xref: /openbsd-src/gnu/gcc/gcc/config/ia64/ia64.h (revision 404b540a9034ac75a6199ad1a32d1bbc7a0d4210)
1 /* Definitions of target machine GNU compiler.  IA-64 version.
2    Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
3    Free Software Foundation, Inc.
4    Contributed by James E. Wilson <wilson@cygnus.com> and
5    		  David Mosberger <davidm@hpl.hp.com>.
6 
7 This file is part of GCC.
8 
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2, or (at your option)
12 any later version.
13 
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 GNU General Public License for more details.
18 
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING.  If not, write to
21 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA.  */
23 
24 /* ??? Look at ABI group documents for list of preprocessor macros and
25    other features required for ABI compliance.  */
26 
27 /* ??? Functions containing a non-local goto target save many registers.  Why?
28    See for instance execute/920428-2.c.  */
29 
30 
31 /* Run-time target specifications */
32 
33 /* Target CPU builtins.  */
34 #define TARGET_CPU_CPP_BUILTINS()		\
35 do {						\
36 	builtin_assert("cpu=ia64");		\
37 	builtin_assert("machine=ia64");		\
38 	builtin_define("__ia64");		\
39 	builtin_define("__ia64__");		\
40 	builtin_define("__itanium__");		\
41 	if (TARGET_BIG_ENDIAN)			\
42 	  builtin_define("__BIG_ENDIAN__");	\
43 } while (0)
44 
45 #ifndef SUBTARGET_EXTRA_SPECS
46 #define SUBTARGET_EXTRA_SPECS
47 #endif
48 
49 #define EXTRA_SPECS \
50   { "asm_extra", ASM_EXTRA_SPEC }, \
51   SUBTARGET_EXTRA_SPECS
52 
53 #define CC1_SPEC "%(cc1_cpu) "
54 
55 #define ASM_EXTRA_SPEC ""
56 
57 /* Variables which are this size or smaller are put in the sdata/sbss
58    sections.  */
59 extern unsigned int ia64_section_threshold;
60 
61 /* If the assembler supports thread-local storage, assume that the
62    system does as well.  If a particular target system has an
63    assembler that supports TLS -- but the rest of the system does not
64    support TLS -- that system should explicit define TARGET_HAVE_TLS
65    to false in its own configuration file.  */
66 #if !defined(TARGET_HAVE_TLS) && defined(HAVE_AS_TLS)
67 #define TARGET_HAVE_TLS true
68 #endif
69 
70 #define TARGET_TLS14		(ia64_tls_size == 14)
71 #define TARGET_TLS22		(ia64_tls_size == 22)
72 #define TARGET_TLS64		(ia64_tls_size == 64)
73 
74 #define TARGET_HPUX		0
75 #define TARGET_HPUX_LD		0
76 
77 #ifndef TARGET_ILP32
78 #define TARGET_ILP32 0
79 #endif
80 
81 #ifndef HAVE_AS_LTOFFX_LDXMOV_RELOCS
82 #define HAVE_AS_LTOFFX_LDXMOV_RELOCS 0
83 #endif
84 
85 /* Values for TARGET_INLINE_FLOAT_DIV, TARGET_INLINE_INT_DIV, and
86    TARGET_INLINE_SQRT.  */
87 
88 enum ia64_inline_type
89 {
90   INL_NO = 0,
91   INL_MIN_LAT = 1,
92   INL_MAX_THR = 2
93 };
94 
95 /* Default target_flags if no switches are specified  */
96 
97 #ifndef TARGET_DEFAULT
98 #define TARGET_DEFAULT (MASK_DWARF2_ASM)
99 #endif
100 
101 #ifndef TARGET_CPU_DEFAULT
102 #define TARGET_CPU_DEFAULT 0
103 #endif
104 
105 /* Which processor to schedule for. The cpu attribute defines a list
106    that mirrors this list, so changes to ia64.md must be made at the
107    same time.  */
108 
109 enum processor_type
110 {
111   PROCESSOR_ITANIUM,			/* Original Itanium.  */
112   PROCESSOR_ITANIUM2,
113   PROCESSOR_max
114 };
115 
116 extern enum processor_type ia64_tune;
117 
118 /* Sometimes certain combinations of command options do not make sense on a
119    particular target machine.  You can define a macro `OVERRIDE_OPTIONS' to
120    take account of this.  This macro, if defined, is executed once just after
121    all the command options have been parsed.  */
122 
123 #define OVERRIDE_OPTIONS ia64_override_options ()
124 
125 /* Some machines may desire to change what optimizations are performed for
126    various optimization levels.  This macro, if defined, is executed once just
127    after the optimization level is determined and before the remainder of the
128    command options have been parsed.  Values set in this macro are used as the
129    default values for the other command line options.  */
130 
131 /* #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) */
132 
133 /* Driver configuration */
134 
135 /* A C string constant that tells the GCC driver program options to pass to
136    `cc1'.  It can also specify how to translate options you give to GCC into
137    options for GCC to pass to the `cc1'.  */
138 
139 #undef CC1_SPEC
140 #define CC1_SPEC "%{G*}"
141 
142 /* A C string constant that tells the GCC driver program options to pass to
143    `cc1plus'.  It can also specify how to translate options you give to GCC
144    into options for GCC to pass to the `cc1plus'.  */
145 
146 /* #define CC1PLUS_SPEC "" */
147 
148 /* Storage Layout */
149 
150 /* Define this macro to have the value 1 if the most significant bit in a byte
151    has the lowest number; otherwise define it to have the value zero.  */
152 
153 #define BITS_BIG_ENDIAN 0
154 
155 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
156 
157 /* Define this macro to have the value 1 if, in a multiword object, the most
158    significant word has the lowest number.  */
159 
160 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
161 
162 #if defined(__BIG_ENDIAN__)
163 #define LIBGCC2_WORDS_BIG_ENDIAN 1
164 #else
165 #define LIBGCC2_WORDS_BIG_ENDIAN 0
166 #endif
167 
168 #define UNITS_PER_WORD 8
169 
170 #define POINTER_SIZE (TARGET_ILP32 ? 32 : 64)
171 
172 /* A C expression whose value is zero if pointers that need to be extended
173    from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and one if
174    they are zero-extended and negative one if there is a ptr_extend operation.
175 
176    You need not define this macro if the `POINTER_SIZE' is equal to the width
177    of `Pmode'.  */
178 /* Need this for 32 bit pointers, see hpux.h for setting it.  */
179 /* #define POINTERS_EXTEND_UNSIGNED */
180 
181 /* A macro to update MODE and UNSIGNEDP when an object whose type is TYPE and
182    which has the specified mode and signedness is to be stored in a register.
183    This macro is only called when TYPE is a scalar type.  */
184 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE)				\
185 do									\
186   {									\
187     if (GET_MODE_CLASS (MODE) == MODE_INT				\
188 	&& GET_MODE_SIZE (MODE) < 4)					\
189       (MODE) = SImode;							\
190   }									\
191 while (0)
192 
193 #define PARM_BOUNDARY 64
194 
195 /* Define this macro if you wish to preserve a certain alignment for the stack
196    pointer.  The definition is a C expression for the desired alignment
197    (measured in bits).  */
198 
199 #define STACK_BOUNDARY 128
200 
201 /* Align frames on double word boundaries */
202 #ifndef IA64_STACK_ALIGN
203 #define IA64_STACK_ALIGN(LOC) (((LOC) + 15) & ~15)
204 #endif
205 
206 #define FUNCTION_BOUNDARY 128
207 
208 /* Optional x86 80-bit float, quad-precision 128-bit float, and quad-word
209    128 bit integers all require 128 bit alignment.  */
210 #define BIGGEST_ALIGNMENT 128
211 
212 /* If defined, a C expression to compute the alignment for a static variable.
213    TYPE is the data type, and ALIGN is the alignment that the object
214    would ordinarily have.  The value of this macro is used instead of that
215    alignment to align the object.  */
216 
217 #define DATA_ALIGNMENT(TYPE, ALIGN)		\
218   (TREE_CODE (TYPE) == ARRAY_TYPE		\
219    && TYPE_MODE (TREE_TYPE (TYPE)) == QImode	\
220    && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
221 
222 /* If defined, a C expression to compute the alignment given to a constant that
223    is being placed in memory.  CONSTANT is the constant and ALIGN is the
224    alignment that the object would ordinarily have.  The value of this macro is
225    used instead of that alignment to align the object.  */
226 
227 #define CONSTANT_ALIGNMENT(EXP, ALIGN)  \
228   (TREE_CODE (EXP) == STRING_CST	\
229    && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
230 
231 #define STRICT_ALIGNMENT 1
232 
233 /* Define this if you wish to imitate the way many other C compilers handle
234    alignment of bitfields and the structures that contain them.
235    The behavior is that the type written for a bit-field (`int', `short', or
236    other integer type) imposes an alignment for the entire structure, as if the
237    structure really did contain an ordinary field of that type.  In addition,
238    the bit-field is placed within the structure so that it would fit within such
239    a field, not crossing a boundary for it.  */
240 #define PCC_BITFIELD_TYPE_MATTERS 1
241 
242 /* An integer expression for the size in bits of the largest integer machine
243    mode that should actually be used.  */
244 
245 /* Allow pairs of registers to be used, which is the intent of the default.  */
246 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
247 
248 /* By default, the C++ compiler will use function addresses in the
249    vtable entries.  Setting this nonzero tells the compiler to use
250    function descriptors instead.  The value of this macro says how
251    many words wide the descriptor is (normally 2).  It is assumed
252    that the address of a function descriptor may be treated as a
253    pointer to a function.
254 
255    For reasons known only to HP, the vtable entries (as opposed to
256    normal function descriptors) are 16 bytes wide in 32-bit mode as
257    well, even though the 3rd and 4th words are unused.  */
258 #define TARGET_VTABLE_USES_DESCRIPTORS (TARGET_ILP32 ? 4 : 2)
259 
260 /* Due to silliness in the HPUX linker, vtable entries must be
261    8-byte aligned even in 32-bit mode.  Rather than create multiple
262    ABIs, force this restriction on everyone else too.  */
263 #define TARGET_VTABLE_ENTRY_ALIGN  64
264 
265 /* Due to the above, we need extra padding for the data entries below 0
266    to retain the alignment of the descriptors.  */
267 #define TARGET_VTABLE_DATA_ENTRY_DISTANCE (TARGET_ILP32 ? 2 : 1)
268 
269 /* Layout of Source Language Data Types */
270 
271 #define INT_TYPE_SIZE 32
272 
273 #define SHORT_TYPE_SIZE 16
274 
275 #define LONG_TYPE_SIZE (TARGET_ILP32 ? 32 : 64)
276 
277 #define LONG_LONG_TYPE_SIZE 64
278 
279 #define FLOAT_TYPE_SIZE 32
280 
281 #define DOUBLE_TYPE_SIZE 64
282 
283 /* long double is XFmode normally, TFmode for HPUX.  */
284 #define LONG_DOUBLE_TYPE_SIZE (TARGET_HPUX ? 128 : 80)
285 
286 /* We always want the XFmode operations from libgcc2.c.  */
287 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 80
288 
289 #define DEFAULT_SIGNED_CHAR 1
290 
291 /* A C expression for a string describing the name of the data type to use for
292    size values.  The typedef name `size_t' is defined using the contents of the
293    string.  */
294 /* ??? Needs to be defined for P64 code.  */
295 /* #define SIZE_TYPE */
296 
297 /* A C expression for a string describing the name of the data type to use for
298    the result of subtracting two pointers.  The typedef name `ptrdiff_t' is
299    defined using the contents of the string.  See `SIZE_TYPE' above for more
300    information.  */
301 /* ??? Needs to be defined for P64 code.  */
302 /* #define PTRDIFF_TYPE */
303 
304 /* A C expression for a string describing the name of the data type to use for
305    wide characters.  The typedef name `wchar_t' is defined using the contents
306    of the string.  See `SIZE_TYPE' above for more information.  */
307 /* #define WCHAR_TYPE */
308 
309 /* A C expression for the size in bits of the data type for wide characters.
310    This is used in `cpp', which cannot make use of `WCHAR_TYPE'.  */
311 /* #define WCHAR_TYPE_SIZE */
312 
313 
314 /* Register Basics */
315 
316 /* Number of hardware registers known to the compiler.
317    We have 128 general registers, 128 floating point registers,
318    64 predicate registers, 8 branch registers, one frame pointer,
319    and several "application" registers.  */
320 
321 #define FIRST_PSEUDO_REGISTER 334
322 
323 /* Ranges for the various kinds of registers.  */
324 #define ADDL_REGNO_P(REGNO) ((unsigned HOST_WIDE_INT) (REGNO) <= 3)
325 #define GR_REGNO_P(REGNO) ((unsigned HOST_WIDE_INT) (REGNO) <= 127)
326 #define FR_REGNO_P(REGNO) ((REGNO) >= 128 && (REGNO) <= 255)
327 #define FP_REGNO_P(REGNO) ((REGNO) >= 128 && (REGNO) <= 254 && (REGNO) != 159)
328 #define PR_REGNO_P(REGNO) ((REGNO) >= 256 && (REGNO) <= 319)
329 #define BR_REGNO_P(REGNO) ((REGNO) >= 320 && (REGNO) <= 327)
330 #define GENERAL_REGNO_P(REGNO) \
331   (GR_REGNO_P (REGNO) || (REGNO) == FRAME_POINTER_REGNUM)
332 
333 #define GR_REG(REGNO) ((REGNO) + 0)
334 #define FR_REG(REGNO) ((REGNO) + 128)
335 #define PR_REG(REGNO) ((REGNO) + 256)
336 #define BR_REG(REGNO) ((REGNO) + 320)
337 #define OUT_REG(REGNO) ((REGNO) + 120)
338 #define IN_REG(REGNO) ((REGNO) + 112)
339 #define LOC_REG(REGNO) ((REGNO) + 32)
340 
341 #define AR_CCV_REGNUM	329
342 #define AR_UNAT_REGNUM  330
343 #define AR_PFS_REGNUM	331
344 #define AR_LC_REGNUM	332
345 #define AR_EC_REGNUM	333
346 
347 #define IN_REGNO_P(REGNO) ((REGNO) >= IN_REG (0) && (REGNO) <= IN_REG (7))
348 #define LOC_REGNO_P(REGNO) ((REGNO) >= LOC_REG (0) && (REGNO) <= LOC_REG (79))
349 #define OUT_REGNO_P(REGNO) ((REGNO) >= OUT_REG (0) && (REGNO) <= OUT_REG (7))
350 
351 #define AR_M_REGNO_P(REGNO) ((REGNO) == AR_CCV_REGNUM \
352 			     || (REGNO) == AR_UNAT_REGNUM)
353 #define AR_I_REGNO_P(REGNO) ((REGNO) >= AR_PFS_REGNUM \
354 			     && (REGNO) < FIRST_PSEUDO_REGISTER)
355 #define AR_REGNO_P(REGNO) ((REGNO) >= AR_CCV_REGNUM \
356 			   && (REGNO) < FIRST_PSEUDO_REGISTER)
357 
358 
359 /* ??? Don't really need two sets of macros.  I like this one better because
360    it is less typing.  */
361 #define R_GR(REGNO) GR_REG (REGNO)
362 #define R_FR(REGNO) FR_REG (REGNO)
363 #define R_PR(REGNO) PR_REG (REGNO)
364 #define R_BR(REGNO) BR_REG (REGNO)
365 
366 /* An initializer that says which registers are used for fixed purposes all
367    throughout the compiled code and are therefore not available for general
368    allocation.
369 
370    r0: constant 0
371    r1: global pointer (gp)
372    r12: stack pointer (sp)
373    r13: thread pointer (tp)
374    f0: constant 0.0
375    f1: constant 1.0
376    p0: constant true
377    fp: eliminable frame pointer */
378 
379 /* The last 16 stacked regs are reserved for the 8 input and 8 output
380    registers.  */
381 
382 #define FIXED_REGISTERS \
383 { /* General registers.  */				\
384   1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0,	\
385   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
386   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
387   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
388   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
389   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
390   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
391   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
392   /* Floating-point registers.  */			\
393   1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
394   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
395   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
396   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
397   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
398   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
399   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
400   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
401   /* Predicate registers.  */				\
402   1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
403   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
404   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
405   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
406   /* Branch registers.  */				\
407   0, 0, 0, 0, 0, 0, 0, 0,				\
408   /*FP CCV UNAT PFS LC EC */				\
409      1,  1,   1,  1, 0, 1				\
410  }
411 
412 /* Like `FIXED_REGISTERS' but has 1 for each register that is clobbered
413    (in general) by function calls as well as for fixed registers.  This
414    macro therefore identifies the registers that are not available for
415    general allocation of values that must live across function calls.  */
416 
417 #define CALL_USED_REGISTERS \
418 { /* General registers.  */				\
419   1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,	\
420   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
421   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
422   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
423   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
424   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
425   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
426   0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,	\
427   /* Floating-point registers.  */			\
428   1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
429   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
430   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
431   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
432   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
433   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
434   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
435   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
436   /* Predicate registers.  */				\
437   1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
438   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
439   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
440   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
441   /* Branch registers.  */				\
442   1, 0, 0, 0, 0, 0, 1, 1,				\
443   /*FP CCV UNAT PFS LC EC */				\
444      1,  1,   1,  1, 0, 1				\
445 }
446 
447 /* Like `CALL_USED_REGISTERS' but used to overcome a historical
448    problem which makes CALL_USED_REGISTERS *always* include
449    all the FIXED_REGISTERS.  Until this problem has been
450    resolved this macro can be used to overcome this situation.
451    In particular, block_propagate() requires this list
452    be accurate, or we can remove registers which should be live.
453    This macro is used in regs_invalidated_by_call.  */
454 
455 #define CALL_REALLY_USED_REGISTERS \
456 { /* General registers.  */				\
457   0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1,	\
458   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
459   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
460   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
461   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
462   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
463   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
464   0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,	\
465   /* Floating-point registers.  */			\
466   0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
467   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
468   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
469   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
470   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
471   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
472   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
473   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
474   /* Predicate registers.  */				\
475   0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
476   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
477   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
478   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
479   /* Branch registers.  */				\
480   1, 0, 0, 0, 0, 0, 1, 1,				\
481   /*FP CCV UNAT PFS LC EC */				\
482      0,  1,   0,  1, 0, 0				\
483 }
484 
485 
486 /* Define this macro if the target machine has register windows.  This C
487    expression returns the register number as seen by the called function
488    corresponding to the register number OUT as seen by the calling function.
489    Return OUT if register number OUT is not an outbound register.  */
490 
491 #define INCOMING_REGNO(OUT) \
492   ((unsigned) ((OUT) - OUT_REG (0)) < 8 ? IN_REG ((OUT) - OUT_REG (0)) : (OUT))
493 
494 /* Define this macro if the target machine has register windows.  This C
495    expression returns the register number as seen by the calling function
496    corresponding to the register number IN as seen by the called function.
497    Return IN if register number IN is not an inbound register.  */
498 
499 #define OUTGOING_REGNO(IN) \
500   ((unsigned) ((IN) - IN_REG (0)) < 8 ? OUT_REG ((IN) - IN_REG (0)) : (IN))
501 
502 /* Define this macro if the target machine has register windows.  This
503    C expression returns true if the register is call-saved but is in the
504    register window.  */
505 
506 #define LOCAL_REGNO(REGNO) \
507   (IN_REGNO_P (REGNO) || LOC_REGNO_P (REGNO))
508 
509 /* We define CCImode in ia64-modes.def so we need a selector.  */
510 
511 #define SELECT_CC_MODE(OP,X,Y)  CCmode
512 
513 /* Order of allocation of registers */
514 
515 /* If defined, an initializer for a vector of integers, containing the numbers
516    of hard registers in the order in which GCC should prefer to use them
517    (from most preferred to least).
518 
519    If this macro is not defined, registers are used lowest numbered first (all
520    else being equal).
521 
522    One use of this macro is on machines where the highest numbered registers
523    must always be saved and the save-multiple-registers instruction supports
524    only sequences of consecutive registers.  On such machines, define
525    `REG_ALLOC_ORDER' to be an initializer that lists the highest numbered
526    allocatable register first.  */
527 
528 /* ??? Should the GR return value registers come before or after the rest
529    of the caller-save GRs?  */
530 
531 #define REG_ALLOC_ORDER							   \
532 {									   \
533   /* Caller-saved general registers.  */				   \
534   R_GR (14), R_GR (15), R_GR (16), R_GR (17),				   \
535   R_GR (18), R_GR (19), R_GR (20), R_GR (21), R_GR (22), R_GR (23),	   \
536   R_GR (24), R_GR (25), R_GR (26), R_GR (27), R_GR (28), R_GR (29),	   \
537   R_GR (30), R_GR (31),							   \
538   /* Output registers.  */						   \
539   R_GR (120), R_GR (121), R_GR (122), R_GR (123), R_GR (124), R_GR (125),  \
540   R_GR (126), R_GR (127),						   \
541   /* Caller-saved general registers, also used for return values.  */	   \
542   R_GR (8), R_GR (9), R_GR (10), R_GR (11),				   \
543   /* addl caller-saved general registers.  */				   \
544   R_GR (2), R_GR (3),							   \
545   /* Caller-saved FP registers.  */					   \
546   R_FR (6), R_FR (7),							   \
547   /* Caller-saved FP registers, used for parameters and return values.  */ \
548   R_FR (8), R_FR (9), R_FR (10), R_FR (11),				   \
549   R_FR (12), R_FR (13), R_FR (14), R_FR (15),				   \
550   /* Rotating caller-saved FP registers.  */				   \
551   R_FR (32), R_FR (33), R_FR (34), R_FR (35),				   \
552   R_FR (36), R_FR (37), R_FR (38), R_FR (39), R_FR (40), R_FR (41),	   \
553   R_FR (42), R_FR (43), R_FR (44), R_FR (45), R_FR (46), R_FR (47),	   \
554   R_FR (48), R_FR (49), R_FR (50), R_FR (51), R_FR (52), R_FR (53),	   \
555   R_FR (54), R_FR (55), R_FR (56), R_FR (57), R_FR (58), R_FR (59),	   \
556   R_FR (60), R_FR (61), R_FR (62), R_FR (63), R_FR (64), R_FR (65),	   \
557   R_FR (66), R_FR (67), R_FR (68), R_FR (69), R_FR (70), R_FR (71),	   \
558   R_FR (72), R_FR (73), R_FR (74), R_FR (75), R_FR (76), R_FR (77),	   \
559   R_FR (78), R_FR (79), R_FR (80), R_FR (81), R_FR (82), R_FR (83),	   \
560   R_FR (84), R_FR (85), R_FR (86), R_FR (87), R_FR (88), R_FR (89),	   \
561   R_FR (90), R_FR (91), R_FR (92), R_FR (93), R_FR (94), R_FR (95),	   \
562   R_FR (96), R_FR (97), R_FR (98), R_FR (99), R_FR (100), R_FR (101),	   \
563   R_FR (102), R_FR (103), R_FR (104), R_FR (105), R_FR (106), R_FR (107),  \
564   R_FR (108), R_FR (109), R_FR (110), R_FR (111), R_FR (112), R_FR (113),  \
565   R_FR (114), R_FR (115), R_FR (116), R_FR (117), R_FR (118), R_FR (119),  \
566   R_FR (120), R_FR (121), R_FR (122), R_FR (123), R_FR (124), R_FR (125),  \
567   R_FR (126), R_FR (127),						   \
568   /* Caller-saved predicate registers.  */				   \
569   R_PR (6), R_PR (7), R_PR (8), R_PR (9), R_PR (10), R_PR (11),		   \
570   R_PR (12), R_PR (13), R_PR (14), R_PR (15),				   \
571   /* Rotating caller-saved predicate registers.  */			   \
572   R_PR (16), R_PR (17),							   \
573   R_PR (18), R_PR (19), R_PR (20), R_PR (21), R_PR (22), R_PR (23),	   \
574   R_PR (24), R_PR (25), R_PR (26), R_PR (27), R_PR (28), R_PR (29),	   \
575   R_PR (30), R_PR (31), R_PR (32), R_PR (33), R_PR (34), R_PR (35),	   \
576   R_PR (36), R_PR (37), R_PR (38), R_PR (39), R_PR (40), R_PR (41),	   \
577   R_PR (42), R_PR (43), R_PR (44), R_PR (45), R_PR (46), R_PR (47),	   \
578   R_PR (48), R_PR (49), R_PR (50), R_PR (51), R_PR (52), R_PR (53),	   \
579   R_PR (54), R_PR (55), R_PR (56), R_PR (57), R_PR (58), R_PR (59),	   \
580   R_PR (60), R_PR (61), R_PR (62), R_PR (63),				   \
581   /* Caller-saved branch registers.  */					   \
582   R_BR (6), R_BR (7),							   \
583 									   \
584   /* Stacked callee-saved general registers.  */			   \
585   R_GR (32), R_GR (33), R_GR (34), R_GR (35),				   \
586   R_GR (36), R_GR (37), R_GR (38), R_GR (39), R_GR (40), R_GR (41),	   \
587   R_GR (42), R_GR (43), R_GR (44), R_GR (45), R_GR (46), R_GR (47),	   \
588   R_GR (48), R_GR (49), R_GR (50), R_GR (51), R_GR (52), R_GR (53),	   \
589   R_GR (54), R_GR (55), R_GR (56), R_GR (57), R_GR (58), R_GR (59),	   \
590   R_GR (60), R_GR (61), R_GR (62), R_GR (63), R_GR (64), R_GR (65),	   \
591   R_GR (66), R_GR (67), R_GR (68), R_GR (69), R_GR (70), R_GR (71),	   \
592   R_GR (72), R_GR (73), R_GR (74), R_GR (75), R_GR (76), R_GR (77),	   \
593   R_GR (78), R_GR (79), R_GR (80), R_GR (81), R_GR (82), R_GR (83),	   \
594   R_GR (84), R_GR (85), R_GR (86), R_GR (87), R_GR (88), R_GR (89),	   \
595   R_GR (90), R_GR (91), R_GR (92), R_GR (93), R_GR (94), R_GR (95),	   \
596   R_GR (96), R_GR (97), R_GR (98), R_GR (99), R_GR (100), R_GR (101),	   \
597   R_GR (102), R_GR (103), R_GR (104), R_GR (105), R_GR (106), R_GR (107),  \
598   R_GR (108),								   \
599   /* Input registers.  */						   \
600   R_GR (112), R_GR (113), R_GR (114), R_GR (115), R_GR (116), R_GR (117),  \
601   R_GR (118), R_GR (119),						   \
602   /* Callee-saved general registers.  */				   \
603   R_GR (4), R_GR (5), R_GR (6), R_GR (7),				   \
604   /* Callee-saved FP registers.  */					   \
605   R_FR (2), R_FR (3), R_FR (4), R_FR (5), R_FR (16), R_FR (17),		   \
606   R_FR (18), R_FR (19), R_FR (20), R_FR (21), R_FR (22), R_FR (23),	   \
607   R_FR (24), R_FR (25), R_FR (26), R_FR (27), R_FR (28), R_FR (29),	   \
608   R_FR (30), R_FR (31),							   \
609   /* Callee-saved predicate registers.  */				   \
610   R_PR (1), R_PR (2), R_PR (3), R_PR (4), R_PR (5),			   \
611   /* Callee-saved branch registers.  */					   \
612   R_BR (1), R_BR (2), R_BR (3), R_BR (4), R_BR (5),			   \
613 									   \
614   /* ??? Stacked registers reserved for fp, rp, and ar.pfs.  */		   \
615   R_GR (109), R_GR (110), R_GR (111),					   \
616 									   \
617   /* Special general registers.  */					   \
618   R_GR (0), R_GR (1), R_GR (12), R_GR (13),				   \
619   /* Special FP registers.  */						   \
620   R_FR (0), R_FR (1),							   \
621   /* Special predicate registers.  */					   \
622   R_PR (0),								   \
623   /* Special branch registers.  */					   \
624   R_BR (0),								   \
625   /* Other fixed registers.  */						   \
626   FRAME_POINTER_REGNUM, 						   \
627   AR_CCV_REGNUM, AR_UNAT_REGNUM, AR_PFS_REGNUM, AR_LC_REGNUM,		   \
628   AR_EC_REGNUM		  						   \
629 }
630 
631 /* How Values Fit in Registers */
632 
633 /* A C expression for the number of consecutive hard registers, starting at
634    register number REGNO, required to hold a value of mode MODE.  */
635 
636 /* ??? We say that BImode PR values require two registers.  This allows us to
637    easily store the normal and inverted values.  We use CCImode to indicate
638    a single predicate register.  */
639 
640 #define HARD_REGNO_NREGS(REGNO, MODE)					\
641   ((REGNO) == PR_REG (0) && (MODE) == DImode ? 64			\
642    : PR_REGNO_P (REGNO) && (MODE) == BImode ? 2				\
643    : PR_REGNO_P (REGNO) && (MODE) == CCImode ? 1			\
644    : FR_REGNO_P (REGNO) && (MODE) == XFmode ? 1				\
645    : FR_REGNO_P (REGNO) && (MODE) == XCmode ? 2				\
646    : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
647 
648 /* A C expression that is nonzero if it is permissible to store a value of mode
649    MODE in hard register number REGNO (or in several registers starting with
650    that one).  */
651 
652 #define HARD_REGNO_MODE_OK(REGNO, MODE)				\
653   (FR_REGNO_P (REGNO) ?						\
654      GET_MODE_CLASS (MODE) != MODE_CC &&			\
655      (MODE) != BImode &&					\
656      (MODE) != TFmode 						\
657    : PR_REGNO_P (REGNO) ?					\
658      (MODE) == BImode || GET_MODE_CLASS (MODE) == MODE_CC	\
659    : GR_REGNO_P (REGNO) ?					\
660      (MODE) != CCImode && (MODE) != XFmode && (MODE) != XCmode	\
661    : AR_REGNO_P (REGNO) ? (MODE) == DImode			\
662    : BR_REGNO_P (REGNO) ? (MODE) == DImode			\
663    : 0)
664 
665 /* A C expression that is nonzero if it is desirable to choose register
666    allocation so as to avoid move instructions between a value of mode MODE1
667    and a value of mode MODE2.
668 
669    If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R, MODE2)' are
670    ever different for any R, then `MODES_TIEABLE_P (MODE1, MODE2)' must be
671    zero.  */
672 /* Don't tie integer and FP modes, as that causes us to get integer registers
673    allocated for FP instructions.  XFmode only supported in FP registers so
674    we can't tie it with any other modes.  */
675 #define MODES_TIEABLE_P(MODE1, MODE2)			\
676   (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2)	\
677    && ((((MODE1) == XFmode) || ((MODE1) == XCmode))	\
678        == (((MODE2) == XFmode) || ((MODE2) == XCmode)))	\
679    && (((MODE1) == BImode) == ((MODE2) == BImode)))
680 
681 /* Specify the modes required to caller save a given hard regno.
682    We need to ensure floating pt regs are not saved as DImode.  */
683 
684 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
685   ((FR_REGNO_P (REGNO) && (NREGS) == 1) ? XFmode        \
686    : choose_hard_reg_mode ((REGNO), (NREGS), false))
687 
688 /* Handling Leaf Functions */
689 
690 /* A C initializer for a vector, indexed by hard register number, which
691    contains 1 for a register that is allowable in a candidate for leaf function
692    treatment.  */
693 /* ??? This might be useful.  */
694 /* #define LEAF_REGISTERS */
695 
696 /* A C expression whose value is the register number to which REGNO should be
697    renumbered, when a function is treated as a leaf function.  */
698 /* ??? This might be useful.  */
699 /* #define LEAF_REG_REMAP(REGNO) */
700 
701 
702 /* Register Classes */
703 
704 /* An enumeral type that must be defined with all the register class names as
705    enumeral values.  `NO_REGS' must be first.  `ALL_REGS' must be the last
706    register class, followed by one more enumeral value, `LIM_REG_CLASSES',
707    which is not a register class but rather tells how many classes there
708    are.  */
709 /* ??? When compiling without optimization, it is possible for the only use of
710    a pseudo to be a parameter load from the stack with a REG_EQUIV note.
711    Regclass handles this case specially and does not assign any costs to the
712    pseudo.  The pseudo then ends up using the last class before ALL_REGS.
713    Thus we must not let either PR_REGS or BR_REGS be the last class.  The
714    testcase for this is gcc.c-torture/execute/va-arg-7.c.  */
715 enum reg_class
716 {
717   NO_REGS,
718   PR_REGS,
719   BR_REGS,
720   AR_M_REGS,
721   AR_I_REGS,
722   ADDL_REGS,
723   GR_REGS,
724   FP_REGS,
725   FR_REGS,
726   GR_AND_BR_REGS,
727   GR_AND_FR_REGS,
728   ALL_REGS,
729   LIM_REG_CLASSES
730 };
731 
732 #define GENERAL_REGS GR_REGS
733 
734 /* The number of distinct register classes.  */
735 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
736 
737 /* An initializer containing the names of the register classes as C string
738    constants.  These names are used in writing some of the debugging dumps.  */
739 #define REG_CLASS_NAMES \
740 { "NO_REGS", "PR_REGS", "BR_REGS", "AR_M_REGS", "AR_I_REGS", \
741   "ADDL_REGS", "GR_REGS", "FP_REGS", "FR_REGS", \
742   "GR_AND_BR_REGS", "GR_AND_FR_REGS", "ALL_REGS" }
743 
744 /* An initializer containing the contents of the register classes, as integers
745    which are bit masks.  The Nth integer specifies the contents of class N.
746    The way the integer MASK is interpreted is that register R is in the class
747    if `MASK & (1 << R)' is 1.  */
748 #define REG_CLASS_CONTENTS \
749 { 							\
750   /* NO_REGS.  */					\
751   { 0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
752     0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
753     0x00000000, 0x00000000, 0x0000 },			\
754   /* PR_REGS.  */					\
755   { 0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
756     0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
757     0xFFFFFFFF, 0xFFFFFFFF, 0x0000 },			\
758   /* BR_REGS.  */					\
759   { 0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
760     0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
761     0x00000000, 0x00000000, 0x00FF },			\
762   /* AR_M_REGS.  */					\
763   { 0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
764     0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
765     0x00000000, 0x00000000, 0x0600 },			\
766   /* AR_I_REGS.  */					\
767   { 0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
768     0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
769     0x00000000, 0x00000000, 0x3800 },			\
770   /* ADDL_REGS.  */					\
771   { 0x0000000F, 0x00000000, 0x00000000, 0x00000000,	\
772     0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
773     0x00000000, 0x00000000, 0x0000 },			\
774   /* GR_REGS.  */					\
775   { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,	\
776     0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
777     0x00000000, 0x00000000, 0x0100 },			\
778   /* FP_REGS.  */					\
779   { 0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
780     0x7FFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x7FFFFFFF,	\
781     0x00000000, 0x00000000, 0x0000 },			\
782   /* FR_REGS.  */					\
783   { 0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
784     0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,	\
785     0x00000000, 0x00000000, 0x0000 },			\
786   /* GR_AND_BR_REGS.  */				\
787   { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,	\
788     0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
789     0x00000000, 0x00000000, 0x01FF },			\
790   /* GR_AND_FR_REGS.  */				\
791   { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,	\
792     0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,	\
793     0x00000000, 0x00000000, 0x0100 },			\
794   /* ALL_REGS.  */					\
795   { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,	\
796     0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,	\
797     0xFFFFFFFF, 0xFFFFFFFF, 0x3FFF },			\
798 }
799 
800 /* A C expression whose value is a register class containing hard register
801    REGNO.  In general there is more than one such class; choose a class which
802    is "minimal", meaning that no smaller class also contains the register.  */
803 /* The NO_REGS case is primarily for the benefit of rws_access_reg, which
804    may call here with private (invalid) register numbers, such as
805    REG_VOLATILE.  */
806 #define REGNO_REG_CLASS(REGNO) \
807 (ADDL_REGNO_P (REGNO) ? ADDL_REGS	\
808  : GENERAL_REGNO_P (REGNO) ? GR_REGS	\
809  : FR_REGNO_P (REGNO) ? (REGNO) != R_FR (31) \
810 			&& (REGNO) != R_FR(127) ? FP_REGS : FR_REGS \
811  : PR_REGNO_P (REGNO) ? PR_REGS		\
812  : BR_REGNO_P (REGNO) ? BR_REGS		\
813  : AR_M_REGNO_P (REGNO) ? AR_M_REGS	\
814  : AR_I_REGNO_P (REGNO) ? AR_I_REGS	\
815  : NO_REGS)
816 
817 /* A macro whose definition is the name of the class to which a valid base
818    register must belong.  A base register is one used in an address which is
819    the register value plus a displacement.  */
820 #define BASE_REG_CLASS GENERAL_REGS
821 
822 /* A macro whose definition is the name of the class to which a valid index
823    register must belong.  An index register is one used in an address where its
824    value is either multiplied by a scale factor or added to another register
825    (as well as added to a displacement).  This is needed for POST_MODIFY.  */
826 #define INDEX_REG_CLASS GENERAL_REGS
827 
828 /* A C expression which defines the machine-dependent operand constraint
829    letters for register classes.  If CHAR is such a letter, the value should be
830    the register class corresponding to it.  Otherwise, the value should be
831    `NO_REGS'.  The register letter `r', corresponding to class `GENERAL_REGS',
832    will not be passed to this macro; you do not need to handle it.  */
833 
834 #define REG_CLASS_FROM_LETTER(CHAR) \
835 ((CHAR) == 'f' ? FR_REGS		\
836  : (CHAR) == 'a' ? ADDL_REGS		\
837  : (CHAR) == 'b' ? BR_REGS		\
838  : (CHAR) == 'c' ? PR_REGS		\
839  : (CHAR) == 'd' ? AR_M_REGS		\
840  : (CHAR) == 'e' ? AR_I_REGS		\
841  : (CHAR) == 'x' ? FP_REGS		\
842  : NO_REGS)
843 
844 /* A C expression which is nonzero if register number NUM is suitable for use
845    as a base register in operand addresses.  It may be either a suitable hard
846    register or a pseudo register that has been allocated such a hard reg.  */
847 #define REGNO_OK_FOR_BASE_P(REGNO) \
848   (GENERAL_REGNO_P (REGNO) || GENERAL_REGNO_P (reg_renumber[REGNO]))
849 
850 /* A C expression which is nonzero if register number NUM is suitable for use
851    as an index register in operand addresses.  It may be either a suitable hard
852    register or a pseudo register that has been allocated such a hard reg.
853    This is needed for POST_MODIFY.  */
854 #define REGNO_OK_FOR_INDEX_P(NUM) REGNO_OK_FOR_BASE_P (NUM)
855 
856 /* A C expression that places additional restrictions on the register class to
857    use when it is necessary to copy value X into a register in class CLASS.
858    The value is a register class; perhaps CLASS, or perhaps another, smaller
859    class.  */
860 
861 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
862   ia64_preferred_reload_class (X, CLASS)
863 
864 /* You should define this macro to indicate to the reload phase that it may
865    need to allocate at least one register for a reload in addition to the
866    register to contain the data.  Specifically, if copying X to a register
867    CLASS in MODE requires an intermediate register, you should define this
868    to return the largest register class all of whose registers can be used
869    as intermediate registers or scratch registers.  */
870 
871 #define SECONDARY_RELOAD_CLASS(CLASS, MODE, X) \
872  ia64_secondary_reload_class (CLASS, MODE, X)
873 
874 /* Certain machines have the property that some registers cannot be copied to
875    some other registers without using memory.  Define this macro on those
876    machines to be a C expression that is nonzero if objects of mode M in
877    registers of CLASS1 can only be copied to registers of class CLASS2 by
878    storing a register of CLASS1 into memory and loading that memory location
879    into a register of CLASS2.  */
880 
881 #if 0
882 /* ??? May need this, but since we've disallowed XFmode in GR_REGS,
883    I'm not quite sure how it could be invoked.  The normal problems
884    with unions should be solved with the addressof fiddling done by
885    movxf and friends.  */
886 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE)			\
887   (((MODE) == XFmode || (MODE) == XCmode)				\
888    && (((CLASS1) == GR_REGS && (CLASS2) == FR_REGS)			\
889        || ((CLASS1) == FR_REGS && (CLASS2) == GR_REGS)))
890 #endif
891 
892 /* A C expression for the maximum number of consecutive registers of
893    class CLASS needed to hold a value of mode MODE.
894    This is closely related to the macro `HARD_REGNO_NREGS'.  */
895 
896 #define CLASS_MAX_NREGS(CLASS, MODE) \
897   ((MODE) == BImode && (CLASS) == PR_REGS ? 2			\
898    : (((CLASS) == FR_REGS || (CLASS) == FP_REGS) && (MODE) == XFmode) ? 1 \
899    : (((CLASS) == FR_REGS || (CLASS) == FP_REGS) && (MODE) == XCmode) ? 2 \
900    : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
901 
902 /* In FP regs, we can't change FP values to integer values and vice versa,
903    but we can change e.g. DImode to SImode, and V2SFmode into DImode.  */
904 
905 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) 		\
906   (SCALAR_FLOAT_MODE_P (FROM) != SCALAR_FLOAT_MODE_P (TO)	\
907    ? reg_classes_intersect_p (CLASS, FR_REGS) : 0)
908 
909 /* A C expression that defines the machine-dependent operand constraint
910    letters (`I', `J', `K', .. 'P') that specify particular ranges of
911    integer values.  */
912 
913 /* 14 bit signed immediate for arithmetic instructions.  */
914 #define CONST_OK_FOR_I(VALUE) \
915   ((unsigned HOST_WIDE_INT)(VALUE) + 0x2000 < 0x4000)
916 /* 22 bit signed immediate for arith instructions with r0/r1/r2/r3 source.  */
917 #define CONST_OK_FOR_J(VALUE) \
918   ((unsigned HOST_WIDE_INT)(VALUE) + 0x200000 < 0x400000)
919 /* 8 bit signed immediate for logical instructions.  */
920 #define CONST_OK_FOR_K(VALUE) ((unsigned HOST_WIDE_INT)(VALUE) + 0x80 < 0x100)
921 /* 8 bit adjusted signed immediate for compare pseudo-ops.  */
922 #define CONST_OK_FOR_L(VALUE) ((unsigned HOST_WIDE_INT)(VALUE) + 0x7F < 0x100)
923 /* 6 bit unsigned immediate for shift counts.  */
924 #define CONST_OK_FOR_M(VALUE) ((unsigned HOST_WIDE_INT)(VALUE) < 0x40)
925 /* 9 bit signed immediate for load/store post-increments.  */
926 #define CONST_OK_FOR_N(VALUE) ((unsigned HOST_WIDE_INT)(VALUE) + 0x100 < 0x200)
927 /* 0 for r0.  Used by Linux kernel, do not change.  */
928 #define CONST_OK_FOR_O(VALUE) ((VALUE) == 0)
929 /* 0 or -1 for dep instruction.  */
930 #define CONST_OK_FOR_P(VALUE) ((VALUE) == 0 || (VALUE) == -1)
931 
932 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
933   ia64_const_ok_for_letter_p (VALUE, C)
934 
935 /* A C expression that defines the machine-dependent operand constraint letters
936    (`G', `H') that specify particular ranges of `const_double' values.  */
937 
938 /* 0.0 and 1.0 for fr0 and fr1.  */
939 #define CONST_DOUBLE_OK_FOR_G(VALUE) \
940   ((VALUE) == CONST0_RTX (GET_MODE (VALUE))	\
941    || (VALUE) == CONST1_RTX (GET_MODE (VALUE)))
942 
943 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
944   ia64_const_double_ok_for_letter_p (VALUE, C)
945 
946 /* A C expression that defines the optional machine-dependent constraint
947    letters (`Q', `R', `S', `T', `U') that can be used to segregate specific
948    types of operands, usually memory references, for the target machine.  */
949 
950 #define EXTRA_CONSTRAINT(VALUE, C) \
951   ia64_extra_constraint (VALUE, C)
952 
953 /* Document the constraints that can accept reloaded memory operands.  This is
954    needed by the extended asm support, and by reload.  'Q' accepts mem, but
955    only non-volatile mem.  Since we can't reload a volatile mem into a
956    non-volatile mem, it can not be listed here.  */
957 
958 #define EXTRA_MEMORY_CONSTRAINT(C, STR)  ((C) == 'S')
959 
960 /* Basic Stack Layout */
961 
962 /* Define this macro if pushing a word onto the stack moves the stack pointer
963    to a smaller address.  */
964 #define STACK_GROWS_DOWNWARD 1
965 
966 /* Define this macro to nonzero if the addresses of local variable slots
967    are at negative offsets from the frame pointer.  */
968 #define FRAME_GROWS_DOWNWARD 0
969 
970 /* Offset from the frame pointer to the first local variable slot to
971    be allocated.  */
972 #define STARTING_FRAME_OFFSET 0
973 
974 /* Offset from the stack pointer register to the first location at which
975    outgoing arguments are placed.  If not specified, the default value of zero
976    is used.  This is the proper value for most machines.  */
977 /* IA64 has a 16 byte scratch area that is at the bottom of the stack.  */
978 #define STACK_POINTER_OFFSET 16
979 
980 /* Offset from the argument pointer register to the first argument's address.
981    On some machines it may depend on the data type of the function.  */
982 #define FIRST_PARM_OFFSET(FUNDECL) 0
983 
984 /* A C expression whose value is RTL representing the value of the return
985    address for the frame COUNT steps up from the current frame, after the
986    prologue.  */
987 
988 /* ??? Frames other than zero would likely require interpreting the frame
989    unwind info, so we don't try to support them.  We would also need to define
990    DYNAMIC_CHAIN_ADDRESS and SETUP_FRAME_ADDRESS (for the reg stack flush).  */
991 
992 #define RETURN_ADDR_RTX(COUNT, FRAME) \
993   ia64_return_addr_rtx (COUNT, FRAME)
994 
995 /* A C expression whose value is RTL representing the location of the incoming
996    return address at the beginning of any function, before the prologue.  This
997    RTL is either a `REG', indicating that the return value is saved in `REG',
998    or a `MEM' representing a location in the stack.  This enables DWARF2
999    unwind info for C++ EH.  */
1000 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, BR_REG (0))
1001 
1002 /* ??? This is not defined because of three problems.
1003    1) dwarf2out.c assumes that DWARF_FRAME_RETURN_COLUMN fits in one byte.
1004    The default value is FIRST_PSEUDO_REGISTER which doesn't.  This can be
1005    worked around by setting PC_REGNUM to FR_REG (0) which is an otherwise
1006    unused register number.
1007    2) dwarf2out_frame_debug core dumps while processing prologue insns.  We
1008    need to refine which insns have RTX_FRAME_RELATED_P set and which don't.
1009    3) It isn't possible to turn off EH frame info by defining DWARF2_UNIND_INFO
1010    to zero, despite what the documentation implies, because it is tested in
1011    a few places with #ifdef instead of #if.  */
1012 #undef INCOMING_RETURN_ADDR_RTX
1013 
1014 /* A C expression whose value is an integer giving the offset, in bytes, from
1015    the value of the stack pointer register to the top of the stack frame at the
1016    beginning of any function, before the prologue.  The top of the frame is
1017    defined to be the value of the stack pointer in the previous frame, just
1018    before the call instruction.  */
1019 /* The CFA is past the red zone, not at the entry-point stack
1020    pointer.  */
1021 #define INCOMING_FRAME_SP_OFFSET STACK_POINTER_OFFSET
1022 
1023 /* We shorten debug info by using CFA-16 as DW_AT_frame_base.  */
1024 #define CFA_FRAME_BASE_OFFSET(FUNDECL) (-INCOMING_FRAME_SP_OFFSET)
1025 
1026 
1027 /* Register That Address the Stack Frame.  */
1028 
1029 /* The register number of the stack pointer register, which must also be a
1030    fixed register according to `FIXED_REGISTERS'.  On most machines, the
1031    hardware determines which register this is.  */
1032 
1033 #define STACK_POINTER_REGNUM 12
1034 
1035 /* The register number of the frame pointer register, which is used to access
1036    automatic variables in the stack frame.  On some machines, the hardware
1037    determines which register this is.  On other machines, you can choose any
1038    register you wish for this purpose.  */
1039 
1040 #define FRAME_POINTER_REGNUM 328
1041 
1042 /* Base register for access to local variables of the function.  */
1043 #define HARD_FRAME_POINTER_REGNUM  LOC_REG (79)
1044 
1045 /* The register number of the arg pointer register, which is used to access the
1046    function's argument list.  */
1047 /* r0 won't otherwise be used, so put the always eliminated argument pointer
1048    in it.  */
1049 #define ARG_POINTER_REGNUM R_GR(0)
1050 
1051 /* Due to the way varargs and argument spilling happens, the argument
1052    pointer is not 16-byte aligned like the stack pointer.  */
1053 #define INIT_EXPANDERS					\
1054   do {							\
1055     if (cfun && cfun->emit->regno_pointer_align)	\
1056       REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = 64;	\
1057   } while (0)
1058 
1059 /* Register numbers used for passing a function's static chain pointer.  */
1060 /* ??? The ABI sez the static chain should be passed as a normal parameter.  */
1061 #define STATIC_CHAIN_REGNUM 15
1062 
1063 /* Eliminating the Frame Pointer and the Arg Pointer */
1064 
1065 /* A C expression which is nonzero if a function must have and use a frame
1066    pointer.  This expression is evaluated in the reload pass.  If its value is
1067    nonzero the function will have a frame pointer.  */
1068 #define FRAME_POINTER_REQUIRED 0
1069 
1070 /* Show we can debug even without a frame pointer.  */
1071 #define CAN_DEBUG_WITHOUT_FP
1072 
1073 /* If defined, this macro specifies a table of register pairs used to eliminate
1074    unneeded registers that point into the stack frame.  */
1075 
1076 #define ELIMINABLE_REGS							\
1077 {									\
1078   {ARG_POINTER_REGNUM,	 STACK_POINTER_REGNUM},				\
1079   {ARG_POINTER_REGNUM,	 HARD_FRAME_POINTER_REGNUM},			\
1080   {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},				\
1081   {FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},			\
1082 }
1083 
1084 /* A C expression that returns nonzero if the compiler is allowed to try to
1085    replace register number FROM with register number TO.  The frame pointer
1086    is automatically handled.  */
1087 
1088 #define CAN_ELIMINATE(FROM, TO) \
1089   (TO == BR_REG (0) ? current_function_is_leaf : 1)
1090 
1091 /* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'.  It
1092    specifies the initial difference between the specified pair of
1093    registers.  This macro must be defined if `ELIMINABLE_REGS' is
1094    defined.  */
1095 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1096   ((OFFSET) = ia64_initial_elimination_offset ((FROM), (TO)))
1097 
1098 /* Passing Function Arguments on the Stack */
1099 
1100 /* If defined, the maximum amount of space required for outgoing arguments will
1101    be computed and placed into the variable
1102    `current_function_outgoing_args_size'.  */
1103 
1104 #define ACCUMULATE_OUTGOING_ARGS 1
1105 
1106 /* A C expression that should indicate the number of bytes of its own arguments
1107    that a function pops on returning, or 0 if the function pops no arguments
1108    and the caller must therefore pop them all after the function returns.  */
1109 
1110 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, STACK_SIZE) 0
1111 
1112 
1113 /* Function Arguments in Registers */
1114 
1115 #define MAX_ARGUMENT_SLOTS 8
1116 #define MAX_INT_RETURN_SLOTS 4
1117 #define GR_ARG_FIRST IN_REG (0)
1118 #define GR_RET_FIRST GR_REG (8)
1119 #define GR_RET_LAST  GR_REG (11)
1120 #define FR_ARG_FIRST FR_REG (8)
1121 #define FR_RET_FIRST FR_REG (8)
1122 #define FR_RET_LAST  FR_REG (15)
1123 #define AR_ARG_FIRST OUT_REG (0)
1124 
1125 /* A C expression that controls whether a function argument is passed in a
1126    register, and which register.  */
1127 
1128 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1129   ia64_function_arg (&CUM, MODE, TYPE, NAMED, 0)
1130 
1131 /* Define this macro if the target machine has "register windows", so that the
1132    register in which a function sees an arguments is not necessarily the same
1133    as the one in which the caller passed the argument.  */
1134 
1135 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
1136   ia64_function_arg (&CUM, MODE, TYPE, NAMED, 1)
1137 
1138 /* A C type for declaring a variable that is used as the first argument of
1139    `FUNCTION_ARG' and other related values.  For some target machines, the type
1140    `int' suffices and can hold the number of bytes of argument so far.  */
1141 
1142 typedef struct ia64_args
1143 {
1144   int words;			/* # words of arguments so far  */
1145   int int_regs;			/* # GR registers used so far  */
1146   int fp_regs;			/* # FR registers used so far  */
1147   int prototype;		/* whether function prototyped  */
1148 } CUMULATIVE_ARGS;
1149 
1150 /* A C statement (sans semicolon) for initializing the variable CUM for the
1151    state at the beginning of the argument list.  */
1152 
1153 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
1154 do {									\
1155   (CUM).words = 0;							\
1156   (CUM).int_regs = 0;							\
1157   (CUM).fp_regs = 0;							\
1158   (CUM).prototype = ((FNTYPE) && TYPE_ARG_TYPES (FNTYPE)) || (LIBNAME);	\
1159 } while (0)
1160 
1161 /* Like `INIT_CUMULATIVE_ARGS' but overrides it for the purposes of finding the
1162    arguments for the function being compiled.  If this macro is undefined,
1163    `INIT_CUMULATIVE_ARGS' is used instead.  */
1164 
1165 /* We set prototype to true so that we never try to return a PARALLEL from
1166    function_arg.  */
1167 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1168 do {									\
1169   (CUM).words = 0;							\
1170   (CUM).int_regs = 0;							\
1171   (CUM).fp_regs = 0;							\
1172   (CUM).prototype = 1;							\
1173 } while (0)
1174 
1175 /* A C statement (sans semicolon) to update the summarizer variable CUM to
1176    advance past an argument in the argument list.  The values MODE, TYPE and
1177    NAMED describe that argument.  Once this is done, the variable CUM is
1178    suitable for analyzing the *following* argument with `FUNCTION_ARG'.  */
1179 
1180 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1181  ia64_function_arg_advance (&CUM, MODE, TYPE, NAMED)
1182 
1183 /* If defined, a C expression that gives the alignment boundary, in bits, of an
1184    argument with the specified mode and type.  */
1185 
1186 /* Return the alignment boundary in bits for an argument with a specified
1187    mode and type.  */
1188 
1189 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1190   ia64_function_arg_boundary (MODE, TYPE)
1191 
1192 /* A C expression that is nonzero if REGNO is the number of a hard register in
1193    which function arguments are sometimes passed.  This does *not* include
1194    implicit arguments such as the static chain and the structure-value address.
1195    On many machines, no registers can be used for this purpose since all
1196    function arguments are pushed on the stack.  */
1197 #define FUNCTION_ARG_REGNO_P(REGNO) \
1198 (((REGNO) >= AR_ARG_FIRST && (REGNO) < (AR_ARG_FIRST + MAX_ARGUMENT_SLOTS)) \
1199  || ((REGNO) >= FR_ARG_FIRST && (REGNO) < (FR_ARG_FIRST + MAX_ARGUMENT_SLOTS)))
1200 
1201 /* How Scalar Function Values are Returned */
1202 
1203 /* A C expression to create an RTX representing the place where a function
1204    returns a value of data type VALTYPE.  */
1205 
1206 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1207   ia64_function_value (VALTYPE, FUNC)
1208 
1209 /* A C expression to create an RTX representing the place where a library
1210    function returns a value of mode MODE.  */
1211 
1212 #define LIBCALL_VALUE(MODE) \
1213   gen_rtx_REG (MODE,							\
1214 	       (((GET_MODE_CLASS (MODE) == MODE_FLOAT			\
1215 		 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) &&	\
1216 		      (MODE) != TFmode)	\
1217 		? FR_RET_FIRST : GR_RET_FIRST))
1218 
1219 /* A C expression that is nonzero if REGNO is the number of a hard register in
1220    which the values of called function may come back.  */
1221 
1222 #define FUNCTION_VALUE_REGNO_P(REGNO)				\
1223   (((REGNO) >= GR_RET_FIRST && (REGNO) <= GR_RET_LAST)		\
1224    || ((REGNO) >= FR_RET_FIRST && (REGNO) <= FR_RET_LAST))
1225 
1226 
1227 /* How Large Values are Returned */
1228 
1229 #define DEFAULT_PCC_STRUCT_RETURN 0
1230 
1231 
1232 /* Caller-Saves Register Allocation */
1233 
1234 /* A C expression to determine whether it is worthwhile to consider placing a
1235    pseudo-register in a call-clobbered hard register and saving and restoring
1236    it around each function call.  The expression should be 1 when this is worth
1237    doing, and 0 otherwise.
1238 
1239    If you don't define this macro, a default is used which is good on most
1240    machines: `4 * CALLS < REFS'.  */
1241 /* ??? Investigate.  */
1242 /* #define CALLER_SAVE_PROFITABLE(REFS, CALLS) */
1243 
1244 
1245 /* Function Entry and Exit */
1246 
1247 /* Define this macro as a C expression that is nonzero if the return
1248    instruction or the function epilogue ignores the value of the stack pointer;
1249    in other words, if it is safe to delete an instruction to adjust the stack
1250    pointer before a return from the function.  */
1251 
1252 #define EXIT_IGNORE_STACK 1
1253 
1254 /* Define this macro as a C expression that is nonzero for registers
1255    used by the epilogue or the `return' pattern.  */
1256 
1257 #define EPILOGUE_USES(REGNO) ia64_epilogue_uses (REGNO)
1258 
1259 /* Nonzero for registers used by the exception handling mechanism.  */
1260 
1261 #define EH_USES(REGNO) ia64_eh_uses (REGNO)
1262 
1263 /* Output part N of a function descriptor for DECL.  For ia64, both
1264    words are emitted with a single relocation, so ignore N > 0.  */
1265 #define ASM_OUTPUT_FDESC(FILE, DECL, PART)				\
1266 do {									\
1267   if ((PART) == 0)							\
1268     {									\
1269       if (TARGET_ILP32)							\
1270         fputs ("\tdata8.ua @iplt(", FILE);				\
1271       else								\
1272         fputs ("\tdata16.ua @iplt(", FILE);				\
1273       mark_decl_referenced (DECL);					\
1274       assemble_name (FILE, XSTR (XEXP (DECL_RTL (DECL), 0), 0));	\
1275       fputs (")\n", FILE);						\
1276       if (TARGET_ILP32)							\
1277 	fputs ("\tdata8.ua 0\n", FILE);					\
1278     }									\
1279 } while (0)
1280 
1281 /* Generating Code for Profiling.  */
1282 
1283 /* A C statement or compound statement to output to FILE some assembler code to
1284    call the profiling subroutine `mcount'.  */
1285 
1286 #undef FUNCTION_PROFILER
1287 #define FUNCTION_PROFILER(FILE, LABELNO) \
1288   ia64_output_function_profiler(FILE, LABELNO)
1289 
1290 /* Neither hpux nor linux use profile counters.  */
1291 #define NO_PROFILE_COUNTERS 1
1292 
1293 /* Trampolines for Nested Functions.  */
1294 
1295 /* We need 32 bytes, so we can save the sp, ar.rnat, ar.bsp, and ar.pfs of
1296    the function containing a non-local goto target.  */
1297 
1298 #define STACK_SAVEAREA_MODE(LEVEL) \
1299   ((LEVEL) == SAVE_NONLOCAL ? OImode : Pmode)
1300 
1301 /* Output assembler code for a block containing the constant parts of
1302    a trampoline, leaving space for the variable parts.
1303 
1304    The trampoline should set the static chain pointer to value placed
1305    into the trampoline and should branch to the specified routine.
1306    To make the normal indirect-subroutine calling convention work,
1307    the trampoline must look like a function descriptor; the first
1308    word being the target address and the second being the target's
1309    global pointer.
1310 
1311    We abuse the concept of a global pointer by arranging for it
1312    to point to the data we need to load.  The complete trampoline
1313    has the following form:
1314 
1315 		+-------------------+ \
1316 	TRAMP:	| __ia64_trampoline | |
1317 		+-------------------+  > fake function descriptor
1318 		| TRAMP+16          | |
1319 		+-------------------+ /
1320 		| target descriptor |
1321 		+-------------------+
1322 		| static link	    |
1323 		+-------------------+
1324 */
1325 
1326 /* A C expression for the size in bytes of the trampoline, as an integer.  */
1327 
1328 #define TRAMPOLINE_SIZE		32
1329 
1330 /* Alignment required for trampolines, in bits.  */
1331 
1332 #define TRAMPOLINE_ALIGNMENT	64
1333 
1334 /* A C statement to initialize the variable parts of a trampoline.  */
1335 
1336 #define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, STATIC_CHAIN) \
1337   ia64_initialize_trampoline((ADDR), (FNADDR), (STATIC_CHAIN))
1338 
1339 /* Addressing Modes */
1340 
1341 /* Define this macro if the machine supports post-increment addressing.  */
1342 
1343 #define HAVE_POST_INCREMENT 1
1344 #define HAVE_POST_DECREMENT 1
1345 #define HAVE_POST_MODIFY_DISP 1
1346 #define HAVE_POST_MODIFY_REG 1
1347 
1348 /* A C expression that is 1 if the RTX X is a constant which is a valid
1349    address.  */
1350 
1351 #define CONSTANT_ADDRESS_P(X) 0
1352 
1353 /* The max number of registers that can appear in a valid memory address.  */
1354 
1355 #define MAX_REGS_PER_ADDRESS 2
1356 
1357 /* A C compound statement with a conditional `goto LABEL;' executed if X (an
1358    RTX) is a legitimate memory address on the target machine for a memory
1359    operand of mode MODE.  */
1360 
1361 #define LEGITIMATE_ADDRESS_REG(X)					\
1362   ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X))			\
1363    || (GET_CODE (X) == SUBREG && GET_CODE (XEXP (X, 0)) == REG		\
1364        && REG_OK_FOR_BASE_P (XEXP (X, 0))))
1365 
1366 #define LEGITIMATE_ADDRESS_DISP(R, X)					\
1367   (GET_CODE (X) == PLUS							\
1368    && rtx_equal_p (R, XEXP (X, 0))					\
1369    && (LEGITIMATE_ADDRESS_REG (XEXP (X, 1))				\
1370        || (GET_CODE (XEXP (X, 1)) == CONST_INT				\
1371 	   && INTVAL (XEXP (X, 1)) >= -256				\
1372 	   && INTVAL (XEXP (X, 1)) < 256)))
1373 
1374 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) 			\
1375 do {									\
1376   if (LEGITIMATE_ADDRESS_REG (X))					\
1377     goto LABEL;								\
1378   else if ((GET_CODE (X) == POST_INC || GET_CODE (X) == POST_DEC)	\
1379 	   && LEGITIMATE_ADDRESS_REG (XEXP (X, 0))			\
1380 	   && XEXP (X, 0) != arg_pointer_rtx)				\
1381     goto LABEL;								\
1382   else if (GET_CODE (X) == POST_MODIFY					\
1383 	   && LEGITIMATE_ADDRESS_REG (XEXP (X, 0))			\
1384 	   && XEXP (X, 0) != arg_pointer_rtx				\
1385 	   && LEGITIMATE_ADDRESS_DISP (XEXP (X, 0), XEXP (X, 1)))	\
1386     goto LABEL;								\
1387 } while (0)
1388 
1389 /* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
1390    use as a base register.  */
1391 
1392 #ifdef REG_OK_STRICT
1393 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1394 #else
1395 #define REG_OK_FOR_BASE_P(X) \
1396   (GENERAL_REGNO_P (REGNO (X)) || (REGNO (X) >= FIRST_PSEUDO_REGISTER))
1397 #endif
1398 
1399 /* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
1400    use as an index register.  This is needed for POST_MODIFY.  */
1401 
1402 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_BASE_P (X)
1403 
1404 /* A C statement or compound statement with a conditional `goto LABEL;'
1405    executed if memory address X (an RTX) can have different meanings depending
1406    on the machine mode of the memory reference it is used for or if the address
1407    is valid for some modes but not others.  */
1408 
1409 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)			\
1410   if (GET_CODE (ADDR) == POST_DEC || GET_CODE (ADDR) == POST_INC)	\
1411     goto LABEL;
1412 
1413 /* A C expression that is nonzero if X is a legitimate constant for an
1414    immediate operand on the target machine.  */
1415 
1416 #define LEGITIMATE_CONSTANT_P(X) ia64_legitimate_constant_p (X)
1417 
1418 /* Condition Code Status */
1419 
1420 /* One some machines not all possible comparisons are defined, but you can
1421    convert an invalid comparison into a valid one.  */
1422 /* ??? Investigate.  See the alpha definition.  */
1423 /* #define CANONICALIZE_COMPARISON(CODE, OP0, OP1) */
1424 
1425 
1426 /* Describing Relative Costs of Operations */
1427 
1428 /* A C expression for the cost of moving data from a register in class FROM to
1429    one in class TO, using MODE.  */
1430 
1431 #define REGISTER_MOVE_COST  ia64_register_move_cost
1432 
1433 /* A C expression for the cost of moving data of mode M between a
1434    register and memory.  */
1435 #define MEMORY_MOVE_COST(MODE,CLASS,IN) \
1436   ((CLASS) == GENERAL_REGS || (CLASS) == FR_REGS || (CLASS) == FP_REGS \
1437    || (CLASS) == GR_AND_FR_REGS ? 4 : 10)
1438 
1439 /* A C expression for the cost of a branch instruction.  A value of 1 is the
1440    default; other values are interpreted relative to that.  Used by the
1441    if-conversion code as max instruction count.  */
1442 /* ??? This requires investigation.  The primary effect might be how
1443    many additional insn groups we run into, vs how good the dynamic
1444    branch predictor is.  */
1445 
1446 #define BRANCH_COST 6
1447 
1448 /* Define this macro as a C expression which is nonzero if accessing less than
1449    a word of memory (i.e. a `char' or a `short') is no faster than accessing a
1450    word of memory.  */
1451 
1452 #define SLOW_BYTE_ACCESS 1
1453 
1454 /* Define this macro if it is as good or better to call a constant function
1455    address than to call an address kept in a register.
1456 
1457    Indirect function calls are more expensive that direct function calls, so
1458    don't cse function addresses.  */
1459 
1460 #define NO_FUNCTION_CSE
1461 
1462 
1463 /* Dividing the output into sections.  */
1464 
1465 /* A C expression whose value is a string containing the assembler operation
1466    that should precede instructions and read-only data.  */
1467 
1468 #define TEXT_SECTION_ASM_OP "\t.text"
1469 
1470 /* A C expression whose value is a string containing the assembler operation to
1471    identify the following data as writable initialized data.  */
1472 
1473 #define DATA_SECTION_ASM_OP "\t.data"
1474 
1475 /* If defined, a C expression whose value is a string containing the assembler
1476    operation to identify the following data as uninitialized global data.  */
1477 
1478 #define BSS_SECTION_ASM_OP "\t.bss"
1479 
1480 #define IA64_DEFAULT_GVALUE 8
1481 
1482 /* Position Independent Code.  */
1483 
1484 /* The register number of the register used to address a table of static data
1485    addresses in memory.  */
1486 
1487 /* ??? Should modify ia64.md to use pic_offset_table_rtx instead of
1488    gen_rtx_REG (DImode, 1).  */
1489 
1490 /* ??? Should we set flag_pic?  Probably need to define
1491    LEGITIMIZE_PIC_OPERAND_P to make that work.  */
1492 
1493 #define PIC_OFFSET_TABLE_REGNUM GR_REG (1)
1494 
1495 /* Define this macro if the register defined by `PIC_OFFSET_TABLE_REGNUM' is
1496    clobbered by calls.  */
1497 
1498 #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
1499 
1500 
1501 /* The Overall Framework of an Assembler File.  */
1502 
1503 /* A C string constant describing how to begin a comment in the target
1504    assembler language.  The compiler assumes that the comment will end at the
1505    end of the line.  */
1506 
1507 #define ASM_COMMENT_START "//"
1508 
1509 /* A C string constant for text to be output before each `asm' statement or
1510    group of consecutive ones.  */
1511 
1512 #define ASM_APP_ON (TARGET_GNU_AS ? "#APP\n" : "//APP\n")
1513 
1514 /* A C string constant for text to be output after each `asm' statement or
1515    group of consecutive ones.  */
1516 
1517 #define ASM_APP_OFF (TARGET_GNU_AS ? "#NO_APP\n" : "//NO_APP\n")
1518 
1519 /* Output of Uninitialized Variables.  */
1520 
1521 /* This is all handled by svr4.h.  */
1522 
1523 
1524 /* Output and Generation of Labels.  */
1525 
1526 /* A C statement (sans semicolon) to output to the stdio stream STREAM the
1527    assembler definition of a label named NAME.  */
1528 
1529 /* See the ASM_OUTPUT_LABELREF definition in sysv4.h for an explanation of
1530    why ia64_asm_output_label exists.  */
1531 
1532 extern int ia64_asm_output_label;
1533 #define ASM_OUTPUT_LABEL(STREAM, NAME)					\
1534 do {									\
1535   ia64_asm_output_label = 1;						\
1536   assemble_name (STREAM, NAME);						\
1537   fputs (":\n", STREAM);						\
1538   ia64_asm_output_label = 0;						\
1539 } while (0)
1540 
1541 /* Globalizing directive for a label.  */
1542 #define GLOBAL_ASM_OP "\t.global "
1543 
1544 /* A C statement (sans semicolon) to output to the stdio stream STREAM any text
1545    necessary for declaring the name of an external symbol named NAME which is
1546    referenced in this compilation but not defined.  */
1547 
1548 #define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \
1549   ia64_asm_output_external (FILE, DECL, NAME)
1550 
1551 /* A C statement to store into the string STRING a label whose name is made
1552    from the string PREFIX and the number NUM.  */
1553 
1554 #define ASM_GENERATE_INTERNAL_LABEL(LABEL, PREFIX, NUM) \
1555 do {									\
1556   sprintf (LABEL, "*.%s%d", PREFIX, NUM);				\
1557 } while (0)
1558 
1559 /* ??? Not sure if using a ? in the name for Intel as is safe.  */
1560 
1561 #define ASM_PN_FORMAT (TARGET_GNU_AS ? "%s.%lu" : "%s?%lu")
1562 
1563 /* A C statement to output to the stdio stream STREAM assembler code which
1564    defines (equates) the symbol NAME to have the value VALUE.  */
1565 
1566 #define ASM_OUTPUT_DEF(STREAM, NAME, VALUE) \
1567 do {									\
1568   assemble_name (STREAM, NAME);						\
1569   fputs (" = ", STREAM);						\
1570   assemble_name (STREAM, VALUE);					\
1571   fputc ('\n', STREAM);							\
1572 } while (0)
1573 
1574 
1575 /* Macros Controlling Initialization Routines.  */
1576 
1577 /* This is handled by svr4.h and sysv4.h.  */
1578 
1579 
1580 /* Output of Assembler Instructions.  */
1581 
1582 /* A C initializer containing the assembler's names for the machine registers,
1583    each one as a C string constant.  */
1584 
1585 #define REGISTER_NAMES \
1586 {									\
1587   /* General registers.  */						\
1588   "ap", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9",		\
1589   "r10", "r11", "r12", "r13", "r14", "r15", "r16", "r17", "r18", "r19",	\
1590   "r20", "r21", "r22", "r23", "r24", "r25", "r26", "r27", "r28", "r29",	\
1591   "r30", "r31",								\
1592   /* Local registers.  */						\
1593   "loc0", "loc1", "loc2", "loc3", "loc4", "loc5", "loc6", "loc7",	\
1594   "loc8", "loc9", "loc10","loc11","loc12","loc13","loc14","loc15",	\
1595   "loc16","loc17","loc18","loc19","loc20","loc21","loc22","loc23",	\
1596   "loc24","loc25","loc26","loc27","loc28","loc29","loc30","loc31",	\
1597   "loc32","loc33","loc34","loc35","loc36","loc37","loc38","loc39",	\
1598   "loc40","loc41","loc42","loc43","loc44","loc45","loc46","loc47",	\
1599   "loc48","loc49","loc50","loc51","loc52","loc53","loc54","loc55",	\
1600   "loc56","loc57","loc58","loc59","loc60","loc61","loc62","loc63",	\
1601   "loc64","loc65","loc66","loc67","loc68","loc69","loc70","loc71",	\
1602   "loc72","loc73","loc74","loc75","loc76","loc77","loc78","loc79",	\
1603   /* Input registers.  */						\
1604   "in0",  "in1",  "in2",  "in3",  "in4",  "in5",  "in6",  "in7",	\
1605   /* Output registers.  */						\
1606   "out0", "out1", "out2", "out3", "out4", "out5", "out6", "out7",	\
1607   /* Floating-point registers.  */					\
1608   "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", "f8", "f9",		\
1609   "f10", "f11", "f12", "f13", "f14", "f15", "f16", "f17", "f18", "f19",	\
1610   "f20", "f21", "f22", "f23", "f24", "f25", "f26", "f27", "f28", "f29",	\
1611   "f30", "f31", "f32", "f33", "f34", "f35", "f36", "f37", "f38", "f39",	\
1612   "f40", "f41", "f42", "f43", "f44", "f45", "f46", "f47", "f48", "f49",	\
1613   "f50", "f51", "f52", "f53", "f54", "f55", "f56", "f57", "f58", "f59",	\
1614   "f60", "f61", "f62", "f63", "f64", "f65", "f66", "f67", "f68", "f69",	\
1615   "f70", "f71", "f72", "f73", "f74", "f75", "f76", "f77", "f78", "f79",	\
1616   "f80", "f81", "f82", "f83", "f84", "f85", "f86", "f87", "f88", "f89",	\
1617   "f90", "f91", "f92", "f93", "f94", "f95", "f96", "f97", "f98", "f99",	\
1618   "f100","f101","f102","f103","f104","f105","f106","f107","f108","f109",\
1619   "f110","f111","f112","f113","f114","f115","f116","f117","f118","f119",\
1620   "f120","f121","f122","f123","f124","f125","f126","f127",		\
1621   /* Predicate registers.  */						\
1622   "p0", "p1", "p2", "p3", "p4", "p5", "p6", "p7", "p8", "p9",		\
1623   "p10", "p11", "p12", "p13", "p14", "p15", "p16", "p17", "p18", "p19",	\
1624   "p20", "p21", "p22", "p23", "p24", "p25", "p26", "p27", "p28", "p29",	\
1625   "p30", "p31", "p32", "p33", "p34", "p35", "p36", "p37", "p38", "p39",	\
1626   "p40", "p41", "p42", "p43", "p44", "p45", "p46", "p47", "p48", "p49",	\
1627   "p50", "p51", "p52", "p53", "p54", "p55", "p56", "p57", "p58", "p59",	\
1628   "p60", "p61", "p62", "p63",						\
1629   /* Branch registers.  */						\
1630   "b0", "b1", "b2", "b3", "b4", "b5", "b6", "b7",			\
1631   /* Frame pointer.  Application registers.  */				\
1632   "sfp", "ar.ccv", "ar.unat", "ar.pfs", "ar.lc", "ar.ec",	\
1633 }
1634 
1635 /* If defined, a C initializer for an array of structures containing a name and
1636    a register number.  This macro defines additional names for hard registers,
1637    thus allowing the `asm' option in declarations to refer to registers using
1638    alternate names.  */
1639 
1640 #define ADDITIONAL_REGISTER_NAMES \
1641 {									\
1642   { "gp", R_GR (1) },							\
1643   { "sp", R_GR (12) },							\
1644   { "in0", IN_REG (0) },						\
1645   { "in1", IN_REG (1) },						\
1646   { "in2", IN_REG (2) },						\
1647   { "in3", IN_REG (3) },						\
1648   { "in4", IN_REG (4) },						\
1649   { "in5", IN_REG (5) },						\
1650   { "in6", IN_REG (6) },						\
1651   { "in7", IN_REG (7) },						\
1652   { "out0", OUT_REG (0) },						\
1653   { "out1", OUT_REG (1) },						\
1654   { "out2", OUT_REG (2) },						\
1655   { "out3", OUT_REG (3) },						\
1656   { "out4", OUT_REG (4) },						\
1657   { "out5", OUT_REG (5) },						\
1658   { "out6", OUT_REG (6) },						\
1659   { "out7", OUT_REG (7) },						\
1660   { "loc0", LOC_REG (0) },						\
1661   { "loc1", LOC_REG (1) },						\
1662   { "loc2", LOC_REG (2) },						\
1663   { "loc3", LOC_REG (3) },						\
1664   { "loc4", LOC_REG (4) },						\
1665   { "loc5", LOC_REG (5) },						\
1666   { "loc6", LOC_REG (6) },						\
1667   { "loc7", LOC_REG (7) },						\
1668   { "loc8", LOC_REG (8) }, 						\
1669   { "loc9", LOC_REG (9) }, 						\
1670   { "loc10", LOC_REG (10) }, 						\
1671   { "loc11", LOC_REG (11) }, 						\
1672   { "loc12", LOC_REG (12) }, 						\
1673   { "loc13", LOC_REG (13) }, 						\
1674   { "loc14", LOC_REG (14) }, 						\
1675   { "loc15", LOC_REG (15) }, 						\
1676   { "loc16", LOC_REG (16) }, 						\
1677   { "loc17", LOC_REG (17) }, 						\
1678   { "loc18", LOC_REG (18) }, 						\
1679   { "loc19", LOC_REG (19) }, 						\
1680   { "loc20", LOC_REG (20) }, 						\
1681   { "loc21", LOC_REG (21) }, 						\
1682   { "loc22", LOC_REG (22) }, 						\
1683   { "loc23", LOC_REG (23) }, 						\
1684   { "loc24", LOC_REG (24) }, 						\
1685   { "loc25", LOC_REG (25) }, 						\
1686   { "loc26", LOC_REG (26) }, 						\
1687   { "loc27", LOC_REG (27) }, 						\
1688   { "loc28", LOC_REG (28) }, 						\
1689   { "loc29", LOC_REG (29) }, 						\
1690   { "loc30", LOC_REG (30) }, 						\
1691   { "loc31", LOC_REG (31) }, 						\
1692   { "loc32", LOC_REG (32) }, 						\
1693   { "loc33", LOC_REG (33) }, 						\
1694   { "loc34", LOC_REG (34) }, 						\
1695   { "loc35", LOC_REG (35) }, 						\
1696   { "loc36", LOC_REG (36) }, 						\
1697   { "loc37", LOC_REG (37) }, 						\
1698   { "loc38", LOC_REG (38) }, 						\
1699   { "loc39", LOC_REG (39) }, 						\
1700   { "loc40", LOC_REG (40) }, 						\
1701   { "loc41", LOC_REG (41) }, 						\
1702   { "loc42", LOC_REG (42) }, 						\
1703   { "loc43", LOC_REG (43) }, 						\
1704   { "loc44", LOC_REG (44) }, 						\
1705   { "loc45", LOC_REG (45) }, 						\
1706   { "loc46", LOC_REG (46) }, 						\
1707   { "loc47", LOC_REG (47) }, 						\
1708   { "loc48", LOC_REG (48) }, 						\
1709   { "loc49", LOC_REG (49) }, 						\
1710   { "loc50", LOC_REG (50) }, 						\
1711   { "loc51", LOC_REG (51) }, 						\
1712   { "loc52", LOC_REG (52) }, 						\
1713   { "loc53", LOC_REG (53) }, 						\
1714   { "loc54", LOC_REG (54) }, 						\
1715   { "loc55", LOC_REG (55) }, 						\
1716   { "loc56", LOC_REG (56) }, 						\
1717   { "loc57", LOC_REG (57) }, 						\
1718   { "loc58", LOC_REG (58) }, 						\
1719   { "loc59", LOC_REG (59) }, 						\
1720   { "loc60", LOC_REG (60) }, 						\
1721   { "loc61", LOC_REG (61) }, 						\
1722   { "loc62", LOC_REG (62) }, 						\
1723   { "loc63", LOC_REG (63) }, 						\
1724   { "loc64", LOC_REG (64) }, 						\
1725   { "loc65", LOC_REG (65) }, 						\
1726   { "loc66", LOC_REG (66) }, 						\
1727   { "loc67", LOC_REG (67) }, 						\
1728   { "loc68", LOC_REG (68) }, 						\
1729   { "loc69", LOC_REG (69) }, 						\
1730   { "loc70", LOC_REG (70) }, 						\
1731   { "loc71", LOC_REG (71) }, 						\
1732   { "loc72", LOC_REG (72) }, 						\
1733   { "loc73", LOC_REG (73) }, 						\
1734   { "loc74", LOC_REG (74) }, 						\
1735   { "loc75", LOC_REG (75) }, 						\
1736   { "loc76", LOC_REG (76) }, 						\
1737   { "loc77", LOC_REG (77) }, 						\
1738   { "loc78", LOC_REG (78) }, 						\
1739   { "loc79", LOC_REG (79) }, 						\
1740 }
1741 
1742 /* A C compound statement to output to stdio stream STREAM the assembler syntax
1743    for an instruction operand X.  X is an RTL expression.  */
1744 
1745 #define PRINT_OPERAND(STREAM, X, CODE) \
1746   ia64_print_operand (STREAM, X, CODE)
1747 
1748 /* A C expression which evaluates to true if CODE is a valid punctuation
1749    character for use in the `PRINT_OPERAND' macro.  */
1750 
1751 /* ??? Keep this around for now, as we might need it later.  */
1752 
1753 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1754   ((CODE) == '+' || (CODE) == ',')
1755 
1756 /* A C compound statement to output to stdio stream STREAM the assembler syntax
1757    for an instruction operand that is a memory reference whose address is X.  X
1758    is an RTL expression.  */
1759 
1760 #define PRINT_OPERAND_ADDRESS(STREAM, X) \
1761   ia64_print_operand_address (STREAM, X)
1762 
1763 /* If defined, C string expressions to be used for the `%R', `%L', `%U', and
1764    `%I' options of `asm_fprintf' (see `final.c').  */
1765 
1766 #define REGISTER_PREFIX ""
1767 #define LOCAL_LABEL_PREFIX "."
1768 #define USER_LABEL_PREFIX ""
1769 #define IMMEDIATE_PREFIX ""
1770 
1771 
1772 /* Output of dispatch tables.  */
1773 
1774 /* This macro should be provided on machines where the addresses in a dispatch
1775    table are relative to the table's own address.  */
1776 
1777 /* ??? Depends on the pointer size.  */
1778 
1779 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL)	\
1780   do {								\
1781   if (TARGET_ILP32)						\
1782     fprintf (STREAM, "\tdata4 @pcrel(.L%d)\n", VALUE);		\
1783   else								\
1784     fprintf (STREAM, "\tdata8 @pcrel(.L%d)\n", VALUE);		\
1785   } while (0)
1786 
1787 /* Jump tables only need 8 byte alignment.  */
1788 
1789 #define ADDR_VEC_ALIGN(ADDR_VEC) 3
1790 
1791 
1792 /* Assembler Commands for Exception Regions.  */
1793 
1794 /* Select a format to encode pointers in exception handling data.  CODE
1795    is 0 for data, 1 for code labels, 2 for function pointers.  GLOBAL is
1796    true if the symbol may be affected by dynamic relocations.  */
1797 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL)	\
1798   (((CODE) == 1 ? DW_EH_PE_textrel : DW_EH_PE_datarel)	\
1799    | ((GLOBAL) ? DW_EH_PE_indirect : 0)			\
1800    | (TARGET_ILP32 ? DW_EH_PE_udata4 : DW_EH_PE_udata8))
1801 
1802 /* Handle special EH pointer encodings.  Absolute, pc-relative, and
1803    indirect are handled automatically.  */
1804 #define ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX(FILE, ENCODING, SIZE, ADDR, DONE) \
1805   do {									\
1806     const char *reltag = NULL;						\
1807     if (((ENCODING) & 0xF0) == DW_EH_PE_textrel)			\
1808       reltag = "@segrel(";						\
1809     else if (((ENCODING) & 0xF0) == DW_EH_PE_datarel)			\
1810       reltag = "@gprel(";						\
1811     if (reltag)								\
1812       {									\
1813 	fputs (integer_asm_op (SIZE, FALSE), FILE);			\
1814 	fputs (reltag, FILE);						\
1815 	assemble_name (FILE, XSTR (ADDR, 0));				\
1816 	fputc (')', FILE);						\
1817 	goto DONE;							\
1818       }									\
1819   } while (0)
1820 
1821 
1822 /* Assembler Commands for Alignment.  */
1823 
1824 /* ??? Investigate.  */
1825 
1826 /* The alignment (log base 2) to put in front of LABEL, which follows
1827    a BARRIER.  */
1828 
1829 /* #define LABEL_ALIGN_AFTER_BARRIER(LABEL) */
1830 
1831 /* The desired alignment for the location counter at the beginning
1832    of a loop.  */
1833 
1834 /* #define LOOP_ALIGN(LABEL) */
1835 
1836 /* Define this macro if `ASM_OUTPUT_SKIP' should not be used in the text
1837    section because it fails put zeros in the bytes that are skipped.  */
1838 
1839 #define ASM_NO_SKIP_IN_TEXT 1
1840 
1841 /* A C statement to output to the stdio stream STREAM an assembler command to
1842    advance the location counter to a multiple of 2 to the POWER bytes.  */
1843 
1844 #define ASM_OUTPUT_ALIGN(STREAM, POWER) \
1845   fprintf (STREAM, "\t.align %d\n", 1<<(POWER))
1846 
1847 
1848 /* Macros Affecting all Debug Formats.  */
1849 
1850 /* This is handled in svr4.h and sysv4.h.  */
1851 
1852 
1853 /* Specific Options for DBX Output.  */
1854 
1855 /* This is handled by dbxelf.h which is included by svr4.h.  */
1856 
1857 
1858 /* Open ended Hooks for DBX Output.  */
1859 
1860 /* Likewise.  */
1861 
1862 
1863 /* File names in DBX format.  */
1864 
1865 /* Likewise.  */
1866 
1867 
1868 /* Macros for SDB and Dwarf Output.  */
1869 
1870 /* Define this macro if GCC should produce dwarf version 2 format debugging
1871    output in response to the `-g' option.  */
1872 
1873 #define DWARF2_DEBUGGING_INFO 1
1874 
1875 /* We do not want call-frame info to be output, since debuggers are
1876    supposed to use the target unwind info.  Leave this undefined it
1877    TARGET_UNWIND_INFO might ever be false.  */
1878 
1879 #define DWARF2_FRAME_INFO 0
1880 
1881 #define DWARF2_ASM_LINE_DEBUG_INFO (TARGET_DWARF2_ASM)
1882 
1883 /* Use tags for debug info labels, so that they don't break instruction
1884    bundles.  This also avoids getting spurious DV warnings from the
1885    assembler.  This is similar to (*targetm.asm_out.internal_label), except that we
1886    add brackets around the label.  */
1887 
1888 #define ASM_OUTPUT_DEBUG_LABEL(FILE, PREFIX, NUM) \
1889   fprintf (FILE, TARGET_GNU_AS ? "[.%s%d:]\n" : ".%s%d:\n", PREFIX, NUM)
1890 
1891 /* Use section-relative relocations for debugging offsets.  Unlike other
1892    targets that fake this by putting the section VMA at 0, IA-64 has
1893    proper relocations for them.  */
1894 #define ASM_OUTPUT_DWARF_OFFSET(FILE, SIZE, LABEL, SECTION)	\
1895   do {								\
1896     fputs (integer_asm_op (SIZE, FALSE), FILE);			\
1897     fputs ("@secrel(", FILE);					\
1898     assemble_name (FILE, LABEL);				\
1899     fputc (')', FILE);						\
1900   } while (0)
1901 
1902 /* Emit a PC-relative relocation.  */
1903 #define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL)	\
1904   do {							\
1905     fputs (integer_asm_op (SIZE, FALSE), FILE);		\
1906     fputs ("@pcrel(", FILE);				\
1907     assemble_name (FILE, LABEL);			\
1908     fputc (')', FILE);					\
1909   } while (0)
1910 
1911 /* Register Renaming Parameters.  */
1912 
1913 /* A C expression that is nonzero if hard register number REGNO2 can be
1914    considered for use as a rename register for REGNO1 */
1915 
1916 #define HARD_REGNO_RENAME_OK(REGNO1,REGNO2) \
1917   ia64_hard_regno_rename_ok((REGNO1), (REGNO2))
1918 
1919 
1920 /* Miscellaneous Parameters.  */
1921 
1922 /* Flag to mark data that is in the small address area (addressable
1923    via "addl", that is, within a 2MByte offset of 0.  */
1924 #define SYMBOL_FLAG_SMALL_ADDR		(SYMBOL_FLAG_MACH_DEP << 0)
1925 #define SYMBOL_REF_SMALL_ADDR_P(X)	\
1926 	((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_SMALL_ADDR) != 0)
1927 
1928 /* An alias for a machine mode name.  This is the machine mode that elements of
1929    a jump-table should have.  */
1930 
1931 #define CASE_VECTOR_MODE ptr_mode
1932 
1933 /* Define as C expression which evaluates to nonzero if the tablejump
1934    instruction expects the table to contain offsets from the address of the
1935    table.  */
1936 
1937 #define CASE_VECTOR_PC_RELATIVE 1
1938 
1939 /* Define this macro if operations between registers with integral mode smaller
1940    than a word are always performed on the entire register.  */
1941 
1942 #define WORD_REGISTER_OPERATIONS
1943 
1944 /* Define this macro to be a C expression indicating when insns that read
1945    memory in MODE, an integral mode narrower than a word, set the bits outside
1946    of MODE to be either the sign-extension or the zero-extension of the data
1947    read.  */
1948 
1949 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1950 
1951 /* The maximum number of bytes that a single instruction can move quickly from
1952    memory to memory.  */
1953 #define MOVE_MAX 8
1954 
1955 /* A C expression which is nonzero if on this machine it is safe to "convert"
1956    an integer of INPREC bits to one of OUTPREC bits (where OUTPREC is smaller
1957    than INPREC) by merely operating on it as if it had only OUTPREC bits.  */
1958 
1959 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1960 
1961 /* A C expression describing the value returned by a comparison operator with
1962    an integral mode and stored by a store-flag instruction (`sCOND') when the
1963    condition is true.  */
1964 
1965 /* ??? Investigate using STORE_FLAG_VALUE of -1 instead of 1.  */
1966 
1967 /* An alias for the machine mode for pointers.  */
1968 
1969 /* ??? This would change if we had ILP32 support.  */
1970 
1971 #define Pmode DImode
1972 
1973 /* An alias for the machine mode used for memory references to functions being
1974    called, in `call' RTL expressions.  */
1975 
1976 #define FUNCTION_MODE Pmode
1977 
1978 /* Define this macro to handle System V style pragmas: #pragma pack and
1979    #pragma weak.  Note, #pragma weak will only be supported if SUPPORT_WEAK is
1980    defined.  */
1981 
1982 /* If this architecture supports prefetch, define this to be the number of
1983    prefetch commands that can be executed in parallel.
1984 
1985    ??? This number is bogus and needs to be replaced before the value is
1986    actually used in optimizations.  */
1987 
1988 #define SIMULTANEOUS_PREFETCHES 6
1989 
1990 /* If this architecture supports prefetch, define this to be the size of
1991    the cache line that is prefetched.  */
1992 
1993 #define PREFETCH_BLOCK 32
1994 
1995 #define HANDLE_SYSV_PRAGMA 1
1996 
1997 /* A C expression for the maximum number of instructions to execute via
1998    conditional execution instructions instead of a branch.  A value of
1999    BRANCH_COST+1 is the default if the machine does not use
2000    cc0, and 1 if it does use cc0.  */
2001 /* ??? Investigate.  */
2002 #define MAX_CONDITIONAL_EXECUTE 12
2003 
2004 extern int ia64_final_schedule;
2005 
2006 #define TARGET_UNWIND_INFO	1
2007 
2008 #define TARGET_UNWIND_TABLES_DEFAULT true
2009 
2010 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 15 : INVALID_REGNUM)
2011 
2012 /* This function contains machine specific function data.  */
2013 struct machine_function GTY(())
2014 {
2015   /* The new stack pointer when unwinding from EH.  */
2016   rtx ia64_eh_epilogue_sp;
2017 
2018   /* The new bsp value when unwinding from EH.  */
2019   rtx ia64_eh_epilogue_bsp;
2020 
2021   /* The GP value save register.  */
2022   rtx ia64_gp_save;
2023 
2024   /* The number of varargs registers to save.  */
2025   int n_varargs;
2026 
2027   /* The number of the next unwind state to copy.  */
2028   int state_num;
2029 };
2030 
2031 #define DONT_USE_BUILTIN_SETJMP
2032 
2033 /* Output any profiling code before the prologue.  */
2034 
2035 #undef  PROFILE_BEFORE_PROLOGUE
2036 #define PROFILE_BEFORE_PROLOGUE 1
2037 
2038 /* Initialize library function table. */
2039 #undef TARGET_INIT_LIBFUNCS
2040 #define TARGET_INIT_LIBFUNCS ia64_init_libfuncs
2041 
2042 
2043 /* Switch on code for querying unit reservations.  */
2044 #define CPU_UNITS_QUERY 1
2045 
2046 /* Define this to change the optimizations performed by default.  */
2047 #define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
2048   ia64_optimization_options ((LEVEL), (SIZE))
2049 
2050 /* End of ia64.h */
2051