1 //===-- LoopSink.cpp - Loop Sink Pass -------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass does the inverse transformation of what LICM does.
10 // It traverses all of the instructions in the loop's preheader and sinks
11 // them to the loop body where frequency is lower than the loop's preheader.
12 // This pass is a reverse-transformation of LICM. It differs from the Sink
13 // pass in the following ways:
14 //
15 // * It only handles sinking of instructions from the loop's preheader to the
16 // loop's body
17 // * It uses alias set tracker to get more accurate alias info
18 // * It uses block frequency info to find the optimal sinking locations
19 //
20 // Overall algorithm:
21 //
22 // For I in Preheader:
23 // InsertBBs = BBs that uses I
24 // For BB in sorted(LoopBBs):
25 // DomBBs = BBs in InsertBBs that are dominated by BB
26 // if freq(DomBBs) > freq(BB)
27 // InsertBBs = UseBBs - DomBBs + BB
28 // For BB in InsertBBs:
29 // Insert I at BB's beginning
30 //
31 //===----------------------------------------------------------------------===//
32
33 #include "llvm/Transforms/Scalar/LoopSink.h"
34 #include "llvm/ADT/SetOperations.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/Analysis/AliasAnalysis.h"
37 #include "llvm/Analysis/BlockFrequencyInfo.h"
38 #include "llvm/Analysis/LoopInfo.h"
39 #include "llvm/Analysis/LoopPass.h"
40 #include "llvm/Analysis/MemorySSA.h"
41 #include "llvm/Analysis/MemorySSAUpdater.h"
42 #include "llvm/Analysis/ScalarEvolution.h"
43 #include "llvm/IR/Dominators.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/InitializePasses.h"
46 #include "llvm/Support/BranchProbability.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Transforms/Scalar.h"
49 #include "llvm/Transforms/Utils/Local.h"
50 #include "llvm/Transforms/Utils/LoopUtils.h"
51 using namespace llvm;
52
53 #define DEBUG_TYPE "loopsink"
54
55 STATISTIC(NumLoopSunk, "Number of instructions sunk into loop");
56 STATISTIC(NumLoopSunkCloned, "Number of cloned instructions sunk into loop");
57
58 static cl::opt<unsigned> SinkFrequencyPercentThreshold(
59 "sink-freq-percent-threshold", cl::Hidden, cl::init(90),
60 cl::desc("Do not sink instructions that require cloning unless they "
61 "execute less than this percent of the time."));
62
63 static cl::opt<unsigned> MaxNumberOfUseBBsForSinking(
64 "max-uses-for-sinking", cl::Hidden, cl::init(30),
65 cl::desc("Do not sink instructions that have too many uses."));
66
67 /// Return adjusted total frequency of \p BBs.
68 ///
69 /// * If there is only one BB, sinking instruction will not introduce code
70 /// size increase. Thus there is no need to adjust the frequency.
71 /// * If there are more than one BB, sinking would lead to code size increase.
72 /// In this case, we add some "tax" to the total frequency to make it harder
73 /// to sink. E.g.
74 /// Freq(Preheader) = 100
75 /// Freq(BBs) = sum(50, 49) = 99
76 /// Even if Freq(BBs) < Freq(Preheader), we will not sink from Preheade to
77 /// BBs as the difference is too small to justify the code size increase.
78 /// To model this, The adjusted Freq(BBs) will be:
79 /// AdjustedFreq(BBs) = 99 / SinkFrequencyPercentThreshold%
adjustedSumFreq(SmallPtrSetImpl<BasicBlock * > & BBs,BlockFrequencyInfo & BFI)80 static BlockFrequency adjustedSumFreq(SmallPtrSetImpl<BasicBlock *> &BBs,
81 BlockFrequencyInfo &BFI) {
82 BlockFrequency T = 0;
83 for (BasicBlock *B : BBs)
84 T += BFI.getBlockFreq(B);
85 if (BBs.size() > 1)
86 T /= BranchProbability(SinkFrequencyPercentThreshold, 100);
87 return T;
88 }
89
90 /// Return a set of basic blocks to insert sinked instructions.
91 ///
92 /// The returned set of basic blocks (BBsToSinkInto) should satisfy:
93 ///
94 /// * Inside the loop \p L
95 /// * For each UseBB in \p UseBBs, there is at least one BB in BBsToSinkInto
96 /// that domintates the UseBB
97 /// * Has minimum total frequency that is no greater than preheader frequency
98 ///
99 /// The purpose of the function is to find the optimal sinking points to
100 /// minimize execution cost, which is defined as "sum of frequency of
101 /// BBsToSinkInto".
102 /// As a result, the returned BBsToSinkInto needs to have minimum total
103 /// frequency.
104 /// Additionally, if the total frequency of BBsToSinkInto exceeds preheader
105 /// frequency, the optimal solution is not sinking (return empty set).
106 ///
107 /// \p ColdLoopBBs is used to help find the optimal sinking locations.
108 /// It stores a list of BBs that is:
109 ///
110 /// * Inside the loop \p L
111 /// * Has a frequency no larger than the loop's preheader
112 /// * Sorted by BB frequency
113 ///
114 /// The complexity of the function is O(UseBBs.size() * ColdLoopBBs.size()).
115 /// To avoid expensive computation, we cap the maximum UseBBs.size() in its
116 /// caller.
117 static SmallPtrSet<BasicBlock *, 2>
findBBsToSinkInto(const Loop & L,const SmallPtrSetImpl<BasicBlock * > & UseBBs,const SmallVectorImpl<BasicBlock * > & ColdLoopBBs,DominatorTree & DT,BlockFrequencyInfo & BFI)118 findBBsToSinkInto(const Loop &L, const SmallPtrSetImpl<BasicBlock *> &UseBBs,
119 const SmallVectorImpl<BasicBlock *> &ColdLoopBBs,
120 DominatorTree &DT, BlockFrequencyInfo &BFI) {
121 SmallPtrSet<BasicBlock *, 2> BBsToSinkInto;
122 if (UseBBs.size() == 0)
123 return BBsToSinkInto;
124
125 BBsToSinkInto.insert(UseBBs.begin(), UseBBs.end());
126 SmallPtrSet<BasicBlock *, 2> BBsDominatedByColdestBB;
127
128 // For every iteration:
129 // * Pick the ColdestBB from ColdLoopBBs
130 // * Find the set BBsDominatedByColdestBB that satisfy:
131 // - BBsDominatedByColdestBB is a subset of BBsToSinkInto
132 // - Every BB in BBsDominatedByColdestBB is dominated by ColdestBB
133 // * If Freq(ColdestBB) < Freq(BBsDominatedByColdestBB), remove
134 // BBsDominatedByColdestBB from BBsToSinkInto, add ColdestBB to
135 // BBsToSinkInto
136 for (BasicBlock *ColdestBB : ColdLoopBBs) {
137 BBsDominatedByColdestBB.clear();
138 for (BasicBlock *SinkedBB : BBsToSinkInto)
139 if (DT.dominates(ColdestBB, SinkedBB))
140 BBsDominatedByColdestBB.insert(SinkedBB);
141 if (BBsDominatedByColdestBB.size() == 0)
142 continue;
143 if (adjustedSumFreq(BBsDominatedByColdestBB, BFI) >
144 BFI.getBlockFreq(ColdestBB)) {
145 for (BasicBlock *DominatedBB : BBsDominatedByColdestBB) {
146 BBsToSinkInto.erase(DominatedBB);
147 }
148 BBsToSinkInto.insert(ColdestBB);
149 }
150 }
151
152 // Can't sink into blocks that have no valid insertion point.
153 for (BasicBlock *BB : BBsToSinkInto) {
154 if (BB->getFirstInsertionPt() == BB->end()) {
155 BBsToSinkInto.clear();
156 break;
157 }
158 }
159
160 // If the total frequency of BBsToSinkInto is larger than preheader frequency,
161 // do not sink.
162 if (adjustedSumFreq(BBsToSinkInto, BFI) >
163 BFI.getBlockFreq(L.getLoopPreheader()))
164 BBsToSinkInto.clear();
165 return BBsToSinkInto;
166 }
167
168 // Sinks \p I from the loop \p L's preheader to its uses. Returns true if
169 // sinking is successful.
170 // \p LoopBlockNumber is used to sort the insertion blocks to ensure
171 // determinism.
sinkInstruction(Loop & L,Instruction & I,const SmallVectorImpl<BasicBlock * > & ColdLoopBBs,const SmallDenseMap<BasicBlock *,int,16> & LoopBlockNumber,LoopInfo & LI,DominatorTree & DT,BlockFrequencyInfo & BFI,MemorySSAUpdater * MSSAU)172 static bool sinkInstruction(
173 Loop &L, Instruction &I, const SmallVectorImpl<BasicBlock *> &ColdLoopBBs,
174 const SmallDenseMap<BasicBlock *, int, 16> &LoopBlockNumber, LoopInfo &LI,
175 DominatorTree &DT, BlockFrequencyInfo &BFI, MemorySSAUpdater *MSSAU) {
176 // Compute the set of blocks in loop L which contain a use of I.
177 SmallPtrSet<BasicBlock *, 2> BBs;
178 for (auto &U : I.uses()) {
179 Instruction *UI = cast<Instruction>(U.getUser());
180 // We cannot sink I to PHI-uses.
181 if (isa<PHINode>(UI))
182 return false;
183 // We cannot sink I if it has uses outside of the loop.
184 if (!L.contains(LI.getLoopFor(UI->getParent())))
185 return false;
186 BBs.insert(UI->getParent());
187 }
188
189 // findBBsToSinkInto is O(BBs.size() * ColdLoopBBs.size()). We cap the max
190 // BBs.size() to avoid expensive computation.
191 // FIXME: Handle code size growth for min_size and opt_size.
192 if (BBs.size() > MaxNumberOfUseBBsForSinking)
193 return false;
194
195 // Find the set of BBs that we should insert a copy of I.
196 SmallPtrSet<BasicBlock *, 2> BBsToSinkInto =
197 findBBsToSinkInto(L, BBs, ColdLoopBBs, DT, BFI);
198 if (BBsToSinkInto.empty())
199 return false;
200
201 // Return if any of the candidate blocks to sink into is non-cold.
202 if (BBsToSinkInto.size() > 1 &&
203 !llvm::set_is_subset(BBsToSinkInto, LoopBlockNumber))
204 return false;
205
206 // Copy the final BBs into a vector and sort them using the total ordering
207 // of the loop block numbers as iterating the set doesn't give a useful
208 // order. No need to stable sort as the block numbers are a total ordering.
209 SmallVector<BasicBlock *, 2> SortedBBsToSinkInto;
210 llvm::append_range(SortedBBsToSinkInto, BBsToSinkInto);
211 llvm::sort(SortedBBsToSinkInto, [&](BasicBlock *A, BasicBlock *B) {
212 return LoopBlockNumber.find(A)->second < LoopBlockNumber.find(B)->second;
213 });
214
215 BasicBlock *MoveBB = *SortedBBsToSinkInto.begin();
216 // FIXME: Optimize the efficiency for cloned value replacement. The current
217 // implementation is O(SortedBBsToSinkInto.size() * I.num_uses()).
218 for (BasicBlock *N : ArrayRef(SortedBBsToSinkInto).drop_front(1)) {
219 assert(LoopBlockNumber.find(N)->second >
220 LoopBlockNumber.find(MoveBB)->second &&
221 "BBs not sorted!");
222 // Clone I and replace its uses.
223 Instruction *IC = I.clone();
224 IC->setName(I.getName());
225 IC->insertBefore(&*N->getFirstInsertionPt());
226
227 if (MSSAU && MSSAU->getMemorySSA()->getMemoryAccess(&I)) {
228 // Create a new MemoryAccess and let MemorySSA set its defining access.
229 MemoryAccess *NewMemAcc =
230 MSSAU->createMemoryAccessInBB(IC, nullptr, N, MemorySSA::Beginning);
231 if (NewMemAcc) {
232 if (auto *MemDef = dyn_cast<MemoryDef>(NewMemAcc))
233 MSSAU->insertDef(MemDef, /*RenameUses=*/true);
234 else {
235 auto *MemUse = cast<MemoryUse>(NewMemAcc);
236 MSSAU->insertUse(MemUse, /*RenameUses=*/true);
237 }
238 }
239 }
240
241 // Replaces uses of I with IC in N
242 I.replaceUsesWithIf(IC, [N](Use &U) {
243 return cast<Instruction>(U.getUser())->getParent() == N;
244 });
245 // Replaces uses of I with IC in blocks dominated by N
246 replaceDominatedUsesWith(&I, IC, DT, N);
247 LLVM_DEBUG(dbgs() << "Sinking a clone of " << I << " To: " << N->getName()
248 << '\n');
249 NumLoopSunkCloned++;
250 }
251 LLVM_DEBUG(dbgs() << "Sinking " << I << " To: " << MoveBB->getName() << '\n');
252 NumLoopSunk++;
253 I.moveBefore(&*MoveBB->getFirstInsertionPt());
254
255 if (MSSAU)
256 if (MemoryUseOrDef *OldMemAcc = cast_or_null<MemoryUseOrDef>(
257 MSSAU->getMemorySSA()->getMemoryAccess(&I)))
258 MSSAU->moveToPlace(OldMemAcc, MoveBB, MemorySSA::Beginning);
259
260 return true;
261 }
262
263 /// Sinks instructions from loop's preheader to the loop body if the
264 /// sum frequency of inserted copy is smaller than preheader's frequency.
sinkLoopInvariantInstructions(Loop & L,AAResults & AA,LoopInfo & LI,DominatorTree & DT,BlockFrequencyInfo & BFI,MemorySSA & MSSA,ScalarEvolution * SE)265 static bool sinkLoopInvariantInstructions(Loop &L, AAResults &AA, LoopInfo &LI,
266 DominatorTree &DT,
267 BlockFrequencyInfo &BFI,
268 MemorySSA &MSSA,
269 ScalarEvolution *SE) {
270 BasicBlock *Preheader = L.getLoopPreheader();
271 assert(Preheader && "Expected loop to have preheader");
272
273 assert(Preheader->getParent()->hasProfileData() &&
274 "Unexpected call when profile data unavailable.");
275
276 const BlockFrequency PreheaderFreq = BFI.getBlockFreq(Preheader);
277 // If there are no basic blocks with lower frequency than the preheader then
278 // we can avoid the detailed analysis as we will never find profitable sinking
279 // opportunities.
280 if (all_of(L.blocks(), [&](const BasicBlock *BB) {
281 return BFI.getBlockFreq(BB) > PreheaderFreq;
282 }))
283 return false;
284
285 MemorySSAUpdater MSSAU(&MSSA);
286 SinkAndHoistLICMFlags LICMFlags(/*IsSink=*/true, &L, &MSSA);
287
288 bool Changed = false;
289
290 // Sort loop's basic blocks by frequency
291 SmallVector<BasicBlock *, 10> ColdLoopBBs;
292 SmallDenseMap<BasicBlock *, int, 16> LoopBlockNumber;
293 int i = 0;
294 for (BasicBlock *B : L.blocks())
295 if (BFI.getBlockFreq(B) < BFI.getBlockFreq(L.getLoopPreheader())) {
296 ColdLoopBBs.push_back(B);
297 LoopBlockNumber[B] = ++i;
298 }
299 llvm::stable_sort(ColdLoopBBs, [&](BasicBlock *A, BasicBlock *B) {
300 return BFI.getBlockFreq(A) < BFI.getBlockFreq(B);
301 });
302
303 // Traverse preheader's instructions in reverse order because if A depends
304 // on B (A appears after B), A needs to be sunk first before B can be
305 // sinked.
306 for (Instruction &I : llvm::make_early_inc_range(llvm::reverse(*Preheader))) {
307 if (isa<PHINode>(&I))
308 continue;
309 // No need to check for instruction's operands are loop invariant.
310 assert(L.hasLoopInvariantOperands(&I) &&
311 "Insts in a loop's preheader should have loop invariant operands!");
312 if (!canSinkOrHoistInst(I, &AA, &DT, &L, MSSAU, false, LICMFlags))
313 continue;
314 if (sinkInstruction(L, I, ColdLoopBBs, LoopBlockNumber, LI, DT, BFI,
315 &MSSAU)) {
316 Changed = true;
317 if (SE)
318 SE->forgetBlockAndLoopDispositions(&I);
319 }
320 }
321
322 return Changed;
323 }
324
run(Function & F,FunctionAnalysisManager & FAM)325 PreservedAnalyses LoopSinkPass::run(Function &F, FunctionAnalysisManager &FAM) {
326 LoopInfo &LI = FAM.getResult<LoopAnalysis>(F);
327 // Nothing to do if there are no loops.
328 if (LI.empty())
329 return PreservedAnalyses::all();
330
331 AAResults &AA = FAM.getResult<AAManager>(F);
332 DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
333 BlockFrequencyInfo &BFI = FAM.getResult<BlockFrequencyAnalysis>(F);
334 MemorySSA &MSSA = FAM.getResult<MemorySSAAnalysis>(F).getMSSA();
335
336 // We want to do a postorder walk over the loops. Since loops are a tree this
337 // is equivalent to a reversed preorder walk and preorder is easy to compute
338 // without recursion. Since we reverse the preorder, we will visit siblings
339 // in reverse program order. This isn't expected to matter at all but is more
340 // consistent with sinking algorithms which generally work bottom-up.
341 SmallVector<Loop *, 4> PreorderLoops = LI.getLoopsInPreorder();
342
343 bool Changed = false;
344 do {
345 Loop &L = *PreorderLoops.pop_back_val();
346
347 BasicBlock *Preheader = L.getLoopPreheader();
348 if (!Preheader)
349 continue;
350
351 // Enable LoopSink only when runtime profile is available.
352 // With static profile, the sinking decision may be sub-optimal.
353 if (!Preheader->getParent()->hasProfileData())
354 continue;
355
356 // Note that we don't pass SCEV here because it is only used to invalidate
357 // loops in SCEV and we don't preserve (or request) SCEV at all making that
358 // unnecessary.
359 Changed |= sinkLoopInvariantInstructions(L, AA, LI, DT, BFI, MSSA,
360 /*ScalarEvolution*/ nullptr);
361 } while (!PreorderLoops.empty());
362
363 if (!Changed)
364 return PreservedAnalyses::all();
365
366 PreservedAnalyses PA;
367 PA.preserveSet<CFGAnalyses>();
368 PA.preserve<MemorySSAAnalysis>();
369
370 if (VerifyMemorySSA)
371 MSSA.verifyMemorySSA();
372
373 return PA;
374 }
375
376 namespace {
377 struct LegacyLoopSinkPass : public LoopPass {
378 static char ID;
LegacyLoopSinkPass__anon7adb5f190511::LegacyLoopSinkPass379 LegacyLoopSinkPass() : LoopPass(ID) {
380 initializeLegacyLoopSinkPassPass(*PassRegistry::getPassRegistry());
381 }
382
runOnLoop__anon7adb5f190511::LegacyLoopSinkPass383 bool runOnLoop(Loop *L, LPPassManager &LPM) override {
384 if (skipLoop(L))
385 return false;
386
387 BasicBlock *Preheader = L->getLoopPreheader();
388 if (!Preheader)
389 return false;
390
391 // Enable LoopSink only when runtime profile is available.
392 // With static profile, the sinking decision may be sub-optimal.
393 if (!Preheader->getParent()->hasProfileData())
394 return false;
395
396 AAResults &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
397 MemorySSA &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();
398 auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
399 bool Changed = sinkLoopInvariantInstructions(
400 *L, AA, getAnalysis<LoopInfoWrapperPass>().getLoopInfo(),
401 getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
402 getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(),
403 MSSA, SE ? &SE->getSE() : nullptr);
404
405 if (VerifyMemorySSA)
406 MSSA.verifyMemorySSA();
407
408 return Changed;
409 }
410
getAnalysisUsage__anon7adb5f190511::LegacyLoopSinkPass411 void getAnalysisUsage(AnalysisUsage &AU) const override {
412 AU.setPreservesCFG();
413 AU.addRequired<BlockFrequencyInfoWrapperPass>();
414 getLoopAnalysisUsage(AU);
415 AU.addRequired<MemorySSAWrapperPass>();
416 AU.addPreserved<MemorySSAWrapperPass>();
417 }
418 };
419 }
420
421 char LegacyLoopSinkPass::ID = 0;
422 INITIALIZE_PASS_BEGIN(LegacyLoopSinkPass, "loop-sink", "Loop Sink", false,
423 false)
INITIALIZE_PASS_DEPENDENCY(LoopPass)424 INITIALIZE_PASS_DEPENDENCY(LoopPass)
425 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
426 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
427 INITIALIZE_PASS_END(LegacyLoopSinkPass, "loop-sink", "Loop Sink", false, false)
428
429 Pass *llvm::createLoopSinkPass() { return new LegacyLoopSinkPass(); }
430