1 //==- llvm/CodeGen/GlobalISel/RegBankSelect.cpp - RegBankSelect --*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements the RegBankSelect class.
10 //===----------------------------------------------------------------------===//
11
12 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
13 #include "llvm/ADT/PostOrderIterator.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
17 #include "llvm/CodeGen/GlobalISel/Utils.h"
18 #include "llvm/CodeGen/MachineBasicBlock.h"
19 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
20 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineOperand.h"
24 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/RegisterBank.h"
27 #include "llvm/CodeGen/RegisterBankInfo.h"
28 #include "llvm/CodeGen/TargetOpcodes.h"
29 #include "llvm/CodeGen/TargetPassConfig.h"
30 #include "llvm/CodeGen/TargetRegisterInfo.h"
31 #include "llvm/CodeGen/TargetSubtargetInfo.h"
32 #include "llvm/Config/llvm-config.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/InitializePasses.h"
35 #include "llvm/Pass.h"
36 #include "llvm/Support/BlockFrequency.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/Compiler.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include <algorithm>
43 #include <cassert>
44 #include <cstdint>
45 #include <limits>
46 #include <memory>
47 #include <utility>
48
49 #define DEBUG_TYPE "regbankselect"
50
51 using namespace llvm;
52
53 static cl::opt<RegBankSelect::Mode> RegBankSelectMode(
54 cl::desc("Mode of the RegBankSelect pass"), cl::Hidden, cl::Optional,
55 cl::values(clEnumValN(RegBankSelect::Mode::Fast, "regbankselect-fast",
56 "Run the Fast mode (default mapping)"),
57 clEnumValN(RegBankSelect::Mode::Greedy, "regbankselect-greedy",
58 "Use the Greedy mode (best local mapping)")));
59
60 char RegBankSelect::ID = 0;
61
62 INITIALIZE_PASS_BEGIN(RegBankSelect, DEBUG_TYPE,
63 "Assign register bank of generic virtual registers",
64 false, false);
65 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)66 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
67 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
68 INITIALIZE_PASS_END(RegBankSelect, DEBUG_TYPE,
69 "Assign register bank of generic virtual registers", false,
70 false)
71
72 RegBankSelect::RegBankSelect(Mode RunningMode)
73 : MachineFunctionPass(ID), OptMode(RunningMode) {
74 if (RegBankSelectMode.getNumOccurrences() != 0) {
75 OptMode = RegBankSelectMode;
76 if (RegBankSelectMode != RunningMode)
77 LLVM_DEBUG(dbgs() << "RegBankSelect mode overrided by command line\n");
78 }
79 }
80
init(MachineFunction & MF)81 void RegBankSelect::init(MachineFunction &MF) {
82 RBI = MF.getSubtarget().getRegBankInfo();
83 assert(RBI && "Cannot work without RegisterBankInfo");
84 MRI = &MF.getRegInfo();
85 TRI = MF.getSubtarget().getRegisterInfo();
86 TPC = &getAnalysis<TargetPassConfig>();
87 if (OptMode != Mode::Fast) {
88 MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
89 MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
90 } else {
91 MBFI = nullptr;
92 MBPI = nullptr;
93 }
94 MIRBuilder.setMF(MF);
95 MORE = std::make_unique<MachineOptimizationRemarkEmitter>(MF, MBFI);
96 }
97
getAnalysisUsage(AnalysisUsage & AU) const98 void RegBankSelect::getAnalysisUsage(AnalysisUsage &AU) const {
99 if (OptMode != Mode::Fast) {
100 // We could preserve the information from these two analysis but
101 // the APIs do not allow to do so yet.
102 AU.addRequired<MachineBlockFrequencyInfo>();
103 AU.addRequired<MachineBranchProbabilityInfo>();
104 }
105 AU.addRequired<TargetPassConfig>();
106 getSelectionDAGFallbackAnalysisUsage(AU);
107 MachineFunctionPass::getAnalysisUsage(AU);
108 }
109
assignmentMatch(Register Reg,const RegisterBankInfo::ValueMapping & ValMapping,bool & OnlyAssign) const110 bool RegBankSelect::assignmentMatch(
111 Register Reg, const RegisterBankInfo::ValueMapping &ValMapping,
112 bool &OnlyAssign) const {
113 // By default we assume we will have to repair something.
114 OnlyAssign = false;
115 // Each part of a break down needs to end up in a different register.
116 // In other word, Reg assignment does not match.
117 if (ValMapping.NumBreakDowns != 1)
118 return false;
119
120 const RegisterBank *CurRegBank = RBI->getRegBank(Reg, *MRI, *TRI);
121 const RegisterBank *DesiredRegBank = ValMapping.BreakDown[0].RegBank;
122 // Reg is free of assignment, a simple assignment will make the
123 // register bank to match.
124 OnlyAssign = CurRegBank == nullptr;
125 LLVM_DEBUG(dbgs() << "Does assignment already match: ";
126 if (CurRegBank) dbgs() << *CurRegBank; else dbgs() << "none";
127 dbgs() << " against ";
128 assert(DesiredRegBank && "The mapping must be valid");
129 dbgs() << *DesiredRegBank << '\n';);
130 return CurRegBank == DesiredRegBank;
131 }
132
repairReg(MachineOperand & MO,const RegisterBankInfo::ValueMapping & ValMapping,RegBankSelect::RepairingPlacement & RepairPt,const iterator_range<SmallVectorImpl<Register>::const_iterator> & NewVRegs)133 bool RegBankSelect::repairReg(
134 MachineOperand &MO, const RegisterBankInfo::ValueMapping &ValMapping,
135 RegBankSelect::RepairingPlacement &RepairPt,
136 const iterator_range<SmallVectorImpl<Register>::const_iterator> &NewVRegs) {
137
138 assert(ValMapping.NumBreakDowns == (unsigned)size(NewVRegs) &&
139 "need new vreg for each breakdown");
140
141 // An empty range of new register means no repairing.
142 assert(!NewVRegs.empty() && "We should not have to repair");
143
144 MachineInstr *MI;
145 if (ValMapping.NumBreakDowns == 1) {
146 // Assume we are repairing a use and thus, the original reg will be
147 // the source of the repairing.
148 Register Src = MO.getReg();
149 Register Dst = *NewVRegs.begin();
150
151 // If we repair a definition, swap the source and destination for
152 // the repairing.
153 if (MO.isDef())
154 std::swap(Src, Dst);
155
156 assert((RepairPt.getNumInsertPoints() == 1 || Dst.isPhysical()) &&
157 "We are about to create several defs for Dst");
158
159 // Build the instruction used to repair, then clone it at the right
160 // places. Avoiding buildCopy bypasses the check that Src and Dst have the
161 // same types because the type is a placeholder when this function is called.
162 MI = MIRBuilder.buildInstrNoInsert(TargetOpcode::COPY)
163 .addDef(Dst)
164 .addUse(Src);
165 LLVM_DEBUG(dbgs() << "Copy: " << printReg(Src) << " to: " << printReg(Dst)
166 << '\n');
167 } else {
168 // TODO: Support with G_IMPLICIT_DEF + G_INSERT sequence or G_EXTRACT
169 // sequence.
170 assert(ValMapping.partsAllUniform() && "irregular breakdowns not supported");
171
172 LLT RegTy = MRI->getType(MO.getReg());
173 if (MO.isDef()) {
174 unsigned MergeOp;
175 if (RegTy.isVector()) {
176 if (ValMapping.NumBreakDowns == RegTy.getNumElements())
177 MergeOp = TargetOpcode::G_BUILD_VECTOR;
178 else {
179 assert(
180 (ValMapping.BreakDown[0].Length * ValMapping.NumBreakDowns ==
181 RegTy.getSizeInBits()) &&
182 (ValMapping.BreakDown[0].Length % RegTy.getScalarSizeInBits() ==
183 0) &&
184 "don't understand this value breakdown");
185
186 MergeOp = TargetOpcode::G_CONCAT_VECTORS;
187 }
188 } else
189 MergeOp = TargetOpcode::G_MERGE_VALUES;
190
191 auto MergeBuilder =
192 MIRBuilder.buildInstrNoInsert(MergeOp)
193 .addDef(MO.getReg());
194
195 for (Register SrcReg : NewVRegs)
196 MergeBuilder.addUse(SrcReg);
197
198 MI = MergeBuilder;
199 } else {
200 MachineInstrBuilder UnMergeBuilder =
201 MIRBuilder.buildInstrNoInsert(TargetOpcode::G_UNMERGE_VALUES);
202 for (Register DefReg : NewVRegs)
203 UnMergeBuilder.addDef(DefReg);
204
205 UnMergeBuilder.addUse(MO.getReg());
206 MI = UnMergeBuilder;
207 }
208 }
209
210 if (RepairPt.getNumInsertPoints() != 1)
211 report_fatal_error("need testcase to support multiple insertion points");
212
213 // TODO:
214 // Check if MI is legal. if not, we need to legalize all the
215 // instructions we are going to insert.
216 std::unique_ptr<MachineInstr *[]> NewInstrs(
217 new MachineInstr *[RepairPt.getNumInsertPoints()]);
218 bool IsFirst = true;
219 unsigned Idx = 0;
220 for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) {
221 MachineInstr *CurMI;
222 if (IsFirst)
223 CurMI = MI;
224 else
225 CurMI = MIRBuilder.getMF().CloneMachineInstr(MI);
226 InsertPt->insert(*CurMI);
227 NewInstrs[Idx++] = CurMI;
228 IsFirst = false;
229 }
230 // TODO:
231 // Legalize NewInstrs if need be.
232 return true;
233 }
234
getRepairCost(const MachineOperand & MO,const RegisterBankInfo::ValueMapping & ValMapping) const235 uint64_t RegBankSelect::getRepairCost(
236 const MachineOperand &MO,
237 const RegisterBankInfo::ValueMapping &ValMapping) const {
238 assert(MO.isReg() && "We should only repair register operand");
239 assert(ValMapping.NumBreakDowns && "Nothing to map??");
240
241 bool IsSameNumOfValues = ValMapping.NumBreakDowns == 1;
242 const RegisterBank *CurRegBank = RBI->getRegBank(MO.getReg(), *MRI, *TRI);
243 // If MO does not have a register bank, we should have just been
244 // able to set one unless we have to break the value down.
245 assert(CurRegBank || MO.isDef());
246
247 // Def: Val <- NewDefs
248 // Same number of values: copy
249 // Different number: Val = build_sequence Defs1, Defs2, ...
250 // Use: NewSources <- Val.
251 // Same number of values: copy.
252 // Different number: Src1, Src2, ... =
253 // extract_value Val, Src1Begin, Src1Len, Src2Begin, Src2Len, ...
254 // We should remember that this value is available somewhere else to
255 // coalesce the value.
256
257 if (ValMapping.NumBreakDowns != 1)
258 return RBI->getBreakDownCost(ValMapping, CurRegBank);
259
260 if (IsSameNumOfValues) {
261 const RegisterBank *DesiredRegBank = ValMapping.BreakDown[0].RegBank;
262 // If we repair a definition, swap the source and destination for
263 // the repairing.
264 if (MO.isDef())
265 std::swap(CurRegBank, DesiredRegBank);
266 // TODO: It may be possible to actually avoid the copy.
267 // If we repair something where the source is defined by a copy
268 // and the source of that copy is on the right bank, we can reuse
269 // it for free.
270 // E.g.,
271 // RegToRepair<BankA> = copy AlternativeSrc<BankB>
272 // = op RegToRepair<BankA>
273 // We can simply propagate AlternativeSrc instead of copying RegToRepair
274 // into a new virtual register.
275 // We would also need to propagate this information in the
276 // repairing placement.
277 unsigned Cost = RBI->copyCost(*DesiredRegBank, *CurRegBank,
278 RBI->getSizeInBits(MO.getReg(), *MRI, *TRI));
279 // TODO: use a dedicated constant for ImpossibleCost.
280 if (Cost != std::numeric_limits<unsigned>::max())
281 return Cost;
282 // Return the legalization cost of that repairing.
283 }
284 return std::numeric_limits<unsigned>::max();
285 }
286
findBestMapping(MachineInstr & MI,RegisterBankInfo::InstructionMappings & PossibleMappings,SmallVectorImpl<RepairingPlacement> & RepairPts)287 const RegisterBankInfo::InstructionMapping &RegBankSelect::findBestMapping(
288 MachineInstr &MI, RegisterBankInfo::InstructionMappings &PossibleMappings,
289 SmallVectorImpl<RepairingPlacement> &RepairPts) {
290 assert(!PossibleMappings.empty() &&
291 "Do not know how to map this instruction");
292
293 const RegisterBankInfo::InstructionMapping *BestMapping = nullptr;
294 MappingCost Cost = MappingCost::ImpossibleCost();
295 SmallVector<RepairingPlacement, 4> LocalRepairPts;
296 for (const RegisterBankInfo::InstructionMapping *CurMapping :
297 PossibleMappings) {
298 MappingCost CurCost =
299 computeMapping(MI, *CurMapping, LocalRepairPts, &Cost);
300 if (CurCost < Cost) {
301 LLVM_DEBUG(dbgs() << "New best: " << CurCost << '\n');
302 Cost = CurCost;
303 BestMapping = CurMapping;
304 RepairPts.clear();
305 for (RepairingPlacement &RepairPt : LocalRepairPts)
306 RepairPts.emplace_back(std::move(RepairPt));
307 }
308 }
309 if (!BestMapping && !TPC->isGlobalISelAbortEnabled()) {
310 // If none of the mapping worked that means they are all impossible.
311 // Thus, pick the first one and set an impossible repairing point.
312 // It will trigger the failed isel mode.
313 BestMapping = *PossibleMappings.begin();
314 RepairPts.emplace_back(
315 RepairingPlacement(MI, 0, *TRI, *this, RepairingPlacement::Impossible));
316 } else
317 assert(BestMapping && "No suitable mapping for instruction");
318 return *BestMapping;
319 }
320
tryAvoidingSplit(RegBankSelect::RepairingPlacement & RepairPt,const MachineOperand & MO,const RegisterBankInfo::ValueMapping & ValMapping) const321 void RegBankSelect::tryAvoidingSplit(
322 RegBankSelect::RepairingPlacement &RepairPt, const MachineOperand &MO,
323 const RegisterBankInfo::ValueMapping &ValMapping) const {
324 const MachineInstr &MI = *MO.getParent();
325 assert(RepairPt.hasSplit() && "We should not have to adjust for split");
326 // Splitting should only occur for PHIs or between terminators,
327 // because we only do local repairing.
328 assert((MI.isPHI() || MI.isTerminator()) && "Why do we split?");
329
330 assert(&MI.getOperand(RepairPt.getOpIdx()) == &MO &&
331 "Repairing placement does not match operand");
332
333 // If we need splitting for phis, that means it is because we
334 // could not find an insertion point before the terminators of
335 // the predecessor block for this argument. In other words,
336 // the input value is defined by one of the terminators.
337 assert((!MI.isPHI() || !MO.isDef()) && "Need split for phi def?");
338
339 // We split to repair the use of a phi or a terminator.
340 if (!MO.isDef()) {
341 if (MI.isTerminator()) {
342 assert(&MI != &(*MI.getParent()->getFirstTerminator()) &&
343 "Need to split for the first terminator?!");
344 } else {
345 // For the PHI case, the split may not be actually required.
346 // In the copy case, a phi is already a copy on the incoming edge,
347 // therefore there is no need to split.
348 if (ValMapping.NumBreakDowns == 1)
349 // This is a already a copy, there is nothing to do.
350 RepairPt.switchTo(RepairingPlacement::RepairingKind::Reassign);
351 }
352 return;
353 }
354
355 // At this point, we need to repair a defintion of a terminator.
356
357 // Technically we need to fix the def of MI on all outgoing
358 // edges of MI to keep the repairing local. In other words, we
359 // will create several definitions of the same register. This
360 // does not work for SSA unless that definition is a physical
361 // register.
362 // However, there are other cases where we can get away with
363 // that while still keeping the repairing local.
364 assert(MI.isTerminator() && MO.isDef() &&
365 "This code is for the def of a terminator");
366
367 // Since we use RPO traversal, if we need to repair a definition
368 // this means this definition could be:
369 // 1. Used by PHIs (i.e., this VReg has been visited as part of the
370 // uses of a phi.), or
371 // 2. Part of a target specific instruction (i.e., the target applied
372 // some register class constraints when creating the instruction.)
373 // If the constraints come for #2, the target said that another mapping
374 // is supported so we may just drop them. Indeed, if we do not change
375 // the number of registers holding that value, the uses will get fixed
376 // when we get to them.
377 // Uses in PHIs may have already been proceeded though.
378 // If the constraints come for #1, then, those are weak constraints and
379 // no actual uses may rely on them. However, the problem remains mainly
380 // the same as for #2. If the value stays in one register, we could
381 // just switch the register bank of the definition, but we would need to
382 // account for a repairing cost for each phi we silently change.
383 //
384 // In any case, if the value needs to be broken down into several
385 // registers, the repairing is not local anymore as we need to patch
386 // every uses to rebuild the value in just one register.
387 //
388 // To summarize:
389 // - If the value is in a physical register, we can do the split and
390 // fix locally.
391 // Otherwise if the value is in a virtual register:
392 // - If the value remains in one register, we do not have to split
393 // just switching the register bank would do, but we need to account
394 // in the repairing cost all the phi we changed.
395 // - If the value spans several registers, then we cannot do a local
396 // repairing.
397
398 // Check if this is a physical or virtual register.
399 Register Reg = MO.getReg();
400 if (Reg.isPhysical()) {
401 // We are going to split every outgoing edges.
402 // Check that this is possible.
403 // FIXME: The machine representation is currently broken
404 // since it also several terminators in one basic block.
405 // Because of that we would technically need a way to get
406 // the targets of just one terminator to know which edges
407 // we have to split.
408 // Assert that we do not hit the ill-formed representation.
409
410 // If there are other terminators before that one, some of
411 // the outgoing edges may not be dominated by this definition.
412 assert(&MI == &(*MI.getParent()->getFirstTerminator()) &&
413 "Do not know which outgoing edges are relevant");
414 const MachineInstr *Next = MI.getNextNode();
415 assert((!Next || Next->isUnconditionalBranch()) &&
416 "Do not know where each terminator ends up");
417 if (Next)
418 // If the next terminator uses Reg, this means we have
419 // to split right after MI and thus we need a way to ask
420 // which outgoing edges are affected.
421 assert(!Next->readsRegister(Reg) && "Need to split between terminators");
422 // We will split all the edges and repair there.
423 } else {
424 // This is a virtual register defined by a terminator.
425 if (ValMapping.NumBreakDowns == 1) {
426 // There is nothing to repair, but we may actually lie on
427 // the repairing cost because of the PHIs already proceeded
428 // as already stated.
429 // Though the code will be correct.
430 assert(false && "Repairing cost may not be accurate");
431 } else {
432 // We need to do non-local repairing. Basically, patch all
433 // the uses (i.e., phis) that we already proceeded.
434 // For now, just say this mapping is not possible.
435 RepairPt.switchTo(RepairingPlacement::RepairingKind::Impossible);
436 }
437 }
438 }
439
computeMapping(MachineInstr & MI,const RegisterBankInfo::InstructionMapping & InstrMapping,SmallVectorImpl<RepairingPlacement> & RepairPts,const RegBankSelect::MappingCost * BestCost)440 RegBankSelect::MappingCost RegBankSelect::computeMapping(
441 MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping,
442 SmallVectorImpl<RepairingPlacement> &RepairPts,
443 const RegBankSelect::MappingCost *BestCost) {
444 assert((MBFI || !BestCost) && "Costs comparison require MBFI");
445
446 if (!InstrMapping.isValid())
447 return MappingCost::ImpossibleCost();
448
449 // If mapped with InstrMapping, MI will have the recorded cost.
450 MappingCost Cost(MBFI ? MBFI->getBlockFreq(MI.getParent()) : 1);
451 bool Saturated = Cost.addLocalCost(InstrMapping.getCost());
452 assert(!Saturated && "Possible mapping saturated the cost");
453 LLVM_DEBUG(dbgs() << "Evaluating mapping cost for: " << MI);
454 LLVM_DEBUG(dbgs() << "With: " << InstrMapping << '\n');
455 RepairPts.clear();
456 if (BestCost && Cost > *BestCost) {
457 LLVM_DEBUG(dbgs() << "Mapping is too expensive from the start\n");
458 return Cost;
459 }
460 const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
461
462 // Moreover, to realize this mapping, the register bank of each operand must
463 // match this mapping. In other words, we may need to locally reassign the
464 // register banks. Account for that repairing cost as well.
465 // In this context, local means in the surrounding of MI.
466 for (unsigned OpIdx = 0, EndOpIdx = InstrMapping.getNumOperands();
467 OpIdx != EndOpIdx; ++OpIdx) {
468 const MachineOperand &MO = MI.getOperand(OpIdx);
469 if (!MO.isReg())
470 continue;
471 Register Reg = MO.getReg();
472 if (!Reg)
473 continue;
474 LLT Ty = MRI.getType(Reg);
475 if (!Ty.isValid())
476 continue;
477
478 LLVM_DEBUG(dbgs() << "Opd" << OpIdx << '\n');
479 const RegisterBankInfo::ValueMapping &ValMapping =
480 InstrMapping.getOperandMapping(OpIdx);
481 // If Reg is already properly mapped, this is free.
482 bool Assign;
483 if (assignmentMatch(Reg, ValMapping, Assign)) {
484 LLVM_DEBUG(dbgs() << "=> is free (match).\n");
485 continue;
486 }
487 if (Assign) {
488 LLVM_DEBUG(dbgs() << "=> is free (simple assignment).\n");
489 RepairPts.emplace_back(RepairingPlacement(MI, OpIdx, *TRI, *this,
490 RepairingPlacement::Reassign));
491 continue;
492 }
493
494 // Find the insertion point for the repairing code.
495 RepairPts.emplace_back(
496 RepairingPlacement(MI, OpIdx, *TRI, *this, RepairingPlacement::Insert));
497 RepairingPlacement &RepairPt = RepairPts.back();
498
499 // If we need to split a basic block to materialize this insertion point,
500 // we may give a higher cost to this mapping.
501 // Nevertheless, we may get away with the split, so try that first.
502 if (RepairPt.hasSplit())
503 tryAvoidingSplit(RepairPt, MO, ValMapping);
504
505 // Check that the materialization of the repairing is possible.
506 if (!RepairPt.canMaterialize()) {
507 LLVM_DEBUG(dbgs() << "Mapping involves impossible repairing\n");
508 return MappingCost::ImpossibleCost();
509 }
510
511 // Account for the split cost and repair cost.
512 // Unless the cost is already saturated or we do not care about the cost.
513 if (!BestCost || Saturated)
514 continue;
515
516 // To get accurate information we need MBFI and MBPI.
517 // Thus, if we end up here this information should be here.
518 assert(MBFI && MBPI && "Cost computation requires MBFI and MBPI");
519
520 // FIXME: We will have to rework the repairing cost model.
521 // The repairing cost depends on the register bank that MO has.
522 // However, when we break down the value into different values,
523 // MO may not have a register bank while still needing repairing.
524 // For the fast mode, we don't compute the cost so that is fine,
525 // but still for the repairing code, we will have to make a choice.
526 // For the greedy mode, we should choose greedily what is the best
527 // choice based on the next use of MO.
528
529 // Sums up the repairing cost of MO at each insertion point.
530 uint64_t RepairCost = getRepairCost(MO, ValMapping);
531
532 // This is an impossible to repair cost.
533 if (RepairCost == std::numeric_limits<unsigned>::max())
534 return MappingCost::ImpossibleCost();
535
536 // Bias used for splitting: 5%.
537 const uint64_t PercentageForBias = 5;
538 uint64_t Bias = (RepairCost * PercentageForBias + 99) / 100;
539 // We should not need more than a couple of instructions to repair
540 // an assignment. In other words, the computation should not
541 // overflow because the repairing cost is free of basic block
542 // frequency.
543 assert(((RepairCost < RepairCost * PercentageForBias) &&
544 (RepairCost * PercentageForBias <
545 RepairCost * PercentageForBias + 99)) &&
546 "Repairing involves more than a billion of instructions?!");
547 for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) {
548 assert(InsertPt->canMaterialize() && "We should not have made it here");
549 // We will applied some basic block frequency and those uses uint64_t.
550 if (!InsertPt->isSplit())
551 Saturated = Cost.addLocalCost(RepairCost);
552 else {
553 uint64_t CostForInsertPt = RepairCost;
554 // Again we shouldn't overflow here givent that
555 // CostForInsertPt is frequency free at this point.
556 assert(CostForInsertPt + Bias > CostForInsertPt &&
557 "Repairing + split bias overflows");
558 CostForInsertPt += Bias;
559 uint64_t PtCost = InsertPt->frequency(*this) * CostForInsertPt;
560 // Check if we just overflowed.
561 if ((Saturated = PtCost < CostForInsertPt))
562 Cost.saturate();
563 else
564 Saturated = Cost.addNonLocalCost(PtCost);
565 }
566
567 // Stop looking into what it takes to repair, this is already
568 // too expensive.
569 if (BestCost && Cost > *BestCost) {
570 LLVM_DEBUG(dbgs() << "Mapping is too expensive, stop processing\n");
571 return Cost;
572 }
573
574 // No need to accumulate more cost information.
575 // We need to still gather the repairing information though.
576 if (Saturated)
577 break;
578 }
579 }
580 LLVM_DEBUG(dbgs() << "Total cost is: " << Cost << "\n");
581 return Cost;
582 }
583
applyMapping(MachineInstr & MI,const RegisterBankInfo::InstructionMapping & InstrMapping,SmallVectorImpl<RegBankSelect::RepairingPlacement> & RepairPts)584 bool RegBankSelect::applyMapping(
585 MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping,
586 SmallVectorImpl<RegBankSelect::RepairingPlacement> &RepairPts) {
587 // OpdMapper will hold all the information needed for the rewriting.
588 RegisterBankInfo::OperandsMapper OpdMapper(MI, InstrMapping, *MRI);
589
590 // First, place the repairing code.
591 for (RepairingPlacement &RepairPt : RepairPts) {
592 if (!RepairPt.canMaterialize() ||
593 RepairPt.getKind() == RepairingPlacement::Impossible)
594 return false;
595 assert(RepairPt.getKind() != RepairingPlacement::None &&
596 "This should not make its way in the list");
597 unsigned OpIdx = RepairPt.getOpIdx();
598 MachineOperand &MO = MI.getOperand(OpIdx);
599 const RegisterBankInfo::ValueMapping &ValMapping =
600 InstrMapping.getOperandMapping(OpIdx);
601 Register Reg = MO.getReg();
602
603 switch (RepairPt.getKind()) {
604 case RepairingPlacement::Reassign:
605 assert(ValMapping.NumBreakDowns == 1 &&
606 "Reassignment should only be for simple mapping");
607 MRI->setRegBank(Reg, *ValMapping.BreakDown[0].RegBank);
608 break;
609 case RepairingPlacement::Insert:
610 // Don't insert additional instruction for debug instruction.
611 if (MI.isDebugInstr())
612 break;
613 OpdMapper.createVRegs(OpIdx);
614 if (!repairReg(MO, ValMapping, RepairPt, OpdMapper.getVRegs(OpIdx)))
615 return false;
616 break;
617 default:
618 llvm_unreachable("Other kind should not happen");
619 }
620 }
621
622 // Second, rewrite the instruction.
623 LLVM_DEBUG(dbgs() << "Actual mapping of the operands: " << OpdMapper << '\n');
624 RBI->applyMapping(OpdMapper);
625
626 return true;
627 }
628
assignInstr(MachineInstr & MI)629 bool RegBankSelect::assignInstr(MachineInstr &MI) {
630 LLVM_DEBUG(dbgs() << "Assign: " << MI);
631
632 unsigned Opc = MI.getOpcode();
633 if (isPreISelGenericOptimizationHint(Opc)) {
634 assert((Opc == TargetOpcode::G_ASSERT_ZEXT ||
635 Opc == TargetOpcode::G_ASSERT_SEXT ||
636 Opc == TargetOpcode::G_ASSERT_ALIGN) &&
637 "Unexpected hint opcode!");
638 // The only correct mapping for these is to always use the source register
639 // bank.
640 const RegisterBank *RB =
641 RBI->getRegBank(MI.getOperand(1).getReg(), *MRI, *TRI);
642 // We can assume every instruction above this one has a selected register
643 // bank.
644 assert(RB && "Expected source register to have a register bank?");
645 LLVM_DEBUG(dbgs() << "... Hint always uses source's register bank.\n");
646 MRI->setRegBank(MI.getOperand(0).getReg(), *RB);
647 return true;
648 }
649
650 // Remember the repairing placement for all the operands.
651 SmallVector<RepairingPlacement, 4> RepairPts;
652
653 const RegisterBankInfo::InstructionMapping *BestMapping;
654 if (OptMode == RegBankSelect::Mode::Fast) {
655 BestMapping = &RBI->getInstrMapping(MI);
656 MappingCost DefaultCost = computeMapping(MI, *BestMapping, RepairPts);
657 (void)DefaultCost;
658 if (DefaultCost == MappingCost::ImpossibleCost())
659 return false;
660 } else {
661 RegisterBankInfo::InstructionMappings PossibleMappings =
662 RBI->getInstrPossibleMappings(MI);
663 if (PossibleMappings.empty())
664 return false;
665 BestMapping = &findBestMapping(MI, PossibleMappings, RepairPts);
666 }
667 // Make sure the mapping is valid for MI.
668 assert(BestMapping->verify(MI) && "Invalid instruction mapping");
669
670 LLVM_DEBUG(dbgs() << "Best Mapping: " << *BestMapping << '\n');
671
672 // After this call, MI may not be valid anymore.
673 // Do not use it.
674 return applyMapping(MI, *BestMapping, RepairPts);
675 }
676
assignRegisterBanks(MachineFunction & MF)677 bool RegBankSelect::assignRegisterBanks(MachineFunction &MF) {
678 // Walk the function and assign register banks to all operands.
679 // Use a RPOT to make sure all registers are assigned before we choose
680 // the best mapping of the current instruction.
681 ReversePostOrderTraversal<MachineFunction*> RPOT(&MF);
682 for (MachineBasicBlock *MBB : RPOT) {
683 // Set a sensible insertion point so that subsequent calls to
684 // MIRBuilder.
685 MIRBuilder.setMBB(*MBB);
686 SmallVector<MachineInstr *> WorkList(
687 make_pointer_range(reverse(MBB->instrs())));
688
689 while (!WorkList.empty()) {
690 MachineInstr &MI = *WorkList.pop_back_val();
691
692 // Ignore target-specific post-isel instructions: they should use proper
693 // regclasses.
694 if (isTargetSpecificOpcode(MI.getOpcode()) && !MI.isPreISelOpcode())
695 continue;
696
697 // Ignore inline asm instructions: they should use physical
698 // registers/regclasses
699 if (MI.isInlineAsm())
700 continue;
701
702 // Ignore IMPLICIT_DEF which must have a regclass.
703 if (MI.isImplicitDef())
704 continue;
705
706 if (!assignInstr(MI)) {
707 reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect",
708 "unable to map instruction", MI);
709 return false;
710 }
711 }
712 }
713
714 return true;
715 }
716
checkFunctionIsLegal(MachineFunction & MF) const717 bool RegBankSelect::checkFunctionIsLegal(MachineFunction &MF) const {
718 #ifndef NDEBUG
719 if (!DisableGISelLegalityCheck) {
720 if (const MachineInstr *MI = machineFunctionIsIllegal(MF)) {
721 reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect",
722 "instruction is not legal", *MI);
723 return false;
724 }
725 }
726 #endif
727 return true;
728 }
729
runOnMachineFunction(MachineFunction & MF)730 bool RegBankSelect::runOnMachineFunction(MachineFunction &MF) {
731 // If the ISel pipeline failed, do not bother running that pass.
732 if (MF.getProperties().hasProperty(
733 MachineFunctionProperties::Property::FailedISel))
734 return false;
735
736 LLVM_DEBUG(dbgs() << "Assign register banks for: " << MF.getName() << '\n');
737 const Function &F = MF.getFunction();
738 Mode SaveOptMode = OptMode;
739 if (F.hasOptNone())
740 OptMode = Mode::Fast;
741 init(MF);
742
743 #ifndef NDEBUG
744 if (!checkFunctionIsLegal(MF))
745 return false;
746 #endif
747
748 assignRegisterBanks(MF);
749
750 OptMode = SaveOptMode;
751 return false;
752 }
753
754 //------------------------------------------------------------------------------
755 // Helper Classes Implementation
756 //------------------------------------------------------------------------------
RepairingPlacement(MachineInstr & MI,unsigned OpIdx,const TargetRegisterInfo & TRI,Pass & P,RepairingPlacement::RepairingKind Kind)757 RegBankSelect::RepairingPlacement::RepairingPlacement(
758 MachineInstr &MI, unsigned OpIdx, const TargetRegisterInfo &TRI, Pass &P,
759 RepairingPlacement::RepairingKind Kind)
760 // Default is, we are going to insert code to repair OpIdx.
761 : Kind(Kind), OpIdx(OpIdx),
762 CanMaterialize(Kind != RepairingKind::Impossible), P(P) {
763 const MachineOperand &MO = MI.getOperand(OpIdx);
764 assert(MO.isReg() && "Trying to repair a non-reg operand");
765
766 if (Kind != RepairingKind::Insert)
767 return;
768
769 // Repairings for definitions happen after MI, uses happen before.
770 bool Before = !MO.isDef();
771
772 // Check if we are done with MI.
773 if (!MI.isPHI() && !MI.isTerminator()) {
774 addInsertPoint(MI, Before);
775 // We are done with the initialization.
776 return;
777 }
778
779 // Now, look for the special cases.
780 if (MI.isPHI()) {
781 // - PHI must be the first instructions:
782 // * Before, we have to split the related incoming edge.
783 // * After, move the insertion point past the last phi.
784 if (!Before) {
785 MachineBasicBlock::iterator It = MI.getParent()->getFirstNonPHI();
786 if (It != MI.getParent()->end())
787 addInsertPoint(*It, /*Before*/ true);
788 else
789 addInsertPoint(*(--It), /*Before*/ false);
790 return;
791 }
792 // We repair a use of a phi, we may need to split the related edge.
793 MachineBasicBlock &Pred = *MI.getOperand(OpIdx + 1).getMBB();
794 // Check if we can move the insertion point prior to the
795 // terminators of the predecessor.
796 Register Reg = MO.getReg();
797 MachineBasicBlock::iterator It = Pred.getLastNonDebugInstr();
798 for (auto Begin = Pred.begin(); It != Begin && It->isTerminator(); --It)
799 if (It->modifiesRegister(Reg, &TRI)) {
800 // We cannot hoist the repairing code in the predecessor.
801 // Split the edge.
802 addInsertPoint(Pred, *MI.getParent());
803 return;
804 }
805 // At this point, we can insert in Pred.
806
807 // - If It is invalid, Pred is empty and we can insert in Pred
808 // wherever we want.
809 // - If It is valid, It is the first non-terminator, insert after It.
810 if (It == Pred.end())
811 addInsertPoint(Pred, /*Beginning*/ false);
812 else
813 addInsertPoint(*It, /*Before*/ false);
814 } else {
815 // - Terminators must be the last instructions:
816 // * Before, move the insert point before the first terminator.
817 // * After, we have to split the outcoming edges.
818 if (Before) {
819 // Check whether Reg is defined by any terminator.
820 MachineBasicBlock::reverse_iterator It = MI;
821 auto REnd = MI.getParent()->rend();
822
823 for (; It != REnd && It->isTerminator(); ++It) {
824 assert(!It->modifiesRegister(MO.getReg(), &TRI) &&
825 "copy insertion in middle of terminators not handled");
826 }
827
828 if (It == REnd) {
829 addInsertPoint(*MI.getParent()->begin(), true);
830 return;
831 }
832
833 // We are sure to be right before the first terminator.
834 addInsertPoint(*It, /*Before*/ false);
835 return;
836 }
837 // Make sure Reg is not redefined by other terminators, otherwise
838 // we do not know how to split.
839 for (MachineBasicBlock::iterator It = MI, End = MI.getParent()->end();
840 ++It != End;)
841 // The machine verifier should reject this kind of code.
842 assert(It->modifiesRegister(MO.getReg(), &TRI) &&
843 "Do not know where to split");
844 // Split each outcoming edges.
845 MachineBasicBlock &Src = *MI.getParent();
846 for (auto &Succ : Src.successors())
847 addInsertPoint(Src, Succ);
848 }
849 }
850
addInsertPoint(MachineInstr & MI,bool Before)851 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineInstr &MI,
852 bool Before) {
853 addInsertPoint(*new InstrInsertPoint(MI, Before));
854 }
855
addInsertPoint(MachineBasicBlock & MBB,bool Beginning)856 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &MBB,
857 bool Beginning) {
858 addInsertPoint(*new MBBInsertPoint(MBB, Beginning));
859 }
860
addInsertPoint(MachineBasicBlock & Src,MachineBasicBlock & Dst)861 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &Src,
862 MachineBasicBlock &Dst) {
863 addInsertPoint(*new EdgeInsertPoint(Src, Dst, P));
864 }
865
addInsertPoint(RegBankSelect::InsertPoint & Point)866 void RegBankSelect::RepairingPlacement::addInsertPoint(
867 RegBankSelect::InsertPoint &Point) {
868 CanMaterialize &= Point.canMaterialize();
869 HasSplit |= Point.isSplit();
870 InsertPoints.emplace_back(&Point);
871 }
872
InstrInsertPoint(MachineInstr & Instr,bool Before)873 RegBankSelect::InstrInsertPoint::InstrInsertPoint(MachineInstr &Instr,
874 bool Before)
875 : Instr(Instr), Before(Before) {
876 // Since we do not support splitting, we do not need to update
877 // liveness and such, so do not do anything with P.
878 assert((!Before || !Instr.isPHI()) &&
879 "Splitting before phis requires more points");
880 assert((!Before || !Instr.getNextNode() || !Instr.getNextNode()->isPHI()) &&
881 "Splitting between phis does not make sense");
882 }
883
materialize()884 void RegBankSelect::InstrInsertPoint::materialize() {
885 if (isSplit()) {
886 // Slice and return the beginning of the new block.
887 // If we need to split between the terminators, we theoritically
888 // need to know where the first and second set of terminators end
889 // to update the successors properly.
890 // Now, in pratice, we should have a maximum of 2 branch
891 // instructions; one conditional and one unconditional. Therefore
892 // we know how to update the successor by looking at the target of
893 // the unconditional branch.
894 // If we end up splitting at some point, then, we should update
895 // the liveness information and such. I.e., we would need to
896 // access P here.
897 // The machine verifier should actually make sure such cases
898 // cannot happen.
899 llvm_unreachable("Not yet implemented");
900 }
901 // Otherwise the insertion point is just the current or next
902 // instruction depending on Before. I.e., there is nothing to do
903 // here.
904 }
905
isSplit() const906 bool RegBankSelect::InstrInsertPoint::isSplit() const {
907 // If the insertion point is after a terminator, we need to split.
908 if (!Before)
909 return Instr.isTerminator();
910 // If we insert before an instruction that is after a terminator,
911 // we are still after a terminator.
912 return Instr.getPrevNode() && Instr.getPrevNode()->isTerminator();
913 }
914
frequency(const Pass & P) const915 uint64_t RegBankSelect::InstrInsertPoint::frequency(const Pass &P) const {
916 // Even if we need to split, because we insert between terminators,
917 // this split has actually the same frequency as the instruction.
918 const MachineBlockFrequencyInfo *MBFI =
919 P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
920 if (!MBFI)
921 return 1;
922 return MBFI->getBlockFreq(Instr.getParent()).getFrequency();
923 }
924
frequency(const Pass & P) const925 uint64_t RegBankSelect::MBBInsertPoint::frequency(const Pass &P) const {
926 const MachineBlockFrequencyInfo *MBFI =
927 P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
928 if (!MBFI)
929 return 1;
930 return MBFI->getBlockFreq(&MBB).getFrequency();
931 }
932
materialize()933 void RegBankSelect::EdgeInsertPoint::materialize() {
934 // If we end up repairing twice at the same place before materializing the
935 // insertion point, we may think we have to split an edge twice.
936 // We should have a factory for the insert point such that identical points
937 // are the same instance.
938 assert(Src.isSuccessor(DstOrSplit) && DstOrSplit->isPredecessor(&Src) &&
939 "This point has already been split");
940 MachineBasicBlock *NewBB = Src.SplitCriticalEdge(DstOrSplit, P);
941 assert(NewBB && "Invalid call to materialize");
942 // We reuse the destination block to hold the information of the new block.
943 DstOrSplit = NewBB;
944 }
945
frequency(const Pass & P) const946 uint64_t RegBankSelect::EdgeInsertPoint::frequency(const Pass &P) const {
947 const MachineBlockFrequencyInfo *MBFI =
948 P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
949 if (!MBFI)
950 return 1;
951 if (WasMaterialized)
952 return MBFI->getBlockFreq(DstOrSplit).getFrequency();
953
954 const MachineBranchProbabilityInfo *MBPI =
955 P.getAnalysisIfAvailable<MachineBranchProbabilityInfo>();
956 if (!MBPI)
957 return 1;
958 // The basic block will be on the edge.
959 return (MBFI->getBlockFreq(&Src) * MBPI->getEdgeProbability(&Src, DstOrSplit))
960 .getFrequency();
961 }
962
canMaterialize() const963 bool RegBankSelect::EdgeInsertPoint::canMaterialize() const {
964 // If this is not a critical edge, we should not have used this insert
965 // point. Indeed, either the successor or the predecessor should
966 // have do.
967 assert(Src.succ_size() > 1 && DstOrSplit->pred_size() > 1 &&
968 "Edge is not critical");
969 return Src.canSplitCriticalEdge(DstOrSplit);
970 }
971
MappingCost(const BlockFrequency & LocalFreq)972 RegBankSelect::MappingCost::MappingCost(const BlockFrequency &LocalFreq)
973 : LocalFreq(LocalFreq.getFrequency()) {}
974
addLocalCost(uint64_t Cost)975 bool RegBankSelect::MappingCost::addLocalCost(uint64_t Cost) {
976 // Check if this overflows.
977 if (LocalCost + Cost < LocalCost) {
978 saturate();
979 return true;
980 }
981 LocalCost += Cost;
982 return isSaturated();
983 }
984
addNonLocalCost(uint64_t Cost)985 bool RegBankSelect::MappingCost::addNonLocalCost(uint64_t Cost) {
986 // Check if this overflows.
987 if (NonLocalCost + Cost < NonLocalCost) {
988 saturate();
989 return true;
990 }
991 NonLocalCost += Cost;
992 return isSaturated();
993 }
994
isSaturated() const995 bool RegBankSelect::MappingCost::isSaturated() const {
996 return LocalCost == UINT64_MAX - 1 && NonLocalCost == UINT64_MAX &&
997 LocalFreq == UINT64_MAX;
998 }
999
saturate()1000 void RegBankSelect::MappingCost::saturate() {
1001 *this = ImpossibleCost();
1002 --LocalCost;
1003 }
1004
ImpossibleCost()1005 RegBankSelect::MappingCost RegBankSelect::MappingCost::ImpossibleCost() {
1006 return MappingCost(UINT64_MAX, UINT64_MAX, UINT64_MAX);
1007 }
1008
operator <(const MappingCost & Cost) const1009 bool RegBankSelect::MappingCost::operator<(const MappingCost &Cost) const {
1010 // Sort out the easy cases.
1011 if (*this == Cost)
1012 return false;
1013 // If one is impossible to realize the other is cheaper unless it is
1014 // impossible as well.
1015 if ((*this == ImpossibleCost()) || (Cost == ImpossibleCost()))
1016 return (*this == ImpossibleCost()) < (Cost == ImpossibleCost());
1017 // If one is saturated the other is cheaper, unless it is saturated
1018 // as well.
1019 if (isSaturated() || Cost.isSaturated())
1020 return isSaturated() < Cost.isSaturated();
1021 // At this point we know both costs hold sensible values.
1022
1023 // If both values have a different base frequency, there is no much
1024 // we can do but to scale everything.
1025 // However, if they have the same base frequency we can avoid making
1026 // complicated computation.
1027 uint64_t ThisLocalAdjust;
1028 uint64_t OtherLocalAdjust;
1029 if (LLVM_LIKELY(LocalFreq == Cost.LocalFreq)) {
1030
1031 // At this point, we know the local costs are comparable.
1032 // Do the case that do not involve potential overflow first.
1033 if (NonLocalCost == Cost.NonLocalCost)
1034 // Since the non-local costs do not discriminate on the result,
1035 // just compare the local costs.
1036 return LocalCost < Cost.LocalCost;
1037
1038 // The base costs are comparable so we may only keep the relative
1039 // value to increase our chances of avoiding overflows.
1040 ThisLocalAdjust = 0;
1041 OtherLocalAdjust = 0;
1042 if (LocalCost < Cost.LocalCost)
1043 OtherLocalAdjust = Cost.LocalCost - LocalCost;
1044 else
1045 ThisLocalAdjust = LocalCost - Cost.LocalCost;
1046 } else {
1047 ThisLocalAdjust = LocalCost;
1048 OtherLocalAdjust = Cost.LocalCost;
1049 }
1050
1051 // The non-local costs are comparable, just keep the relative value.
1052 uint64_t ThisNonLocalAdjust = 0;
1053 uint64_t OtherNonLocalAdjust = 0;
1054 if (NonLocalCost < Cost.NonLocalCost)
1055 OtherNonLocalAdjust = Cost.NonLocalCost - NonLocalCost;
1056 else
1057 ThisNonLocalAdjust = NonLocalCost - Cost.NonLocalCost;
1058 // Scale everything to make them comparable.
1059 uint64_t ThisScaledCost = ThisLocalAdjust * LocalFreq;
1060 // Check for overflow on that operation.
1061 bool ThisOverflows = ThisLocalAdjust && (ThisScaledCost < ThisLocalAdjust ||
1062 ThisScaledCost < LocalFreq);
1063 uint64_t OtherScaledCost = OtherLocalAdjust * Cost.LocalFreq;
1064 // Check for overflow on the last operation.
1065 bool OtherOverflows =
1066 OtherLocalAdjust &&
1067 (OtherScaledCost < OtherLocalAdjust || OtherScaledCost < Cost.LocalFreq);
1068 // Add the non-local costs.
1069 ThisOverflows |= ThisNonLocalAdjust &&
1070 ThisScaledCost + ThisNonLocalAdjust < ThisNonLocalAdjust;
1071 ThisScaledCost += ThisNonLocalAdjust;
1072 OtherOverflows |= OtherNonLocalAdjust &&
1073 OtherScaledCost + OtherNonLocalAdjust < OtherNonLocalAdjust;
1074 OtherScaledCost += OtherNonLocalAdjust;
1075 // If both overflows, we cannot compare without additional
1076 // precision, e.g., APInt. Just give up on that case.
1077 if (ThisOverflows && OtherOverflows)
1078 return false;
1079 // If one overflows but not the other, we can still compare.
1080 if (ThisOverflows || OtherOverflows)
1081 return ThisOverflows < OtherOverflows;
1082 // Otherwise, just compare the values.
1083 return ThisScaledCost < OtherScaledCost;
1084 }
1085
operator ==(const MappingCost & Cost) const1086 bool RegBankSelect::MappingCost::operator==(const MappingCost &Cost) const {
1087 return LocalCost == Cost.LocalCost && NonLocalCost == Cost.NonLocalCost &&
1088 LocalFreq == Cost.LocalFreq;
1089 }
1090
1091 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const1092 LLVM_DUMP_METHOD void RegBankSelect::MappingCost::dump() const {
1093 print(dbgs());
1094 dbgs() << '\n';
1095 }
1096 #endif
1097
print(raw_ostream & OS) const1098 void RegBankSelect::MappingCost::print(raw_ostream &OS) const {
1099 if (*this == ImpossibleCost()) {
1100 OS << "impossible";
1101 return;
1102 }
1103 if (isSaturated()) {
1104 OS << "saturated";
1105 return;
1106 }
1107 OS << LocalFreq << " * " << LocalCost << " + " << NonLocalCost;
1108 }
1109