISD::VCMPZ) 14669 return (ARMCC::CondCodes)N->getConstantOperandVal(1); 14670 else 14671 llvm_unreachable("Not a VCMP/VCMPZ!"); 14672 } 14673 14674 static bool CanInvertMVEVCMP(SDValue N) { 14675 ARMCC::CondCodes CC = ARMCC::getOppositeCondition(getVCMPCondCode(N)); 14676 return isValidMVECond(CC, N->getOperand(0).getValueType().isFloatingPoint()); 14677 } 14678 14679 static SDValue PerformORCombine_i1(SDNode *N, SelectionDAG &DAG, 14680 const ARMSubtarget *Subtarget) { 14681 // Try to invert "or A, B" -> "and ~A, ~B", as the "and" is easier to chain 14682 // together with predicates 14683 EVT VT = N->getValueType(0); 14684 SDLoc DL(N); 14685 SDValue N0 = N->getOperand(0); 14686 SDValue N1 = N->getOperand(1); 14687 14688 auto IsFreelyInvertable = [&](SDValue V) { 14689 if (V->getOpcode() == ARMISD::VCMP || V->getOpcode() == ARMISD::VCMPZ) 14690 return CanInvertMVEVCMP(V); 14691 return false; 14692 }; 14693 14694 // At least one operand must be freely invertable. 14695 if (!(IsFreelyInvertable(N0) || IsFreelyInvertable(N1))) 14696 return SDValue(); 14697 14698 SDValue NewN0 = DAG.getLogicalNOT(DL, N0, VT); 14699 SDValue NewN1 = DAG.getLogicalNOT(DL, N1, VT); 14700 SDValue And = DAG.getNode(ISD::AND, DL, VT, NewN0, NewN1); 14701 return DAG.getLogicalNOT(DL, And, VT); 14702 } 14703 14704 /// PerformORCombine - Target-specific dag combine xforms for ISD::OR 14705 static SDValue PerformORCombine(SDNode *N, 14706 TargetLowering::DAGCombinerInfo &DCI, 14707 const ARMSubtarget *Subtarget) { 14708 // Attempt to use immediate-form VORR 14709 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1)); 14710 SDLoc dl(N); 14711 EVT VT = N->getValueType(0); 14712 SelectionDAG &DAG = DCI.DAG; 14713 14714 if(!DAG.getTargetLoweringInfo().isTypeLegal(VT)) 14715 return SDValue(); 14716 14717 if (Subtarget->hasMVEIntegerOps() && (VT == MVT::v2i1 || VT == MVT::v4i1 || 14718 VT == MVT::v8i1 || VT == MVT::v16i1)) 14719 return PerformORCombine_i1(N, DAG, Subtarget); 14720 14721 APInt SplatBits, SplatUndef; 14722 unsigned SplatBitSize; 14723 bool HasAnyUndefs; 14724 if (BVN && (Subtarget->hasNEON() || Subtarget->hasMVEIntegerOps()) && 14725 BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) { 14726 if (SplatBitSize == 8 || SplatBitSize == 16 || SplatBitSize == 32 || 14727 SplatBitSize == 64) { 14728 EVT VorrVT; 14729 SDValue Val = 14730 isVMOVModifiedImm(SplatBits.getZExtValue(), SplatUndef.getZExtValue(), 14731 SplatBitSize, DAG, dl, VorrVT, VT, OtherModImm); 14732 if (Val.getNode()) { 14733 SDValue Input = 14734 DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0)); 14735 SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val); 14736 return DAG.getNode(ISD::BITCAST, dl, VT, Vorr); 14737 } 14738 } 14739 } 14740 14741 if (!Subtarget->isThumb1Only()) { 14742 // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c)) 14743 if (SDValue Result = combineSelectAndUseCommutative(N, false, DCI)) 14744 return Result; 14745 if (SDValue Result = PerformORCombineToSMULWBT(N, DCI, Subtarget)) 14746 return Result; 14747 } 14748 14749 SDValue N0 = N->getOperand(0); 14750 SDValue N1 = N->getOperand(1); 14751 14752 // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant. 14753 if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() && 14754 DAG.getTargetLoweringInfo().isTypeLegal(VT)) { 14755 14756 // The code below optimizes (or (and X, Y), Z). 14757 // The AND operand needs to have a single user to make these optimizations 14758 // profitable. 14759 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 14760 return SDValue(); 14761 14762 APInt SplatUndef; 14763 unsigned SplatBitSize; 14764 bool HasAnyUndefs; 14765 14766 APInt SplatBits0, SplatBits1; 14767 BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1)); 14768 BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1)); 14769 // Ensure that the second operand of both ands are constants 14770 if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize, 14771 HasAnyUndefs) && !HasAnyUndefs) { 14772 if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize, 14773 HasAnyUndefs) && !HasAnyUndefs) { 14774 // Ensure that the bit width of the constants are the same and that 14775 // the splat arguments are logical inverses as per the pattern we 14776 // are trying to simplify. 14777 if (SplatBits0.getBitWidth() == SplatBits1.getBitWidth() && 14778 SplatBits0 == ~SplatBits1) { 14779 // Canonicalize the vector type to make instruction selection 14780 // simpler. 14781 EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32; 14782 SDValue Result = DAG.getNode(ARMISD::VBSP, dl, CanonicalVT, 14783 N0->getOperand(1), 14784 N0->getOperand(0), 14785 N1->getOperand(0)); 14786 return DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, VT, Result); 14787 } 14788 } 14789 } 14790 } 14791 14792 // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when 14793 // reasonable. 14794 if (N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 14795 if (SDValue Res = PerformORCombineToBFI(N, DCI, Subtarget)) 14796 return Res; 14797 } 14798 14799 if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget)) 14800 return Result; 14801 14802 return SDValue(); 14803 } 14804 14805 static SDValue PerformXORCombine(SDNode *N, 14806 TargetLowering::DAGCombinerInfo &DCI, 14807 const ARMSubtarget *Subtarget) { 14808 EVT VT = N->getValueType(0); 14809 SelectionDAG &DAG = DCI.DAG; 14810 14811 if(!DAG.getTargetLoweringInfo().isTypeLegal(VT)) 14812 return SDValue(); 14813 14814 if (!Subtarget->isThumb1Only()) { 14815 // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c)) 14816 if (SDValue Result = combineSelectAndUseCommutative(N, false, DCI)) 14817 return Result; 14818 14819 if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget)) 14820 return Result; 14821 } 14822 14823 if (Subtarget->hasMVEIntegerOps()) { 14824 // fold (xor(vcmp/z, 1)) into a vcmp with the opposite condition. 14825 SDValue N0 = N->getOperand(0); 14826 SDValue N1 = N->getOperand(1); 14827 const TargetLowering *TLI = Subtarget->getTargetLowering(); 14828 if (TLI->isConstTrueVal(N1) && 14829 (N0->getOpcode() == ARMISD::VCMP || N0->getOpcode() == ARMISD::VCMPZ)) { 14830 if (CanInvertMVEVCMP(N0)) { 14831 SDLoc DL(N0); 14832 ARMCC::CondCodes CC = ARMCC::getOppositeCondition(getVCMPCondCode(N0)); 14833 14834 SmallVector<SDValue, 4> Ops; 14835 Ops.push_back(N0->getOperand(0)); 14836 if (N0->getOpcode() == ARMISD::VCMP) 14837 Ops.push_back(N0->getOperand(1)); 14838 Ops.push_back(DAG.getConstant(CC, DL, MVT::i32)); 14839 return DAG.getNode(N0->getOpcode(), DL, N0->getValueType(0), Ops); 14840 } 14841 } 14842 } 14843 14844 return SDValue(); 14845 } 14846 14847 // ParseBFI - given a BFI instruction in N, extract the "from" value (Rn) and return it, 14848 // and fill in FromMask and ToMask with (consecutive) bits in "from" to be extracted and 14849 // their position in "to" (Rd). 14850 static SDValue ParseBFI(SDNode *N, APInt &ToMask, APInt &FromMask) { 14851 assert(N->getOpcode() == ARMISD::BFI); 14852 14853 SDValue From = N->getOperand(1); 14854 ToMask = ~N->getConstantOperandAPInt(2); 14855 FromMask = APInt::getLowBitsSet(ToMask.getBitWidth(), ToMask.popcount()); 14856 14857 // If the Base came from a SHR #C, we can deduce that it is really testing bit 14858 // #C in the base of the SHR. 14859 if (From->getOpcode() == ISD::SRL && 14860 isa<ConstantSDNode>(From->getOperand(1))) { 14861 APInt Shift = From->getConstantOperandAPInt(1); 14862 assert(Shift.getLimitedValue() < 32 && "Shift too large!"); 14863 FromMask <<= Shift.getLimitedValue(31); 14864 From = From->getOperand(0); 14865 } 14866 14867 return From; 14868 } 14869 14870 // If A and B contain one contiguous set of bits, does A | B == A . B? 14871 // 14872 // Neither A nor B must be zero. 14873 static bool BitsProperlyConcatenate(const APInt &A, const APInt &B) { 14874 unsigned LastActiveBitInA = A.countr_zero(); 14875 unsigned FirstActiveBitInB = B.getBitWidth() - B.countl_zero() - 1; 14876 return LastActiveBitInA - 1 == FirstActiveBitInB; 14877 } 14878 14879 static SDValue FindBFIToCombineWith(SDNode *N) { 14880 // We have a BFI in N. Find a BFI it can combine with, if one exists. 14881 APInt ToMask, FromMask; 14882 SDValue From = ParseBFI(N, ToMask, FromMask); 14883 SDValue To = N->getOperand(0); 14884 14885 SDValue V = To; 14886 if (V.getOpcode() != ARMISD::BFI) 14887 return SDValue(); 14888 14889 APInt NewToMask, NewFromMask; 14890 SDValue NewFrom = ParseBFI(V.getNode(), NewToMask, NewFromMask); 14891 if (NewFrom != From) 14892 return SDValue(); 14893 14894 // Do the written bits conflict with any we've seen so far? 14895 if ((NewToMask & ToMask).getBoolValue()) 14896 // Conflicting bits. 14897 return SDValue(); 14898 14899 // Are the new bits contiguous when combined with the old bits? 14900 if (BitsProperlyConcatenate(ToMask, NewToMask) && 14901 BitsProperlyConcatenate(FromMask, NewFromMask)) 14902 return V; 14903 if (BitsProperlyConcatenate(NewToMask, ToMask) && 14904 BitsProperlyConcatenate(NewFromMask, FromMask)) 14905 return V; 14906 14907 return SDValue(); 14908 } 14909 14910 static SDValue PerformBFICombine(SDNode *N, SelectionDAG &DAG) { 14911 SDValue N0 = N->getOperand(0); 14912 SDValue N1 = N->getOperand(1); 14913 14914 if (N1.getOpcode() == ISD::AND) { 14915 // (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff 14916 // the bits being cleared by the AND are not demanded by the BFI. 14917 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); 14918 if (!N11C) 14919 return SDValue(); 14920 unsigned InvMask = N->getConstantOperandVal(2); 14921 unsigned LSB = llvm::countr_zero(~InvMask); 14922 unsigned Width = llvm::bit_width<unsigned>(~InvMask) - LSB; 14923 assert(Width < 14924 static_cast<unsigned>(std::numeric_limits<unsigned>::digits) && 14925 "undefined behavior"); 14926 unsigned Mask = (1u << Width) - 1; 14927 unsigned Mask2 = N11C->getZExtValue(); 14928 if ((Mask & (~Mask2)) == 0) 14929 return DAG.getNode(ARMISD::BFI, SDLoc(N), N->getValueType(0), 14930 N->getOperand(0), N1.getOperand(0), N->getOperand(2)); 14931 return SDValue(); 14932 } 14933 14934 // Look for another BFI to combine with. 14935 if (SDValue CombineBFI = FindBFIToCombineWith(N)) { 14936 // We've found a BFI. 14937 APInt ToMask1, FromMask1; 14938 SDValue From1 = ParseBFI(N, ToMask1, FromMask1); 14939 14940 APInt ToMask2, FromMask2; 14941 SDValue From2 = ParseBFI(CombineBFI.getNode(), ToMask2, FromMask2); 14942 assert(From1 == From2); 14943 (void)From2; 14944 14945 // Create a new BFI, combining the two together. 14946 APInt NewFromMask = FromMask1 | FromMask2; 14947 APInt NewToMask = ToMask1 | ToMask2; 14948 14949 EVT VT = N->getValueType(0); 14950 SDLoc dl(N); 14951 14952 if (NewFromMask[0] == 0) 14953 From1 = DAG.getNode(ISD::SRL, dl, VT, From1, 14954 DAG.getConstant(NewFromMask.countr_zero(), dl, VT)); 14955 return DAG.getNode(ARMISD::BFI, dl, VT, CombineBFI.getOperand(0), From1, 14956 DAG.getConstant(~NewToMask, dl, VT)); 14957 } 14958 14959 // Reassociate BFI(BFI (A, B, M1), C, M2) to BFI(BFI (A, C, M2), B, M1) so 14960 // that lower bit insertions are performed first, providing that M1 and M2 14961 // do no overlap. This can allow multiple BFI instructions to be combined 14962 // together by the other folds above. 14963 if (N->getOperand(0).getOpcode() == ARMISD::BFI) { 14964 APInt ToMask1 = ~N->getConstantOperandAPInt(2); 14965 APInt ToMask2 = ~N0.getConstantOperandAPInt(2); 14966 14967 if (!N0.hasOneUse() || (ToMask1 & ToMask2) != 0 || 14968 ToMask1.countl_zero() < ToMask2.countl_zero()) 14969 return SDValue(); 14970 14971 EVT VT = N->getValueType(0); 14972 SDLoc dl(N); 14973 SDValue BFI1 = DAG.getNode(ARMISD::BFI, dl, VT, N0.getOperand(0), 14974 N->getOperand(1), N->getOperand(2)); 14975 return DAG.getNode(ARMISD::BFI, dl, VT, BFI1, N0.getOperand(1), 14976 N0.getOperand(2)); 14977 } 14978 14979 return SDValue(); 14980 } 14981 14982 // Check that N is CMPZ(CSINC(0, 0, CC, X)), 14983 // or CMPZ(CMOV(1, 0, CC, $cpsr, X)) 14984 // return X if valid. 14985 static SDValue IsCMPZCSINC(SDNode *Cmp, ARMCC::CondCodes &CC) { 14986 if (Cmp->getOpcode() != ARMISD::CMPZ || !isNullConstant(Cmp->getOperand(1))) 14987 return SDValue(); 14988 SDValue CSInc = Cmp->getOperand(0); 14989 14990 // Ignore any `And 1` nodes that may not yet have been removed. We are 14991 // looking for a value that produces 1/0, so these have no effect on the 14992 // code. 14993 while (CSInc.getOpcode() == ISD::AND && 14994 isa<ConstantSDNode>(CSInc.getOperand(1)) && 14995 CSInc.getConstantOperandVal(1) == 1 && CSInc->hasOneUse()) 14996 CSInc = CSInc.getOperand(0); 14997 14998 if (CSInc.getOpcode() == ARMISD::CSINC && 14999 isNullConstant(CSInc.getOperand(0)) && 15000 isNullConstant(CSInc.getOperand(1)) && CSInc->hasOneUse()) { 15001 CC = (ARMCC::CondCodes)CSInc.getConstantOperandVal(2); 15002 return CSInc.getOperand(3); 15003 } 15004 if (CSInc.getOpcode() == ARMISD::CMOV && isOneConstant(CSInc.getOperand(0)) && 15005 isNullConstant(CSInc.getOperand(1)) && CSInc->hasOneUse()) { 15006 CC = (ARMCC::CondCodes)CSInc.getConstantOperandVal(2); 15007 return CSInc.getOperand(4); 15008 } 15009 if (CSInc.getOpcode() == ARMISD::CMOV && isOneConstant(CSInc.getOperand(1)) && 15010 isNullConstant(CSInc.getOperand(0)) && CSInc->hasOneUse()) { 15011 CC = ARMCC::getOppositeCondition( 15012 (ARMCC::CondCodes)CSInc.getConstantOperandVal(2)); 15013 return CSInc.getOperand(4); 15014 } 15015 return SDValue(); 15016 } 15017 15018 static SDValue PerformCMPZCombine(SDNode *N, SelectionDAG &DAG) { 15019 // Given CMPZ(CSINC(C, 0, 0, EQ), 0), we can just use C directly. As in 15020 // t92: glue = ARMISD::CMPZ t74, 0 15021 // t93: i32 = ARMISD::CSINC 0, 0, 1, t92 15022 // t96: glue = ARMISD::CMPZ t93, 0 15023 // t114: i32 = ARMISD::CSINV 0, 0, 0, t96 15024 ARMCC::CondCodes Cond; 15025 if (SDValue C = IsCMPZCSINC(N, Cond)) 15026 if (Cond == ARMCC::EQ) 15027 return C; 15028 return SDValue(); 15029 } 15030 15031 static SDValue PerformCSETCombine(SDNode *N, SelectionDAG &DAG) { 15032 // Fold away an unneccessary CMPZ/CSINC 15033 // CSXYZ A, B, C1 (CMPZ (CSINC 0, 0, C2, D), 0) -> 15034 // if C1==EQ -> CSXYZ A, B, C2, D 15035 // if C1==NE -> CSXYZ A, B, NOT(C2), D 15036 ARMCC::CondCodes Cond; 15037 if (SDValue C = IsCMPZCSINC(N->getOperand(3).getNode(), Cond)) { 15038 if (N->getConstantOperandVal(2) == ARMCC::EQ) 15039 return DAG.getNode(N->getOpcode(), SDLoc(N), MVT::i32, N->getOperand(0), 15040 N->getOperand(1), 15041 DAG.getConstant(Cond, SDLoc(N), MVT::i32), C); 15042 if (N->getConstantOperandVal(2) == ARMCC::NE) 15043 return DAG.getNode( 15044 N->getOpcode(), SDLoc(N), MVT::i32, N->getOperand(0), 15045 N->getOperand(1), 15046 DAG.getConstant(ARMCC::getOppositeCondition(Cond), SDLoc(N), MVT::i32), C); 15047 } 15048 return SDValue(); 15049 } 15050 15051 /// PerformVMOVRRDCombine - Target-specific dag combine xforms for 15052 /// ARMISD::VMOVRRD. 15053 static SDValue PerformVMOVRRDCombine(SDNode *N, 15054 TargetLowering::DAGCombinerInfo &DCI, 15055 const ARMSubtarget *Subtarget) { 15056 // vmovrrd(vmovdrr x, y) -> x,y 15057 SDValue InDouble = N->getOperand(0); 15058 if (InDouble.getOpcode() == ARMISD::VMOVDRR && Subtarget->hasFP64()) 15059 return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1)); 15060 15061 // vmovrrd(load f64) -> (load i32), (load i32) 15062 SDNode *InNode = InDouble.getNode(); 15063 if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() && 15064 InNode->getValueType(0) == MVT::f64 && 15065 InNode->getOperand(1).getOpcode() == ISD::FrameIndex && 15066 !cast<LoadSDNode>(InNode)->isVolatile()) { 15067 // TODO: Should this be done for non-FrameIndex operands? 15068 LoadSDNode *LD = cast<LoadSDNode>(InNode); 15069 15070 SelectionDAG &DAG = DCI.DAG; 15071 SDLoc DL(LD); 15072 SDValue BasePtr = LD->getBasePtr(); 15073 SDValue NewLD1 = 15074 DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr, LD->getPointerInfo(), 15075 LD->getAlign(), LD->getMemOperand()->getFlags()); 15076 15077 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, 15078 DAG.getConstant(4, DL, MVT::i32)); 15079 15080 SDValue NewLD2 = DAG.getLoad(MVT::i32, DL, LD->getChain(), OffsetPtr, 15081 LD->getPointerInfo().getWithOffset(4), 15082 commonAlignment(LD->getAlign(), 4), 15083 LD->getMemOperand()->getFlags()); 15084 15085 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1)); 15086 if (DCI.DAG.getDataLayout().isBigEndian()) 15087 std::swap (NewLD1, NewLD2); 15088 SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2); 15089 return Result; 15090 } 15091 15092 // VMOVRRD(extract(..(build_vector(a, b, c, d)))) -> a,b or c,d 15093 // VMOVRRD(extract(insert_vector(insert_vector(.., a, l1), b, l2))) -> a,b 15094 if (InDouble.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 15095 isa<ConstantSDNode>(InDouble.getOperand(1))) { 15096 SDValue BV = InDouble.getOperand(0); 15097 // Look up through any nop bitcasts and vector_reg_casts. bitcasts may 15098 // change lane order under big endian. 15099 bool BVSwap = BV.getOpcode() == ISD::BITCAST; 15100 while ( 15101 (BV.getOpcode() == ISD::BITCAST || 15102 BV.getOpcode() == ARMISD::VECTOR_REG_CAST) && 15103 (BV.getValueType() == MVT::v2f64 || BV.getValueType() == MVT::v2i64)) { 15104 BVSwap = BV.getOpcode() == ISD::BITCAST; 15105 BV = BV.getOperand(0); 15106 } 15107 if (BV.getValueType() != MVT::v4i32) 15108 return SDValue(); 15109 15110 // Handle buildvectors, pulling out the correct lane depending on 15111 // endianness. 15112 unsigned Offset = InDouble.getConstantOperandVal(1) == 1 ? 2 : 0; 15113 if (BV.getOpcode() == ISD::BUILD_VECTOR) { 15114 SDValue Op0 = BV.getOperand(Offset); 15115 SDValue Op1 = BV.getOperand(Offset + 1); 15116 if (!Subtarget->isLittle() && BVSwap) 15117 std::swap(Op0, Op1); 15118 15119 return DCI.DAG.getMergeValues({Op0, Op1}, SDLoc(N)); 15120 } 15121 15122 // A chain of insert_vectors, grabbing the correct value of the chain of 15123 // inserts. 15124 SDValue Op0, Op1; 15125 while (BV.getOpcode() == ISD::INSERT_VECTOR_ELT) { 15126 if (isa<ConstantSDNode>(BV.getOperand(2))) { 15127 if (BV.getConstantOperandVal(2) == Offset) 15128 Op0 = BV.getOperand(1); 15129 if (BV.getConstantOperandVal(2) == Offset + 1) 15130 Op1 = BV.getOperand(1); 15131 } 15132 BV = BV.getOperand(0); 15133 } 15134 if (!Subtarget->isLittle() && BVSwap) 15135 std::swap(Op0, Op1); 15136 if (Op0 && Op1) 15137 return DCI.DAG.getMergeValues({Op0, Op1}, SDLoc(N)); 15138 } 15139 15140 return SDValue(); 15141 } 15142 15143 /// PerformVMOVDRRCombine - Target-specific dag combine xforms for 15144 /// ARMISD::VMOVDRR. This is also used for BUILD_VECTORs with 2 operands. 15145 static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) { 15146 // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X) 15147 SDValue Op0 = N->getOperand(0); 15148 SDValue Op1 = N->getOperand(1); 15149 if (Op0.getOpcode() == ISD::BITCAST) 15150 Op0 = Op0.getOperand(0); 15151 if (Op1.getOpcode() == ISD::BITCAST) 15152 Op1 = Op1.getOperand(0); 15153 if (Op0.getOpcode() == ARMISD::VMOVRRD && 15154 Op0.getNode() == Op1.getNode() && 15155 Op0.getResNo() == 0 && Op1.getResNo() == 1) 15156 return DAG.getNode(ISD::BITCAST, SDLoc(N), 15157 N->getValueType(0), Op0.getOperand(0)); 15158 return SDValue(); 15159 } 15160 15161 static SDValue PerformVMOVhrCombine(SDNode *N, 15162 TargetLowering::DAGCombinerInfo &DCI) { 15163 SDValue Op0 = N->getOperand(0); 15164 15165 // VMOVhr (VMOVrh (X)) -> X 15166 if (Op0->getOpcode() == ARMISD::VMOVrh) 15167 return Op0->getOperand(0); 15168 15169 // FullFP16: half values are passed in S-registers, and we don't 15170 // need any of the bitcast and moves: 15171 // 15172 // t2: f32,ch1,gl1? = CopyFromReg ch, Register:f32 %0, gl? 15173 // t5: i32 = bitcast t2 15174 // t18: f16 = ARMISD::VMOVhr t5 15175 // => 15176 // tN: f16,ch2,gl2? = CopyFromReg ch, Register::f32 %0, gl? 15177 if (Op0->getOpcode() == ISD::BITCAST) { 15178 SDValue Copy = Op0->getOperand(0); 15179 if (Copy.getValueType() == MVT::f32 && 15180 Copy->getOpcode() == ISD::CopyFromReg) { 15181 bool HasGlue = Copy->getNumOperands() == 3; 15182 SDValue Ops[] = {Copy->getOperand(0), Copy->getOperand(1), 15183 HasGlue ? Copy->getOperand(2) : SDValue()}; 15184 EVT OutTys[] = {N->getValueType(0), MVT::Other, MVT::Glue}; 15185 SDValue NewCopy = 15186 DCI.DAG.getNode(ISD::CopyFromReg, SDLoc(N), 15187 DCI.DAG.getVTList(ArrayRef(OutTys, HasGlue ? 3 : 2)), 15188 ArrayRef(Ops, HasGlue ? 3 : 2)); 15189 15190 // Update Users, Chains, and Potential Glue. 15191 DCI.DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), NewCopy.getValue(0)); 15192 DCI.DAG.ReplaceAllUsesOfValueWith(Copy.getValue(1), NewCopy.getValue(1)); 15193 if (HasGlue) 15194 DCI.DAG.ReplaceAllUsesOfValueWith(Copy.getValue(2), 15195 NewCopy.getValue(2)); 15196 15197 return NewCopy; 15198 } 15199 } 15200 15201 // fold (VMOVhr (load x)) -> (load (f16*)x) 15202 if (LoadSDNode *LN0 = dyn_cast<LoadSDNode>(Op0)) { 15203 if (LN0->hasOneUse() && LN0->isUnindexed() && 15204 LN0->getMemoryVT() == MVT::i16) { 15205 SDValue Load = 15206 DCI.DAG.getLoad(N->getValueType(0), SDLoc(N), LN0->getChain(), 15207 LN0->getBasePtr(), LN0->getMemOperand()); 15208 DCI.DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Load.getValue(0)); 15209 DCI.DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), Load.getValue(1)); 15210 return Load; 15211 } 15212 } 15213 15214 // Only the bottom 16 bits of the source register are used. 15215 APInt DemandedMask = APInt::getLowBitsSet(32, 16); 15216 const TargetLowering &TLI = DCI.DAG.getTargetLoweringInfo(); 15217 if (TLI.SimplifyDemandedBits(Op0, DemandedMask, DCI)) 15218 return SDValue(N, 0); 15219 15220 return SDValue(); 15221 } 15222 15223 static SDValue PerformVMOVrhCombine(SDNode *N, SelectionDAG &DAG) { 15224 SDValue N0 = N->getOperand(0); 15225 EVT VT = N->getValueType(0); 15226 15227 // fold (VMOVrh (fpconst x)) -> const x 15228 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N0)) { 15229 APFloat V = C->getValueAPF(); 15230 return DAG.getConstant(V.bitcastToAPInt().getZExtValue(), SDLoc(N), VT); 15231 } 15232 15233 // fold (VMOVrh (load x)) -> (zextload (i16*)x) 15234 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse()) { 15235 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 15236 15237 SDValue Load = 15238 DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT, LN0->getChain(), 15239 LN0->getBasePtr(), MVT::i16, LN0->getMemOperand()); 15240 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Load.getValue(0)); 15241 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1)); 15242 return Load; 15243 } 15244 15245 // Fold VMOVrh(extract(x, n)) -> vgetlaneu(x, n) 15246 if (N0->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 15247 isa<ConstantSDNode>(N0->getOperand(1))) 15248 return DAG.getNode(ARMISD::VGETLANEu, SDLoc(N), VT, N0->getOperand(0), 15249 N0->getOperand(1)); 15250 15251 return SDValue(); 15252 } 15253 15254 /// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node 15255 /// are normal, non-volatile loads. If so, it is profitable to bitcast an 15256 /// i64 vector to have f64 elements, since the value can then be loaded 15257 /// directly into a VFP register. 15258 static bool hasNormalLoadOperand(SDNode *N) { 15259 unsigned NumElts = N->getValueType(0).getVectorNumElements(); 15260 for (unsigned i = 0; i < NumElts; ++i) { 15261 SDNode *Elt = N->getOperand(i).getNode(); 15262 if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile()) 15263 return true; 15264 } 15265 return false; 15266 } 15267 15268 /// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for 15269 /// ISD::BUILD_VECTOR. 15270 static SDValue PerformBUILD_VECTORCombine(SDNode *N, 15271 TargetLowering::DAGCombinerInfo &DCI, 15272 const ARMSubtarget *Subtarget) { 15273 // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X): 15274 // VMOVRRD is introduced when legalizing i64 types. It forces the i64 value 15275 // into a pair of GPRs, which is fine when the value is used as a scalar, 15276 // but if the i64 value is converted to a vector, we need to undo the VMOVRRD. 15277 SelectionDAG &DAG = DCI.DAG; 15278 if (N->getNumOperands() == 2) 15279 if (SDValue RV = PerformVMOVDRRCombine(N, DAG)) 15280 return RV; 15281 15282 // Load i64 elements as f64 values so that type legalization does not split 15283 // them up into i32 values. 15284 EVT VT = N->getValueType(0); 15285 if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N)) 15286 return SDValue(); 15287 SDLoc dl(N); 15288 SmallVector<SDValue, 8> Ops; 15289 unsigned NumElts = VT.getVectorNumElements(); 15290 for (unsigned i = 0; i < NumElts; ++i) { 15291 SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i)); 15292 Ops.push_back(V); 15293 // Make the DAGCombiner fold the bitcast. 15294 DCI.AddToWorklist(V.getNode()); 15295 } 15296 EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts); 15297 SDValue BV = DAG.getBuildVector(FloatVT, dl, Ops); 15298 return DAG.getNode(ISD::BITCAST, dl, VT, BV); 15299 } 15300 15301 /// Target-specific dag combine xforms for ARMISD::BUILD_VECTOR. 15302 static SDValue 15303 PerformARMBUILD_VECTORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 15304 // ARMISD::BUILD_VECTOR is introduced when legalizing ISD::BUILD_VECTOR. 15305 // At that time, we may have inserted bitcasts from integer to float. 15306 // If these bitcasts have survived DAGCombine, change the lowering of this 15307 // BUILD_VECTOR in something more vector friendly, i.e., that does not 15308 // force to use floating point types. 15309 15310 // Make sure we can change the type of the vector. 15311 // This is possible iff: 15312 // 1. The vector is only used in a bitcast to a integer type. I.e., 15313 // 1.1. Vector is used only once. 15314 // 1.2. Use is a bit convert to an integer type. 15315 // 2. The size of its operands are 32-bits (64-bits are not legal). 15316 EVT VT = N->getValueType(0); 15317 EVT EltVT = VT.getVectorElementType(); 15318 15319 // Check 1.1. and 2. 15320 if (EltVT.getSizeInBits() != 32 || !N->hasOneUse()) 15321 return SDValue(); 15322 15323 // By construction, the input type must be float. 15324 assert(EltVT == MVT::f32 && "Unexpected type!"); 15325 15326 // Check 1.2. 15327 SDNode *Use = *N->use_begin(); 15328 if (Use->getOpcode() != ISD::BITCAST || 15329 Use->getValueType(0).isFloatingPoint()) 15330 return SDValue(); 15331 15332 // Check profitability. 15333 // Model is, if more than half of the relevant operands are bitcast from 15334 // i32, turn the build_vector into a sequence of insert_vector_elt. 15335 // Relevant operands are everything that is not statically 15336 // (i.e., at compile time) bitcasted. 15337 unsigned NumOfBitCastedElts = 0; 15338 unsigned NumElts = VT.getVectorNumElements(); 15339 unsigned NumOfRelevantElts = NumElts; 15340 for (unsigned Idx = 0; Idx < NumElts; ++Idx) { 15341 SDValue Elt = N->getOperand(Idx); 15342 if (Elt->getOpcode() == ISD::BITCAST) { 15343 // Assume only bit cast to i32 will go away. 15344 if (Elt->getOperand(0).getValueType() == MVT::i32) 15345 ++NumOfBitCastedElts; 15346 } else if (Elt.isUndef() || isa<ConstantSDNode>(Elt)) 15347 // Constants are statically casted, thus do not count them as 15348 // relevant operands. 15349 --NumOfRelevantElts; 15350 } 15351 15352 // Check if more than half of the elements require a non-free bitcast. 15353 if (NumOfBitCastedElts <= NumOfRelevantElts / 2) 15354 return SDValue(); 15355 15356 SelectionDAG &DAG = DCI.DAG; 15357 // Create the new vector type. 15358 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts); 15359 // Check if the type is legal. 15360 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 15361 if (!TLI.isTypeLegal(VecVT)) 15362 return SDValue(); 15363 15364 // Combine: 15365 // ARMISD::BUILD_VECTOR E1, E2, ..., EN. 15366 // => BITCAST INSERT_VECTOR_ELT 15367 // (INSERT_VECTOR_ELT (...), (BITCAST EN-1), N-1), 15368 // (BITCAST EN), N. 15369 SDValue Vec = DAG.getUNDEF(VecVT); 15370 SDLoc dl(N); 15371 for (unsigned Idx = 0 ; Idx < NumElts; ++Idx) { 15372 SDValue V = N->getOperand(Idx); 15373 if (V.isUndef()) 15374 continue; 15375 if (V.getOpcode() == ISD::BITCAST && 15376 V->getOperand(0).getValueType() == MVT::i32) 15377 // Fold obvious case. 15378 V = V.getOperand(0); 15379 else { 15380 V = DAG.getNode(ISD::BITCAST, SDLoc(V), MVT::i32, V); 15381 // Make the DAGCombiner fold the bitcasts. 15382 DCI.AddToWorklist(V.getNode()); 15383 } 15384 SDValue LaneIdx = DAG.getConstant(Idx, dl, MVT::i32); 15385 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VecVT, Vec, V, LaneIdx); 15386 } 15387 Vec = DAG.getNode(ISD::BITCAST, dl, VT, Vec); 15388 // Make the DAGCombiner fold the bitcasts. 15389 DCI.AddToWorklist(Vec.getNode()); 15390 return Vec; 15391 } 15392 15393 static SDValue 15394 PerformPREDICATE_CASTCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 15395 EVT VT = N->getValueType(0); 15396 SDValue Op = N->getOperand(0); 15397 SDLoc dl(N); 15398 15399 // PREDICATE_CAST(PREDICATE_CAST(x)) == PREDICATE_CAST(x) 15400 if (Op->getOpcode() == ARMISD::PREDICATE_CAST) { 15401 // If the valuetypes are the same, we can remove the cast entirely. 15402 if (Op->getOperand(0).getValueType() == VT) 15403 return Op->getOperand(0); 15404 return DCI.DAG.getNode(ARMISD::PREDICATE_CAST, dl, VT, Op->getOperand(0)); 15405 } 15406 15407 // Turn pred_cast(xor x, -1) into xor(pred_cast x, -1), in order to produce 15408 // more VPNOT which might get folded as else predicates. 15409 if (Op.getValueType() == MVT::i32 && isBitwiseNot(Op)) { 15410 SDValue X = 15411 DCI.DAG.getNode(ARMISD::PREDICATE_CAST, dl, VT, Op->getOperand(0)); 15412 SDValue C = DCI.DAG.getNode(ARMISD::PREDICATE_CAST, dl, VT, 15413 DCI.DAG.getConstant(65535, dl, MVT::i32)); 15414 return DCI.DAG.getNode(ISD::XOR, dl, VT, X, C); 15415 } 15416 15417 // Only the bottom 16 bits of the source register are used. 15418 if (Op.getValueType() == MVT::i32) { 15419 APInt DemandedMask = APInt::getLowBitsSet(32, 16); 15420 const TargetLowering &TLI = DCI.DAG.getTargetLoweringInfo(); 15421 if (TLI.SimplifyDemandedBits(Op, DemandedMask, DCI)) 15422 return SDValue(N, 0); 15423 } 15424 return SDValue(); 15425 } 15426 15427 static SDValue PerformVECTOR_REG_CASTCombine(SDNode *N, SelectionDAG &DAG, 15428 const ARMSubtarget *ST) { 15429 EVT VT = N->getValueType(0); 15430 SDValue Op = N->getOperand(0); 15431 SDLoc dl(N); 15432 15433 // Under Little endian, a VECTOR_REG_CAST is equivalent to a BITCAST 15434 if (ST->isLittle()) 15435 return DAG.getNode(ISD::BITCAST, dl, VT, Op); 15436 15437 // VECTOR_REG_CAST undef -> undef 15438 if (Op.isUndef()) 15439 return DAG.getUNDEF(VT); 15440 15441 // VECTOR_REG_CAST(VECTOR_REG_CAST(x)) == VECTOR_REG_CAST(x) 15442 if (Op->getOpcode() == ARMISD::VECTOR_REG_CAST) { 15443 // If the valuetypes are the same, we can remove the cast entirely. 15444 if (Op->getOperand(0).getValueType() == VT) 15445 return Op->getOperand(0); 15446 return DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, VT, Op->getOperand(0)); 15447 } 15448 15449 return SDValue(); 15450 } 15451 15452 static SDValue PerformVCMPCombine(SDNode *N, SelectionDAG &DAG, 15453 const ARMSubtarget *Subtarget) { 15454 if (!Subtarget->hasMVEIntegerOps()) 15455 return SDValue(); 15456 15457 EVT VT = N->getValueType(0); 15458 SDValue Op0 = N->getOperand(0); 15459 SDValue Op1 = N->getOperand(1); 15460 ARMCC::CondCodes Cond = (ARMCC::CondCodes)N->getConstantOperandVal(2); 15461 SDLoc dl(N); 15462 15463 // vcmp X, 0, cc -> vcmpz X, cc 15464 if (isZeroVector(Op1)) 15465 return DAG.getNode(ARMISD::VCMPZ, dl, VT, Op0, N->getOperand(2)); 15466 15467 unsigned SwappedCond = getSwappedCondition(Cond); 15468 if (isValidMVECond(SwappedCond, VT.isFloatingPoint())) { 15469 // vcmp 0, X, cc -> vcmpz X, reversed(cc) 15470 if (isZeroVector(Op0)) 15471 return DAG.getNode(ARMISD::VCMPZ, dl, VT, Op1, 15472 DAG.getConstant(SwappedCond, dl, MVT::i32)); 15473 // vcmp vdup(Y), X, cc -> vcmp X, vdup(Y), reversed(cc) 15474 if (Op0->getOpcode() == ARMISD::VDUP && Op1->getOpcode() != ARMISD::VDUP) 15475 return DAG.getNode(ARMISD::VCMP, dl, VT, Op1, Op0, 15476 DAG.getConstant(SwappedCond, dl, MVT::i32)); 15477 } 15478 15479 return SDValue(); 15480 } 15481 15482 /// PerformInsertEltCombine - Target-specific dag combine xforms for 15483 /// ISD::INSERT_VECTOR_ELT. 15484 static SDValue PerformInsertEltCombine(SDNode *N, 15485 TargetLowering::DAGCombinerInfo &DCI) { 15486 // Bitcast an i64 load inserted into a vector to f64. 15487 // Otherwise, the i64 value will be legalized to a pair of i32 values. 15488 EVT VT = N->getValueType(0); 15489 SDNode *Elt = N->getOperand(1).getNode(); 15490 if (VT.getVectorElementType() != MVT::i64 || 15491 !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile()) 15492 return SDValue(); 15493 15494 SelectionDAG &DAG = DCI.DAG; 15495 SDLoc dl(N); 15496 EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, 15497 VT.getVectorNumElements()); 15498 SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0)); 15499 SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1)); 15500 // Make the DAGCombiner fold the bitcasts. 15501 DCI.AddToWorklist(Vec.getNode()); 15502 DCI.AddToWorklist(V.getNode()); 15503 SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT, 15504 Vec, V, N->getOperand(2)); 15505 return DAG.getNode(ISD::BITCAST, dl, VT, InsElt); 15506 } 15507 15508 // Convert a pair of extracts from the same base vector to a VMOVRRD. Either 15509 // directly or bitcast to an integer if the original is a float vector. 15510 // extract(x, n); extract(x, n+1) -> VMOVRRD(extract v2f64 x, n/2) 15511 // bitcast(extract(x, n)); bitcast(extract(x, n+1)) -> VMOVRRD(extract x, n/2) 15512 static SDValue 15513 PerformExtractEltToVMOVRRD(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 15514 EVT VT = N->getValueType(0); 15515 SDLoc dl(N); 15516 15517 if (!DCI.isAfterLegalizeDAG() || VT != MVT::i32 || 15518 !DCI.DAG.getTargetLoweringInfo().isTypeLegal(MVT::f64)) 15519 return SDValue(); 15520 15521 SDValue Ext = SDValue(N, 0); 15522 if (Ext.getOpcode() == ISD::BITCAST && 15523 Ext.getOperand(0).getValueType() == MVT::f32) 15524 Ext = Ext.getOperand(0); 15525 if (Ext.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 15526 !isa<ConstantSDNode>(Ext.getOperand(1)) || 15527 Ext.getConstantOperandVal(1) % 2 != 0) 15528 return SDValue(); 15529 if (Ext->use_size() == 1 && 15530 (Ext->use_begin()->getOpcode() == ISD::SINT_TO_FP || 15531 Ext->use_begin()->getOpcode() == ISD::UINT_TO_FP)) 15532 return SDValue(); 15533 15534 SDValue Op0 = Ext.getOperand(0); 15535 EVT VecVT = Op0.getValueType(); 15536 unsigned ResNo = Op0.getResNo(); 15537 unsigned Lane = Ext.getConstantOperandVal(1); 15538 if (VecVT.getVectorNumElements() != 4) 15539 return SDValue(); 15540 15541 // Find another extract, of Lane + 1 15542 auto OtherIt = find_if(Op0->uses(), [&](SDNode *V) { 15543 return V->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 15544 isa<ConstantSDNode>(V->getOperand(1)) && 15545 V->getConstantOperandVal(1) == Lane + 1 && 15546 V->getOperand(0).getResNo() == ResNo; 15547 }); 15548 if (OtherIt == Op0->uses().end()) 15549 return SDValue(); 15550 15551 // For float extracts, we need to be converting to a i32 for both vector 15552 // lanes. 15553 SDValue OtherExt(*OtherIt, 0); 15554 if (OtherExt.getValueType() != MVT::i32) { 15555 if (OtherExt->use_size() != 1 || 15556 OtherExt->use_begin()->getOpcode() != ISD::BITCAST || 15557 OtherExt->use_begin()->getValueType(0) != MVT::i32) 15558 return SDValue(); 15559 OtherExt = SDValue(*OtherExt->use_begin(), 0); 15560 } 15561 15562 // Convert the type to a f64 and extract with a VMOVRRD. 15563 SDValue F64 = DCI.DAG.getNode( 15564 ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, 15565 DCI.DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, MVT::v2f64, Op0), 15566 DCI.DAG.getConstant(Ext.getConstantOperandVal(1) / 2, dl, MVT::i32)); 15567 SDValue VMOVRRD = 15568 DCI.DAG.getNode(ARMISD::VMOVRRD, dl, {MVT::i32, MVT::i32}, F64); 15569 15570 DCI.CombineTo(OtherExt.getNode(), SDValue(VMOVRRD.getNode(), 1)); 15571 return VMOVRRD; 15572 } 15573 15574 static SDValue PerformExtractEltCombine(SDNode *N, 15575 TargetLowering::DAGCombinerInfo &DCI, 15576 const ARMSubtarget *ST) { 15577 SDValue Op0 = N->getOperand(0); 15578 EVT VT = N->getValueType(0); 15579 SDLoc dl(N); 15580 15581 // extract (vdup x) -> x 15582 if (Op0->getOpcode() == ARMISD::VDUP) { 15583 SDValue X = Op0->getOperand(0); 15584 if (VT == MVT::f16 && X.getValueType() == MVT::i32) 15585 return DCI.DAG.getNode(ARMISD::VMOVhr, dl, VT, X); 15586 if (VT == MVT::i32 && X.getValueType() == MVT::f16) 15587 return DCI.DAG.getNode(ARMISD::VMOVrh, dl, VT, X); 15588 if (VT == MVT::f32 && X.getValueType() == MVT::i32) 15589 return DCI.DAG.getNode(ISD::BITCAST, dl, VT, X); 15590 15591 while (X.getValueType() != VT && X->getOpcode() == ISD::BITCAST) 15592 X = X->getOperand(0); 15593 if (X.getValueType() == VT) 15594 return X; 15595 } 15596 15597 // extract ARM_BUILD_VECTOR -> x 15598 if (Op0->getOpcode() == ARMISD::BUILD_VECTOR && 15599 isa<ConstantSDNode>(N->getOperand(1)) && 15600 N->getConstantOperandVal(1) < Op0.getNumOperands()) { 15601 return Op0.getOperand(N->getConstantOperandVal(1)); 15602 } 15603 15604 // extract(bitcast(BUILD_VECTOR(VMOVDRR(a, b), ..))) -> a or b 15605 if (Op0.getValueType() == MVT::v4i32 && 15606 isa<ConstantSDNode>(N->getOperand(1)) && 15607 Op0.getOpcode() == ISD::BITCAST && 15608 Op0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR && 15609 Op0.getOperand(0).getValueType() == MVT::v2f64) { 15610 SDValue BV = Op0.getOperand(0); 15611 unsigned Offset = N->getConstantOperandVal(1); 15612 SDValue MOV = BV.getOperand(Offset < 2 ? 0 : 1); 15613 if (MOV.getOpcode() == ARMISD::VMOVDRR) 15614 return MOV.getOperand(ST->isLittle() ? Offset % 2 : 1 - Offset % 2); 15615 } 15616 15617 // extract x, n; extract x, n+1 -> VMOVRRD x 15618 if (SDValue R = PerformExtractEltToVMOVRRD(N, DCI)) 15619 return R; 15620 15621 // extract (MVETrunc(x)) -> extract x 15622 if (Op0->getOpcode() == ARMISD::MVETRUNC) { 15623 unsigned Idx = N->getConstantOperandVal(1); 15624 unsigned Vec = 15625 Idx / Op0->getOperand(0).getValueType().getVectorNumElements(); 15626 unsigned SubIdx = 15627 Idx % Op0->getOperand(0).getValueType().getVectorNumElements(); 15628 return DCI.DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Op0.getOperand(Vec), 15629 DCI.DAG.getConstant(SubIdx, dl, MVT::i32)); 15630 } 15631 15632 return SDValue(); 15633 } 15634 15635 static SDValue PerformSignExtendInregCombine(SDNode *N, SelectionDAG &DAG) { 15636 SDValue Op = N->getOperand(0); 15637 EVT VT = N->getValueType(0); 15638 15639 // sext_inreg(VGETLANEu) -> VGETLANEs 15640 if (Op.getOpcode() == ARMISD::VGETLANEu && 15641 cast<VTSDNode>(N->getOperand(1))->getVT() == 15642 Op.getOperand(0).getValueType().getScalarType()) 15643 return DAG.getNode(ARMISD::VGETLANEs, SDLoc(N), VT, Op.getOperand(0), 15644 Op.getOperand(1)); 15645 15646 return SDValue(); 15647 } 15648 15649 static SDValue 15650 PerformInsertSubvectorCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 15651 SDValue Vec = N->getOperand(0); 15652 SDValue SubVec = N->getOperand(1); 15653 uint64_t IdxVal = N->getConstantOperandVal(2); 15654 EVT VecVT = Vec.getValueType(); 15655 EVT SubVT = SubVec.getValueType(); 15656 15657 // Only do this for legal fixed vector types. 15658 if (!VecVT.isFixedLengthVector() || 15659 !DCI.DAG.getTargetLoweringInfo().isTypeLegal(VecVT) || 15660 !DCI.DAG.getTargetLoweringInfo().isTypeLegal(SubVT)) 15661 return SDValue(); 15662 15663 // Ignore widening patterns. 15664 if (IdxVal == 0 && Vec.isUndef()) 15665 return SDValue(); 15666 15667 // Subvector must be half the width and an "aligned" insertion. 15668 unsigned NumSubElts = SubVT.getVectorNumElements(); 15669 if ((SubVT.getSizeInBits() * 2) != VecVT.getSizeInBits() || 15670 (IdxVal != 0 && IdxVal != NumSubElts)) 15671 return SDValue(); 15672 15673 // Fold insert_subvector -> concat_vectors 15674 // insert_subvector(Vec,Sub,lo) -> concat_vectors(Sub,extract(Vec,hi)) 15675 // insert_subvector(Vec,Sub,hi) -> concat_vectors(extract(Vec,lo),Sub) 15676 SDLoc DL(N); 15677 SDValue Lo, Hi; 15678 if (IdxVal == 0) { 15679 Lo = SubVec; 15680 Hi = DCI.DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, Vec, 15681 DCI.DAG.getVectorIdxConstant(NumSubElts, DL)); 15682 } else { 15683 Lo = DCI.DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, Vec, 15684 DCI.DAG.getVectorIdxConstant(0, DL)); 15685 Hi = SubVec; 15686 } 15687 return DCI.DAG.getNode(ISD::CONCAT_VECTORS, DL, VecVT, Lo, Hi); 15688 } 15689 15690 // shuffle(MVETrunc(x, y)) -> VMOVN(x, y) 15691 static SDValue PerformShuffleVMOVNCombine(ShuffleVectorSDNode *N, 15692 SelectionDAG &DAG) { 15693 SDValue Trunc = N->getOperand(0); 15694 EVT VT = Trunc.getValueType(); 15695 if (Trunc.getOpcode() != ARMISD::MVETRUNC || !N->getOperand(1).isUndef()) 15696 return SDValue(); 15697 15698 SDLoc DL(Trunc); 15699 if (isVMOVNTruncMask(N->getMask(), VT, false)) 15700 return DAG.getNode( 15701 ARMISD::VMOVN, DL, VT, 15702 DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, Trunc.getOperand(0)), 15703 DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, Trunc.getOperand(1)), 15704 DAG.getConstant(1, DL, MVT::i32)); 15705 else if (isVMOVNTruncMask(N->getMask(), VT, true)) 15706 return DAG.getNode( 15707 ARMISD::VMOVN, DL, VT, 15708 DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, Trunc.getOperand(1)), 15709 DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, Trunc.getOperand(0)), 15710 DAG.getConstant(1, DL, MVT::i32)); 15711 return SDValue(); 15712 } 15713 15714 /// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for 15715 /// ISD::VECTOR_SHUFFLE. 15716 static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) { 15717 if (SDValue R = PerformShuffleVMOVNCombine(cast<ShuffleVectorSDNode>(N), DAG)) 15718 return R; 15719 15720 // The LLVM shufflevector instruction does not require the shuffle mask 15721 // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does 15722 // have that requirement. When translating to ISD::VECTOR_SHUFFLE, if the 15723 // operands do not match the mask length, they are extended by concatenating 15724 // them with undef vectors. That is probably the right thing for other 15725 // targets, but for NEON it is better to concatenate two double-register 15726 // size vector operands into a single quad-register size vector. Do that 15727 // transformation here: 15728 // shuffle(concat(v1, undef), concat(v2, undef)) -> 15729 // shuffle(concat(v1, v2), undef) 15730 SDValue Op0 = N->getOperand(0); 15731 SDValue Op1 = N->getOperand(1); 15732 if (Op0.getOpcode() != ISD::CONCAT_VECTORS || 15733 Op1.getOpcode() != ISD::CONCAT_VECTORS || 15734 Op0.getNumOperands() != 2 || 15735 Op1.getNumOperands() != 2) 15736 return SDValue(); 15737 SDValue Concat0Op1 = Op0.getOperand(1); 15738 SDValue Concat1Op1 = Op1.getOperand(1); 15739 if (!Concat0Op1.isUndef() || !Concat1Op1.isUndef()) 15740 return SDValue(); 15741 // Skip the transformation if any of the types are illegal. 15742 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 15743 EVT VT = N->getValueType(0); 15744 if (!TLI.isTypeLegal(VT) || 15745 !TLI.isTypeLegal(Concat0Op1.getValueType()) || 15746 !TLI.isTypeLegal(Concat1Op1.getValueType())) 15747 return SDValue(); 15748 15749 SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, 15750 Op0.getOperand(0), Op1.getOperand(0)); 15751 // Translate the shuffle mask. 15752 SmallVector<int, 16> NewMask; 15753 unsigned NumElts = VT.getVectorNumElements(); 15754 unsigned HalfElts = NumElts/2; 15755 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 15756 for (unsigned n = 0; n < NumElts; ++n) { 15757 int MaskElt = SVN->getMaskElt(n); 15758 int NewElt = -1; 15759 if (MaskElt < (int)HalfElts) 15760 NewElt = MaskElt; 15761 else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts)) 15762 NewElt = HalfElts + MaskElt - NumElts; 15763 NewMask.push_back(NewElt); 15764 } 15765 return DAG.getVectorShuffle(VT, SDLoc(N), NewConcat, 15766 DAG.getUNDEF(VT), NewMask); 15767 } 15768 15769 /// Load/store instruction that can be merged with a base address 15770 /// update 15771 struct BaseUpdateTarget { 15772 SDNode *N; 15773 bool isIntrinsic; 15774 bool isStore; 15775 unsigned AddrOpIdx; 15776 }; 15777 15778 struct BaseUpdateUser { 15779 /// Instruction that updates a pointer 15780 SDNode *N; 15781 /// Pointer increment operand 15782 SDValue Inc; 15783 /// Pointer increment value if it is a constant, or 0 otherwise 15784 unsigned ConstInc; 15785 }; 15786 15787 static bool TryCombineBaseUpdate(struct BaseUpdateTarget &Target, 15788 struct BaseUpdateUser &User, 15789 bool SimpleConstIncOnly, 15790 TargetLowering::DAGCombinerInfo &DCI) { 15791 SelectionDAG &DAG = DCI.DAG; 15792 SDNode *N = Target.N; 15793 MemSDNode *MemN = cast<MemSDNode>(N); 15794 SDLoc dl(N); 15795 15796 // Find the new opcode for the updating load/store. 15797 bool isLoadOp = true; 15798 bool isLaneOp = false; 15799 // Workaround for vst1x and vld1x intrinsics which do not have alignment 15800 // as an operand. 15801 bool hasAlignment = true; 15802 unsigned NewOpc = 0; 15803 unsigned NumVecs = 0; 15804 if (Target.isIntrinsic) { 15805 unsigned IntNo = N->getConstantOperandVal(1); 15806 switch (IntNo) { 15807 default: 15808 llvm_unreachable("unexpected intrinsic for Neon base update"); 15809 case Intrinsic::arm_neon_vld1: 15810 NewOpc = ARMISD::VLD1_UPD; 15811 NumVecs = 1; 15812 break; 15813 case Intrinsic::arm_neon_vld2: 15814 NewOpc = ARMISD::VLD2_UPD; 15815 NumVecs = 2; 15816 break; 15817 case Intrinsic::arm_neon_vld3: 15818 NewOpc = ARMISD::VLD3_UPD; 15819 NumVecs = 3; 15820 break; 15821 case Intrinsic::arm_neon_vld4: 15822 NewOpc = ARMISD::VLD4_UPD; 15823 NumVecs = 4; 15824 break; 15825 case Intrinsic::arm_neon_vld1x2: 15826 NewOpc = ARMISD::VLD1x2_UPD; 15827 NumVecs = 2; 15828 hasAlignment = false; 15829 break; 15830 case Intrinsic::arm_neon_vld1x3: 15831 NewOpc = ARMISD::VLD1x3_UPD; 15832 NumVecs = 3; 15833 hasAlignment = false; 15834 break; 15835 case Intrinsic::arm_neon_vld1x4: 15836 NewOpc = ARMISD::VLD1x4_UPD; 15837 NumVecs = 4; 15838 hasAlignment = false; 15839 break; 15840 case Intrinsic::arm_neon_vld2dup: 15841 NewOpc = ARMISD::VLD2DUP_UPD; 15842 NumVecs = 2; 15843 break; 15844 case Intrinsic::arm_neon_vld3dup: 15845 NewOpc = ARMISD::VLD3DUP_UPD; 15846 NumVecs = 3; 15847 break; 15848 case Intrinsic::arm_neon_vld4dup: 15849 NewOpc = ARMISD::VLD4DUP_UPD; 15850 NumVecs = 4; 15851 break; 15852 case Intrinsic::arm_neon_vld2lane: 15853 NewOpc = ARMISD::VLD2LN_UPD; 15854 NumVecs = 2; 15855 isLaneOp = true; 15856 break; 15857 case Intrinsic::arm_neon_vld3lane: 15858 NewOpc = ARMISD::VLD3LN_UPD; 15859 NumVecs = 3; 15860 isLaneOp = true; 15861 break; 15862 case Intrinsic::arm_neon_vld4lane: 15863 NewOpc = ARMISD::VLD4LN_UPD; 15864 NumVecs = 4; 15865 isLaneOp = true; 15866 break; 15867 case Intrinsic::arm_neon_vst1: 15868 NewOpc = ARMISD::VST1_UPD; 15869 NumVecs = 1; 15870 isLoadOp = false; 15871 break; 15872 case Intrinsic::arm_neon_vst2: 15873 NewOpc = ARMISD::VST2_UPD; 15874 NumVecs = 2; 15875 isLoadOp = false; 15876 break; 15877 case Intrinsic::arm_neon_vst3: 15878 NewOpc = ARMISD::VST3_UPD; 15879 NumVecs = 3; 15880 isLoadOp = false; 15881 break; 15882 case Intrinsic::arm_neon_vst4: 15883 NewOpc = ARMISD::VST4_UPD; 15884 NumVecs = 4; 15885 isLoadOp = false; 15886 break; 15887 case Intrinsic::arm_neon_vst2lane: 15888 NewOpc = ARMISD::VST2LN_UPD; 15889 NumVecs = 2; 15890 isLoadOp = false; 15891 isLaneOp = true; 15892 break; 15893 case Intrinsic::arm_neon_vst3lane: 15894 NewOpc = ARMISD::VST3LN_UPD; 15895 NumVecs = 3; 15896 isLoadOp = false; 15897 isLaneOp = true; 15898 break; 15899 case Intrinsic::arm_neon_vst4lane: 15900 NewOpc = ARMISD::VST4LN_UPD; 15901 NumVecs = 4; 15902 isLoadOp = false; 15903 isLaneOp = true; 15904 break; 15905 case Intrinsic::arm_neon_vst1x2: 15906 NewOpc = ARMISD::VST1x2_UPD; 15907 NumVecs = 2; 15908 isLoadOp = false; 15909 hasAlignment = false; 15910 break; 15911 case Intrinsic::arm_neon_vst1x3: 15912 NewOpc = ARMISD::VST1x3_UPD; 15913 NumVecs = 3; 15914 isLoadOp = false; 15915 hasAlignment = false; 15916 break; 15917 case Intrinsic::arm_neon_vst1x4: 15918 NewOpc = ARMISD::VST1x4_UPD; 15919 NumVecs = 4; 15920 isLoadOp = false; 15921 hasAlignment = false; 15922 break; 15923 } 15924 } else { 15925 isLaneOp = true; 15926 switch (N->getOpcode()) { 15927 default: 15928 llvm_unreachable("unexpected opcode for Neon base update"); 15929 case ARMISD::VLD1DUP: 15930 NewOpc = ARMISD::VLD1DUP_UPD; 15931 NumVecs = 1; 15932 break; 15933 case ARMISD::VLD2DUP: 15934 NewOpc = ARMISD::VLD2DUP_UPD; 15935 NumVecs = 2; 15936 break; 15937 case ARMISD::VLD3DUP: 15938 NewOpc = ARMISD::VLD3DUP_UPD; 15939 NumVecs = 3; 15940 break; 15941 case ARMISD::VLD4DUP: 15942 NewOpc = ARMISD::VLD4DUP_UPD; 15943 NumVecs = 4; 15944 break; 15945 case ISD::LOAD: 15946 NewOpc = ARMISD::VLD1_UPD; 15947 NumVecs = 1; 15948 isLaneOp = false; 15949 break; 15950 case ISD::STORE: 15951 NewOpc = ARMISD::VST1_UPD; 15952 NumVecs = 1; 15953 isLaneOp = false; 15954 isLoadOp = false; 15955 break; 15956 } 15957 } 15958 15959 // Find the size of memory referenced by the load/store. 15960 EVT VecTy; 15961 if (isLoadOp) { 15962 VecTy = N->getValueType(0); 15963 } else if (Target.isIntrinsic) { 15964 VecTy = N->getOperand(Target.AddrOpIdx + 1).getValueType(); 15965 } else { 15966 assert(Target.isStore && 15967 "Node has to be a load, a store, or an intrinsic!"); 15968 VecTy = N->getOperand(1).getValueType(); 15969 } 15970 15971 bool isVLDDUPOp = 15972 NewOpc == ARMISD::VLD1DUP_UPD || NewOpc == ARMISD::VLD2DUP_UPD || 15973 NewOpc == ARMISD::VLD3DUP_UPD || NewOpc == ARMISD::VLD4DUP_UPD; 15974 15975 unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8; 15976 if (isLaneOp || isVLDDUPOp) 15977 NumBytes /= VecTy.getVectorNumElements(); 15978 15979 if (NumBytes >= 3 * 16 && User.ConstInc != NumBytes) { 15980 // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two 15981 // separate instructions that make it harder to use a non-constant update. 15982 return false; 15983 } 15984 15985 if (SimpleConstIncOnly && User.ConstInc != NumBytes) 15986 return false; 15987 15988 // OK, we found an ADD we can fold into the base update. 15989 // Now, create a _UPD node, taking care of not breaking alignment. 15990 15991 EVT AlignedVecTy = VecTy; 15992 Align Alignment = MemN->getAlign(); 15993 15994 // If this is a less-than-standard-aligned load/store, change the type to 15995 // match the standard alignment. 15996 // The alignment is overlooked when selecting _UPD variants; and it's 15997 // easier to introduce bitcasts here than fix that. 15998 // There are 3 ways to get to this base-update combine: 15999 // - intrinsics: they are assumed to be properly aligned (to the standard 16000 // alignment of the memory type), so we don't need to do anything. 16001 // - ARMISD::VLDx nodes: they are only generated from the aforementioned 16002 // intrinsics, so, likewise, there's nothing to do. 16003 // - generic load/store instructions: the alignment is specified as an 16004 // explicit operand, rather than implicitly as the standard alignment 16005 // of the memory type (like the intrisics). We need to change the 16006 // memory type to match the explicit alignment. That way, we don't 16007 // generate non-standard-aligned ARMISD::VLDx nodes. 16008 if (isa<LSBaseSDNode>(N)) { 16009 if (Alignment.value() < VecTy.getScalarSizeInBits() / 8) { 16010 MVT EltTy = MVT::getIntegerVT(Alignment.value() * 8); 16011 assert(NumVecs == 1 && "Unexpected multi-element generic load/store."); 16012 assert(!isLaneOp && "Unexpected generic load/store lane."); 16013 unsigned NumElts = NumBytes / (EltTy.getSizeInBits() / 8); 16014 AlignedVecTy = MVT::getVectorVT(EltTy, NumElts); 16015 } 16016 // Don't set an explicit alignment on regular load/stores that we want 16017 // to transform to VLD/VST 1_UPD nodes. 16018 // This matches the behavior of regular load/stores, which only get an 16019 // explicit alignment if the MMO alignment is larger than the standard 16020 // alignment of the memory type. 16021 // Intrinsics, however, always get an explicit alignment, set to the 16022 // alignment of the MMO. 16023 Alignment = Align(1); 16024 } 16025 16026 // Create the new updating load/store node. 16027 // First, create an SDVTList for the new updating node's results. 16028 EVT Tys[6]; 16029 unsigned NumResultVecs = (isLoadOp ? NumVecs : 0); 16030 unsigned n; 16031 for (n = 0; n < NumResultVecs; ++n) 16032 Tys[n] = AlignedVecTy; 16033 Tys[n++] = MVT::i32; 16034 Tys[n] = MVT::Other; 16035 SDVTList SDTys = DAG.getVTList(ArrayRef(Tys, NumResultVecs + 2)); 16036 16037 // Then, gather the new node's operands. 16038 SmallVector<SDValue, 8> Ops; 16039 Ops.push_back(N->getOperand(0)); // incoming chain 16040 Ops.push_back(N->getOperand(Target.AddrOpIdx)); 16041 Ops.push_back(User.Inc); 16042 16043 if (StoreSDNode *StN = dyn_cast<StoreSDNode>(N)) { 16044 // Try to match the intrinsic's signature 16045 Ops.push_back(StN->getValue()); 16046 } else { 16047 // Loads (and of course intrinsics) match the intrinsics' signature, 16048 // so just add all but the alignment operand. 16049 unsigned LastOperand = 16050 hasAlignment ? N->getNumOperands() - 1 : N->getNumOperands(); 16051 for (unsigned i = Target.AddrOpIdx + 1; i < LastOperand; ++i) 16052 Ops.push_back(N->getOperand(i)); 16053 } 16054 16055 // For all node types, the alignment operand is always the last one. 16056 Ops.push_back(DAG.getConstant(Alignment.value(), dl, MVT::i32)); 16057 16058 // If this is a non-standard-aligned STORE, the penultimate operand is the 16059 // stored value. Bitcast it to the aligned type. 16060 if (AlignedVecTy != VecTy && N->getOpcode() == ISD::STORE) { 16061 SDValue &StVal = Ops[Ops.size() - 2]; 16062 StVal = DAG.getNode(ISD::BITCAST, dl, AlignedVecTy, StVal); 16063 } 16064 16065 EVT LoadVT = isLaneOp ? VecTy.getVectorElementType() : AlignedVecTy; 16066 SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, dl, SDTys, Ops, LoadVT, 16067 MemN->getMemOperand()); 16068 16069 // Update the uses. 16070 SmallVector<SDValue, 5> NewResults; 16071 for (unsigned i = 0; i < NumResultVecs; ++i) 16072 NewResults.push_back(SDValue(UpdN.getNode(), i)); 16073 16074 // If this is an non-standard-aligned LOAD, the first result is the loaded 16075 // value. Bitcast it to the expected result type. 16076 if (AlignedVecTy != VecTy && N->getOpcode() == ISD::LOAD) { 16077 SDValue &LdVal = NewResults[0]; 16078 LdVal = DAG.getNode(ISD::BITCAST, dl, VecTy, LdVal); 16079 } 16080 16081 NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1)); // chain 16082 DCI.CombineTo(N, NewResults); 16083 DCI.CombineTo(User.N, SDValue(UpdN.getNode(), NumResultVecs)); 16084 16085 return true; 16086 } 16087 16088 // If (opcode ptr inc) is and ADD-like instruction, return the 16089 // increment value. Otherwise return 0. 16090 static unsigned getPointerConstIncrement(unsigned Opcode, SDValue Ptr, 16091 SDValue Inc, const SelectionDAG &DAG) { 16092 ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode()); 16093 if (!CInc) 16094 return 0; 16095 16096 switch (Opcode) { 16097 case ARMISD::VLD1_UPD: 16098 case ISD::ADD: 16099 return CInc->getZExtValue(); 16100 case ISD::OR: { 16101 if (DAG.haveNoCommonBitsSet(Ptr, Inc)) { 16102 // (OR ptr inc) is the same as (ADD ptr inc) 16103 return CInc->getZExtValue(); 16104 } 16105 return 0; 16106 } 16107 default: 16108 return 0; 16109 } 16110 } 16111 16112 static bool findPointerConstIncrement(SDNode *N, SDValue *Ptr, SDValue *CInc) { 16113 switch (N->getOpcode()) { 16114 case ISD::ADD: 16115 case ISD::OR: { 16116 if (isa<ConstantSDNode>(N->getOperand(1))) { 16117 *Ptr = N->getOperand(0); 16118 *CInc = N->getOperand(1); 16119 return true; 16120 } 16121 return false; 16122 } 16123 case ARMISD::VLD1_UPD: { 16124 if (isa<ConstantSDNode>(N->getOperand(2))) { 16125 *Ptr = N->getOperand(1); 16126 *CInc = N->getOperand(2); 16127 return true; 16128 } 16129 return false; 16130 } 16131 default: 16132 return false; 16133 } 16134 } 16135 16136 static bool isValidBaseUpdate(SDNode *N, SDNode *User) { 16137 // Check that the add is independent of the load/store. 16138 // Otherwise, folding it would create a cycle. Search through Addr 16139 // as well, since the User may not be a direct user of Addr and 16140 // only share a base pointer. 16141 SmallPtrSet<const SDNode *, 32> Visited; 16142 SmallVector<const SDNode *, 16> Worklist; 16143 Worklist.push_back(N); 16144 Worklist.push_back(User); 16145 if (SDNode::hasPredecessorHelper(N, Visited, Worklist) || 16146 SDNode::hasPredecessorHelper(User, Visited, Worklist)) 16147 return false; 16148 return true; 16149 } 16150 16151 /// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP, 16152 /// NEON load/store intrinsics, and generic vector load/stores, to merge 16153 /// base address updates. 16154 /// For generic load/stores, the memory type is assumed to be a vector. 16155 /// The caller is assumed to have checked legality. 16156 static SDValue CombineBaseUpdate(SDNode *N, 16157 TargetLowering::DAGCombinerInfo &DCI) { 16158 const bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID || 16159 N->getOpcode() == ISD::INTRINSIC_W_CHAIN); 16160 const bool isStore = N->getOpcode() == ISD::STORE; 16161 const unsigned AddrOpIdx = ((isIntrinsic || isStore) ? 2 : 1); 16162 BaseUpdateTarget Target = {N, isIntrinsic, isStore, AddrOpIdx}; 16163 16164 SDValue Addr = N->getOperand(AddrOpIdx); 16165 16166 SmallVector<BaseUpdateUser, 8> BaseUpdates; 16167 16168 // Search for a use of the address operand that is an increment. 16169 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), 16170 UE = Addr.getNode()->use_end(); UI != UE; ++UI) { 16171 SDNode *User = *UI; 16172 if (UI.getUse().getResNo() != Addr.getResNo() || 16173 User->getNumOperands() != 2) 16174 continue; 16175 16176 SDValue Inc = User->getOperand(UI.getOperandNo() == 1 ? 0 : 1); 16177 unsigned ConstInc = 16178 getPointerConstIncrement(User->getOpcode(), Addr, Inc, DCI.DAG); 16179 16180 if (ConstInc || User->getOpcode() == ISD::ADD) 16181 BaseUpdates.push_back({User, Inc, ConstInc}); 16182 } 16183 16184 // If the address is a constant pointer increment itself, find 16185 // another constant increment that has the same base operand 16186 SDValue Base; 16187 SDValue CInc; 16188 if (findPointerConstIncrement(Addr.getNode(), &Base, &CInc)) { 16189 unsigned Offset = 16190 getPointerConstIncrement(Addr->getOpcode(), Base, CInc, DCI.DAG); 16191 for (SDNode::use_iterator UI = Base->use_begin(), UE = Base->use_end(); 16192 UI != UE; ++UI) { 16193 16194 SDNode *User = *UI; 16195 if (UI.getUse().getResNo() != Base.getResNo() || User == Addr.getNode() || 16196 User->getNumOperands() != 2) 16197 continue; 16198 16199 SDValue UserInc = User->getOperand(UI.getOperandNo() == 0 ? 1 : 0); 16200 unsigned UserOffset = 16201 getPointerConstIncrement(User->getOpcode(), Base, UserInc, DCI.DAG); 16202 16203 if (!UserOffset || UserOffset <= Offset) 16204 continue; 16205 16206 unsigned NewConstInc = UserOffset - Offset; 16207 SDValue NewInc = DCI.DAG.getConstant(NewConstInc, SDLoc(N), MVT::i32); 16208 BaseUpdates.push_back({User, NewInc, NewConstInc}); 16209 } 16210 } 16211 16212 // Try to fold the load/store with an update that matches memory 16213 // access size. This should work well for sequential loads. 16214 // 16215 // Filter out invalid updates as well. 16216 unsigned NumValidUpd = BaseUpdates.size(); 16217 for (unsigned I = 0; I < NumValidUpd;) { 16218 BaseUpdateUser &User = BaseUpdates[I]; 16219 if (!isValidBaseUpdate(N, User.N)) { 16220 --NumValidUpd; 16221 std::swap(BaseUpdates[I], BaseUpdates[NumValidUpd]); 16222 continue; 16223 } 16224 16225 if (TryCombineBaseUpdate(Target, User, /*SimpleConstIncOnly=*/true, DCI)) 16226 return SDValue(); 16227 ++I; 16228 } 16229 BaseUpdates.resize(NumValidUpd); 16230 16231 // Try to fold with other users. Non-constant updates are considered 16232 // first, and constant updates are sorted to not break a sequence of 16233 // strided accesses (if there is any). 16234 std::stable_sort(BaseUpdates.begin(), BaseUpdates.end(), 16235 [](const BaseUpdateUser &LHS, const BaseUpdateUser &RHS) { 16236 return LHS.ConstInc < RHS.ConstInc; 16237 }); 16238 for (BaseUpdateUser &User : BaseUpdates) { 16239 if (TryCombineBaseUpdate(Target, User, /*SimpleConstIncOnly=*/false, DCI)) 16240 return SDValue(); 16241 } 16242 return SDValue(); 16243 } 16244 16245 static SDValue PerformVLDCombine(SDNode *N, 16246 TargetLowering::DAGCombinerInfo &DCI) { 16247 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer()) 16248 return SDValue(); 16249 16250 return CombineBaseUpdate(N, DCI); 16251 } 16252 16253 static SDValue PerformMVEVLDCombine(SDNode *N, 16254 TargetLowering::DAGCombinerInfo &DCI) { 16255 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer()) 16256 return SDValue(); 16257 16258 SelectionDAG &DAG = DCI.DAG; 16259 SDValue Addr = N->getOperand(2); 16260 MemSDNode *MemN = cast<MemSDNode>(N); 16261 SDLoc dl(N); 16262 16263 // For the stores, where there are multiple intrinsics we only actually want 16264 // to post-inc the last of the them. 16265 unsigned IntNo = N->getConstantOperandVal(1); 16266 if (IntNo == Intrinsic::arm_mve_vst2q && N->getConstantOperandVal(5) != 1) 16267 return SDValue(); 16268 if (IntNo == Intrinsic::arm_mve_vst4q && N->getConstantOperandVal(7) != 3) 16269 return SDValue(); 16270 16271 // Search for a use of the address operand that is an increment. 16272 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), 16273 UE = Addr.getNode()->use_end(); 16274 UI != UE; ++UI) { 16275 SDNode *User = *UI; 16276 if (User->getOpcode() != ISD::ADD || 16277 UI.getUse().getResNo() != Addr.getResNo()) 16278 continue; 16279 16280 // Check that the add is independent of the load/store. Otherwise, folding 16281 // it would create a cycle. We can avoid searching through Addr as it's a 16282 // predecessor to both. 16283 SmallPtrSet<const SDNode *, 32> Visited; 16284 SmallVector<const SDNode *, 16> Worklist; 16285 Visited.insert(Addr.getNode()); 16286 Worklist.push_back(N); 16287 Worklist.push_back(User); 16288 if (SDNode::hasPredecessorHelper(N, Visited, Worklist) || 16289 SDNode::hasPredecessorHelper(User, Visited, Worklist)) 16290 continue; 16291 16292 // Find the new opcode for the updating load/store. 16293 bool isLoadOp = true; 16294 unsigned NewOpc = 0; 16295 unsigned NumVecs = 0; 16296 switch (IntNo) { 16297 default: 16298 llvm_unreachable("unexpected intrinsic for MVE VLDn combine"); 16299 case Intrinsic::arm_mve_vld2q: 16300 NewOpc = ARMISD::VLD2_UPD; 16301 NumVecs = 2; 16302 break; 16303 case Intrinsic::arm_mve_vld4q: 16304 NewOpc = ARMISD::VLD4_UPD; 16305 NumVecs = 4; 16306 break; 16307 case Intrinsic::arm_mve_vst2q: 16308 NewOpc = ARMISD::VST2_UPD; 16309 NumVecs = 2; 16310 isLoadOp = false; 16311 break; 16312 case Intrinsic::arm_mve_vst4q: 16313 NewOpc = ARMISD::VST4_UPD; 16314 NumVecs = 4; 16315 isLoadOp = false; 16316 break; 16317 } 16318 16319 // Find the size of memory referenced by the load/store. 16320 EVT VecTy; 16321 if (isLoadOp) { 16322 VecTy = N->getValueType(0); 16323 } else { 16324 VecTy = N->getOperand(3).getValueType(); 16325 } 16326 16327 unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8; 16328 16329 // If the increment is a constant, it must match the memory ref size. 16330 SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0); 16331 ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode()); 16332 if (!CInc || CInc->getZExtValue() != NumBytes) 16333 continue; 16334 16335 // Create the new updating load/store node. 16336 // First, create an SDVTList for the new updating node's results. 16337 EVT Tys[6]; 16338 unsigned NumResultVecs = (isLoadOp ? NumVecs : 0); 16339 unsigned n; 16340 for (n = 0; n < NumResultVecs; ++n) 16341 Tys[n] = VecTy; 16342 Tys[n++] = MVT::i32; 16343 Tys[n] = MVT::Other; 16344 SDVTList SDTys = DAG.getVTList(ArrayRef(Tys, NumResultVecs + 2)); 16345 16346 // Then, gather the new node's operands. 16347 SmallVector<SDValue, 8> Ops; 16348 Ops.push_back(N->getOperand(0)); // incoming chain 16349 Ops.push_back(N->getOperand(2)); // ptr 16350 Ops.push_back(Inc); 16351 16352 for (unsigned i = 3; i < N->getNumOperands(); ++i) 16353 Ops.push_back(N->getOperand(i)); 16354 16355 SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, dl, SDTys, Ops, VecTy, 16356 MemN->getMemOperand()); 16357 16358 // Update the uses. 16359 SmallVector<SDValue, 5> NewResults; 16360 for (unsigned i = 0; i < NumResultVecs; ++i) 16361 NewResults.push_back(SDValue(UpdN.getNode(), i)); 16362 16363 NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1)); // chain 16364 DCI.CombineTo(N, NewResults); 16365 DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs)); 16366 16367 break; 16368 } 16369 16370 return SDValue(); 16371 } 16372 16373 /// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a 16374 /// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic 16375 /// are also VDUPLANEs. If so, combine them to a vldN-dup operation and 16376 /// return true. 16377 static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 16378 SelectionDAG &DAG = DCI.DAG; 16379 EVT VT = N->getValueType(0); 16380 // vldN-dup instructions only support 64-bit vectors for N > 1. 16381 if (!VT.is64BitVector()) 16382 return false; 16383 16384 // Check if the VDUPLANE operand is a vldN-dup intrinsic. 16385 SDNode *VLD = N->getOperand(0).getNode(); 16386 if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN) 16387 return false; 16388 unsigned NumVecs = 0; 16389 unsigned NewOpc = 0; 16390 unsigned IntNo = VLD->getConstantOperandVal(1); 16391 if (IntNo == Intrinsic::arm_neon_vld2lane) { 16392 NumVecs = 2; 16393 NewOpc = ARMISD::VLD2DUP; 16394 } else if (IntNo == Intrinsic::arm_neon_vld3lane) { 16395 NumVecs = 3; 16396 NewOpc = ARMISD::VLD3DUP; 16397 } else if (IntNo == Intrinsic::arm_neon_vld4lane) { 16398 NumVecs = 4; 16399 NewOpc = ARMISD::VLD4DUP; 16400 } else { 16401 return false; 16402 } 16403 16404 // First check that all the vldN-lane uses are VDUPLANEs and that the lane 16405 // numbers match the load. 16406 unsigned VLDLaneNo = VLD->getConstantOperandVal(NumVecs + 3); 16407 for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end(); 16408 UI != UE; ++UI) { 16409 // Ignore uses of the chain result. 16410 if (UI.getUse().getResNo() == NumVecs) 16411 continue; 16412 SDNode *User = *UI; 16413 if (User->getOpcode() != ARMISD::VDUPLANE || 16414 VLDLaneNo != User->getConstantOperandVal(1)) 16415 return false; 16416 } 16417 16418 // Create the vldN-dup node. 16419 EVT Tys[5]; 16420 unsigned n; 16421 for (n = 0; n < NumVecs; ++n) 16422 Tys[n] = VT; 16423 Tys[n] = MVT::Other; 16424 SDVTList SDTys = DAG.getVTList(ArrayRef(Tys, NumVecs + 1)); 16425 SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) }; 16426 MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD); 16427 SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, SDLoc(VLD), SDTys, 16428 Ops, VLDMemInt->getMemoryVT(), 16429 VLDMemInt->getMemOperand()); 16430 16431 // Update the uses. 16432 for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end(); 16433 UI != UE; ++UI) { 16434 unsigned ResNo = UI.getUse().getResNo(); 16435 // Ignore uses of the chain result. 16436 if (ResNo == NumVecs) 16437 continue; 16438 SDNode *User = *UI; 16439 DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo)); 16440 } 16441 16442 // Now the vldN-lane intrinsic is dead except for its chain result. 16443 // Update uses of the chain. 16444 std::vector<SDValue> VLDDupResults; 16445 for (unsigned n = 0; n < NumVecs; ++n) 16446 VLDDupResults.push_back(SDValue(VLDDup.getNode(), n)); 16447 VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs)); 16448 DCI.CombineTo(VLD, VLDDupResults); 16449 16450 return true; 16451 } 16452 16453 /// PerformVDUPLANECombine - Target-specific dag combine xforms for 16454 /// ARMISD::VDUPLANE. 16455 static SDValue PerformVDUPLANECombine(SDNode *N, 16456 TargetLowering::DAGCombinerInfo &DCI, 16457 const ARMSubtarget *Subtarget) { 16458 SDValue Op = N->getOperand(0); 16459 EVT VT = N->getValueType(0); 16460 16461 // On MVE, we just convert the VDUPLANE to a VDUP with an extract. 16462 if (Subtarget->hasMVEIntegerOps()) { 16463 EVT ExtractVT = VT.getVectorElementType(); 16464 // We need to ensure we are creating a legal type. 16465 if (!DCI.DAG.getTargetLoweringInfo().isTypeLegal(ExtractVT)) 16466 ExtractVT = MVT::i32; 16467 SDValue Extract = DCI.DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), ExtractVT, 16468 N->getOperand(0), N->getOperand(1)); 16469 return DCI.DAG.getNode(ARMISD::VDUP, SDLoc(N), VT, Extract); 16470 } 16471 16472 // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses 16473 // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation. 16474 if (CombineVLDDUP(N, DCI)) 16475 return SDValue(N, 0); 16476 16477 // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is 16478 // redundant. Ignore bit_converts for now; element sizes are checked below. 16479 while (Op.getOpcode() == ISD::BITCAST) 16480 Op = Op.getOperand(0); 16481 if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM) 16482 return SDValue(); 16483 16484 // Make sure the VMOV element size is not bigger than the VDUPLANE elements. 16485 unsigned EltSize = Op.getScalarValueSizeInBits(); 16486 // The canonical VMOV for a zero vector uses a 32-bit element size. 16487 unsigned Imm = Op.getConstantOperandVal(0); 16488 unsigned EltBits; 16489 if (ARM_AM::decodeVMOVModImm(Imm, EltBits) == 0) 16490 EltSize = 8; 16491 if (EltSize > VT.getScalarSizeInBits()) 16492 return SDValue(); 16493 16494 return DCI.DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); 16495 } 16496 16497 /// PerformVDUPCombine - Target-specific dag combine xforms for ARMISD::VDUP. 16498 static SDValue PerformVDUPCombine(SDNode *N, SelectionDAG &DAG, 16499 const ARMSubtarget *Subtarget) { 16500 SDValue Op = N->getOperand(0); 16501 SDLoc dl(N); 16502 16503 if (Subtarget->hasMVEIntegerOps()) { 16504 // Convert VDUP f32 -> VDUP BITCAST i32 under MVE, as we know the value will 16505 // need to come from a GPR. 16506 if (Op.getValueType() == MVT::f32) 16507 return DAG.getNode(ARMISD::VDUP, dl, N->getValueType(0), 16508 DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op)); 16509 else if (Op.getValueType() == MVT::f16) 16510 return DAG.getNode(ARMISD::VDUP, dl, N->getValueType(0), 16511 DAG.getNode(ARMISD::VMOVrh, dl, MVT::i32, Op)); 16512 } 16513 16514 if (!Subtarget->hasNEON()) 16515 return SDValue(); 16516 16517 // Match VDUP(LOAD) -> VLD1DUP. 16518 // We match this pattern here rather than waiting for isel because the 16519 // transform is only legal for unindexed loads. 16520 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode()); 16521 if (LD && Op.hasOneUse() && LD->isUnindexed() && 16522 LD->getMemoryVT() == N->getValueType(0).getVectorElementType()) { 16523 SDValue Ops[] = {LD->getOperand(0), LD->getOperand(1), 16524 DAG.getConstant(LD->getAlign().value(), SDLoc(N), MVT::i32)}; 16525 SDVTList SDTys = DAG.getVTList(N->getValueType(0), MVT::Other); 16526 SDValue VLDDup = 16527 DAG.getMemIntrinsicNode(ARMISD::VLD1DUP, SDLoc(N), SDTys, Ops, 16528 LD->getMemoryVT(), LD->getMemOperand()); 16529 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), VLDDup.getValue(1)); 16530 return VLDDup; 16531 } 16532 16533 return SDValue(); 16534 } 16535 16536 static SDValue PerformLOADCombine(SDNode *N, 16537 TargetLowering::DAGCombinerInfo &DCI, 16538 const ARMSubtarget *Subtarget) { 16539 EVT VT = N->getValueType(0); 16540 16541 // If this is a legal vector load, try to combine it into a VLD1_UPD. 16542 if (Subtarget->hasNEON() && ISD::isNormalLoad(N) && VT.isVector() && 16543 DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT)) 16544 return CombineBaseUpdate(N, DCI); 16545 16546 return SDValue(); 16547 } 16548 16549 // Optimize trunc store (of multiple scalars) to shuffle and store. First, 16550 // pack all of the elements in one place. Next, store to memory in fewer 16551 // chunks. 16552 static SDValue PerformTruncatingStoreCombine(StoreSDNode *St, 16553 SelectionDAG &DAG) { 16554 SDValue StVal = St->getValue(); 16555 EVT VT = StVal.getValueType(); 16556 if (!St->isTruncatingStore() || !VT.isVector()) 16557 return SDValue(); 16558 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 16559 EVT StVT = St->getMemoryVT(); 16560 unsigned NumElems = VT.getVectorNumElements(); 16561 assert(StVT != VT && "Cannot truncate to the same type"); 16562 unsigned FromEltSz = VT.getScalarSizeInBits(); 16563 unsigned ToEltSz = StVT.getScalarSizeInBits(); 16564 16565 // From, To sizes and ElemCount must be pow of two 16566 if (!isPowerOf2_32(NumElems * FromEltSz * ToEltSz)) 16567 return SDValue(); 16568 16569 // We are going to use the original vector elt for storing. 16570 // Accumulated smaller vector elements must be a multiple of the store size. 16571 if (0 != (NumElems * FromEltSz) % ToEltSz) 16572 return SDValue(); 16573 16574 unsigned SizeRatio = FromEltSz / ToEltSz; 16575 assert(SizeRatio * NumElems * ToEltSz == VT.getSizeInBits()); 16576 16577 // Create a type on which we perform the shuffle. 16578 EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(), 16579 NumElems * SizeRatio); 16580 assert(WideVecVT.getSizeInBits() == VT.getSizeInBits()); 16581 16582 SDLoc DL(St); 16583 SDValue WideVec = DAG.getNode(ISD::BITCAST, DL, WideVecVT, StVal); 16584 SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1); 16585 for (unsigned i = 0; i < NumElems; ++i) 16586 ShuffleVec[i] = DAG.getDataLayout().isBigEndian() ? (i + 1) * SizeRatio - 1 16587 : i * SizeRatio; 16588 16589 // Can't shuffle using an illegal type. 16590 if (!TLI.isTypeLegal(WideVecVT)) 16591 return SDValue(); 16592 16593 SDValue Shuff = DAG.getVectorShuffle( 16594 WideVecVT, DL, WideVec, DAG.getUNDEF(WideVec.getValueType()), ShuffleVec); 16595 // At this point all of the data is stored at the bottom of the 16596 // register. We now need to save it to mem. 16597 16598 // Find the largest store unit 16599 MVT StoreType = MVT::i8; 16600 for (MVT Tp : MVT::integer_valuetypes()) { 16601 if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToEltSz) 16602 StoreType = Tp; 16603 } 16604 // Didn't find a legal store type. 16605 if (!TLI.isTypeLegal(StoreType)) 16606 return SDValue(); 16607 16608 // Bitcast the original vector into a vector of store-size units 16609 EVT StoreVecVT = 16610 EVT::getVectorVT(*DAG.getContext(), StoreType, 16611 VT.getSizeInBits() / EVT(StoreType).getSizeInBits()); 16612 assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits()); 16613 SDValue ShuffWide = DAG.getNode(ISD::BITCAST, DL, StoreVecVT, Shuff); 16614 SmallVector<SDValue, 8> Chains; 16615 SDValue Increment = DAG.getConstant(StoreType.getSizeInBits() / 8, DL, 16616 TLI.getPointerTy(DAG.getDataLayout())); 16617 SDValue BasePtr = St->getBasePtr(); 16618 16619 // Perform one or more big stores into memory. 16620 unsigned E = (ToEltSz * NumElems) / StoreType.getSizeInBits(); 16621 for (unsigned I = 0; I < E; I++) { 16622 SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, StoreType, 16623 ShuffWide, DAG.getIntPtrConstant(I, DL)); 16624 SDValue Ch = 16625 DAG.getStore(St->getChain(), DL, SubVec, BasePtr, St->getPointerInfo(), 16626 St->getAlign(), St->getMemOperand()->getFlags()); 16627 BasePtr = 16628 DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr, Increment); 16629 Chains.push_back(Ch); 16630 } 16631 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 16632 } 16633 16634 // Try taking a single vector store from an fpround (which would otherwise turn 16635 // into an expensive buildvector) and splitting it into a series of narrowing 16636 // stores. 16637 static SDValue PerformSplittingToNarrowingStores(StoreSDNode *St, 16638 SelectionDAG &DAG) { 16639 if (!St->isSimple() || St->isTruncatingStore() || !St->isUnindexed()) 16640 return SDValue(); 16641 SDValue Trunc = St->getValue(); 16642 if (Trunc->getOpcode() != ISD::FP_ROUND) 16643 return SDValue(); 16644 EVT FromVT = Trunc->getOperand(0).getValueType(); 16645 EVT ToVT = Trunc.getValueType(); 16646 if (!ToVT.isVector()) 16647 return SDValue(); 16648 assert(FromVT.getVectorNumElements() == ToVT.getVectorNumElements()); 16649 EVT ToEltVT = ToVT.getVectorElementType(); 16650 EVT FromEltVT = FromVT.getVectorElementType(); 16651 16652 if (FromEltVT != MVT::f32 || ToEltVT != MVT::f16) 16653 return SDValue(); 16654 16655 unsigned NumElements = 4; 16656 if (FromVT.getVectorNumElements() % NumElements != 0) 16657 return SDValue(); 16658 16659 // Test if the Trunc will be convertable to a VMOVN with a shuffle, and if so 16660 // use the VMOVN over splitting the store. We are looking for patterns of: 16661 // !rev: 0 N 1 N+1 2 N+2 ... 16662 // rev: N 0 N+1 1 N+2 2 ... 16663 // The shuffle may either be a single source (in which case N = NumElts/2) or 16664 // two inputs extended with concat to the same size (in which case N = 16665 // NumElts). 16666 auto isVMOVNShuffle = [&](ShuffleVectorSDNode *SVN, bool Rev) { 16667 ArrayRef<int> M = SVN->getMask(); 16668 unsigned NumElts = ToVT.getVectorNumElements(); 16669 if (SVN->getOperand(1).isUndef()) 16670 NumElts /= 2; 16671 16672 unsigned Off0 = Rev ? NumElts : 0; 16673 unsigned Off1 = Rev ? 0 : NumElts; 16674 16675 for (unsigned I = 0; I < NumElts; I += 2) { 16676 if (M[I] >= 0 && M[I] != (int)(Off0 + I / 2)) 16677 return false; 16678 if (M[I + 1] >= 0 && M[I + 1] != (int)(Off1 + I / 2)) 16679 return false; 16680 } 16681 16682 return true; 16683 }; 16684 16685 if (auto *Shuffle = dyn_cast<ShuffleVectorSDNode>(Trunc.getOperand(0))) 16686 if (isVMOVNShuffle(Shuffle, false) || isVMOVNShuffle(Shuffle, true)) 16687 return SDValue(); 16688 16689 LLVMContext &C = *DAG.getContext(); 16690 SDLoc DL(St); 16691 // Details about the old store 16692 SDValue Ch = St->getChain(); 16693 SDValue BasePtr = St->getBasePtr(); 16694 Align Alignment = St->getOriginalAlign(); 16695 MachineMemOperand::Flags MMOFlags = St->getMemOperand()->getFlags(); 16696 AAMDNodes AAInfo = St->getAAInfo(); 16697 16698 // We split the store into slices of NumElements. fp16 trunc stores are vcvt 16699 // and then stored as truncating integer stores. 16700 EVT NewFromVT = EVT::getVectorVT(C, FromEltVT, NumElements); 16701 EVT NewToVT = EVT::getVectorVT( 16702 C, EVT::getIntegerVT(C, ToEltVT.getSizeInBits()), NumElements); 16703 16704 SmallVector<SDValue, 4> Stores; 16705 for (unsigned i = 0; i < FromVT.getVectorNumElements() / NumElements; i++) { 16706 unsigned NewOffset = i * NumElements * ToEltVT.getSizeInBits() / 8; 16707 SDValue NewPtr = 16708 DAG.getObjectPtrOffset(DL, BasePtr, TypeSize::getFixed(NewOffset)); 16709 16710 SDValue Extract = 16711 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NewFromVT, Trunc.getOperand(0), 16712 DAG.getConstant(i * NumElements, DL, MVT::i32)); 16713 16714 SDValue FPTrunc = 16715 DAG.getNode(ARMISD::VCVTN, DL, MVT::v8f16, DAG.getUNDEF(MVT::v8f16), 16716 Extract, DAG.getConstant(0, DL, MVT::i32)); 16717 Extract = DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, MVT::v4i32, FPTrunc); 16718 16719 SDValue Store = DAG.getTruncStore( 16720 Ch, DL, Extract, NewPtr, St->getPointerInfo().getWithOffset(NewOffset), 16721 NewToVT, Alignment, MMOFlags, AAInfo); 16722 Stores.push_back(Store); 16723 } 16724 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Stores); 16725 } 16726 16727 // Try taking a single vector store from an MVETRUNC (which would otherwise turn 16728 // into an expensive buildvector) and splitting it into a series of narrowing 16729 // stores. 16730 static SDValue PerformSplittingMVETruncToNarrowingStores(StoreSDNode *St, 16731 SelectionDAG &DAG) { 16732 if (!St->isSimple() || St->isTruncatingStore() || !St->isUnindexed()) 16733 return SDValue(); 16734 SDValue Trunc = St->getValue(); 16735 if (Trunc->getOpcode() != ARMISD::MVETRUNC) 16736 return SDValue(); 16737 EVT FromVT = Trunc->getOperand(0).getValueType(); 16738 EVT ToVT = Trunc.getValueType(); 16739 16740 LLVMContext &C = *DAG.getContext(); 16741 SDLoc DL(St); 16742 // Details about the old store 16743 SDValue Ch = St->getChain(); 16744 SDValue BasePtr = St->getBasePtr(); 16745 Align Alignment = St->getOriginalAlign(); 16746 MachineMemOperand::Flags MMOFlags = St->getMemOperand()->getFlags(); 16747 AAMDNodes AAInfo = St->getAAInfo(); 16748 16749 EVT NewToVT = EVT::getVectorVT(C, ToVT.getVectorElementType(), 16750 FromVT.getVectorNumElements()); 16751 16752 SmallVector<SDValue, 4> Stores; 16753 for (unsigned i = 0; i < Trunc.getNumOperands(); i++) { 16754 unsigned NewOffset = 16755 i * FromVT.getVectorNumElements() * ToVT.getScalarSizeInBits() / 8; 16756 SDValue NewPtr = 16757 DAG.getObjectPtrOffset(DL, BasePtr, TypeSize::getFixed(NewOffset)); 16758 16759 SDValue Extract = Trunc.getOperand(i); 16760 SDValue Store = DAG.getTruncStore( 16761 Ch, DL, Extract, NewPtr, St->getPointerInfo().getWithOffset(NewOffset), 16762 NewToVT, Alignment, MMOFlags, AAInfo); 16763 Stores.push_back(Store); 16764 } 16765 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Stores); 16766 } 16767 16768 // Given a floating point store from an extracted vector, with an integer 16769 // VGETLANE that already exists, store the existing VGETLANEu directly. This can 16770 // help reduce fp register pressure, doesn't require the fp extract and allows 16771 // use of more integer post-inc stores not available with vstr. 16772 static SDValue PerformExtractFpToIntStores(StoreSDNode *St, SelectionDAG &DAG) { 16773 if (!St->isSimple() || St->isTruncatingStore() || !St->isUnindexed()) 16774 return SDValue(); 16775 SDValue Extract = St->getValue(); 16776 EVT VT = Extract.getValueType(); 16777 // For now only uses f16. This may be useful for f32 too, but that will 16778 // be bitcast(extract), not the VGETLANEu we currently check here. 16779 if (VT != MVT::f16 || Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 16780 return SDValue(); 16781 16782 SDNode *GetLane = 16783 DAG.getNodeIfExists(ARMISD::VGETLANEu, DAG.getVTList(MVT::i32), 16784 {Extract.getOperand(0), Extract.getOperand(1)}); 16785 if (!GetLane) 16786 return SDValue(); 16787 16788 LLVMContext &C = *DAG.getContext(); 16789 SDLoc DL(St); 16790 // Create a new integer store to replace the existing floating point version. 16791 SDValue Ch = St->getChain(); 16792 SDValue BasePtr = St->getBasePtr(); 16793 Align Alignment = St->getOriginalAlign(); 16794 MachineMemOperand::Flags MMOFlags = St->getMemOperand()->getFlags(); 16795 AAMDNodes AAInfo = St->getAAInfo(); 16796 EVT NewToVT = EVT::getIntegerVT(C, VT.getSizeInBits()); 16797 SDValue Store = DAG.getTruncStore(Ch, DL, SDValue(GetLane, 0), BasePtr, 16798 St->getPointerInfo(), NewToVT, Alignment, 16799 MMOFlags, AAInfo); 16800 16801 return Store; 16802 } 16803 16804 /// PerformSTORECombine - Target-specific dag combine xforms for 16805 /// ISD::STORE. 16806 static SDValue PerformSTORECombine(SDNode *N, 16807 TargetLowering::DAGCombinerInfo &DCI, 16808 const ARMSubtarget *Subtarget) { 16809 StoreSDNode *St = cast<StoreSDNode>(N); 16810 if (St->isVolatile()) 16811 return SDValue(); 16812 SDValue StVal = St->getValue(); 16813 EVT VT = StVal.getValueType(); 16814 16815 if (Subtarget->hasNEON()) 16816 if (SDValue Store = PerformTruncatingStoreCombine(St, DCI.DAG)) 16817 return Store; 16818 16819 if (Subtarget->hasMVEFloatOps()) 16820 if (SDValue NewToken = PerformSplittingToNarrowingStores(St, DCI.DAG)) 16821 return NewToken; 16822 16823 if (Subtarget->hasMVEIntegerOps()) { 16824 if (SDValue NewChain = PerformExtractFpToIntStores(St, DCI.DAG)) 16825 return NewChain; 16826 if (SDValue NewToken = 16827 PerformSplittingMVETruncToNarrowingStores(St, DCI.DAG)) 16828 return NewToken; 16829 } 16830 16831 if (!ISD::isNormalStore(St)) 16832 return SDValue(); 16833 16834 // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and 16835 // ARM stores of arguments in the same cache line. 16836 if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR && 16837 StVal.getNode()->hasOneUse()) { 16838 SelectionDAG &DAG = DCI.DAG; 16839 bool isBigEndian = DAG.getDataLayout().isBigEndian(); 16840 SDLoc DL(St); 16841 SDValue BasePtr = St->getBasePtr(); 16842 SDValue NewST1 = DAG.getStore( 16843 St->getChain(), DL, StVal.getNode()->getOperand(isBigEndian ? 1 : 0), 16844 BasePtr, St->getPointerInfo(), St->getOriginalAlign(), 16845 St->getMemOperand()->getFlags()); 16846 16847 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, 16848 DAG.getConstant(4, DL, MVT::i32)); 16849 return DAG.getStore(NewST1.getValue(0), DL, 16850 StVal.getNode()->getOperand(isBigEndian ? 0 : 1), 16851 OffsetPtr, St->getPointerInfo().getWithOffset(4), 16852 St->getOriginalAlign(), 16853 St->getMemOperand()->getFlags()); 16854 } 16855 16856 if (StVal.getValueType() == MVT::i64 && 16857 StVal.getNode()->getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 16858 16859 // Bitcast an i64 store extracted from a vector to f64. 16860 // Otherwise, the i64 value will be legalized to a pair of i32 values. 16861 SelectionDAG &DAG = DCI.DAG; 16862 SDLoc dl(StVal); 16863 SDValue IntVec = StVal.getOperand(0); 16864 EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, 16865 IntVec.getValueType().getVectorNumElements()); 16866 SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec); 16867 SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, 16868 Vec, StVal.getOperand(1)); 16869 dl = SDLoc(N); 16870 SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt); 16871 // Make the DAGCombiner fold the bitcasts. 16872 DCI.AddToWorklist(Vec.getNode()); 16873 DCI.AddToWorklist(ExtElt.getNode()); 16874 DCI.AddToWorklist(V.getNode()); 16875 return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(), 16876 St->getPointerInfo(), St->getAlign(), 16877 St->getMemOperand()->getFlags(), St->getAAInfo()); 16878 } 16879 16880 // If this is a legal vector store, try to combine it into a VST1_UPD. 16881 if (Subtarget->hasNEON() && ISD::isNormalStore(N) && VT.isVector() && 16882 DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT)) 16883 return CombineBaseUpdate(N, DCI); 16884 16885 return SDValue(); 16886 } 16887 16888 /// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD) 16889 /// can replace combinations of VMUL and VCVT (floating-point to integer) 16890 /// when the VMUL has a constant operand that is a power of 2. 16891 /// 16892 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>): 16893 /// vmul.f32 d16, d17, d16 16894 /// vcvt.s32.f32 d16, d16 16895 /// becomes: 16896 /// vcvt.s32.f32 d16, d16, #3 16897 static SDValue PerformVCVTCombine(SDNode *N, SelectionDAG &DAG, 16898 const ARMSubtarget *Subtarget) { 16899 if (!Subtarget->hasNEON()) 16900 return SDValue(); 16901 16902 SDValue Op = N->getOperand(0); 16903 if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() || 16904 Op.getOpcode() != ISD::FMUL) 16905 return SDValue(); 16906 16907 SDValue ConstVec = Op->getOperand(1); 16908 if (!isa<BuildVectorSDNode>(ConstVec)) 16909 return SDValue(); 16910 16911 MVT FloatTy = Op.getSimpleValueType().getVectorElementType(); 16912 uint32_t FloatBits = FloatTy.getSizeInBits(); 16913 MVT IntTy = N->getSimpleValueType(0).getVectorElementType(); 16914 uint32_t IntBits = IntTy.getSizeInBits(); 16915 unsigned NumLanes = Op.getValueType().getVectorNumElements(); 16916 if (FloatBits != 32 || IntBits > 32 || (NumLanes != 4 && NumLanes != 2)) { 16917 // These instructions only exist converting from f32 to i32. We can handle 16918 // smaller integers by generating an extra truncate, but larger ones would 16919 // be lossy. We also can't handle anything other than 2 or 4 lanes, since 16920 // these intructions only support v2i32/v4i32 types. 16921 return SDValue(); 16922 } 16923 16924 BitVector UndefElements; 16925 BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec); 16926 int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33); 16927 if (C == -1 || C == 0 || C > 32) 16928 return SDValue(); 16929 16930 SDLoc dl(N); 16931 bool isSigned = N->getOpcode() == ISD::FP_TO_SINT; 16932 unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs : 16933 Intrinsic::arm_neon_vcvtfp2fxu; 16934 SDValue FixConv = DAG.getNode( 16935 ISD::INTRINSIC_WO_CHAIN, dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32, 16936 DAG.getConstant(IntrinsicOpcode, dl, MVT::i32), Op->getOperand(0), 16937 DAG.getConstant(C, dl, MVT::i32)); 16938 16939 if (IntBits < FloatBits) 16940 FixConv = DAG.getNode(ISD::TRUNCATE, dl, N->getValueType(0), FixConv); 16941 16942 return FixConv; 16943 } 16944 16945 static SDValue PerformFAddVSelectCombine(SDNode *N, SelectionDAG &DAG, 16946 const ARMSubtarget *Subtarget) { 16947 if (!Subtarget->hasMVEFloatOps()) 16948 return SDValue(); 16949 16950 // Turn (fadd x, (vselect c, y, -0.0)) into (vselect c, (fadd x, y), x) 16951 // The second form can be more easily turned into a predicated vadd, and 16952 // possibly combined into a fma to become a predicated vfma. 16953 SDValue Op0 = N->getOperand(0); 16954 SDValue Op1 = N->getOperand(1); 16955 EVT VT = N->getValueType(0); 16956 SDLoc DL(N); 16957 16958 // The identity element for a fadd is -0.0 or +0.0 when the nsz flag is set, 16959 // which these VMOV's represent. 16960 auto isIdentitySplat = [&](SDValue Op, bool NSZ) { 16961 if (Op.getOpcode() != ISD::BITCAST || 16962 Op.getOperand(0).getOpcode() != ARMISD::VMOVIMM) 16963 return false; 16964 uint64_t ImmVal = Op.getOperand(0).getConstantOperandVal(0); 16965 if (VT == MVT::v4f32 && (ImmVal == 1664 || (ImmVal == 0 && NSZ))) 16966 return true; 16967 if (VT == MVT::v8f16 && (ImmVal == 2688 || (ImmVal == 0 && NSZ))) 16968 return true; 16969 return false; 16970 }; 16971 16972 if (Op0.getOpcode() == ISD::VSELECT && Op1.getOpcode() != ISD::VSELECT) 16973 std::swap(Op0, Op1); 16974 16975 if (Op1.getOpcode() != ISD::VSELECT) 16976 return SDValue(); 16977 16978 SDNodeFlags FaddFlags = N->getFlags(); 16979 bool NSZ = FaddFlags.hasNoSignedZeros(); 16980 if (!isIdentitySplat(Op1.getOperand(2), NSZ)) 16981 return SDValue(); 16982 16983 SDValue FAdd = 16984 DAG.getNode(ISD::FADD, DL, VT, Op0, Op1.getOperand(1), FaddFlags); 16985 return DAG.getNode(ISD::VSELECT, DL, VT, Op1.getOperand(0), FAdd, Op0, FaddFlags); 16986 } 16987 16988 static SDValue PerformFADDVCMLACombine(SDNode *N, SelectionDAG &DAG) { 16989 SDValue LHS = N->getOperand(0); 16990 SDValue RHS = N->getOperand(1); 16991 EVT VT = N->getValueType(0); 16992 SDLoc DL(N); 16993 16994 if (!N->getFlags().hasAllowReassociation()) 16995 return SDValue(); 16996 16997 // Combine fadd(a, vcmla(b, c, d)) -> vcmla(fadd(a, b), b, c) 16998 auto ReassocComplex = [&](SDValue A, SDValue B) { 16999 if (A.getOpcode() != ISD::INTRINSIC_WO_CHAIN) 17000 return SDValue(); 17001 unsigned Opc = A.getConstantOperandVal(0); 17002 if (Opc != Intrinsic::arm_mve_vcmlaq) 17003 return SDValue(); 17004 SDValue VCMLA = DAG.getNode( 17005 ISD::INTRINSIC_WO_CHAIN, DL, VT, A.getOperand(0), A.getOperand(1), 17006 DAG.getNode(ISD::FADD, DL, VT, A.getOperand(2), B, N->getFlags()), 17007 A.getOperand(3), A.getOperand(4)); 17008 VCMLA->setFlags(A->getFlags()); 17009 return VCMLA; 17010 }; 17011 if (SDValue R = ReassocComplex(LHS, RHS)) 17012 return R; 17013 if (SDValue R = ReassocComplex(RHS, LHS)) 17014 return R; 17015 17016 return SDValue(); 17017 } 17018 17019 static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG, 17020 const ARMSubtarget *Subtarget) { 17021 if (SDValue S = PerformFAddVSelectCombine(N, DAG, Subtarget)) 17022 return S; 17023 if (SDValue S = PerformFADDVCMLACombine(N, DAG)) 17024 return S; 17025 return SDValue(); 17026 } 17027 17028 /// PerformVMulVCTPCombine - VCVT (fixed-point to floating-point, Advanced SIMD) 17029 /// can replace combinations of VCVT (integer to floating-point) and VMUL 17030 /// when the VMUL has a constant operand that is a power of 2. 17031 /// 17032 /// Example (assume d17 = <float 0.125, float 0.125>): 17033 /// vcvt.f32.s32 d16, d16 17034 /// vmul.f32 d16, d16, d17 17035 /// becomes: 17036 /// vcvt.f32.s32 d16, d16, #3 17037 static SDValue PerformVMulVCTPCombine(SDNode *N, SelectionDAG &DAG, 17038 const ARMSubtarget *Subtarget) { 17039 if (!Subtarget->hasNEON()) 17040 return SDValue(); 17041 17042 SDValue Op = N->getOperand(0); 17043 unsigned OpOpcode = Op.getNode()->getOpcode(); 17044 if (!N->getValueType(0).isVector() || !N->getValueType(0).isSimple() || 17045 (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP)) 17046 return SDValue(); 17047 17048 SDValue ConstVec = N->getOperand(1); 17049 if (!isa<BuildVectorSDNode>(ConstVec)) 17050 return SDValue(); 17051 17052 MVT FloatTy = N->getSimpleValueType(0).getVectorElementType(); 17053 uint32_t FloatBits = FloatTy.getSizeInBits(); 17054 MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType(); 17055 uint32_t IntBits = IntTy.getSizeInBits(); 17056 unsigned NumLanes = Op.getValueType().getVectorNumElements(); 17057 if (FloatBits != 32 || IntBits > 32 || (NumLanes != 4 && NumLanes != 2)) { 17058 // These instructions only exist converting from i32 to f32. We can handle 17059 // smaller integers by generating an extra extend, but larger ones would 17060 // be lossy. We also can't handle anything other than 2 or 4 lanes, since 17061 // these intructions only support v2i32/v4i32 types. 17062 return SDValue(); 17063 } 17064 17065 ConstantFPSDNode *CN = isConstOrConstSplatFP(ConstVec, true); 17066 APFloat Recip(0.0f); 17067 if (!CN || !CN->getValueAPF().getExactInverse(&Recip)) 17068 return SDValue(); 17069 17070 bool IsExact; 17071 APSInt IntVal(33); 17072 if (Recip.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 17073 APFloat::opOK || 17074 !IsExact) 17075 return SDValue(); 17076 17077 int32_t C = IntVal.exactLogBase2(); 17078 if (C == -1 || C == 0 || C > 32) 17079 return SDValue(); 17080 17081 SDLoc DL(N); 17082 bool isSigned = OpOpcode == ISD::SINT_TO_FP; 17083 SDValue ConvInput = Op.getOperand(0); 17084 if (IntBits < FloatBits) 17085 ConvInput = DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL, 17086 NumLanes == 2 ? MVT::v2i32 : MVT::v4i32, ConvInput); 17087 17088 unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp 17089 : Intrinsic::arm_neon_vcvtfxu2fp; 17090 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, Op.getValueType(), 17091 DAG.getConstant(IntrinsicOpcode, DL, MVT::i32), ConvInput, 17092 DAG.getConstant(C, DL, MVT::i32)); 17093 } 17094 17095 static SDValue PerformVECREDUCE_ADDCombine(SDNode *N, SelectionDAG &DAG, 17096 const ARMSubtarget *ST) { 17097 if (!ST->hasMVEIntegerOps()) 17098 return SDValue(); 17099 17100 assert(N->getOpcode() == ISD::VECREDUCE_ADD); 17101 EVT ResVT = N->getValueType(0); 17102 SDValue N0 = N->getOperand(0); 17103 SDLoc dl(N); 17104 17105 // Try to turn vecreduce_add(add(x, y)) into vecreduce(x) + vecreduce(y) 17106 if (ResVT == MVT::i32 && N0.getOpcode() == ISD::ADD && 17107 (N0.getValueType() == MVT::v4i32 || N0.getValueType() == MVT::v8i16 || 17108 N0.getValueType() == MVT::v16i8)) { 17109 SDValue Red0 = DAG.getNode(ISD::VECREDUCE_ADD, dl, ResVT, N0.getOperand(0)); 17110 SDValue Red1 = DAG.getNode(ISD::VECREDUCE_ADD, dl, ResVT, N0.getOperand(1)); 17111 return DAG.getNode(ISD::ADD, dl, ResVT, Red0, Red1); 17112 } 17113 17114 // We are looking for something that will have illegal types if left alone, 17115 // but that we can convert to a single instruction under MVE. For example 17116 // vecreduce_add(sext(A, v8i32)) => VADDV.s16 A 17117 // or 17118 // vecreduce_add(mul(zext(A, v16i32), zext(B, v16i32))) => VMLADAV.u8 A, B 17119 17120 // The legal cases are: 17121 // VADDV u/s 8/16/32 17122 // VMLAV u/s 8/16/32 17123 // VADDLV u/s 32 17124 // VMLALV u/s 16/32 17125 17126 // If the input vector is smaller than legal (v4i8/v4i16 for example) we can 17127 // extend it and use v4i32 instead. 17128 auto ExtTypeMatches = [](SDValue A, ArrayRef<MVT> ExtTypes) { 17129 EVT AVT = A.getValueType(); 17130 return any_of(ExtTypes, [&](MVT Ty) { 17131 return AVT.getVectorNumElements() == Ty.getVectorNumElements() && 17132 AVT.bitsLE(Ty); 17133 }); 17134 }; 17135 auto ExtendIfNeeded = [&](SDValue A, unsigned ExtendCode) { 17136 EVT AVT = A.getValueType(); 17137 if (!AVT.is128BitVector()) 17138 A = DAG.getNode(ExtendCode, dl, 17139 AVT.changeVectorElementType(MVT::getIntegerVT( 17140 128 / AVT.getVectorMinNumElements())), 17141 A); 17142 return A; 17143 }; 17144 auto IsVADDV = [&](MVT RetTy, unsigned ExtendCode, ArrayRef<MVT> ExtTypes) { 17145 if (ResVT != RetTy || N0->getOpcode() != ExtendCode) 17146 return SDValue(); 17147 SDValue A = N0->getOperand(0); 17148 if (ExtTypeMatches(A, ExtTypes)) 17149 return ExtendIfNeeded(A, ExtendCode); 17150 return SDValue(); 17151 }; 17152 auto IsPredVADDV = [&](MVT RetTy, unsigned ExtendCode, 17153 ArrayRef<MVT> ExtTypes, SDValue &Mask) { 17154 if (ResVT != RetTy || N0->getOpcode() != ISD::VSELECT || 17155 !ISD::isBuildVectorAllZeros(N0->getOperand(2).getNode())) 17156 return SDValue(); 17157 Mask = N0->getOperand(0); 17158 SDValue Ext = N0->getOperand(1); 17159 if (Ext->getOpcode() != ExtendCode) 17160 return SDValue(); 17161 SDValue A = Ext->getOperand(0); 17162 if (ExtTypeMatches(A, ExtTypes)) 17163 return ExtendIfNeeded(A, ExtendCode); 17164 return SDValue(); 17165 }; 17166 auto IsVMLAV = [&](MVT RetTy, unsigned ExtendCode, ArrayRef<MVT> ExtTypes, 17167 SDValue &A, SDValue &B) { 17168 // For a vmla we are trying to match a larger pattern: 17169 // ExtA = sext/zext A 17170 // ExtB = sext/zext B 17171 // Mul = mul ExtA, ExtB 17172 // vecreduce.add Mul 17173 // There might also be en extra extend between the mul and the addreduce, so 17174 // long as the bitwidth is high enough to make them equivalent (for example 17175 // original v8i16 might be mul at v8i32 and the reduce happens at v8i64). 17176 if (ResVT != RetTy) 17177 return false; 17178 SDValue Mul = N0; 17179 if (Mul->getOpcode() == ExtendCode && 17180 Mul->getOperand(0).getScalarValueSizeInBits() * 2 >= 17181 ResVT.getScalarSizeInBits()) 17182 Mul = Mul->getOperand(0); 17183 if (Mul->getOpcode() != ISD::MUL) 17184 return false; 17185 SDValue ExtA = Mul->getOperand(0); 17186 SDValue ExtB = Mul->getOperand(1); 17187 if (ExtA->getOpcode() != ExtendCode || ExtB->getOpcode() != ExtendCode) 17188 return false; 17189 A = ExtA->getOperand(0); 17190 B = ExtB->getOperand(0); 17191 if (ExtTypeMatches(A, ExtTypes) && ExtTypeMatches(B, ExtTypes)) { 17192 A = ExtendIfNeeded(A, ExtendCode); 17193 B = ExtendIfNeeded(B, ExtendCode); 17194 return true; 17195 } 17196 return false; 17197 }; 17198 auto IsPredVMLAV = [&](MVT RetTy, unsigned ExtendCode, ArrayRef<MVT> ExtTypes, 17199 SDValue &A, SDValue &B, SDValue &Mask) { 17200 // Same as the pattern above with a select for the zero predicated lanes 17201 // ExtA = sext/zext A 17202 // ExtB = sext/zext B 17203 // Mul = mul ExtA, ExtB 17204 // N0 = select Mask, Mul, 0 17205 // vecreduce.add N0 17206 if (ResVT != RetTy || N0->getOpcode() != ISD::VSELECT || 17207 !ISD::isBuildVectorAllZeros(N0->getOperand(2).getNode())) 17208 return false; 17209 Mask = N0->getOperand(0); 17210 SDValue Mul = N0->getOperand(1); 17211 if (Mul->getOpcode() == ExtendCode && 17212 Mul->getOperand(0).getScalarValueSizeInBits() * 2 >= 17213 ResVT.getScalarSizeInBits()) 17214 Mul = Mul->getOperand(0); 17215 if (Mul->getOpcode() != ISD::MUL) 17216 return false; 17217 SDValue ExtA = Mul->getOperand(0); 17218 SDValue ExtB = Mul->getOperand(1); 17219 if (ExtA->getOpcode() != ExtendCode || ExtB->getOpcode() != ExtendCode) 17220 return false; 17221 A = ExtA->getOperand(0); 17222 B = ExtB->getOperand(0); 17223 if (ExtTypeMatches(A, ExtTypes) && ExtTypeMatches(B, ExtTypes)) { 17224 A = ExtendIfNeeded(A, ExtendCode); 17225 B = ExtendIfNeeded(B, ExtendCode); 17226 return true; 17227 } 17228 return false; 17229 }; 17230 auto Create64bitNode = [&](unsigned Opcode, ArrayRef<SDValue> Ops) { 17231 // Split illegal MVT::v16i8->i64 vector reductions into two legal v8i16->i64 17232 // reductions. The operands are extended with MVEEXT, but as they are 17233 // reductions the lane orders do not matter. MVEEXT may be combined with 17234 // loads to produce two extending loads, or else they will be expanded to 17235 // VREV/VMOVL. 17236 EVT VT = Ops[0].getValueType(); 17237 if (VT == MVT::v16i8) { 17238 assert((Opcode == ARMISD::VMLALVs || Opcode == ARMISD::VMLALVu) && 17239 "Unexpected illegal long reduction opcode"); 17240 bool IsUnsigned = Opcode == ARMISD::VMLALVu; 17241 17242 SDValue Ext0 = 17243 DAG.getNode(IsUnsigned ? ARMISD::MVEZEXT : ARMISD::MVESEXT, dl, 17244 DAG.getVTList(MVT::v8i16, MVT::v8i16), Ops[0]); 17245 SDValue Ext1 = 17246 DAG.getNode(IsUnsigned ? ARMISD::MVEZEXT : ARMISD::MVESEXT, dl, 17247 DAG.getVTList(MVT::v8i16, MVT::v8i16), Ops[1]); 17248 17249 SDValue MLA0 = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32), 17250 Ext0, Ext1); 17251 SDValue MLA1 = 17252 DAG.getNode(IsUnsigned ? ARMISD::VMLALVAu : ARMISD::VMLALVAs, dl, 17253 DAG.getVTList(MVT::i32, MVT::i32), MLA0, MLA0.getValue(1), 17254 Ext0.getValue(1), Ext1.getValue(1)); 17255 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, MLA1, MLA1.getValue(1)); 17256 } 17257 SDValue Node = DAG.getNode(Opcode, dl, {MVT::i32, MVT::i32}, Ops); 17258 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Node, 17259 SDValue(Node.getNode(), 1)); 17260 }; 17261 17262 SDValue A, B; 17263 SDValue Mask; 17264 if (IsVMLAV(MVT::i32, ISD::SIGN_EXTEND, {MVT::v8i16, MVT::v16i8}, A, B)) 17265 return DAG.getNode(ARMISD::VMLAVs, dl, ResVT, A, B); 17266 if (IsVMLAV(MVT::i32, ISD::ZERO_EXTEND, {MVT::v8i16, MVT::v16i8}, A, B)) 17267 return DAG.getNode(ARMISD::VMLAVu, dl, ResVT, A, B); 17268 if (IsVMLAV(MVT::i64, ISD::SIGN_EXTEND, {MVT::v16i8, MVT::v8i16, MVT::v4i32}, 17269 A, B)) 17270 return Create64bitNode(ARMISD::VMLALVs, {A, B}); 17271 if (IsVMLAV(MVT::i64, ISD::ZERO_EXTEND, {MVT::v16i8, MVT::v8i16, MVT::v4i32}, 17272 A, B)) 17273 return Create64bitNode(ARMISD::VMLALVu, {A, B}); 17274 if (IsVMLAV(MVT::i16, ISD::SIGN_EXTEND, {MVT::v16i8}, A, B)) 17275 return DAG.getNode(ISD::TRUNCATE, dl, ResVT, 17276 DAG.getNode(ARMISD::VMLAVs, dl, MVT::i32, A, B)); 17277 if (IsVMLAV(MVT::i16, ISD::ZERO_EXTEND, {MVT::v16i8}, A, B)) 17278 return DAG.getNode(ISD::TRUNCATE, dl, ResVT, 17279 DAG.getNode(ARMISD::VMLAVu, dl, MVT::i32, A, B)); 17280 17281 if (IsPredVMLAV(MVT::i32, ISD::SIGN_EXTEND, {MVT::v8i16, MVT::v16i8}, A, B, 17282 Mask)) 17283 return DAG.getNode(ARMISD::VMLAVps, dl, ResVT, A, B, Mask); 17284 if (IsPredVMLAV(MVT::i32, ISD::ZERO_EXTEND, {MVT::v8i16, MVT::v16i8}, A, B, 17285 Mask)) 17286 return DAG.getNode(ARMISD::VMLAVpu, dl, ResVT, A, B, Mask); 17287 if (IsPredVMLAV(MVT::i64, ISD::SIGN_EXTEND, {MVT::v8i16, MVT::v4i32}, A, B, 17288 Mask)) 17289 return Create64bitNode(ARMISD::VMLALVps, {A, B, Mask}); 17290 if (IsPredVMLAV(MVT::i64, ISD::ZERO_EXTEND, {MVT::v8i16, MVT::v4i32}, A, B, 17291 Mask)) 17292 return Create64bitNode(ARMISD::VMLALVpu, {A, B, Mask}); 17293 if (IsPredVMLAV(MVT::i16, ISD::SIGN_EXTEND, {MVT::v16i8}, A, B, Mask)) 17294 return DAG.getNode(ISD::TRUNCATE, dl, ResVT, 17295 DAG.getNode(ARMISD::VMLAVps, dl, MVT::i32, A, B, Mask)); 17296 if (IsPredVMLAV(MVT::i16, ISD::ZERO_EXTEND, {MVT::v16i8}, A, B, Mask)) 17297 return DAG.getNode(ISD::TRUNCATE, dl, ResVT, 17298 DAG.getNode(ARMISD::VMLAVpu, dl, MVT::i32, A, B, Mask)); 17299 17300 if (SDValue A = IsVADDV(MVT::i32, ISD::SIGN_EXTEND, {MVT::v8i16, MVT::v16i8})) 17301 return DAG.getNode(ARMISD::VADDVs, dl, ResVT, A); 17302 if (SDValue A = IsVADDV(MVT::i32, ISD::ZERO_EXTEND, {MVT::v8i16, MVT::v16i8})) 17303 return DAG.getNode(ARMISD::VADDVu, dl, ResVT, A); 17304 if (SDValue A = IsVADDV(MVT::i64, ISD::SIGN_EXTEND, {MVT::v4i32})) 17305 return Create64bitNode(ARMISD::VADDLVs, {A}); 17306 if (SDValue A = IsVADDV(MVT::i64, ISD::ZERO_EXTEND, {MVT::v4i32})) 17307 return Create64bitNode(ARMISD::VADDLVu, {A}); 17308 if (SDValue A = IsVADDV(MVT::i16, ISD::SIGN_EXTEND, {MVT::v16i8})) 17309 return DAG.getNode(ISD::TRUNCATE, dl, ResVT, 17310 DAG.getNode(ARMISD::VADDVs, dl, MVT::i32, A)); 17311 if (SDValue A = IsVADDV(MVT::i16, ISD::ZERO_EXTEND, {MVT::v16i8})) 17312 return DAG.getNode(ISD::TRUNCATE, dl, ResVT, 17313 DAG.getNode(ARMISD::VADDVu, dl, MVT::i32, A)); 17314 17315 if (SDValue A = IsPredVADDV(MVT::i32, ISD::SIGN_EXTEND, {MVT::v8i16, MVT::v16i8}, Mask)) 17316 return DAG.getNode(ARMISD::VADDVps, dl, ResVT, A, Mask); 17317 if (SDValue A = IsPredVADDV(MVT::i32, ISD::ZERO_EXTEND, {MVT::v8i16, MVT::v16i8}, Mask)) 17318 return DAG.getNode(ARMISD::VADDVpu, dl, ResVT, A, Mask); 17319 if (SDValue A = IsPredVADDV(MVT::i64, ISD::SIGN_EXTEND, {MVT::v4i32}, Mask)) 17320 return Create64bitNode(ARMISD::VADDLVps, {A, Mask}); 17321 if (SDValue A = IsPredVADDV(MVT::i64, ISD::ZERO_EXTEND, {MVT::v4i32}, Mask)) 17322 return Create64bitNode(ARMISD::VADDLVpu, {A, Mask}); 17323 if (SDValue A = IsPredVADDV(MVT::i16, ISD::SIGN_EXTEND, {MVT::v16i8}, Mask)) 17324 return DAG.getNode(ISD::TRUNCATE, dl, ResVT, 17325 DAG.getNode(ARMISD::VADDVps, dl, MVT::i32, A, Mask)); 17326 if (SDValue A = IsPredVADDV(MVT::i16, ISD::ZERO_EXTEND, {MVT::v16i8}, Mask)) 17327 return DAG.getNode(ISD::TRUNCATE, dl, ResVT, 17328 DAG.getNode(ARMISD::VADDVpu, dl, MVT::i32, A, Mask)); 17329 17330 // Some complications. We can get a case where the two inputs of the mul are 17331 // the same, then the output sext will have been helpfully converted to a 17332 // zext. Turn it back. 17333 SDValue Op = N0; 17334 if (Op->getOpcode() == ISD::VSELECT) 17335 Op = Op->getOperand(1); 17336 if (Op->getOpcode() == ISD::ZERO_EXTEND && 17337 Op->getOperand(0)->getOpcode() == ISD::MUL) { 17338 SDValue Mul = Op->getOperand(0); 17339 if (Mul->getOperand(0) == Mul->getOperand(1) && 17340 Mul->getOperand(0)->getOpcode() == ISD::SIGN_EXTEND) { 17341 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, dl, N0->getValueType(0), Mul); 17342 if (Op != N0) 17343 Ext = DAG.getNode(ISD::VSELECT, dl, N0->getValueType(0), 17344 N0->getOperand(0), Ext, N0->getOperand(2)); 17345 return DAG.getNode(ISD::VECREDUCE_ADD, dl, ResVT, Ext); 17346 } 17347 } 17348 17349 return SDValue(); 17350 } 17351 17352 // Looks for vaddv(shuffle) or vmlav(shuffle, shuffle), with a shuffle where all 17353 // the lanes are used. Due to the reduction being commutative the shuffle can be 17354 // removed. 17355 static SDValue PerformReduceShuffleCombine(SDNode *N, SelectionDAG &DAG) { 17356 unsigned VecOp = N->getOperand(0).getValueType().isVector() ? 0 : 2; 17357 auto *Shuf = dyn_cast<ShuffleVectorSDNode>(N->getOperand(VecOp)); 17358 if (!Shuf || !Shuf->getOperand(1).isUndef()) 17359 return SDValue(); 17360 17361 // Check all elements are used once in the mask. 17362 ArrayRef<int> Mask = Shuf->getMask(); 17363 APInt SetElts(Mask.size(), 0); 17364 for (int E : Mask) { 17365 if (E < 0 || E >= (int)Mask.size()) 17366 return SDValue(); 17367 SetElts.setBit(E); 17368 } 17369 if (!SetElts.isAllOnes()) 17370 return SDValue(); 17371 17372 if (N->getNumOperands() != VecOp + 1) { 17373 auto *Shuf2 = dyn_cast<ShuffleVectorSDNode>(N->getOperand(VecOp + 1)); 17374 if (!Shuf2 || !Shuf2->getOperand(1).isUndef() || Shuf2->getMask() != Mask) 17375 return SDValue(); 17376 } 17377 17378 SmallVector<SDValue> Ops; 17379 for (SDValue Op : N->ops()) { 17380 if (Op.getValueType().isVector()) 17381 Ops.push_back(Op.getOperand(0)); 17382 else 17383 Ops.push_back(Op); 17384 } 17385 return DAG.getNode(N->getOpcode(), SDLoc(N), N->getVTList(), Ops); 17386 } 17387 17388 static SDValue PerformVMOVNCombine(SDNode *N, 17389 TargetLowering::DAGCombinerInfo &DCI) { 17390 SDValue Op0 = N->getOperand(0); 17391 SDValue Op1 = N->getOperand(1); 17392 unsigned IsTop = N->getConstantOperandVal(2); 17393 17394 // VMOVNT a undef -> a 17395 // VMOVNB a undef -> a 17396 // VMOVNB undef a -> a 17397 if (Op1->isUndef()) 17398 return Op0; 17399 if (Op0->isUndef() && !IsTop) 17400 return Op1; 17401 17402 // VMOVNt(c, VQMOVNb(a, b)) => VQMOVNt(c, b) 17403 // VMOVNb(c, VQMOVNb(a, b)) => VQMOVNb(c, b) 17404 if ((Op1->getOpcode() == ARMISD::VQMOVNs || 17405 Op1->getOpcode() == ARMISD::VQMOVNu) && 17406 Op1->getConstantOperandVal(2) == 0) 17407 return DCI.DAG.getNode(Op1->getOpcode(), SDLoc(Op1), N->getValueType(0), 17408 Op0, Op1->getOperand(1), N->getOperand(2)); 17409 17410 // Only the bottom lanes from Qm (Op1) and either the top or bottom lanes from 17411 // Qd (Op0) are demanded from a VMOVN, depending on whether we are inserting 17412 // into the top or bottom lanes. 17413 unsigned NumElts = N->getValueType(0).getVectorNumElements(); 17414 APInt Op1DemandedElts = APInt::getSplat(NumElts, APInt::getLowBitsSet(2, 1)); 17415 APInt Op0DemandedElts = 17416 IsTop ? Op1DemandedElts 17417 : APInt::getSplat(NumElts, APInt::getHighBitsSet(2, 1)); 17418 17419 const TargetLowering &TLI = DCI.DAG.getTargetLoweringInfo(); 17420 if (TLI.SimplifyDemandedVectorElts(Op0, Op0DemandedElts, DCI)) 17421 return SDValue(N, 0); 17422 if (TLI.SimplifyDemandedVectorElts(Op1, Op1DemandedElts, DCI)) 17423 return SDValue(N, 0); 17424 17425 return SDValue(); 17426 } 17427 17428 static SDValue PerformVQMOVNCombine(SDNode *N, 17429 TargetLowering::DAGCombinerInfo &DCI) { 17430 SDValue Op0 = N->getOperand(0); 17431 unsigned IsTop = N->getConstantOperandVal(2); 17432 17433 unsigned NumElts = N->getValueType(0).getVectorNumElements(); 17434 APInt Op0DemandedElts = 17435 APInt::getSplat(NumElts, IsTop ? APInt::getLowBitsSet(2, 1) 17436 : APInt::getHighBitsSet(2, 1)); 17437 17438 const TargetLowering &TLI = DCI.DAG.getTargetLoweringInfo(); 17439 if (TLI.SimplifyDemandedVectorElts(Op0, Op0DemandedElts, DCI)) 17440 return SDValue(N, 0); 17441 return SDValue(); 17442 } 17443 17444 static SDValue PerformVQDMULHCombine(SDNode *N, 17445 TargetLowering::DAGCombinerInfo &DCI) { 17446 EVT VT = N->getValueType(0); 17447 SDValue LHS = N->getOperand(0); 17448 SDValue RHS = N->getOperand(1); 17449 17450 auto *Shuf0 = dyn_cast<ShuffleVectorSDNode>(LHS); 17451 auto *Shuf1 = dyn_cast<ShuffleVectorSDNode>(RHS); 17452 // Turn VQDMULH(shuffle, shuffle) -> shuffle(VQDMULH) 17453 if (Shuf0 && Shuf1 && Shuf0->getMask().equals(Shuf1->getMask()) && 17454 LHS.getOperand(1).isUndef() && RHS.getOperand(1).isUndef() && 17455 (LHS.hasOneUse() || RHS.hasOneUse() || LHS == RHS)) { 17456 SDLoc DL(N); 17457 SDValue NewBinOp = DCI.DAG.getNode(N->getOpcode(), DL, VT, 17458 LHS.getOperand(0), RHS.getOperand(0)); 17459 SDValue UndefV = LHS.getOperand(1); 17460 return DCI.DAG.getVectorShuffle(VT, DL, NewBinOp, UndefV, Shuf0->getMask()); 17461 } 17462 return SDValue(); 17463 } 17464 17465 static SDValue PerformLongShiftCombine(SDNode *N, SelectionDAG &DAG) { 17466 SDLoc DL(N); 17467 SDValue Op0 = N->getOperand(0); 17468 SDValue Op1 = N->getOperand(1); 17469 17470 // Turn X << -C -> X >> C and viceversa. The negative shifts can come up from 17471 // uses of the intrinsics. 17472 if (auto C = dyn_cast<ConstantSDNode>(N->getOperand(2))) { 17473 int ShiftAmt = C->getSExtValue(); 17474 if (ShiftAmt == 0) { 17475 SDValue Merge = DAG.getMergeValues({Op0, Op1}, DL); 17476 DAG.ReplaceAllUsesWith(N, Merge.getNode()); 17477 return SDValue(); 17478 } 17479 17480 if (ShiftAmt >= -32 && ShiftAmt < 0) { 17481 unsigned NewOpcode = 17482 N->getOpcode() == ARMISD::LSLL ? ARMISD::LSRL : ARMISD::LSLL; 17483 SDValue NewShift = DAG.getNode(NewOpcode, DL, N->getVTList(), Op0, Op1, 17484 DAG.getConstant(-ShiftAmt, DL, MVT::i32)); 17485 DAG.ReplaceAllUsesWith(N, NewShift.getNode()); 17486 return NewShift; 17487 } 17488 } 17489 17490 return SDValue(); 17491 } 17492 17493 /// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics. 17494 SDValue ARMTargetLowering::PerformIntrinsicCombine(SDNode *N, 17495 DAGCombinerInfo &DCI) const { 17496 SelectionDAG &DAG = DCI.DAG; 17497 unsigned IntNo = N->getConstantOperandVal(0); 17498 switch (IntNo) { 17499 default: 17500 // Don't do anything for most intrinsics. 17501 break; 17502 17503 // Vector shifts: check for immediate versions and lower them. 17504 // Note: This is done during DAG combining instead of DAG legalizing because 17505 // the build_vectors for 64-bit vector element shift counts are generally 17506 // not legal, and it is hard to see their values after they get legalized to 17507 // loads from a constant pool. 17508 case Intrinsic::arm_neon_vshifts: 17509 case Intrinsic::arm_neon_vshiftu: 17510 case Intrinsic::arm_neon_vrshifts: 17511 case Intrinsic::arm_neon_vrshiftu: 17512 case Intrinsic::arm_neon_vrshiftn: 17513 case Intrinsic::arm_neon_vqshifts: 17514 case Intrinsic::arm_neon_vqshiftu: 17515 case Intrinsic::arm_neon_vqshiftsu: 17516 case Intrinsic::arm_neon_vqshiftns: 17517 case Intrinsic::arm_neon_vqshiftnu: 17518 case Intrinsic::arm_neon_vqshiftnsu: 17519 case Intrinsic::arm_neon_vqrshiftns: 17520 case Intrinsic::arm_neon_vqrshiftnu: 17521 case Intrinsic::arm_neon_vqrshiftnsu: { 17522 EVT VT = N->getOperand(1).getValueType(); 17523 int64_t Cnt; 17524 unsigned VShiftOpc = 0; 17525 17526 switch (IntNo) { 17527 case Intrinsic::arm_neon_vshifts: 17528 case Intrinsic::arm_neon_vshiftu: 17529 if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) { 17530 VShiftOpc = ARMISD::VSHLIMM; 17531 break; 17532 } 17533 if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) { 17534 VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ? ARMISD::VSHRsIMM 17535 : ARMISD::VSHRuIMM); 17536 break; 17537 } 17538 return SDValue(); 17539 17540 case Intrinsic::arm_neon_vrshifts: 17541 case Intrinsic::arm_neon_vrshiftu: 17542 if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) 17543 break; 17544 return SDValue(); 17545 17546 case Intrinsic::arm_neon_vqshifts: 17547 case Intrinsic::arm_neon_vqshiftu: 17548 if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) 17549 break; 17550 return SDValue(); 17551 17552 case Intrinsic::arm_neon_vqshiftsu: 17553 if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) 17554 break; 17555 llvm_unreachable("invalid shift count for vqshlu intrinsic"); 17556 17557 case Intrinsic::arm_neon_vrshiftn: 17558 case Intrinsic::arm_neon_vqshiftns: 17559 case Intrinsic::arm_neon_vqshiftnu: 17560 case Intrinsic::arm_neon_vqshiftnsu: 17561 case Intrinsic::arm_neon_vqrshiftns: 17562 case Intrinsic::arm_neon_vqrshiftnu: 17563 case Intrinsic::arm_neon_vqrshiftnsu: 17564 // Narrowing shifts require an immediate right shift. 17565 if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt)) 17566 break; 17567 llvm_unreachable("invalid shift count for narrowing vector shift " 17568 "intrinsic"); 17569 17570 default: 17571 llvm_unreachable("unhandled vector shift"); 17572 } 17573 17574 switch (IntNo) { 17575 case Intrinsic::arm_neon_vshifts: 17576 case Intrinsic::arm_neon_vshiftu: 17577 // Opcode already set above. 17578 break; 17579 case Intrinsic::arm_neon_vrshifts: 17580 VShiftOpc = ARMISD::VRSHRsIMM; 17581 break; 17582 case Intrinsic::arm_neon_vrshiftu: 17583 VShiftOpc = ARMISD::VRSHRuIMM; 17584 break; 17585 case Intrinsic::arm_neon_vrshiftn: 17586 VShiftOpc = ARMISD::VRSHRNIMM; 17587 break; 17588 case Intrinsic::arm_neon_vqshifts: 17589 VShiftOpc = ARMISD::VQSHLsIMM; 17590 break; 17591 case Intrinsic::arm_neon_vqshiftu: 17592 VShiftOpc = ARMISD::VQSHLuIMM; 17593 break; 17594 case Intrinsic::arm_neon_vqshiftsu: 17595 VShiftOpc = ARMISD::VQSHLsuIMM; 17596 break; 17597 case Intrinsic::arm_neon_vqshiftns: 17598 VShiftOpc = ARMISD::VQSHRNsIMM; 17599 break; 17600 case Intrinsic::arm_neon_vqshiftnu: 17601 VShiftOpc = ARMISD::VQSHRNuIMM; 17602 break; 17603 case Intrinsic::arm_neon_vqshiftnsu: 17604 VShiftOpc = ARMISD::VQSHRNsuIMM; 17605 break; 17606 case Intrinsic::arm_neon_vqrshiftns: 17607 VShiftOpc = ARMISD::VQRSHRNsIMM; 17608 break; 17609 case Intrinsic::arm_neon_vqrshiftnu: 17610 VShiftOpc = ARMISD::VQRSHRNuIMM; 17611 break; 17612 case Intrinsic::arm_neon_vqrshiftnsu: 17613 VShiftOpc = ARMISD::VQRSHRNsuIMM; 17614 break; 17615 } 17616 17617 SDLoc dl(N); 17618 return DAG.getNode(VShiftOpc, dl, N->getValueType(0), 17619 N->getOperand(1), DAG.getConstant(Cnt, dl, MVT::i32)); 17620 } 17621 17622 case Intrinsic::arm_neon_vshiftins: { 17623 EVT VT = N->getOperand(1).getValueType(); 17624 int64_t Cnt; 17625 unsigned VShiftOpc = 0; 17626 17627 if (isVShiftLImm(N->getOperand(3), VT, false, Cnt)) 17628 VShiftOpc = ARMISD::VSLIIMM; 17629 else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt)) 17630 VShiftOpc = ARMISD::VSRIIMM; 17631 else { 17632 llvm_unreachable("invalid shift count for vsli/vsri intrinsic"); 17633 } 17634 17635 SDLoc dl(N); 17636 return DAG.getNode(VShiftOpc, dl, N->getValueType(0), 17637 N->getOperand(1), N->getOperand(2), 17638 DAG.getConstant(Cnt, dl, MVT::i32)); 17639 } 17640 17641 case Intrinsic::arm_neon_vqrshifts: 17642 case Intrinsic::arm_neon_vqrshiftu: 17643 // No immediate versions of these to check for. 17644 break; 17645 17646 case Intrinsic::arm_mve_vqdmlah: 17647 case Intrinsic::arm_mve_vqdmlash: 17648 case Intrinsic::arm_mve_vqrdmlah: 17649 case Intrinsic::arm_mve_vqrdmlash: 17650 case Intrinsic::arm_mve_vmla_n_predicated: 17651 case Intrinsic::arm_mve_vmlas_n_predicated: 17652 case Intrinsic::arm_mve_vqdmlah_predicated: 17653 case Intrinsic::arm_mve_vqdmlash_predicated: 17654 case Intrinsic::arm_mve_vqrdmlah_predicated: 17655 case Intrinsic::arm_mve_vqrdmlash_predicated: { 17656 // These intrinsics all take an i32 scalar operand which is narrowed to the 17657 // size of a single lane of the vector type they return. So we don't need 17658 // any bits of that operand above that point, which allows us to eliminate 17659 // uxth/sxth. 17660 unsigned BitWidth = N->getValueType(0).getScalarSizeInBits(); 17661 APInt DemandedMask = APInt::getLowBitsSet(32, BitWidth); 17662 if (SimplifyDemandedBits(N->getOperand(3), DemandedMask, DCI)) 17663 return SDValue(); 17664 break; 17665 } 17666 17667 case Intrinsic::arm_mve_minv: 17668 case Intrinsic::arm_mve_maxv: 17669 case Intrinsic::arm_mve_minav: 17670 case Intrinsic::arm_mve_maxav: 17671 case Intrinsic::arm_mve_minv_predicated: 17672 case Intrinsic::arm_mve_maxv_predicated: 17673 case Intrinsic::arm_mve_minav_predicated: 17674 case Intrinsic::arm_mve_maxav_predicated: { 17675 // These intrinsics all take an i32 scalar operand which is narrowed to the 17676 // size of a single lane of the vector type they take as the other input. 17677 unsigned BitWidth = N->getOperand(2)->getValueType(0).getScalarSizeInBits(); 17678 APInt DemandedMask = APInt::getLowBitsSet(32, BitWidth); 17679 if (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI)) 17680 return SDValue(); 17681 break; 17682 } 17683 17684 case Intrinsic::arm_mve_addv: { 17685 // Turn this intrinsic straight into the appropriate ARMISD::VADDV node, 17686 // which allow PerformADDVecReduce to turn it into VADDLV when possible. 17687 bool Unsigned = N->getConstantOperandVal(2); 17688 unsigned Opc = Unsigned ? ARMISD::VADDVu : ARMISD::VADDVs; 17689 return DAG.getNode(Opc, SDLoc(N), N->getVTList(), N->getOperand(1)); 17690 } 17691 17692 case Intrinsic::arm_mve_addlv: 17693 case Intrinsic::arm_mve_addlv_predicated: { 17694 // Same for these, but ARMISD::VADDLV has to be followed by a BUILD_PAIR 17695 // which recombines the two outputs into an i64 17696 bool Unsigned = N->getConstantOperandVal(2); 17697 unsigned Opc = IntNo == Intrinsic::arm_mve_addlv ? 17698 (Unsigned ? ARMISD::VADDLVu : ARMISD::VADDLVs) : 17699 (Unsigned ? ARMISD::VADDLVpu : ARMISD::VADDLVps); 17700 17701 SmallVector<SDValue, 4> Ops; 17702 for (unsigned i = 1, e = N->getNumOperands(); i < e; i++) 17703 if (i != 2) // skip the unsigned flag 17704 Ops.push_back(N->getOperand(i)); 17705 17706 SDLoc dl(N); 17707 SDValue val = DAG.getNode(Opc, dl, {MVT::i32, MVT::i32}, Ops); 17708 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, val.getValue(0), 17709 val.getValue(1)); 17710 } 17711 } 17712 17713 return SDValue(); 17714 } 17715 17716 /// PerformShiftCombine - Checks for immediate versions of vector shifts and 17717 /// lowers them. As with the vector shift intrinsics, this is done during DAG 17718 /// combining instead of DAG legalizing because the build_vectors for 64-bit 17719 /// vector element shift counts are generally not legal, and it is hard to see 17720 /// their values after they get legalized to loads from a constant pool. 17721 static SDValue PerformShiftCombine(SDNode *N, 17722 TargetLowering::DAGCombinerInfo &DCI, 17723 const ARMSubtarget *ST) { 17724 SelectionDAG &DAG = DCI.DAG; 17725 EVT VT = N->getValueType(0); 17726 17727 if (ST->isThumb1Only() && N->getOpcode() == ISD::SHL && VT == MVT::i32 && 17728 N->getOperand(0)->getOpcode() == ISD::AND && 17729 N->getOperand(0)->hasOneUse()) { 17730 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer()) 17731 return SDValue(); 17732 // Look for the pattern (shl (and x, AndMask), ShiftAmt). This doesn't 17733 // usually show up because instcombine prefers to canonicalize it to 17734 // (and (shl x, ShiftAmt) (shl AndMask, ShiftAmt)), but the shift can come 17735 // out of GEP lowering in some cases. 17736 SDValue N0 = N->getOperand(0); 17737 ConstantSDNode *ShiftAmtNode = dyn_cast<ConstantSDNode>(N->getOperand(1)); 17738 if (!ShiftAmtNode) 17739 return SDValue(); 17740 uint32_t ShiftAmt = static_cast<uint32_t>(ShiftAmtNode->getZExtValue()); 17741 ConstantSDNode *AndMaskNode = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 17742 if (!AndMaskNode) 17743 return SDValue(); 17744 uint32_t AndMask = static_cast<uint32_t>(AndMaskNode->getZExtValue()); 17745 // Don't transform uxtb/uxth. 17746 if (AndMask == 255 || AndMask == 65535) 17747 return SDValue(); 17748 if (isMask_32(AndMask)) { 17749 uint32_t MaskedBits = llvm::countl_zero(AndMask); 17750 if (MaskedBits > ShiftAmt) { 17751 SDLoc DL(N); 17752 SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, N0->getOperand(0), 17753 DAG.getConstant(MaskedBits, DL, MVT::i32)); 17754 return DAG.getNode( 17755 ISD::SRL, DL, MVT::i32, SHL, 17756 DAG.getConstant(MaskedBits - ShiftAmt, DL, MVT::i32)); 17757 } 17758 } 17759 } 17760 17761 // Nothing to be done for scalar shifts. 17762 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 17763 if (!VT.isVector() || !TLI.isTypeLegal(VT)) 17764 return SDValue(); 17765 if (ST->hasMVEIntegerOps()) 17766 return SDValue(); 17767 17768 int64_t Cnt; 17769 17770 switch (N->getOpcode()) { 17771 default: llvm_unreachable("unexpected shift opcode"); 17772 17773 case ISD::SHL: 17774 if (isVShiftLImm(N->getOperand(1), VT, false, Cnt)) { 17775 SDLoc dl(N); 17776 return DAG.getNode(ARMISD::VSHLIMM, dl, VT, N->getOperand(0), 17777 DAG.getConstant(Cnt, dl, MVT::i32)); 17778 } 17779 break; 17780 17781 case ISD::SRA: 17782 case ISD::SRL: 17783 if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) { 17784 unsigned VShiftOpc = 17785 (N->getOpcode() == ISD::SRA ? ARMISD::VSHRsIMM : ARMISD::VSHRuIMM); 17786 SDLoc dl(N); 17787 return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0), 17788 DAG.getConstant(Cnt, dl, MVT::i32)); 17789 } 17790 } 17791 return SDValue(); 17792 } 17793 17794 // Look for a sign/zero/fpextend extend of a larger than legal load. This can be 17795 // split into multiple extending loads, which are simpler to deal with than an 17796 // arbitrary extend. For fp extends we use an integer extending load and a VCVTL 17797 // to convert the type to an f32. 17798 static SDValue PerformSplittingToWideningLoad(SDNode *N, SelectionDAG &DAG) { 17799 SDValue N0 = N->getOperand(0); 17800 if (N0.getOpcode() != ISD::LOAD) 17801 return SDValue(); 17802 LoadSDNode *LD = cast<LoadSDNode>(N0.getNode()); 17803 if (!LD->isSimple() || !N0.hasOneUse() || LD->isIndexed() || 17804 LD->getExtensionType() != ISD::NON_EXTLOAD) 17805 return SDValue(); 17806 EVT FromVT = LD->getValueType(0); 17807 EVT ToVT = N->getValueType(0); 17808 if (!ToVT.isVector()) 17809 return SDValue(); 17810 assert(FromVT.getVectorNumElements() == ToVT.getVectorNumElements()); 17811 EVT ToEltVT = ToVT.getVectorElementType(); 17812 EVT FromEltVT = FromVT.getVectorElementType(); 17813 17814 unsigned NumElements = 0; 17815 if (ToEltVT == MVT::i32 && FromEltVT == MVT::i8) 17816 NumElements = 4; 17817 if (ToEltVT == MVT::f32 && FromEltVT == MVT::f16) 17818 NumElements = 4; 17819 if (NumElements == 0 || 17820 (FromEltVT != MVT::f16 && FromVT.getVectorNumElements() == NumElements) || 17821 FromVT.getVectorNumElements() % NumElements != 0 || 17822 !isPowerOf2_32(NumElements)) 17823 return SDValue(); 17824 17825 LLVMContext &C = *DAG.getContext(); 17826 SDLoc DL(LD); 17827 // Details about the old load 17828 SDValue Ch = LD->getChain(); 17829 SDValue BasePtr = LD->getBasePtr(); 17830 Align Alignment = LD->getOriginalAlign(); 17831 MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags(); 17832 AAMDNodes AAInfo = LD->getAAInfo(); 17833 17834 ISD::LoadExtType NewExtType = 17835 N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SEXTLOAD : ISD::ZEXTLOAD; 17836 SDValue Offset = DAG.getUNDEF(BasePtr.getValueType()); 17837 EVT NewFromVT = EVT::getVectorVT( 17838 C, EVT::getIntegerVT(C, FromEltVT.getScalarSizeInBits()), NumElements); 17839 EVT NewToVT = EVT::getVectorVT( 17840 C, EVT::getIntegerVT(C, ToEltVT.getScalarSizeInBits()), NumElements); 17841 17842 SmallVector<SDValue, 4> Loads; 17843 SmallVector<SDValue, 4> Chains; 17844 for (unsigned i = 0; i < FromVT.getVectorNumElements() / NumElements; i++) { 17845 unsigned NewOffset = (i * NewFromVT.getSizeInBits()) / 8; 17846 SDValue NewPtr = 17847 DAG.getObjectPtrOffset(DL, BasePtr, TypeSize::getFixed(NewOffset)); 17848 17849 SDValue NewLoad = 17850 DAG.getLoad(ISD::UNINDEXED, NewExtType, NewToVT, DL, Ch, NewPtr, Offset, 17851 LD->getPointerInfo().getWithOffset(NewOffset), NewFromVT, 17852 Alignment, MMOFlags, AAInfo); 17853 Loads.push_back(NewLoad); 17854 Chains.push_back(SDValue(NewLoad.getNode(), 1)); 17855 } 17856 17857 // Float truncs need to extended with VCVTB's into their floating point types. 17858 if (FromEltVT == MVT::f16) { 17859 SmallVector<SDValue, 4> Extends; 17860 17861 for (unsigned i = 0; i < Loads.size(); i++) { 17862 SDValue LoadBC = 17863 DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, MVT::v8f16, Loads[i]); 17864 SDValue FPExt = DAG.getNode(ARMISD::VCVTL, DL, MVT::v4f32, LoadBC, 17865 DAG.getConstant(0, DL, MVT::i32)); 17866 Extends.push_back(FPExt); 17867 } 17868 17869 Loads = Extends; 17870 } 17871 17872 SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 17873 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewChain); 17874 return DAG.getNode(ISD::CONCAT_VECTORS, DL, ToVT, Loads); 17875 } 17876 17877 /// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND, 17878 /// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND. 17879 static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG, 17880 const ARMSubtarget *ST) { 17881 SDValue N0 = N->getOperand(0); 17882 17883 // Check for sign- and zero-extensions of vector extract operations of 8- and 17884 // 16-bit vector elements. NEON and MVE support these directly. They are 17885 // handled during DAG combining because type legalization will promote them 17886 // to 32-bit types and it is messy to recognize the operations after that. 17887 if ((ST->hasNEON() || ST->hasMVEIntegerOps()) && 17888 N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 17889 SDValue Vec = N0.getOperand(0); 17890 SDValue Lane = N0.getOperand(1); 17891 EVT VT = N->getValueType(0); 17892 EVT EltVT = N0.getValueType(); 17893 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 17894 17895 if (VT == MVT::i32 && 17896 (EltVT == MVT::i8 || EltVT == MVT::i16) && 17897 TLI.isTypeLegal(Vec.getValueType()) && 17898 isa<ConstantSDNode>(Lane)) { 17899 17900 unsigned Opc = 0; 17901 switch (N->getOpcode()) { 17902 default: llvm_unreachable("unexpected opcode"); 17903 case ISD::SIGN_EXTEND: 17904 Opc = ARMISD::VGETLANEs; 17905 break; 17906 case ISD::ZERO_EXTEND: 17907 case ISD::ANY_EXTEND: 17908 Opc = ARMISD::VGETLANEu; 17909 break; 17910 } 17911 return DAG.getNode(Opc, SDLoc(N), VT, Vec, Lane); 17912 } 17913 } 17914 17915 if (ST->hasMVEIntegerOps()) 17916 if (SDValue NewLoad = PerformSplittingToWideningLoad(N, DAG)) 17917 return NewLoad; 17918 17919 return SDValue(); 17920 } 17921 17922 static SDValue PerformFPExtendCombine(SDNode *N, SelectionDAG &DAG, 17923 const ARMSubtarget *ST) { 17924 if (ST->hasMVEFloatOps()) 17925 if (SDValue NewLoad = PerformSplittingToWideningLoad(N, DAG)) 17926 return NewLoad; 17927 17928 return SDValue(); 17929 } 17930 17931 // Lower smin(smax(x, C1), C2) to ssat or usat, if they have saturating 17932 // constant bounds. 17933 static SDValue PerformMinMaxToSatCombine(SDValue Op, SelectionDAG &DAG, 17934 const ARMSubtarget *Subtarget) { 17935 if ((Subtarget->isThumb() || !Subtarget->hasV6Ops()) && 17936 !Subtarget->isThumb2()) 17937 return SDValue(); 17938 17939 EVT VT = Op.getValueType(); 17940 SDValue Op0 = Op.getOperand(0); 17941 17942 if (VT != MVT::i32 || 17943 (Op0.getOpcode() != ISD::SMIN && Op0.getOpcode() != ISD::SMAX) || 17944 !isa<ConstantSDNode>(Op.getOperand(1)) || 17945 !isa<ConstantSDNode>(Op0.getOperand(1))) 17946 return SDValue(); 17947 17948 SDValue Min = Op; 17949 SDValue Max = Op0; 17950 SDValue Input = Op0.getOperand(0); 17951 if (Min.getOpcode() == ISD::SMAX) 17952 std::swap(Min, Max); 17953 17954 APInt MinC = Min.getConstantOperandAPInt(1); 17955 APInt MaxC = Max.getConstantOperandAPInt(1); 17956 17957 if (Min.getOpcode() != ISD::SMIN || Max.getOpcode() != ISD::SMAX || 17958 !(MinC + 1).isPowerOf2()) 17959 return SDValue(); 17960 17961 SDLoc DL(Op); 17962 if (MinC == ~MaxC) 17963 return DAG.getNode(ARMISD::SSAT, DL, VT, Input, 17964 DAG.getConstant(MinC.countr_one(), DL, VT)); 17965 if (MaxC == 0) 17966 return DAG.getNode(ARMISD::USAT, DL, VT, Input, 17967 DAG.getConstant(MinC.countr_one(), DL, VT)); 17968 17969 return SDValue(); 17970 } 17971 17972 /// PerformMinMaxCombine - Target-specific DAG combining for creating truncating 17973 /// saturates. 17974 static SDValue PerformMinMaxCombine(SDNode *N, SelectionDAG &DAG, 17975 const ARMSubtarget *ST) { 17976 EVT VT = N->getValueType(0); 17977 SDValue N0 = N->getOperand(0); 17978 17979 if (VT == MVT::i32) 17980 return PerformMinMaxToSatCombine(SDValue(N, 0), DAG, ST); 17981 17982 if (!ST->hasMVEIntegerOps()) 17983 return SDValue(); 17984 17985 if (SDValue V = PerformVQDMULHCombine(N, DAG)) 17986 return V; 17987 17988 if (VT != MVT::v4i32 && VT != MVT::v8i16) 17989 return SDValue(); 17990 17991 auto IsSignedSaturate = [&](SDNode *Min, SDNode *Max) { 17992 // Check one is a smin and the other is a smax 17993 if (Min->getOpcode() != ISD::SMIN) 17994 std::swap(Min, Max); 17995 if (Min->getOpcode() != ISD::SMIN || Max->getOpcode() != ISD::SMAX) 17996 return false; 17997 17998 APInt SaturateC; 17999 if (VT == MVT::v4i32) 18000 SaturateC = APInt(32, (1 << 15) - 1, true); 18001 else //if (VT == MVT::v8i16) 18002 SaturateC = APInt(16, (1 << 7) - 1, true); 18003 18004 APInt MinC, MaxC; 18005 if (!ISD::isConstantSplatVector(Min->getOperand(1).getNode(), MinC) || 18006 MinC != SaturateC) 18007 return false; 18008 if (!ISD::isConstantSplatVector(Max->getOperand(1).getNode(), MaxC) || 18009 MaxC != ~SaturateC) 18010 return false; 18011 return true; 18012 }; 18013 18014 if (IsSignedSaturate(N, N0.getNode())) { 18015 SDLoc DL(N); 18016 MVT ExtVT, HalfVT; 18017 if (VT == MVT::v4i32) { 18018 HalfVT = MVT::v8i16; 18019 ExtVT = MVT::v4i16; 18020 } else { // if (VT == MVT::v8i16) 18021 HalfVT = MVT::v16i8; 18022 ExtVT = MVT::v8i8; 18023 } 18024 18025 // Create a VQMOVNB with undef top lanes, then signed extended into the top 18026 // half. That extend will hopefully be removed if only the bottom bits are 18027 // demanded (though a truncating store, for example). 18028 SDValue VQMOVN = 18029 DAG.getNode(ARMISD::VQMOVNs, DL, HalfVT, DAG.getUNDEF(HalfVT), 18030 N0->getOperand(0), DAG.getConstant(0, DL, MVT::i32)); 18031 SDValue Bitcast = DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, VQMOVN); 18032 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Bitcast, 18033 DAG.getValueType(ExtVT)); 18034 } 18035 18036 auto IsUnsignedSaturate = [&](SDNode *Min) { 18037 // For unsigned, we just need to check for <= 0xffff 18038 if (Min->getOpcode() != ISD::UMIN) 18039 return false; 18040 18041 APInt SaturateC; 18042 if (VT == MVT::v4i32) 18043 SaturateC = APInt(32, (1 << 16) - 1, true); 18044 else //if (VT == MVT::v8i16) 18045 SaturateC = APInt(16, (1 << 8) - 1, true); 18046 18047 APInt MinC; 18048 if (!ISD::isConstantSplatVector(Min->getOperand(1).getNode(), MinC) || 18049 MinC != SaturateC) 18050 return false; 18051 return true; 18052 }; 18053 18054 if (IsUnsignedSaturate(N)) { 18055 SDLoc DL(N); 18056 MVT HalfVT; 18057 unsigned ExtConst; 18058 if (VT == MVT::v4i32) { 18059 HalfVT = MVT::v8i16; 18060 ExtConst = 0x0000FFFF; 18061 } else { //if (VT == MVT::v8i16) 18062 HalfVT = MVT::v16i8; 18063 ExtConst = 0x00FF; 18064 } 18065 18066 // Create a VQMOVNB with undef top lanes, then ZExt into the top half with 18067 // an AND. That extend will hopefully be removed if only the bottom bits are 18068 // demanded (though a truncating store, for example). 18069 SDValue VQMOVN = 18070 DAG.getNode(ARMISD::VQMOVNu, DL, HalfVT, DAG.getUNDEF(HalfVT), N0, 18071 DAG.getConstant(0, DL, MVT::i32)); 18072 SDValue Bitcast = DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, VQMOVN); 18073 return DAG.getNode(ISD::AND, DL, VT, Bitcast, 18074 DAG.getConstant(ExtConst, DL, VT)); 18075 } 18076 18077 return SDValue(); 18078 } 18079 18080 static const APInt *isPowerOf2Constant(SDValue V) { 18081 ConstantSDNode *C = dyn_cast<ConstantSDNode>(V); 18082 if (!C) 18083 return nullptr; 18084 const APInt *CV = &C->getAPIntValue(); 18085 return CV->isPowerOf2() ? CV : nullptr; 18086 } 18087 18088 SDValue ARMTargetLowering::PerformCMOVToBFICombine(SDNode *CMOV, SelectionDAG &DAG) const { 18089 // If we have a CMOV, OR and AND combination such as: 18090 // if (x & CN) 18091 // y |= CM; 18092 // 18093 // And: 18094 // * CN is a single bit; 18095 // * All bits covered by CM are known zero in y 18096 // 18097 // Then we can convert this into a sequence of BFI instructions. This will 18098 // always be a win if CM is a single bit, will always be no worse than the 18099 // TST&OR sequence if CM is two bits, and for thumb will be no worse if CM is 18100 // three bits (due to the extra IT instruction). 18101 18102 SDValue Op0 = CMOV->getOperand(0); 18103 SDValue Op1 = CMOV->getOperand(1); 18104 auto CC = CMOV->getConstantOperandAPInt(2).getLimitedValue(); 18105 SDValue CmpZ = CMOV->getOperand(4); 18106 18107 // The compare must be against zero. 18108 if (!isNullConstant(CmpZ->getOperand(1))) 18109 return SDValue(); 18110 18111 assert(CmpZ->getOpcode() == ARMISD::CMPZ); 18112 SDValue And = CmpZ->getOperand(0); 18113 if (And->getOpcode() != ISD::AND) 18114 return SDValue(); 18115 const APInt *AndC = isPowerOf2Constant(And->getOperand(1)); 18116 if (!AndC) 18117 return SDValue(); 18118 SDValue X = And->getOperand(0); 18119 18120 if (CC == ARMCC::EQ) { 18121 // We're performing an "equal to zero" compare. Swap the operands so we 18122 // canonicalize on a "not equal to zero" compare. 18123 std::swap(Op0, Op1); 18124 } else { 18125 assert(CC == ARMCC::NE && "How can a CMPZ node not be EQ or NE?"); 18126 } 18127 18128 if (Op1->getOpcode() != ISD::OR) 18129 return SDValue(); 18130 18131 ConstantSDNode *OrC = dyn_cast<ConstantSDNode>(Op1->getOperand(1)); 18132 if (!OrC) 18133 return SDValue(); 18134 SDValue Y = Op1->getOperand(0); 18135 18136 if (Op0 != Y) 18137 return SDValue(); 18138 18139 // Now, is it profitable to continue? 18140 APInt OrCI = OrC->getAPIntValue(); 18141 unsigned Heuristic = Subtarget->isThumb() ? 3 : 2; 18142 if (OrCI.popcount() > Heuristic) 18143 return SDValue(); 18144 18145 // Lastly, can we determine that the bits defined by OrCI 18146 // are zero in Y? 18147 KnownBits Known = DAG.computeKnownBits(Y); 18148 if ((OrCI & Known.Zero) != OrCI) 18149 return SDValue(); 18150 18151 // OK, we can do the combine. 18152 SDValue V = Y; 18153 SDLoc dl(X); 18154 EVT VT = X.getValueType(); 18155 unsigned BitInX = AndC->logBase2(); 18156 18157 if (BitInX != 0) { 18158 // We must shift X first. 18159 X = DAG.getNode(ISD::SRL, dl, VT, X, 18160 DAG.getConstant(BitInX, dl, VT)); 18161 } 18162 18163 for (unsigned BitInY = 0, NumActiveBits = OrCI.getActiveBits(); 18164 BitInY < NumActiveBits; ++BitInY) { 18165 if (OrCI[BitInY] == 0) 18166 continue; 18167 APInt Mask(VT.getSizeInBits(), 0); 18168 Mask.setBit(BitInY); 18169 V = DAG.getNode(ARMISD::BFI, dl, VT, V, X, 18170 // Confusingly, the operand is an *inverted* mask. 18171 DAG.getConstant(~Mask, dl, VT)); 18172 } 18173 18174 return V; 18175 } 18176 18177 // Given N, the value controlling the conditional branch, search for the loop 18178 // intrinsic, returning it, along with how the value is used. We need to handle 18179 // patterns such as the following: 18180 // (brcond (xor (setcc (loop.decrement), 0, ne), 1), exit) 18181 // (brcond (setcc (loop.decrement), 0, eq), exit) 18182 // (brcond (setcc (loop.decrement), 0, ne), header) 18183 static SDValue SearchLoopIntrinsic(SDValue N, ISD::CondCode &CC, int &Imm, 18184 bool &Negate) { 18185 switch (N->getOpcode()) { 18186 default: 18187 break; 18188 case ISD::XOR: { 18189 if (!isa<ConstantSDNode>(N.getOperand(1))) 18190 return SDValue(); 18191 if (!cast<ConstantSDNode>(N.getOperand(1))->isOne()) 18192 return SDValue(); 18193 Negate = !Negate; 18194 return SearchLoopIntrinsic(N.getOperand(0), CC, Imm, Negate); 18195 } 18196 case ISD::SETCC: { 18197 auto *Const = dyn_cast<ConstantSDNode>(N.getOperand(1)); 18198 if (!Const) 18199 return SDValue(); 18200 if (Const->isZero()) 18201 Imm = 0; 18202 else if (Const->isOne()) 18203 Imm = 1; 18204 else 18205 return SDValue(); 18206 CC = cast<CondCodeSDNode>(N.getOperand(2))->get(); 18207 return SearchLoopIntrinsic(N->getOperand(0), CC, Imm, Negate); 18208 } 18209 case ISD::INTRINSIC_W_CHAIN: { 18210 unsigned IntOp = N.getConstantOperandVal(1); 18211 if (IntOp != Intrinsic::test_start_loop_iterations && 18212 IntOp != Intrinsic::loop_decrement_reg) 18213 return SDValue(); 18214 return N; 18215 } 18216 } 18217 return SDValue(); 18218 } 18219 18220 static SDValue PerformHWLoopCombine(SDNode *N, 18221 TargetLowering::DAGCombinerInfo &DCI, 18222 const ARMSubtarget *ST) { 18223 18224 // The hwloop intrinsics that we're interested are used for control-flow, 18225 // either for entering or exiting the loop: 18226 // - test.start.loop.iterations will test whether its operand is zero. If it 18227 // is zero, the proceeding branch should not enter the loop. 18228 // - loop.decrement.reg also tests whether its operand is zero. If it is 18229 // zero, the proceeding branch should not branch back to the beginning of 18230 // the loop. 18231 // So here, we need to check that how the brcond is using the result of each 18232 // of the intrinsics to ensure that we're branching to the right place at the 18233 // right time. 18234 18235 ISD::CondCode CC; 18236 SDValue Cond; 18237 int Imm = 1; 18238 bool Negate = false; 18239 SDValue Chain = N->getOperand(0); 18240 SDValue Dest; 18241 18242 if (N->getOpcode() == ISD::BRCOND) { 18243 CC = ISD::SETEQ; 18244 Cond = N->getOperand(1); 18245 Dest = N->getOperand(2); 18246 } else { 18247 assert(N->getOpcode() == ISD::BR_CC && "Expected BRCOND or BR_CC!"); 18248 CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 18249 Cond = N->getOperand(2); 18250 Dest = N->getOperand(4); 18251 if (auto *Const = dyn_cast<ConstantSDNode>(N->getOperand(3))) { 18252 if (!Const->isOne() && !Const->isZero()) 18253 return SDValue(); 18254 Imm = Const->getZExtValue(); 18255 } else 18256 return SDValue(); 18257 } 18258 18259 SDValue Int = SearchLoopIntrinsic(Cond, CC, Imm, Negate); 18260 if (!Int) 18261 return SDValue(); 18262 18263 if (Negate) 18264 CC = ISD::getSetCCInverse(CC, /* Integer inverse */ MVT::i32); 18265 18266 auto IsTrueIfZero = [](ISD::CondCode CC, int Imm) { 18267 return (CC == ISD::SETEQ && Imm == 0) || 18268 (CC == ISD::SETNE && Imm == 1) || 18269 (CC == ISD::SETLT && Imm == 1) || 18270 (CC == ISD::SETULT && Imm == 1); 18271 }; 18272 18273 auto IsFalseIfZero = [](ISD::CondCode CC, int Imm) { 18274 return (CC == ISD::SETEQ && Imm == 1) || 18275 (CC == ISD::SETNE && Imm == 0) || 18276 (CC == ISD::SETGT && Imm == 0) || 18277 (CC == ISD::SETUGT && Imm == 0) || 18278 (CC == ISD::SETGE && Imm == 1) || 18279 (CC == ISD::SETUGE && Imm == 1); 18280 }; 18281 18282 assert((IsTrueIfZero(CC, Imm) || IsFalseIfZero(CC, Imm)) && 18283 "unsupported condition"); 18284 18285 SDLoc dl(Int); 18286 SelectionDAG &DAG = DCI.DAG; 18287 SDValue Elements = Int.getOperand(2); 18288 unsigned IntOp = Int->getConstantOperandVal(1); 18289 assert((N->hasOneUse() && N->use_begin()->getOpcode() == ISD::BR) 18290 && "expected single br user"); 18291 SDNode *Br = *N->use_begin(); 18292 SDValue OtherTarget = Br->getOperand(1); 18293 18294 // Update the unconditional branch to branch to the given Dest. 18295 auto UpdateUncondBr = [](SDNode *Br, SDValue Dest, SelectionDAG &DAG) { 18296 SDValue NewBrOps[] = { Br->getOperand(0), Dest }; 18297 SDValue NewBr = DAG.getNode(ISD::BR, SDLoc(Br), MVT::Other, NewBrOps); 18298 DAG.ReplaceAllUsesOfValueWith(SDValue(Br, 0), NewBr); 18299 }; 18300 18301 if (IntOp == Intrinsic::test_start_loop_iterations) { 18302 SDValue Res; 18303 SDValue Setup = DAG.getNode(ARMISD::WLSSETUP, dl, MVT::i32, Elements); 18304 // We expect this 'instruction' to branch when the counter is zero. 18305 if (IsTrueIfZero(CC, Imm)) { 18306 SDValue Ops[] = {Chain, Setup, Dest}; 18307 Res = DAG.getNode(ARMISD::WLS, dl, MVT::Other, Ops); 18308 } else { 18309 // The logic is the reverse of what we need for WLS, so find the other 18310 // basic block target: the target of the proceeding br. 18311 UpdateUncondBr(Br, Dest, DAG); 18312 18313 SDValue Ops[] = {Chain, Setup, OtherTarget}; 18314 Res = DAG.getNode(ARMISD::WLS, dl, MVT::Other, Ops); 18315 } 18316 // Update LR count to the new value 18317 DAG.ReplaceAllUsesOfValueWith(Int.getValue(0), Setup); 18318 // Update chain 18319 DAG.ReplaceAllUsesOfValueWith(Int.getValue(2), Int.getOperand(0)); 18320 return Res; 18321 } else { 18322 SDValue Size = 18323 DAG.getTargetConstant(Int.getConstantOperandVal(3), dl, MVT::i32); 18324 SDValue Args[] = { Int.getOperand(0), Elements, Size, }; 18325 SDValue LoopDec = DAG.getNode(ARMISD::LOOP_DEC, dl, 18326 DAG.getVTList(MVT::i32, MVT::Other), Args); 18327 DAG.ReplaceAllUsesWith(Int.getNode(), LoopDec.getNode()); 18328 18329 // We expect this instruction to branch when the count is not zero. 18330 SDValue Target = IsFalseIfZero(CC, Imm) ? Dest : OtherTarget; 18331 18332 // Update the unconditional branch to target the loop preheader if we've 18333 // found the condition has been reversed. 18334 if (Target == OtherTarget) 18335 UpdateUncondBr(Br, Dest, DAG); 18336 18337 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 18338 SDValue(LoopDec.getNode(), 1), Chain); 18339 18340 SDValue EndArgs[] = { Chain, SDValue(LoopDec.getNode(), 0), Target }; 18341 return DAG.getNode(ARMISD::LE, dl, MVT::Other, EndArgs); 18342 } 18343 return SDValue(); 18344 } 18345 18346 /// PerformBRCONDCombine - Target-specific DAG combining for ARMISD::BRCOND. 18347 SDValue 18348 ARMTargetLowering::PerformBRCONDCombine(SDNode *N, SelectionDAG &DAG) const { 18349 SDValue Cmp = N->getOperand(4); 18350 if (Cmp.getOpcode() != ARMISD::CMPZ) 18351 // Only looking at NE cases. 18352 return SDValue(); 18353 18354 EVT VT = N->getValueType(0); 18355 SDLoc dl(N); 18356 SDValue LHS = Cmp.getOperand(0); 18357 SDValue RHS = Cmp.getOperand(1); 18358 SDValue Chain = N->getOperand(0); 18359 SDValue BB = N->getOperand(1); 18360 SDValue ARMcc = N->getOperand(2); 18361 ARMCC::CondCodes CC = (ARMCC::CondCodes)ARMcc->getAsZExtVal(); 18362 18363 // (brcond Chain BB ne CPSR (cmpz (and (cmov 0 1 CC CPSR Cmp) 1) 0)) 18364 // -> (brcond Chain BB CC CPSR Cmp) 18365 if (CC == ARMCC::NE && LHS.getOpcode() == ISD::AND && LHS->hasOneUse() && 18366 LHS->getOperand(0)->getOpcode() == ARMISD::CMOV && 18367 LHS->getOperand(0)->hasOneUse() && 18368 isNullConstant(LHS->getOperand(0)->getOperand(0)) && 18369 isOneConstant(LHS->getOperand(0)->getOperand(1)) && 18370 isOneConstant(LHS->getOperand(1)) && isNullConstant(RHS)) { 18371 return DAG.getNode( 18372 ARMISD::BRCOND, dl, VT, Chain, BB, LHS->getOperand(0)->getOperand(2), 18373 LHS->getOperand(0)->getOperand(3), LHS->getOperand(0)->getOperand(4)); 18374 } 18375 18376 return SDValue(); 18377 } 18378 18379 /// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV. 18380 SDValue 18381 ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const { 18382 SDValue Cmp = N->getOperand(4); 18383 if (Cmp.getOpcode() != ARMISD::CMPZ) 18384 // Only looking at EQ and NE cases. 18385 return SDValue(); 18386 18387 EVT VT = N->getValueType(0); 18388 SDLoc dl(N); 18389 SDValue LHS = Cmp.getOperand(0); 18390 SDValue RHS = Cmp.getOperand(1); 18391 SDValue FalseVal = N->getOperand(0); 18392 SDValue TrueVal = N->getOperand(1); 18393 SDValue ARMcc = N->getOperand(2); 18394 ARMCC::CondCodes CC = (ARMCC::CondCodes)ARMcc->getAsZExtVal(); 18395 18396 // BFI is only available on V6T2+. 18397 if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops()) { 18398 SDValue R = PerformCMOVToBFICombine(N, DAG); 18399 if (R) 18400 return R; 18401 } 18402 18403 // Simplify 18404 // mov r1, r0 18405 // cmp r1, x 18406 // mov r0, y 18407 // moveq r0, x 18408 // to 18409 // cmp r0, x 18410 // movne r0, y 18411 // 18412 // mov r1, r0 18413 // cmp r1, x 18414 // mov r0, x 18415 // movne r0, y 18416 // to 18417 // cmp r0, x 18418 // movne r0, y 18419 /// FIXME: Turn this into a target neutral optimization? 18420 SDValue Res; 18421 if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) { 18422 Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc, 18423 N->getOperand(3), Cmp); 18424 } else if (CC == ARMCC::EQ && TrueVal == RHS) { 18425 SDValue ARMcc; 18426 SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl); 18427 Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc, 18428 N->getOperand(3), NewCmp); 18429 } 18430 18431 // (cmov F T ne CPSR (cmpz (cmov 0 1 CC CPSR Cmp) 0)) 18432 // -> (cmov F T CC CPSR Cmp) 18433 if (CC == ARMCC::NE && LHS.getOpcode() == ARMISD::CMOV && LHS->hasOneUse() && 18434 isNullConstant(LHS->getOperand(0)) && isOneConstant(LHS->getOperand(1)) && 18435 isNullConstant(RHS)) { 18436 return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, 18437 LHS->getOperand(2), LHS->getOperand(3), 18438 LHS->getOperand(4)); 18439 } 18440 18441 if (!VT.isInteger()) 18442 return SDValue(); 18443 18444 // Fold away an unneccessary CMPZ/CMOV 18445 // CMOV A, B, C1, $cpsr, (CMPZ (CMOV 1, 0, C2, D), 0) -> 18446 // if C1==EQ -> CMOV A, B, C2, $cpsr, D 18447 // if C1==NE -> CMOV A, B, NOT(C2), $cpsr, D 18448 if (N->getConstantOperandVal(2) == ARMCC::EQ || 18449 N->getConstantOperandVal(2) == ARMCC::NE) { 18450 ARMCC::CondCodes Cond; 18451 if (SDValue C = IsCMPZCSINC(N->getOperand(4).getNode(), Cond)) { 18452 if (N->getConstantOperandVal(2) == ARMCC::NE) 18453 Cond = ARMCC::getOppositeCondition(Cond); 18454 return DAG.getNode(N->getOpcode(), SDLoc(N), MVT::i32, N->getOperand(0), 18455 N->getOperand(1), 18456 DAG.getTargetConstant(Cond, SDLoc(N), MVT::i32), 18457 N->getOperand(3), C); 18458 } 18459 } 18460 18461 // Materialize a boolean comparison for integers so we can avoid branching. 18462 if (isNullConstant(FalseVal)) { 18463 if (CC == ARMCC::EQ && isOneConstant(TrueVal)) { 18464 if (!Subtarget->isThumb1Only() && Subtarget->hasV5TOps()) { 18465 // If x == y then x - y == 0 and ARM's CLZ will return 32, shifting it 18466 // right 5 bits will make that 32 be 1, otherwise it will be 0. 18467 // CMOV 0, 1, ==, (CMPZ x, y) -> SRL (CTLZ (SUB x, y)), 5 18468 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS); 18469 Res = DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::CTLZ, dl, VT, Sub), 18470 DAG.getConstant(5, dl, MVT::i32)); 18471 } else { 18472 // CMOV 0, 1, ==, (CMPZ x, y) -> 18473 // (UADDO_CARRY (SUB x, y), t:0, t:1) 18474 // where t = (USUBO_CARRY 0, (SUB x, y), 0) 18475 // 18476 // The USUBO_CARRY computes 0 - (x - y) and this will give a borrow when 18477 // x != y. In other words, a carry C == 1 when x == y, C == 0 18478 // otherwise. 18479 // The final UADDO_CARRY computes 18480 // x - y + (0 - (x - y)) + C == C 18481 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS); 18482 SDVTList VTs = DAG.getVTList(VT, MVT::i32); 18483 SDValue Neg = DAG.getNode(ISD::USUBO, dl, VTs, FalseVal, Sub); 18484 // ISD::USUBO_CARRY returns a borrow but we want the carry here 18485 // actually. 18486 SDValue Carry = 18487 DAG.getNode(ISD::SUB, dl, MVT::i32, 18488 DAG.getConstant(1, dl, MVT::i32), Neg.getValue(1)); 18489 Res = DAG.getNode(ISD::UADDO_CARRY, dl, VTs, Sub, Neg, Carry); 18490 } 18491 } else if (CC == ARMCC::NE && !isNullConstant(RHS) && 18492 (!Subtarget->isThumb1Only() || isPowerOf2Constant(TrueVal))) { 18493 // This seems pointless but will allow us to combine it further below. 18494 // CMOV 0, z, !=, (CMPZ x, y) -> CMOV (SUBC x, y), z, !=, (SUBC x, y):1 18495 SDValue Sub = 18496 DAG.getNode(ARMISD::SUBC, dl, DAG.getVTList(VT, MVT::i32), LHS, RHS); 18497 SDValue CPSRGlue = DAG.getCopyToReg(DAG.getEntryNode(), dl, ARM::CPSR, 18498 Sub.getValue(1), SDValue()); 18499 Res = DAG.getNode(ARMISD::CMOV, dl, VT, Sub, TrueVal, ARMcc, 18500 N->getOperand(3), CPSRGlue.getValue(1)); 18501 FalseVal = Sub; 18502 } 18503 } else if (isNullConstant(TrueVal)) { 18504 if (CC == ARMCC::EQ && !isNullConstant(RHS) && 18505 (!Subtarget->isThumb1Only() || isPowerOf2Constant(FalseVal))) { 18506 // This seems pointless but will allow us to combine it further below 18507 // Note that we change == for != as this is the dual for the case above. 18508 // CMOV z, 0, ==, (CMPZ x, y) -> CMOV (SUBC x, y), z, !=, (SUBC x, y):1 18509 SDValue Sub = 18510 DAG.getNode(ARMISD::SUBC, dl, DAG.getVTList(VT, MVT::i32), LHS, RHS); 18511 SDValue CPSRGlue = DAG.getCopyToReg(DAG.getEntryNode(), dl, ARM::CPSR, 18512 Sub.getValue(1), SDValue()); 18513 Res = DAG.getNode(ARMISD::CMOV, dl, VT, Sub, FalseVal, 18514 DAG.getConstant(ARMCC::NE, dl, MVT::i32), 18515 N->getOperand(3), CPSRGlue.getValue(1)); 18516 FalseVal = Sub; 18517 } 18518 } 18519 18520 // On Thumb1, the DAG above may be further combined if z is a power of 2 18521 // (z == 2 ^ K). 18522 // CMOV (SUBC x, y), z, !=, (SUBC x, y):1 -> 18523 // t1 = (USUBO (SUB x, y), 1) 18524 // t2 = (USUBO_CARRY (SUB x, y), t1:0, t1:1) 18525 // Result = if K != 0 then (SHL t2:0, K) else t2:0 18526 // 18527 // This also handles the special case of comparing against zero; it's 18528 // essentially, the same pattern, except there's no SUBC: 18529 // CMOV x, z, !=, (CMPZ x, 0) -> 18530 // t1 = (USUBO x, 1) 18531 // t2 = (USUBO_CARRY x, t1:0, t1:1) 18532 // Result = if K != 0 then (SHL t2:0, K) else t2:0 18533 const APInt *TrueConst; 18534 if (Subtarget->isThumb1Only() && CC == ARMCC::NE && 18535 ((FalseVal.getOpcode() == ARMISD::SUBC && FalseVal.getOperand(0) == LHS && 18536 FalseVal.getOperand(1) == RHS) || 18537 (FalseVal == LHS && isNullConstant(RHS))) && 18538 (TrueConst = isPowerOf2Constant(TrueVal))) { 18539 SDVTList VTs = DAG.getVTList(VT, MVT::i32); 18540 unsigned ShiftAmount = TrueConst->logBase2(); 18541 if (ShiftAmount) 18542 TrueVal = DAG.getConstant(1, dl, VT); 18543 SDValue Subc = DAG.getNode(ISD::USUBO, dl, VTs, FalseVal, TrueVal); 18544 Res = DAG.getNode(ISD::USUBO_CARRY, dl, VTs, FalseVal, Subc, 18545 Subc.getValue(1)); 18546 18547 if (ShiftAmount) 18548 Res = DAG.getNode(ISD::SHL, dl, VT, Res, 18549 DAG.getConstant(ShiftAmount, dl, MVT::i32)); 18550 } 18551 18552 if (Res.getNode()) { 18553 KnownBits Known = DAG.computeKnownBits(SDValue(N,0)); 18554 // Capture demanded bits information that would be otherwise lost. 18555 if (Known.Zero == 0xfffffffe) 18556 Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res, 18557 DAG.getValueType(MVT::i1)); 18558 else if (Known.Zero == 0xffffff00) 18559 Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res, 18560 DAG.getValueType(MVT::i8)); 18561 else if (Known.Zero == 0xffff0000) 18562 Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res, 18563 DAG.getValueType(MVT::i16)); 18564 } 18565 18566 return Res; 18567 } 18568 18569 static SDValue PerformBITCASTCombine(SDNode *N, 18570 TargetLowering::DAGCombinerInfo &DCI, 18571 const ARMSubtarget *ST) { 18572 SelectionDAG &DAG = DCI.DAG; 18573 SDValue Src = N->getOperand(0); 18574 EVT DstVT = N->getValueType(0); 18575 18576 // Convert v4f32 bitcast (v4i32 vdup (i32)) -> v4f32 vdup (i32) under MVE. 18577 if (ST->hasMVEIntegerOps() && Src.getOpcode() == ARMISD::VDUP) { 18578 EVT SrcVT = Src.getValueType(); 18579 if (SrcVT.getScalarSizeInBits() == DstVT.getScalarSizeInBits()) 18580 return DAG.getNode(ARMISD::VDUP, SDLoc(N), DstVT, Src.getOperand(0)); 18581 } 18582 18583 // We may have a bitcast of something that has already had this bitcast 18584 // combine performed on it, so skip past any VECTOR_REG_CASTs. 18585 while (Src.getOpcode() == ARMISD::VECTOR_REG_CAST) 18586 Src = Src.getOperand(0); 18587 18588 // Bitcast from element-wise VMOV or VMVN doesn't need VREV if the VREV that 18589 // would be generated is at least the width of the element type. 18590 EVT SrcVT = Src.getValueType(); 18591 if ((Src.getOpcode() == ARMISD::VMOVIMM || 18592 Src.getOpcode() == ARMISD::VMVNIMM || 18593 Src.getOpcode() == ARMISD::VMOVFPIMM) && 18594 SrcVT.getScalarSizeInBits() <= DstVT.getScalarSizeInBits() && 18595 DAG.getDataLayout().isBigEndian()) 18596 return DAG.getNode(ARMISD::VECTOR_REG_CAST, SDLoc(N), DstVT, Src); 18597 18598 // bitcast(extract(x, n)); bitcast(extract(x, n+1)) -> VMOVRRD x 18599 if (SDValue R = PerformExtractEltToVMOVRRD(N, DCI)) 18600 return R; 18601 18602 return SDValue(); 18603 } 18604 18605 // Some combines for the MVETrunc truncations legalizer helper. Also lowers the 18606 // node into stack operations after legalizeOps. 18607 SDValue ARMTargetLowering::PerformMVETruncCombine( 18608 SDNode *N, TargetLowering::DAGCombinerInfo &DCI) const { 18609 SelectionDAG &DAG = DCI.DAG; 18610 EVT VT = N->getValueType(0); 18611 SDLoc DL(N); 18612 18613 // MVETrunc(Undef, Undef) -> Undef 18614 if (all_of(N->ops(), [](SDValue Op) { return Op.isUndef(); })) 18615 return DAG.getUNDEF(VT); 18616 18617 // MVETrunc(MVETrunc a b, MVETrunc c, d) -> MVETrunc 18618 if (N->getNumOperands() == 2 && 18619 N->getOperand(0).getOpcode() == ARMISD::MVETRUNC && 18620 N->getOperand(1).getOpcode() == ARMISD::MVETRUNC) 18621 return DAG.getNode(ARMISD::MVETRUNC, DL, VT, N->getOperand(0).getOperand(0), 18622 N->getOperand(0).getOperand(1), 18623 N->getOperand(1).getOperand(0), 18624 N->getOperand(1).getOperand(1)); 18625 18626 // MVETrunc(shuffle, shuffle) -> VMOVN 18627 if (N->getNumOperands() == 2 && 18628 N->getOperand(0).getOpcode() == ISD::VECTOR_SHUFFLE && 18629 N->getOperand(1).getOpcode() == ISD::VECTOR_SHUFFLE) { 18630 auto *S0 = cast<ShuffleVectorSDNode>(N->getOperand(0).getNode()); 18631 auto *S1 = cast<ShuffleVectorSDNode>(N->getOperand(1).getNode()); 18632 18633 if (S0->getOperand(0) == S1->getOperand(0) && 18634 S0->getOperand(1) == S1->getOperand(1)) { 18635 // Construct complete shuffle mask 18636 SmallVector<int, 8> Mask(S0->getMask()); 18637 Mask.append(S1->getMask().begin(), S1->getMask().end()); 18638 18639 if (isVMOVNTruncMask(Mask, VT, false)) 18640 return DAG.getNode( 18641 ARMISD::VMOVN, DL, VT, 18642 DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, S0->getOperand(0)), 18643 DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, S0->getOperand(1)), 18644 DAG.getConstant(1, DL, MVT::i32)); 18645 if (isVMOVNTruncMask(Mask, VT, true)) 18646 return DAG.getNode( 18647 ARMISD::VMOVN, DL, VT, 18648 DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, S0->getOperand(1)), 18649 DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, S0->getOperand(0)), 18650 DAG.getConstant(1, DL, MVT::i32)); 18651 } 18652 } 18653 18654 // For MVETrunc of a buildvector or shuffle, it can be beneficial to lower the 18655 // truncate to a buildvector to allow the generic optimisations to kick in. 18656 if (all_of(N->ops(), [](SDValue Op) { 18657 return Op.getOpcode() == ISD::BUILD_VECTOR || 18658 Op.getOpcode() == ISD::VECTOR_SHUFFLE || 18659 (Op.getOpcode() == ISD::BITCAST && 18660 Op.getOperand(0).getOpcode() == ISD::BUILD_VECTOR); 18661 })) { 18662 SmallVector<SDValue, 8> Extracts; 18663 for (unsigned Op = 0; Op < N->getNumOperands(); Op++) { 18664 SDValue O = N->getOperand(Op); 18665 for (unsigned i = 0; i < O.getValueType().getVectorNumElements(); i++) { 18666 SDValue Ext = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, O, 18667 DAG.getConstant(i, DL, MVT::i32)); 18668 Extracts.push_back(Ext); 18669 } 18670 } 18671 return DAG.getBuildVector(VT, DL, Extracts); 18672 } 18673 18674 // If we are late in the legalization process and nothing has optimised 18675 // the trunc to anything better, lower it to a stack store and reload, 18676 // performing the truncation whilst keeping the lanes in the correct order: 18677 // VSTRH.32 a, stack; VSTRH.32 b, stack+8; VLDRW.32 stack; 18678 if (!DCI.isAfterLegalizeDAG()) 18679 return SDValue(); 18680 18681 SDValue StackPtr = DAG.CreateStackTemporary(TypeSize::getFixed(16), Align(4)); 18682 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 18683 int NumIns = N->getNumOperands(); 18684 assert((NumIns == 2 || NumIns == 4) && 18685 "Expected 2 or 4 inputs to an MVETrunc"); 18686 EVT StoreVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 18687 if (N->getNumOperands() == 4) 18688 StoreVT = StoreVT.getHalfNumVectorElementsVT(*DAG.getContext()); 18689 18690 SmallVector<SDValue> Chains; 18691 for (int I = 0; I < NumIns; I++) { 18692 SDValue Ptr = DAG.getNode( 18693 ISD::ADD, DL, StackPtr.getValueType(), StackPtr, 18694 DAG.getConstant(I * 16 / NumIns, DL, StackPtr.getValueType())); 18695 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack( 18696 DAG.getMachineFunction(), SPFI, I * 16 / NumIns); 18697 SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), DL, N->getOperand(I), 18698 Ptr, MPI, StoreVT, Align(4)); 18699 Chains.push_back(Ch); 18700 } 18701 18702 SDValue Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 18703 MachinePointerInfo MPI = 18704 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI, 0); 18705 return DAG.getLoad(VT, DL, Chain, StackPtr, MPI, Align(4)); 18706 } 18707 18708 // Take a MVEEXT(load x) and split that into (extload x, extload x+8) 18709 static SDValue PerformSplittingMVEEXTToWideningLoad(SDNode *N, 18710 SelectionDAG &DAG) { 18711 SDValue N0 = N->getOperand(0); 18712 LoadSDNode *LD = dyn_cast<LoadSDNode>(N0.getNode()); 18713 if (!LD || !LD->isSimple() || !N0.hasOneUse() || LD->isIndexed()) 18714 return SDValue(); 18715 18716 EVT FromVT = LD->getMemoryVT(); 18717 EVT ToVT = N->getValueType(0); 18718 if (!ToVT.isVector()) 18719 return SDValue(); 18720 assert(FromVT.getVectorNumElements() == ToVT.getVectorNumElements() * 2); 18721 EVT ToEltVT = ToVT.getVectorElementType(); 18722 EVT FromEltVT = FromVT.getVectorElementType(); 18723 18724 unsigned NumElements = 0; 18725 if (ToEltVT == MVT::i32 && (FromEltVT == MVT::i16 || FromEltVT == MVT::i8)) 18726 NumElements = 4; 18727 if (ToEltVT == MVT::i16 && FromEltVT == MVT::i8) 18728 NumElements = 8; 18729 assert(NumElements != 0); 18730 18731 ISD::LoadExtType NewExtType = 18732 N->getOpcode() == ARMISD::MVESEXT ? ISD::SEXTLOAD : ISD::ZEXTLOAD; 18733 if (LD->getExtensionType() != ISD::NON_EXTLOAD && 18734 LD->getExtensionType() != ISD::EXTLOAD && 18735 LD->getExtensionType() != NewExtType) 18736 return SDValue(); 18737 18738 LLVMContext &C = *DAG.getContext(); 18739 SDLoc DL(LD); 18740 // Details about the old load 18741 SDValue Ch = LD->getChain(); 18742 SDValue BasePtr = LD->getBasePtr(); 18743 Align Alignment = LD->getOriginalAlign(); 18744 MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags(); 18745 AAMDNodes AAInfo = LD->getAAInfo(); 18746 18747 SDValue Offset = DAG.getUNDEF(BasePtr.getValueType()); 18748 EVT NewFromVT = EVT::getVectorVT( 18749 C, EVT::getIntegerVT(C, FromEltVT.getScalarSizeInBits()), NumElements); 18750 EVT NewToVT = EVT::getVectorVT( 18751 C, EVT::getIntegerVT(C, ToEltVT.getScalarSizeInBits()), NumElements); 18752 18753 SmallVector<SDValue, 4> Loads; 18754 SmallVector<SDValue, 4> Chains; 18755 for (unsigned i = 0; i < FromVT.getVectorNumElements() / NumElements; i++) { 18756 unsigned NewOffset = (i * NewFromVT.getSizeInBits()) / 8; 18757 SDValue NewPtr = 18758 DAG.getObjectPtrOffset(DL, BasePtr, TypeSize::getFixed(NewOffset)); 18759 18760 SDValue NewLoad = 18761 DAG.getLoad(ISD::UNINDEXED, NewExtType, NewToVT, DL, Ch, NewPtr, Offset, 18762 LD->getPointerInfo().getWithOffset(NewOffset), NewFromVT, 18763 Alignment, MMOFlags, AAInfo); 18764 Loads.push_back(NewLoad); 18765 Chains.push_back(SDValue(NewLoad.getNode(), 1)); 18766 } 18767 18768 SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 18769 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewChain); 18770 return DAG.getMergeValues(Loads, DL); 18771 } 18772 18773 // Perform combines for MVEEXT. If it has not be optimized to anything better 18774 // before lowering, it gets converted to stack store and extloads performing the 18775 // extend whilst still keeping the same lane ordering. 18776 SDValue ARMTargetLowering::PerformMVEExtCombine( 18777 SDNode *N, TargetLowering::DAGCombinerInfo &DCI) const { 18778 SelectionDAG &DAG = DCI.DAG; 18779 EVT VT = N->getValueType(0); 18780 SDLoc DL(N); 18781 assert(N->getNumValues() == 2 && "Expected MVEEXT with 2 elements"); 18782 assert((VT == MVT::v4i32 || VT == MVT::v8i16) && "Unexpected MVEEXT type"); 18783 18784 EVT ExtVT = N->getOperand(0).getValueType().getHalfNumVectorElementsVT( 18785 *DAG.getContext()); 18786 auto Extend = [&](SDValue V) { 18787 SDValue VVT = DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, V); 18788 return N->getOpcode() == ARMISD::MVESEXT 18789 ? DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, VVT, 18790 DAG.getValueType(ExtVT)) 18791 : DAG.getZeroExtendInReg(VVT, DL, ExtVT); 18792 }; 18793 18794 // MVEEXT(VDUP) -> SIGN_EXTEND_INREG(VDUP) 18795 if (N->getOperand(0).getOpcode() == ARMISD::VDUP) { 18796 SDValue Ext = Extend(N->getOperand(0)); 18797 return DAG.getMergeValues({Ext, Ext}, DL); 18798 } 18799 18800 // MVEEXT(shuffle) -> SIGN_EXTEND_INREG/ZERO_EXTEND_INREG 18801 if (auto *SVN = dyn_cast<ShuffleVectorSDNode>(N->getOperand(0))) { 18802 ArrayRef<int> Mask = SVN->getMask(); 18803 assert(Mask.size() == 2 * VT.getVectorNumElements()); 18804 assert(Mask.size() == SVN->getValueType(0).getVectorNumElements()); 18805 unsigned Rev = VT == MVT::v4i32 ? ARMISD::VREV32 : ARMISD::VREV16; 18806 SDValue Op0 = SVN->getOperand(0); 18807 SDValue Op1 = SVN->getOperand(1); 18808 18809 auto CheckInregMask = [&](int Start, int Offset) { 18810 for (int Idx = 0, E = VT.getVectorNumElements(); Idx < E; ++Idx) 18811 if (Mask[Start + Idx] >= 0 && Mask[Start + Idx] != Idx * 2 + Offset) 18812 return false; 18813 return true; 18814 }; 18815 SDValue V0 = SDValue(N, 0); 18816 SDValue V1 = SDValue(N, 1); 18817 if (CheckInregMask(0, 0)) 18818 V0 = Extend(Op0); 18819 else if (CheckInregMask(0, 1)) 18820 V0 = Extend(DAG.getNode(Rev, DL, SVN->getValueType(0), Op0)); 18821 else if (CheckInregMask(0, Mask.size())) 18822 V0 = Extend(Op1); 18823 else if (CheckInregMask(0, Mask.size() + 1)) 18824 V0 = Extend(DAG.getNode(Rev, DL, SVN->getValueType(0), Op1)); 18825 18826 if (CheckInregMask(VT.getVectorNumElements(), Mask.size())) 18827 V1 = Extend(Op1); 18828 else if (CheckInregMask(VT.getVectorNumElements(), Mask.size() + 1)) 18829 V1 = Extend(DAG.getNode(Rev, DL, SVN->getValueType(0), Op1)); 18830 else if (CheckInregMask(VT.getVectorNumElements(), 0)) 18831 V1 = Extend(Op0); 18832 else if (CheckInregMask(VT.getVectorNumElements(), 1)) 18833 V1 = Extend(DAG.getNode(Rev, DL, SVN->getValueType(0), Op0)); 18834 18835 if (V0.getNode() != N || V1.getNode() != N) 18836 return DAG.getMergeValues({V0, V1}, DL); 18837 } 18838 18839 // MVEEXT(load) -> extload, extload 18840 if (N->getOperand(0)->getOpcode() == ISD::LOAD) 18841 if (SDValue L = PerformSplittingMVEEXTToWideningLoad(N, DAG)) 18842 return L; 18843 18844 if (!DCI.isAfterLegalizeDAG()) 18845 return SDValue(); 18846 18847 // Lower to a stack store and reload: 18848 // VSTRW.32 a, stack; VLDRH.32 stack; VLDRH.32 stack+8; 18849 SDValue StackPtr = DAG.CreateStackTemporary(TypeSize::getFixed(16), Align(4)); 18850 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 18851 int NumOuts = N->getNumValues(); 18852 assert((NumOuts == 2 || NumOuts == 4) && 18853 "Expected 2 or 4 outputs to an MVEEXT"); 18854 EVT LoadVT = N->getOperand(0).getValueType().getHalfNumVectorElementsVT( 18855 *DAG.getContext()); 18856 if (N->getNumOperands() == 4) 18857 LoadVT = LoadVT.getHalfNumVectorElementsVT(*DAG.getContext()); 18858 18859 MachinePointerInfo MPI = 18860 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI, 0); 18861 SDValue Chain = DAG.getStore(DAG.getEntryNode(), DL, N->getOperand(0), 18862 StackPtr, MPI, Align(4)); 18863 18864 SmallVector<SDValue> Loads; 18865 for (int I = 0; I < NumOuts; I++) { 18866 SDValue Ptr = DAG.getNode( 18867 ISD::ADD, DL, StackPtr.getValueType(), StackPtr, 18868 DAG.getConstant(I * 16 / NumOuts, DL, StackPtr.getValueType())); 18869 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack( 18870 DAG.getMachineFunction(), SPFI, I * 16 / NumOuts); 18871 SDValue Load = DAG.getExtLoad( 18872 N->getOpcode() == ARMISD::MVESEXT ? ISD::SEXTLOAD : ISD::ZEXTLOAD, DL, 18873 VT, Chain, Ptr, MPI, LoadVT, Align(4)); 18874 Loads.push_back(Load); 18875 } 18876 18877 return DAG.getMergeValues(Loads, DL); 18878 } 18879 18880 SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N, 18881 DAGCombinerInfo &DCI) const { 18882 switch (N->getOpcode()) { 18883 default: break; 18884 case ISD::SELECT_CC: 18885 case ISD::SELECT: return PerformSELECTCombine(N, DCI, Subtarget); 18886 case ISD::VSELECT: return PerformVSELECTCombine(N, DCI, Subtarget); 18887 case ISD::SETCC: return PerformVSetCCToVCTPCombine(N, DCI, Subtarget); 18888 case ARMISD::ADDE: return PerformADDECombine(N, DCI, Subtarget); 18889 case ARMISD::UMLAL: return PerformUMLALCombine(N, DCI.DAG, Subtarget); 18890 case ISD::ADD: return PerformADDCombine(N, DCI, Subtarget); 18891 case ISD::SUB: return PerformSUBCombine(N, DCI, Subtarget); 18892 case ISD::MUL: return PerformMULCombine(N, DCI, Subtarget); 18893 case ISD::OR: return PerformORCombine(N, DCI, Subtarget); 18894 case ISD::XOR: return PerformXORCombine(N, DCI, Subtarget); 18895 case ISD::AND: return PerformANDCombine(N, DCI, Subtarget); 18896 case ISD::BRCOND: 18897 case ISD::BR_CC: return PerformHWLoopCombine(N, DCI, Subtarget); 18898 case ARMISD::ADDC: 18899 case ARMISD::SUBC: return PerformAddcSubcCombine(N, DCI, Subtarget); 18900 case ARMISD::SUBE: return PerformAddeSubeCombine(N, DCI, Subtarget); 18901 case ARMISD::BFI: return PerformBFICombine(N, DCI.DAG); 18902 case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI, Subtarget); 18903 case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG); 18904 case ARMISD::VMOVhr: return PerformVMOVhrCombine(N, DCI); 18905 case ARMISD::VMOVrh: return PerformVMOVrhCombine(N, DCI.DAG); 18906 case ISD::STORE: return PerformSTORECombine(N, DCI, Subtarget); 18907 case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI, Subtarget); 18908 case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI); 18909 case ISD::EXTRACT_VECTOR_ELT: 18910 return PerformExtractEltCombine(N, DCI, Subtarget); 18911 case ISD::SIGN_EXTEND_INREG: return PerformSignExtendInregCombine(N, DCI.DAG); 18912 case ISD::INSERT_SUBVECTOR: return PerformInsertSubvectorCombine(N, DCI); 18913 case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG); 18914 case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI, Subtarget); 18915 case ARMISD::VDUP: return PerformVDUPCombine(N, DCI.DAG, Subtarget); 18916 case ISD::FP_TO_SINT: 18917 case ISD::FP_TO_UINT: 18918 return PerformVCVTCombine(N, DCI.DAG, Subtarget); 18919 case ISD::FADD: 18920 return PerformFADDCombine(N, DCI.DAG, Subtarget); 18921 case ISD::FMUL: 18922 return PerformVMulVCTPCombine(N, DCI.DAG, Subtarget); 18923 case ISD::INTRINSIC_WO_CHAIN: 18924 return PerformIntrinsicCombine(N, DCI); 18925 case ISD::SHL: 18926 case ISD::SRA: 18927 case ISD::SRL: 18928 return PerformShiftCombine(N, DCI, Subtarget); 18929 case ISD::SIGN_EXTEND: 18930 case ISD::ZERO_EXTEND: 18931 case ISD::ANY_EXTEND: 18932 return PerformExtendCombine(N, DCI.DAG, Subtarget); 18933 case ISD::FP_EXTEND: 18934 return PerformFPExtendCombine(N, DCI.DAG, Subtarget); 18935 case ISD::SMIN: 18936 case ISD::UMIN: 18937 case ISD::SMAX: 18938 case ISD::UMAX: 18939 return PerformMinMaxCombine(N, DCI.DAG, Subtarget); 18940 case ARMISD::CMOV: 18941 return PerformCMOVCombine(N, DCI.DAG); 18942 case ARMISD::BRCOND: 18943 return PerformBRCONDCombine(N, DCI.DAG); 18944 case ARMISD::CMPZ: 18945 return PerformCMPZCombine(N, DCI.DAG); 18946 case ARMISD::CSINC: 18947 case ARMISD::CSINV: 18948 case ARMISD::CSNEG: 18949 return PerformCSETCombine(N, DCI.DAG); 18950 case ISD::LOAD: 18951 return PerformLOADCombine(N, DCI, Subtarget); 18952 case ARMISD::VLD1DUP: 18953 case ARMISD::VLD2DUP: 18954 case ARMISD::VLD3DUP: 18955 case ARMISD::VLD4DUP: 18956 return PerformVLDCombine(N, DCI); 18957 case ARMISD::BUILD_VECTOR: 18958 return PerformARMBUILD_VECTORCombine(N, DCI); 18959 case ISD::BITCAST: 18960 return PerformBITCASTCombine(N, DCI, Subtarget); 18961 case ARMISD::PREDICATE_CAST: 18962 return PerformPREDICATE_CASTCombine(N, DCI); 18963 case ARMISD::VECTOR_REG_CAST: 18964 return PerformVECTOR_REG_CASTCombine(N, DCI.DAG, Subtarget); 18965 case ARMISD::MVETRUNC: 18966 return PerformMVETruncCombine(N, DCI); 18967 case ARMISD::MVESEXT: 18968 case ARMISD::MVEZEXT: 18969 return PerformMVEExtCombine(N, DCI); 18970 case ARMISD::VCMP: 18971 return PerformVCMPCombine(N, DCI.DAG, Subtarget); 18972 case ISD::VECREDUCE_ADD: 18973 return PerformVECREDUCE_ADDCombine(N, DCI.DAG, Subtarget); 18974 case ARMISD::VADDVs: 18975 case ARMISD::VADDVu: 18976 case ARMISD::VADDLVs: 18977 case ARMISD::VADDLVu: 18978 case ARMISD::VADDLVAs: 18979 case ARMISD::VADDLVAu: 18980 case ARMISD::VMLAVs: 18981 case ARMISD::VMLAVu: 18982 case ARMISD::VMLALVs: 18983 case ARMISD::VMLALVu: 18984 case ARMISD::VMLALVAs: 18985 case ARMISD::VMLALVAu: 18986 return PerformReduceShuffleCombine(N, DCI.DAG); 18987 case ARMISD::VMOVN: 18988 return PerformVMOVNCombine(N, DCI); 18989 case ARMISD::VQMOVNs: 18990 case ARMISD::VQMOVNu: 18991 return PerformVQMOVNCombine(N, DCI); 18992 case ARMISD::VQDMULH: 18993 return PerformVQDMULHCombine(N, DCI); 18994 case ARMISD::ASRL: 18995 case ARMISD::LSRL: 18996 case ARMISD::LSLL: 18997 return PerformLongShiftCombine(N, DCI.DAG); 18998 case ARMISD::SMULWB: { 18999 unsigned BitWidth = N->getValueType(0).getSizeInBits(); 19000 APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16); 19001 if (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI)) 19002 return SDValue(); 19003 break; 19004 } 19005 case ARMISD::SMULWT: { 19006 unsigned BitWidth = N->getValueType(0).getSizeInBits(); 19007 APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 16); 19008 if (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI)) 19009 return SDValue(); 19010 break; 19011 } 19012 case ARMISD::SMLALBB: 19013 case ARMISD::QADD16b: 19014 case ARMISD::QSUB16b: 19015 case ARMISD::UQADD16b: 19016 case ARMISD::UQSUB16b: { 19017 unsigned BitWidth = N->getValueType(0).getSizeInBits(); 19018 APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16); 19019 if ((SimplifyDemandedBits(N->getOperand(0), DemandedMask, DCI)) || 19020 (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI))) 19021 return SDValue(); 19022 break; 19023 } 19024 case ARMISD::SMLALBT: { 19025 unsigned LowWidth = N->getOperand(0).getValueType().getSizeInBits(); 19026 APInt LowMask = APInt::getLowBitsSet(LowWidth, 16); 19027 unsigned HighWidth = N->getOperand(1).getValueType().getSizeInBits(); 19028 APInt HighMask = APInt::getHighBitsSet(HighWidth, 16); 19029 if ((SimplifyDemandedBits(N->getOperand(0), LowMask, DCI)) || 19030 (SimplifyDemandedBits(N->getOperand(1), HighMask, DCI))) 19031 return SDValue(); 19032 break; 19033 } 19034 case ARMISD::SMLALTB: { 19035 unsigned HighWidth = N->getOperand(0).getValueType().getSizeInBits(); 19036 APInt HighMask = APInt::getHighBitsSet(HighWidth, 16); 19037 unsigned LowWidth = N->getOperand(1).getValueType().getSizeInBits(); 19038 APInt LowMask = APInt::getLowBitsSet(LowWidth, 16); 19039 if ((SimplifyDemandedBits(N->getOperand(0), HighMask, DCI)) || 19040 (SimplifyDemandedBits(N->getOperand(1), LowMask, DCI))) 19041 return SDValue(); 19042 break; 19043 } 19044 case ARMISD::SMLALTT: { 19045 unsigned BitWidth = N->getValueType(0).getSizeInBits(); 19046 APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 16); 19047 if ((SimplifyDemandedBits(N->getOperand(0), DemandedMask, DCI)) || 19048 (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI))) 19049 return SDValue(); 19050 break; 19051 } 19052 case ARMISD::QADD8b: 19053 case ARMISD::QSUB8b: 19054 case ARMISD::UQADD8b: 19055 case ARMISD::UQSUB8b: { 19056 unsigned BitWidth = N->getValueType(0).getSizeInBits(); 19057 APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 8); 19058 if ((SimplifyDemandedBits(N->getOperand(0), DemandedMask, DCI)) || 19059 (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI))) 19060 return SDValue(); 19061 break; 19062 } 19063 case ISD::INTRINSIC_VOID: 19064 case ISD::INTRINSIC_W_CHAIN: 19065 switch (N->getConstantOperandVal(1)) { 19066 case Intrinsic::arm_neon_vld1: 19067 case Intrinsic::arm_neon_vld1x2: 19068 case Intrinsic::arm_neon_vld1x3: 19069 case Intrinsic::arm_neon_vld1x4: 19070 case Intrinsic::arm_neon_vld2: 19071 case Intrinsic::arm_neon_vld3: 19072 case Intrinsic::arm_neon_vld4: 19073 case Intrinsic::arm_neon_vld2lane: 19074 case Intrinsic::arm_neon_vld3lane: 19075 case Intrinsic::arm_neon_vld4lane: 19076 case Intrinsic::arm_neon_vld2dup: 19077 case Intrinsic::arm_neon_vld3dup: 19078 case Intrinsic::arm_neon_vld4dup: 19079 case Intrinsic::arm_neon_vst1: 19080 case Intrinsic::arm_neon_vst1x2: 19081 case Intrinsic::arm_neon_vst1x3: 19082 case Intrinsic::arm_neon_vst1x4: 19083 case Intrinsic::arm_neon_vst2: 19084 case Intrinsic::arm_neon_vst3: 19085 case Intrinsic::arm_neon_vst4: 19086 case Intrinsic::arm_neon_vst2lane: 19087 case Intrinsic::arm_neon_vst3lane: 19088 case Intrinsic::arm_neon_vst4lane: 19089 return PerformVLDCombine(N, DCI); 19090 case Intrinsic::arm_mve_vld2q: 19091 case Intrinsic::arm_mve_vld4q: 19092 case Intrinsic::arm_mve_vst2q: 19093 case Intrinsic::arm_mve_vst4q: 19094 return PerformMVEVLDCombine(N, DCI); 19095 default: break; 19096 } 19097 break; 19098 } 19099 return SDValue(); 19100 } 19101 19102 bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc, 19103 EVT VT) const { 19104 return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE); 19105 } 19106 19107 bool ARMTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, unsigned, 19108 Align Alignment, 19109 MachineMemOperand::Flags, 19110 unsigned *Fast) const { 19111 // Depends what it gets converted into if the type is weird. 19112 if (!VT.isSimple()) 19113 return false; 19114 19115 // The AllowsUnaligned flag models the SCTLR.A setting in ARM cpus 19116 bool AllowsUnaligned = Subtarget->allowsUnalignedMem(); 19117 auto Ty = VT.getSimpleVT().SimpleTy; 19118 19119 if (Ty == MVT::i8 || Ty == MVT::i16 || Ty == MVT::i32) { 19120 // Unaligned access can use (for example) LRDB, LRDH, LDR 19121 if (AllowsUnaligned) { 19122 if (Fast) 19123 *Fast = Subtarget->hasV7Ops(); 19124 return true; 19125 } 19126 } 19127 19128 if (Ty == MVT::f64 || Ty == MVT::v2f64) { 19129 // For any little-endian targets with neon, we can support unaligned ld/st 19130 // of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8. 19131 // A big-endian target may also explicitly support unaligned accesses 19132 if (Subtarget->hasNEON() && (AllowsUnaligned || Subtarget->isLittle())) { 19133 if (Fast) 19134 *Fast = 1; 19135 return true; 19136 } 19137 } 19138 19139 if (!Subtarget->hasMVEIntegerOps()) 19140 return false; 19141 19142 // These are for predicates 19143 if ((Ty == MVT::v16i1 || Ty == MVT::v8i1 || Ty == MVT::v4i1 || 19144 Ty == MVT::v2i1)) { 19145 if (Fast) 19146 *Fast = 1; 19147 return true; 19148 } 19149 19150 // These are for truncated stores/narrowing loads. They are fine so long as 19151 // the alignment is at least the size of the item being loaded 19152 if ((Ty == MVT::v4i8 || Ty == MVT::v8i8 || Ty == MVT::v4i16) && 19153 Alignment >= VT.getScalarSizeInBits() / 8) { 19154 if (Fast) 19155 *Fast = true; 19156 return true; 19157 } 19158 19159 // In little-endian MVE, the store instructions VSTRB.U8, VSTRH.U16 and 19160 // VSTRW.U32 all store the vector register in exactly the same format, and 19161 // differ only in the range of their immediate offset field and the required 19162 // alignment. So there is always a store that can be used, regardless of 19163 // actual type. 19164 // 19165 // For big endian, that is not the case. But can still emit a (VSTRB.U8; 19166 // VREV64.8) pair and get the same effect. This will likely be better than 19167 // aligning the vector through the stack. 19168 if (Ty == MVT::v16i8 || Ty == MVT::v8i16 || Ty == MVT::v8f16 || 19169 Ty == MVT::v4i32 || Ty == MVT::v4f32 || Ty == MVT::v2i64 || 19170 Ty == MVT::v2f64) { 19171 if (Fast) 19172 *Fast = 1; 19173 return true; 19174 } 19175 19176 return false; 19177 } 19178 19179 19180 EVT ARMTargetLowering::getOptimalMemOpType( 19181 const MemOp &Op, const AttributeList &FuncAttributes) const { 19182 // See if we can use NEON instructions for this... 19183 if ((Op.isMemcpy() || Op.isZeroMemset()) && Subtarget->hasNEON() && 19184 !FuncAttributes.hasFnAttr(Attribute::NoImplicitFloat)) { 19185 unsigned Fast; 19186 if (Op.size() >= 16 && 19187 (Op.isAligned(Align(16)) || 19188 (allowsMisalignedMemoryAccesses(MVT::v2f64, 0, Align(1), 19189 MachineMemOperand::MONone, &Fast) && 19190 Fast))) { 19191 return MVT::v2f64; 19192 } else if (Op.size() >= 8 && 19193 (Op.isAligned(Align(8)) || 19194 (allowsMisalignedMemoryAccesses( 19195 MVT::f64, 0, Align(1), MachineMemOperand::MONone, &Fast) && 19196 Fast))) { 19197 return MVT::f64; 19198 } 19199 } 19200 19201 // Let the target-independent logic figure it out. 19202 return MVT::Other; 19203 } 19204 19205 // 64-bit integers are split into their high and low parts and held in two 19206 // different registers, so the trunc is free since the low register can just 19207 // be used. 19208 bool ARMTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 19209 if (!SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 19210 return false; 19211 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 19212 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 19213 return (SrcBits == 64 && DestBits == 32); 19214 } 19215 19216 bool ARMTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 19217 if (SrcVT.isVector() || DstVT.isVector() || !SrcVT.isInteger() || 19218 !DstVT.isInteger()) 19219 return false; 19220 unsigned SrcBits = SrcVT.getSizeInBits(); 19221 unsigned DestBits = DstVT.getSizeInBits(); 19222 return (SrcBits == 64 && DestBits == 32); 19223 } 19224 19225 bool ARMTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 19226 if (Val.getOpcode() != ISD::LOAD) 19227 return false; 19228 19229 EVT VT1 = Val.getValueType(); 19230 if (!VT1.isSimple() || !VT1.isInteger() || 19231 !VT2.isSimple() || !VT2.isInteger()) 19232 return false; 19233 19234 switch (VT1.getSimpleVT().SimpleTy) { 19235 default: break; 19236 case MVT::i1: 19237 case MVT::i8: 19238 case MVT::i16: 19239 // 8-bit and 16-bit loads implicitly zero-extend to 32-bits. 19240 return true; 19241 } 19242 19243 return false; 19244 } 19245 19246 bool ARMTargetLowering::isFNegFree(EVT VT) const { 19247 if (!VT.isSimple()) 19248 return false; 19249 19250 // There are quite a few FP16 instructions (e.g. VNMLA, VNMLS, etc.) that 19251 // negate values directly (fneg is free). So, we don't want to let the DAG 19252 // combiner rewrite fneg into xors and some other instructions. For f16 and 19253 // FullFP16 argument passing, some bitcast nodes may be introduced, 19254 // triggering this DAG combine rewrite, so we are avoiding that with this. 19255 switch (VT.getSimpleVT().SimpleTy) { 19256 default: break; 19257 case MVT::f16: 19258 return Subtarget->hasFullFP16(); 19259 } 19260 19261 return false; 19262 } 19263 19264 /// Check if Ext1 and Ext2 are extends of the same type, doubling the bitwidth 19265 /// of the vector elements. 19266 static bool areExtractExts(Value *Ext1, Value *Ext2) { 19267 auto areExtDoubled = [](Instruction *Ext) { 19268 return Ext->getType()->getScalarSizeInBits() == 19269 2 * Ext->getOperand(0)->getType()->getScalarSizeInBits(); 19270 }; 19271 19272 if (!match(Ext1, m_ZExtOrSExt(m_Value())) || 19273 !match(Ext2, m_ZExtOrSExt(m_Value())) || 19274 !areExtDoubled(cast<Instruction>(Ext1)) || 19275 !areExtDoubled(cast<Instruction>(Ext2))) 19276 return false; 19277 19278 return true; 19279 } 19280 19281 /// Check if sinking \p I's operands to I's basic block is profitable, because 19282 /// the operands can be folded into a target instruction, e.g. 19283 /// sext/zext can be folded into vsubl. 19284 bool ARMTargetLowering::shouldSinkOperands(Instruction *I, 19285 SmallVectorImpl<Use *> &Ops) const { 19286 if (!I->getType()->isVectorTy()) 19287 return false; 19288 19289 if (Subtarget->hasNEON()) { 19290 switch (I->getOpcode()) { 19291 case Instruction::Sub: 19292 case Instruction::Add: { 19293 if (!areExtractExts(I->getOperand(0), I->getOperand(1))) 19294 return false; 19295 Ops.push_back(&I->getOperandUse(0)); 19296 Ops.push_back(&I->getOperandUse(1)); 19297 return true; 19298 } 19299 default: 19300 return false; 19301 } 19302 } 19303 19304 if (!Subtarget->hasMVEIntegerOps()) 19305 return false; 19306 19307 auto IsFMSMul = [&](Instruction *I) { 19308 if (!I->hasOneUse()) 19309 return false; 19310 auto *Sub = cast<Instruction>(*I->users().begin()); 19311 return Sub->getOpcode() == Instruction::FSub && Sub->getOperand(1) == I; 19312 }; 19313 auto IsFMS = [&](Instruction *I) { 19314 if (match(I->getOperand(0), m_FNeg(m_Value())) || 19315 match(I->getOperand(1), m_FNeg(m_Value()))) 19316 return true; 19317 return false; 19318 }; 19319 19320 auto IsSinker = [&](Instruction *I, int Operand) { 19321 switch (I->getOpcode()) { 19322 case Instruction::Add: 19323 case Instruction::Mul: 19324 case Instruction::FAdd: 19325 case Instruction::ICmp: 19326 case Instruction::FCmp: 19327 return true; 19328 case Instruction::FMul: 19329 return !IsFMSMul(I); 19330 case Instruction::Sub: 19331 case Instruction::FSub: 19332 case Instruction::Shl: 19333 case Instruction::LShr: 19334 case Instruction::AShr: 19335 return Operand == 1; 19336 case Instruction::Call: 19337 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 19338 switch (II->getIntrinsicID()) { 19339 case Intrinsic::fma: 19340 return !IsFMS(I); 19341 case Intrinsic::sadd_sat: 19342 case Intrinsic::uadd_sat: 19343 case Intrinsic::arm_mve_add_predicated: 19344 case Intrinsic::arm_mve_mul_predicated: 19345 case Intrinsic::arm_mve_qadd_predicated: 19346 case Intrinsic::arm_mve_vhadd: 19347 case Intrinsic::arm_mve_hadd_predicated: 19348 case Intrinsic::arm_mve_vqdmull: 19349 case Intrinsic::arm_mve_vqdmull_predicated: 19350 case Intrinsic::arm_mve_vqdmulh: 19351 case Intrinsic::arm_mve_qdmulh_predicated: 19352 case Intrinsic::arm_mve_vqrdmulh: 19353 case Intrinsic::arm_mve_qrdmulh_predicated: 19354 case Intrinsic::arm_mve_fma_predicated: 19355 return true; 19356 case Intrinsic::ssub_sat: 19357 case Intrinsic::usub_sat: 19358 case Intrinsic::arm_mve_sub_predicated: 19359 case Intrinsic::arm_mve_qsub_predicated: 19360 case Intrinsic::arm_mve_hsub_predicated: 19361 case Intrinsic::arm_mve_vhsub: 19362 return Operand == 1; 19363 default: 19364 return false; 19365 } 19366 } 19367 return false; 19368 default: 19369 return false; 19370 } 19371 }; 19372 19373 for (auto OpIdx : enumerate(I->operands())) { 19374 Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get()); 19375 // Make sure we are not already sinking this operand 19376 if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; })) 19377 continue; 19378 19379 Instruction *Shuffle = Op; 19380 if (Shuffle->getOpcode() == Instruction::BitCast) 19381 Shuffle = dyn_cast<Instruction>(Shuffle->getOperand(0)); 19382 // We are looking for a splat that can be sunk. 19383 if (!Shuffle || 19384 !match(Shuffle, m_Shuffle( 19385 m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 19386 m_Undef(), m_ZeroMask()))) 19387 continue; 19388 if (!IsSinker(I, OpIdx.index())) 19389 continue; 19390 19391 // All uses of the shuffle should be sunk to avoid duplicating it across gpr 19392 // and vector registers 19393 for (Use &U : Op->uses()) { 19394 Instruction *Insn = cast<Instruction>(U.getUser()); 19395 if (!IsSinker(Insn, U.getOperandNo())) 19396 return false; 19397 } 19398 19399 Ops.push_back(&Shuffle->getOperandUse(0)); 19400 if (Shuffle != Op) 19401 Ops.push_back(&Op->getOperandUse(0)); 19402 Ops.push_back(&OpIdx.value()); 19403 } 19404 return true; 19405 } 19406 19407 Type *ARMTargetLowering::shouldConvertSplatType(ShuffleVectorInst *SVI) const { 19408 if (!Subtarget->hasMVEIntegerOps()) 19409 return nullptr; 19410 Type *SVIType = SVI->getType(); 19411 Type *ScalarType = SVIType->getScalarType(); 19412 19413 if (ScalarType->isFloatTy()) 19414 return Type::getInt32Ty(SVIType->getContext()); 19415 if (ScalarType->isHalfTy()) 19416 return Type::getInt16Ty(SVIType->getContext()); 19417 return nullptr; 19418 } 19419 19420 bool ARMTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const { 19421 EVT VT = ExtVal.getValueType(); 19422 19423 if (!isTypeLegal(VT)) 19424 return false; 19425 19426 if (auto *Ld = dyn_cast<MaskedLoadSDNode>(ExtVal.getOperand(0))) { 19427 if (Ld->isExpandingLoad()) 19428 return false; 19429 } 19430 19431 if (Subtarget->hasMVEIntegerOps()) 19432 return true; 19433 19434 // Don't create a loadext if we can fold the extension into a wide/long 19435 // instruction. 19436 // If there's more than one user instruction, the loadext is desirable no 19437 // matter what. There can be two uses by the same instruction. 19438 if (ExtVal->use_empty() || 19439 !ExtVal->use_begin()->isOnlyUserOf(ExtVal.getNode())) 19440 return true; 19441 19442 SDNode *U = *ExtVal->use_begin(); 19443 if ((U->getOpcode() == ISD::ADD || U->getOpcode() == ISD::SUB || 19444 U->getOpcode() == ISD::SHL || U->getOpcode() == ARMISD::VSHLIMM)) 19445 return false; 19446 19447 return true; 19448 } 19449 19450 bool ARMTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const { 19451 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 19452 return false; 19453 19454 if (!isTypeLegal(EVT::getEVT(Ty1))) 19455 return false; 19456 19457 assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop"); 19458 19459 // Assuming the caller doesn't have a zeroext or signext return parameter, 19460 // truncation all the way down to i1 is valid. 19461 return true; 19462 } 19463 19464 /// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster 19465 /// than a pair of fmul and fadd instructions. fmuladd intrinsics will be 19466 /// expanded to FMAs when this method returns true, otherwise fmuladd is 19467 /// expanded to fmul + fadd. 19468 /// 19469 /// ARM supports both fused and unfused multiply-add operations; we already 19470 /// lower a pair of fmul and fadd to the latter so it's not clear that there 19471 /// would be a gain or that the gain would be worthwhile enough to risk 19472 /// correctness bugs. 19473 /// 19474 /// For MVE, we set this to true as it helps simplify the need for some 19475 /// patterns (and we don't have the non-fused floating point instruction). 19476 bool ARMTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 19477 EVT VT) const { 19478 if (!VT.isSimple()) 19479 return false; 19480 19481 switch (VT.getSimpleVT().SimpleTy) { 19482 case MVT::v4f32: 19483 case MVT::v8f16: 19484 return Subtarget->hasMVEFloatOps(); 19485 case MVT::f16: 19486 return Subtarget->useFPVFMx16(); 19487 case MVT::f32: 19488 return Subtarget->useFPVFMx(); 19489 case MVT::f64: 19490 return Subtarget->useFPVFMx64(); 19491 default: 19492 break; 19493 } 19494 19495 return false; 19496 } 19497 19498 static bool isLegalT1AddressImmediate(int64_t V, EVT VT) { 19499 if (V < 0) 19500 return false; 19501 19502 unsigned Scale = 1; 19503 switch (VT.getSimpleVT().SimpleTy) { 19504 case MVT::i1: 19505 case MVT::i8: 19506 // Scale == 1; 19507 break; 19508 case MVT::i16: 19509 // Scale == 2; 19510 Scale = 2; 19511 break; 19512 default: 19513 // On thumb1 we load most things (i32, i64, floats, etc) with a LDR 19514 // Scale == 4; 19515 Scale = 4; 19516 break; 19517 } 19518 19519 if ((V & (Scale - 1)) != 0) 19520 return false; 19521 return isUInt<5>(V / Scale); 19522 } 19523 19524 static bool isLegalT2AddressImmediate(int64_t V, EVT VT, 19525 const ARMSubtarget *Subtarget) { 19526 if (!VT.isInteger() && !VT.isFloatingPoint()) 19527 return false; 19528 if (VT.isVector() && Subtarget->hasNEON()) 19529 return false; 19530 if (VT.isVector() && VT.isFloatingPoint() && Subtarget->hasMVEIntegerOps() && 19531 !Subtarget->hasMVEFloatOps()) 19532 return false; 19533 19534 bool IsNeg = false; 19535 if (V < 0) { 19536 IsNeg = true; 19537 V = -V; 19538 } 19539 19540 unsigned NumBytes = std::max((unsigned)VT.getSizeInBits() / 8, 1U); 19541 19542 // MVE: size * imm7 19543 if (VT.isVector() && Subtarget->hasMVEIntegerOps()) { 19544 switch (VT.getSimpleVT().getVectorElementType().SimpleTy) { 19545 case MVT::i32: 19546 case MVT::f32: 19547 return isShiftedUInt<7,2>(V); 19548 case MVT::i16: 19549 case MVT::f16: 19550 return isShiftedUInt<7,1>(V); 19551 case MVT::i8: 19552 return isUInt<7>(V); 19553 default: 19554 return false; 19555 } 19556 } 19557 19558 // half VLDR: 2 * imm8 19559 if (VT.isFloatingPoint() && NumBytes == 2 && Subtarget->hasFPRegs16()) 19560 return isShiftedUInt<8, 1>(V); 19561 // VLDR and LDRD: 4 * imm8 19562 if ((VT.isFloatingPoint() && Subtarget->hasVFP2Base()) || NumBytes == 8) 19563 return isShiftedUInt<8, 2>(V); 19564 19565 if (NumBytes == 1 || NumBytes == 2 || NumBytes == 4) { 19566 // + imm12 or - imm8 19567 if (IsNeg) 19568 return isUInt<8>(V); 19569 return isUInt<12>(V); 19570 } 19571 19572 return false; 19573 } 19574 19575 /// isLegalAddressImmediate - Return true if the integer value can be used 19576 /// as the offset of the target addressing mode for load / store of the 19577 /// given type. 19578 static bool isLegalAddressImmediate(int64_t V, EVT VT, 19579 const ARMSubtarget *Subtarget) { 19580 if (V == 0) 19581 return true; 19582 19583 if (!VT.isSimple()) 19584 return false; 19585 19586 if (Subtarget->isThumb1Only()) 19587 return isLegalT1AddressImmediate(V, VT); 19588 else if (Subtarget->isThumb2()) 19589 return isLegalT2AddressImmediate(V, VT, Subtarget); 19590 19591 // ARM mode. 19592 if (V < 0) 19593 V = - V; 19594 switch (VT.getSimpleVT().SimpleTy) { 19595 default: return false; 19596 case MVT::i1: 19597 case MVT::i8: 19598 case MVT::i32: 19599 // +- imm12 19600 return isUInt<12>(V); 19601 case MVT::i16: 19602 // +- imm8 19603 return isUInt<8>(V); 19604 case MVT::f32: 19605 case MVT::f64: 19606 if (!Subtarget->hasVFP2Base()) // FIXME: NEON? 19607 return false; 19608 return isShiftedUInt<8, 2>(V); 19609 } 19610 } 19611 19612 bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM, 19613 EVT VT) const { 19614 int Scale = AM.Scale; 19615 if (Scale < 0) 19616 return false; 19617 19618 switch (VT.getSimpleVT().SimpleTy) { 19619 default: return false; 19620 case MVT::i1: 19621 case MVT::i8: 19622 case MVT::i16: 19623 case MVT::i32: 19624 if (Scale == 1) 19625 return true; 19626 // r + r << imm 19627 Scale = Scale & ~1; 19628 return Scale == 2 || Scale == 4 || Scale == 8; 19629 case MVT::i64: 19630 // FIXME: What are we trying to model here? ldrd doesn't have an r + r 19631 // version in Thumb mode. 19632 // r + r 19633 if (Scale == 1) 19634 return true; 19635 // r * 2 (this can be lowered to r + r). 19636 if (!AM.HasBaseReg && Scale == 2) 19637 return true; 19638 return false; 19639 case MVT::isVoid: 19640 // Note, we allow "void" uses (basically, uses that aren't loads or 19641 // stores), because arm allows folding a scale into many arithmetic 19642 // operations. This should be made more precise and revisited later. 19643 19644 // Allow r << imm, but the imm has to be a multiple of two. 19645 if (Scale & 1) return false; 19646 return isPowerOf2_32(Scale); 19647 } 19648 } 19649 19650 bool ARMTargetLowering::isLegalT1ScaledAddressingMode(const AddrMode &AM, 19651 EVT VT) const { 19652 const int Scale = AM.Scale; 19653 19654 // Negative scales are not supported in Thumb1. 19655 if (Scale < 0) 19656 return false; 19657 19658 // Thumb1 addressing modes do not support register scaling excepting the 19659 // following cases: 19660 // 1. Scale == 1 means no scaling. 19661 // 2. Scale == 2 this can be lowered to r + r if there is no base register. 19662 return (Scale == 1) || (!AM.HasBaseReg && Scale == 2); 19663 } 19664 19665 /// isLegalAddressingMode - Return true if the addressing mode represented 19666 /// by AM is legal for this target, for a load/store of the specified type. 19667 bool ARMTargetLowering::isLegalAddressingMode(const DataLayout &DL, 19668 const AddrMode &AM, Type *Ty, 19669 unsigned AS, Instruction *I) const { 19670 EVT VT = getValueType(DL, Ty, true); 19671 if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget)) 19672 return false; 19673 19674 // Can never fold addr of global into load/store. 19675 if (AM.BaseGV) 19676 return false; 19677 19678 switch (AM.Scale) { 19679 case 0: // no scale reg, must be "r+i" or "r", or "i". 19680 break; 19681 default: 19682 // ARM doesn't support any R+R*scale+imm addr modes. 19683 if (AM.BaseOffs) 19684 return false; 19685 19686 if (!VT.isSimple()) 19687 return false; 19688 19689 if (Subtarget->isThumb1Only()) 19690 return isLegalT1ScaledAddressingMode(AM, VT); 19691 19692 if (Subtarget->isThumb2()) 19693 return isLegalT2ScaledAddressingMode(AM, VT); 19694 19695 int Scale = AM.Scale; 19696 switch (VT.getSimpleVT().SimpleTy) { 19697 default: return false; 19698 case MVT::i1: 19699 case MVT::i8: 19700 case MVT::i32: 19701 if (Scale < 0) Scale = -Scale; 19702 if (Scale == 1) 19703 return true; 19704 // r + r << imm 19705 return isPowerOf2_32(Scale & ~1); 19706 case MVT::i16: 19707 case MVT::i64: 19708 // r +/- r 19709 if (Scale == 1 || (AM.HasBaseReg && Scale == -1)) 19710 return true; 19711 // r * 2 (this can be lowered to r + r). 19712 if (!AM.HasBaseReg && Scale == 2) 19713 return true; 19714 return false; 19715 19716 case MVT::isVoid: 19717 // Note, we allow "void" uses (basically, uses that aren't loads or 19718 // stores), because arm allows folding a scale into many arithmetic 19719 // operations. This should be made more precise and revisited later. 19720 19721 // Allow r << imm, but the imm has to be a multiple of two. 19722 if (Scale & 1) return false; 19723 return isPowerOf2_32(Scale); 19724 } 19725 } 19726 return true; 19727 } 19728 19729 /// isLegalICmpImmediate - Return true if the specified immediate is legal 19730 /// icmp immediate, that is the target has icmp instructions which can compare 19731 /// a register against the immediate without having to materialize the 19732 /// immediate into a register. 19733 bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 19734 // Thumb2 and ARM modes can use cmn for negative immediates. 19735 if (!Subtarget->isThumb()) 19736 return ARM_AM::getSOImmVal((uint32_t)Imm) != -1 || 19737 ARM_AM::getSOImmVal(-(uint32_t)Imm) != -1; 19738 if (Subtarget->isThumb2()) 19739 return ARM_AM::getT2SOImmVal((uint32_t)Imm) != -1 || 19740 ARM_AM::getT2SOImmVal(-(uint32_t)Imm) != -1; 19741 // Thumb1 doesn't have cmn, and only 8-bit immediates. 19742 return Imm >= 0 && Imm <= 255; 19743 } 19744 19745 /// isLegalAddImmediate - Return true if the specified immediate is a legal add 19746 /// *or sub* immediate, that is the target has add or sub instructions which can 19747 /// add a register with the immediate without having to materialize the 19748 /// immediate into a register. 19749 bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const { 19750 // Same encoding for add/sub, just flip the sign. 19751 int64_t AbsImm = std::abs(Imm); 19752 if (!Subtarget->isThumb()) 19753 return ARM_AM::getSOImmVal(AbsImm) != -1; 19754 if (Subtarget->isThumb2()) 19755 return ARM_AM::getT2SOImmVal(AbsImm) != -1; 19756 // Thumb1 only has 8-bit unsigned immediate. 19757 return AbsImm >= 0 && AbsImm <= 255; 19758 } 19759 19760 // Return false to prevent folding 19761 // (mul (add r, c0), c1) -> (add (mul r, c1), c0*c1) in DAGCombine, 19762 // if the folding leads to worse code. 19763 bool ARMTargetLowering::isMulAddWithConstProfitable(SDValue AddNode, 19764 SDValue ConstNode) const { 19765 // Let the DAGCombiner decide for vector types and large types. 19766 const EVT VT = AddNode.getValueType(); 19767 if (VT.isVector() || VT.getScalarSizeInBits() > 32) 19768 return true; 19769 19770 // It is worse if c0 is legal add immediate, while c1*c0 is not 19771 // and has to be composed by at least two instructions. 19772 const ConstantSDNode *C0Node = cast<ConstantSDNode>(AddNode.getOperand(1)); 19773 const ConstantSDNode *C1Node = cast<ConstantSDNode>(ConstNode); 19774 const int64_t C0 = C0Node->getSExtValue(); 19775 APInt CA = C0Node->getAPIntValue() * C1Node->getAPIntValue(); 19776 if (!isLegalAddImmediate(C0) || isLegalAddImmediate(CA.getSExtValue())) 19777 return true; 19778 if (ConstantMaterializationCost((unsigned)CA.getZExtValue(), Subtarget) > 1) 19779 return false; 19780 19781 // Default to true and let the DAGCombiner decide. 19782 return true; 19783 } 19784 19785 static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT, 19786 bool isSEXTLoad, SDValue &Base, 19787 SDValue &Offset, bool &isInc, 19788 SelectionDAG &DAG) { 19789 if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB) 19790 return false; 19791 19792 if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) { 19793 // AddressingMode 3 19794 Base = Ptr->getOperand(0); 19795 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) { 19796 int RHSC = (int)RHS->getZExtValue(); 19797 if (RHSC < 0 && RHSC > -256) { 19798 assert(Ptr->getOpcode() == ISD::ADD); 19799 isInc = false; 19800 Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0)); 19801 return true; 19802 } 19803 } 19804 isInc = (Ptr->getOpcode() == ISD::ADD); 19805 Offset = Ptr->getOperand(1); 19806 return true; 19807 } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) { 19808 // AddressingMode 2 19809 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) { 19810 int RHSC = (int)RHS->getZExtValue(); 19811 if (RHSC < 0 && RHSC > -0x1000) { 19812 assert(Ptr->getOpcode() == ISD::ADD); 19813 isInc = false; 19814 Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0)); 19815 Base = Ptr->getOperand(0); 19816 return true; 19817 } 19818 } 19819 19820 if (Ptr->getOpcode() == ISD::ADD) { 19821 isInc = true; 19822 ARM_AM::ShiftOpc ShOpcVal= 19823 ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode()); 19824 if (ShOpcVal != ARM_AM::no_shift) { 19825 Base = Ptr->getOperand(1); 19826 Offset = Ptr->getOperand(0); 19827 } else { 19828 Base = Ptr->getOperand(0); 19829 Offset = Ptr->getOperand(1); 19830 } 19831 return true; 19832 } 19833 19834 isInc = (Ptr->getOpcode() == ISD::ADD); 19835 Base = Ptr->getOperand(0); 19836 Offset = Ptr->getOperand(1); 19837 return true; 19838 } 19839 19840 // FIXME: Use VLDM / VSTM to emulate indexed FP load / store. 19841 return false; 19842 } 19843 19844 static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT, 19845 bool isSEXTLoad, SDValue &Base, 19846 SDValue &Offset, bool &isInc, 19847 SelectionDAG &DAG) { 19848 if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB) 19849 return false; 19850 19851 Base = Ptr->getOperand(0); 19852 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) { 19853 int RHSC = (int)RHS->getZExtValue(); 19854 if (RHSC < 0 && RHSC > -0x100) { // 8 bits. 19855 assert(Ptr->getOpcode() == ISD::ADD); 19856 isInc = false; 19857 Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0)); 19858 return true; 19859 } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero. 19860 isInc = Ptr->getOpcode() == ISD::ADD; 19861 Offset = DAG.getConstant(RHSC, SDLoc(Ptr), RHS->getValueType(0)); 19862 return true; 19863 } 19864 } 19865 19866 return false; 19867 } 19868 19869 static bool getMVEIndexedAddressParts(SDNode *Ptr, EVT VT, Align Alignment, 19870 bool isSEXTLoad, bool IsMasked, bool isLE, 19871 SDValue &Base, SDValue &Offset, 19872 bool &isInc, SelectionDAG &DAG) { 19873 if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB) 19874 return false; 19875 if (!isa<ConstantSDNode>(Ptr->getOperand(1))) 19876 return false; 19877 19878 // We allow LE non-masked loads to change the type (for example use a vldrb.8 19879 // as opposed to a vldrw.32). This can allow extra addressing modes or 19880 // alignments for what is otherwise an equivalent instruction. 19881 bool CanChangeType = isLE && !IsMasked; 19882 19883 ConstantSDNode *RHS = cast<ConstantSDNode>(Ptr->getOperand(1)); 19884 int RHSC = (int)RHS->getZExtValue(); 19885 19886 auto IsInRange = [&](int RHSC, int Limit, int Scale) { 19887 if (RHSC < 0 && RHSC > -Limit * Scale && RHSC % Scale == 0) { 19888 assert(Ptr->getOpcode() == ISD::ADD); 19889 isInc = false; 19890 Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0)); 19891 return true; 19892 } else if (RHSC > 0 && RHSC < Limit * Scale && RHSC % Scale == 0) { 19893 isInc = Ptr->getOpcode() == ISD::ADD; 19894 Offset = DAG.getConstant(RHSC, SDLoc(Ptr), RHS->getValueType(0)); 19895 return true; 19896 } 19897 return false; 19898 }; 19899 19900 // Try to find a matching instruction based on s/zext, Alignment, Offset and 19901 // (in BE/masked) type. 19902 Base = Ptr->getOperand(0); 19903 if (VT == MVT::v4i16) { 19904 if (Alignment >= 2 && IsInRange(RHSC, 0x80, 2)) 19905 return true; 19906 } else if (VT == MVT::v4i8 || VT == MVT::v8i8) { 19907 if (IsInRange(RHSC, 0x80, 1)) 19908 return true; 19909 } else if (Alignment >= 4 && 19910 (CanChangeType || VT == MVT::v4i32 || VT == MVT::v4f32) && 19911 IsInRange(RHSC, 0x80, 4)) 19912 return true; 19913 else if (Alignment >= 2 && 19914 (CanChangeType || VT == MVT::v8i16 || VT == MVT::v8f16) && 19915 IsInRange(RHSC, 0x80, 2)) 19916 return true; 19917 else if ((CanChangeType || VT == MVT::v16i8) && IsInRange(RHSC, 0x80, 1)) 19918 return true; 19919 return false; 19920 } 19921 19922 /// getPreIndexedAddressParts - returns true by value, base pointer and 19923 /// offset pointer and addressing mode by reference if the node's address 19924 /// can be legally represented as pre-indexed load / store address. 19925 bool 19926 ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 19927 SDValue &Offset, 19928 ISD::MemIndexedMode &AM, 19929 SelectionDAG &DAG) const { 19930 if (Subtarget->isThumb1Only()) 19931 return false; 19932 19933 EVT VT; 19934 SDValue Ptr; 19935 Align Alignment; 19936 bool isSEXTLoad = false; 19937 bool IsMasked = false; 19938 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 19939 Ptr = LD->getBasePtr(); 19940 VT = LD->getMemoryVT(); 19941 Alignment = LD->getAlign(); 19942 isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD; 19943 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 19944 Ptr = ST->getBasePtr(); 19945 VT = ST->getMemoryVT(); 19946 Alignment = ST->getAlign(); 19947 } else if (MaskedLoadSDNode *LD = dyn_cast<MaskedLoadSDNode>(N)) { 19948 Ptr = LD->getBasePtr(); 19949 VT = LD->getMemoryVT(); 19950 Alignment = LD->getAlign(); 19951 isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD; 19952 IsMasked = true; 19953 } else if (MaskedStoreSDNode *ST = dyn_cast<MaskedStoreSDNode>(N)) { 19954 Ptr = ST->getBasePtr(); 19955 VT = ST->getMemoryVT(); 19956 Alignment = ST->getAlign(); 19957 IsMasked = true; 19958 } else 19959 return false; 19960 19961 bool isInc; 19962 bool isLegal = false; 19963 if (VT.isVector()) 19964 isLegal = Subtarget->hasMVEIntegerOps() && 19965 getMVEIndexedAddressParts( 19966 Ptr.getNode(), VT, Alignment, isSEXTLoad, IsMasked, 19967 Subtarget->isLittle(), Base, Offset, isInc, DAG); 19968 else { 19969 if (Subtarget->isThumb2()) 19970 isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base, 19971 Offset, isInc, DAG); 19972 else 19973 isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base, 19974 Offset, isInc, DAG); 19975 } 19976 if (!isLegal) 19977 return false; 19978 19979 AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC; 19980 return true; 19981 } 19982 19983 /// getPostIndexedAddressParts - returns true by value, base pointer and 19984 /// offset pointer and addressing mode by reference if this node can be 19985 /// combined with a load / store to form a post-indexed load / store. 19986 bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op, 19987 SDValue &Base, 19988 SDValue &Offset, 19989 ISD::MemIndexedMode &AM, 19990 SelectionDAG &DAG) const { 19991 EVT VT; 19992 SDValue Ptr; 19993 Align Alignment; 19994 bool isSEXTLoad = false, isNonExt; 19995 bool IsMasked = false; 19996 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 19997 VT = LD->getMemoryVT(); 19998 Ptr = LD->getBasePtr(); 19999 Alignment = LD->getAlign(); 20000 isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD; 20001 isNonExt = LD->getExtensionType() == ISD::NON_EXTLOAD; 20002 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 20003 VT = ST->getMemoryVT(); 20004 Ptr = ST->getBasePtr(); 20005 Alignment = ST->getAlign(); 20006 isNonExt = !ST->isTruncatingStore(); 20007 } else if (MaskedLoadSDNode *LD = dyn_cast<MaskedLoadSDNode>(N)) { 20008 VT = LD->getMemoryVT(); 20009 Ptr = LD->getBasePtr(); 20010 Alignment = LD->getAlign(); 20011 isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD; 20012 isNonExt = LD->getExtensionType() == ISD::NON_EXTLOAD; 20013 IsMasked = true; 20014 } else if (MaskedStoreSDNode *ST = dyn_cast<MaskedStoreSDNode>(N)) { 20015 VT = ST->getMemoryVT(); 20016 Ptr = ST->getBasePtr(); 20017 Alignment = ST->getAlign(); 20018 isNonExt = !ST->isTruncatingStore(); 20019 IsMasked = true; 20020 } else 20021 return false; 20022 20023 if (Subtarget->isThumb1Only()) { 20024 // Thumb-1 can do a limited post-inc load or store as an updating LDM. It 20025 // must be non-extending/truncating, i32, with an offset of 4. 20026 assert(Op->getValueType(0) == MVT::i32 && "Non-i32 post-inc op?!"); 20027 if (Op->getOpcode() != ISD::ADD || !isNonExt) 20028 return false; 20029 auto *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1)); 20030 if (!RHS || RHS->getZExtValue() != 4) 20031 return false; 20032 if (Alignment < Align(4)) 20033 return false; 20034 20035 Offset = Op->getOperand(1); 20036 Base = Op->getOperand(0); 20037 AM = ISD::POST_INC; 20038 return true; 20039 } 20040 20041 bool isInc; 20042 bool isLegal = false; 20043 if (VT.isVector()) 20044 isLegal = Subtarget->hasMVEIntegerOps() && 20045 getMVEIndexedAddressParts(Op, VT, Alignment, isSEXTLoad, IsMasked, 20046 Subtarget->isLittle(), Base, Offset, 20047 isInc, DAG); 20048 else { 20049 if (Subtarget->isThumb2()) 20050 isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset, 20051 isInc, DAG); 20052 else 20053 isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset, 20054 isInc, DAG); 20055 } 20056 if (!isLegal) 20057 return false; 20058 20059 if (Ptr != Base) { 20060 // Swap base ptr and offset to catch more post-index load / store when 20061 // it's legal. In Thumb2 mode, offset must be an immediate. 20062 if (Ptr == Offset && Op->getOpcode() == ISD::ADD && 20063 !Subtarget->isThumb2()) 20064 std::swap(Base, Offset); 20065 20066 // Post-indexed load / store update the base pointer. 20067 if (Ptr != Base) 20068 return false; 20069 } 20070 20071 AM = isInc ? ISD::POST_INC : ISD::POST_DEC; 20072 return true; 20073 } 20074 20075 void ARMTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 20076 KnownBits &Known, 20077 const APInt &DemandedElts, 20078 const SelectionDAG &DAG, 20079 unsigned Depth) const { 20080 unsigned BitWidth = Known.getBitWidth(); 20081 Known.resetAll(); 20082 switch (Op.getOpcode()) { 20083 default: break; 20084 case ARMISD::ADDC: 20085 case ARMISD::ADDE: 20086 case ARMISD::SUBC: 20087 case ARMISD::SUBE: 20088 // Special cases when we convert a carry to a boolean. 20089 if (Op.getResNo() == 0) { 20090 SDValue LHS = Op.getOperand(0); 20091 SDValue RHS = Op.getOperand(1); 20092 // (ADDE 0, 0, C) will give us a single bit. 20093 if (Op->getOpcode() == ARMISD::ADDE && isNullConstant(LHS) && 20094 isNullConstant(RHS)) { 20095 Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1); 20096 return; 20097 } 20098 } 20099 break; 20100 case ARMISD::CMOV: { 20101 // Bits are known zero/one if known on the LHS and RHS. 20102 Known = DAG.computeKnownBits(Op.getOperand(0), Depth+1); 20103 if (Known.isUnknown()) 20104 return; 20105 20106 KnownBits KnownRHS = DAG.computeKnownBits(Op.getOperand(1), Depth+1); 20107 Known = Known.intersectWith(KnownRHS); 20108 return; 20109 } 20110 case ISD::INTRINSIC_W_CHAIN: { 20111 Intrinsic::ID IntID = 20112 static_cast<Intrinsic::ID>(Op->getConstantOperandVal(1)); 20113 switch (IntID) { 20114 default: return; 20115 case Intrinsic::arm_ldaex: 20116 case Intrinsic::arm_ldrex: { 20117 EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT(); 20118 unsigned MemBits = VT.getScalarSizeInBits(); 20119 Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits); 20120 return; 20121 } 20122 } 20123 } 20124 case ARMISD::BFI: { 20125 // Conservatively, we can recurse down the first operand 20126 // and just mask out all affected bits. 20127 Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 20128 20129 // The operand to BFI is already a mask suitable for removing the bits it 20130 // sets. 20131 const APInt &Mask = Op.getConstantOperandAPInt(2); 20132 Known.Zero &= Mask; 20133 Known.One &= Mask; 20134 return; 20135 } 20136 case ARMISD::VGETLANEs: 20137 case ARMISD::VGETLANEu: { 20138 const SDValue &SrcSV = Op.getOperand(0); 20139 EVT VecVT = SrcSV.getValueType(); 20140 assert(VecVT.isVector() && "VGETLANE expected a vector type"); 20141 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 20142 ConstantSDNode *Pos = cast<ConstantSDNode>(Op.getOperand(1).getNode()); 20143 assert(Pos->getAPIntValue().ult(NumSrcElts) && 20144 "VGETLANE index out of bounds"); 20145 unsigned Idx = Pos->getZExtValue(); 20146 APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx); 20147 Known = DAG.computeKnownBits(SrcSV, DemandedElt, Depth + 1); 20148 20149 EVT VT = Op.getValueType(); 20150 const unsigned DstSz = VT.getScalarSizeInBits(); 20151 const unsigned SrcSz = VecVT.getVectorElementType().getSizeInBits(); 20152 (void)SrcSz; 20153 assert(SrcSz == Known.getBitWidth()); 20154 assert(DstSz > SrcSz); 20155 if (Op.getOpcode() == ARMISD::VGETLANEs) 20156 Known = Known.sext(DstSz); 20157 else { 20158 Known = Known.zext(DstSz); 20159 } 20160 assert(DstSz == Known.getBitWidth()); 20161 break; 20162 } 20163 case ARMISD::VMOVrh: { 20164 KnownBits KnownOp = DAG.computeKnownBits(Op->getOperand(0), Depth + 1); 20165 assert(KnownOp.getBitWidth() == 16); 20166 Known = KnownOp.zext(32); 20167 break; 20168 } 20169 case ARMISD::CSINC: 20170 case ARMISD::CSINV: 20171 case ARMISD::CSNEG: { 20172 KnownBits KnownOp0 = DAG.computeKnownBits(Op->getOperand(0), Depth + 1); 20173 KnownBits KnownOp1 = DAG.computeKnownBits(Op->getOperand(1), Depth + 1); 20174 20175 // The result is either: 20176 // CSINC: KnownOp0 or KnownOp1 + 1 20177 // CSINV: KnownOp0 or ~KnownOp1 20178 // CSNEG: KnownOp0 or KnownOp1 * -1 20179 if (Op.getOpcode() == ARMISD::CSINC) 20180 KnownOp1 = KnownBits::computeForAddSub( 20181 /*Add=*/true, /*NSW=*/false, /*NUW=*/false, KnownOp1, 20182 KnownBits::makeConstant(APInt(32, 1))); 20183 else if (Op.getOpcode() == ARMISD::CSINV) 20184 std::swap(KnownOp1.Zero, KnownOp1.One); 20185 else if (Op.getOpcode() == ARMISD::CSNEG) 20186 KnownOp1 = KnownBits::mul( 20187 KnownOp1, KnownBits::makeConstant(APInt(32, -1))); 20188 20189 Known = KnownOp0.intersectWith(KnownOp1); 20190 break; 20191 } 20192 } 20193 } 20194 20195 bool ARMTargetLowering::targetShrinkDemandedConstant( 20196 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 20197 TargetLoweringOpt &TLO) const { 20198 // Delay optimization, so we don't have to deal with illegal types, or block 20199 // optimizations. 20200 if (!TLO.LegalOps) 20201 return false; 20202 20203 // Only optimize AND for now. 20204 if (Op.getOpcode() != ISD::AND) 20205 return false; 20206 20207 EVT VT = Op.getValueType(); 20208 20209 // Ignore vectors. 20210 if (VT.isVector()) 20211 return false; 20212 20213 assert(VT == MVT::i32 && "Unexpected integer type"); 20214 20215 // Make sure the RHS really is a constant. 20216 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 20217 if (!C) 20218 return false; 20219 20220 unsigned Mask = C->getZExtValue(); 20221 20222 unsigned Demanded = DemandedBits.getZExtValue(); 20223 unsigned ShrunkMask = Mask & Demanded; 20224 unsigned ExpandedMask = Mask | ~Demanded; 20225 20226 // If the mask is all zeros, let the target-independent code replace the 20227 // result with zero. 20228 if (ShrunkMask == 0) 20229 return false; 20230 20231 // If the mask is all ones, erase the AND. (Currently, the target-independent 20232 // code won't do this, so we have to do it explicitly to avoid an infinite 20233 // loop in obscure cases.) 20234 if (ExpandedMask == ~0U) 20235 return TLO.CombineTo(Op, Op.getOperand(0)); 20236 20237 auto IsLegalMask = [ShrunkMask, ExpandedMask](unsigned Mask) -> bool { 20238 return (ShrunkMask & Mask) == ShrunkMask && (~ExpandedMask & Mask) == 0; 20239 }; 20240 auto UseMask = [Mask, Op, VT, &TLO](unsigned NewMask) -> bool { 20241 if (NewMask == Mask) 20242 return true; 20243 SDLoc DL(Op); 20244 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); 20245 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); 20246 return TLO.CombineTo(Op, NewOp); 20247 }; 20248 20249 // Prefer uxtb mask. 20250 if (IsLegalMask(0xFF)) 20251 return UseMask(0xFF); 20252 20253 // Prefer uxth mask. 20254 if (IsLegalMask(0xFFFF)) 20255 return UseMask(0xFFFF); 20256 20257 // [1, 255] is Thumb1 movs+ands, legal immediate for ARM/Thumb2. 20258 // FIXME: Prefer a contiguous sequence of bits for other optimizations. 20259 if (ShrunkMask < 256) 20260 return UseMask(ShrunkMask); 20261 20262 // [-256, -2] is Thumb1 movs+bics, legal immediate for ARM/Thumb2. 20263 // FIXME: Prefer a contiguous sequence of bits for other optimizations. 20264 if ((int)ExpandedMask <= -2 && (int)ExpandedMask >= -256) 20265 return UseMask(ExpandedMask); 20266 20267 // Potential improvements: 20268 // 20269 // We could try to recognize lsls+lsrs or lsrs+lsls pairs here. 20270 // We could try to prefer Thumb1 immediates which can be lowered to a 20271 // two-instruction sequence. 20272 // We could try to recognize more legal ARM/Thumb2 immediates here. 20273 20274 return false; 20275 } 20276 20277 bool ARMTargetLowering::SimplifyDemandedBitsForTargetNode( 20278 SDValue Op, const APInt &OriginalDemandedBits, 20279 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 20280 unsigned Depth) const { 20281 unsigned Opc = Op.getOpcode(); 20282 20283 switch (Opc) { 20284 case ARMISD::ASRL: 20285 case ARMISD::LSRL: { 20286 // If this is result 0 and the other result is unused, see if the demand 20287 // bits allow us to shrink this long shift into a standard small shift in 20288 // the opposite direction. 20289 if (Op.getResNo() == 0 && !Op->hasAnyUseOfValue(1) && 20290 isa<ConstantSDNode>(Op->getOperand(2))) { 20291 unsigned ShAmt = Op->getConstantOperandVal(2); 20292 if (ShAmt < 32 && OriginalDemandedBits.isSubsetOf(APInt::getAllOnes(32) 20293 << (32 - ShAmt))) 20294 return TLO.CombineTo( 20295 Op, TLO.DAG.getNode( 20296 ISD::SHL, SDLoc(Op), MVT::i32, Op.getOperand(1), 20297 TLO.DAG.getConstant(32 - ShAmt, SDLoc(Op), MVT::i32))); 20298 } 20299 break; 20300 } 20301 case ARMISD::VBICIMM: { 20302 SDValue Op0 = Op.getOperand(0); 20303 unsigned ModImm = Op.getConstantOperandVal(1); 20304 unsigned EltBits = 0; 20305 uint64_t Mask = ARM_AM::decodeVMOVModImm(ModImm, EltBits); 20306 if ((OriginalDemandedBits & Mask) == 0) 20307 return TLO.CombineTo(Op, Op0); 20308 } 20309 } 20310 20311 return TargetLowering::SimplifyDemandedBitsForTargetNode( 20312 Op, OriginalDemandedBits, OriginalDemandedElts, Known, TLO, Depth); 20313 } 20314 20315 //===----------------------------------------------------------------------===// 20316 // ARM Inline Assembly Support 20317 //===----------------------------------------------------------------------===// 20318 20319 bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const { 20320 // Looking for "rev" which is V6+. 20321 if (!Subtarget->hasV6Ops()) 20322 return false; 20323 20324 InlineAsm *IA = cast<InlineAsm>(CI->getCalledOperand()); 20325 StringRef AsmStr = IA->getAsmString(); 20326 SmallVector<StringRef, 4> AsmPieces; 20327 SplitString(AsmStr, AsmPieces, ";\n"); 20328 20329 switch (AsmPieces.size()) { 20330 default: return false; 20331 case 1: 20332 AsmStr = AsmPieces[0]; 20333 AsmPieces.clear(); 20334 SplitString(AsmStr, AsmPieces, " \t,"); 20335 20336 // rev $0, $1 20337 if (AsmPieces.size() == 3 && 20338 AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" && 20339 IA->getConstraintString().compare(0, 4, "=l,l") == 0) { 20340 IntegerType *Ty = dyn_cast<IntegerType>(CI->getType()); 20341 if (Ty && Ty->getBitWidth() == 32) 20342 return IntrinsicLowering::LowerToByteSwap(CI); 20343 } 20344 break; 20345 } 20346 20347 return false; 20348 } 20349 20350 const char *ARMTargetLowering::LowerXConstraint(EVT ConstraintVT) const { 20351 // At this point, we have to lower this constraint to something else, so we 20352 // lower it to an "r" or "w". However, by doing this we will force the result 20353 // to be in register, while the X constraint is much more permissive. 20354 // 20355 // Although we are correct (we are free to emit anything, without 20356 // constraints), we might break use cases that would expect us to be more 20357 // efficient and emit something else. 20358 if (!Subtarget->hasVFP2Base()) 20359 return "r"; 20360 if (ConstraintVT.isFloatingPoint()) 20361 return "w"; 20362 if (ConstraintVT.isVector() && Subtarget->hasNEON() && 20363 (ConstraintVT.getSizeInBits() == 64 || 20364 ConstraintVT.getSizeInBits() == 128)) 20365 return "w"; 20366 20367 return "r"; 20368 } 20369 20370 /// getConstraintType - Given a constraint letter, return the type of 20371 /// constraint it is for this target. 20372 ARMTargetLowering::ConstraintType 20373 ARMTargetLowering::getConstraintType(StringRef Constraint) const { 20374 unsigned S = Constraint.size(); 20375 if (S == 1) { 20376 switch (Constraint[0]) { 20377 default: break; 20378 case 'l': return C_RegisterClass; 20379 case 'w': return C_RegisterClass; 20380 case 'h': return C_RegisterClass; 20381 case 'x': return C_RegisterClass; 20382 case 't': return C_RegisterClass; 20383 case 'j': return C_Immediate; // Constant for movw. 20384 // An address with a single base register. Due to the way we 20385 // currently handle addresses it is the same as an 'r' memory constraint. 20386 case 'Q': return C_Memory; 20387 } 20388 } else if (S == 2) { 20389 switch (Constraint[0]) { 20390 default: break; 20391 case 'T': return C_RegisterClass; 20392 // All 'U+' constraints are addresses. 20393 case 'U': return C_Memory; 20394 } 20395 } 20396 return TargetLowering::getConstraintType(Constraint); 20397 } 20398 20399 /// Examine constraint type and operand type and determine a weight value. 20400 /// This object must already have been set up with the operand type 20401 /// and the current alternative constraint selected. 20402 TargetLowering::ConstraintWeight 20403 ARMTargetLowering::getSingleConstraintMatchWeight( 20404 AsmOperandInfo &info, const char *constraint) const { 20405 ConstraintWeight weight = CW_Invalid; 20406 Value *CallOperandVal = info.CallOperandVal; 20407 // If we don't have a value, we can't do a match, 20408 // but allow it at the lowest weight. 20409 if (!CallOperandVal) 20410 return CW_Default; 20411 Type *type = CallOperandVal->getType(); 20412 // Look at the constraint type. 20413 switch (*constraint) { 20414 default: 20415 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 20416 break; 20417 case 'l': 20418 if (type->isIntegerTy()) { 20419 if (Subtarget->isThumb()) 20420 weight = CW_SpecificReg; 20421 else 20422 weight = CW_Register; 20423 } 20424 break; 20425 case 'w': 20426 if (type->isFloatingPointTy()) 20427 weight = CW_Register; 20428 break; 20429 } 20430 return weight; 20431 } 20432 20433 using RCPair = std::pair<unsigned, const TargetRegisterClass *>; 20434 20435 RCPair ARMTargetLowering::getRegForInlineAsmConstraint( 20436 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 20437 switch (Constraint.size()) { 20438 case 1: 20439 // GCC ARM Constraint Letters 20440 switch (Constraint[0]) { 20441 case 'l': // Low regs or general regs. 20442 if (Subtarget->isThumb()) 20443 return RCPair(0U, &ARM::tGPRRegClass); 20444 return RCPair(0U, &ARM::GPRRegClass); 20445 case 'h': // High regs or no regs. 20446 if (Subtarget->isThumb()) 20447 return RCPair(0U, &ARM::hGPRRegClass); 20448 break; 20449 case 'r': 20450 if (Subtarget->isThumb1Only()) 20451 return RCPair(0U, &ARM::tGPRRegClass); 20452 return RCPair(0U, &ARM::GPRRegClass); 20453 case 'w': 20454 if (VT == MVT::Other) 20455 break; 20456 if (VT == MVT::f32 || VT == MVT::f16 || VT == MVT::bf16) 20457 return RCPair(0U, &ARM::SPRRegClass); 20458 if (VT.getSizeInBits() == 64) 20459 return RCPair(0U, &ARM::DPRRegClass); 20460 if (VT.getSizeInBits() == 128) 20461 return RCPair(0U, &ARM::QPRRegClass); 20462 break; 20463 case 'x': 20464 if (VT == MVT::Other) 20465 break; 20466 if (VT == MVT::f32 || VT == MVT::f16 || VT == MVT::bf16) 20467 return RCPair(0U, &ARM::SPR_8RegClass); 20468 if (VT.getSizeInBits() == 64) 20469 return RCPair(0U, &ARM::DPR_8RegClass); 20470 if (VT.getSizeInBits() == 128) 20471 return RCPair(0U, &ARM::QPR_8RegClass); 20472 break; 20473 case 't': 20474 if (VT == MVT::Other) 20475 break; 20476 if (VT == MVT::f32 || VT == MVT::i32 || VT == MVT::f16 || VT == MVT::bf16) 20477 return RCPair(0U, &ARM::SPRRegClass); 20478 if (VT.getSizeInBits() == 64) 20479 return RCPair(0U, &ARM::DPR_VFP2RegClass); 20480 if (VT.getSizeInBits() == 128) 20481 return RCPair(0U, &ARM::QPR_VFP2RegClass); 20482 break; 20483 } 20484 break; 20485 20486 case 2: 20487 if (Constraint[0] == 'T') { 20488 switch (Constraint[1]) { 20489 default: 20490 break; 20491 case 'e': 20492 return RCPair(0U, &ARM::tGPREvenRegClass); 20493 case 'o': 20494 return RCPair(0U, &ARM::tGPROddRegClass); 20495 } 20496 } 20497 break; 20498 20499 default: 20500 break; 20501 } 20502 20503 if (StringRef("{cc}").equals_insensitive(Constraint)) 20504 return std::make_pair(unsigned(ARM::CPSR), &ARM::CCRRegClass); 20505 20506 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 20507 } 20508 20509 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 20510 /// vector. If it is invalid, don't add anything to Ops. 20511 void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 20512 StringRef Constraint, 20513 std::vector<SDValue> &Ops, 20514 SelectionDAG &DAG) const { 20515 SDValue Result; 20516 20517 // Currently only support length 1 constraints. 20518 if (Constraint.size() != 1) 20519 return; 20520 20521 char ConstraintLetter = Constraint[0]; 20522 switch (ConstraintLetter) { 20523 default: break; 20524 case 'j': 20525 case 'I': case 'J': case 'K': case 'L': 20526 case 'M': case 'N': case 'O': 20527 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 20528 if (!C) 20529 return; 20530 20531 int64_t CVal64 = C->getSExtValue(); 20532 int CVal = (int) CVal64; 20533 // None of these constraints allow values larger than 32 bits. Check 20534 // that the value fits in an int. 20535 if (CVal != CVal64) 20536 return; 20537 20538 switch (ConstraintLetter) { 20539 case 'j': 20540 // Constant suitable for movw, must be between 0 and 20541 // 65535. 20542 if (Subtarget->hasV6T2Ops() || (Subtarget->hasV8MBaselineOps())) 20543 if (CVal >= 0 && CVal <= 65535) 20544 break; 20545 return; 20546 case 'I': 20547 if (Subtarget->isThumb1Only()) { 20548 // This must be a constant between 0 and 255, for ADD 20549 // immediates. 20550 if (CVal >= 0 && CVal <= 255) 20551 break; 20552 } else if (Subtarget->isThumb2()) { 20553 // A constant that can be used as an immediate value in a 20554 // data-processing instruction. 20555 if (ARM_AM::getT2SOImmVal(CVal) != -1) 20556 break; 20557 } else { 20558 // A constant that can be used as an immediate value in a 20559 // data-processing instruction. 20560 if (ARM_AM::getSOImmVal(CVal) != -1) 20561 break; 20562 } 20563 return; 20564 20565 case 'J': 20566 if (Subtarget->isThumb1Only()) { 20567 // This must be a constant between -255 and -1, for negated ADD 20568 // immediates. This can be used in GCC with an "n" modifier that 20569 // prints the negated value, for use with SUB instructions. It is 20570 // not useful otherwise but is implemented for compatibility. 20571 if (CVal >= -255 && CVal <= -1) 20572 break; 20573 } else { 20574 // This must be a constant between -4095 and 4095. It is not clear 20575 // what this constraint is intended for. Implemented for 20576 // compatibility with GCC. 20577 if (CVal >= -4095 && CVal <= 4095) 20578 break; 20579 } 20580 return; 20581 20582 case 'K': 20583 if (Subtarget->isThumb1Only()) { 20584 // A 32-bit value where only one byte has a nonzero value. Exclude 20585 // zero to match GCC. This constraint is used by GCC internally for 20586 // constants that can be loaded with a move/shift combination. 20587 // It is not useful otherwise but is implemented for compatibility. 20588 if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal)) 20589 break; 20590 } else if (Subtarget->isThumb2()) { 20591 // A constant whose bitwise inverse can be used as an immediate 20592 // value in a data-processing instruction. This can be used in GCC 20593 // with a "B" modifier that prints the inverted value, for use with 20594 // BIC and MVN instructions. It is not useful otherwise but is 20595 // implemented for compatibility. 20596 if (ARM_AM::getT2SOImmVal(~CVal) != -1) 20597 break; 20598 } else { 20599 // A constant whose bitwise inverse can be used as an immediate 20600 // value in a data-processing instruction. This can be used in GCC 20601 // with a "B" modifier that prints the inverted value, for use with 20602 // BIC and MVN instructions. It is not useful otherwise but is 20603 // implemented for compatibility. 20604 if (ARM_AM::getSOImmVal(~CVal) != -1) 20605 break; 20606 } 20607 return; 20608 20609 case 'L': 20610 if (Subtarget->isThumb1Only()) { 20611 // This must be a constant between -7 and 7, 20612 // for 3-operand ADD/SUB immediate instructions. 20613 if (CVal >= -7 && CVal < 7) 20614 break; 20615 } else if (Subtarget->isThumb2()) { 20616 // A constant whose negation can be used as an immediate value in a 20617 // data-processing instruction. This can be used in GCC with an "n" 20618 // modifier that prints the negated value, for use with SUB 20619 // instructions. It is not useful otherwise but is implemented for 20620 // compatibility. 20621 if (ARM_AM::getT2SOImmVal(-CVal) != -1) 20622 break; 20623 } else { 20624 // A constant whose negation can be used as an immediate value in a 20625 // data-processing instruction. This can be used in GCC with an "n" 20626 // modifier that prints the negated value, for use with SUB 20627 // instructions. It is not useful otherwise but is implemented for 20628 // compatibility. 20629 if (ARM_AM::getSOImmVal(-CVal) != -1) 20630 break; 20631 } 20632 return; 20633 20634 case 'M': 20635 if (Subtarget->isThumb1Only()) { 20636 // This must be a multiple of 4 between 0 and 1020, for 20637 // ADD sp + immediate. 20638 if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0)) 20639 break; 20640 } else { 20641 // A power of two or a constant between 0 and 32. This is used in 20642 // GCC for the shift amount on shifted register operands, but it is 20643 // useful in general for any shift amounts. 20644 if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0)) 20645 break; 20646 } 20647 return; 20648 20649 case 'N': 20650 if (Subtarget->isThumb1Only()) { 20651 // This must be a constant between 0 and 31, for shift amounts. 20652 if (CVal >= 0 && CVal <= 31) 20653 break; 20654 } 20655 return; 20656 20657 case 'O': 20658 if (Subtarget->isThumb1Only()) { 20659 // This must be a multiple of 4 between -508 and 508, for 20660 // ADD/SUB sp = sp + immediate. 20661 if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0)) 20662 break; 20663 } 20664 return; 20665 } 20666 Result = DAG.getTargetConstant(CVal, SDLoc(Op), Op.getValueType()); 20667 break; 20668 } 20669 20670 if (Result.getNode()) { 20671 Ops.push_back(Result); 20672 return; 20673 } 20674 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 20675 } 20676 20677 static RTLIB::Libcall getDivRemLibcall( 20678 const SDNode *N, MVT::SimpleValueType SVT) { 20679 assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM || 20680 N->getOpcode() == ISD::SREM || N->getOpcode() == ISD::UREM) && 20681 "Unhandled Opcode in getDivRemLibcall"); 20682 bool isSigned = N->getOpcode() == ISD::SDIVREM || 20683 N->getOpcode() == ISD::SREM; 20684 RTLIB::Libcall LC; 20685 switch (SVT) { 20686 default: llvm_unreachable("Unexpected request for libcall!"); 20687 case MVT::i8: LC = isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 20688 case MVT::i16: LC = isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 20689 case MVT::i32: LC = isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 20690 case MVT::i64: LC = isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 20691 } 20692 return LC; 20693 } 20694 20695 static TargetLowering::ArgListTy getDivRemArgList( 20696 const SDNode *N, LLVMContext *Context, const ARMSubtarget *Subtarget) { 20697 assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM || 20698 N->getOpcode() == ISD::SREM || N->getOpcode() == ISD::UREM) && 20699 "Unhandled Opcode in getDivRemArgList"); 20700 bool isSigned = N->getOpcode() == ISD::SDIVREM || 20701 N->getOpcode() == ISD::SREM; 20702 TargetLowering::ArgListTy Args; 20703 TargetLowering::ArgListEntry Entry; 20704 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 20705 EVT ArgVT = N->getOperand(i).getValueType(); 20706 Type *ArgTy = ArgVT.getTypeForEVT(*Context); 20707 Entry.Node = N->getOperand(i); 20708 Entry.Ty = ArgTy; 20709 Entry.IsSExt = isSigned; 20710 Entry.IsZExt = !isSigned; 20711 Args.push_back(Entry); 20712 } 20713 if (Subtarget->isTargetWindows() && Args.size() >= 2) 20714 std::swap(Args[0], Args[1]); 20715 return Args; 20716 } 20717 20718 SDValue ARMTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const { 20719 assert((Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() || 20720 Subtarget->isTargetGNUAEABI() || Subtarget->isTargetMuslAEABI() || 20721 Subtarget->isTargetWindows()) && 20722 "Register-based DivRem lowering only"); 20723 unsigned Opcode = Op->getOpcode(); 20724 assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) && 20725 "Invalid opcode for Div/Rem lowering"); 20726 bool isSigned = (Opcode == ISD::SDIVREM); 20727 EVT VT = Op->getValueType(0); 20728 SDLoc dl(Op); 20729 20730 if (VT == MVT::i64 && isa<ConstantSDNode>(Op.getOperand(1))) { 20731 SmallVector<SDValue> Result; 20732 if (expandDIVREMByConstant(Op.getNode(), Result, MVT::i32, DAG)) { 20733 SDValue Res0 = 20734 DAG.getNode(ISD::BUILD_PAIR, dl, VT, Result[0], Result[1]); 20735 SDValue Res1 = 20736 DAG.getNode(ISD::BUILD_PAIR, dl, VT, Result[2], Result[3]); 20737 return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), 20738 {Res0, Res1}); 20739 } 20740 } 20741 20742 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 20743 20744 // If the target has hardware divide, use divide + multiply + subtract: 20745 // div = a / b 20746 // rem = a - b * div 20747 // return {div, rem} 20748 // This should be lowered into UDIV/SDIV + MLS later on. 20749 bool hasDivide = Subtarget->isThumb() ? Subtarget->hasDivideInThumbMode() 20750 : Subtarget->hasDivideInARMMode(); 20751 if (hasDivide && Op->getValueType(0).isSimple() && 20752 Op->getSimpleValueType(0) == MVT::i32) { 20753 unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV; 20754 const SDValue Dividend = Op->getOperand(0); 20755 const SDValue Divisor = Op->getOperand(1); 20756 SDValue Div = DAG.getNode(DivOpcode, dl, VT, Dividend, Divisor); 20757 SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Div, Divisor); 20758 SDValue Rem = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul); 20759 20760 SDValue Values[2] = {Div, Rem}; 20761 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VT, VT), Values); 20762 } 20763 20764 RTLIB::Libcall LC = getDivRemLibcall(Op.getNode(), 20765 VT.getSimpleVT().SimpleTy); 20766 SDValue InChain = DAG.getEntryNode(); 20767 20768 TargetLowering::ArgListTy Args = getDivRemArgList(Op.getNode(), 20769 DAG.getContext(), 20770 Subtarget); 20771 20772 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 20773 getPointerTy(DAG.getDataLayout())); 20774 20775 Type *RetTy = StructType::get(Ty, Ty); 20776 20777 if (Subtarget->isTargetWindows()) 20778 InChain = WinDBZCheckDenominator(DAG, Op.getNode(), InChain); 20779 20780 TargetLowering::CallLoweringInfo CLI(DAG); 20781 CLI.setDebugLoc(dl).setChain(InChain) 20782 .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 20783 .setInRegister().setSExtResult(isSigned).setZExtResult(!isSigned); 20784 20785 std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI); 20786 return CallInfo.first; 20787 } 20788 20789 // Lowers REM using divmod helpers 20790 // see RTABI section 4.2/4.3 20791 SDValue ARMTargetLowering::LowerREM(SDNode *N, SelectionDAG &DAG) const { 20792 EVT VT = N->getValueType(0); 20793 20794 if (VT == MVT::i64 && isa<ConstantSDNode>(N->getOperand(1))) { 20795 SmallVector<SDValue> Result; 20796 if (expandDIVREMByConstant(N, Result, MVT::i32, DAG)) 20797 return DAG.getNode(ISD::BUILD_PAIR, SDLoc(N), N->getValueType(0), 20798 Result[0], Result[1]); 20799 } 20800 20801 // Build return types (div and rem) 20802 std::vector<Type*> RetTyParams; 20803 Type *RetTyElement; 20804 20805 switch (VT.getSimpleVT().SimpleTy) { 20806 default: llvm_unreachable("Unexpected request for libcall!"); 20807 case MVT::i8: RetTyElement = Type::getInt8Ty(*DAG.getContext()); break; 20808 case MVT::i16: RetTyElement = Type::getInt16Ty(*DAG.getContext()); break; 20809 case MVT::i32: RetTyElement = Type::getInt32Ty(*DAG.getContext()); break; 20810 case MVT::i64: RetTyElement = Type::getInt64Ty(*DAG.getContext()); break; 20811 } 20812 20813 RetTyParams.push_back(RetTyElement); 20814 RetTyParams.push_back(RetTyElement); 20815 ArrayRef<Type*> ret = ArrayRef<Type*>(RetTyParams); 20816 Type *RetTy = StructType::get(*DAG.getContext(), ret); 20817 20818 RTLIB::Libcall LC = getDivRemLibcall(N, N->getValueType(0).getSimpleVT(). 20819 SimpleTy); 20820 SDValue InChain = DAG.getEntryNode(); 20821 TargetLowering::ArgListTy Args = getDivRemArgList(N, DAG.getContext(), 20822 Subtarget); 20823 bool isSigned = N->getOpcode() == ISD::SREM; 20824 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 20825 getPointerTy(DAG.getDataLayout())); 20826 20827 if (Subtarget->isTargetWindows()) 20828 InChain = WinDBZCheckDenominator(DAG, N, InChain); 20829 20830 // Lower call 20831 CallLoweringInfo CLI(DAG); 20832 CLI.setChain(InChain) 20833 .setCallee(CallingConv::ARM_AAPCS, RetTy, Callee, std::move(Args)) 20834 .setSExtResult(isSigned).setZExtResult(!isSigned).setDebugLoc(SDLoc(N)); 20835 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 20836 20837 // Return second (rem) result operand (first contains div) 20838 SDNode *ResNode = CallResult.first.getNode(); 20839 assert(ResNode->getNumOperands() == 2 && "divmod should return two operands"); 20840 return ResNode->getOperand(1); 20841 } 20842 20843 SDValue 20844 ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { 20845 assert(Subtarget->isTargetWindows() && "unsupported target platform"); 20846 SDLoc DL(Op); 20847 20848 // Get the inputs. 20849 SDValue Chain = Op.getOperand(0); 20850 SDValue Size = Op.getOperand(1); 20851 20852 if (DAG.getMachineFunction().getFunction().hasFnAttribute( 20853 "no-stack-arg-probe")) { 20854 MaybeAlign Align = 20855 cast<ConstantSDNode>(Op.getOperand(2))->getMaybeAlignValue(); 20856 SDValue SP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32); 20857 Chain = SP.getValue(1); 20858 SP = DAG.getNode(ISD::SUB, DL, MVT::i32, SP, Size); 20859 if (Align) 20860 SP = 20861 DAG.getNode(ISD::AND, DL, MVT::i32, SP.getValue(0), 20862 DAG.getConstant(-(uint64_t)Align->value(), DL, MVT::i32)); 20863 Chain = DAG.getCopyToReg(Chain, DL, ARM::SP, SP); 20864 SDValue Ops[2] = { SP, Chain }; 20865 return DAG.getMergeValues(Ops, DL); 20866 } 20867 20868 SDValue Words = DAG.getNode(ISD::SRL, DL, MVT::i32, Size, 20869 DAG.getConstant(2, DL, MVT::i32)); 20870 20871 SDValue Glue; 20872 Chain = DAG.getCopyToReg(Chain, DL, ARM::R4, Words, Glue); 20873 Glue = Chain.getValue(1); 20874 20875 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 20876 Chain = DAG.getNode(ARMISD::WIN__CHKSTK, DL, NodeTys, Chain, Glue); 20877 20878 SDValue NewSP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32); 20879 Chain = NewSP.getValue(1); 20880 20881 SDValue Ops[2] = { NewSP, Chain }; 20882 return DAG.getMergeValues(Ops, DL); 20883 } 20884 20885 SDValue ARMTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { 20886 bool IsStrict = Op->isStrictFPOpcode(); 20887 SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0); 20888 const unsigned DstSz = Op.getValueType().getSizeInBits(); 20889 const unsigned SrcSz = SrcVal.getValueType().getSizeInBits(); 20890 assert(DstSz > SrcSz && DstSz <= 64 && SrcSz >= 16 && 20891 "Unexpected type for custom-lowering FP_EXTEND"); 20892 20893 assert((!Subtarget->hasFP64() || !Subtarget->hasFPARMv8Base()) && 20894 "With both FP DP and 16, any FP conversion is legal!"); 20895 20896 assert(!(DstSz == 32 && Subtarget->hasFP16()) && 20897 "With FP16, 16 to 32 conversion is legal!"); 20898 20899 // Converting from 32 -> 64 is valid if we have FP64. 20900 if (SrcSz == 32 && DstSz == 64 && Subtarget->hasFP64()) { 20901 // FIXME: Remove this when we have strict fp instruction selection patterns 20902 if (IsStrict) { 20903 SDLoc Loc(Op); 20904 SDValue Result = DAG.getNode(ISD::FP_EXTEND, 20905 Loc, Op.getValueType(), SrcVal); 20906 return DAG.getMergeValues({Result, Op.getOperand(0)}, Loc); 20907 } 20908 return Op; 20909 } 20910 20911 // Either we are converting from 16 -> 64, without FP16 and/or 20912 // FP.double-precision or without Armv8-fp. So we must do it in two 20913 // steps. 20914 // Or we are converting from 32 -> 64 without fp.double-precision or 16 -> 32 20915 // without FP16. So we must do a function call. 20916 SDLoc Loc(Op); 20917 RTLIB::Libcall LC; 20918 MakeLibCallOptions CallOptions; 20919 SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue(); 20920 for (unsigned Sz = SrcSz; Sz <= 32 && Sz < DstSz; Sz *= 2) { 20921 bool Supported = (Sz == 16 ? Subtarget->hasFP16() : Subtarget->hasFP64()); 20922 MVT SrcVT = (Sz == 16 ? MVT::f16 : MVT::f32); 20923 MVT DstVT = (Sz == 16 ? MVT::f32 : MVT::f64); 20924 if (Supported) { 20925 if (IsStrict) { 20926 SrcVal = DAG.getNode(ISD::STRICT_FP_EXTEND, Loc, 20927 {DstVT, MVT::Other}, {Chain, SrcVal}); 20928 Chain = SrcVal.getValue(1); 20929 } else { 20930 SrcVal = DAG.getNode(ISD::FP_EXTEND, Loc, DstVT, SrcVal); 20931 } 20932 } else { 20933 LC = RTLIB::getFPEXT(SrcVT, DstVT); 20934 assert(LC != RTLIB::UNKNOWN_LIBCALL && 20935 "Unexpected type for custom-lowering FP_EXTEND"); 20936 std::tie(SrcVal, Chain) = makeLibCall(DAG, LC, DstVT, SrcVal, CallOptions, 20937 Loc, Chain); 20938 } 20939 } 20940 20941 return IsStrict ? DAG.getMergeValues({SrcVal, Chain}, Loc) : SrcVal; 20942 } 20943 20944 SDValue ARMTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const { 20945 bool IsStrict = Op->isStrictFPOpcode(); 20946 20947 SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0); 20948 EVT SrcVT = SrcVal.getValueType(); 20949 EVT DstVT = Op.getValueType(); 20950 const unsigned DstSz = Op.getValueType().getSizeInBits(); 20951 const unsigned SrcSz = SrcVT.getSizeInBits(); 20952 (void)DstSz; 20953 assert(DstSz < SrcSz && SrcSz <= 64 && DstSz >= 16 && 20954 "Unexpected type for custom-lowering FP_ROUND"); 20955 20956 assert((!Subtarget->hasFP64() || !Subtarget->hasFPARMv8Base()) && 20957 "With both FP DP and 16, any FP conversion is legal!"); 20958 20959 SDLoc Loc(Op); 20960 20961 // Instruction from 32 -> 16 if hasFP16 is valid 20962 if (SrcSz == 32 && Subtarget->hasFP16()) 20963 return Op; 20964 20965 // Lib call from 32 -> 16 / 64 -> [32, 16] 20966 RTLIB::Libcall LC = RTLIB::getFPROUND(SrcVT, DstVT); 20967 assert(LC != RTLIB::UNKNOWN_LIBCALL && 20968 "Unexpected type for custom-lowering FP_ROUND"); 20969 MakeLibCallOptions CallOptions; 20970 SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue(); 20971 SDValue Result; 20972 std::tie(Result, Chain) = makeLibCall(DAG, LC, DstVT, SrcVal, CallOptions, 20973 Loc, Chain); 20974 return IsStrict ? DAG.getMergeValues({Result, Chain}, Loc) : Result; 20975 } 20976 20977 bool 20978 ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 20979 // The ARM target isn't yet aware of offsets. 20980 return false; 20981 } 20982 20983 bool ARM::isBitFieldInvertedMask(unsigned v) { 20984 if (v == 0xffffffff) 20985 return false; 20986 20987 // there can be 1's on either or both "outsides", all the "inside" 20988 // bits must be 0's 20989 return isShiftedMask_32(~v); 20990 } 20991 20992 /// isFPImmLegal - Returns true if the target can instruction select the 20993 /// specified FP immediate natively. If false, the legalizer will 20994 /// materialize the FP immediate as a load from a constant pool. 20995 bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 20996 bool ForCodeSize) const { 20997 if (!Subtarget->hasVFP3Base()) 20998 return false; 20999 if (VT == MVT::f16 && Subtarget->hasFullFP16()) 21000 return ARM_AM::getFP16Imm(Imm) != -1; 21001 if (VT == MVT::f32 && Subtarget->hasFullFP16() && 21002 ARM_AM::getFP32FP16Imm(Imm) != -1) 21003 return true; 21004 if (VT == MVT::f32) 21005 return ARM_AM::getFP32Imm(Imm) != -1; 21006 if (VT == MVT::f64 && Subtarget->hasFP64()) 21007 return ARM_AM::getFP64Imm(Imm) != -1; 21008 return false; 21009 } 21010 21011 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as 21012 /// MemIntrinsicNodes. The associated MachineMemOperands record the alignment 21013 /// specified in the intrinsic calls. 21014 bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 21015 const CallInst &I, 21016 MachineFunction &MF, 21017 unsigned Intrinsic) const { 21018 switch (Intrinsic) { 21019 case Intrinsic::arm_neon_vld1: 21020 case Intrinsic::arm_neon_vld2: 21021 case Intrinsic::arm_neon_vld3: 21022 case Intrinsic::arm_neon_vld4: 21023 case Intrinsic::arm_neon_vld2lane: 21024 case Intrinsic::arm_neon_vld3lane: 21025 case Intrinsic::arm_neon_vld4lane: 21026 case Intrinsic::arm_neon_vld2dup: 21027 case Intrinsic::arm_neon_vld3dup: 21028 case Intrinsic::arm_neon_vld4dup: { 21029 Info.opc = ISD::INTRINSIC_W_CHAIN; 21030 // Conservatively set memVT to the entire set of vectors loaded. 21031 auto &DL = I.getDataLayout(); 21032 uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64; 21033 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts); 21034 Info.ptrVal = I.getArgOperand(0); 21035 Info.offset = 0; 21036 Value *AlignArg = I.getArgOperand(I.arg_size() - 1); 21037 Info.align = cast<ConstantInt>(AlignArg)->getMaybeAlignValue(); 21038 // volatile loads with NEON intrinsics not supported 21039 Info.flags = MachineMemOperand::MOLoad; 21040 return true; 21041 } 21042 case Intrinsic::arm_neon_vld1x2: 21043 case Intrinsic::arm_neon_vld1x3: 21044 case Intrinsic::arm_neon_vld1x4: { 21045 Info.opc = ISD::INTRINSIC_W_CHAIN; 21046 // Conservatively set memVT to the entire set of vectors loaded. 21047 auto &DL = I.getDataLayout(); 21048 uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64; 21049 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts); 21050 Info.ptrVal = I.getArgOperand(I.arg_size() - 1); 21051 Info.offset = 0; 21052 Info.align.reset(); 21053 // volatile loads with NEON intrinsics not supported 21054 Info.flags = MachineMemOperand::MOLoad; 21055 return true; 21056 } 21057 case Intrinsic::arm_neon_vst1: 21058 case Intrinsic::arm_neon_vst2: 21059 case Intrinsic::arm_neon_vst3: 21060 case Intrinsic::arm_neon_vst4: 21061 case Intrinsic::arm_neon_vst2lane: 21062 case Intrinsic::arm_neon_vst3lane: 21063 case Intrinsic::arm_neon_vst4lane: { 21064 Info.opc = ISD::INTRINSIC_VOID; 21065 // Conservatively set memVT to the entire set of vectors stored. 21066 auto &DL = I.getDataLayout(); 21067 unsigned NumElts = 0; 21068 for (unsigned ArgI = 1, ArgE = I.arg_size(); ArgI < ArgE; ++ArgI) { 21069 Type *ArgTy = I.getArgOperand(ArgI)->getType(); 21070 if (!ArgTy->isVectorTy()) 21071 break; 21072 NumElts += DL.getTypeSizeInBits(ArgTy) / 64; 21073 } 21074 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts); 21075 Info.ptrVal = I.getArgOperand(0); 21076 Info.offset = 0; 21077 Value *AlignArg = I.getArgOperand(I.arg_size() - 1); 21078 Info.align = cast<ConstantInt>(AlignArg)->getMaybeAlignValue(); 21079 // volatile stores with NEON intrinsics not supported 21080 Info.flags = MachineMemOperand::MOStore; 21081 return true; 21082 } 21083 case Intrinsic::arm_neon_vst1x2: 21084 case Intrinsic::arm_neon_vst1x3: 21085 case Intrinsic::arm_neon_vst1x4: { 21086 Info.opc = ISD::INTRINSIC_VOID; 21087 // Conservatively set memVT to the entire set of vectors stored. 21088 auto &DL = I.getDataLayout(); 21089 unsigned NumElts = 0; 21090 for (unsigned ArgI = 1, ArgE = I.arg_size(); ArgI < ArgE; ++ArgI) { 21091 Type *ArgTy = I.getArgOperand(ArgI)->getType(); 21092 if (!ArgTy->isVectorTy()) 21093 break; 21094 NumElts += DL.getTypeSizeInBits(ArgTy) / 64; 21095 } 21096 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts); 21097 Info.ptrVal = I.getArgOperand(0); 21098 Info.offset = 0; 21099 Info.align.reset(); 21100 // volatile stores with NEON intrinsics not supported 21101 Info.flags = MachineMemOperand::MOStore; 21102 return true; 21103 } 21104 case Intrinsic::arm_mve_vld2q: 21105 case Intrinsic::arm_mve_vld4q: { 21106 Info.opc = ISD::INTRINSIC_W_CHAIN; 21107 // Conservatively set memVT to the entire set of vectors loaded. 21108 Type *VecTy = cast<StructType>(I.getType())->getElementType(1); 21109 unsigned Factor = Intrinsic == Intrinsic::arm_mve_vld2q ? 2 : 4; 21110 Info.memVT = EVT::getVectorVT(VecTy->getContext(), MVT::i64, Factor * 2); 21111 Info.ptrVal = I.getArgOperand(0); 21112 Info.offset = 0; 21113 Info.align = Align(VecTy->getScalarSizeInBits() / 8); 21114 // volatile loads with MVE intrinsics not supported 21115 Info.flags = MachineMemOperand::MOLoad; 21116 return true; 21117 } 21118 case Intrinsic::arm_mve_vst2q: 21119 case Intrinsic::arm_mve_vst4q: { 21120 Info.opc = ISD::INTRINSIC_VOID; 21121 // Conservatively set memVT to the entire set of vectors stored. 21122 Type *VecTy = I.getArgOperand(1)->getType(); 21123 unsigned Factor = Intrinsic == Intrinsic::arm_mve_vst2q ? 2 : 4; 21124 Info.memVT = EVT::getVectorVT(VecTy->getContext(), MVT::i64, Factor * 2); 21125 Info.ptrVal = I.getArgOperand(0); 21126 Info.offset = 0; 21127 Info.align = Align(VecTy->getScalarSizeInBits() / 8); 21128 // volatile stores with MVE intrinsics not supported 21129 Info.flags = MachineMemOperand::MOStore; 21130 return true; 21131 } 21132 case Intrinsic::arm_mve_vldr_gather_base: 21133 case Intrinsic::arm_mve_vldr_gather_base_predicated: { 21134 Info.opc = ISD::INTRINSIC_W_CHAIN; 21135 Info.ptrVal = nullptr; 21136 Info.memVT = MVT::getVT(I.getType()); 21137 Info.align = Align(1); 21138 Info.flags |= MachineMemOperand::MOLoad; 21139 return true; 21140 } 21141 case Intrinsic::arm_mve_vldr_gather_base_wb: 21142 case Intrinsic::arm_mve_vldr_gather_base_wb_predicated: { 21143 Info.opc = ISD::INTRINSIC_W_CHAIN; 21144 Info.ptrVal = nullptr; 21145 Info.memVT = MVT::getVT(I.getType()->getContainedType(0)); 21146 Info.align = Align(1); 21147 Info.flags |= MachineMemOperand::MOLoad; 21148 return true; 21149 } 21150 case Intrinsic::arm_mve_vldr_gather_offset: 21151 case Intrinsic::arm_mve_vldr_gather_offset_predicated: { 21152 Info.opc = ISD::INTRINSIC_W_CHAIN; 21153 Info.ptrVal = nullptr; 21154 MVT DataVT = MVT::getVT(I.getType()); 21155 unsigned MemSize = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 21156 Info.memVT = MVT::getVectorVT(MVT::getIntegerVT(MemSize), 21157 DataVT.getVectorNumElements()); 21158 Info.align = Align(1); 21159 Info.flags |= MachineMemOperand::MOLoad; 21160 return true; 21161 } 21162 case Intrinsic::arm_mve_vstr_scatter_base: 21163 case Intrinsic::arm_mve_vstr_scatter_base_predicated: { 21164 Info.opc = ISD::INTRINSIC_VOID; 21165 Info.ptrVal = nullptr; 21166 Info.memVT = MVT::getVT(I.getArgOperand(2)->getType()); 21167 Info.align = Align(1); 21168 Info.flags |= MachineMemOperand::MOStore; 21169 return true; 21170 } 21171 case Intrinsic::arm_mve_vstr_scatter_base_wb: 21172 case Intrinsic::arm_mve_vstr_scatter_base_wb_predicated: { 21173 Info.opc = ISD::INTRINSIC_W_CHAIN; 21174 Info.ptrVal = nullptr; 21175 Info.memVT = MVT::getVT(I.getArgOperand(2)->getType()); 21176 Info.align = Align(1); 21177 Info.flags |= MachineMemOperand::MOStore; 21178 return true; 21179 } 21180 case Intrinsic::arm_mve_vstr_scatter_offset: 21181 case Intrinsic::arm_mve_vstr_scatter_offset_predicated: { 21182 Info.opc = ISD::INTRINSIC_VOID; 21183 Info.ptrVal = nullptr; 21184 MVT DataVT = MVT::getVT(I.getArgOperand(2)->getType()); 21185 unsigned MemSize = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 21186 Info.memVT = MVT::getVectorVT(MVT::getIntegerVT(MemSize), 21187 DataVT.getVectorNumElements()); 21188 Info.align = Align(1); 21189 Info.flags |= MachineMemOperand::MOStore; 21190 return true; 21191 } 21192 case Intrinsic::arm_ldaex: 21193 case Intrinsic::arm_ldrex: { 21194 auto &DL = I.getDataLayout(); 21195 Type *ValTy = I.getParamElementType(0); 21196 Info.opc = ISD::INTRINSIC_W_CHAIN; 21197 Info.memVT = MVT::getVT(ValTy); 21198 Info.ptrVal = I.getArgOperand(0); 21199 Info.offset = 0; 21200 Info.align = DL.getABITypeAlign(ValTy); 21201 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile; 21202 return true; 21203 } 21204 case Intrinsic::arm_stlex: 21205 case Intrinsic::arm_strex: { 21206 auto &DL = I.getDataLayout(); 21207 Type *ValTy = I.getParamElementType(1); 21208 Info.opc = ISD::INTRINSIC_W_CHAIN; 21209 Info.memVT = MVT::getVT(ValTy); 21210 Info.ptrVal = I.getArgOperand(1); 21211 Info.offset = 0; 21212 Info.align = DL.getABITypeAlign(ValTy); 21213 Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile; 21214 return true; 21215 } 21216 case Intrinsic::arm_stlexd: 21217 case Intrinsic::arm_strexd: 21218 Info.opc = ISD::INTRINSIC_W_CHAIN; 21219 Info.memVT = MVT::i64; 21220 Info.ptrVal = I.getArgOperand(2); 21221 Info.offset = 0; 21222 Info.align = Align(8); 21223 Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile; 21224 return true; 21225 21226 case Intrinsic::arm_ldaexd: 21227 case Intrinsic::arm_ldrexd: 21228 Info.opc = ISD::INTRINSIC_W_CHAIN; 21229 Info.memVT = MVT::i64; 21230 Info.ptrVal = I.getArgOperand(0); 21231 Info.offset = 0; 21232 Info.align = Align(8); 21233 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile; 21234 return true; 21235 21236 default: 21237 break; 21238 } 21239 21240 return false; 21241 } 21242 21243 /// Returns true if it is beneficial to convert a load of a constant 21244 /// to just the constant itself. 21245 bool ARMTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 21246 Type *Ty) const { 21247 assert(Ty->isIntegerTy()); 21248 21249 unsigned Bits = Ty->getPrimitiveSizeInBits(); 21250 if (Bits == 0 || Bits > 32) 21251 return false; 21252 return true; 21253 } 21254 21255 bool ARMTargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT, 21256 unsigned Index) const { 21257 if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT)) 21258 return false; 21259 21260 return (Index == 0 || Index == ResVT.getVectorNumElements()); 21261 } 21262 21263 Instruction *ARMTargetLowering::makeDMB(IRBuilderBase &Builder, 21264 ARM_MB::MemBOpt Domain) const { 21265 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 21266 21267 // First, if the target has no DMB, see what fallback we can use. 21268 if (!Subtarget->hasDataBarrier()) { 21269 // Some ARMv6 cpus can support data barriers with an mcr instruction. 21270 // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get 21271 // here. 21272 if (Subtarget->hasV6Ops() && !Subtarget->isThumb()) { 21273 Function *MCR = Intrinsic::getDeclaration(M, Intrinsic::arm_mcr); 21274 Value* args[6] = {Builder.getInt32(15), Builder.getInt32(0), 21275 Builder.getInt32(0), Builder.getInt32(7), 21276 Builder.getInt32(10), Builder.getInt32(5)}; 21277 return Builder.CreateCall(MCR, args); 21278 } else { 21279 // Instead of using barriers, atomic accesses on these subtargets use 21280 // libcalls. 21281 llvm_unreachable("makeDMB on a target so old that it has no barriers"); 21282 } 21283 } else { 21284 Function *DMB = Intrinsic::getDeclaration(M, Intrinsic::arm_dmb); 21285 // Only a full system barrier exists in the M-class architectures. 21286 Domain = Subtarget->isMClass() ? ARM_MB::SY : Domain; 21287 Constant *CDomain = Builder.getInt32(Domain); 21288 return Builder.CreateCall(DMB, CDomain); 21289 } 21290 } 21291 21292 // Based on http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 21293 Instruction *ARMTargetLowering::emitLeadingFence(IRBuilderBase &Builder, 21294 Instruction *Inst, 21295 AtomicOrdering Ord) const { 21296 switch (Ord) { 21297 case AtomicOrdering::NotAtomic: 21298 case AtomicOrdering::Unordered: 21299 llvm_unreachable("Invalid fence: unordered/non-atomic"); 21300 case AtomicOrdering::Monotonic: 21301 case AtomicOrdering::Acquire: 21302 return nullptr; // Nothing to do 21303 case AtomicOrdering::SequentiallyConsistent: 21304 if (!Inst->hasAtomicStore()) 21305 return nullptr; // Nothing to do 21306 [[fallthrough]]; 21307 case AtomicOrdering::Release: 21308 case AtomicOrdering::AcquireRelease: 21309 if (Subtarget->preferISHSTBarriers()) 21310 return makeDMB(Builder, ARM_MB::ISHST); 21311 // FIXME: add a comment with a link to documentation justifying this. 21312 else 21313 return makeDMB(Builder, ARM_MB::ISH); 21314 } 21315 llvm_unreachable("Unknown fence ordering in emitLeadingFence"); 21316 } 21317 21318 Instruction *ARMTargetLowering::emitTrailingFence(IRBuilderBase &Builder, 21319 Instruction *Inst, 21320 AtomicOrdering Ord) const { 21321 switch (Ord) { 21322 case AtomicOrdering::NotAtomic: 21323 case AtomicOrdering::Unordered: 21324 llvm_unreachable("Invalid fence: unordered/not-atomic"); 21325 case AtomicOrdering::Monotonic: 21326 case AtomicOrdering::Release: 21327 return nullptr; // Nothing to do 21328 case AtomicOrdering::Acquire: 21329 case AtomicOrdering::AcquireRelease: 21330 case AtomicOrdering::SequentiallyConsistent: 21331 return makeDMB(Builder, ARM_MB::ISH); 21332 } 21333 llvm_unreachable("Unknown fence ordering in emitTrailingFence"); 21334 } 21335 21336 // Loads and stores less than 64-bits are already atomic; ones above that 21337 // are doomed anyway, so defer to the default libcall and blame the OS when 21338 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit 21339 // anything for those. 21340 TargetLoweringBase::AtomicExpansionKind 21341 ARMTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const { 21342 bool has64BitAtomicStore; 21343 if (Subtarget->isMClass()) 21344 has64BitAtomicStore = false; 21345 else if (Subtarget->isThumb()) 21346 has64BitAtomicStore = Subtarget->hasV7Ops(); 21347 else 21348 has64BitAtomicStore = Subtarget->hasV6Ops(); 21349 21350 unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits(); 21351 return Size == 64 && has64BitAtomicStore ? AtomicExpansionKind::Expand 21352 : AtomicExpansionKind::None; 21353 } 21354 21355 // Loads and stores less than 64-bits are already atomic; ones above that 21356 // are doomed anyway, so defer to the default libcall and blame the OS when 21357 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit 21358 // anything for those. 21359 // FIXME: ldrd and strd are atomic if the CPU has LPAE (e.g. A15 has that 21360 // guarantee, see DDI0406C ARM architecture reference manual, 21361 // sections A8.8.72-74 LDRD) 21362 TargetLowering::AtomicExpansionKind 21363 ARMTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const { 21364 bool has64BitAtomicLoad; 21365 if (Subtarget->isMClass()) 21366 has64BitAtomicLoad = false; 21367 else if (Subtarget->isThumb()) 21368 has64BitAtomicLoad = Subtarget->hasV7Ops(); 21369 else 21370 has64BitAtomicLoad = Subtarget->hasV6Ops(); 21371 21372 unsigned Size = LI->getType()->getPrimitiveSizeInBits(); 21373 return (Size == 64 && has64BitAtomicLoad) ? AtomicExpansionKind::LLOnly 21374 : AtomicExpansionKind::None; 21375 } 21376 21377 // For the real atomic operations, we have ldrex/strex up to 32 bits, 21378 // and up to 64 bits on the non-M profiles 21379 TargetLowering::AtomicExpansionKind 21380 ARMTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 21381 if (AI->isFloatingPointOperation()) 21382 return AtomicExpansionKind::CmpXChg; 21383 21384 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 21385 bool hasAtomicRMW; 21386 if (Subtarget->isMClass()) 21387 hasAtomicRMW = Subtarget->hasV8MBaselineOps(); 21388 else if (Subtarget->isThumb()) 21389 hasAtomicRMW = Subtarget->hasV7Ops(); 21390 else 21391 hasAtomicRMW = Subtarget->hasV6Ops(); 21392 if (Size <= (Subtarget->isMClass() ? 32U : 64U) && hasAtomicRMW) { 21393 // At -O0, fast-regalloc cannot cope with the live vregs necessary to 21394 // implement atomicrmw without spilling. If the target address is also on 21395 // the stack and close enough to the spill slot, this can lead to a 21396 // situation where the monitor always gets cleared and the atomic operation 21397 // can never succeed. So at -O0 lower this operation to a CAS loop. 21398 if (getTargetMachine().getOptLevel() == CodeGenOptLevel::None) 21399 return AtomicExpansionKind::CmpXChg; 21400 return AtomicExpansionKind::LLSC; 21401 } 21402 return AtomicExpansionKind::None; 21403 } 21404 21405 // Similar to shouldExpandAtomicRMWInIR, ldrex/strex can be used up to 32 21406 // bits, and up to 64 bits on the non-M profiles. 21407 TargetLowering::AtomicExpansionKind 21408 ARMTargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const { 21409 // At -O0, fast-regalloc cannot cope with the live vregs necessary to 21410 // implement cmpxchg without spilling. If the address being exchanged is also 21411 // on the stack and close enough to the spill slot, this can lead to a 21412 // situation where the monitor always gets cleared and the atomic operation 21413 // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead. 21414 unsigned Size = AI->getOperand(1)->getType()->getPrimitiveSizeInBits(); 21415 bool HasAtomicCmpXchg; 21416 if (Subtarget->isMClass()) 21417 HasAtomicCmpXchg = Subtarget->hasV8MBaselineOps(); 21418 else if (Subtarget->isThumb()) 21419 HasAtomicCmpXchg = Subtarget->hasV7Ops(); 21420 else 21421 HasAtomicCmpXchg = Subtarget->hasV6Ops(); 21422 if (getTargetMachine().getOptLevel() != CodeGenOptLevel::None && 21423 HasAtomicCmpXchg && Size <= (Subtarget->isMClass() ? 32U : 64U)) 21424 return AtomicExpansionKind::LLSC; 21425 return AtomicExpansionKind::None; 21426 } 21427 21428 bool ARMTargetLowering::shouldInsertFencesForAtomic( 21429 const Instruction *I) const { 21430 return InsertFencesForAtomic; 21431 } 21432 21433 bool ARMTargetLowering::useLoadStackGuardNode() const { 21434 // ROPI/RWPI are not supported currently. 21435 return !Subtarget->isROPI() && !Subtarget->isRWPI(); 21436 } 21437 21438 void ARMTargetLowering::insertSSPDeclarations(Module &M) const { 21439 if (!Subtarget->getTargetTriple().isWindowsMSVCEnvironment()) 21440 return TargetLowering::insertSSPDeclarations(M); 21441 21442 // MSVC CRT has a global variable holding security cookie. 21443 M.getOrInsertGlobal("__security_cookie", 21444 PointerType::getUnqual(M.getContext())); 21445 21446 // MSVC CRT has a function to validate security cookie. 21447 FunctionCallee SecurityCheckCookie = M.getOrInsertFunction( 21448 "__security_check_cookie", Type::getVoidTy(M.getContext()), 21449 PointerType::getUnqual(M.getContext())); 21450 if (Function *F = dyn_cast<Function>(SecurityCheckCookie.getCallee())) 21451 F->addParamAttr(0, Attribute::AttrKind::InReg); 21452 } 21453 21454 Value *ARMTargetLowering::getSDagStackGuard(const Module &M) const { 21455 // MSVC CRT has a global variable holding security cookie. 21456 if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment()) 21457 return M.getGlobalVariable("__security_cookie"); 21458 return TargetLowering::getSDagStackGuard(M); 21459 } 21460 21461 Function *ARMTargetLowering::getSSPStackGuardCheck(const Module &M) const { 21462 // MSVC CRT has a function to validate security cookie. 21463 if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment()) 21464 return M.getFunction("__security_check_cookie"); 21465 return TargetLowering::getSSPStackGuardCheck(M); 21466 } 21467 21468 bool ARMTargetLowering::canCombineStoreAndExtract(Type *VectorTy, Value *Idx, 21469 unsigned &Cost) const { 21470 // If we do not have NEON, vector types are not natively supported. 21471 if (!Subtarget->hasNEON()) 21472 return false; 21473 21474 // Floating point values and vector values map to the same register file. 21475 // Therefore, although we could do a store extract of a vector type, this is 21476 // better to leave at float as we have more freedom in the addressing mode for 21477 // those. 21478 if (VectorTy->isFPOrFPVectorTy()) 21479 return false; 21480 21481 // If the index is unknown at compile time, this is very expensive to lower 21482 // and it is not possible to combine the store with the extract. 21483 if (!isa<ConstantInt>(Idx)) 21484 return false; 21485 21486 assert(VectorTy->isVectorTy() && "VectorTy is not a vector type"); 21487 unsigned BitWidth = VectorTy->getPrimitiveSizeInBits().getFixedValue(); 21488 // We can do a store + vector extract on any vector that fits perfectly in a D 21489 // or Q register. 21490 if (BitWidth == 64 || BitWidth == 128) { 21491 Cost = 0; 21492 return true; 21493 } 21494 return false; 21495 } 21496 21497 bool ARMTargetLowering::isCheapToSpeculateCttz(Type *Ty) const { 21498 return Subtarget->hasV6T2Ops(); 21499 } 21500 21501 bool ARMTargetLowering::isCheapToSpeculateCtlz(Type *Ty) const { 21502 return Subtarget->hasV6T2Ops(); 21503 } 21504 21505 bool ARMTargetLowering::isMaskAndCmp0FoldingBeneficial( 21506 const Instruction &AndI) const { 21507 if (!Subtarget->hasV7Ops()) 21508 return false; 21509 21510 // Sink the `and` instruction only if the mask would fit into a modified 21511 // immediate operand. 21512 ConstantInt *Mask = dyn_cast<ConstantInt>(AndI.getOperand(1)); 21513 if (!Mask || Mask->getValue().getBitWidth() > 32u) 21514 return false; 21515 auto MaskVal = unsigned(Mask->getValue().getZExtValue()); 21516 return (Subtarget->isThumb2() ? ARM_AM::getT2SOImmVal(MaskVal) 21517 : ARM_AM::getSOImmVal(MaskVal)) != -1; 21518 } 21519 21520 TargetLowering::ShiftLegalizationStrategy 21521 ARMTargetLowering::preferredShiftLegalizationStrategy( 21522 SelectionDAG &DAG, SDNode *N, unsigned ExpansionFactor) const { 21523 if (Subtarget->hasMinSize() && !Subtarget->isTargetWindows()) 21524 return ShiftLegalizationStrategy::LowerToLibcall; 21525 return TargetLowering::preferredShiftLegalizationStrategy(DAG, N, 21526 ExpansionFactor); 21527 } 21528 21529 Value *ARMTargetLowering::emitLoadLinked(IRBuilderBase &Builder, Type *ValueTy, 21530 Value *Addr, 21531 AtomicOrdering Ord) const { 21532 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 21533 bool IsAcquire = isAcquireOrStronger(Ord); 21534 21535 // Since i64 isn't legal and intrinsics don't get type-lowered, the ldrexd 21536 // intrinsic must return {i32, i32} and we have to recombine them into a 21537 // single i64 here. 21538 if (ValueTy->getPrimitiveSizeInBits() == 64) { 21539 Intrinsic::ID Int = 21540 IsAcquire ? Intrinsic::arm_ldaexd : Intrinsic::arm_ldrexd; 21541 Function *Ldrex = Intrinsic::getDeclaration(M, Int); 21542 21543 Value *LoHi = Builder.CreateCall(Ldrex, Addr, "lohi"); 21544 21545 Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo"); 21546 Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi"); 21547 if (!Subtarget->isLittle()) 21548 std::swap (Lo, Hi); 21549 Lo = Builder.CreateZExt(Lo, ValueTy, "lo64"); 21550 Hi = Builder.CreateZExt(Hi, ValueTy, "hi64"); 21551 return Builder.CreateOr( 21552 Lo, Builder.CreateShl(Hi, ConstantInt::get(ValueTy, 32)), "val64"); 21553 } 21554 21555 Type *Tys[] = { Addr->getType() }; 21556 Intrinsic::ID Int = IsAcquire ? Intrinsic::arm_ldaex : Intrinsic::arm_ldrex; 21557 Function *Ldrex = Intrinsic::getDeclaration(M, Int, Tys); 21558 CallInst *CI = Builder.CreateCall(Ldrex, Addr); 21559 21560 CI->addParamAttr( 21561 0, Attribute::get(M->getContext(), Attribute::ElementType, ValueTy)); 21562 return Builder.CreateTruncOrBitCast(CI, ValueTy); 21563 } 21564 21565 void ARMTargetLowering::emitAtomicCmpXchgNoStoreLLBalance( 21566 IRBuilderBase &Builder) const { 21567 if (!Subtarget->hasV7Ops()) 21568 return; 21569 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 21570 Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::arm_clrex)); 21571 } 21572 21573 Value *ARMTargetLowering::emitStoreConditional(IRBuilderBase &Builder, 21574 Value *Val, Value *Addr, 21575 AtomicOrdering Ord) const { 21576 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 21577 bool IsRelease = isReleaseOrStronger(Ord); 21578 21579 // Since the intrinsics must have legal type, the i64 intrinsics take two 21580 // parameters: "i32, i32". We must marshal Val into the appropriate form 21581 // before the call. 21582 if (Val->getType()->getPrimitiveSizeInBits() == 64) { 21583 Intrinsic::ID Int = 21584 IsRelease ? Intrinsic::arm_stlexd : Intrinsic::arm_strexd; 21585 Function *Strex = Intrinsic::getDeclaration(M, Int); 21586 Type *Int32Ty = Type::getInt32Ty(M->getContext()); 21587 21588 Value *Lo = Builder.CreateTrunc(Val, Int32Ty, "lo"); 21589 Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 32), Int32Ty, "hi"); 21590 if (!Subtarget->isLittle()) 21591 std::swap(Lo, Hi); 21592 return Builder.CreateCall(Strex, {Lo, Hi, Addr}); 21593 } 21594 21595 Intrinsic::ID Int = IsRelease ? Intrinsic::arm_stlex : Intrinsic::arm_strex; 21596 Type *Tys[] = { Addr->getType() }; 21597 Function *Strex = Intrinsic::getDeclaration(M, Int, Tys); 21598 21599 CallInst *CI = Builder.CreateCall( 21600 Strex, {Builder.CreateZExtOrBitCast( 21601 Val, Strex->getFunctionType()->getParamType(0)), 21602 Addr}); 21603 CI->addParamAttr(1, Attribute::get(M->getContext(), Attribute::ElementType, 21604 Val->getType())); 21605 return CI; 21606 } 21607 21608 21609 bool ARMTargetLowering::alignLoopsWithOptSize() const { 21610 return Subtarget->isMClass(); 21611 } 21612 21613 /// A helper function for determining the number of interleaved accesses we 21614 /// will generate when lowering accesses of the given type. 21615 unsigned 21616 ARMTargetLowering::getNumInterleavedAccesses(VectorType *VecTy, 21617 const DataLayout &DL) const { 21618 return (DL.getTypeSizeInBits(VecTy) + 127) / 128; 21619 } 21620 21621 bool ARMTargetLowering::isLegalInterleavedAccessType( 21622 unsigned Factor, FixedVectorType *VecTy, Align Alignment, 21623 const DataLayout &DL) const { 21624 21625 unsigned VecSize = DL.getTypeSizeInBits(VecTy); 21626 unsigned ElSize = DL.getTypeSizeInBits(VecTy->getElementType()); 21627 21628 if (!Subtarget->hasNEON() && !Subtarget->hasMVEIntegerOps()) 21629 return false; 21630 21631 // Ensure the vector doesn't have f16 elements. Even though we could do an 21632 // i16 vldN, we can't hold the f16 vectors and will end up converting via 21633 // f32. 21634 if (Subtarget->hasNEON() && VecTy->getElementType()->isHalfTy()) 21635 return false; 21636 if (Subtarget->hasMVEIntegerOps() && Factor == 3) 21637 return false; 21638 21639 // Ensure the number of vector elements is greater than 1. 21640 if (VecTy->getNumElements() < 2) 21641 return false; 21642 21643 // Ensure the element type is legal. 21644 if (ElSize != 8 && ElSize != 16 && ElSize != 32) 21645 return false; 21646 // And the alignment if high enough under MVE. 21647 if (Subtarget->hasMVEIntegerOps() && Alignment < ElSize / 8) 21648 return false; 21649 21650 // Ensure the total vector size is 64 or a multiple of 128. Types larger than 21651 // 128 will be split into multiple interleaved accesses. 21652 if (Subtarget->hasNEON() && VecSize == 64) 21653 return true; 21654 return VecSize % 128 == 0; 21655 } 21656 21657 unsigned ARMTargetLowering::getMaxSupportedInterleaveFactor() const { 21658 if (Subtarget->hasNEON()) 21659 return 4; 21660 if (Subtarget->hasMVEIntegerOps()) 21661 return MVEMaxSupportedInterleaveFactor; 21662 return TargetLoweringBase::getMaxSupportedInterleaveFactor(); 21663 } 21664 21665 /// Lower an interleaved load into a vldN intrinsic. 21666 /// 21667 /// E.g. Lower an interleaved load (Factor = 2): 21668 /// %wide.vec = load <8 x i32>, <8 x i32>* %ptr, align 4 21669 /// %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6> ; Extract even elements 21670 /// %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7> ; Extract odd elements 21671 /// 21672 /// Into: 21673 /// %vld2 = { <4 x i32>, <4 x i32> } call llvm.arm.neon.vld2(%ptr, 4) 21674 /// %vec0 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 0 21675 /// %vec1 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 1 21676 bool ARMTargetLowering::lowerInterleavedLoad( 21677 LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles, 21678 ArrayRef<unsigned> Indices, unsigned Factor) const { 21679 assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() && 21680 "Invalid interleave factor"); 21681 assert(!Shuffles.empty() && "Empty shufflevector input"); 21682 assert(Shuffles.size() == Indices.size() && 21683 "Unmatched number of shufflevectors and indices"); 21684 21685 auto *VecTy = cast<FixedVectorType>(Shuffles[0]->getType()); 21686 Type *EltTy = VecTy->getElementType(); 21687 21688 const DataLayout &DL = LI->getDataLayout(); 21689 Align Alignment = LI->getAlign(); 21690 21691 // Skip if we do not have NEON and skip illegal vector types. We can 21692 // "legalize" wide vector types into multiple interleaved accesses as long as 21693 // the vector types are divisible by 128. 21694 if (!isLegalInterleavedAccessType(Factor, VecTy, Alignment, DL)) 21695 return false; 21696 21697 unsigned NumLoads = getNumInterleavedAccesses(VecTy, DL); 21698 21699 // A pointer vector can not be the return type of the ldN intrinsics. Need to 21700 // load integer vectors first and then convert to pointer vectors. 21701 if (EltTy->isPointerTy()) 21702 VecTy = FixedVectorType::get(DL.getIntPtrType(EltTy), VecTy); 21703 21704 IRBuilder<> Builder(LI); 21705 21706 // The base address of the load. 21707 Value *BaseAddr = LI->getPointerOperand(); 21708 21709 if (NumLoads > 1) { 21710 // If we're going to generate more than one load, reset the sub-vector type 21711 // to something legal. 21712 VecTy = FixedVectorType::get(VecTy->getElementType(), 21713 VecTy->getNumElements() / NumLoads); 21714 } 21715 21716 assert(isTypeLegal(EVT::getEVT(VecTy)) && "Illegal vldN vector type!"); 21717 21718 auto createLoadIntrinsic = [&](Value *BaseAddr) { 21719 if (Subtarget->hasNEON()) { 21720 Type *PtrTy = Builder.getPtrTy(LI->getPointerAddressSpace()); 21721 Type *Tys[] = {VecTy, PtrTy}; 21722 static const Intrinsic::ID LoadInts[3] = {Intrinsic::arm_neon_vld2, 21723 Intrinsic::arm_neon_vld3, 21724 Intrinsic::arm_neon_vld4}; 21725 Function *VldnFunc = 21726 Intrinsic::getDeclaration(LI->getModule(), LoadInts[Factor - 2], Tys); 21727 21728 SmallVector<Value *, 2> Ops; 21729 Ops.push_back(BaseAddr); 21730 Ops.push_back(Builder.getInt32(LI->getAlign().value())); 21731 21732 return Builder.CreateCall(VldnFunc, Ops, "vldN"); 21733 } else { 21734 assert((Factor == 2 || Factor == 4) && 21735 "expected interleave factor of 2 or 4 for MVE"); 21736 Intrinsic::ID LoadInts = 21737 Factor == 2 ? Intrinsic::arm_mve_vld2q : Intrinsic::arm_mve_vld4q; 21738 Type *PtrTy = Builder.getPtrTy(LI->getPointerAddressSpace()); 21739 Type *Tys[] = {VecTy, PtrTy}; 21740 Function *VldnFunc = 21741 Intrinsic::getDeclaration(LI->getModule(), LoadInts, Tys); 21742 21743 SmallVector<Value *, 2> Ops; 21744 Ops.push_back(BaseAddr); 21745 return Builder.CreateCall(VldnFunc, Ops, "vldN"); 21746 } 21747 }; 21748 21749 // Holds sub-vectors extracted from the load intrinsic return values. The 21750 // sub-vectors are associated with the shufflevector instructions they will 21751 // replace. 21752 DenseMap<ShuffleVectorInst *, SmallVector<Value *, 4>> SubVecs; 21753 21754 for (unsigned LoadCount = 0; LoadCount < NumLoads; ++LoadCount) { 21755 // If we're generating more than one load, compute the base address of 21756 // subsequent loads as an offset from the previous. 21757 if (LoadCount > 0) 21758 BaseAddr = Builder.CreateConstGEP1_32(VecTy->getElementType(), BaseAddr, 21759 VecTy->getNumElements() * Factor); 21760 21761 CallInst *VldN = createLoadIntrinsic(BaseAddr); 21762 21763 // Replace uses of each shufflevector with the corresponding vector loaded 21764 // by ldN. 21765 for (unsigned i = 0; i < Shuffles.size(); i++) { 21766 ShuffleVectorInst *SV = Shuffles[i]; 21767 unsigned Index = Indices[i]; 21768 21769 Value *SubVec = Builder.CreateExtractValue(VldN, Index); 21770 21771 // Convert the integer vector to pointer vector if the element is pointer. 21772 if (EltTy->isPointerTy()) 21773 SubVec = Builder.CreateIntToPtr( 21774 SubVec, 21775 FixedVectorType::get(SV->getType()->getElementType(), VecTy)); 21776 21777 SubVecs[SV].push_back(SubVec); 21778 } 21779 } 21780 21781 // Replace uses of the shufflevector instructions with the sub-vectors 21782 // returned by the load intrinsic. If a shufflevector instruction is 21783 // associated with more than one sub-vector, those sub-vectors will be 21784 // concatenated into a single wide vector. 21785 for (ShuffleVectorInst *SVI : Shuffles) { 21786 auto &SubVec = SubVecs[SVI]; 21787 auto *WideVec = 21788 SubVec.size() > 1 ? concatenateVectors(Builder, SubVec) : SubVec[0]; 21789 SVI->replaceAllUsesWith(WideVec); 21790 } 21791 21792 return true; 21793 } 21794 21795 /// Lower an interleaved store into a vstN intrinsic. 21796 /// 21797 /// E.g. Lower an interleaved store (Factor = 3): 21798 /// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1, 21799 /// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> 21800 /// store <12 x i32> %i.vec, <12 x i32>* %ptr, align 4 21801 /// 21802 /// Into: 21803 /// %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3> 21804 /// %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7> 21805 /// %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11> 21806 /// call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4) 21807 /// 21808 /// Note that the new shufflevectors will be removed and we'll only generate one 21809 /// vst3 instruction in CodeGen. 21810 /// 21811 /// Example for a more general valid mask (Factor 3). Lower: 21812 /// %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1, 21813 /// <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19> 21814 /// store <12 x i32> %i.vec, <12 x i32>* %ptr 21815 /// 21816 /// Into: 21817 /// %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7> 21818 /// %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35> 21819 /// %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19> 21820 /// call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4) 21821 bool ARMTargetLowering::lowerInterleavedStore(StoreInst *SI, 21822 ShuffleVectorInst *SVI, 21823 unsigned Factor) const { 21824 assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() && 21825 "Invalid interleave factor"); 21826 21827 auto *VecTy = cast<FixedVectorType>(SVI->getType()); 21828 assert(VecTy->getNumElements() % Factor == 0 && "Invalid interleaved store"); 21829 21830 unsigned LaneLen = VecTy->getNumElements() / Factor; 21831 Type *EltTy = VecTy->getElementType(); 21832 auto *SubVecTy = FixedVectorType::get(EltTy, LaneLen); 21833 21834 const DataLayout &DL = SI->getDataLayout(); 21835 Align Alignment = SI->getAlign(); 21836 21837 // Skip if we do not have NEON and skip illegal vector types. We can 21838 // "legalize" wide vector types into multiple interleaved accesses as long as 21839 // the vector types are divisible by 128. 21840 if (!isLegalInterleavedAccessType(Factor, SubVecTy, Alignment, DL)) 21841 return false; 21842 21843 unsigned NumStores = getNumInterleavedAccesses(SubVecTy, DL); 21844 21845 Value *Op0 = SVI->getOperand(0); 21846 Value *Op1 = SVI->getOperand(1); 21847 IRBuilder<> Builder(SI); 21848 21849 // StN intrinsics don't support pointer vectors as arguments. Convert pointer 21850 // vectors to integer vectors. 21851 if (EltTy->isPointerTy()) { 21852 Type *IntTy = DL.getIntPtrType(EltTy); 21853 21854 // Convert to the corresponding integer vector. 21855 auto *IntVecTy = 21856 FixedVectorType::get(IntTy, cast<FixedVectorType>(Op0->getType())); 21857 Op0 = Builder.CreatePtrToInt(Op0, IntVecTy); 21858 Op1 = Builder.CreatePtrToInt(Op1, IntVecTy); 21859 21860 SubVecTy = FixedVectorType::get(IntTy, LaneLen); 21861 } 21862 21863 // The base address of the store. 21864 Value *BaseAddr = SI->getPointerOperand(); 21865 21866 if (NumStores > 1) { 21867 // If we're going to generate more than one store, reset the lane length 21868 // and sub-vector type to something legal. 21869 LaneLen /= NumStores; 21870 SubVecTy = FixedVectorType::get(SubVecTy->getElementType(), LaneLen); 21871 } 21872 21873 assert(isTypeLegal(EVT::getEVT(SubVecTy)) && "Illegal vstN vector type!"); 21874 21875 auto Mask = SVI->getShuffleMask(); 21876 21877 auto createStoreIntrinsic = [&](Value *BaseAddr, 21878 SmallVectorImpl<Value *> &Shuffles) { 21879 if (Subtarget->hasNEON()) { 21880 static const Intrinsic::ID StoreInts[3] = {Intrinsic::arm_neon_vst2, 21881 Intrinsic::arm_neon_vst3, 21882 Intrinsic::arm_neon_vst4}; 21883 Type *PtrTy = Builder.getPtrTy(SI->getPointerAddressSpace()); 21884 Type *Tys[] = {PtrTy, SubVecTy}; 21885 21886 Function *VstNFunc = Intrinsic::getDeclaration( 21887 SI->getModule(), StoreInts[Factor - 2], Tys); 21888 21889 SmallVector<Value *, 6> Ops; 21890 Ops.push_back(BaseAddr); 21891 append_range(Ops, Shuffles); 21892 Ops.push_back(Builder.getInt32(SI->getAlign().value())); 21893 Builder.CreateCall(VstNFunc, Ops); 21894 } else { 21895 assert((Factor == 2 || Factor == 4) && 21896 "expected interleave factor of 2 or 4 for MVE"); 21897 Intrinsic::ID StoreInts = 21898 Factor == 2 ? Intrinsic::arm_mve_vst2q : Intrinsic::arm_mve_vst4q; 21899 Type *PtrTy = Builder.getPtrTy(SI->getPointerAddressSpace()); 21900 Type *Tys[] = {PtrTy, SubVecTy}; 21901 Function *VstNFunc = 21902 Intrinsic::getDeclaration(SI->getModule(), StoreInts, Tys); 21903 21904 SmallVector<Value *, 6> Ops; 21905 Ops.push_back(BaseAddr); 21906 append_range(Ops, Shuffles); 21907 for (unsigned F = 0; F < Factor; F++) { 21908 Ops.push_back(Builder.getInt32(F)); 21909 Builder.CreateCall(VstNFunc, Ops); 21910 Ops.pop_back(); 21911 } 21912 } 21913 }; 21914 21915 for (unsigned StoreCount = 0; StoreCount < NumStores; ++StoreCount) { 21916 // If we generating more than one store, we compute the base address of 21917 // subsequent stores as an offset from the previous. 21918 if (StoreCount > 0) 21919 BaseAddr = Builder.CreateConstGEP1_32(SubVecTy->getElementType(), 21920 BaseAddr, LaneLen * Factor); 21921 21922 SmallVector<Value *, 4> Shuffles; 21923 21924 // Split the shufflevector operands into sub vectors for the new vstN call. 21925 for (unsigned i = 0; i < Factor; i++) { 21926 unsigned IdxI = StoreCount * LaneLen * Factor + i; 21927 if (Mask[IdxI] >= 0) { 21928 Shuffles.push_back(Builder.CreateShuffleVector( 21929 Op0, Op1, createSequentialMask(Mask[IdxI], LaneLen, 0))); 21930 } else { 21931 unsigned StartMask = 0; 21932 for (unsigned j = 1; j < LaneLen; j++) { 21933 unsigned IdxJ = StoreCount * LaneLen * Factor + j; 21934 if (Mask[IdxJ * Factor + IdxI] >= 0) { 21935 StartMask = Mask[IdxJ * Factor + IdxI] - IdxJ; 21936 break; 21937 } 21938 } 21939 // Note: If all elements in a chunk are undefs, StartMask=0! 21940 // Note: Filling undef gaps with random elements is ok, since 21941 // those elements were being written anyway (with undefs). 21942 // In the case of all undefs we're defaulting to using elems from 0 21943 // Note: StartMask cannot be negative, it's checked in 21944 // isReInterleaveMask 21945 Shuffles.push_back(Builder.CreateShuffleVector( 21946 Op0, Op1, createSequentialMask(StartMask, LaneLen, 0))); 21947 } 21948 } 21949 21950 createStoreIntrinsic(BaseAddr, Shuffles); 21951 } 21952 return true; 21953 } 21954 21955 enum HABaseType { 21956 HA_UNKNOWN = 0, 21957 HA_FLOAT, 21958 HA_DOUBLE, 21959 HA_VECT64, 21960 HA_VECT128 21961 }; 21962 21963 static bool isHomogeneousAggregate(Type *Ty, HABaseType &Base, 21964 uint64_t &Members) { 21965 if (auto *ST = dyn_cast<StructType>(Ty)) { 21966 for (unsigned i = 0; i < ST->getNumElements(); ++i) { 21967 uint64_t SubMembers = 0; 21968 if (!isHomogeneousAggregate(ST->getElementType(i), Base, SubMembers)) 21969 return false; 21970 Members += SubMembers; 21971 } 21972 } else if (auto *AT = dyn_cast<ArrayType>(Ty)) { 21973 uint64_t SubMembers = 0; 21974 if (!isHomogeneousAggregate(AT->getElementType(), Base, SubMembers)) 21975 return false; 21976 Members += SubMembers * AT->getNumElements(); 21977 } else if (Ty->isFloatTy()) { 21978 if (Base != HA_UNKNOWN && Base != HA_FLOAT) 21979 return false; 21980 Members = 1; 21981 Base = HA_FLOAT; 21982 } else if (Ty->isDoubleTy()) { 21983 if (Base != HA_UNKNOWN && Base != HA_DOUBLE) 21984 return false; 21985 Members = 1; 21986 Base = HA_DOUBLE; 21987 } else if (auto *VT = dyn_cast<VectorType>(Ty)) { 21988 Members = 1; 21989 switch (Base) { 21990 case HA_FLOAT: 21991 case HA_DOUBLE: 21992 return false; 21993 case HA_VECT64: 21994 return VT->getPrimitiveSizeInBits().getFixedValue() == 64; 21995 case HA_VECT128: 21996 return VT->getPrimitiveSizeInBits().getFixedValue() == 128; 21997 case HA_UNKNOWN: 21998 switch (VT->getPrimitiveSizeInBits().getFixedValue()) { 21999 case 64: 22000 Base = HA_VECT64; 22001 return true; 22002 case 128: 22003 Base = HA_VECT128; 22004 return true; 22005 default: 22006 return false; 22007 } 22008 } 22009 } 22010 22011 return (Members > 0 && Members <= 4); 22012 } 22013 22014 /// Return the correct alignment for the current calling convention. 22015 Align ARMTargetLowering::getABIAlignmentForCallingConv( 22016 Type *ArgTy, const DataLayout &DL) const { 22017 const Align ABITypeAlign = DL.getABITypeAlign(ArgTy); 22018 if (!ArgTy->isVectorTy()) 22019 return ABITypeAlign; 22020 22021 // Avoid over-aligning vector parameters. It would require realigning the 22022 // stack and waste space for no real benefit. 22023 return std::min(ABITypeAlign, DL.getStackAlignment()); 22024 } 22025 22026 /// Return true if a type is an AAPCS-VFP homogeneous aggregate or one of 22027 /// [N x i32] or [N x i64]. This allows front-ends to skip emitting padding when 22028 /// passing according to AAPCS rules. 22029 bool ARMTargetLowering::functionArgumentNeedsConsecutiveRegisters( 22030 Type *Ty, CallingConv::ID CallConv, bool isVarArg, 22031 const DataLayout &DL) const { 22032 if (getEffectiveCallingConv(CallConv, isVarArg) != 22033 CallingConv::ARM_AAPCS_VFP) 22034 return false; 22035 22036 HABaseType Base = HA_UNKNOWN; 22037 uint64_t Members = 0; 22038 bool IsHA = isHomogeneousAggregate(Ty, Base, Members); 22039 LLVM_DEBUG(dbgs() << "isHA: " << IsHA << " "; Ty->dump()); 22040 22041 bool IsIntArray = Ty->isArrayTy() && Ty->getArrayElementType()->isIntegerTy(); 22042 return IsHA || IsIntArray; 22043 } 22044 22045 Register ARMTargetLowering::getExceptionPointerRegister( 22046 const Constant *PersonalityFn) const { 22047 // Platforms which do not use SjLj EH may return values in these registers 22048 // via the personality function. 22049 return Subtarget->useSjLjEH() ? Register() : ARM::R0; 22050 } 22051 22052 Register ARMTargetLowering::getExceptionSelectorRegister( 22053 const Constant *PersonalityFn) const { 22054 // Platforms which do not use SjLj EH may return values in these registers 22055 // via the personality function. 22056 return Subtarget->useSjLjEH() ? Register() : ARM::R1; 22057 } 22058 22059 void ARMTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const { 22060 // Update IsSplitCSR in ARMFunctionInfo. 22061 ARMFunctionInfo *AFI = Entry->getParent()->getInfo<ARMFunctionInfo>(); 22062 AFI->setIsSplitCSR(true); 22063 } 22064 22065 void ARMTargetLowering::insertCopiesSplitCSR( 22066 MachineBasicBlock *Entry, 22067 const SmallVectorImpl<MachineBasicBlock *> &Exits) const { 22068 const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo(); 22069 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent()); 22070 if (!IStart) 22071 return; 22072 22073 const TargetInstrInfo *TII = Subtarget->getInstrInfo(); 22074 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo(); 22075 MachineBasicBlock::iterator MBBI = Entry->begin(); 22076 for (const MCPhysReg *I = IStart; *I; ++I) { 22077 const TargetRegisterClass *RC = nullptr; 22078 if (ARM::GPRRegClass.contains(*I)) 22079 RC = &ARM::GPRRegClass; 22080 else if (ARM::DPRRegClass.contains(*I)) 22081 RC = &ARM::DPRRegClass; 22082 else 22083 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 22084 22085 Register NewVR = MRI->createVirtualRegister(RC); 22086 // Create copy from CSR to a virtual register. 22087 // FIXME: this currently does not emit CFI pseudo-instructions, it works 22088 // fine for CXX_FAST_TLS since the C++-style TLS access functions should be 22089 // nounwind. If we want to generalize this later, we may need to emit 22090 // CFI pseudo-instructions. 22091 assert(Entry->getParent()->getFunction().hasFnAttribute( 22092 Attribute::NoUnwind) && 22093 "Function should be nounwind in insertCopiesSplitCSR!"); 22094 Entry->addLiveIn(*I); 22095 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR) 22096 .addReg(*I); 22097 22098 // Insert the copy-back instructions right before the terminator. 22099 for (auto *Exit : Exits) 22100 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(), 22101 TII->get(TargetOpcode::COPY), *I) 22102 .addReg(NewVR); 22103 } 22104 } 22105 22106 void ARMTargetLowering::finalizeLowering(MachineFunction &MF) const { 22107 MF.getFrameInfo().computeMaxCallFrameSize(MF); 22108 TargetLoweringBase::finalizeLowering(MF); 22109 } 22110 22111 bool ARMTargetLowering::isComplexDeinterleavingSupported() const { 22112 return Subtarget->hasMVEIntegerOps(); 22113 } 22114 22115 bool ARMTargetLowering::isComplexDeinterleavingOperationSupported( 22116 ComplexDeinterleavingOperation Operation, Type *Ty) const { 22117 auto *VTy = dyn_cast<FixedVectorType>(Ty); 22118 if (!VTy) 22119 return false; 22120 22121 auto *ScalarTy = VTy->getScalarType(); 22122 unsigned NumElements = VTy->getNumElements(); 22123 22124 unsigned VTyWidth = VTy->getScalarSizeInBits() * NumElements; 22125 if (VTyWidth < 128 || !llvm::isPowerOf2_32(VTyWidth)) 22126 return false; 22127 22128 // Both VCADD and VCMUL/VCMLA support the same types, F16 and F32 22129 if (ScalarTy->isHalfTy() || ScalarTy->isFloatTy()) 22130 return Subtarget->hasMVEFloatOps(); 22131 22132 if (Operation != ComplexDeinterleavingOperation::CAdd) 22133 return false; 22134 22135 return Subtarget->hasMVEIntegerOps() && 22136 (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) || 22137 ScalarTy->isIntegerTy(32)); 22138 } 22139 22140 Value *ARMTargetLowering::createComplexDeinterleavingIR( 22141 IRBuilderBase &B, ComplexDeinterleavingOperation OperationType, 22142 ComplexDeinterleavingRotation Rotation, Value *InputA, Value *InputB, 22143 Value *Accumulator) const { 22144 22145 FixedVectorType *Ty = cast<FixedVectorType>(InputA->getType()); 22146 22147 unsigned TyWidth = Ty->getScalarSizeInBits() * Ty->getNumElements(); 22148 22149 assert(TyWidth >= 128 && "Width of vector type must be at least 128 bits"); 22150 22151 if (TyWidth > 128) { 22152 int Stride = Ty->getNumElements() / 2; 22153 auto SplitSeq = llvm::seq<int>(0, Ty->getNumElements()); 22154 auto SplitSeqVec = llvm::to_vector(SplitSeq); 22155 ArrayRef<int> LowerSplitMask(&SplitSeqVec[0], Stride); 22156 ArrayRef<int> UpperSplitMask(&SplitSeqVec[Stride], Stride); 22157 22158 auto *LowerSplitA = B.CreateShuffleVector(InputA, LowerSplitMask); 22159 auto *LowerSplitB = B.CreateShuffleVector(InputB, LowerSplitMask); 22160 auto *UpperSplitA = B.CreateShuffleVector(InputA, UpperSplitMask); 22161 auto *UpperSplitB = B.CreateShuffleVector(InputB, UpperSplitMask); 22162 Value *LowerSplitAcc = nullptr; 22163 Value *UpperSplitAcc = nullptr; 22164 22165 if (Accumulator) { 22166 LowerSplitAcc = B.CreateShuffleVector(Accumulator, LowerSplitMask); 22167 UpperSplitAcc = B.CreateShuffleVector(Accumulator, UpperSplitMask); 22168 } 22169 22170 auto *LowerSplitInt = createComplexDeinterleavingIR( 22171 B, OperationType, Rotation, LowerSplitA, LowerSplitB, LowerSplitAcc); 22172 auto *UpperSplitInt = createComplexDeinterleavingIR( 22173 B, OperationType, Rotation, UpperSplitA, UpperSplitB, UpperSplitAcc); 22174 22175 ArrayRef<int> JoinMask(&SplitSeqVec[0], Ty->getNumElements()); 22176 return B.CreateShuffleVector(LowerSplitInt, UpperSplitInt, JoinMask); 22177 } 22178 22179 auto *IntTy = Type::getInt32Ty(B.getContext()); 22180 22181 ConstantInt *ConstRotation = nullptr; 22182 if (OperationType == ComplexDeinterleavingOperation::CMulPartial) { 22183 ConstRotation = ConstantInt::get(IntTy, (int)Rotation); 22184 22185 if (Accumulator) 22186 return B.CreateIntrinsic(Intrinsic::arm_mve_vcmlaq, Ty, 22187 {ConstRotation, Accumulator, InputB, InputA}); 22188 return B.CreateIntrinsic(Intrinsic::arm_mve_vcmulq, Ty, 22189 {ConstRotation, InputB, InputA}); 22190 } 22191 22192 if (OperationType == ComplexDeinterleavingOperation::CAdd) { 22193 // 1 means the value is not halved. 22194 auto *ConstHalving = ConstantInt::get(IntTy, 1); 22195 22196 if (Rotation == ComplexDeinterleavingRotation::Rotation_90) 22197 ConstRotation = ConstantInt::get(IntTy, 0); 22198 else if (Rotation == ComplexDeinterleavingRotation::Rotation_270) 22199 ConstRotation = ConstantInt::get(IntTy, 1); 22200 22201 if (!ConstRotation) 22202 return nullptr; // Invalid rotation for arm_mve_vcaddq 22203 22204 return B.CreateIntrinsic(Intrinsic::arm_mve_vcaddq, Ty, 22205 {ConstHalving, ConstRotation, InputA, InputB}); 22206 } 22207 22208 return nullptr; 22209 } 22210