1 //===-- lib/Semantics/tools.cpp -------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "flang/Parser/tools.h" 10 #include "flang/Common/Fortran.h" 11 #include "flang/Common/indirection.h" 12 #include "flang/Parser/dump-parse-tree.h" 13 #include "flang/Parser/message.h" 14 #include "flang/Parser/parse-tree.h" 15 #include "flang/Semantics/scope.h" 16 #include "flang/Semantics/semantics.h" 17 #include "flang/Semantics/symbol.h" 18 #include "flang/Semantics/tools.h" 19 #include "flang/Semantics/type.h" 20 #include "llvm/Support/raw_ostream.h" 21 #include <algorithm> 22 #include <set> 23 #include <variant> 24 25 namespace Fortran::semantics { 26 27 // Find this or containing scope that matches predicate 28 static const Scope *FindScopeContaining( 29 const Scope &start, std::function<bool(const Scope &)> predicate) { 30 for (const Scope *scope{&start};; scope = &scope->parent()) { 31 if (predicate(*scope)) { 32 return scope; 33 } 34 if (scope->IsTopLevel()) { 35 return nullptr; 36 } 37 } 38 } 39 40 const Scope &GetTopLevelUnitContaining(const Scope &start) { 41 CHECK(!start.IsTopLevel()); 42 return DEREF(FindScopeContaining( 43 start, [](const Scope &scope) { return scope.parent().IsTopLevel(); })); 44 } 45 46 const Scope &GetTopLevelUnitContaining(const Symbol &symbol) { 47 return GetTopLevelUnitContaining(symbol.owner()); 48 } 49 50 const Scope *FindModuleContaining(const Scope &start) { 51 return FindScopeContaining( 52 start, [](const Scope &scope) { return scope.IsModule(); }); 53 } 54 55 const Scope *FindModuleOrSubmoduleContaining(const Scope &start) { 56 return FindScopeContaining(start, [](const Scope &scope) { 57 return scope.IsModule() || scope.IsSubmodule(); 58 }); 59 } 60 61 const Scope *FindModuleFileContaining(const Scope &start) { 62 return FindScopeContaining( 63 start, [](const Scope &scope) { return scope.IsModuleFile(); }); 64 } 65 66 const Scope &GetProgramUnitContaining(const Scope &start) { 67 CHECK(!start.IsTopLevel()); 68 return DEREF(FindScopeContaining(start, [](const Scope &scope) { 69 switch (scope.kind()) { 70 case Scope::Kind::Module: 71 case Scope::Kind::MainProgram: 72 case Scope::Kind::Subprogram: 73 case Scope::Kind::BlockData: 74 return true; 75 default: 76 return false; 77 } 78 })); 79 } 80 81 const Scope &GetProgramUnitContaining(const Symbol &symbol) { 82 return GetProgramUnitContaining(symbol.owner()); 83 } 84 85 const Scope &GetProgramUnitOrBlockConstructContaining(const Scope &start) { 86 CHECK(!start.IsTopLevel()); 87 return DEREF(FindScopeContaining(start, [](const Scope &scope) { 88 switch (scope.kind()) { 89 case Scope::Kind::Module: 90 case Scope::Kind::MainProgram: 91 case Scope::Kind::Subprogram: 92 case Scope::Kind::BlockData: 93 case Scope::Kind::BlockConstruct: 94 return true; 95 default: 96 return false; 97 } 98 })); 99 } 100 101 const Scope &GetProgramUnitOrBlockConstructContaining(const Symbol &symbol) { 102 return GetProgramUnitOrBlockConstructContaining(symbol.owner()); 103 } 104 105 const Scope *FindPureProcedureContaining(const Scope &start) { 106 // N.B. We only need to examine the innermost containing program unit 107 // because an internal subprogram of a pure subprogram must also 108 // be pure (C1592). 109 if (start.IsTopLevel()) { 110 return nullptr; 111 } else { 112 const Scope &scope{GetProgramUnitContaining(start)}; 113 return IsPureProcedure(scope) ? &scope : nullptr; 114 } 115 } 116 117 const Scope *FindOpenACCConstructContaining(const Scope *scope) { 118 return scope ? FindScopeContaining(*scope, 119 [](const Scope &s) { 120 return s.kind() == Scope::Kind::OpenACCConstruct; 121 }) 122 : nullptr; 123 } 124 125 // 7.5.2.4 "same derived type" test -- rely on IsTkCompatibleWith() and its 126 // infrastructure to detect and handle comparisons on distinct (but "same") 127 // sequence/bind(C) derived types 128 static bool MightBeSameDerivedType( 129 const std::optional<evaluate::DynamicType> &lhsType, 130 const std::optional<evaluate::DynamicType> &rhsType) { 131 return lhsType && rhsType && lhsType->IsTkCompatibleWith(*rhsType); 132 } 133 134 Tristate IsDefinedAssignment( 135 const std::optional<evaluate::DynamicType> &lhsType, int lhsRank, 136 const std::optional<evaluate::DynamicType> &rhsType, int rhsRank) { 137 if (!lhsType || !rhsType) { 138 return Tristate::No; // error or rhs is untyped 139 } 140 if (lhsType->IsUnlimitedPolymorphic()) { 141 return Tristate::No; 142 } 143 if (rhsType->IsUnlimitedPolymorphic()) { 144 return Tristate::Maybe; 145 } 146 TypeCategory lhsCat{lhsType->category()}; 147 TypeCategory rhsCat{rhsType->category()}; 148 if (rhsRank > 0 && lhsRank != rhsRank) { 149 return Tristate::Yes; 150 } else if (lhsCat != TypeCategory::Derived) { 151 return ToTristate(lhsCat != rhsCat && 152 (!IsNumericTypeCategory(lhsCat) || !IsNumericTypeCategory(rhsCat) || 153 lhsCat == TypeCategory::Unsigned || 154 rhsCat == TypeCategory::Unsigned)); 155 } else if (MightBeSameDerivedType(lhsType, rhsType)) { 156 return Tristate::Maybe; // TYPE(t) = TYPE(t) can be defined or intrinsic 157 } else { 158 return Tristate::Yes; 159 } 160 } 161 162 bool IsIntrinsicRelational(common::RelationalOperator opr, 163 const evaluate::DynamicType &type0, int rank0, 164 const evaluate::DynamicType &type1, int rank1) { 165 if (!evaluate::AreConformable(rank0, rank1)) { 166 return false; 167 } else { 168 auto cat0{type0.category()}; 169 auto cat1{type1.category()}; 170 if (cat0 == TypeCategory::Unsigned || cat1 == TypeCategory::Unsigned) { 171 return cat0 == cat1; 172 } else if (IsNumericTypeCategory(cat0) && IsNumericTypeCategory(cat1)) { 173 // numeric types: EQ/NE always ok, others ok for non-complex 174 return opr == common::RelationalOperator::EQ || 175 opr == common::RelationalOperator::NE || 176 (cat0 != TypeCategory::Complex && cat1 != TypeCategory::Complex); 177 } else { 178 // not both numeric: only Character is ok 179 return cat0 == TypeCategory::Character && cat1 == TypeCategory::Character; 180 } 181 } 182 } 183 184 bool IsIntrinsicNumeric(const evaluate::DynamicType &type0) { 185 return IsNumericTypeCategory(type0.category()); 186 } 187 bool IsIntrinsicNumeric(const evaluate::DynamicType &type0, int rank0, 188 const evaluate::DynamicType &type1, int rank1) { 189 return evaluate::AreConformable(rank0, rank1) && 190 IsNumericTypeCategory(type0.category()) && 191 IsNumericTypeCategory(type1.category()); 192 } 193 194 bool IsIntrinsicLogical(const evaluate::DynamicType &type0) { 195 return type0.category() == TypeCategory::Logical; 196 } 197 bool IsIntrinsicLogical(const evaluate::DynamicType &type0, int rank0, 198 const evaluate::DynamicType &type1, int rank1) { 199 return evaluate::AreConformable(rank0, rank1) && 200 type0.category() == TypeCategory::Logical && 201 type1.category() == TypeCategory::Logical; 202 } 203 204 bool IsIntrinsicConcat(const evaluate::DynamicType &type0, int rank0, 205 const evaluate::DynamicType &type1, int rank1) { 206 return evaluate::AreConformable(rank0, rank1) && 207 type0.category() == TypeCategory::Character && 208 type1.category() == TypeCategory::Character && 209 type0.kind() == type1.kind(); 210 } 211 212 bool IsGenericDefinedOp(const Symbol &symbol) { 213 const Symbol &ultimate{symbol.GetUltimate()}; 214 if (const auto *generic{ultimate.detailsIf<GenericDetails>()}) { 215 return generic->kind().IsDefinedOperator(); 216 } else if (const auto *misc{ultimate.detailsIf<MiscDetails>()}) { 217 return misc->kind() == MiscDetails::Kind::TypeBoundDefinedOp; 218 } else { 219 return false; 220 } 221 } 222 223 bool IsDefinedOperator(SourceName name) { 224 const char *begin{name.begin()}; 225 const char *end{name.end()}; 226 return begin != end && begin[0] == '.' && end[-1] == '.'; 227 } 228 229 std::string MakeOpName(SourceName name) { 230 std::string result{name.ToString()}; 231 return IsDefinedOperator(name) ? "OPERATOR(" + result + ")" 232 : result.find("operator(", 0) == 0 ? parser::ToUpperCaseLetters(result) 233 : result; 234 } 235 236 bool IsCommonBlockContaining(const Symbol &block, const Symbol &object) { 237 const auto &objects{block.get<CommonBlockDetails>().objects()}; 238 return llvm::is_contained(objects, object); 239 } 240 241 bool IsUseAssociated(const Symbol &symbol, const Scope &scope) { 242 const Scope &owner{GetTopLevelUnitContaining(symbol.GetUltimate().owner())}; 243 return owner.kind() == Scope::Kind::Module && 244 owner != GetTopLevelUnitContaining(scope); 245 } 246 247 bool DoesScopeContain( 248 const Scope *maybeAncestor, const Scope &maybeDescendent) { 249 return maybeAncestor && !maybeDescendent.IsTopLevel() && 250 FindScopeContaining(maybeDescendent.parent(), 251 [&](const Scope &scope) { return &scope == maybeAncestor; }); 252 } 253 254 bool DoesScopeContain(const Scope *maybeAncestor, const Symbol &symbol) { 255 return DoesScopeContain(maybeAncestor, symbol.owner()); 256 } 257 258 static const Symbol &FollowHostAssoc(const Symbol &symbol) { 259 for (const Symbol *s{&symbol};;) { 260 const auto *details{s->detailsIf<HostAssocDetails>()}; 261 if (!details) { 262 return *s; 263 } 264 s = &details->symbol(); 265 } 266 } 267 268 bool IsHostAssociated(const Symbol &symbol, const Scope &scope) { 269 const Symbol &base{FollowHostAssoc(symbol)}; 270 return base.owner().IsTopLevel() || 271 DoesScopeContain(&GetProgramUnitOrBlockConstructContaining(base), 272 GetProgramUnitOrBlockConstructContaining(scope)); 273 } 274 275 bool IsHostAssociatedIntoSubprogram(const Symbol &symbol, const Scope &scope) { 276 const Symbol &base{FollowHostAssoc(symbol)}; 277 return base.owner().IsTopLevel() || 278 DoesScopeContain(&GetProgramUnitOrBlockConstructContaining(base), 279 GetProgramUnitContaining(scope)); 280 } 281 282 bool IsInStmtFunction(const Symbol &symbol) { 283 if (const Symbol * function{symbol.owner().symbol()}) { 284 return IsStmtFunction(*function); 285 } 286 return false; 287 } 288 289 bool IsStmtFunctionDummy(const Symbol &symbol) { 290 return IsDummy(symbol) && IsInStmtFunction(symbol); 291 } 292 293 bool IsStmtFunctionResult(const Symbol &symbol) { 294 return IsFunctionResult(symbol) && IsInStmtFunction(symbol); 295 } 296 297 bool IsPointerDummy(const Symbol &symbol) { 298 return IsPointer(symbol) && IsDummy(symbol); 299 } 300 301 bool IsBindCProcedure(const Symbol &original) { 302 const Symbol &symbol{original.GetUltimate()}; 303 if (const auto *procDetails{symbol.detailsIf<ProcEntityDetails>()}) { 304 if (procDetails->procInterface()) { 305 // procedure component with a BIND(C) interface 306 return IsBindCProcedure(*procDetails->procInterface()); 307 } 308 } 309 return symbol.attrs().test(Attr::BIND_C) && IsProcedure(symbol); 310 } 311 312 bool IsBindCProcedure(const Scope &scope) { 313 if (const Symbol * symbol{scope.GetSymbol()}) { 314 return IsBindCProcedure(*symbol); 315 } else { 316 return false; 317 } 318 } 319 320 static const Symbol *FindPointerComponent( 321 const Scope &scope, std::set<const Scope *> &visited) { 322 if (!scope.IsDerivedType()) { 323 return nullptr; 324 } 325 if (!visited.insert(&scope).second) { 326 return nullptr; 327 } 328 // If there's a top-level pointer component, return it for clearer error 329 // messaging. 330 for (const auto &pair : scope) { 331 const Symbol &symbol{*pair.second}; 332 if (IsPointer(symbol)) { 333 return &symbol; 334 } 335 } 336 for (const auto &pair : scope) { 337 const Symbol &symbol{*pair.second}; 338 if (const auto *details{symbol.detailsIf<ObjectEntityDetails>()}) { 339 if (const DeclTypeSpec * type{details->type()}) { 340 if (const DerivedTypeSpec * derived{type->AsDerived()}) { 341 if (const Scope * nested{derived->scope()}) { 342 if (const Symbol * 343 pointer{FindPointerComponent(*nested, visited)}) { 344 return pointer; 345 } 346 } 347 } 348 } 349 } 350 } 351 return nullptr; 352 } 353 354 const Symbol *FindPointerComponent(const Scope &scope) { 355 std::set<const Scope *> visited; 356 return FindPointerComponent(scope, visited); 357 } 358 359 const Symbol *FindPointerComponent(const DerivedTypeSpec &derived) { 360 if (const Scope * scope{derived.scope()}) { 361 return FindPointerComponent(*scope); 362 } else { 363 return nullptr; 364 } 365 } 366 367 const Symbol *FindPointerComponent(const DeclTypeSpec &type) { 368 if (const DerivedTypeSpec * derived{type.AsDerived()}) { 369 return FindPointerComponent(*derived); 370 } else { 371 return nullptr; 372 } 373 } 374 375 const Symbol *FindPointerComponent(const DeclTypeSpec *type) { 376 return type ? FindPointerComponent(*type) : nullptr; 377 } 378 379 const Symbol *FindPointerComponent(const Symbol &symbol) { 380 return IsPointer(symbol) ? &symbol : FindPointerComponent(symbol.GetType()); 381 } 382 383 // C1594 specifies several ways by which an object might be globally visible. 384 const Symbol *FindExternallyVisibleObject( 385 const Symbol &object, const Scope &scope, bool isPointerDefinition) { 386 // TODO: Storage association with any object for which this predicate holds, 387 // once EQUIVALENCE is supported. 388 const Symbol &ultimate{GetAssociationRoot(object)}; 389 if (IsDummy(ultimate)) { 390 if (IsIntentIn(ultimate)) { 391 return &ultimate; 392 } 393 if (!isPointerDefinition && IsPointer(ultimate) && 394 IsPureProcedure(ultimate.owner()) && IsFunction(ultimate.owner())) { 395 return &ultimate; 396 } 397 } else if (ultimate.owner().IsDerivedType()) { 398 return nullptr; 399 } else if (&GetProgramUnitContaining(ultimate) != 400 &GetProgramUnitContaining(scope)) { 401 return &object; 402 } else if (const Symbol * block{FindCommonBlockContaining(ultimate)}) { 403 return block; 404 } 405 return nullptr; 406 } 407 408 const Symbol &BypassGeneric(const Symbol &symbol) { 409 const Symbol &ultimate{symbol.GetUltimate()}; 410 if (const auto *generic{ultimate.detailsIf<GenericDetails>()}) { 411 if (const Symbol * specific{generic->specific()}) { 412 return *specific; 413 } 414 } 415 return symbol; 416 } 417 418 const Symbol &GetCrayPointer(const Symbol &crayPointee) { 419 const Symbol *found{nullptr}; 420 for (const auto &[pointee, pointer] : 421 crayPointee.GetUltimate().owner().crayPointers()) { 422 if (pointee == crayPointee.name()) { 423 found = &pointer.get(); 424 break; 425 } 426 } 427 return DEREF(found); 428 } 429 430 bool ExprHasTypeCategory( 431 const SomeExpr &expr, const common::TypeCategory &type) { 432 auto dynamicType{expr.GetType()}; 433 return dynamicType && dynamicType->category() == type; 434 } 435 436 bool ExprTypeKindIsDefault( 437 const SomeExpr &expr, const SemanticsContext &context) { 438 auto dynamicType{expr.GetType()}; 439 return dynamicType && 440 dynamicType->category() != common::TypeCategory::Derived && 441 dynamicType->kind() == context.GetDefaultKind(dynamicType->category()); 442 } 443 444 // If an analyzed expr or assignment is missing, dump the node and die. 445 template <typename T> 446 static void CheckMissingAnalysis( 447 bool crash, SemanticsContext *context, const T &x) { 448 if (crash && !(context && context->AnyFatalError())) { 449 std::string buf; 450 llvm::raw_string_ostream ss{buf}; 451 ss << "node has not been analyzed:\n"; 452 parser::DumpTree(ss, x); 453 common::die(buf.c_str()); 454 } 455 } 456 457 const SomeExpr *GetExprHelper::Get(const parser::Expr &x) { 458 CheckMissingAnalysis(crashIfNoExpr_ && !x.typedExpr, context_, x); 459 return x.typedExpr ? common::GetPtrFromOptional(x.typedExpr->v) : nullptr; 460 } 461 const SomeExpr *GetExprHelper::Get(const parser::Variable &x) { 462 CheckMissingAnalysis(crashIfNoExpr_ && !x.typedExpr, context_, x); 463 return x.typedExpr ? common::GetPtrFromOptional(x.typedExpr->v) : nullptr; 464 } 465 const SomeExpr *GetExprHelper::Get(const parser::DataStmtConstant &x) { 466 CheckMissingAnalysis(crashIfNoExpr_ && !x.typedExpr, context_, x); 467 return x.typedExpr ? common::GetPtrFromOptional(x.typedExpr->v) : nullptr; 468 } 469 const SomeExpr *GetExprHelper::Get(const parser::AllocateObject &x) { 470 CheckMissingAnalysis(crashIfNoExpr_ && !x.typedExpr, context_, x); 471 return x.typedExpr ? common::GetPtrFromOptional(x.typedExpr->v) : nullptr; 472 } 473 const SomeExpr *GetExprHelper::Get(const parser::PointerObject &x) { 474 CheckMissingAnalysis(crashIfNoExpr_ && !x.typedExpr, context_, x); 475 return x.typedExpr ? common::GetPtrFromOptional(x.typedExpr->v) : nullptr; 476 } 477 478 const evaluate::Assignment *GetAssignment(const parser::AssignmentStmt &x) { 479 return x.typedAssignment ? common::GetPtrFromOptional(x.typedAssignment->v) 480 : nullptr; 481 } 482 const evaluate::Assignment *GetAssignment( 483 const parser::PointerAssignmentStmt &x) { 484 return x.typedAssignment ? common::GetPtrFromOptional(x.typedAssignment->v) 485 : nullptr; 486 } 487 488 const Symbol *FindInterface(const Symbol &symbol) { 489 return common::visit( 490 common::visitors{ 491 [](const ProcEntityDetails &details) { 492 const Symbol *interface{details.procInterface()}; 493 return interface ? FindInterface(*interface) : nullptr; 494 }, 495 [](const ProcBindingDetails &details) { 496 return FindInterface(details.symbol()); 497 }, 498 [&](const SubprogramDetails &) { return &symbol; }, 499 [](const UseDetails &details) { 500 return FindInterface(details.symbol()); 501 }, 502 [](const HostAssocDetails &details) { 503 return FindInterface(details.symbol()); 504 }, 505 [](const GenericDetails &details) { 506 return details.specific() ? FindInterface(*details.specific()) 507 : nullptr; 508 }, 509 [](const auto &) -> const Symbol * { return nullptr; }, 510 }, 511 symbol.details()); 512 } 513 514 const Symbol *FindSubprogram(const Symbol &symbol) { 515 return common::visit( 516 common::visitors{ 517 [&](const ProcEntityDetails &details) -> const Symbol * { 518 if (details.procInterface()) { 519 return FindSubprogram(*details.procInterface()); 520 } else { 521 return &symbol; 522 } 523 }, 524 [](const ProcBindingDetails &details) { 525 return FindSubprogram(details.symbol()); 526 }, 527 [&](const SubprogramDetails &) { return &symbol; }, 528 [](const UseDetails &details) { 529 return FindSubprogram(details.symbol()); 530 }, 531 [](const HostAssocDetails &details) { 532 return FindSubprogram(details.symbol()); 533 }, 534 [](const GenericDetails &details) { 535 return details.specific() ? FindSubprogram(*details.specific()) 536 : nullptr; 537 }, 538 [](const auto &) -> const Symbol * { return nullptr; }, 539 }, 540 symbol.details()); 541 } 542 543 const Symbol *FindOverriddenBinding( 544 const Symbol &symbol, bool &isInaccessibleDeferred) { 545 isInaccessibleDeferred = false; 546 if (symbol.has<ProcBindingDetails>()) { 547 if (const DeclTypeSpec * parentType{FindParentTypeSpec(symbol.owner())}) { 548 if (const DerivedTypeSpec * parentDerived{parentType->AsDerived()}) { 549 if (const Scope * parentScope{parentDerived->typeSymbol().scope()}) { 550 if (const Symbol * 551 overridden{parentScope->FindComponent(symbol.name())}) { 552 // 7.5.7.3 p1: only accessible bindings are overridden 553 if (IsAccessible(*overridden, symbol.owner())) { 554 return overridden; 555 } else if (overridden->attrs().test(Attr::DEFERRED)) { 556 isInaccessibleDeferred = true; 557 return overridden; 558 } 559 } 560 } 561 } 562 } 563 } 564 return nullptr; 565 } 566 567 const Symbol *FindGlobal(const Symbol &original) { 568 const Symbol &ultimate{original.GetUltimate()}; 569 if (ultimate.owner().IsGlobal()) { 570 return &ultimate; 571 } 572 bool isLocal{false}; 573 if (IsDummy(ultimate)) { 574 } else if (IsPointer(ultimate)) { 575 } else if (ultimate.has<ProcEntityDetails>()) { 576 isLocal = IsExternal(ultimate); 577 } else if (const auto *subp{ultimate.detailsIf<SubprogramDetails>()}) { 578 isLocal = subp->isInterface(); 579 } 580 if (isLocal) { 581 const std::string *bind{ultimate.GetBindName()}; 582 if (!bind || ultimate.name() == *bind) { 583 const Scope &globalScope{ultimate.owner().context().globalScope()}; 584 if (auto iter{globalScope.find(ultimate.name())}; 585 iter != globalScope.end()) { 586 const Symbol &global{*iter->second}; 587 const std::string *globalBind{global.GetBindName()}; 588 if (!globalBind || global.name() == *globalBind) { 589 return &global; 590 } 591 } 592 } 593 } 594 return nullptr; 595 } 596 597 const DeclTypeSpec *FindParentTypeSpec(const DerivedTypeSpec &derived) { 598 return FindParentTypeSpec(derived.typeSymbol()); 599 } 600 601 const DeclTypeSpec *FindParentTypeSpec(const DeclTypeSpec &decl) { 602 if (const DerivedTypeSpec * derived{decl.AsDerived()}) { 603 return FindParentTypeSpec(*derived); 604 } else { 605 return nullptr; 606 } 607 } 608 609 const DeclTypeSpec *FindParentTypeSpec(const Scope &scope) { 610 if (scope.kind() == Scope::Kind::DerivedType) { 611 if (const auto *symbol{scope.symbol()}) { 612 return FindParentTypeSpec(*symbol); 613 } 614 } 615 return nullptr; 616 } 617 618 const DeclTypeSpec *FindParentTypeSpec(const Symbol &symbol) { 619 if (const Scope * scope{symbol.scope()}) { 620 if (const auto *details{symbol.detailsIf<DerivedTypeDetails>()}) { 621 if (const Symbol * parent{details->GetParentComponent(*scope)}) { 622 return parent->GetType(); 623 } 624 } 625 } 626 return nullptr; 627 } 628 629 const EquivalenceSet *FindEquivalenceSet(const Symbol &symbol) { 630 const Symbol &ultimate{symbol.GetUltimate()}; 631 for (const EquivalenceSet &set : ultimate.owner().equivalenceSets()) { 632 for (const EquivalenceObject &object : set) { 633 if (object.symbol == ultimate) { 634 return &set; 635 } 636 } 637 } 638 return nullptr; 639 } 640 641 bool IsOrContainsEventOrLockComponent(const Symbol &original) { 642 const Symbol &symbol{ResolveAssociations(original)}; 643 if (const auto *details{symbol.detailsIf<ObjectEntityDetails>()}) { 644 if (const DeclTypeSpec * type{details->type()}) { 645 if (const DerivedTypeSpec * derived{type->AsDerived()}) { 646 return IsEventTypeOrLockType(derived) || 647 FindEventOrLockPotentialComponent(*derived); 648 } 649 } 650 } 651 return false; 652 } 653 654 // Check this symbol suitable as a type-bound procedure - C769 655 bool CanBeTypeBoundProc(const Symbol &symbol) { 656 if (IsDummy(symbol) || IsProcedurePointer(symbol)) { 657 return false; 658 } else if (symbol.has<SubprogramNameDetails>()) { 659 return symbol.owner().kind() == Scope::Kind::Module; 660 } else if (auto *details{symbol.detailsIf<SubprogramDetails>()}) { 661 if (details->isInterface()) { 662 return !symbol.attrs().test(Attr::ABSTRACT); 663 } else { 664 return symbol.owner().kind() == Scope::Kind::Module; 665 } 666 } else if (const auto *proc{symbol.detailsIf<ProcEntityDetails>()}) { 667 return !symbol.attrs().test(Attr::INTRINSIC) && 668 proc->HasExplicitInterface(); 669 } else { 670 return false; 671 } 672 } 673 674 bool HasDeclarationInitializer(const Symbol &symbol) { 675 if (IsNamedConstant(symbol)) { 676 return false; 677 } else if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) { 678 return object->init().has_value(); 679 } else if (const auto *proc{symbol.detailsIf<ProcEntityDetails>()}) { 680 return proc->init().has_value(); 681 } else { 682 return false; 683 } 684 } 685 686 bool IsInitialized(const Symbol &symbol, bool ignoreDataStatements, 687 bool ignoreAllocatable, bool ignorePointer) { 688 if (!ignoreAllocatable && IsAllocatable(symbol)) { 689 return true; 690 } else if (!ignoreDataStatements && symbol.test(Symbol::Flag::InDataStmt)) { 691 return true; 692 } else if (HasDeclarationInitializer(symbol)) { 693 return true; 694 } else if (IsPointer(symbol)) { 695 return !ignorePointer; 696 } else if (IsNamedConstant(symbol)) { 697 return false; 698 } else if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) { 699 if ((!object->isDummy() || IsIntentOut(symbol)) && object->type()) { 700 if (const auto *derived{object->type()->AsDerived()}) { 701 return derived->HasDefaultInitialization( 702 ignoreAllocatable, ignorePointer); 703 } 704 } 705 } 706 return false; 707 } 708 709 bool IsDestructible(const Symbol &symbol, const Symbol *derivedTypeSymbol) { 710 if (IsAllocatable(symbol) || IsAutomatic(symbol)) { 711 return true; 712 } else if (IsNamedConstant(symbol) || IsFunctionResult(symbol) || 713 IsPointer(symbol)) { 714 return false; 715 } else if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) { 716 if ((!object->isDummy() || IsIntentOut(symbol)) && object->type()) { 717 if (const auto *derived{object->type()->AsDerived()}) { 718 return &derived->typeSymbol() != derivedTypeSymbol && 719 derived->HasDestruction(); 720 } 721 } 722 } 723 return false; 724 } 725 726 bool HasIntrinsicTypeName(const Symbol &symbol) { 727 std::string name{symbol.name().ToString()}; 728 if (name == "doubleprecision") { 729 return true; 730 } else if (name == "derived") { 731 return false; 732 } else { 733 for (int i{0}; i != common::TypeCategory_enumSize; ++i) { 734 if (name == parser::ToLowerCaseLetters(EnumToString(TypeCategory{i}))) { 735 return true; 736 } 737 } 738 return false; 739 } 740 } 741 742 bool IsSeparateModuleProcedureInterface(const Symbol *symbol) { 743 if (symbol && symbol->attrs().test(Attr::MODULE)) { 744 if (auto *details{symbol->detailsIf<SubprogramDetails>()}) { 745 return details->isInterface(); 746 } 747 } 748 return false; 749 } 750 751 SymbolVector FinalsForDerivedTypeInstantiation(const DerivedTypeSpec &spec) { 752 SymbolVector result; 753 const Symbol &typeSymbol{spec.typeSymbol()}; 754 if (const auto *derived{typeSymbol.detailsIf<DerivedTypeDetails>()}) { 755 for (const auto &pair : derived->finals()) { 756 const Symbol &subr{*pair.second}; 757 // Errors in FINAL subroutines are caught in CheckFinal 758 // in check-declarations.cpp. 759 if (const auto *subprog{subr.detailsIf<SubprogramDetails>()}; 760 subprog && subprog->dummyArgs().size() == 1) { 761 if (const Symbol * arg{subprog->dummyArgs()[0]}) { 762 if (const DeclTypeSpec * type{arg->GetType()}) { 763 if (type->category() == DeclTypeSpec::TypeDerived && 764 evaluate::AreSameDerivedType(spec, type->derivedTypeSpec())) { 765 result.emplace_back(subr); 766 } 767 } 768 } 769 } 770 } 771 } 772 return result; 773 } 774 775 const Symbol *IsFinalizable(const Symbol &symbol, 776 std::set<const DerivedTypeSpec *> *inProgress, bool withImpureFinalizer) { 777 if (IsPointer(symbol) || evaluate::IsAssumedRank(symbol)) { 778 return nullptr; 779 } 780 if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) { 781 if (object->isDummy() && !IsIntentOut(symbol)) { 782 return nullptr; 783 } 784 const DeclTypeSpec *type{object->type()}; 785 if (const DerivedTypeSpec * typeSpec{type ? type->AsDerived() : nullptr}) { 786 return IsFinalizable( 787 *typeSpec, inProgress, withImpureFinalizer, symbol.Rank()); 788 } 789 } 790 return nullptr; 791 } 792 793 const Symbol *IsFinalizable(const DerivedTypeSpec &derived, 794 std::set<const DerivedTypeSpec *> *inProgress, bool withImpureFinalizer, 795 std::optional<int> rank) { 796 const Symbol *elemental{nullptr}; 797 for (auto ref : FinalsForDerivedTypeInstantiation(derived)) { 798 const Symbol *symbol{&ref->GetUltimate()}; 799 if (const auto *binding{symbol->detailsIf<ProcBindingDetails>()}) { 800 symbol = &binding->symbol(); 801 } 802 if (const auto *proc{symbol->detailsIf<ProcEntityDetails>()}) { 803 symbol = proc->procInterface(); 804 } 805 if (!symbol) { 806 } else if (IsElementalProcedure(*symbol)) { 807 elemental = symbol; 808 } else { 809 if (rank) { 810 if (const SubprogramDetails * 811 subp{symbol->detailsIf<SubprogramDetails>()}) { 812 if (const auto &args{subp->dummyArgs()}; !args.empty() && 813 args.at(0) && !evaluate::IsAssumedRank(*args.at(0)) && 814 args.at(0)->Rank() != *rank) { 815 continue; // not a finalizer for this rank 816 } 817 } 818 } 819 if (!withImpureFinalizer || !IsPureProcedure(*symbol)) { 820 return symbol; 821 } 822 // Found non-elemental pure finalizer of matching rank, but still 823 // need to check components for an impure finalizer. 824 elemental = nullptr; 825 break; 826 } 827 } 828 if (elemental && (!withImpureFinalizer || !IsPureProcedure(*elemental))) { 829 return elemental; 830 } 831 // Check components (including ancestors) 832 std::set<const DerivedTypeSpec *> basis; 833 if (inProgress) { 834 if (inProgress->find(&derived) != inProgress->end()) { 835 return nullptr; // don't loop on recursive type 836 } 837 } else { 838 inProgress = &basis; 839 } 840 auto iterator{inProgress->insert(&derived).first}; 841 const Symbol *result{nullptr}; 842 for (const Symbol &component : PotentialComponentIterator{derived}) { 843 result = IsFinalizable(component, inProgress, withImpureFinalizer); 844 if (result) { 845 break; 846 } 847 } 848 inProgress->erase(iterator); 849 return result; 850 } 851 852 static const Symbol *HasImpureFinal( 853 const DerivedTypeSpec &derived, std::optional<int> rank) { 854 return IsFinalizable(derived, nullptr, /*withImpureFinalizer=*/true, rank); 855 } 856 857 const Symbol *HasImpureFinal(const Symbol &original, std::optional<int> rank) { 858 const Symbol &symbol{ResolveAssociations(original)}; 859 if (symbol.has<ObjectEntityDetails>()) { 860 if (const DeclTypeSpec * symType{symbol.GetType()}) { 861 if (const DerivedTypeSpec * derived{symType->AsDerived()}) { 862 if (evaluate::IsAssumedRank(symbol)) { 863 // finalizable assumed-rank not allowed (C839) 864 return nullptr; 865 } else { 866 int actualRank{rank.value_or(symbol.Rank())}; 867 return HasImpureFinal(*derived, actualRank); 868 } 869 } 870 } 871 } 872 return nullptr; 873 } 874 875 bool MayRequireFinalization(const DerivedTypeSpec &derived) { 876 return IsFinalizable(derived) || 877 FindPolymorphicAllocatablePotentialComponent(derived); 878 } 879 880 bool HasAllocatableDirectComponent(const DerivedTypeSpec &derived) { 881 DirectComponentIterator directs{derived}; 882 return std::any_of(directs.begin(), directs.end(), IsAllocatable); 883 } 884 885 bool IsAssumedLengthCharacter(const Symbol &symbol) { 886 if (const DeclTypeSpec * type{symbol.GetType()}) { 887 return type->category() == DeclTypeSpec::Character && 888 type->characterTypeSpec().length().isAssumed(); 889 } else { 890 return false; 891 } 892 } 893 894 bool IsInBlankCommon(const Symbol &symbol) { 895 const Symbol *block{FindCommonBlockContaining(symbol)}; 896 return block && block->name().empty(); 897 } 898 899 // C722 and C723: For a function to be assumed length, it must be external and 900 // of CHARACTER type 901 bool IsExternal(const Symbol &symbol) { 902 return ClassifyProcedure(symbol) == ProcedureDefinitionClass::External; 903 } 904 905 // Most scopes have no EQUIVALENCE, and this function is a fast no-op for them. 906 std::list<std::list<SymbolRef>> GetStorageAssociations(const Scope &scope) { 907 UnorderedSymbolSet distinct; 908 for (const EquivalenceSet &set : scope.equivalenceSets()) { 909 for (const EquivalenceObject &object : set) { 910 distinct.emplace(object.symbol); 911 } 912 } 913 // This set is ordered by ascending offsets, with ties broken by greatest 914 // size. A multiset is used here because multiple symbols may have the 915 // same offset and size; the symbols in the set, however, are distinct. 916 std::multiset<SymbolRef, SymbolOffsetCompare> associated; 917 for (SymbolRef ref : distinct) { 918 associated.emplace(*ref); 919 } 920 std::list<std::list<SymbolRef>> result; 921 std::size_t limit{0}; 922 const Symbol *currentCommon{nullptr}; 923 for (const Symbol &symbol : associated) { 924 const Symbol *thisCommon{FindCommonBlockContaining(symbol)}; 925 if (result.empty() || symbol.offset() >= limit || 926 thisCommon != currentCommon) { 927 // Start a new group 928 result.emplace_back(std::list<SymbolRef>{}); 929 limit = 0; 930 currentCommon = thisCommon; 931 } 932 result.back().emplace_back(symbol); 933 limit = std::max(limit, symbol.offset() + symbol.size()); 934 } 935 return result; 936 } 937 938 bool IsModuleProcedure(const Symbol &symbol) { 939 return ClassifyProcedure(symbol) == ProcedureDefinitionClass::Module; 940 } 941 942 class ImageControlStmtHelper { 943 using ImageControlStmts = 944 std::variant<parser::ChangeTeamConstruct, parser::CriticalConstruct, 945 parser::EventPostStmt, parser::EventWaitStmt, parser::FormTeamStmt, 946 parser::LockStmt, parser::SyncAllStmt, parser::SyncImagesStmt, 947 parser::SyncMemoryStmt, parser::SyncTeamStmt, parser::UnlockStmt>; 948 949 public: 950 template <typename T> bool operator()(const T &) { 951 return common::HasMember<T, ImageControlStmts>; 952 } 953 template <typename T> bool operator()(const common::Indirection<T> &x) { 954 return (*this)(x.value()); 955 } 956 template <typename A> bool operator()(const parser::Statement<A> &x) { 957 return (*this)(x.statement); 958 } 959 bool operator()(const parser::AllocateStmt &stmt) { 960 const auto &allocationList{std::get<std::list<parser::Allocation>>(stmt.t)}; 961 for (const auto &allocation : allocationList) { 962 const auto &allocateObject{ 963 std::get<parser::AllocateObject>(allocation.t)}; 964 if (IsCoarrayObject(allocateObject)) { 965 return true; 966 } 967 } 968 return false; 969 } 970 bool operator()(const parser::DeallocateStmt &stmt) { 971 const auto &allocateObjectList{ 972 std::get<std::list<parser::AllocateObject>>(stmt.t)}; 973 for (const auto &allocateObject : allocateObjectList) { 974 if (IsCoarrayObject(allocateObject)) { 975 return true; 976 } 977 } 978 return false; 979 } 980 bool operator()(const parser::CallStmt &stmt) { 981 const auto &procedureDesignator{ 982 std::get<parser::ProcedureDesignator>(stmt.call.t)}; 983 if (auto *name{std::get_if<parser::Name>(&procedureDesignator.u)}) { 984 // TODO: also ensure that the procedure is, in fact, an intrinsic 985 if (name->source == "move_alloc") { 986 const auto &args{ 987 std::get<std::list<parser::ActualArgSpec>>(stmt.call.t)}; 988 if (!args.empty()) { 989 const parser::ActualArg &actualArg{ 990 std::get<parser::ActualArg>(args.front().t)}; 991 if (const auto *argExpr{ 992 std::get_if<common::Indirection<parser::Expr>>( 993 &actualArg.u)}) { 994 return HasCoarray(argExpr->value()); 995 } 996 } 997 } 998 } 999 return false; 1000 } 1001 bool operator()(const parser::StopStmt &stmt) { 1002 // STOP is an image control statement; ERROR STOP is not 1003 return std::get<parser::StopStmt::Kind>(stmt.t) == 1004 parser::StopStmt::Kind::Stop; 1005 } 1006 bool operator()(const parser::IfStmt &stmt) { 1007 return (*this)( 1008 std::get<parser::UnlabeledStatement<parser::ActionStmt>>(stmt.t) 1009 .statement); 1010 } 1011 bool operator()(const parser::ActionStmt &stmt) { 1012 return common::visit(*this, stmt.u); 1013 } 1014 1015 private: 1016 bool IsCoarrayObject(const parser::AllocateObject &allocateObject) { 1017 const parser::Name &name{GetLastName(allocateObject)}; 1018 return name.symbol && evaluate::IsCoarray(*name.symbol); 1019 } 1020 }; 1021 1022 bool IsImageControlStmt(const parser::ExecutableConstruct &construct) { 1023 return common::visit(ImageControlStmtHelper{}, construct.u); 1024 } 1025 1026 std::optional<parser::MessageFixedText> GetImageControlStmtCoarrayMsg( 1027 const parser::ExecutableConstruct &construct) { 1028 if (const auto *actionStmt{ 1029 std::get_if<parser::Statement<parser::ActionStmt>>(&construct.u)}) { 1030 return common::visit( 1031 common::visitors{ 1032 [](const common::Indirection<parser::AllocateStmt> &) 1033 -> std::optional<parser::MessageFixedText> { 1034 return "ALLOCATE of a coarray is an image control" 1035 " statement"_en_US; 1036 }, 1037 [](const common::Indirection<parser::DeallocateStmt> &) 1038 -> std::optional<parser::MessageFixedText> { 1039 return "DEALLOCATE of a coarray is an image control" 1040 " statement"_en_US; 1041 }, 1042 [](const common::Indirection<parser::CallStmt> &) 1043 -> std::optional<parser::MessageFixedText> { 1044 return "MOVE_ALLOC of a coarray is an image control" 1045 " statement "_en_US; 1046 }, 1047 [](const auto &) -> std::optional<parser::MessageFixedText> { 1048 return std::nullopt; 1049 }, 1050 }, 1051 actionStmt->statement.u); 1052 } 1053 return std::nullopt; 1054 } 1055 1056 parser::CharBlock GetImageControlStmtLocation( 1057 const parser::ExecutableConstruct &executableConstruct) { 1058 return common::visit( 1059 common::visitors{ 1060 [](const common::Indirection<parser::ChangeTeamConstruct> 1061 &construct) { 1062 return std::get<parser::Statement<parser::ChangeTeamStmt>>( 1063 construct.value().t) 1064 .source; 1065 }, 1066 [](const common::Indirection<parser::CriticalConstruct> &construct) { 1067 return std::get<parser::Statement<parser::CriticalStmt>>( 1068 construct.value().t) 1069 .source; 1070 }, 1071 [](const parser::Statement<parser::ActionStmt> &actionStmt) { 1072 return actionStmt.source; 1073 }, 1074 [](const auto &) { return parser::CharBlock{}; }, 1075 }, 1076 executableConstruct.u); 1077 } 1078 1079 bool HasCoarray(const parser::Expr &expression) { 1080 if (const auto *expr{GetExpr(nullptr, expression)}) { 1081 for (const Symbol &symbol : evaluate::CollectSymbols(*expr)) { 1082 if (evaluate::IsCoarray(symbol)) { 1083 return true; 1084 } 1085 } 1086 } 1087 return false; 1088 } 1089 1090 bool IsAssumedType(const Symbol &symbol) { 1091 if (const DeclTypeSpec * type{symbol.GetType()}) { 1092 return type->IsAssumedType(); 1093 } 1094 return false; 1095 } 1096 1097 bool IsPolymorphic(const Symbol &symbol) { 1098 if (const DeclTypeSpec * type{symbol.GetType()}) { 1099 return type->IsPolymorphic(); 1100 } 1101 return false; 1102 } 1103 1104 bool IsUnlimitedPolymorphic(const Symbol &symbol) { 1105 if (const DeclTypeSpec * type{symbol.GetType()}) { 1106 return type->IsUnlimitedPolymorphic(); 1107 } 1108 return false; 1109 } 1110 1111 bool IsPolymorphicAllocatable(const Symbol &symbol) { 1112 return IsAllocatable(symbol) && IsPolymorphic(symbol); 1113 } 1114 1115 const Scope *FindCUDADeviceContext(const Scope *scope) { 1116 return !scope ? nullptr : FindScopeContaining(*scope, [](const Scope &s) { 1117 return IsCUDADeviceContext(&s); 1118 }); 1119 } 1120 1121 std::optional<common::CUDADataAttr> GetCUDADataAttr(const Symbol *symbol) { 1122 const auto *object{ 1123 symbol ? symbol->detailsIf<ObjectEntityDetails>() : nullptr}; 1124 return object ? object->cudaDataAttr() : std::nullopt; 1125 } 1126 1127 bool IsAccessible(const Symbol &original, const Scope &scope) { 1128 const Symbol &ultimate{original.GetUltimate()}; 1129 if (ultimate.attrs().test(Attr::PRIVATE)) { 1130 const Scope *module{FindModuleContaining(ultimate.owner())}; 1131 return !module || module->Contains(scope); 1132 } else { 1133 return true; 1134 } 1135 } 1136 1137 std::optional<parser::MessageFormattedText> CheckAccessibleSymbol( 1138 const Scope &scope, const Symbol &symbol) { 1139 if (IsAccessible(symbol, scope)) { 1140 return std::nullopt; 1141 } else if (FindModuleFileContaining(scope)) { 1142 // Don't enforce component accessibility checks in module files; 1143 // there may be forward-substituted named constants of derived type 1144 // whose structure constructors reference private components. 1145 return std::nullopt; 1146 } else { 1147 return parser::MessageFormattedText{ 1148 "PRIVATE name '%s' is only accessible within module '%s'"_err_en_US, 1149 symbol.name(), 1150 DEREF(FindModuleContaining(symbol.owner())).GetName().value()}; 1151 } 1152 } 1153 1154 SymbolVector OrderParameterNames(const Symbol &typeSymbol) { 1155 SymbolVector result; 1156 if (const DerivedTypeSpec * spec{typeSymbol.GetParentTypeSpec()}) { 1157 result = OrderParameterNames(spec->typeSymbol()); 1158 } 1159 const auto ¶mNames{typeSymbol.get<DerivedTypeDetails>().paramNameOrder()}; 1160 result.insert(result.end(), paramNames.begin(), paramNames.end()); 1161 return result; 1162 } 1163 1164 SymbolVector OrderParameterDeclarations(const Symbol &typeSymbol) { 1165 SymbolVector result; 1166 if (const DerivedTypeSpec * spec{typeSymbol.GetParentTypeSpec()}) { 1167 result = OrderParameterDeclarations(spec->typeSymbol()); 1168 } 1169 const auto ¶mDecls{typeSymbol.get<DerivedTypeDetails>().paramDeclOrder()}; 1170 result.insert(result.end(), paramDecls.begin(), paramDecls.end()); 1171 return result; 1172 } 1173 1174 const DeclTypeSpec &FindOrInstantiateDerivedType( 1175 Scope &scope, DerivedTypeSpec &&spec, DeclTypeSpec::Category category) { 1176 spec.EvaluateParameters(scope.context()); 1177 if (const DeclTypeSpec * 1178 type{scope.FindInstantiatedDerivedType(spec, category)}) { 1179 return *type; 1180 } 1181 // Create a new instantiation of this parameterized derived type 1182 // for this particular distinct set of actual parameter values. 1183 DeclTypeSpec &type{scope.MakeDerivedType(category, std::move(spec))}; 1184 type.derivedTypeSpec().Instantiate(scope); 1185 return type; 1186 } 1187 1188 const Symbol *FindSeparateModuleSubprogramInterface(const Symbol *proc) { 1189 if (proc) { 1190 if (const auto *subprogram{proc->detailsIf<SubprogramDetails>()}) { 1191 if (const Symbol * iface{subprogram->moduleInterface()}) { 1192 return iface; 1193 } 1194 } 1195 } 1196 return nullptr; 1197 } 1198 1199 ProcedureDefinitionClass ClassifyProcedure(const Symbol &symbol) { // 15.2.2 1200 const Symbol &ultimate{symbol.GetUltimate()}; 1201 if (!IsProcedure(ultimate)) { 1202 return ProcedureDefinitionClass::None; 1203 } else if (ultimate.attrs().test(Attr::INTRINSIC)) { 1204 return ProcedureDefinitionClass::Intrinsic; 1205 } else if (IsDummy(ultimate)) { 1206 return ProcedureDefinitionClass::Dummy; 1207 } else if (IsProcedurePointer(symbol)) { 1208 return ProcedureDefinitionClass::Pointer; 1209 } else if (ultimate.attrs().test(Attr::EXTERNAL)) { 1210 return ProcedureDefinitionClass::External; 1211 } else if (const auto *nameDetails{ 1212 ultimate.detailsIf<SubprogramNameDetails>()}) { 1213 switch (nameDetails->kind()) { 1214 case SubprogramKind::Module: 1215 return ProcedureDefinitionClass::Module; 1216 case SubprogramKind::Internal: 1217 return ProcedureDefinitionClass::Internal; 1218 } 1219 } else if (const Symbol * subp{FindSubprogram(symbol)}) { 1220 if (const auto *subpDetails{subp->detailsIf<SubprogramDetails>()}) { 1221 if (subpDetails->stmtFunction()) { 1222 return ProcedureDefinitionClass::StatementFunction; 1223 } 1224 } 1225 switch (ultimate.owner().kind()) { 1226 case Scope::Kind::Global: 1227 case Scope::Kind::IntrinsicModules: 1228 return ProcedureDefinitionClass::External; 1229 case Scope::Kind::Module: 1230 return ProcedureDefinitionClass::Module; 1231 case Scope::Kind::MainProgram: 1232 case Scope::Kind::Subprogram: 1233 return ProcedureDefinitionClass::Internal; 1234 default: 1235 break; 1236 } 1237 } 1238 return ProcedureDefinitionClass::None; 1239 } 1240 1241 // ComponentIterator implementation 1242 1243 template <ComponentKind componentKind> 1244 typename ComponentIterator<componentKind>::const_iterator 1245 ComponentIterator<componentKind>::const_iterator::Create( 1246 const DerivedTypeSpec &derived) { 1247 const_iterator it{}; 1248 it.componentPath_.emplace_back(derived); 1249 it.Increment(); // cue up first relevant component, if any 1250 return it; 1251 } 1252 1253 template <ComponentKind componentKind> 1254 const DerivedTypeSpec * 1255 ComponentIterator<componentKind>::const_iterator::PlanComponentTraversal( 1256 const Symbol &component) const { 1257 if (const auto *details{component.detailsIf<ObjectEntityDetails>()}) { 1258 if (const DeclTypeSpec * type{details->type()}) { 1259 if (const auto *derived{type->AsDerived()}) { 1260 bool traverse{false}; 1261 if constexpr (componentKind == ComponentKind::Ordered) { 1262 // Order Component (only visit parents) 1263 traverse = component.test(Symbol::Flag::ParentComp); 1264 } else if constexpr (componentKind == ComponentKind::Direct) { 1265 traverse = !IsAllocatableOrObjectPointer(&component); 1266 } else if constexpr (componentKind == ComponentKind::Ultimate) { 1267 traverse = !IsAllocatableOrObjectPointer(&component); 1268 } else if constexpr (componentKind == ComponentKind::Potential) { 1269 traverse = !IsPointer(component); 1270 } else if constexpr (componentKind == ComponentKind::Scope) { 1271 traverse = !IsAllocatableOrObjectPointer(&component); 1272 } else if constexpr (componentKind == 1273 ComponentKind::PotentialAndPointer) { 1274 traverse = !IsPointer(component); 1275 } 1276 if (traverse) { 1277 const Symbol &newTypeSymbol{derived->typeSymbol()}; 1278 // Avoid infinite loop if the type is already part of the types 1279 // being visited. It is possible to have "loops in type" because 1280 // C744 does not forbid to use not yet declared type for 1281 // ALLOCATABLE or POINTER components. 1282 for (const auto &node : componentPath_) { 1283 if (&newTypeSymbol == &node.GetTypeSymbol()) { 1284 return nullptr; 1285 } 1286 } 1287 return derived; 1288 } 1289 } 1290 } // intrinsic & unlimited polymorphic not traversable 1291 } 1292 return nullptr; 1293 } 1294 1295 template <ComponentKind componentKind> 1296 static bool StopAtComponentPre(const Symbol &component) { 1297 if constexpr (componentKind == ComponentKind::Ordered) { 1298 // Parent components need to be iterated upon after their 1299 // sub-components in structure constructor analysis. 1300 return !component.test(Symbol::Flag::ParentComp); 1301 } else if constexpr (componentKind == ComponentKind::Direct) { 1302 return true; 1303 } else if constexpr (componentKind == ComponentKind::Ultimate) { 1304 return component.has<ProcEntityDetails>() || 1305 IsAllocatableOrObjectPointer(&component) || 1306 (component.has<ObjectEntityDetails>() && 1307 component.get<ObjectEntityDetails>().type() && 1308 component.get<ObjectEntityDetails>().type()->AsIntrinsic()); 1309 } else if constexpr (componentKind == ComponentKind::Potential) { 1310 return !IsPointer(component); 1311 } else if constexpr (componentKind == ComponentKind::PotentialAndPointer) { 1312 return true; 1313 } else { 1314 DIE("unexpected ComponentKind"); 1315 } 1316 } 1317 1318 template <ComponentKind componentKind> 1319 static bool StopAtComponentPost(const Symbol &component) { 1320 return componentKind == ComponentKind::Ordered && 1321 component.test(Symbol::Flag::ParentComp); 1322 } 1323 1324 template <ComponentKind componentKind> 1325 void ComponentIterator<componentKind>::const_iterator::Increment() { 1326 while (!componentPath_.empty()) { 1327 ComponentPathNode &deepest{componentPath_.back()}; 1328 if (deepest.component()) { 1329 if (!deepest.descended()) { 1330 deepest.set_descended(true); 1331 if (const DerivedTypeSpec * 1332 derived{PlanComponentTraversal(*deepest.component())}) { 1333 componentPath_.emplace_back(*derived); 1334 continue; 1335 } 1336 } else if (!deepest.visited()) { 1337 deepest.set_visited(true); 1338 return; // this is the next component to visit, after descending 1339 } 1340 } 1341 auto &nameIterator{deepest.nameIterator()}; 1342 if (nameIterator == deepest.nameEnd()) { 1343 componentPath_.pop_back(); 1344 } else if constexpr (componentKind == ComponentKind::Scope) { 1345 deepest.set_component(*nameIterator++->second); 1346 deepest.set_descended(false); 1347 deepest.set_visited(true); 1348 return; // this is the next component to visit, before descending 1349 } else { 1350 const Scope &scope{deepest.GetScope()}; 1351 auto scopeIter{scope.find(*nameIterator++)}; 1352 if (scopeIter != scope.cend()) { 1353 const Symbol &component{*scopeIter->second}; 1354 deepest.set_component(component); 1355 deepest.set_descended(false); 1356 if (StopAtComponentPre<componentKind>(component)) { 1357 deepest.set_visited(true); 1358 return; // this is the next component to visit, before descending 1359 } else { 1360 deepest.set_visited(!StopAtComponentPost<componentKind>(component)); 1361 } 1362 } 1363 } 1364 } 1365 } 1366 1367 template <ComponentKind componentKind> 1368 SymbolVector 1369 ComponentIterator<componentKind>::const_iterator::GetComponentPath() const { 1370 SymbolVector result; 1371 for (const auto &node : componentPath_) { 1372 result.push_back(DEREF(node.component())); 1373 } 1374 return result; 1375 } 1376 1377 template <ComponentKind componentKind> 1378 std::string 1379 ComponentIterator<componentKind>::const_iterator::BuildResultDesignatorName() 1380 const { 1381 std::string designator; 1382 for (const Symbol &component : GetComponentPath()) { 1383 designator += "%"s + component.name().ToString(); 1384 } 1385 return designator; 1386 } 1387 1388 template class ComponentIterator<ComponentKind::Ordered>; 1389 template class ComponentIterator<ComponentKind::Direct>; 1390 template class ComponentIterator<ComponentKind::Ultimate>; 1391 template class ComponentIterator<ComponentKind::Potential>; 1392 template class ComponentIterator<ComponentKind::Scope>; 1393 template class ComponentIterator<ComponentKind::PotentialAndPointer>; 1394 1395 UltimateComponentIterator::const_iterator FindCoarrayUltimateComponent( 1396 const DerivedTypeSpec &derived) { 1397 UltimateComponentIterator ultimates{derived}; 1398 return std::find_if(ultimates.begin(), ultimates.end(), 1399 [](const Symbol &symbol) { return evaluate::IsCoarray(symbol); }); 1400 } 1401 1402 UltimateComponentIterator::const_iterator FindPointerUltimateComponent( 1403 const DerivedTypeSpec &derived) { 1404 UltimateComponentIterator ultimates{derived}; 1405 return std::find_if(ultimates.begin(), ultimates.end(), IsPointer); 1406 } 1407 1408 PotentialComponentIterator::const_iterator FindEventOrLockPotentialComponent( 1409 const DerivedTypeSpec &derived, bool ignoreCoarrays) { 1410 PotentialComponentIterator potentials{derived}; 1411 auto iter{potentials.begin()}; 1412 for (auto end{potentials.end()}; iter != end; ++iter) { 1413 const Symbol &component{*iter}; 1414 if (const auto *object{component.detailsIf<ObjectEntityDetails>()}) { 1415 if (const DeclTypeSpec * type{object->type()}) { 1416 if (IsEventTypeOrLockType(type->AsDerived())) { 1417 if (!ignoreCoarrays) { 1418 break; // found one 1419 } 1420 auto path{iter.GetComponentPath()}; 1421 path.pop_back(); 1422 if (std::find_if(path.begin(), path.end(), [](const Symbol &sym) { 1423 return evaluate::IsCoarray(sym); 1424 }) == path.end()) { 1425 break; // found one not in a coarray 1426 } 1427 } 1428 } 1429 } 1430 } 1431 return iter; 1432 } 1433 1434 UltimateComponentIterator::const_iterator FindAllocatableUltimateComponent( 1435 const DerivedTypeSpec &derived) { 1436 UltimateComponentIterator ultimates{derived}; 1437 return std::find_if(ultimates.begin(), ultimates.end(), IsAllocatable); 1438 } 1439 1440 DirectComponentIterator::const_iterator FindAllocatableOrPointerDirectComponent( 1441 const DerivedTypeSpec &derived) { 1442 DirectComponentIterator directs{derived}; 1443 return std::find_if(directs.begin(), directs.end(), IsAllocatableOrPointer); 1444 } 1445 1446 PotentialComponentIterator::const_iterator 1447 FindPolymorphicAllocatablePotentialComponent(const DerivedTypeSpec &derived) { 1448 PotentialComponentIterator potentials{derived}; 1449 return std::find_if( 1450 potentials.begin(), potentials.end(), IsPolymorphicAllocatable); 1451 } 1452 1453 const Symbol *FindUltimateComponent(const DerivedTypeSpec &derived, 1454 const std::function<bool(const Symbol &)> &predicate) { 1455 UltimateComponentIterator ultimates{derived}; 1456 if (auto it{std::find_if(ultimates.begin(), ultimates.end(), 1457 [&predicate](const Symbol &component) -> bool { 1458 return predicate(component); 1459 })}) { 1460 return &*it; 1461 } 1462 return nullptr; 1463 } 1464 1465 const Symbol *FindUltimateComponent(const Symbol &symbol, 1466 const std::function<bool(const Symbol &)> &predicate) { 1467 if (predicate(symbol)) { 1468 return &symbol; 1469 } else if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) { 1470 if (const auto *type{object->type()}) { 1471 if (const auto *derived{type->AsDerived()}) { 1472 return FindUltimateComponent(*derived, predicate); 1473 } 1474 } 1475 } 1476 return nullptr; 1477 } 1478 1479 const Symbol *FindImmediateComponent(const DerivedTypeSpec &type, 1480 const std::function<bool(const Symbol &)> &predicate) { 1481 if (const Scope * scope{type.scope()}) { 1482 const Symbol *parent{nullptr}; 1483 for (const auto &pair : *scope) { 1484 const Symbol *symbol{&*pair.second}; 1485 if (predicate(*symbol)) { 1486 return symbol; 1487 } 1488 if (symbol->test(Symbol::Flag::ParentComp)) { 1489 parent = symbol; 1490 } 1491 } 1492 if (parent) { 1493 if (const auto *object{parent->detailsIf<ObjectEntityDetails>()}) { 1494 if (const auto *type{object->type()}) { 1495 if (const auto *derived{type->AsDerived()}) { 1496 return FindImmediateComponent(*derived, predicate); 1497 } 1498 } 1499 } 1500 } 1501 } 1502 return nullptr; 1503 } 1504 1505 const Symbol *IsFunctionResultWithSameNameAsFunction(const Symbol &symbol) { 1506 if (IsFunctionResult(symbol)) { 1507 if (const Symbol * function{symbol.owner().symbol()}) { 1508 if (symbol.name() == function->name()) { 1509 return function; 1510 } 1511 } 1512 // Check ENTRY result symbols too 1513 const Scope &outer{symbol.owner().parent()}; 1514 auto iter{outer.find(symbol.name())}; 1515 if (iter != outer.end()) { 1516 const Symbol &outerSym{*iter->second}; 1517 if (const auto *subp{outerSym.detailsIf<SubprogramDetails>()}) { 1518 if (subp->entryScope() == &symbol.owner() && 1519 symbol.name() == outerSym.name()) { 1520 return &outerSym; 1521 } 1522 } 1523 } 1524 } 1525 return nullptr; 1526 } 1527 1528 void LabelEnforce::Post(const parser::GotoStmt &gotoStmt) { 1529 CheckLabelUse(gotoStmt.v); 1530 } 1531 void LabelEnforce::Post(const parser::ComputedGotoStmt &computedGotoStmt) { 1532 for (auto &i : std::get<std::list<parser::Label>>(computedGotoStmt.t)) { 1533 CheckLabelUse(i); 1534 } 1535 } 1536 1537 void LabelEnforce::Post(const parser::ArithmeticIfStmt &arithmeticIfStmt) { 1538 CheckLabelUse(std::get<1>(arithmeticIfStmt.t)); 1539 CheckLabelUse(std::get<2>(arithmeticIfStmt.t)); 1540 CheckLabelUse(std::get<3>(arithmeticIfStmt.t)); 1541 } 1542 1543 void LabelEnforce::Post(const parser::AssignStmt &assignStmt) { 1544 CheckLabelUse(std::get<parser::Label>(assignStmt.t)); 1545 } 1546 1547 void LabelEnforce::Post(const parser::AssignedGotoStmt &assignedGotoStmt) { 1548 for (auto &i : std::get<std::list<parser::Label>>(assignedGotoStmt.t)) { 1549 CheckLabelUse(i); 1550 } 1551 } 1552 1553 void LabelEnforce::Post(const parser::AltReturnSpec &altReturnSpec) { 1554 CheckLabelUse(altReturnSpec.v); 1555 } 1556 1557 void LabelEnforce::Post(const parser::ErrLabel &errLabel) { 1558 CheckLabelUse(errLabel.v); 1559 } 1560 void LabelEnforce::Post(const parser::EndLabel &endLabel) { 1561 CheckLabelUse(endLabel.v); 1562 } 1563 void LabelEnforce::Post(const parser::EorLabel &eorLabel) { 1564 CheckLabelUse(eorLabel.v); 1565 } 1566 1567 void LabelEnforce::CheckLabelUse(const parser::Label &labelUsed) { 1568 if (labels_.find(labelUsed) == labels_.end()) { 1569 SayWithConstruct(context_, currentStatementSourcePosition_, 1570 parser::MessageFormattedText{ 1571 "Control flow escapes from %s"_err_en_US, construct_}, 1572 constructSourcePosition_); 1573 } 1574 } 1575 1576 parser::MessageFormattedText LabelEnforce::GetEnclosingConstructMsg() { 1577 return {"Enclosing %s statement"_en_US, construct_}; 1578 } 1579 1580 void LabelEnforce::SayWithConstruct(SemanticsContext &context, 1581 parser::CharBlock stmtLocation, parser::MessageFormattedText &&message, 1582 parser::CharBlock constructLocation) { 1583 context.Say(stmtLocation, message) 1584 .Attach(constructLocation, GetEnclosingConstructMsg()); 1585 } 1586 1587 bool HasAlternateReturns(const Symbol &subprogram) { 1588 for (const auto *dummyArg : subprogram.get<SubprogramDetails>().dummyArgs()) { 1589 if (!dummyArg) { 1590 return true; 1591 } 1592 } 1593 return false; 1594 } 1595 1596 bool IsAutomaticallyDestroyed(const Symbol &symbol) { 1597 return symbol.has<ObjectEntityDetails>() && 1598 (symbol.owner().kind() == Scope::Kind::Subprogram || 1599 symbol.owner().kind() == Scope::Kind::BlockConstruct) && 1600 !IsNamedConstant(symbol) && (!IsDummy(symbol) || IsIntentOut(symbol)) && 1601 !IsPointer(symbol) && !IsSaved(symbol) && 1602 !FindCommonBlockContaining(symbol); 1603 } 1604 1605 const std::optional<parser::Name> &MaybeGetNodeName( 1606 const ConstructNode &construct) { 1607 return common::visit( 1608 common::visitors{ 1609 [&](const parser::BlockConstruct *blockConstruct) 1610 -> const std::optional<parser::Name> & { 1611 return std::get<0>(blockConstruct->t).statement.v; 1612 }, 1613 [&](const auto *a) -> const std::optional<parser::Name> & { 1614 return std::get<0>(std::get<0>(a->t).statement.t); 1615 }, 1616 }, 1617 construct); 1618 } 1619 1620 std::optional<ArraySpec> ToArraySpec( 1621 evaluate::FoldingContext &context, const evaluate::Shape &shape) { 1622 if (auto extents{evaluate::AsConstantExtents(context, shape)}; 1623 extents && !evaluate::HasNegativeExtent(*extents)) { 1624 ArraySpec result; 1625 for (const auto &extent : *extents) { 1626 result.emplace_back(ShapeSpec::MakeExplicit(Bound{extent})); 1627 } 1628 return {std::move(result)}; 1629 } else { 1630 return std::nullopt; 1631 } 1632 } 1633 1634 std::optional<ArraySpec> ToArraySpec(evaluate::FoldingContext &context, 1635 const std::optional<evaluate::Shape> &shape) { 1636 return shape ? ToArraySpec(context, *shape) : std::nullopt; 1637 } 1638 1639 static const DeclTypeSpec *GetDtvArgTypeSpec(const Symbol &proc) { 1640 if (const auto *subp{proc.detailsIf<SubprogramDetails>()}; 1641 subp && !subp->dummyArgs().empty()) { 1642 if (const auto *arg{subp->dummyArgs()[0]}) { 1643 return arg->GetType(); 1644 } 1645 } 1646 return nullptr; 1647 } 1648 1649 const DerivedTypeSpec *GetDtvArgDerivedType(const Symbol &proc) { 1650 if (const auto *type{GetDtvArgTypeSpec(proc)}) { 1651 return type->AsDerived(); 1652 } else { 1653 return nullptr; 1654 } 1655 } 1656 1657 bool HasDefinedIo(common::DefinedIo which, const DerivedTypeSpec &derived, 1658 const Scope *scope) { 1659 if (const Scope * dtScope{derived.scope()}) { 1660 for (const auto &pair : *dtScope) { 1661 const Symbol &symbol{*pair.second}; 1662 if (const auto *generic{symbol.detailsIf<GenericDetails>()}) { 1663 GenericKind kind{generic->kind()}; 1664 if (const auto *io{std::get_if<common::DefinedIo>(&kind.u)}) { 1665 if (*io == which) { 1666 return true; // type-bound GENERIC exists 1667 } 1668 } 1669 } 1670 } 1671 } 1672 if (scope) { 1673 SourceName name{GenericKind::AsFortran(which)}; 1674 evaluate::DynamicType dyDerived{derived}; 1675 for (; scope && !scope->IsGlobal(); scope = &scope->parent()) { 1676 auto iter{scope->find(name)}; 1677 if (iter != scope->end()) { 1678 const auto &generic{iter->second->GetUltimate().get<GenericDetails>()}; 1679 for (auto ref : generic.specificProcs()) { 1680 const Symbol &procSym{ref->GetUltimate()}; 1681 if (const DeclTypeSpec * dtSpec{GetDtvArgTypeSpec(procSym)}) { 1682 if (auto dyDummy{evaluate::DynamicType::From(*dtSpec)}) { 1683 if (dyDummy->IsTkCompatibleWith(dyDerived)) { 1684 return true; // GENERIC or INTERFACE not in type 1685 } 1686 } 1687 } 1688 } 1689 } 1690 } 1691 } 1692 // Check for inherited defined I/O 1693 const auto *parentType{derived.typeSymbol().GetParentTypeSpec()}; 1694 return parentType && HasDefinedIo(which, *parentType, scope); 1695 } 1696 1697 template <typename E> 1698 std::forward_list<std::string> GetOperatorNames( 1699 const SemanticsContext &context, E opr) { 1700 std::forward_list<std::string> result; 1701 for (const char *name : context.languageFeatures().GetNames(opr)) { 1702 result.emplace_front("operator("s + name + ')'); 1703 } 1704 return result; 1705 } 1706 1707 std::forward_list<std::string> GetAllNames( 1708 const SemanticsContext &context, const SourceName &name) { 1709 std::string str{name.ToString()}; 1710 if (!name.empty() && name.end()[-1] == ')' && 1711 name.ToString().rfind("operator(", 0) == 0) { 1712 for (int i{0}; i != common::LogicalOperator_enumSize; ++i) { 1713 auto names{GetOperatorNames(context, common::LogicalOperator{i})}; 1714 if (llvm::is_contained(names, str)) { 1715 return names; 1716 } 1717 } 1718 for (int i{0}; i != common::RelationalOperator_enumSize; ++i) { 1719 auto names{GetOperatorNames(context, common::RelationalOperator{i})}; 1720 if (llvm::is_contained(names, str)) { 1721 return names; 1722 } 1723 } 1724 } 1725 return {str}; 1726 } 1727 1728 void WarnOnDeferredLengthCharacterScalar(SemanticsContext &context, 1729 const SomeExpr *expr, parser::CharBlock at, const char *what) { 1730 if (context.languageFeatures().ShouldWarn( 1731 common::UsageWarning::F202XAllocatableBreakingChange)) { 1732 if (const Symbol * 1733 symbol{evaluate::UnwrapWholeSymbolOrComponentDataRef(expr)}) { 1734 const Symbol &ultimate{ResolveAssociations(*symbol)}; 1735 if (const DeclTypeSpec * type{ultimate.GetType()}; type && 1736 type->category() == DeclTypeSpec::Category::Character && 1737 type->characterTypeSpec().length().isDeferred() && 1738 IsAllocatable(ultimate) && ultimate.Rank() == 0) { 1739 context.Say(at, 1740 "The deferred length allocatable character scalar variable '%s' may be reallocated to a different length under the new Fortran 202X standard semantics for %s"_port_en_US, 1741 symbol->name(), what); 1742 } 1743 } 1744 } 1745 } 1746 1747 bool CouldBeDataPointerValuedFunction(const Symbol *original) { 1748 if (original) { 1749 const Symbol &ultimate{original->GetUltimate()}; 1750 if (const Symbol * result{FindFunctionResult(ultimate)}) { 1751 return IsPointer(*result) && !IsProcedure(*result); 1752 } 1753 if (const auto *generic{ultimate.detailsIf<GenericDetails>()}) { 1754 for (const SymbolRef &ref : generic->specificProcs()) { 1755 if (CouldBeDataPointerValuedFunction(&*ref)) { 1756 return true; 1757 } 1758 } 1759 } 1760 } 1761 return false; 1762 } 1763 1764 std::string GetModuleOrSubmoduleName(const Symbol &symbol) { 1765 const auto &details{symbol.get<ModuleDetails>()}; 1766 std::string result{symbol.name().ToString()}; 1767 if (details.ancestor() && details.ancestor()->symbol()) { 1768 result = details.ancestor()->symbol()->name().ToString() + ':' + result; 1769 } 1770 return result; 1771 } 1772 1773 std::string GetCommonBlockObjectName(const Symbol &common, bool underscoring) { 1774 if (const std::string * bind{common.GetBindName()}) { 1775 return *bind; 1776 } 1777 if (common.name().empty()) { 1778 return Fortran::common::blankCommonObjectName; 1779 } 1780 return underscoring ? common.name().ToString() + "_"s 1781 : common.name().ToString(); 1782 } 1783 1784 bool HadUseError( 1785 SemanticsContext &context, SourceName at, const Symbol *symbol) { 1786 if (const auto *details{ 1787 symbol ? symbol->detailsIf<UseErrorDetails>() : nullptr}) { 1788 auto &msg{context.Say( 1789 at, "Reference to '%s' is ambiguous"_err_en_US, symbol->name())}; 1790 for (const auto &[location, sym] : details->occurrences()) { 1791 const Symbol &ultimate{sym->GetUltimate()}; 1792 auto &attachment{ 1793 msg.Attach(location, "'%s' was use-associated from module '%s'"_en_US, 1794 at, sym->owner().GetName().value())}; 1795 if (&*sym != &ultimate) { 1796 // For incompatible definitions where one comes from a hermetic 1797 // module file's incorporated dependences and the other from another 1798 // module of the same name. 1799 attachment.Attach(ultimate.name(), 1800 "ultimately from '%s' in module '%s'"_en_US, ultimate.name(), 1801 ultimate.owner().GetName().value()); 1802 } 1803 } 1804 context.SetError(*symbol); 1805 return true; 1806 } else { 1807 return false; 1808 } 1809 } 1810 1811 } // namespace Fortran::semantics 1812