1 //===-- Process.cpp -------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include <atomic> 10 #include <memory> 11 #include <mutex> 12 #include <optional> 13 14 #include "llvm/ADT/ScopeExit.h" 15 #include "llvm/Support/ScopedPrinter.h" 16 #include "llvm/Support/Threading.h" 17 18 #include "lldb/Breakpoint/BreakpointLocation.h" 19 #include "lldb/Breakpoint/StoppointCallbackContext.h" 20 #include "lldb/Core/Debugger.h" 21 #include "lldb/Core/Module.h" 22 #include "lldb/Core/ModuleSpec.h" 23 #include "lldb/Core/PluginManager.h" 24 #include "lldb/Core/Progress.h" 25 #include "lldb/Expression/DiagnosticManager.h" 26 #include "lldb/Expression/DynamicCheckerFunctions.h" 27 #include "lldb/Expression/UserExpression.h" 28 #include "lldb/Expression/UtilityFunction.h" 29 #include "lldb/Host/ConnectionFileDescriptor.h" 30 #include "lldb/Host/FileSystem.h" 31 #include "lldb/Host/Host.h" 32 #include "lldb/Host/HostInfo.h" 33 #include "lldb/Host/OptionParser.h" 34 #include "lldb/Host/Pipe.h" 35 #include "lldb/Host/Terminal.h" 36 #include "lldb/Host/ThreadLauncher.h" 37 #include "lldb/Interpreter/CommandInterpreter.h" 38 #include "lldb/Interpreter/OptionArgParser.h" 39 #include "lldb/Interpreter/OptionValueProperties.h" 40 #include "lldb/Symbol/Function.h" 41 #include "lldb/Symbol/Symbol.h" 42 #include "lldb/Target/ABI.h" 43 #include "lldb/Target/AssertFrameRecognizer.h" 44 #include "lldb/Target/DynamicLoader.h" 45 #include "lldb/Target/InstrumentationRuntime.h" 46 #include "lldb/Target/JITLoader.h" 47 #include "lldb/Target/JITLoaderList.h" 48 #include "lldb/Target/Language.h" 49 #include "lldb/Target/LanguageRuntime.h" 50 #include "lldb/Target/MemoryHistory.h" 51 #include "lldb/Target/MemoryRegionInfo.h" 52 #include "lldb/Target/OperatingSystem.h" 53 #include "lldb/Target/Platform.h" 54 #include "lldb/Target/Process.h" 55 #include "lldb/Target/RegisterContext.h" 56 #include "lldb/Target/StopInfo.h" 57 #include "lldb/Target/StructuredDataPlugin.h" 58 #include "lldb/Target/SystemRuntime.h" 59 #include "lldb/Target/Target.h" 60 #include "lldb/Target/TargetList.h" 61 #include "lldb/Target/Thread.h" 62 #include "lldb/Target/ThreadPlan.h" 63 #include "lldb/Target/ThreadPlanBase.h" 64 #include "lldb/Target/ThreadPlanCallFunction.h" 65 #include "lldb/Target/ThreadPlanStack.h" 66 #include "lldb/Target/UnixSignals.h" 67 #include "lldb/Target/VerboseTrapFrameRecognizer.h" 68 #include "lldb/Utility/AddressableBits.h" 69 #include "lldb/Utility/Event.h" 70 #include "lldb/Utility/LLDBLog.h" 71 #include "lldb/Utility/Log.h" 72 #include "lldb/Utility/NameMatches.h" 73 #include "lldb/Utility/ProcessInfo.h" 74 #include "lldb/Utility/SelectHelper.h" 75 #include "lldb/Utility/State.h" 76 #include "lldb/Utility/Timer.h" 77 78 using namespace lldb; 79 using namespace lldb_private; 80 using namespace std::chrono; 81 82 // Comment out line below to disable memory caching, overriding the process 83 // setting target.process.disable-memory-cache 84 #define ENABLE_MEMORY_CACHING 85 86 #ifdef ENABLE_MEMORY_CACHING 87 #define DISABLE_MEM_CACHE_DEFAULT false 88 #else 89 #define DISABLE_MEM_CACHE_DEFAULT true 90 #endif 91 92 class ProcessOptionValueProperties 93 : public Cloneable<ProcessOptionValueProperties, OptionValueProperties> { 94 public: 95 ProcessOptionValueProperties(llvm::StringRef name) : Cloneable(name) {} 96 97 const Property * 98 GetPropertyAtIndex(size_t idx, 99 const ExecutionContext *exe_ctx) const override { 100 // When getting the value for a key from the process options, we will 101 // always try and grab the setting from the current process if there is 102 // one. Else we just use the one from this instance. 103 if (exe_ctx) { 104 Process *process = exe_ctx->GetProcessPtr(); 105 if (process) { 106 ProcessOptionValueProperties *instance_properties = 107 static_cast<ProcessOptionValueProperties *>( 108 process->GetValueProperties().get()); 109 if (this != instance_properties) 110 return instance_properties->ProtectedGetPropertyAtIndex(idx); 111 } 112 } 113 return ProtectedGetPropertyAtIndex(idx); 114 } 115 }; 116 117 class ProcessMemoryIterator { 118 public: 119 ProcessMemoryIterator(Process &process, lldb::addr_t base) 120 : m_process(process), m_base_addr(base) {} 121 122 bool IsValid() { return m_is_valid; } 123 124 uint8_t operator[](lldb::addr_t offset) { 125 if (!IsValid()) 126 return 0; 127 128 uint8_t retval = 0; 129 Status error; 130 if (0 == m_process.ReadMemory(m_base_addr + offset, &retval, 1, error)) { 131 m_is_valid = false; 132 return 0; 133 } 134 135 return retval; 136 } 137 138 private: 139 Process &m_process; 140 const lldb::addr_t m_base_addr; 141 bool m_is_valid = true; 142 }; 143 144 static constexpr OptionEnumValueElement g_follow_fork_mode_values[] = { 145 { 146 eFollowParent, 147 "parent", 148 "Continue tracing the parent process and detach the child.", 149 }, 150 { 151 eFollowChild, 152 "child", 153 "Trace the child process and detach the parent.", 154 }, 155 }; 156 157 #define LLDB_PROPERTIES_process 158 #include "TargetProperties.inc" 159 160 enum { 161 #define LLDB_PROPERTIES_process 162 #include "TargetPropertiesEnum.inc" 163 ePropertyExperimental, 164 }; 165 166 #define LLDB_PROPERTIES_process_experimental 167 #include "TargetProperties.inc" 168 169 enum { 170 #define LLDB_PROPERTIES_process_experimental 171 #include "TargetPropertiesEnum.inc" 172 }; 173 174 class ProcessExperimentalOptionValueProperties 175 : public Cloneable<ProcessExperimentalOptionValueProperties, 176 OptionValueProperties> { 177 public: 178 ProcessExperimentalOptionValueProperties() 179 : Cloneable(Properties::GetExperimentalSettingsName()) {} 180 }; 181 182 ProcessExperimentalProperties::ProcessExperimentalProperties() 183 : Properties(OptionValuePropertiesSP( 184 new ProcessExperimentalOptionValueProperties())) { 185 m_collection_sp->Initialize(g_process_experimental_properties); 186 } 187 188 ProcessProperties::ProcessProperties(lldb_private::Process *process) 189 : Properties(), 190 m_process(process) // Can be nullptr for global ProcessProperties 191 { 192 if (process == nullptr) { 193 // Global process properties, set them up one time 194 m_collection_sp = std::make_shared<ProcessOptionValueProperties>("process"); 195 m_collection_sp->Initialize(g_process_properties); 196 m_collection_sp->AppendProperty( 197 "thread", "Settings specific to threads.", true, 198 Thread::GetGlobalProperties().GetValueProperties()); 199 } else { 200 m_collection_sp = 201 OptionValueProperties::CreateLocalCopy(Process::GetGlobalProperties()); 202 m_collection_sp->SetValueChangedCallback( 203 ePropertyPythonOSPluginPath, 204 [this] { m_process->LoadOperatingSystemPlugin(true); }); 205 } 206 207 m_experimental_properties_up = 208 std::make_unique<ProcessExperimentalProperties>(); 209 m_collection_sp->AppendProperty( 210 Properties::GetExperimentalSettingsName(), 211 "Experimental settings - setting these won't produce " 212 "errors if the setting is not present.", 213 true, m_experimental_properties_up->GetValueProperties()); 214 } 215 216 ProcessProperties::~ProcessProperties() = default; 217 218 bool ProcessProperties::GetDisableMemoryCache() const { 219 const uint32_t idx = ePropertyDisableMemCache; 220 return GetPropertyAtIndexAs<bool>( 221 idx, g_process_properties[idx].default_uint_value != 0); 222 } 223 224 uint64_t ProcessProperties::GetMemoryCacheLineSize() const { 225 const uint32_t idx = ePropertyMemCacheLineSize; 226 return GetPropertyAtIndexAs<uint64_t>( 227 idx, g_process_properties[idx].default_uint_value); 228 } 229 230 Args ProcessProperties::GetExtraStartupCommands() const { 231 Args args; 232 const uint32_t idx = ePropertyExtraStartCommand; 233 m_collection_sp->GetPropertyAtIndexAsArgs(idx, args); 234 return args; 235 } 236 237 void ProcessProperties::SetExtraStartupCommands(const Args &args) { 238 const uint32_t idx = ePropertyExtraStartCommand; 239 m_collection_sp->SetPropertyAtIndexFromArgs(idx, args); 240 } 241 242 FileSpec ProcessProperties::GetPythonOSPluginPath() const { 243 const uint32_t idx = ePropertyPythonOSPluginPath; 244 return GetPropertyAtIndexAs<FileSpec>(idx, {}); 245 } 246 247 uint32_t ProcessProperties::GetVirtualAddressableBits() const { 248 const uint32_t idx = ePropertyVirtualAddressableBits; 249 return GetPropertyAtIndexAs<uint64_t>( 250 idx, g_process_properties[idx].default_uint_value); 251 } 252 253 void ProcessProperties::SetVirtualAddressableBits(uint32_t bits) { 254 const uint32_t idx = ePropertyVirtualAddressableBits; 255 SetPropertyAtIndex(idx, static_cast<uint64_t>(bits)); 256 } 257 258 uint32_t ProcessProperties::GetHighmemVirtualAddressableBits() const { 259 const uint32_t idx = ePropertyHighmemVirtualAddressableBits; 260 return GetPropertyAtIndexAs<uint64_t>( 261 idx, g_process_properties[idx].default_uint_value); 262 } 263 264 void ProcessProperties::SetHighmemVirtualAddressableBits(uint32_t bits) { 265 const uint32_t idx = ePropertyHighmemVirtualAddressableBits; 266 SetPropertyAtIndex(idx, static_cast<uint64_t>(bits)); 267 } 268 269 void ProcessProperties::SetPythonOSPluginPath(const FileSpec &file) { 270 const uint32_t idx = ePropertyPythonOSPluginPath; 271 SetPropertyAtIndex(idx, file); 272 } 273 274 bool ProcessProperties::GetIgnoreBreakpointsInExpressions() const { 275 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 276 return GetPropertyAtIndexAs<bool>( 277 idx, g_process_properties[idx].default_uint_value != 0); 278 } 279 280 void ProcessProperties::SetIgnoreBreakpointsInExpressions(bool ignore) { 281 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 282 SetPropertyAtIndex(idx, ignore); 283 } 284 285 bool ProcessProperties::GetUnwindOnErrorInExpressions() const { 286 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 287 return GetPropertyAtIndexAs<bool>( 288 idx, g_process_properties[idx].default_uint_value != 0); 289 } 290 291 void ProcessProperties::SetUnwindOnErrorInExpressions(bool ignore) { 292 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 293 SetPropertyAtIndex(idx, ignore); 294 } 295 296 bool ProcessProperties::GetStopOnSharedLibraryEvents() const { 297 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 298 return GetPropertyAtIndexAs<bool>( 299 idx, g_process_properties[idx].default_uint_value != 0); 300 } 301 302 void ProcessProperties::SetStopOnSharedLibraryEvents(bool stop) { 303 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 304 SetPropertyAtIndex(idx, stop); 305 } 306 307 bool ProcessProperties::GetDisableLangRuntimeUnwindPlans() const { 308 const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans; 309 return GetPropertyAtIndexAs<bool>( 310 idx, g_process_properties[idx].default_uint_value != 0); 311 } 312 313 void ProcessProperties::SetDisableLangRuntimeUnwindPlans(bool disable) { 314 const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans; 315 SetPropertyAtIndex(idx, disable); 316 m_process->Flush(); 317 } 318 319 bool ProcessProperties::GetDetachKeepsStopped() const { 320 const uint32_t idx = ePropertyDetachKeepsStopped; 321 return GetPropertyAtIndexAs<bool>( 322 idx, g_process_properties[idx].default_uint_value != 0); 323 } 324 325 void ProcessProperties::SetDetachKeepsStopped(bool stop) { 326 const uint32_t idx = ePropertyDetachKeepsStopped; 327 SetPropertyAtIndex(idx, stop); 328 } 329 330 bool ProcessProperties::GetWarningsOptimization() const { 331 const uint32_t idx = ePropertyWarningOptimization; 332 return GetPropertyAtIndexAs<bool>( 333 idx, g_process_properties[idx].default_uint_value != 0); 334 } 335 336 bool ProcessProperties::GetWarningsUnsupportedLanguage() const { 337 const uint32_t idx = ePropertyWarningUnsupportedLanguage; 338 return GetPropertyAtIndexAs<bool>( 339 idx, g_process_properties[idx].default_uint_value != 0); 340 } 341 342 bool ProcessProperties::GetStopOnExec() const { 343 const uint32_t idx = ePropertyStopOnExec; 344 return GetPropertyAtIndexAs<bool>( 345 idx, g_process_properties[idx].default_uint_value != 0); 346 } 347 348 std::chrono::seconds ProcessProperties::GetUtilityExpressionTimeout() const { 349 const uint32_t idx = ePropertyUtilityExpressionTimeout; 350 uint64_t value = GetPropertyAtIndexAs<uint64_t>( 351 idx, g_process_properties[idx].default_uint_value); 352 return std::chrono::seconds(value); 353 } 354 355 std::chrono::seconds ProcessProperties::GetInterruptTimeout() const { 356 const uint32_t idx = ePropertyInterruptTimeout; 357 uint64_t value = GetPropertyAtIndexAs<uint64_t>( 358 idx, g_process_properties[idx].default_uint_value); 359 return std::chrono::seconds(value); 360 } 361 362 bool ProcessProperties::GetSteppingRunsAllThreads() const { 363 const uint32_t idx = ePropertySteppingRunsAllThreads; 364 return GetPropertyAtIndexAs<bool>( 365 idx, g_process_properties[idx].default_uint_value != 0); 366 } 367 368 bool ProcessProperties::GetOSPluginReportsAllThreads() const { 369 const bool fail_value = true; 370 const Property *exp_property = 371 m_collection_sp->GetPropertyAtIndex(ePropertyExperimental); 372 OptionValueProperties *exp_values = 373 exp_property->GetValue()->GetAsProperties(); 374 if (!exp_values) 375 return fail_value; 376 377 return exp_values 378 ->GetPropertyAtIndexAs<bool>(ePropertyOSPluginReportsAllThreads) 379 .value_or(fail_value); 380 } 381 382 void ProcessProperties::SetOSPluginReportsAllThreads(bool does_report) { 383 const Property *exp_property = 384 m_collection_sp->GetPropertyAtIndex(ePropertyExperimental); 385 OptionValueProperties *exp_values = 386 exp_property->GetValue()->GetAsProperties(); 387 if (exp_values) 388 exp_values->SetPropertyAtIndex(ePropertyOSPluginReportsAllThreads, 389 does_report); 390 } 391 392 FollowForkMode ProcessProperties::GetFollowForkMode() const { 393 const uint32_t idx = ePropertyFollowForkMode; 394 return GetPropertyAtIndexAs<FollowForkMode>( 395 idx, static_cast<FollowForkMode>( 396 g_process_properties[idx].default_uint_value)); 397 } 398 399 ProcessSP Process::FindPlugin(lldb::TargetSP target_sp, 400 llvm::StringRef plugin_name, 401 ListenerSP listener_sp, 402 const FileSpec *crash_file_path, 403 bool can_connect) { 404 static uint32_t g_process_unique_id = 0; 405 406 ProcessSP process_sp; 407 ProcessCreateInstance create_callback = nullptr; 408 if (!plugin_name.empty()) { 409 create_callback = 410 PluginManager::GetProcessCreateCallbackForPluginName(plugin_name); 411 if (create_callback) { 412 process_sp = create_callback(target_sp, listener_sp, crash_file_path, 413 can_connect); 414 if (process_sp) { 415 if (process_sp->CanDebug(target_sp, true)) { 416 process_sp->m_process_unique_id = ++g_process_unique_id; 417 } else 418 process_sp.reset(); 419 } 420 } 421 } else { 422 for (uint32_t idx = 0; 423 (create_callback = 424 PluginManager::GetProcessCreateCallbackAtIndex(idx)) != nullptr; 425 ++idx) { 426 process_sp = create_callback(target_sp, listener_sp, crash_file_path, 427 can_connect); 428 if (process_sp) { 429 if (process_sp->CanDebug(target_sp, false)) { 430 process_sp->m_process_unique_id = ++g_process_unique_id; 431 break; 432 } else 433 process_sp.reset(); 434 } 435 } 436 } 437 return process_sp; 438 } 439 440 llvm::StringRef Process::GetStaticBroadcasterClass() { 441 static constexpr llvm::StringLiteral class_name("lldb.process"); 442 return class_name; 443 } 444 445 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp) 446 : Process(target_sp, listener_sp, UnixSignals::CreateForHost()) { 447 // This constructor just delegates to the full Process constructor, 448 // defaulting to using the Host's UnixSignals. 449 } 450 451 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp, 452 const UnixSignalsSP &unix_signals_sp) 453 : ProcessProperties(this), 454 Broadcaster((target_sp->GetDebugger().GetBroadcasterManager()), 455 Process::GetStaticBroadcasterClass().str()), 456 m_target_wp(target_sp), m_public_state(eStateUnloaded), 457 m_private_state(eStateUnloaded), 458 m_private_state_broadcaster(nullptr, 459 "lldb.process.internal_state_broadcaster"), 460 m_private_state_control_broadcaster( 461 nullptr, "lldb.process.internal_state_control_broadcaster"), 462 m_private_state_listener_sp( 463 Listener::MakeListener("lldb.process.internal_state_listener")), 464 m_mod_id(), m_process_unique_id(0), m_thread_index_id(0), 465 m_thread_id_to_index_id_map(), m_exit_status(-1), 466 m_thread_list_real(*this), m_thread_list(*this), m_thread_plans(*this), 467 m_extended_thread_list(*this), m_extended_thread_stop_id(0), 468 m_queue_list(this), m_queue_list_stop_id(0), 469 m_unix_signals_sp(unix_signals_sp), m_abi_sp(), m_process_input_reader(), 470 m_stdio_communication("process.stdio"), m_stdio_communication_mutex(), 471 m_stdin_forward(false), m_stdout_data(), m_stderr_data(), 472 m_profile_data_comm_mutex(), m_profile_data(), m_iohandler_sync(0), 473 m_memory_cache(*this), m_allocated_memory_cache(*this), 474 m_should_detach(false), m_next_event_action_up(), m_public_run_lock(), 475 m_private_run_lock(), m_currently_handling_do_on_removals(false), 476 m_resume_requested(false), m_finalizing(false), m_destructing(false), 477 m_clear_thread_plans_on_stop(false), m_force_next_event_delivery(false), 478 m_last_broadcast_state(eStateInvalid), m_destroy_in_process(false), 479 m_can_interpret_function_calls(false), m_run_thread_plan_lock(), 480 m_can_jit(eCanJITDontKnow) { 481 CheckInWithManager(); 482 483 Log *log = GetLog(LLDBLog::Object); 484 LLDB_LOGF(log, "%p Process::Process()", static_cast<void *>(this)); 485 486 if (!m_unix_signals_sp) 487 m_unix_signals_sp = std::make_shared<UnixSignals>(); 488 489 SetEventName(eBroadcastBitStateChanged, "state-changed"); 490 SetEventName(eBroadcastBitInterrupt, "interrupt"); 491 SetEventName(eBroadcastBitSTDOUT, "stdout-available"); 492 SetEventName(eBroadcastBitSTDERR, "stderr-available"); 493 SetEventName(eBroadcastBitProfileData, "profile-data-available"); 494 SetEventName(eBroadcastBitStructuredData, "structured-data-available"); 495 496 m_private_state_control_broadcaster.SetEventName( 497 eBroadcastInternalStateControlStop, "control-stop"); 498 m_private_state_control_broadcaster.SetEventName( 499 eBroadcastInternalStateControlPause, "control-pause"); 500 m_private_state_control_broadcaster.SetEventName( 501 eBroadcastInternalStateControlResume, "control-resume"); 502 503 // The listener passed into process creation is the primary listener: 504 // It always listens for all the event bits for Process: 505 SetPrimaryListener(listener_sp); 506 507 m_private_state_listener_sp->StartListeningForEvents( 508 &m_private_state_broadcaster, 509 eBroadcastBitStateChanged | eBroadcastBitInterrupt); 510 511 m_private_state_listener_sp->StartListeningForEvents( 512 &m_private_state_control_broadcaster, 513 eBroadcastInternalStateControlStop | eBroadcastInternalStateControlPause | 514 eBroadcastInternalStateControlResume); 515 // We need something valid here, even if just the default UnixSignalsSP. 516 assert(m_unix_signals_sp && "null m_unix_signals_sp after initialization"); 517 518 // Allow the platform to override the default cache line size 519 OptionValueSP value_sp = 520 m_collection_sp->GetPropertyAtIndex(ePropertyMemCacheLineSize) 521 ->GetValue(); 522 uint64_t platform_cache_line_size = 523 target_sp->GetPlatform()->GetDefaultMemoryCacheLineSize(); 524 if (!value_sp->OptionWasSet() && platform_cache_line_size != 0) 525 value_sp->SetValueAs(platform_cache_line_size); 526 527 // FIXME: Frame recognizer registration should not be done in Target. 528 // We should have a plugin do the registration instead, for example, a 529 // common C LanguageRuntime plugin. 530 RegisterAssertFrameRecognizer(this); 531 RegisterVerboseTrapFrameRecognizer(*this); 532 } 533 534 Process::~Process() { 535 Log *log = GetLog(LLDBLog::Object); 536 LLDB_LOGF(log, "%p Process::~Process()", static_cast<void *>(this)); 537 StopPrivateStateThread(); 538 539 // ThreadList::Clear() will try to acquire this process's mutex, so 540 // explicitly clear the thread list here to ensure that the mutex is not 541 // destroyed before the thread list. 542 m_thread_list.Clear(); 543 } 544 545 ProcessProperties &Process::GetGlobalProperties() { 546 // NOTE: intentional leak so we don't crash if global destructor chain gets 547 // called as other threads still use the result of this function 548 static ProcessProperties *g_settings_ptr = 549 new ProcessProperties(nullptr); 550 return *g_settings_ptr; 551 } 552 553 void Process::Finalize(bool destructing) { 554 if (m_finalizing.exchange(true)) 555 return; 556 if (destructing) 557 m_destructing.exchange(true); 558 559 // Destroy the process. This will call the virtual function DoDestroy under 560 // the hood, giving our derived class a chance to do the ncessary tear down. 561 DestroyImpl(false); 562 563 // Clear our broadcaster before we proceed with destroying 564 Broadcaster::Clear(); 565 566 // Do any cleanup needed prior to being destructed... Subclasses that 567 // override this method should call this superclass method as well. 568 569 // We need to destroy the loader before the derived Process class gets 570 // destroyed since it is very likely that undoing the loader will require 571 // access to the real process. 572 m_dynamic_checkers_up.reset(); 573 m_abi_sp.reset(); 574 m_os_up.reset(); 575 m_system_runtime_up.reset(); 576 m_dyld_up.reset(); 577 m_jit_loaders_up.reset(); 578 m_thread_plans.Clear(); 579 m_thread_list_real.Destroy(); 580 m_thread_list.Destroy(); 581 m_extended_thread_list.Destroy(); 582 m_queue_list.Clear(); 583 m_queue_list_stop_id = 0; 584 m_watchpoint_resource_list.Clear(); 585 std::vector<Notifications> empty_notifications; 586 m_notifications.swap(empty_notifications); 587 m_image_tokens.clear(); 588 m_memory_cache.Clear(); 589 m_allocated_memory_cache.Clear(/*deallocate_memory=*/true); 590 { 591 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 592 m_language_runtimes.clear(); 593 } 594 m_instrumentation_runtimes.clear(); 595 m_next_event_action_up.reset(); 596 // Clear the last natural stop ID since it has a strong reference to this 597 // process 598 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 599 // We have to be very careful here as the m_private_state_listener might 600 // contain events that have ProcessSP values in them which can keep this 601 // process around forever. These events need to be cleared out. 602 m_private_state_listener_sp->Clear(); 603 m_public_run_lock.TrySetRunning(); // This will do nothing if already locked 604 m_public_run_lock.SetStopped(); 605 m_private_run_lock.TrySetRunning(); // This will do nothing if already locked 606 m_private_run_lock.SetStopped(); 607 m_structured_data_plugin_map.clear(); 608 } 609 610 void Process::RegisterNotificationCallbacks(const Notifications &callbacks) { 611 m_notifications.push_back(callbacks); 612 if (callbacks.initialize != nullptr) 613 callbacks.initialize(callbacks.baton, this); 614 } 615 616 bool Process::UnregisterNotificationCallbacks(const Notifications &callbacks) { 617 std::vector<Notifications>::iterator pos, end = m_notifications.end(); 618 for (pos = m_notifications.begin(); pos != end; ++pos) { 619 if (pos->baton == callbacks.baton && 620 pos->initialize == callbacks.initialize && 621 pos->process_state_changed == callbacks.process_state_changed) { 622 m_notifications.erase(pos); 623 return true; 624 } 625 } 626 return false; 627 } 628 629 void Process::SynchronouslyNotifyStateChanged(StateType state) { 630 std::vector<Notifications>::iterator notification_pos, 631 notification_end = m_notifications.end(); 632 for (notification_pos = m_notifications.begin(); 633 notification_pos != notification_end; ++notification_pos) { 634 if (notification_pos->process_state_changed) 635 notification_pos->process_state_changed(notification_pos->baton, this, 636 state); 637 } 638 } 639 640 // FIXME: We need to do some work on events before the general Listener sees 641 // them. 642 // For instance if we are continuing from a breakpoint, we need to ensure that 643 // we do the little "insert real insn, step & stop" trick. But we can't do 644 // that when the event is delivered by the broadcaster - since that is done on 645 // the thread that is waiting for new events, so if we needed more than one 646 // event for our handling, we would stall. So instead we do it when we fetch 647 // the event off of the queue. 648 // 649 650 StateType Process::GetNextEvent(EventSP &event_sp) { 651 StateType state = eStateInvalid; 652 653 if (GetPrimaryListener()->GetEventForBroadcaster(this, event_sp, 654 std::chrono::seconds(0)) && 655 event_sp) 656 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 657 658 return state; 659 } 660 661 void Process::SyncIOHandler(uint32_t iohandler_id, 662 const Timeout<std::micro> &timeout) { 663 // don't sync (potentially context switch) in case where there is no process 664 // IO 665 if (!ProcessIOHandlerExists()) 666 return; 667 668 auto Result = m_iohandler_sync.WaitForValueNotEqualTo(iohandler_id, timeout); 669 670 Log *log = GetLog(LLDBLog::Process); 671 if (Result) { 672 LLDB_LOG( 673 log, 674 "waited from m_iohandler_sync to change from {0}. New value is {1}.", 675 iohandler_id, *Result); 676 } else { 677 LLDB_LOG(log, "timed out waiting for m_iohandler_sync to change from {0}.", 678 iohandler_id); 679 } 680 } 681 682 StateType Process::WaitForProcessToStop( 683 const Timeout<std::micro> &timeout, EventSP *event_sp_ptr, bool wait_always, 684 ListenerSP hijack_listener_sp, Stream *stream, bool use_run_lock, 685 SelectMostRelevant select_most_relevant) { 686 // We can't just wait for a "stopped" event, because the stopped event may 687 // have restarted the target. We have to actually check each event, and in 688 // the case of a stopped event check the restarted flag on the event. 689 if (event_sp_ptr) 690 event_sp_ptr->reset(); 691 StateType state = GetState(); 692 // If we are exited or detached, we won't ever get back to any other valid 693 // state... 694 if (state == eStateDetached || state == eStateExited) 695 return state; 696 697 Log *log = GetLog(LLDBLog::Process); 698 LLDB_LOG(log, "timeout = {0}", timeout); 699 700 if (!wait_always && StateIsStoppedState(state, true) && 701 StateIsStoppedState(GetPrivateState(), true)) { 702 LLDB_LOGF(log, 703 "Process::%s returning without waiting for events; process " 704 "private and public states are already 'stopped'.", 705 __FUNCTION__); 706 // We need to toggle the run lock as this won't get done in 707 // SetPublicState() if the process is hijacked. 708 if (hijack_listener_sp && use_run_lock) 709 m_public_run_lock.SetStopped(); 710 return state; 711 } 712 713 while (state != eStateInvalid) { 714 EventSP event_sp; 715 state = GetStateChangedEvents(event_sp, timeout, hijack_listener_sp); 716 if (event_sp_ptr && event_sp) 717 *event_sp_ptr = event_sp; 718 719 bool pop_process_io_handler = (hijack_listener_sp.get() != nullptr); 720 Process::HandleProcessStateChangedEvent( 721 event_sp, stream, select_most_relevant, pop_process_io_handler); 722 723 switch (state) { 724 case eStateCrashed: 725 case eStateDetached: 726 case eStateExited: 727 case eStateUnloaded: 728 // We need to toggle the run lock as this won't get done in 729 // SetPublicState() if the process is hijacked. 730 if (hijack_listener_sp && use_run_lock) 731 m_public_run_lock.SetStopped(); 732 return state; 733 case eStateStopped: 734 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) 735 continue; 736 else { 737 // We need to toggle the run lock as this won't get done in 738 // SetPublicState() if the process is hijacked. 739 if (hijack_listener_sp && use_run_lock) 740 m_public_run_lock.SetStopped(); 741 return state; 742 } 743 default: 744 continue; 745 } 746 } 747 return state; 748 } 749 750 bool Process::HandleProcessStateChangedEvent( 751 const EventSP &event_sp, Stream *stream, 752 SelectMostRelevant select_most_relevant, 753 bool &pop_process_io_handler) { 754 const bool handle_pop = pop_process_io_handler; 755 756 pop_process_io_handler = false; 757 ProcessSP process_sp = 758 Process::ProcessEventData::GetProcessFromEvent(event_sp.get()); 759 760 if (!process_sp) 761 return false; 762 763 StateType event_state = 764 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 765 if (event_state == eStateInvalid) 766 return false; 767 768 switch (event_state) { 769 case eStateInvalid: 770 case eStateUnloaded: 771 case eStateAttaching: 772 case eStateLaunching: 773 case eStateStepping: 774 case eStateDetached: 775 if (stream) 776 stream->Printf("Process %" PRIu64 " %s\n", process_sp->GetID(), 777 StateAsCString(event_state)); 778 if (event_state == eStateDetached) 779 pop_process_io_handler = true; 780 break; 781 782 case eStateConnected: 783 case eStateRunning: 784 // Don't be chatty when we run... 785 break; 786 787 case eStateExited: 788 if (stream) 789 process_sp->GetStatus(*stream); 790 pop_process_io_handler = true; 791 break; 792 793 case eStateStopped: 794 case eStateCrashed: 795 case eStateSuspended: 796 // Make sure the program hasn't been auto-restarted: 797 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 798 if (stream) { 799 size_t num_reasons = 800 Process::ProcessEventData::GetNumRestartedReasons(event_sp.get()); 801 if (num_reasons > 0) { 802 // FIXME: Do we want to report this, or would that just be annoyingly 803 // chatty? 804 if (num_reasons == 1) { 805 const char *reason = 806 Process::ProcessEventData::GetRestartedReasonAtIndex( 807 event_sp.get(), 0); 808 stream->Printf("Process %" PRIu64 " stopped and restarted: %s\n", 809 process_sp->GetID(), 810 reason ? reason : "<UNKNOWN REASON>"); 811 } else { 812 stream->Printf("Process %" PRIu64 813 " stopped and restarted, reasons:\n", 814 process_sp->GetID()); 815 816 for (size_t i = 0; i < num_reasons; i++) { 817 const char *reason = 818 Process::ProcessEventData::GetRestartedReasonAtIndex( 819 event_sp.get(), i); 820 stream->Printf("\t%s\n", reason ? reason : "<UNKNOWN REASON>"); 821 } 822 } 823 } 824 } 825 } else { 826 StopInfoSP curr_thread_stop_info_sp; 827 // Lock the thread list so it doesn't change on us, this is the scope for 828 // the locker: 829 { 830 ThreadList &thread_list = process_sp->GetThreadList(); 831 std::lock_guard<std::recursive_mutex> guard(thread_list.GetMutex()); 832 833 ThreadSP curr_thread(thread_list.GetSelectedThread()); 834 ThreadSP thread; 835 StopReason curr_thread_stop_reason = eStopReasonInvalid; 836 bool prefer_curr_thread = false; 837 if (curr_thread && curr_thread->IsValid()) { 838 curr_thread_stop_reason = curr_thread->GetStopReason(); 839 switch (curr_thread_stop_reason) { 840 case eStopReasonNone: 841 case eStopReasonInvalid: 842 // Don't prefer the current thread if it didn't stop for a reason. 843 break; 844 case eStopReasonSignal: { 845 // We need to do the same computation we do for other threads 846 // below in case the current thread happens to be the one that 847 // stopped for the no-stop signal. 848 uint64_t signo = curr_thread->GetStopInfo()->GetValue(); 849 if (process_sp->GetUnixSignals()->GetShouldStop(signo)) 850 prefer_curr_thread = true; 851 } break; 852 default: 853 prefer_curr_thread = true; 854 break; 855 } 856 curr_thread_stop_info_sp = curr_thread->GetStopInfo(); 857 } 858 859 if (!prefer_curr_thread) { 860 // Prefer a thread that has just completed its plan over another 861 // thread as current thread. 862 ThreadSP plan_thread; 863 ThreadSP other_thread; 864 865 const size_t num_threads = thread_list.GetSize(); 866 size_t i; 867 for (i = 0; i < num_threads; ++i) { 868 thread = thread_list.GetThreadAtIndex(i); 869 StopReason thread_stop_reason = thread->GetStopReason(); 870 switch (thread_stop_reason) { 871 case eStopReasonInvalid: 872 case eStopReasonNone: 873 break; 874 875 case eStopReasonSignal: { 876 // Don't select a signal thread if we weren't going to stop at 877 // that signal. We have to have had another reason for stopping 878 // here, and the user doesn't want to see this thread. 879 uint64_t signo = thread->GetStopInfo()->GetValue(); 880 if (process_sp->GetUnixSignals()->GetShouldStop(signo)) { 881 if (!other_thread) 882 other_thread = thread; 883 } 884 break; 885 } 886 case eStopReasonTrace: 887 case eStopReasonBreakpoint: 888 case eStopReasonWatchpoint: 889 case eStopReasonException: 890 case eStopReasonExec: 891 case eStopReasonFork: 892 case eStopReasonVFork: 893 case eStopReasonVForkDone: 894 case eStopReasonThreadExiting: 895 case eStopReasonInstrumentation: 896 case eStopReasonProcessorTrace: 897 if (!other_thread) 898 other_thread = thread; 899 break; 900 case eStopReasonPlanComplete: 901 if (!plan_thread) 902 plan_thread = thread; 903 break; 904 } 905 } 906 if (plan_thread) 907 thread_list.SetSelectedThreadByID(plan_thread->GetID()); 908 else if (other_thread) 909 thread_list.SetSelectedThreadByID(other_thread->GetID()); 910 else { 911 if (curr_thread && curr_thread->IsValid()) 912 thread = curr_thread; 913 else 914 thread = thread_list.GetThreadAtIndex(0); 915 916 if (thread) 917 thread_list.SetSelectedThreadByID(thread->GetID()); 918 } 919 } 920 } 921 // Drop the ThreadList mutex by here, since GetThreadStatus below might 922 // have to run code, e.g. for Data formatters, and if we hold the 923 // ThreadList mutex, then the process is going to have a hard time 924 // restarting the process. 925 if (stream) { 926 Debugger &debugger = process_sp->GetTarget().GetDebugger(); 927 if (debugger.GetTargetList().GetSelectedTarget().get() == 928 &process_sp->GetTarget()) { 929 ThreadSP thread_sp = process_sp->GetThreadList().GetSelectedThread(); 930 931 if (!thread_sp || !thread_sp->IsValid()) 932 return false; 933 934 const bool only_threads_with_stop_reason = true; 935 const uint32_t start_frame = 936 thread_sp->GetSelectedFrameIndex(select_most_relevant); 937 const uint32_t num_frames = 1; 938 const uint32_t num_frames_with_source = 1; 939 const bool stop_format = true; 940 941 process_sp->GetStatus(*stream); 942 process_sp->GetThreadStatus(*stream, only_threads_with_stop_reason, 943 start_frame, num_frames, 944 num_frames_with_source, 945 stop_format); 946 if (curr_thread_stop_info_sp) { 947 lldb::addr_t crashing_address; 948 ValueObjectSP valobj_sp = StopInfo::GetCrashingDereference( 949 curr_thread_stop_info_sp, &crashing_address); 950 if (valobj_sp) { 951 const ValueObject::GetExpressionPathFormat format = 952 ValueObject::GetExpressionPathFormat:: 953 eGetExpressionPathFormatHonorPointers; 954 stream->PutCString("Likely cause: "); 955 valobj_sp->GetExpressionPath(*stream, format); 956 stream->Printf(" accessed 0x%" PRIx64 "\n", crashing_address); 957 } 958 } 959 } else { 960 uint32_t target_idx = debugger.GetTargetList().GetIndexOfTarget( 961 process_sp->GetTarget().shared_from_this()); 962 if (target_idx != UINT32_MAX) 963 stream->Printf("Target %d: (", target_idx); 964 else 965 stream->Printf("Target <unknown index>: ("); 966 process_sp->GetTarget().Dump(stream, eDescriptionLevelBrief); 967 stream->Printf(") stopped.\n"); 968 } 969 } 970 971 // Pop the process IO handler 972 pop_process_io_handler = true; 973 } 974 break; 975 } 976 977 if (handle_pop && pop_process_io_handler) 978 process_sp->PopProcessIOHandler(); 979 980 return true; 981 } 982 983 bool Process::HijackProcessEvents(ListenerSP listener_sp) { 984 if (listener_sp) { 985 return HijackBroadcaster(listener_sp, eBroadcastBitStateChanged | 986 eBroadcastBitInterrupt); 987 } else 988 return false; 989 } 990 991 void Process::RestoreProcessEvents() { RestoreBroadcaster(); } 992 993 StateType Process::GetStateChangedEvents(EventSP &event_sp, 994 const Timeout<std::micro> &timeout, 995 ListenerSP hijack_listener_sp) { 996 Log *log = GetLog(LLDBLog::Process); 997 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 998 999 ListenerSP listener_sp = hijack_listener_sp; 1000 if (!listener_sp) 1001 listener_sp = GetPrimaryListener(); 1002 1003 StateType state = eStateInvalid; 1004 if (listener_sp->GetEventForBroadcasterWithType( 1005 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 1006 timeout)) { 1007 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 1008 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1009 else 1010 LLDB_LOG(log, "got no event or was interrupted."); 1011 } 1012 1013 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, state); 1014 return state; 1015 } 1016 1017 Event *Process::PeekAtStateChangedEvents() { 1018 Log *log = GetLog(LLDBLog::Process); 1019 1020 LLDB_LOGF(log, "Process::%s...", __FUNCTION__); 1021 1022 Event *event_ptr; 1023 event_ptr = GetPrimaryListener()->PeekAtNextEventForBroadcasterWithType( 1024 this, eBroadcastBitStateChanged); 1025 if (log) { 1026 if (event_ptr) { 1027 LLDB_LOGF(log, "Process::%s (event_ptr) => %s", __FUNCTION__, 1028 StateAsCString(ProcessEventData::GetStateFromEvent(event_ptr))); 1029 } else { 1030 LLDB_LOGF(log, "Process::%s no events found", __FUNCTION__); 1031 } 1032 } 1033 return event_ptr; 1034 } 1035 1036 StateType 1037 Process::GetStateChangedEventsPrivate(EventSP &event_sp, 1038 const Timeout<std::micro> &timeout) { 1039 Log *log = GetLog(LLDBLog::Process); 1040 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1041 1042 StateType state = eStateInvalid; 1043 if (m_private_state_listener_sp->GetEventForBroadcasterWithType( 1044 &m_private_state_broadcaster, 1045 eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 1046 timeout)) 1047 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 1048 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1049 1050 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, 1051 state == eStateInvalid ? "TIMEOUT" : StateAsCString(state)); 1052 return state; 1053 } 1054 1055 bool Process::GetEventsPrivate(EventSP &event_sp, 1056 const Timeout<std::micro> &timeout, 1057 bool control_only) { 1058 Log *log = GetLog(LLDBLog::Process); 1059 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1060 1061 if (control_only) 1062 return m_private_state_listener_sp->GetEventForBroadcaster( 1063 &m_private_state_control_broadcaster, event_sp, timeout); 1064 else 1065 return m_private_state_listener_sp->GetEvent(event_sp, timeout); 1066 } 1067 1068 bool Process::IsRunning() const { 1069 return StateIsRunningState(m_public_state.GetValue()); 1070 } 1071 1072 int Process::GetExitStatus() { 1073 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1074 1075 if (m_public_state.GetValue() == eStateExited) 1076 return m_exit_status; 1077 return -1; 1078 } 1079 1080 const char *Process::GetExitDescription() { 1081 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1082 1083 if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty()) 1084 return m_exit_string.c_str(); 1085 return nullptr; 1086 } 1087 1088 bool Process::SetExitStatus(int status, llvm::StringRef exit_string) { 1089 // Use a mutex to protect setting the exit status. 1090 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1091 1092 Log *log(GetLog(LLDBLog::State | LLDBLog::Process)); 1093 LLDB_LOG(log, "(plugin = {0} status = {1} ({1:x8}), description=\"{2}\")", 1094 GetPluginName(), status, exit_string); 1095 1096 // We were already in the exited state 1097 if (m_private_state.GetValue() == eStateExited) { 1098 LLDB_LOG( 1099 log, 1100 "(plugin = {0}) ignoring exit status because state was already set " 1101 "to eStateExited", 1102 GetPluginName()); 1103 return false; 1104 } 1105 1106 m_exit_status = status; 1107 if (!exit_string.empty()) 1108 m_exit_string = exit_string.str(); 1109 else 1110 m_exit_string.clear(); 1111 1112 // Clear the last natural stop ID since it has a strong reference to this 1113 // process 1114 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 1115 1116 SetPrivateState(eStateExited); 1117 1118 // Allow subclasses to do some cleanup 1119 DidExit(); 1120 1121 return true; 1122 } 1123 1124 bool Process::IsAlive() { 1125 switch (m_private_state.GetValue()) { 1126 case eStateConnected: 1127 case eStateAttaching: 1128 case eStateLaunching: 1129 case eStateStopped: 1130 case eStateRunning: 1131 case eStateStepping: 1132 case eStateCrashed: 1133 case eStateSuspended: 1134 return true; 1135 default: 1136 return false; 1137 } 1138 } 1139 1140 // This static callback can be used to watch for local child processes on the 1141 // current host. The child process exits, the process will be found in the 1142 // global target list (we want to be completely sure that the 1143 // lldb_private::Process doesn't go away before we can deliver the signal. 1144 bool Process::SetProcessExitStatus( 1145 lldb::pid_t pid, bool exited, 1146 int signo, // Zero for no signal 1147 int exit_status // Exit value of process if signal is zero 1148 ) { 1149 Log *log = GetLog(LLDBLog::Process); 1150 LLDB_LOGF(log, 1151 "Process::SetProcessExitStatus (pid=%" PRIu64 1152 ", exited=%i, signal=%i, exit_status=%i)\n", 1153 pid, exited, signo, exit_status); 1154 1155 if (exited) { 1156 TargetSP target_sp(Debugger::FindTargetWithProcessID(pid)); 1157 if (target_sp) { 1158 ProcessSP process_sp(target_sp->GetProcessSP()); 1159 if (process_sp) { 1160 llvm::StringRef signal_str = 1161 process_sp->GetUnixSignals()->GetSignalAsStringRef(signo); 1162 process_sp->SetExitStatus(exit_status, signal_str); 1163 } 1164 } 1165 return true; 1166 } 1167 return false; 1168 } 1169 1170 bool Process::UpdateThreadList(ThreadList &old_thread_list, 1171 ThreadList &new_thread_list) { 1172 m_thread_plans.ClearThreadCache(); 1173 return DoUpdateThreadList(old_thread_list, new_thread_list); 1174 } 1175 1176 void Process::UpdateThreadListIfNeeded() { 1177 const uint32_t stop_id = GetStopID(); 1178 if (m_thread_list.GetSize(false) == 0 || 1179 stop_id != m_thread_list.GetStopID()) { 1180 bool clear_unused_threads = true; 1181 const StateType state = GetPrivateState(); 1182 if (StateIsStoppedState(state, true)) { 1183 std::lock_guard<std::recursive_mutex> guard(m_thread_list.GetMutex()); 1184 m_thread_list.SetStopID(stop_id); 1185 1186 // m_thread_list does have its own mutex, but we need to hold onto the 1187 // mutex between the call to UpdateThreadList(...) and the 1188 // os->UpdateThreadList(...) so it doesn't change on us 1189 ThreadList &old_thread_list = m_thread_list; 1190 ThreadList real_thread_list(*this); 1191 ThreadList new_thread_list(*this); 1192 // Always update the thread list with the protocol specific thread list, 1193 // but only update if "true" is returned 1194 if (UpdateThreadList(m_thread_list_real, real_thread_list)) { 1195 // Don't call into the OperatingSystem to update the thread list if we 1196 // are shutting down, since that may call back into the SBAPI's, 1197 // requiring the API lock which is already held by whoever is shutting 1198 // us down, causing a deadlock. 1199 OperatingSystem *os = GetOperatingSystem(); 1200 if (os && !m_destroy_in_process) { 1201 // Clear any old backing threads where memory threads might have been 1202 // backed by actual threads from the lldb_private::Process subclass 1203 size_t num_old_threads = old_thread_list.GetSize(false); 1204 for (size_t i = 0; i < num_old_threads; ++i) 1205 old_thread_list.GetThreadAtIndex(i, false)->ClearBackingThread(); 1206 // See if the OS plugin reports all threads. If it does, then 1207 // it is safe to clear unseen thread's plans here. Otherwise we 1208 // should preserve them in case they show up again: 1209 clear_unused_threads = GetOSPluginReportsAllThreads(); 1210 1211 // Turn off dynamic types to ensure we don't run any expressions. 1212 // Objective-C can run an expression to determine if a SBValue is a 1213 // dynamic type or not and we need to avoid this. OperatingSystem 1214 // plug-ins can't run expressions that require running code... 1215 1216 Target &target = GetTarget(); 1217 const lldb::DynamicValueType saved_prefer_dynamic = 1218 target.GetPreferDynamicValue(); 1219 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1220 target.SetPreferDynamicValue(lldb::eNoDynamicValues); 1221 1222 // Now let the OperatingSystem plug-in update the thread list 1223 1224 os->UpdateThreadList( 1225 old_thread_list, // Old list full of threads created by OS plug-in 1226 real_thread_list, // The actual thread list full of threads 1227 // created by each lldb_private::Process 1228 // subclass 1229 new_thread_list); // The new thread list that we will show to the 1230 // user that gets filled in 1231 1232 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1233 target.SetPreferDynamicValue(saved_prefer_dynamic); 1234 } else { 1235 // No OS plug-in, the new thread list is the same as the real thread 1236 // list. 1237 new_thread_list = real_thread_list; 1238 } 1239 1240 m_thread_list_real.Update(real_thread_list); 1241 m_thread_list.Update(new_thread_list); 1242 m_thread_list.SetStopID(stop_id); 1243 1244 if (GetLastNaturalStopID() != m_extended_thread_stop_id) { 1245 // Clear any extended threads that we may have accumulated previously 1246 m_extended_thread_list.Clear(); 1247 m_extended_thread_stop_id = GetLastNaturalStopID(); 1248 1249 m_queue_list.Clear(); 1250 m_queue_list_stop_id = GetLastNaturalStopID(); 1251 } 1252 } 1253 // Now update the plan stack map. 1254 // If we do have an OS plugin, any absent real threads in the 1255 // m_thread_list have already been removed from the ThreadPlanStackMap. 1256 // So any remaining threads are OS Plugin threads, and those we want to 1257 // preserve in case they show up again. 1258 m_thread_plans.Update(m_thread_list, clear_unused_threads); 1259 } 1260 } 1261 } 1262 1263 ThreadPlanStack *Process::FindThreadPlans(lldb::tid_t tid) { 1264 return m_thread_plans.Find(tid); 1265 } 1266 1267 bool Process::PruneThreadPlansForTID(lldb::tid_t tid) { 1268 return m_thread_plans.PrunePlansForTID(tid); 1269 } 1270 1271 void Process::PruneThreadPlans() { 1272 m_thread_plans.Update(GetThreadList(), true, false); 1273 } 1274 1275 bool Process::DumpThreadPlansForTID(Stream &strm, lldb::tid_t tid, 1276 lldb::DescriptionLevel desc_level, 1277 bool internal, bool condense_trivial, 1278 bool skip_unreported_plans) { 1279 return m_thread_plans.DumpPlansForTID( 1280 strm, tid, desc_level, internal, condense_trivial, skip_unreported_plans); 1281 } 1282 void Process::DumpThreadPlans(Stream &strm, lldb::DescriptionLevel desc_level, 1283 bool internal, bool condense_trivial, 1284 bool skip_unreported_plans) { 1285 m_thread_plans.DumpPlans(strm, desc_level, internal, condense_trivial, 1286 skip_unreported_plans); 1287 } 1288 1289 void Process::UpdateQueueListIfNeeded() { 1290 if (m_system_runtime_up) { 1291 if (m_queue_list.GetSize() == 0 || 1292 m_queue_list_stop_id != GetLastNaturalStopID()) { 1293 const StateType state = GetPrivateState(); 1294 if (StateIsStoppedState(state, true)) { 1295 m_system_runtime_up->PopulateQueueList(m_queue_list); 1296 m_queue_list_stop_id = GetLastNaturalStopID(); 1297 } 1298 } 1299 } 1300 } 1301 1302 ThreadSP Process::CreateOSPluginThread(lldb::tid_t tid, lldb::addr_t context) { 1303 OperatingSystem *os = GetOperatingSystem(); 1304 if (os) 1305 return os->CreateThread(tid, context); 1306 return ThreadSP(); 1307 } 1308 1309 uint32_t Process::GetNextThreadIndexID(uint64_t thread_id) { 1310 return AssignIndexIDToThread(thread_id); 1311 } 1312 1313 bool Process::HasAssignedIndexIDToThread(uint64_t thread_id) { 1314 return (m_thread_id_to_index_id_map.find(thread_id) != 1315 m_thread_id_to_index_id_map.end()); 1316 } 1317 1318 uint32_t Process::AssignIndexIDToThread(uint64_t thread_id) { 1319 uint32_t result = 0; 1320 std::map<uint64_t, uint32_t>::iterator iterator = 1321 m_thread_id_to_index_id_map.find(thread_id); 1322 if (iterator == m_thread_id_to_index_id_map.end()) { 1323 result = ++m_thread_index_id; 1324 m_thread_id_to_index_id_map[thread_id] = result; 1325 } else { 1326 result = iterator->second; 1327 } 1328 1329 return result; 1330 } 1331 1332 StateType Process::GetState() { 1333 if (CurrentThreadIsPrivateStateThread()) 1334 return m_private_state.GetValue(); 1335 else 1336 return m_public_state.GetValue(); 1337 } 1338 1339 void Process::SetPublicState(StateType new_state, bool restarted) { 1340 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1341 if (new_state_is_stopped) { 1342 // This will only set the time if the public stop time has no value, so 1343 // it is ok to call this multiple times. With a public stop we can't look 1344 // at the stop ID because many private stops might have happened, so we 1345 // can't check for a stop ID of zero. This allows the "statistics" command 1346 // to dump the time it takes to reach somewhere in your code, like a 1347 // breakpoint you set. 1348 GetTarget().GetStatistics().SetFirstPublicStopTime(); 1349 } 1350 1351 Log *log(GetLog(LLDBLog::State | LLDBLog::Process)); 1352 LLDB_LOGF(log, "(plugin = %s, state = %s, restarted = %i)", 1353 GetPluginName().data(), StateAsCString(new_state), restarted); 1354 const StateType old_state = m_public_state.GetValue(); 1355 m_public_state.SetValue(new_state); 1356 1357 // On the transition from Run to Stopped, we unlock the writer end of the run 1358 // lock. The lock gets locked in Resume, which is the public API to tell the 1359 // program to run. 1360 if (!StateChangedIsExternallyHijacked()) { 1361 if (new_state == eStateDetached) { 1362 LLDB_LOGF(log, 1363 "(plugin = %s, state = %s) -- unlocking run lock for detach", 1364 GetPluginName().data(), StateAsCString(new_state)); 1365 m_public_run_lock.SetStopped(); 1366 } else { 1367 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1368 if ((old_state_is_stopped != new_state_is_stopped)) { 1369 if (new_state_is_stopped && !restarted) { 1370 LLDB_LOGF(log, "(plugin = %s, state = %s) -- unlocking run lock", 1371 GetPluginName().data(), StateAsCString(new_state)); 1372 m_public_run_lock.SetStopped(); 1373 } 1374 } 1375 } 1376 } 1377 } 1378 1379 Status Process::Resume() { 1380 Log *log(GetLog(LLDBLog::State | LLDBLog::Process)); 1381 LLDB_LOGF(log, "(plugin = %s) -- locking run lock", GetPluginName().data()); 1382 if (!m_public_run_lock.TrySetRunning()) { 1383 Status error("Resume request failed - process still running."); 1384 LLDB_LOGF(log, "(plugin = %s) -- TrySetRunning failed, not resuming.", 1385 GetPluginName().data()); 1386 return error; 1387 } 1388 Status error = PrivateResume(); 1389 if (!error.Success()) { 1390 // Undo running state change 1391 m_public_run_lock.SetStopped(); 1392 } 1393 return error; 1394 } 1395 1396 Status Process::ResumeSynchronous(Stream *stream) { 1397 Log *log(GetLog(LLDBLog::State | LLDBLog::Process)); 1398 LLDB_LOGF(log, "Process::ResumeSynchronous -- locking run lock"); 1399 if (!m_public_run_lock.TrySetRunning()) { 1400 Status error("Resume request failed - process still running."); 1401 LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming."); 1402 return error; 1403 } 1404 1405 ListenerSP listener_sp( 1406 Listener::MakeListener(ResumeSynchronousHijackListenerName.data())); 1407 HijackProcessEvents(listener_sp); 1408 1409 Status error = PrivateResume(); 1410 if (error.Success()) { 1411 StateType state = 1412 WaitForProcessToStop(std::nullopt, nullptr, true, listener_sp, stream, 1413 true /* use_run_lock */, SelectMostRelevantFrame); 1414 const bool must_be_alive = 1415 false; // eStateExited is ok, so this must be false 1416 if (!StateIsStoppedState(state, must_be_alive)) 1417 error.SetErrorStringWithFormat( 1418 "process not in stopped state after synchronous resume: %s", 1419 StateAsCString(state)); 1420 } else { 1421 // Undo running state change 1422 m_public_run_lock.SetStopped(); 1423 } 1424 1425 // Undo the hijacking of process events... 1426 RestoreProcessEvents(); 1427 1428 return error; 1429 } 1430 1431 bool Process::StateChangedIsExternallyHijacked() { 1432 if (IsHijackedForEvent(eBroadcastBitStateChanged)) { 1433 llvm::StringRef hijacking_name = GetHijackingListenerName(); 1434 if (!hijacking_name.starts_with("lldb.internal")) 1435 return true; 1436 } 1437 return false; 1438 } 1439 1440 bool Process::StateChangedIsHijackedForSynchronousResume() { 1441 if (IsHijackedForEvent(eBroadcastBitStateChanged)) { 1442 llvm::StringRef hijacking_name = GetHijackingListenerName(); 1443 if (hijacking_name == ResumeSynchronousHijackListenerName) 1444 return true; 1445 } 1446 return false; 1447 } 1448 1449 StateType Process::GetPrivateState() { return m_private_state.GetValue(); } 1450 1451 void Process::SetPrivateState(StateType new_state) { 1452 // Use m_destructing not m_finalizing here. If we are finalizing a process 1453 // that we haven't started tearing down, we'd like to be able to nicely 1454 // detach if asked, but that requires the event system be live. That will 1455 // not be true for an in-the-middle-of-being-destructed Process, since the 1456 // event system relies on Process::shared_from_this, which may have already 1457 // been destroyed. 1458 if (m_destructing) 1459 return; 1460 1461 Log *log(GetLog(LLDBLog::State | LLDBLog::Process | LLDBLog::Unwind)); 1462 bool state_changed = false; 1463 1464 LLDB_LOGF(log, "(plugin = %s, state = %s)", GetPluginName().data(), 1465 StateAsCString(new_state)); 1466 1467 std::lock_guard<std::recursive_mutex> thread_guard(m_thread_list.GetMutex()); 1468 std::lock_guard<std::recursive_mutex> guard(m_private_state.GetMutex()); 1469 1470 const StateType old_state = m_private_state.GetValueNoLock(); 1471 state_changed = old_state != new_state; 1472 1473 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1474 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1475 if (old_state_is_stopped != new_state_is_stopped) { 1476 if (new_state_is_stopped) 1477 m_private_run_lock.SetStopped(); 1478 else 1479 m_private_run_lock.SetRunning(); 1480 } 1481 1482 if (state_changed) { 1483 m_private_state.SetValueNoLock(new_state); 1484 EventSP event_sp( 1485 new Event(eBroadcastBitStateChanged, 1486 new ProcessEventData(shared_from_this(), new_state))); 1487 if (StateIsStoppedState(new_state, false)) { 1488 // Note, this currently assumes that all threads in the list stop when 1489 // the process stops. In the future we will want to support a debugging 1490 // model where some threads continue to run while others are stopped. 1491 // When that happens we will either need a way for the thread list to 1492 // identify which threads are stopping or create a special thread list 1493 // containing only threads which actually stopped. 1494 // 1495 // The process plugin is responsible for managing the actual behavior of 1496 // the threads and should have stopped any threads that are going to stop 1497 // before we get here. 1498 m_thread_list.DidStop(); 1499 1500 if (m_mod_id.BumpStopID() == 0) 1501 GetTarget().GetStatistics().SetFirstPrivateStopTime(); 1502 1503 if (!m_mod_id.IsLastResumeForUserExpression()) 1504 m_mod_id.SetStopEventForLastNaturalStopID(event_sp); 1505 m_memory_cache.Clear(); 1506 LLDB_LOGF(log, "(plugin = %s, state = %s, stop_id = %u", 1507 GetPluginName().data(), StateAsCString(new_state), 1508 m_mod_id.GetStopID()); 1509 } 1510 1511 m_private_state_broadcaster.BroadcastEvent(event_sp); 1512 } else { 1513 LLDB_LOGF(log, "(plugin = %s, state = %s) state didn't change. Ignoring...", 1514 GetPluginName().data(), StateAsCString(new_state)); 1515 } 1516 } 1517 1518 void Process::SetRunningUserExpression(bool on) { 1519 m_mod_id.SetRunningUserExpression(on); 1520 } 1521 1522 void Process::SetRunningUtilityFunction(bool on) { 1523 m_mod_id.SetRunningUtilityFunction(on); 1524 } 1525 1526 addr_t Process::GetImageInfoAddress() { return LLDB_INVALID_ADDRESS; } 1527 1528 const lldb::ABISP &Process::GetABI() { 1529 if (!m_abi_sp) 1530 m_abi_sp = ABI::FindPlugin(shared_from_this(), GetTarget().GetArchitecture()); 1531 return m_abi_sp; 1532 } 1533 1534 std::vector<LanguageRuntime *> Process::GetLanguageRuntimes() { 1535 std::vector<LanguageRuntime *> language_runtimes; 1536 1537 if (m_finalizing) 1538 return language_runtimes; 1539 1540 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 1541 // Before we pass off a copy of the language runtimes, we must make sure that 1542 // our collection is properly populated. It's possible that some of the 1543 // language runtimes were not loaded yet, either because nobody requested it 1544 // yet or the proper condition for loading wasn't yet met (e.g. libc++.so 1545 // hadn't been loaded). 1546 for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) { 1547 if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type)) 1548 language_runtimes.emplace_back(runtime); 1549 } 1550 1551 return language_runtimes; 1552 } 1553 1554 LanguageRuntime *Process::GetLanguageRuntime(lldb::LanguageType language) { 1555 if (m_finalizing) 1556 return nullptr; 1557 1558 LanguageRuntime *runtime = nullptr; 1559 1560 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 1561 LanguageRuntimeCollection::iterator pos; 1562 pos = m_language_runtimes.find(language); 1563 if (pos == m_language_runtimes.end() || !pos->second) { 1564 lldb::LanguageRuntimeSP runtime_sp( 1565 LanguageRuntime::FindPlugin(this, language)); 1566 1567 m_language_runtimes[language] = runtime_sp; 1568 runtime = runtime_sp.get(); 1569 } else 1570 runtime = pos->second.get(); 1571 1572 if (runtime) 1573 // It's possible that a language runtime can support multiple LanguageTypes, 1574 // for example, CPPLanguageRuntime will support eLanguageTypeC_plus_plus, 1575 // eLanguageTypeC_plus_plus_03, etc. Because of this, we should get the 1576 // primary language type and make sure that our runtime supports it. 1577 assert(runtime->GetLanguageType() == Language::GetPrimaryLanguage(language)); 1578 1579 return runtime; 1580 } 1581 1582 bool Process::IsPossibleDynamicValue(ValueObject &in_value) { 1583 if (m_finalizing) 1584 return false; 1585 1586 if (in_value.IsDynamic()) 1587 return false; 1588 LanguageType known_type = in_value.GetObjectRuntimeLanguage(); 1589 1590 if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) { 1591 LanguageRuntime *runtime = GetLanguageRuntime(known_type); 1592 return runtime ? runtime->CouldHaveDynamicValue(in_value) : false; 1593 } 1594 1595 for (LanguageRuntime *runtime : GetLanguageRuntimes()) { 1596 if (runtime->CouldHaveDynamicValue(in_value)) 1597 return true; 1598 } 1599 1600 return false; 1601 } 1602 1603 void Process::SetDynamicCheckers(DynamicCheckerFunctions *dynamic_checkers) { 1604 m_dynamic_checkers_up.reset(dynamic_checkers); 1605 } 1606 1607 StopPointSiteList<BreakpointSite> &Process::GetBreakpointSiteList() { 1608 return m_breakpoint_site_list; 1609 } 1610 1611 const StopPointSiteList<BreakpointSite> & 1612 Process::GetBreakpointSiteList() const { 1613 return m_breakpoint_site_list; 1614 } 1615 1616 void Process::DisableAllBreakpointSites() { 1617 m_breakpoint_site_list.ForEach([this](BreakpointSite *bp_site) -> void { 1618 // bp_site->SetEnabled(true); 1619 DisableBreakpointSite(bp_site); 1620 }); 1621 } 1622 1623 Status Process::ClearBreakpointSiteByID(lldb::user_id_t break_id) { 1624 Status error(DisableBreakpointSiteByID(break_id)); 1625 1626 if (error.Success()) 1627 m_breakpoint_site_list.Remove(break_id); 1628 1629 return error; 1630 } 1631 1632 Status Process::DisableBreakpointSiteByID(lldb::user_id_t break_id) { 1633 Status error; 1634 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1635 if (bp_site_sp) { 1636 if (bp_site_sp->IsEnabled()) 1637 error = DisableBreakpointSite(bp_site_sp.get()); 1638 } else { 1639 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1640 break_id); 1641 } 1642 1643 return error; 1644 } 1645 1646 Status Process::EnableBreakpointSiteByID(lldb::user_id_t break_id) { 1647 Status error; 1648 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1649 if (bp_site_sp) { 1650 if (!bp_site_sp->IsEnabled()) 1651 error = EnableBreakpointSite(bp_site_sp.get()); 1652 } else { 1653 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1654 break_id); 1655 } 1656 return error; 1657 } 1658 1659 lldb::break_id_t 1660 Process::CreateBreakpointSite(const BreakpointLocationSP &constituent, 1661 bool use_hardware) { 1662 addr_t load_addr = LLDB_INVALID_ADDRESS; 1663 1664 bool show_error = true; 1665 switch (GetState()) { 1666 case eStateInvalid: 1667 case eStateUnloaded: 1668 case eStateConnected: 1669 case eStateAttaching: 1670 case eStateLaunching: 1671 case eStateDetached: 1672 case eStateExited: 1673 show_error = false; 1674 break; 1675 1676 case eStateStopped: 1677 case eStateRunning: 1678 case eStateStepping: 1679 case eStateCrashed: 1680 case eStateSuspended: 1681 show_error = IsAlive(); 1682 break; 1683 } 1684 1685 // Reset the IsIndirect flag here, in case the location changes from pointing 1686 // to a indirect symbol to a regular symbol. 1687 constituent->SetIsIndirect(false); 1688 1689 if (constituent->ShouldResolveIndirectFunctions()) { 1690 Symbol *symbol = constituent->GetAddress().CalculateSymbolContextSymbol(); 1691 if (symbol && symbol->IsIndirect()) { 1692 Status error; 1693 Address symbol_address = symbol->GetAddress(); 1694 load_addr = ResolveIndirectFunction(&symbol_address, error); 1695 if (!error.Success() && show_error) { 1696 GetTarget().GetDebugger().GetErrorStream().Printf( 1697 "warning: failed to resolve indirect function at 0x%" PRIx64 1698 " for breakpoint %i.%i: %s\n", 1699 symbol->GetLoadAddress(&GetTarget()), 1700 constituent->GetBreakpoint().GetID(), constituent->GetID(), 1701 error.AsCString() ? error.AsCString() : "unknown error"); 1702 return LLDB_INVALID_BREAK_ID; 1703 } 1704 Address resolved_address(load_addr); 1705 load_addr = resolved_address.GetOpcodeLoadAddress(&GetTarget()); 1706 constituent->SetIsIndirect(true); 1707 } else 1708 load_addr = constituent->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1709 } else 1710 load_addr = constituent->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1711 1712 if (load_addr != LLDB_INVALID_ADDRESS) { 1713 BreakpointSiteSP bp_site_sp; 1714 1715 // Look up this breakpoint site. If it exists, then add this new 1716 // constituent, otherwise create a new breakpoint site and add it. 1717 1718 bp_site_sp = m_breakpoint_site_list.FindByAddress(load_addr); 1719 1720 if (bp_site_sp) { 1721 bp_site_sp->AddConstituent(constituent); 1722 constituent->SetBreakpointSite(bp_site_sp); 1723 return bp_site_sp->GetID(); 1724 } else { 1725 bp_site_sp.reset( 1726 new BreakpointSite(constituent, load_addr, use_hardware)); 1727 if (bp_site_sp) { 1728 Status error = EnableBreakpointSite(bp_site_sp.get()); 1729 if (error.Success()) { 1730 constituent->SetBreakpointSite(bp_site_sp); 1731 return m_breakpoint_site_list.Add(bp_site_sp); 1732 } else { 1733 if (show_error || use_hardware) { 1734 // Report error for setting breakpoint... 1735 GetTarget().GetDebugger().GetErrorStream().Printf( 1736 "warning: failed to set breakpoint site at 0x%" PRIx64 1737 " for breakpoint %i.%i: %s\n", 1738 load_addr, constituent->GetBreakpoint().GetID(), 1739 constituent->GetID(), 1740 error.AsCString() ? error.AsCString() : "unknown error"); 1741 } 1742 } 1743 } 1744 } 1745 } 1746 // We failed to enable the breakpoint 1747 return LLDB_INVALID_BREAK_ID; 1748 } 1749 1750 void Process::RemoveConstituentFromBreakpointSite( 1751 lldb::user_id_t constituent_id, lldb::user_id_t constituent_loc_id, 1752 BreakpointSiteSP &bp_site_sp) { 1753 uint32_t num_constituents = 1754 bp_site_sp->RemoveConstituent(constituent_id, constituent_loc_id); 1755 if (num_constituents == 0) { 1756 // Don't try to disable the site if we don't have a live process anymore. 1757 if (IsAlive()) 1758 DisableBreakpointSite(bp_site_sp.get()); 1759 m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress()); 1760 } 1761 } 1762 1763 size_t Process::RemoveBreakpointOpcodesFromBuffer(addr_t bp_addr, size_t size, 1764 uint8_t *buf) const { 1765 size_t bytes_removed = 0; 1766 StopPointSiteList<BreakpointSite> bp_sites_in_range; 1767 1768 if (m_breakpoint_site_list.FindInRange(bp_addr, bp_addr + size, 1769 bp_sites_in_range)) { 1770 bp_sites_in_range.ForEach([bp_addr, size, 1771 buf](BreakpointSite *bp_site) -> void { 1772 if (bp_site->GetType() == BreakpointSite::eSoftware) { 1773 addr_t intersect_addr; 1774 size_t intersect_size; 1775 size_t opcode_offset; 1776 if (bp_site->IntersectsRange(bp_addr, size, &intersect_addr, 1777 &intersect_size, &opcode_offset)) { 1778 assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size); 1779 assert(bp_addr < intersect_addr + intersect_size && 1780 intersect_addr + intersect_size <= bp_addr + size); 1781 assert(opcode_offset + intersect_size <= bp_site->GetByteSize()); 1782 size_t buf_offset = intersect_addr - bp_addr; 1783 ::memcpy(buf + buf_offset, 1784 bp_site->GetSavedOpcodeBytes() + opcode_offset, 1785 intersect_size); 1786 } 1787 } 1788 }); 1789 } 1790 return bytes_removed; 1791 } 1792 1793 size_t Process::GetSoftwareBreakpointTrapOpcode(BreakpointSite *bp_site) { 1794 PlatformSP platform_sp(GetTarget().GetPlatform()); 1795 if (platform_sp) 1796 return platform_sp->GetSoftwareBreakpointTrapOpcode(GetTarget(), bp_site); 1797 return 0; 1798 } 1799 1800 Status Process::EnableSoftwareBreakpoint(BreakpointSite *bp_site) { 1801 Status error; 1802 assert(bp_site != nullptr); 1803 Log *log = GetLog(LLDBLog::Breakpoints); 1804 const addr_t bp_addr = bp_site->GetLoadAddress(); 1805 LLDB_LOGF( 1806 log, "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64, 1807 bp_site->GetID(), (uint64_t)bp_addr); 1808 if (bp_site->IsEnabled()) { 1809 LLDB_LOGF( 1810 log, 1811 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1812 " -- already enabled", 1813 bp_site->GetID(), (uint64_t)bp_addr); 1814 return error; 1815 } 1816 1817 if (bp_addr == LLDB_INVALID_ADDRESS) { 1818 error.SetErrorString("BreakpointSite contains an invalid load address."); 1819 return error; 1820 } 1821 // Ask the lldb::Process subclass to fill in the correct software breakpoint 1822 // trap for the breakpoint site 1823 const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site); 1824 1825 if (bp_opcode_size == 0) { 1826 error.SetErrorStringWithFormat("Process::GetSoftwareBreakpointTrapOpcode() " 1827 "returned zero, unable to get breakpoint " 1828 "trap for address 0x%" PRIx64, 1829 bp_addr); 1830 } else { 1831 const uint8_t *const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes(); 1832 1833 if (bp_opcode_bytes == nullptr) { 1834 error.SetErrorString( 1835 "BreakpointSite doesn't contain a valid breakpoint trap opcode."); 1836 return error; 1837 } 1838 1839 // Save the original opcode by reading it 1840 if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size, 1841 error) == bp_opcode_size) { 1842 // Write a software breakpoint in place of the original opcode 1843 if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) == 1844 bp_opcode_size) { 1845 uint8_t verify_bp_opcode_bytes[64]; 1846 if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size, 1847 error) == bp_opcode_size) { 1848 if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes, 1849 bp_opcode_size) == 0) { 1850 bp_site->SetEnabled(true); 1851 bp_site->SetType(BreakpointSite::eSoftware); 1852 LLDB_LOGF(log, 1853 "Process::EnableSoftwareBreakpoint (site_id = %d) " 1854 "addr = 0x%" PRIx64 " -- SUCCESS", 1855 bp_site->GetID(), (uint64_t)bp_addr); 1856 } else 1857 error.SetErrorString( 1858 "failed to verify the breakpoint trap in memory."); 1859 } else 1860 error.SetErrorString( 1861 "Unable to read memory to verify breakpoint trap."); 1862 } else 1863 error.SetErrorString("Unable to write breakpoint trap to memory."); 1864 } else 1865 error.SetErrorString("Unable to read memory at breakpoint address."); 1866 } 1867 if (log && error.Fail()) 1868 LLDB_LOGF( 1869 log, 1870 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1871 " -- FAILED: %s", 1872 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 1873 return error; 1874 } 1875 1876 Status Process::DisableSoftwareBreakpoint(BreakpointSite *bp_site) { 1877 Status error; 1878 assert(bp_site != nullptr); 1879 Log *log = GetLog(LLDBLog::Breakpoints); 1880 addr_t bp_addr = bp_site->GetLoadAddress(); 1881 lldb::user_id_t breakID = bp_site->GetID(); 1882 LLDB_LOGF(log, 1883 "Process::DisableSoftwareBreakpoint (breakID = %" PRIu64 1884 ") addr = 0x%" PRIx64, 1885 breakID, (uint64_t)bp_addr); 1886 1887 if (bp_site->IsHardware()) { 1888 error.SetErrorString("Breakpoint site is a hardware breakpoint."); 1889 } else if (bp_site->IsEnabled()) { 1890 const size_t break_op_size = bp_site->GetByteSize(); 1891 const uint8_t *const break_op = bp_site->GetTrapOpcodeBytes(); 1892 if (break_op_size > 0) { 1893 // Clear a software breakpoint instruction 1894 uint8_t curr_break_op[8]; 1895 assert(break_op_size <= sizeof(curr_break_op)); 1896 bool break_op_found = false; 1897 1898 // Read the breakpoint opcode 1899 if (DoReadMemory(bp_addr, curr_break_op, break_op_size, error) == 1900 break_op_size) { 1901 bool verify = false; 1902 // Make sure the breakpoint opcode exists at this address 1903 if (::memcmp(curr_break_op, break_op, break_op_size) == 0) { 1904 break_op_found = true; 1905 // We found a valid breakpoint opcode at this address, now restore 1906 // the saved opcode. 1907 if (DoWriteMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), 1908 break_op_size, error) == break_op_size) { 1909 verify = true; 1910 } else 1911 error.SetErrorString( 1912 "Memory write failed when restoring original opcode."); 1913 } else { 1914 error.SetErrorString( 1915 "Original breakpoint trap is no longer in memory."); 1916 // Set verify to true and so we can check if the original opcode has 1917 // already been restored 1918 verify = true; 1919 } 1920 1921 if (verify) { 1922 uint8_t verify_opcode[8]; 1923 assert(break_op_size < sizeof(verify_opcode)); 1924 // Verify that our original opcode made it back to the inferior 1925 if (DoReadMemory(bp_addr, verify_opcode, break_op_size, error) == 1926 break_op_size) { 1927 // compare the memory we just read with the original opcode 1928 if (::memcmp(bp_site->GetSavedOpcodeBytes(), verify_opcode, 1929 break_op_size) == 0) { 1930 // SUCCESS 1931 bp_site->SetEnabled(false); 1932 LLDB_LOGF(log, 1933 "Process::DisableSoftwareBreakpoint (site_id = %d) " 1934 "addr = 0x%" PRIx64 " -- SUCCESS", 1935 bp_site->GetID(), (uint64_t)bp_addr); 1936 return error; 1937 } else { 1938 if (break_op_found) 1939 error.SetErrorString("Failed to restore original opcode."); 1940 } 1941 } else 1942 error.SetErrorString("Failed to read memory to verify that " 1943 "breakpoint trap was restored."); 1944 } 1945 } else 1946 error.SetErrorString( 1947 "Unable to read memory that should contain the breakpoint trap."); 1948 } 1949 } else { 1950 LLDB_LOGF( 1951 log, 1952 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1953 " -- already disabled", 1954 bp_site->GetID(), (uint64_t)bp_addr); 1955 return error; 1956 } 1957 1958 LLDB_LOGF( 1959 log, 1960 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1961 " -- FAILED: %s", 1962 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 1963 return error; 1964 } 1965 1966 // Uncomment to verify memory caching works after making changes to caching 1967 // code 1968 //#define VERIFY_MEMORY_READS 1969 1970 size_t Process::ReadMemory(addr_t addr, void *buf, size_t size, Status &error) { 1971 if (ABISP abi_sp = GetABI()) 1972 addr = abi_sp->FixAnyAddress(addr); 1973 1974 error.Clear(); 1975 if (!GetDisableMemoryCache()) { 1976 #if defined(VERIFY_MEMORY_READS) 1977 // Memory caching is enabled, with debug verification 1978 1979 if (buf && size) { 1980 // Uncomment the line below to make sure memory caching is working. 1981 // I ran this through the test suite and got no assertions, so I am 1982 // pretty confident this is working well. If any changes are made to 1983 // memory caching, uncomment the line below and test your changes! 1984 1985 // Verify all memory reads by using the cache first, then redundantly 1986 // reading the same memory from the inferior and comparing to make sure 1987 // everything is exactly the same. 1988 std::string verify_buf(size, '\0'); 1989 assert(verify_buf.size() == size); 1990 const size_t cache_bytes_read = 1991 m_memory_cache.Read(this, addr, buf, size, error); 1992 Status verify_error; 1993 const size_t verify_bytes_read = 1994 ReadMemoryFromInferior(addr, const_cast<char *>(verify_buf.data()), 1995 verify_buf.size(), verify_error); 1996 assert(cache_bytes_read == verify_bytes_read); 1997 assert(memcmp(buf, verify_buf.data(), verify_buf.size()) == 0); 1998 assert(verify_error.Success() == error.Success()); 1999 return cache_bytes_read; 2000 } 2001 return 0; 2002 #else // !defined(VERIFY_MEMORY_READS) 2003 // Memory caching is enabled, without debug verification 2004 2005 return m_memory_cache.Read(addr, buf, size, error); 2006 #endif // defined (VERIFY_MEMORY_READS) 2007 } else { 2008 // Memory caching is disabled 2009 2010 return ReadMemoryFromInferior(addr, buf, size, error); 2011 } 2012 } 2013 2014 void Process::DoFindInMemory(lldb::addr_t start_addr, lldb::addr_t end_addr, 2015 const uint8_t *buf, size_t size, 2016 AddressRanges &matches, size_t alignment, 2017 size_t max_matches) { 2018 // Inputs are already validated in FindInMemory() functions. 2019 assert(buf != nullptr); 2020 assert(size > 0); 2021 assert(alignment > 0); 2022 assert(max_matches > 0); 2023 assert(start_addr != LLDB_INVALID_ADDRESS); 2024 assert(end_addr != LLDB_INVALID_ADDRESS); 2025 assert(start_addr < end_addr); 2026 2027 lldb::addr_t start = llvm::alignTo(start_addr, alignment); 2028 while (matches.size() < max_matches && (start + size) < end_addr) { 2029 const lldb::addr_t found_addr = FindInMemory(start, end_addr, buf, size); 2030 if (found_addr == LLDB_INVALID_ADDRESS) 2031 break; 2032 2033 if (found_addr % alignment) { 2034 // We need to check the alignment because the FindInMemory uses a special 2035 // algorithm to efficiently search mememory but doesn't support alignment. 2036 start = llvm::alignTo(start + 1, alignment); 2037 continue; 2038 } 2039 2040 matches.emplace_back(found_addr, size); 2041 start = found_addr + alignment; 2042 } 2043 } 2044 2045 AddressRanges Process::FindRangesInMemory(const uint8_t *buf, uint64_t size, 2046 const AddressRanges &ranges, 2047 size_t alignment, size_t max_matches, 2048 Status &error) { 2049 AddressRanges matches; 2050 if (buf == nullptr) { 2051 error.SetErrorString("buffer is null"); 2052 return matches; 2053 } 2054 if (size == 0) { 2055 error.SetErrorString("buffer size is zero"); 2056 return matches; 2057 } 2058 if (ranges.empty()) { 2059 error.SetErrorString("empty ranges"); 2060 return matches; 2061 } 2062 if (alignment == 0) { 2063 error.SetErrorString("alignment must be greater than zero"); 2064 return matches; 2065 } 2066 if (max_matches == 0) { 2067 error.SetErrorString("max_matches must be greater than zero"); 2068 return matches; 2069 } 2070 2071 int resolved_ranges = 0; 2072 Target &target = GetTarget(); 2073 for (size_t i = 0; i < ranges.size(); ++i) { 2074 if (matches.size() >= max_matches) 2075 break; 2076 const AddressRange &range = ranges[i]; 2077 if (range.IsValid() == false) 2078 continue; 2079 2080 const lldb::addr_t start_addr = 2081 range.GetBaseAddress().GetLoadAddress(&target); 2082 if (start_addr == LLDB_INVALID_ADDRESS) 2083 continue; 2084 2085 ++resolved_ranges; 2086 const lldb::addr_t end_addr = start_addr + range.GetByteSize(); 2087 DoFindInMemory(start_addr, end_addr, buf, size, matches, alignment, 2088 max_matches); 2089 } 2090 2091 if (resolved_ranges > 0) 2092 error.Clear(); 2093 else 2094 error.SetErrorString("unable to resolve any ranges"); 2095 2096 return matches; 2097 } 2098 2099 lldb::addr_t Process::FindInMemory(const uint8_t *buf, uint64_t size, 2100 const AddressRange &range, size_t alignment, 2101 Status &error) { 2102 if (buf == nullptr) { 2103 error.SetErrorString("buffer is null"); 2104 return LLDB_INVALID_ADDRESS; 2105 } 2106 if (size == 0) { 2107 error.SetErrorString("buffer size is zero"); 2108 return LLDB_INVALID_ADDRESS; 2109 } 2110 if (!range.IsValid()) { 2111 error.SetErrorString("range is invalid"); 2112 return LLDB_INVALID_ADDRESS; 2113 } 2114 if (alignment == 0) { 2115 error.SetErrorString("alignment must be greater than zero"); 2116 return LLDB_INVALID_ADDRESS; 2117 } 2118 2119 Target &target = GetTarget(); 2120 const lldb::addr_t start_addr = 2121 range.GetBaseAddress().GetLoadAddress(&target); 2122 if (start_addr == LLDB_INVALID_ADDRESS) { 2123 error.SetErrorString("range load address is invalid"); 2124 return LLDB_INVALID_ADDRESS; 2125 } 2126 const lldb::addr_t end_addr = start_addr + range.GetByteSize(); 2127 2128 AddressRanges matches; 2129 DoFindInMemory(start_addr, end_addr, buf, size, matches, alignment, 1); 2130 if (matches.empty()) 2131 return LLDB_INVALID_ADDRESS; 2132 2133 error.Clear(); 2134 return matches[0].GetBaseAddress().GetLoadAddress(&target); 2135 } 2136 2137 size_t Process::ReadCStringFromMemory(addr_t addr, std::string &out_str, 2138 Status &error) { 2139 char buf[256]; 2140 out_str.clear(); 2141 addr_t curr_addr = addr; 2142 while (true) { 2143 size_t length = ReadCStringFromMemory(curr_addr, buf, sizeof(buf), error); 2144 if (length == 0) 2145 break; 2146 out_str.append(buf, length); 2147 // If we got "length - 1" bytes, we didn't get the whole C string, we need 2148 // to read some more characters 2149 if (length == sizeof(buf) - 1) 2150 curr_addr += length; 2151 else 2152 break; 2153 } 2154 return out_str.size(); 2155 } 2156 2157 // Deprecated in favor of ReadStringFromMemory which has wchar support and 2158 // correct code to find null terminators. 2159 size_t Process::ReadCStringFromMemory(addr_t addr, char *dst, 2160 size_t dst_max_len, 2161 Status &result_error) { 2162 size_t total_cstr_len = 0; 2163 if (dst && dst_max_len) { 2164 result_error.Clear(); 2165 // NULL out everything just to be safe 2166 memset(dst, 0, dst_max_len); 2167 Status error; 2168 addr_t curr_addr = addr; 2169 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 2170 size_t bytes_left = dst_max_len - 1; 2171 char *curr_dst = dst; 2172 2173 while (bytes_left > 0) { 2174 addr_t cache_line_bytes_left = 2175 cache_line_size - (curr_addr % cache_line_size); 2176 addr_t bytes_to_read = 2177 std::min<addr_t>(bytes_left, cache_line_bytes_left); 2178 size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error); 2179 2180 if (bytes_read == 0) { 2181 result_error = error; 2182 dst[total_cstr_len] = '\0'; 2183 break; 2184 } 2185 const size_t len = strlen(curr_dst); 2186 2187 total_cstr_len += len; 2188 2189 if (len < bytes_to_read) 2190 break; 2191 2192 curr_dst += bytes_read; 2193 curr_addr += bytes_read; 2194 bytes_left -= bytes_read; 2195 } 2196 } else { 2197 if (dst == nullptr) 2198 result_error.SetErrorString("invalid arguments"); 2199 else 2200 result_error.Clear(); 2201 } 2202 return total_cstr_len; 2203 } 2204 2205 size_t Process::ReadMemoryFromInferior(addr_t addr, void *buf, size_t size, 2206 Status &error) { 2207 LLDB_SCOPED_TIMER(); 2208 2209 if (ABISP abi_sp = GetABI()) 2210 addr = abi_sp->FixAnyAddress(addr); 2211 2212 if (buf == nullptr || size == 0) 2213 return 0; 2214 2215 size_t bytes_read = 0; 2216 uint8_t *bytes = (uint8_t *)buf; 2217 2218 while (bytes_read < size) { 2219 const size_t curr_size = size - bytes_read; 2220 const size_t curr_bytes_read = 2221 DoReadMemory(addr + bytes_read, bytes + bytes_read, curr_size, error); 2222 bytes_read += curr_bytes_read; 2223 if (curr_bytes_read == curr_size || curr_bytes_read == 0) 2224 break; 2225 } 2226 2227 // Replace any software breakpoint opcodes that fall into this range back 2228 // into "buf" before we return 2229 if (bytes_read > 0) 2230 RemoveBreakpointOpcodesFromBuffer(addr, bytes_read, (uint8_t *)buf); 2231 return bytes_read; 2232 } 2233 2234 uint64_t Process::ReadUnsignedIntegerFromMemory(lldb::addr_t vm_addr, 2235 size_t integer_byte_size, 2236 uint64_t fail_value, 2237 Status &error) { 2238 Scalar scalar; 2239 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, false, scalar, 2240 error)) 2241 return scalar.ULongLong(fail_value); 2242 return fail_value; 2243 } 2244 2245 int64_t Process::ReadSignedIntegerFromMemory(lldb::addr_t vm_addr, 2246 size_t integer_byte_size, 2247 int64_t fail_value, 2248 Status &error) { 2249 Scalar scalar; 2250 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, true, scalar, 2251 error)) 2252 return scalar.SLongLong(fail_value); 2253 return fail_value; 2254 } 2255 2256 addr_t Process::ReadPointerFromMemory(lldb::addr_t vm_addr, Status &error) { 2257 Scalar scalar; 2258 if (ReadScalarIntegerFromMemory(vm_addr, GetAddressByteSize(), false, scalar, 2259 error)) 2260 return scalar.ULongLong(LLDB_INVALID_ADDRESS); 2261 return LLDB_INVALID_ADDRESS; 2262 } 2263 2264 bool Process::WritePointerToMemory(lldb::addr_t vm_addr, lldb::addr_t ptr_value, 2265 Status &error) { 2266 Scalar scalar; 2267 const uint32_t addr_byte_size = GetAddressByteSize(); 2268 if (addr_byte_size <= 4) 2269 scalar = (uint32_t)ptr_value; 2270 else 2271 scalar = ptr_value; 2272 return WriteScalarToMemory(vm_addr, scalar, addr_byte_size, error) == 2273 addr_byte_size; 2274 } 2275 2276 size_t Process::WriteMemoryPrivate(addr_t addr, const void *buf, size_t size, 2277 Status &error) { 2278 size_t bytes_written = 0; 2279 const uint8_t *bytes = (const uint8_t *)buf; 2280 2281 while (bytes_written < size) { 2282 const size_t curr_size = size - bytes_written; 2283 const size_t curr_bytes_written = DoWriteMemory( 2284 addr + bytes_written, bytes + bytes_written, curr_size, error); 2285 bytes_written += curr_bytes_written; 2286 if (curr_bytes_written == curr_size || curr_bytes_written == 0) 2287 break; 2288 } 2289 return bytes_written; 2290 } 2291 2292 size_t Process::WriteMemory(addr_t addr, const void *buf, size_t size, 2293 Status &error) { 2294 if (ABISP abi_sp = GetABI()) 2295 addr = abi_sp->FixAnyAddress(addr); 2296 2297 #if defined(ENABLE_MEMORY_CACHING) 2298 m_memory_cache.Flush(addr, size); 2299 #endif 2300 2301 if (buf == nullptr || size == 0) 2302 return 0; 2303 2304 m_mod_id.BumpMemoryID(); 2305 2306 // We need to write any data that would go where any current software traps 2307 // (enabled software breakpoints) any software traps (breakpoints) that we 2308 // may have placed in our tasks memory. 2309 2310 StopPointSiteList<BreakpointSite> bp_sites_in_range; 2311 if (!m_breakpoint_site_list.FindInRange(addr, addr + size, bp_sites_in_range)) 2312 return WriteMemoryPrivate(addr, buf, size, error); 2313 2314 // No breakpoint sites overlap 2315 if (bp_sites_in_range.IsEmpty()) 2316 return WriteMemoryPrivate(addr, buf, size, error); 2317 2318 const uint8_t *ubuf = (const uint8_t *)buf; 2319 uint64_t bytes_written = 0; 2320 2321 bp_sites_in_range.ForEach([this, addr, size, &bytes_written, &ubuf, 2322 &error](BreakpointSite *bp) -> void { 2323 if (error.Fail()) 2324 return; 2325 2326 if (bp->GetType() != BreakpointSite::eSoftware) 2327 return; 2328 2329 addr_t intersect_addr; 2330 size_t intersect_size; 2331 size_t opcode_offset; 2332 const bool intersects = bp->IntersectsRange( 2333 addr, size, &intersect_addr, &intersect_size, &opcode_offset); 2334 UNUSED_IF_ASSERT_DISABLED(intersects); 2335 assert(intersects); 2336 assert(addr <= intersect_addr && intersect_addr < addr + size); 2337 assert(addr < intersect_addr + intersect_size && 2338 intersect_addr + intersect_size <= addr + size); 2339 assert(opcode_offset + intersect_size <= bp->GetByteSize()); 2340 2341 // Check for bytes before this breakpoint 2342 const addr_t curr_addr = addr + bytes_written; 2343 if (intersect_addr > curr_addr) { 2344 // There are some bytes before this breakpoint that we need to just 2345 // write to memory 2346 size_t curr_size = intersect_addr - curr_addr; 2347 size_t curr_bytes_written = 2348 WriteMemoryPrivate(curr_addr, ubuf + bytes_written, curr_size, error); 2349 bytes_written += curr_bytes_written; 2350 if (curr_bytes_written != curr_size) { 2351 // We weren't able to write all of the requested bytes, we are 2352 // done looping and will return the number of bytes that we have 2353 // written so far. 2354 if (error.Success()) 2355 error.SetErrorToGenericError(); 2356 } 2357 } 2358 // Now write any bytes that would cover up any software breakpoints 2359 // directly into the breakpoint opcode buffer 2360 ::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, ubuf + bytes_written, 2361 intersect_size); 2362 bytes_written += intersect_size; 2363 }); 2364 2365 // Write any remaining bytes after the last breakpoint if we have any left 2366 if (bytes_written < size) 2367 bytes_written += 2368 WriteMemoryPrivate(addr + bytes_written, ubuf + bytes_written, 2369 size - bytes_written, error); 2370 2371 return bytes_written; 2372 } 2373 2374 size_t Process::WriteScalarToMemory(addr_t addr, const Scalar &scalar, 2375 size_t byte_size, Status &error) { 2376 if (byte_size == UINT32_MAX) 2377 byte_size = scalar.GetByteSize(); 2378 if (byte_size > 0) { 2379 uint8_t buf[32]; 2380 const size_t mem_size = 2381 scalar.GetAsMemoryData(buf, byte_size, GetByteOrder(), error); 2382 if (mem_size > 0) 2383 return WriteMemory(addr, buf, mem_size, error); 2384 else 2385 error.SetErrorString("failed to get scalar as memory data"); 2386 } else { 2387 error.SetErrorString("invalid scalar value"); 2388 } 2389 return 0; 2390 } 2391 2392 size_t Process::ReadScalarIntegerFromMemory(addr_t addr, uint32_t byte_size, 2393 bool is_signed, Scalar &scalar, 2394 Status &error) { 2395 uint64_t uval = 0; 2396 if (byte_size == 0) { 2397 error.SetErrorString("byte size is zero"); 2398 } else if (byte_size & (byte_size - 1)) { 2399 error.SetErrorStringWithFormat("byte size %u is not a power of 2", 2400 byte_size); 2401 } else if (byte_size <= sizeof(uval)) { 2402 const size_t bytes_read = ReadMemory(addr, &uval, byte_size, error); 2403 if (bytes_read == byte_size) { 2404 DataExtractor data(&uval, sizeof(uval), GetByteOrder(), 2405 GetAddressByteSize()); 2406 lldb::offset_t offset = 0; 2407 if (byte_size <= 4) 2408 scalar = data.GetMaxU32(&offset, byte_size); 2409 else 2410 scalar = data.GetMaxU64(&offset, byte_size); 2411 if (is_signed) 2412 scalar.SignExtend(byte_size * 8); 2413 return bytes_read; 2414 } 2415 } else { 2416 error.SetErrorStringWithFormat( 2417 "byte size of %u is too large for integer scalar type", byte_size); 2418 } 2419 return 0; 2420 } 2421 2422 Status Process::WriteObjectFile(std::vector<ObjectFile::LoadableData> entries) { 2423 Status error; 2424 for (const auto &Entry : entries) { 2425 WriteMemory(Entry.Dest, Entry.Contents.data(), Entry.Contents.size(), 2426 error); 2427 if (!error.Success()) 2428 break; 2429 } 2430 return error; 2431 } 2432 2433 #define USE_ALLOCATE_MEMORY_CACHE 1 2434 addr_t Process::AllocateMemory(size_t size, uint32_t permissions, 2435 Status &error) { 2436 if (GetPrivateState() != eStateStopped) { 2437 error.SetErrorToGenericError(); 2438 return LLDB_INVALID_ADDRESS; 2439 } 2440 2441 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2442 return m_allocated_memory_cache.AllocateMemory(size, permissions, error); 2443 #else 2444 addr_t allocated_addr = DoAllocateMemory(size, permissions, error); 2445 Log *log = GetLog(LLDBLog::Process); 2446 LLDB_LOGF(log, 2447 "Process::AllocateMemory(size=%" PRIu64 2448 ", permissions=%s) => 0x%16.16" PRIx64 2449 " (m_stop_id = %u m_memory_id = %u)", 2450 (uint64_t)size, GetPermissionsAsCString(permissions), 2451 (uint64_t)allocated_addr, m_mod_id.GetStopID(), 2452 m_mod_id.GetMemoryID()); 2453 return allocated_addr; 2454 #endif 2455 } 2456 2457 addr_t Process::CallocateMemory(size_t size, uint32_t permissions, 2458 Status &error) { 2459 addr_t return_addr = AllocateMemory(size, permissions, error); 2460 if (error.Success()) { 2461 std::string buffer(size, 0); 2462 WriteMemory(return_addr, buffer.c_str(), size, error); 2463 } 2464 return return_addr; 2465 } 2466 2467 bool Process::CanJIT() { 2468 if (m_can_jit == eCanJITDontKnow) { 2469 Log *log = GetLog(LLDBLog::Process); 2470 Status err; 2471 2472 uint64_t allocated_memory = AllocateMemory( 2473 8, ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable, 2474 err); 2475 2476 if (err.Success()) { 2477 m_can_jit = eCanJITYes; 2478 LLDB_LOGF(log, 2479 "Process::%s pid %" PRIu64 2480 " allocation test passed, CanJIT () is true", 2481 __FUNCTION__, GetID()); 2482 } else { 2483 m_can_jit = eCanJITNo; 2484 LLDB_LOGF(log, 2485 "Process::%s pid %" PRIu64 2486 " allocation test failed, CanJIT () is false: %s", 2487 __FUNCTION__, GetID(), err.AsCString()); 2488 } 2489 2490 DeallocateMemory(allocated_memory); 2491 } 2492 2493 return m_can_jit == eCanJITYes; 2494 } 2495 2496 void Process::SetCanJIT(bool can_jit) { 2497 m_can_jit = (can_jit ? eCanJITYes : eCanJITNo); 2498 } 2499 2500 void Process::SetCanRunCode(bool can_run_code) { 2501 SetCanJIT(can_run_code); 2502 m_can_interpret_function_calls = can_run_code; 2503 } 2504 2505 Status Process::DeallocateMemory(addr_t ptr) { 2506 Status error; 2507 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2508 if (!m_allocated_memory_cache.DeallocateMemory(ptr)) { 2509 error.SetErrorStringWithFormat( 2510 "deallocation of memory at 0x%" PRIx64 " failed.", (uint64_t)ptr); 2511 } 2512 #else 2513 error = DoDeallocateMemory(ptr); 2514 2515 Log *log = GetLog(LLDBLog::Process); 2516 LLDB_LOGF(log, 2517 "Process::DeallocateMemory(addr=0x%16.16" PRIx64 2518 ") => err = %s (m_stop_id = %u, m_memory_id = %u)", 2519 ptr, error.AsCString("SUCCESS"), m_mod_id.GetStopID(), 2520 m_mod_id.GetMemoryID()); 2521 #endif 2522 return error; 2523 } 2524 2525 bool Process::GetWatchpointReportedAfter() { 2526 if (std::optional<bool> subclass_override = DoGetWatchpointReportedAfter()) 2527 return *subclass_override; 2528 2529 bool reported_after = true; 2530 const ArchSpec &arch = GetTarget().GetArchitecture(); 2531 if (!arch.IsValid()) 2532 return reported_after; 2533 llvm::Triple triple = arch.GetTriple(); 2534 2535 if (triple.isMIPS() || triple.isPPC64() || triple.isRISCV() || 2536 triple.isAArch64() || triple.isArmMClass() || triple.isARM()) 2537 reported_after = false; 2538 2539 return reported_after; 2540 } 2541 2542 ModuleSP Process::ReadModuleFromMemory(const FileSpec &file_spec, 2543 lldb::addr_t header_addr, 2544 size_t size_to_read) { 2545 Log *log = GetLog(LLDBLog::Host); 2546 if (log) { 2547 LLDB_LOGF(log, 2548 "Process::ReadModuleFromMemory reading %s binary from memory", 2549 file_spec.GetPath().c_str()); 2550 } 2551 ModuleSP module_sp(new Module(file_spec, ArchSpec())); 2552 if (module_sp) { 2553 Status error; 2554 std::unique_ptr<Progress> progress_up; 2555 // Reading an ObjectFile from a local corefile is very fast, 2556 // only print a progress update if we're reading from a 2557 // live session which might go over gdb remote serial protocol. 2558 if (IsLiveDebugSession()) 2559 progress_up = std::make_unique<Progress>( 2560 "Reading binary from memory", file_spec.GetFilename().GetString()); 2561 2562 ObjectFile *objfile = module_sp->GetMemoryObjectFile( 2563 shared_from_this(), header_addr, error, size_to_read); 2564 if (objfile) 2565 return module_sp; 2566 } 2567 return ModuleSP(); 2568 } 2569 2570 bool Process::GetLoadAddressPermissions(lldb::addr_t load_addr, 2571 uint32_t &permissions) { 2572 MemoryRegionInfo range_info; 2573 permissions = 0; 2574 Status error(GetMemoryRegionInfo(load_addr, range_info)); 2575 if (!error.Success()) 2576 return false; 2577 if (range_info.GetReadable() == MemoryRegionInfo::eDontKnow || 2578 range_info.GetWritable() == MemoryRegionInfo::eDontKnow || 2579 range_info.GetExecutable() == MemoryRegionInfo::eDontKnow) { 2580 return false; 2581 } 2582 permissions = range_info.GetLLDBPermissions(); 2583 return true; 2584 } 2585 2586 Status Process::EnableWatchpoint(WatchpointSP wp_sp, bool notify) { 2587 Status error; 2588 error.SetErrorString("watchpoints are not supported"); 2589 return error; 2590 } 2591 2592 Status Process::DisableWatchpoint(WatchpointSP wp_sp, bool notify) { 2593 Status error; 2594 error.SetErrorString("watchpoints are not supported"); 2595 return error; 2596 } 2597 2598 StateType 2599 Process::WaitForProcessStopPrivate(EventSP &event_sp, 2600 const Timeout<std::micro> &timeout) { 2601 StateType state; 2602 2603 while (true) { 2604 event_sp.reset(); 2605 state = GetStateChangedEventsPrivate(event_sp, timeout); 2606 2607 if (StateIsStoppedState(state, false)) 2608 break; 2609 2610 // If state is invalid, then we timed out 2611 if (state == eStateInvalid) 2612 break; 2613 2614 if (event_sp) 2615 HandlePrivateEvent(event_sp); 2616 } 2617 return state; 2618 } 2619 2620 void Process::LoadOperatingSystemPlugin(bool flush) { 2621 std::lock_guard<std::recursive_mutex> guard(m_thread_mutex); 2622 if (flush) 2623 m_thread_list.Clear(); 2624 m_os_up.reset(OperatingSystem::FindPlugin(this, nullptr)); 2625 if (flush) 2626 Flush(); 2627 } 2628 2629 Status Process::Launch(ProcessLaunchInfo &launch_info) { 2630 StateType state_after_launch = eStateInvalid; 2631 EventSP first_stop_event_sp; 2632 Status status = 2633 LaunchPrivate(launch_info, state_after_launch, first_stop_event_sp); 2634 if (status.Fail()) 2635 return status; 2636 2637 if (state_after_launch != eStateStopped && 2638 state_after_launch != eStateCrashed) 2639 return Status(); 2640 2641 // Note, the stop event was consumed above, but not handled. This 2642 // was done to give DidLaunch a chance to run. The target is either 2643 // stopped or crashed. Directly set the state. This is done to 2644 // prevent a stop message with a bunch of spurious output on thread 2645 // status, as well as not pop a ProcessIOHandler. 2646 SetPublicState(state_after_launch, false); 2647 2648 if (PrivateStateThreadIsValid()) 2649 ResumePrivateStateThread(); 2650 else 2651 StartPrivateStateThread(); 2652 2653 // Target was stopped at entry as was intended. Need to notify the 2654 // listeners about it. 2655 if (launch_info.GetFlags().Test(eLaunchFlagStopAtEntry)) 2656 HandlePrivateEvent(first_stop_event_sp); 2657 2658 return Status(); 2659 } 2660 2661 Status Process::LaunchPrivate(ProcessLaunchInfo &launch_info, StateType &state, 2662 EventSP &event_sp) { 2663 Status error; 2664 m_abi_sp.reset(); 2665 m_dyld_up.reset(); 2666 m_jit_loaders_up.reset(); 2667 m_system_runtime_up.reset(); 2668 m_os_up.reset(); 2669 2670 { 2671 std::lock_guard<std::mutex> guard(m_process_input_reader_mutex); 2672 m_process_input_reader.reset(); 2673 } 2674 2675 Module *exe_module = GetTarget().GetExecutableModulePointer(); 2676 2677 // The "remote executable path" is hooked up to the local Executable 2678 // module. But we should be able to debug a remote process even if the 2679 // executable module only exists on the remote. However, there needs to 2680 // be a way to express this path, without actually having a module. 2681 // The way to do that is to set the ExecutableFile in the LaunchInfo. 2682 // Figure that out here: 2683 2684 FileSpec exe_spec_to_use; 2685 if (!exe_module) { 2686 if (!launch_info.GetExecutableFile() && !launch_info.IsScriptedProcess()) { 2687 error.SetErrorString("executable module does not exist"); 2688 return error; 2689 } 2690 exe_spec_to_use = launch_info.GetExecutableFile(); 2691 } else 2692 exe_spec_to_use = exe_module->GetFileSpec(); 2693 2694 if (exe_module && FileSystem::Instance().Exists(exe_module->GetFileSpec())) { 2695 // Install anything that might need to be installed prior to launching. 2696 // For host systems, this will do nothing, but if we are connected to a 2697 // remote platform it will install any needed binaries 2698 error = GetTarget().Install(&launch_info); 2699 if (error.Fail()) 2700 return error; 2701 } 2702 2703 // Listen and queue events that are broadcasted during the process launch. 2704 ListenerSP listener_sp(Listener::MakeListener("LaunchEventHijack")); 2705 HijackProcessEvents(listener_sp); 2706 auto on_exit = llvm::make_scope_exit([this]() { RestoreProcessEvents(); }); 2707 2708 if (PrivateStateThreadIsValid()) 2709 PausePrivateStateThread(); 2710 2711 error = WillLaunch(exe_module); 2712 if (error.Fail()) { 2713 std::string local_exec_file_path = exe_spec_to_use.GetPath(); 2714 return Status("file doesn't exist: '%s'", local_exec_file_path.c_str()); 2715 } 2716 2717 const bool restarted = false; 2718 SetPublicState(eStateLaunching, restarted); 2719 m_should_detach = false; 2720 2721 if (m_public_run_lock.TrySetRunning()) { 2722 // Now launch using these arguments. 2723 error = DoLaunch(exe_module, launch_info); 2724 } else { 2725 // This shouldn't happen 2726 error.SetErrorString("failed to acquire process run lock"); 2727 } 2728 2729 if (error.Fail()) { 2730 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2731 SetID(LLDB_INVALID_PROCESS_ID); 2732 const char *error_string = error.AsCString(); 2733 if (error_string == nullptr) 2734 error_string = "launch failed"; 2735 SetExitStatus(-1, error_string); 2736 } 2737 return error; 2738 } 2739 2740 // Now wait for the process to launch and return control to us, and then 2741 // call DidLaunch: 2742 state = WaitForProcessStopPrivate(event_sp, seconds(10)); 2743 2744 if (state == eStateInvalid || !event_sp) { 2745 // We were able to launch the process, but we failed to catch the 2746 // initial stop. 2747 error.SetErrorString("failed to catch stop after launch"); 2748 SetExitStatus(0, error.AsCString()); 2749 Destroy(false); 2750 return error; 2751 } 2752 2753 if (state == eStateExited) { 2754 // We exited while trying to launch somehow. Don't call DidLaunch 2755 // as that's not likely to work, and return an invalid pid. 2756 HandlePrivateEvent(event_sp); 2757 return Status(); 2758 } 2759 2760 if (state == eStateStopped || state == eStateCrashed) { 2761 DidLaunch(); 2762 2763 // Now that we know the process type, update its signal responses from the 2764 // ones stored in the Target: 2765 if (m_unix_signals_sp) { 2766 StreamSP warning_strm = GetTarget().GetDebugger().GetAsyncErrorStream(); 2767 GetTarget().UpdateSignalsFromDummy(m_unix_signals_sp, warning_strm); 2768 } 2769 2770 DynamicLoader *dyld = GetDynamicLoader(); 2771 if (dyld) 2772 dyld->DidLaunch(); 2773 2774 GetJITLoaders().DidLaunch(); 2775 2776 SystemRuntime *system_runtime = GetSystemRuntime(); 2777 if (system_runtime) 2778 system_runtime->DidLaunch(); 2779 2780 if (!m_os_up) 2781 LoadOperatingSystemPlugin(false); 2782 2783 // We successfully launched the process and stopped, now it the 2784 // right time to set up signal filters before resuming. 2785 UpdateAutomaticSignalFiltering(); 2786 return Status(); 2787 } 2788 2789 return Status("Unexpected process state after the launch: %s, expected %s, " 2790 "%s, %s or %s", 2791 StateAsCString(state), StateAsCString(eStateInvalid), 2792 StateAsCString(eStateExited), StateAsCString(eStateStopped), 2793 StateAsCString(eStateCrashed)); 2794 } 2795 2796 Status Process::LoadCore() { 2797 Status error = DoLoadCore(); 2798 if (error.Success()) { 2799 ListenerSP listener_sp( 2800 Listener::MakeListener("lldb.process.load_core_listener")); 2801 HijackProcessEvents(listener_sp); 2802 2803 if (PrivateStateThreadIsValid()) 2804 ResumePrivateStateThread(); 2805 else 2806 StartPrivateStateThread(); 2807 2808 DynamicLoader *dyld = GetDynamicLoader(); 2809 if (dyld) 2810 dyld->DidAttach(); 2811 2812 GetJITLoaders().DidAttach(); 2813 2814 SystemRuntime *system_runtime = GetSystemRuntime(); 2815 if (system_runtime) 2816 system_runtime->DidAttach(); 2817 2818 if (!m_os_up) 2819 LoadOperatingSystemPlugin(false); 2820 2821 // We successfully loaded a core file, now pretend we stopped so we can 2822 // show all of the threads in the core file and explore the crashed state. 2823 SetPrivateState(eStateStopped); 2824 2825 // Wait for a stopped event since we just posted one above... 2826 lldb::EventSP event_sp; 2827 StateType state = 2828 WaitForProcessToStop(std::nullopt, &event_sp, true, listener_sp, 2829 nullptr, true, SelectMostRelevantFrame); 2830 2831 if (!StateIsStoppedState(state, false)) { 2832 Log *log = GetLog(LLDBLog::Process); 2833 LLDB_LOGF(log, "Process::Halt() failed to stop, state is: %s", 2834 StateAsCString(state)); 2835 error.SetErrorString( 2836 "Did not get stopped event after loading the core file."); 2837 } 2838 RestoreProcessEvents(); 2839 } 2840 return error; 2841 } 2842 2843 DynamicLoader *Process::GetDynamicLoader() { 2844 if (!m_dyld_up) 2845 m_dyld_up.reset(DynamicLoader::FindPlugin(this, "")); 2846 return m_dyld_up.get(); 2847 } 2848 2849 void Process::SetDynamicLoader(DynamicLoaderUP dyld_up) { 2850 m_dyld_up = std::move(dyld_up); 2851 } 2852 2853 DataExtractor Process::GetAuxvData() { return DataExtractor(); } 2854 2855 llvm::Expected<bool> Process::SaveCore(llvm::StringRef outfile) { 2856 return false; 2857 } 2858 2859 JITLoaderList &Process::GetJITLoaders() { 2860 if (!m_jit_loaders_up) { 2861 m_jit_loaders_up = std::make_unique<JITLoaderList>(); 2862 JITLoader::LoadPlugins(this, *m_jit_loaders_up); 2863 } 2864 return *m_jit_loaders_up; 2865 } 2866 2867 SystemRuntime *Process::GetSystemRuntime() { 2868 if (!m_system_runtime_up) 2869 m_system_runtime_up.reset(SystemRuntime::FindPlugin(this)); 2870 return m_system_runtime_up.get(); 2871 } 2872 2873 Process::AttachCompletionHandler::AttachCompletionHandler(Process *process, 2874 uint32_t exec_count) 2875 : NextEventAction(process), m_exec_count(exec_count) { 2876 Log *log = GetLog(LLDBLog::Process); 2877 LLDB_LOGF( 2878 log, 2879 "Process::AttachCompletionHandler::%s process=%p, exec_count=%" PRIu32, 2880 __FUNCTION__, static_cast<void *>(process), exec_count); 2881 } 2882 2883 Process::NextEventAction::EventActionResult 2884 Process::AttachCompletionHandler::PerformAction(lldb::EventSP &event_sp) { 2885 Log *log = GetLog(LLDBLog::Process); 2886 2887 StateType state = ProcessEventData::GetStateFromEvent(event_sp.get()); 2888 LLDB_LOGF(log, 2889 "Process::AttachCompletionHandler::%s called with state %s (%d)", 2890 __FUNCTION__, StateAsCString(state), static_cast<int>(state)); 2891 2892 switch (state) { 2893 case eStateAttaching: 2894 return eEventActionSuccess; 2895 2896 case eStateRunning: 2897 case eStateConnected: 2898 return eEventActionRetry; 2899 2900 case eStateStopped: 2901 case eStateCrashed: 2902 // During attach, prior to sending the eStateStopped event, 2903 // lldb_private::Process subclasses must set the new process ID. 2904 assert(m_process->GetID() != LLDB_INVALID_PROCESS_ID); 2905 // We don't want these events to be reported, so go set the 2906 // ShouldReportStop here: 2907 m_process->GetThreadList().SetShouldReportStop(eVoteNo); 2908 2909 if (m_exec_count > 0) { 2910 --m_exec_count; 2911 2912 LLDB_LOGF(log, 2913 "Process::AttachCompletionHandler::%s state %s: reduced " 2914 "remaining exec count to %" PRIu32 ", requesting resume", 2915 __FUNCTION__, StateAsCString(state), m_exec_count); 2916 2917 RequestResume(); 2918 return eEventActionRetry; 2919 } else { 2920 LLDB_LOGF(log, 2921 "Process::AttachCompletionHandler::%s state %s: no more " 2922 "execs expected to start, continuing with attach", 2923 __FUNCTION__, StateAsCString(state)); 2924 2925 m_process->CompleteAttach(); 2926 return eEventActionSuccess; 2927 } 2928 break; 2929 2930 default: 2931 case eStateExited: 2932 case eStateInvalid: 2933 break; 2934 } 2935 2936 m_exit_string.assign("No valid Process"); 2937 return eEventActionExit; 2938 } 2939 2940 Process::NextEventAction::EventActionResult 2941 Process::AttachCompletionHandler::HandleBeingInterrupted() { 2942 return eEventActionSuccess; 2943 } 2944 2945 const char *Process::AttachCompletionHandler::GetExitString() { 2946 return m_exit_string.c_str(); 2947 } 2948 2949 ListenerSP ProcessAttachInfo::GetListenerForProcess(Debugger &debugger) { 2950 if (m_listener_sp) 2951 return m_listener_sp; 2952 else 2953 return debugger.GetListener(); 2954 } 2955 2956 Status Process::WillLaunch(Module *module) { 2957 return DoWillLaunch(module); 2958 } 2959 2960 Status Process::WillAttachToProcessWithID(lldb::pid_t pid) { 2961 return DoWillAttachToProcessWithID(pid); 2962 } 2963 2964 Status Process::WillAttachToProcessWithName(const char *process_name, 2965 bool wait_for_launch) { 2966 return DoWillAttachToProcessWithName(process_name, wait_for_launch); 2967 } 2968 2969 Status Process::Attach(ProcessAttachInfo &attach_info) { 2970 m_abi_sp.reset(); 2971 { 2972 std::lock_guard<std::mutex> guard(m_process_input_reader_mutex); 2973 m_process_input_reader.reset(); 2974 } 2975 m_dyld_up.reset(); 2976 m_jit_loaders_up.reset(); 2977 m_system_runtime_up.reset(); 2978 m_os_up.reset(); 2979 2980 lldb::pid_t attach_pid = attach_info.GetProcessID(); 2981 Status error; 2982 if (attach_pid == LLDB_INVALID_PROCESS_ID) { 2983 char process_name[PATH_MAX]; 2984 2985 if (attach_info.GetExecutableFile().GetPath(process_name, 2986 sizeof(process_name))) { 2987 const bool wait_for_launch = attach_info.GetWaitForLaunch(); 2988 2989 if (wait_for_launch) { 2990 error = WillAttachToProcessWithName(process_name, wait_for_launch); 2991 if (error.Success()) { 2992 if (m_public_run_lock.TrySetRunning()) { 2993 m_should_detach = true; 2994 const bool restarted = false; 2995 SetPublicState(eStateAttaching, restarted); 2996 // Now attach using these arguments. 2997 error = DoAttachToProcessWithName(process_name, attach_info); 2998 } else { 2999 // This shouldn't happen 3000 error.SetErrorString("failed to acquire process run lock"); 3001 } 3002 3003 if (error.Fail()) { 3004 if (GetID() != LLDB_INVALID_PROCESS_ID) { 3005 SetID(LLDB_INVALID_PROCESS_ID); 3006 if (error.AsCString() == nullptr) 3007 error.SetErrorString("attach failed"); 3008 3009 SetExitStatus(-1, error.AsCString()); 3010 } 3011 } else { 3012 SetNextEventAction(new Process::AttachCompletionHandler( 3013 this, attach_info.GetResumeCount())); 3014 StartPrivateStateThread(); 3015 } 3016 return error; 3017 } 3018 } else { 3019 ProcessInstanceInfoList process_infos; 3020 PlatformSP platform_sp(GetTarget().GetPlatform()); 3021 3022 if (platform_sp) { 3023 ProcessInstanceInfoMatch match_info; 3024 match_info.GetProcessInfo() = attach_info; 3025 match_info.SetNameMatchType(NameMatch::Equals); 3026 platform_sp->FindProcesses(match_info, process_infos); 3027 const uint32_t num_matches = process_infos.size(); 3028 if (num_matches == 1) { 3029 attach_pid = process_infos[0].GetProcessID(); 3030 // Fall through and attach using the above process ID 3031 } else { 3032 match_info.GetProcessInfo().GetExecutableFile().GetPath( 3033 process_name, sizeof(process_name)); 3034 if (num_matches > 1) { 3035 StreamString s; 3036 ProcessInstanceInfo::DumpTableHeader(s, true, false); 3037 for (size_t i = 0; i < num_matches; i++) { 3038 process_infos[i].DumpAsTableRow( 3039 s, platform_sp->GetUserIDResolver(), true, false); 3040 } 3041 error.SetErrorStringWithFormat( 3042 "more than one process named %s:\n%s", process_name, 3043 s.GetData()); 3044 } else 3045 error.SetErrorStringWithFormat( 3046 "could not find a process named %s", process_name); 3047 } 3048 } else { 3049 error.SetErrorString( 3050 "invalid platform, can't find processes by name"); 3051 return error; 3052 } 3053 } 3054 } else { 3055 error.SetErrorString("invalid process name"); 3056 } 3057 } 3058 3059 if (attach_pid != LLDB_INVALID_PROCESS_ID) { 3060 error = WillAttachToProcessWithID(attach_pid); 3061 if (error.Success()) { 3062 3063 if (m_public_run_lock.TrySetRunning()) { 3064 // Now attach using these arguments. 3065 m_should_detach = true; 3066 const bool restarted = false; 3067 SetPublicState(eStateAttaching, restarted); 3068 error = DoAttachToProcessWithID(attach_pid, attach_info); 3069 } else { 3070 // This shouldn't happen 3071 error.SetErrorString("failed to acquire process run lock"); 3072 } 3073 3074 if (error.Success()) { 3075 SetNextEventAction(new Process::AttachCompletionHandler( 3076 this, attach_info.GetResumeCount())); 3077 StartPrivateStateThread(); 3078 } else { 3079 if (GetID() != LLDB_INVALID_PROCESS_ID) 3080 SetID(LLDB_INVALID_PROCESS_ID); 3081 3082 const char *error_string = error.AsCString(); 3083 if (error_string == nullptr) 3084 error_string = "attach failed"; 3085 3086 SetExitStatus(-1, error_string); 3087 } 3088 } 3089 } 3090 return error; 3091 } 3092 3093 void Process::CompleteAttach() { 3094 Log *log(GetLog(LLDBLog::Process | LLDBLog::Target)); 3095 LLDB_LOGF(log, "Process::%s()", __FUNCTION__); 3096 3097 // Let the process subclass figure out at much as it can about the process 3098 // before we go looking for a dynamic loader plug-in. 3099 ArchSpec process_arch; 3100 DidAttach(process_arch); 3101 3102 if (process_arch.IsValid()) { 3103 LLDB_LOG(log, 3104 "Process::{0} replacing process architecture with DidAttach() " 3105 "architecture: \"{1}\"", 3106 __FUNCTION__, process_arch.GetTriple().getTriple()); 3107 GetTarget().SetArchitecture(process_arch); 3108 } 3109 3110 // We just attached. If we have a platform, ask it for the process 3111 // architecture, and if it isn't the same as the one we've already set, 3112 // switch architectures. 3113 PlatformSP platform_sp(GetTarget().GetPlatform()); 3114 assert(platform_sp); 3115 ArchSpec process_host_arch = GetSystemArchitecture(); 3116 if (platform_sp) { 3117 const ArchSpec &target_arch = GetTarget().GetArchitecture(); 3118 if (target_arch.IsValid() && !platform_sp->IsCompatibleArchitecture( 3119 target_arch, process_host_arch, 3120 ArchSpec::CompatibleMatch, nullptr)) { 3121 ArchSpec platform_arch; 3122 platform_sp = GetTarget().GetDebugger().GetPlatformList().GetOrCreate( 3123 target_arch, process_host_arch, &platform_arch); 3124 if (platform_sp) { 3125 GetTarget().SetPlatform(platform_sp); 3126 GetTarget().SetArchitecture(platform_arch); 3127 LLDB_LOG(log, 3128 "switching platform to {0} and architecture to {1} based on " 3129 "info from attach", 3130 platform_sp->GetName(), platform_arch.GetTriple().getTriple()); 3131 } 3132 } else if (!process_arch.IsValid()) { 3133 ProcessInstanceInfo process_info; 3134 GetProcessInfo(process_info); 3135 const ArchSpec &process_arch = process_info.GetArchitecture(); 3136 const ArchSpec &target_arch = GetTarget().GetArchitecture(); 3137 if (process_arch.IsValid() && 3138 target_arch.IsCompatibleMatch(process_arch) && 3139 !target_arch.IsExactMatch(process_arch)) { 3140 GetTarget().SetArchitecture(process_arch); 3141 LLDB_LOGF(log, 3142 "Process::%s switching architecture to %s based on info " 3143 "the platform retrieved for pid %" PRIu64, 3144 __FUNCTION__, process_arch.GetTriple().getTriple().c_str(), 3145 GetID()); 3146 } 3147 } 3148 } 3149 // Now that we know the process type, update its signal responses from the 3150 // ones stored in the Target: 3151 if (m_unix_signals_sp) { 3152 StreamSP warning_strm = GetTarget().GetDebugger().GetAsyncErrorStream(); 3153 GetTarget().UpdateSignalsFromDummy(m_unix_signals_sp, warning_strm); 3154 } 3155 3156 // We have completed the attach, now it is time to find the dynamic loader 3157 // plug-in 3158 DynamicLoader *dyld = GetDynamicLoader(); 3159 if (dyld) { 3160 dyld->DidAttach(); 3161 if (log) { 3162 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 3163 LLDB_LOG(log, 3164 "after DynamicLoader::DidAttach(), target " 3165 "executable is {0} (using {1} plugin)", 3166 exe_module_sp ? exe_module_sp->GetFileSpec() : FileSpec(), 3167 dyld->GetPluginName()); 3168 } 3169 } 3170 3171 GetJITLoaders().DidAttach(); 3172 3173 SystemRuntime *system_runtime = GetSystemRuntime(); 3174 if (system_runtime) { 3175 system_runtime->DidAttach(); 3176 if (log) { 3177 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 3178 LLDB_LOG(log, 3179 "after SystemRuntime::DidAttach(), target " 3180 "executable is {0} (using {1} plugin)", 3181 exe_module_sp ? exe_module_sp->GetFileSpec() : FileSpec(), 3182 system_runtime->GetPluginName()); 3183 } 3184 } 3185 3186 if (!m_os_up) { 3187 LoadOperatingSystemPlugin(false); 3188 if (m_os_up) { 3189 // Somebody might have gotten threads before now, but we need to force the 3190 // update after we've loaded the OperatingSystem plugin or it won't get a 3191 // chance to process the threads. 3192 m_thread_list.Clear(); 3193 UpdateThreadListIfNeeded(); 3194 } 3195 } 3196 // Figure out which one is the executable, and set that in our target: 3197 ModuleSP new_executable_module_sp; 3198 for (ModuleSP module_sp : GetTarget().GetImages().Modules()) { 3199 if (module_sp && module_sp->IsExecutable()) { 3200 if (GetTarget().GetExecutableModulePointer() != module_sp.get()) 3201 new_executable_module_sp = module_sp; 3202 break; 3203 } 3204 } 3205 if (new_executable_module_sp) { 3206 GetTarget().SetExecutableModule(new_executable_module_sp, 3207 eLoadDependentsNo); 3208 if (log) { 3209 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 3210 LLDB_LOGF( 3211 log, 3212 "Process::%s after looping through modules, target executable is %s", 3213 __FUNCTION__, 3214 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 3215 : "<none>"); 3216 } 3217 } 3218 } 3219 3220 Status Process::ConnectRemote(llvm::StringRef remote_url) { 3221 m_abi_sp.reset(); 3222 { 3223 std::lock_guard<std::mutex> guard(m_process_input_reader_mutex); 3224 m_process_input_reader.reset(); 3225 } 3226 3227 // Find the process and its architecture. Make sure it matches the 3228 // architecture of the current Target, and if not adjust it. 3229 3230 Status error(DoConnectRemote(remote_url)); 3231 if (error.Success()) { 3232 if (GetID() != LLDB_INVALID_PROCESS_ID) { 3233 EventSP event_sp; 3234 StateType state = WaitForProcessStopPrivate(event_sp, std::nullopt); 3235 3236 if (state == eStateStopped || state == eStateCrashed) { 3237 // If we attached and actually have a process on the other end, then 3238 // this ended up being the equivalent of an attach. 3239 CompleteAttach(); 3240 3241 // This delays passing the stopped event to listeners till 3242 // CompleteAttach gets a chance to complete... 3243 HandlePrivateEvent(event_sp); 3244 } 3245 } 3246 3247 if (PrivateStateThreadIsValid()) 3248 ResumePrivateStateThread(); 3249 else 3250 StartPrivateStateThread(); 3251 } 3252 return error; 3253 } 3254 3255 Status Process::PrivateResume() { 3256 Log *log(GetLog(LLDBLog::Process | LLDBLog::Step)); 3257 LLDB_LOGF(log, 3258 "Process::PrivateResume() m_stop_id = %u, public state: %s " 3259 "private state: %s", 3260 m_mod_id.GetStopID(), StateAsCString(m_public_state.GetValue()), 3261 StateAsCString(m_private_state.GetValue())); 3262 3263 // If signals handing status changed we might want to update our signal 3264 // filters before resuming. 3265 UpdateAutomaticSignalFiltering(); 3266 3267 Status error(WillResume()); 3268 // Tell the process it is about to resume before the thread list 3269 if (error.Success()) { 3270 // Now let the thread list know we are about to resume so it can let all of 3271 // our threads know that they are about to be resumed. Threads will each be 3272 // called with Thread::WillResume(StateType) where StateType contains the 3273 // state that they are supposed to have when the process is resumed 3274 // (suspended/running/stepping). Threads should also check their resume 3275 // signal in lldb::Thread::GetResumeSignal() to see if they are supposed to 3276 // start back up with a signal. 3277 if (m_thread_list.WillResume()) { 3278 // Last thing, do the PreResumeActions. 3279 if (!RunPreResumeActions()) { 3280 error.SetErrorString( 3281 "Process::PrivateResume PreResumeActions failed, not resuming."); 3282 } else { 3283 m_mod_id.BumpResumeID(); 3284 error = DoResume(); 3285 if (error.Success()) { 3286 DidResume(); 3287 m_thread_list.DidResume(); 3288 LLDB_LOGF(log, "Process thinks the process has resumed."); 3289 } else { 3290 LLDB_LOGF(log, "Process::PrivateResume() DoResume failed."); 3291 return error; 3292 } 3293 } 3294 } else { 3295 // Somebody wanted to run without running (e.g. we were faking a step 3296 // from one frame of a set of inlined frames that share the same PC to 3297 // another.) So generate a continue & a stopped event, and let the world 3298 // handle them. 3299 LLDB_LOGF(log, 3300 "Process::PrivateResume() asked to simulate a start & stop."); 3301 3302 SetPrivateState(eStateRunning); 3303 SetPrivateState(eStateStopped); 3304 } 3305 } else 3306 LLDB_LOGF(log, "Process::PrivateResume() got an error \"%s\".", 3307 error.AsCString("<unknown error>")); 3308 return error; 3309 } 3310 3311 Status Process::Halt(bool clear_thread_plans, bool use_run_lock) { 3312 if (!StateIsRunningState(m_public_state.GetValue())) 3313 return Status("Process is not running."); 3314 3315 // Don't clear the m_clear_thread_plans_on_stop, only set it to true if in 3316 // case it was already set and some thread plan logic calls halt on its own. 3317 m_clear_thread_plans_on_stop |= clear_thread_plans; 3318 3319 ListenerSP halt_listener_sp( 3320 Listener::MakeListener("lldb.process.halt_listener")); 3321 HijackProcessEvents(halt_listener_sp); 3322 3323 EventSP event_sp; 3324 3325 SendAsyncInterrupt(); 3326 3327 if (m_public_state.GetValue() == eStateAttaching) { 3328 // Don't hijack and eat the eStateExited as the code that was doing the 3329 // attach will be waiting for this event... 3330 RestoreProcessEvents(); 3331 Destroy(false); 3332 SetExitStatus(SIGKILL, "Cancelled async attach."); 3333 return Status(); 3334 } 3335 3336 // Wait for the process halt timeout seconds for the process to stop. 3337 // If we are going to use the run lock, that means we're stopping out to the 3338 // user, so we should also select the most relevant frame. 3339 SelectMostRelevant select_most_relevant = 3340 use_run_lock ? SelectMostRelevantFrame : DoNoSelectMostRelevantFrame; 3341 StateType state = WaitForProcessToStop(GetInterruptTimeout(), &event_sp, true, 3342 halt_listener_sp, nullptr, 3343 use_run_lock, select_most_relevant); 3344 RestoreProcessEvents(); 3345 3346 if (state == eStateInvalid || !event_sp) { 3347 // We timed out and didn't get a stop event... 3348 return Status("Halt timed out. State = %s", StateAsCString(GetState())); 3349 } 3350 3351 BroadcastEvent(event_sp); 3352 3353 return Status(); 3354 } 3355 3356 lldb::addr_t Process::FindInMemory(lldb::addr_t low, lldb::addr_t high, 3357 const uint8_t *buf, size_t size) { 3358 const size_t region_size = high - low; 3359 3360 if (region_size < size) 3361 return LLDB_INVALID_ADDRESS; 3362 3363 std::vector<size_t> bad_char_heuristic(256, size); 3364 ProcessMemoryIterator iterator(*this, low); 3365 3366 for (size_t idx = 0; idx < size - 1; idx++) { 3367 decltype(bad_char_heuristic)::size_type bcu_idx = buf[idx]; 3368 bad_char_heuristic[bcu_idx] = size - idx - 1; 3369 } 3370 for (size_t s = 0; s <= (region_size - size);) { 3371 int64_t j = size - 1; 3372 while (j >= 0 && buf[j] == iterator[s + j]) 3373 j--; 3374 if (j < 0) 3375 return low + s; 3376 else 3377 s += bad_char_heuristic[iterator[s + size - 1]]; 3378 } 3379 3380 return LLDB_INVALID_ADDRESS; 3381 } 3382 3383 Status Process::StopForDestroyOrDetach(lldb::EventSP &exit_event_sp) { 3384 Status error; 3385 3386 // Check both the public & private states here. If we're hung evaluating an 3387 // expression, for instance, then the public state will be stopped, but we 3388 // still need to interrupt. 3389 if (m_public_state.GetValue() == eStateRunning || 3390 m_private_state.GetValue() == eStateRunning) { 3391 Log *log = GetLog(LLDBLog::Process); 3392 LLDB_LOGF(log, "Process::%s() About to stop.", __FUNCTION__); 3393 3394 ListenerSP listener_sp( 3395 Listener::MakeListener("lldb.Process.StopForDestroyOrDetach.hijack")); 3396 HijackProcessEvents(listener_sp); 3397 3398 SendAsyncInterrupt(); 3399 3400 // Consume the interrupt event. 3401 StateType state = WaitForProcessToStop(GetInterruptTimeout(), 3402 &exit_event_sp, true, listener_sp); 3403 3404 RestoreProcessEvents(); 3405 3406 // If the process exited while we were waiting for it to stop, put the 3407 // exited event into the shared pointer passed in and return. Our caller 3408 // doesn't need to do anything else, since they don't have a process 3409 // anymore... 3410 3411 if (state == eStateExited || m_private_state.GetValue() == eStateExited) { 3412 LLDB_LOGF(log, "Process::%s() Process exited while waiting to stop.", 3413 __FUNCTION__); 3414 return error; 3415 } else 3416 exit_event_sp.reset(); // It is ok to consume any non-exit stop events 3417 3418 if (state != eStateStopped) { 3419 LLDB_LOGF(log, "Process::%s() failed to stop, state is: %s", __FUNCTION__, 3420 StateAsCString(state)); 3421 // If we really couldn't stop the process then we should just error out 3422 // here, but if the lower levels just bobbled sending the event and we 3423 // really are stopped, then continue on. 3424 StateType private_state = m_private_state.GetValue(); 3425 if (private_state != eStateStopped) { 3426 return Status( 3427 "Attempt to stop the target in order to detach timed out. " 3428 "State = %s", 3429 StateAsCString(GetState())); 3430 } 3431 } 3432 } 3433 return error; 3434 } 3435 3436 Status Process::Detach(bool keep_stopped) { 3437 EventSP exit_event_sp; 3438 Status error; 3439 m_destroy_in_process = true; 3440 3441 error = WillDetach(); 3442 3443 if (error.Success()) { 3444 if (DetachRequiresHalt()) { 3445 error = StopForDestroyOrDetach(exit_event_sp); 3446 if (!error.Success()) { 3447 m_destroy_in_process = false; 3448 return error; 3449 } else if (exit_event_sp) { 3450 // We shouldn't need to do anything else here. There's no process left 3451 // to detach from... 3452 StopPrivateStateThread(); 3453 m_destroy_in_process = false; 3454 return error; 3455 } 3456 } 3457 3458 m_thread_list.DiscardThreadPlans(); 3459 DisableAllBreakpointSites(); 3460 3461 error = DoDetach(keep_stopped); 3462 if (error.Success()) { 3463 DidDetach(); 3464 StopPrivateStateThread(); 3465 } else { 3466 return error; 3467 } 3468 } 3469 m_destroy_in_process = false; 3470 3471 // If we exited when we were waiting for a process to stop, then forward the 3472 // event here so we don't lose the event 3473 if (exit_event_sp) { 3474 // Directly broadcast our exited event because we shut down our private 3475 // state thread above 3476 BroadcastEvent(exit_event_sp); 3477 } 3478 3479 // If we have been interrupted (to kill us) in the middle of running, we may 3480 // not end up propagating the last events through the event system, in which 3481 // case we might strand the write lock. Unlock it here so when we do to tear 3482 // down the process we don't get an error destroying the lock. 3483 3484 m_public_run_lock.SetStopped(); 3485 return error; 3486 } 3487 3488 Status Process::Destroy(bool force_kill) { 3489 // If we've already called Process::Finalize then there's nothing useful to 3490 // be done here. Finalize has actually called Destroy already. 3491 if (m_finalizing) 3492 return {}; 3493 return DestroyImpl(force_kill); 3494 } 3495 3496 Status Process::DestroyImpl(bool force_kill) { 3497 // Tell ourselves we are in the process of destroying the process, so that we 3498 // don't do any unnecessary work that might hinder the destruction. Remember 3499 // to set this back to false when we are done. That way if the attempt 3500 // failed and the process stays around for some reason it won't be in a 3501 // confused state. 3502 3503 if (force_kill) 3504 m_should_detach = false; 3505 3506 if (GetShouldDetach()) { 3507 // FIXME: This will have to be a process setting: 3508 bool keep_stopped = false; 3509 Detach(keep_stopped); 3510 } 3511 3512 m_destroy_in_process = true; 3513 3514 Status error(WillDestroy()); 3515 if (error.Success()) { 3516 EventSP exit_event_sp; 3517 if (DestroyRequiresHalt()) { 3518 error = StopForDestroyOrDetach(exit_event_sp); 3519 } 3520 3521 if (m_public_state.GetValue() == eStateStopped) { 3522 // Ditch all thread plans, and remove all our breakpoints: in case we 3523 // have to restart the target to kill it, we don't want it hitting a 3524 // breakpoint... Only do this if we've stopped, however, since if we 3525 // didn't manage to halt it above, then we're not going to have much luck 3526 // doing this now. 3527 m_thread_list.DiscardThreadPlans(); 3528 DisableAllBreakpointSites(); 3529 } 3530 3531 error = DoDestroy(); 3532 if (error.Success()) { 3533 DidDestroy(); 3534 StopPrivateStateThread(); 3535 } 3536 m_stdio_communication.StopReadThread(); 3537 m_stdio_communication.Disconnect(); 3538 m_stdin_forward = false; 3539 3540 { 3541 std::lock_guard<std::mutex> guard(m_process_input_reader_mutex); 3542 if (m_process_input_reader) { 3543 m_process_input_reader->SetIsDone(true); 3544 m_process_input_reader->Cancel(); 3545 m_process_input_reader.reset(); 3546 } 3547 } 3548 3549 // If we exited when we were waiting for a process to stop, then forward 3550 // the event here so we don't lose the event 3551 if (exit_event_sp) { 3552 // Directly broadcast our exited event because we shut down our private 3553 // state thread above 3554 BroadcastEvent(exit_event_sp); 3555 } 3556 3557 // If we have been interrupted (to kill us) in the middle of running, we 3558 // may not end up propagating the last events through the event system, in 3559 // which case we might strand the write lock. Unlock it here so when we do 3560 // to tear down the process we don't get an error destroying the lock. 3561 m_public_run_lock.SetStopped(); 3562 } 3563 3564 m_destroy_in_process = false; 3565 3566 return error; 3567 } 3568 3569 Status Process::Signal(int signal) { 3570 Status error(WillSignal()); 3571 if (error.Success()) { 3572 error = DoSignal(signal); 3573 if (error.Success()) 3574 DidSignal(); 3575 } 3576 return error; 3577 } 3578 3579 void Process::SetUnixSignals(UnixSignalsSP &&signals_sp) { 3580 assert(signals_sp && "null signals_sp"); 3581 m_unix_signals_sp = std::move(signals_sp); 3582 } 3583 3584 const lldb::UnixSignalsSP &Process::GetUnixSignals() { 3585 assert(m_unix_signals_sp && "null m_unix_signals_sp"); 3586 return m_unix_signals_sp; 3587 } 3588 3589 lldb::ByteOrder Process::GetByteOrder() const { 3590 return GetTarget().GetArchitecture().GetByteOrder(); 3591 } 3592 3593 uint32_t Process::GetAddressByteSize() const { 3594 return GetTarget().GetArchitecture().GetAddressByteSize(); 3595 } 3596 3597 bool Process::ShouldBroadcastEvent(Event *event_ptr) { 3598 const StateType state = 3599 Process::ProcessEventData::GetStateFromEvent(event_ptr); 3600 bool return_value = true; 3601 Log *log(GetLog(LLDBLog::Events | LLDBLog::Process)); 3602 3603 switch (state) { 3604 case eStateDetached: 3605 case eStateExited: 3606 case eStateUnloaded: 3607 m_stdio_communication.SynchronizeWithReadThread(); 3608 m_stdio_communication.StopReadThread(); 3609 m_stdio_communication.Disconnect(); 3610 m_stdin_forward = false; 3611 3612 [[fallthrough]]; 3613 case eStateConnected: 3614 case eStateAttaching: 3615 case eStateLaunching: 3616 // These events indicate changes in the state of the debugging session, 3617 // always report them. 3618 return_value = true; 3619 break; 3620 case eStateInvalid: 3621 // We stopped for no apparent reason, don't report it. 3622 return_value = false; 3623 break; 3624 case eStateRunning: 3625 case eStateStepping: 3626 // If we've started the target running, we handle the cases where we are 3627 // already running and where there is a transition from stopped to running 3628 // differently. running -> running: Automatically suppress extra running 3629 // events stopped -> running: Report except when there is one or more no 3630 // votes 3631 // and no yes votes. 3632 SynchronouslyNotifyStateChanged(state); 3633 if (m_force_next_event_delivery) 3634 return_value = true; 3635 else { 3636 switch (m_last_broadcast_state) { 3637 case eStateRunning: 3638 case eStateStepping: 3639 // We always suppress multiple runnings with no PUBLIC stop in between. 3640 return_value = false; 3641 break; 3642 default: 3643 // TODO: make this work correctly. For now always report 3644 // run if we aren't running so we don't miss any running events. If I 3645 // run the lldb/test/thread/a.out file and break at main.cpp:58, run 3646 // and hit the breakpoints on multiple threads, then somehow during the 3647 // stepping over of all breakpoints no run gets reported. 3648 3649 // This is a transition from stop to run. 3650 switch (m_thread_list.ShouldReportRun(event_ptr)) { 3651 case eVoteYes: 3652 case eVoteNoOpinion: 3653 return_value = true; 3654 break; 3655 case eVoteNo: 3656 return_value = false; 3657 break; 3658 } 3659 break; 3660 } 3661 } 3662 break; 3663 case eStateStopped: 3664 case eStateCrashed: 3665 case eStateSuspended: 3666 // We've stopped. First see if we're going to restart the target. If we 3667 // are going to stop, then we always broadcast the event. If we aren't 3668 // going to stop, let the thread plans decide if we're going to report this 3669 // event. If no thread has an opinion, we don't report it. 3670 3671 m_stdio_communication.SynchronizeWithReadThread(); 3672 RefreshStateAfterStop(); 3673 if (ProcessEventData::GetInterruptedFromEvent(event_ptr)) { 3674 LLDB_LOGF(log, 3675 "Process::ShouldBroadcastEvent (%p) stopped due to an " 3676 "interrupt, state: %s", 3677 static_cast<void *>(event_ptr), StateAsCString(state)); 3678 // Even though we know we are going to stop, we should let the threads 3679 // have a look at the stop, so they can properly set their state. 3680 m_thread_list.ShouldStop(event_ptr); 3681 return_value = true; 3682 } else { 3683 bool was_restarted = ProcessEventData::GetRestartedFromEvent(event_ptr); 3684 bool should_resume = false; 3685 3686 // It makes no sense to ask "ShouldStop" if we've already been 3687 // restarted... Asking the thread list is also not likely to go well, 3688 // since we are running again. So in that case just report the event. 3689 3690 if (!was_restarted) 3691 should_resume = !m_thread_list.ShouldStop(event_ptr); 3692 3693 if (was_restarted || should_resume || m_resume_requested) { 3694 Vote report_stop_vote = m_thread_list.ShouldReportStop(event_ptr); 3695 LLDB_LOGF(log, 3696 "Process::ShouldBroadcastEvent: should_resume: %i state: " 3697 "%s was_restarted: %i report_stop_vote: %d.", 3698 should_resume, StateAsCString(state), was_restarted, 3699 report_stop_vote); 3700 3701 switch (report_stop_vote) { 3702 case eVoteYes: 3703 return_value = true; 3704 break; 3705 case eVoteNoOpinion: 3706 case eVoteNo: 3707 return_value = false; 3708 break; 3709 } 3710 3711 if (!was_restarted) { 3712 LLDB_LOGF(log, 3713 "Process::ShouldBroadcastEvent (%p) Restarting process " 3714 "from state: %s", 3715 static_cast<void *>(event_ptr), StateAsCString(state)); 3716 ProcessEventData::SetRestartedInEvent(event_ptr, true); 3717 PrivateResume(); 3718 } 3719 } else { 3720 return_value = true; 3721 SynchronouslyNotifyStateChanged(state); 3722 } 3723 } 3724 break; 3725 } 3726 3727 // Forcing the next event delivery is a one shot deal. So reset it here. 3728 m_force_next_event_delivery = false; 3729 3730 // We do some coalescing of events (for instance two consecutive running 3731 // events get coalesced.) But we only coalesce against events we actually 3732 // broadcast. So we use m_last_broadcast_state to track that. NB - you 3733 // can't use "m_public_state.GetValue()" for that purpose, as was originally 3734 // done, because the PublicState reflects the last event pulled off the 3735 // queue, and there may be several events stacked up on the queue unserviced. 3736 // So the PublicState may not reflect the last broadcasted event yet. 3737 // m_last_broadcast_state gets updated here. 3738 3739 if (return_value) 3740 m_last_broadcast_state = state; 3741 3742 LLDB_LOGF(log, 3743 "Process::ShouldBroadcastEvent (%p) => new state: %s, last " 3744 "broadcast state: %s - %s", 3745 static_cast<void *>(event_ptr), StateAsCString(state), 3746 StateAsCString(m_last_broadcast_state), 3747 return_value ? "YES" : "NO"); 3748 return return_value; 3749 } 3750 3751 bool Process::StartPrivateStateThread(bool is_secondary_thread) { 3752 Log *log = GetLog(LLDBLog::Events); 3753 3754 bool already_running = PrivateStateThreadIsValid(); 3755 LLDB_LOGF(log, "Process::%s()%s ", __FUNCTION__, 3756 already_running ? " already running" 3757 : " starting private state thread"); 3758 3759 if (!is_secondary_thread && already_running) 3760 return true; 3761 3762 // Create a thread that watches our internal state and controls which events 3763 // make it to clients (into the DCProcess event queue). 3764 char thread_name[1024]; 3765 uint32_t max_len = llvm::get_max_thread_name_length(); 3766 if (max_len > 0 && max_len <= 30) { 3767 // On platforms with abbreviated thread name lengths, choose thread names 3768 // that fit within the limit. 3769 if (already_running) 3770 snprintf(thread_name, sizeof(thread_name), "intern-state-OV"); 3771 else 3772 snprintf(thread_name, sizeof(thread_name), "intern-state"); 3773 } else { 3774 if (already_running) 3775 snprintf(thread_name, sizeof(thread_name), 3776 "<lldb.process.internal-state-override(pid=%" PRIu64 ")>", 3777 GetID()); 3778 else 3779 snprintf(thread_name, sizeof(thread_name), 3780 "<lldb.process.internal-state(pid=%" PRIu64 ")>", GetID()); 3781 } 3782 3783 llvm::Expected<HostThread> private_state_thread = 3784 ThreadLauncher::LaunchThread( 3785 thread_name, 3786 [this, is_secondary_thread] { 3787 return RunPrivateStateThread(is_secondary_thread); 3788 }, 3789 8 * 1024 * 1024); 3790 if (!private_state_thread) { 3791 LLDB_LOG_ERROR(GetLog(LLDBLog::Host), private_state_thread.takeError(), 3792 "failed to launch host thread: {0}"); 3793 return false; 3794 } 3795 3796 assert(private_state_thread->IsJoinable()); 3797 m_private_state_thread = *private_state_thread; 3798 ResumePrivateStateThread(); 3799 return true; 3800 } 3801 3802 void Process::PausePrivateStateThread() { 3803 ControlPrivateStateThread(eBroadcastInternalStateControlPause); 3804 } 3805 3806 void Process::ResumePrivateStateThread() { 3807 ControlPrivateStateThread(eBroadcastInternalStateControlResume); 3808 } 3809 3810 void Process::StopPrivateStateThread() { 3811 if (m_private_state_thread.IsJoinable()) 3812 ControlPrivateStateThread(eBroadcastInternalStateControlStop); 3813 else { 3814 Log *log = GetLog(LLDBLog::Process); 3815 LLDB_LOGF( 3816 log, 3817 "Went to stop the private state thread, but it was already invalid."); 3818 } 3819 } 3820 3821 void Process::ControlPrivateStateThread(uint32_t signal) { 3822 Log *log = GetLog(LLDBLog::Process); 3823 3824 assert(signal == eBroadcastInternalStateControlStop || 3825 signal == eBroadcastInternalStateControlPause || 3826 signal == eBroadcastInternalStateControlResume); 3827 3828 LLDB_LOGF(log, "Process::%s (signal = %d)", __FUNCTION__, signal); 3829 3830 // Signal the private state thread 3831 if (m_private_state_thread.IsJoinable()) { 3832 // Broadcast the event. 3833 // It is important to do this outside of the if below, because it's 3834 // possible that the thread state is invalid but that the thread is waiting 3835 // on a control event instead of simply being on its way out (this should 3836 // not happen, but it apparently can). 3837 LLDB_LOGF(log, "Sending control event of type: %d.", signal); 3838 std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt()); 3839 m_private_state_control_broadcaster.BroadcastEvent(signal, 3840 event_receipt_sp); 3841 3842 // Wait for the event receipt or for the private state thread to exit 3843 bool receipt_received = false; 3844 if (PrivateStateThreadIsValid()) { 3845 while (!receipt_received) { 3846 // Check for a receipt for n seconds and then check if the private 3847 // state thread is still around. 3848 receipt_received = 3849 event_receipt_sp->WaitForEventReceived(GetUtilityExpressionTimeout()); 3850 if (!receipt_received) { 3851 // Check if the private state thread is still around. If it isn't 3852 // then we are done waiting 3853 if (!PrivateStateThreadIsValid()) 3854 break; // Private state thread exited or is exiting, we are done 3855 } 3856 } 3857 } 3858 3859 if (signal == eBroadcastInternalStateControlStop) { 3860 thread_result_t result = {}; 3861 m_private_state_thread.Join(&result); 3862 m_private_state_thread.Reset(); 3863 } 3864 } else { 3865 LLDB_LOGF( 3866 log, 3867 "Private state thread already dead, no need to signal it to stop."); 3868 } 3869 } 3870 3871 void Process::SendAsyncInterrupt() { 3872 if (PrivateStateThreadIsValid()) 3873 m_private_state_broadcaster.BroadcastEvent(Process::eBroadcastBitInterrupt, 3874 nullptr); 3875 else 3876 BroadcastEvent(Process::eBroadcastBitInterrupt, nullptr); 3877 } 3878 3879 void Process::HandlePrivateEvent(EventSP &event_sp) { 3880 Log *log = GetLog(LLDBLog::Process); 3881 m_resume_requested = false; 3882 3883 const StateType new_state = 3884 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 3885 3886 // First check to see if anybody wants a shot at this event: 3887 if (m_next_event_action_up) { 3888 NextEventAction::EventActionResult action_result = 3889 m_next_event_action_up->PerformAction(event_sp); 3890 LLDB_LOGF(log, "Ran next event action, result was %d.", action_result); 3891 3892 switch (action_result) { 3893 case NextEventAction::eEventActionSuccess: 3894 SetNextEventAction(nullptr); 3895 break; 3896 3897 case NextEventAction::eEventActionRetry: 3898 break; 3899 3900 case NextEventAction::eEventActionExit: 3901 // Handle Exiting Here. If we already got an exited event, we should 3902 // just propagate it. Otherwise, swallow this event, and set our state 3903 // to exit so the next event will kill us. 3904 if (new_state != eStateExited) { 3905 // FIXME: should cons up an exited event, and discard this one. 3906 SetExitStatus(0, m_next_event_action_up->GetExitString()); 3907 SetNextEventAction(nullptr); 3908 return; 3909 } 3910 SetNextEventAction(nullptr); 3911 break; 3912 } 3913 } 3914 3915 // See if we should broadcast this state to external clients? 3916 const bool should_broadcast = ShouldBroadcastEvent(event_sp.get()); 3917 3918 if (should_broadcast) { 3919 const bool is_hijacked = IsHijackedForEvent(eBroadcastBitStateChanged); 3920 if (log) { 3921 LLDB_LOGF(log, 3922 "Process::%s (pid = %" PRIu64 3923 ") broadcasting new state %s (old state %s) to %s", 3924 __FUNCTION__, GetID(), StateAsCString(new_state), 3925 StateAsCString(GetState()), 3926 is_hijacked ? "hijacked" : "public"); 3927 } 3928 Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp.get()); 3929 if (StateIsRunningState(new_state)) { 3930 // Only push the input handler if we aren't fowarding events, as this 3931 // means the curses GUI is in use... Or don't push it if we are launching 3932 // since it will come up stopped. 3933 if (!GetTarget().GetDebugger().IsForwardingEvents() && 3934 new_state != eStateLaunching && new_state != eStateAttaching) { 3935 PushProcessIOHandler(); 3936 m_iohandler_sync.SetValue(m_iohandler_sync.GetValue() + 1, 3937 eBroadcastAlways); 3938 LLDB_LOGF(log, "Process::%s updated m_iohandler_sync to %d", 3939 __FUNCTION__, m_iohandler_sync.GetValue()); 3940 } 3941 } else if (StateIsStoppedState(new_state, false)) { 3942 if (!Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 3943 // If the lldb_private::Debugger is handling the events, we don't want 3944 // to pop the process IOHandler here, we want to do it when we receive 3945 // the stopped event so we can carefully control when the process 3946 // IOHandler is popped because when we stop we want to display some 3947 // text stating how and why we stopped, then maybe some 3948 // process/thread/frame info, and then we want the "(lldb) " prompt to 3949 // show up. If we pop the process IOHandler here, then we will cause 3950 // the command interpreter to become the top IOHandler after the 3951 // process pops off and it will update its prompt right away... See the 3952 // Debugger.cpp file where it calls the function as 3953 // "process_sp->PopProcessIOHandler()" to see where I am talking about. 3954 // Otherwise we end up getting overlapping "(lldb) " prompts and 3955 // garbled output. 3956 // 3957 // If we aren't handling the events in the debugger (which is indicated 3958 // by "m_target.GetDebugger().IsHandlingEvents()" returning false) or 3959 // we are hijacked, then we always pop the process IO handler manually. 3960 // Hijacking happens when the internal process state thread is running 3961 // thread plans, or when commands want to run in synchronous mode and 3962 // they call "process->WaitForProcessToStop()". An example of something 3963 // that will hijack the events is a simple expression: 3964 // 3965 // (lldb) expr (int)puts("hello") 3966 // 3967 // This will cause the internal process state thread to resume and halt 3968 // the process (and _it_ will hijack the eBroadcastBitStateChanged 3969 // events) and we do need the IO handler to be pushed and popped 3970 // correctly. 3971 3972 if (is_hijacked || !GetTarget().GetDebugger().IsHandlingEvents()) 3973 PopProcessIOHandler(); 3974 } 3975 } 3976 3977 BroadcastEvent(event_sp); 3978 } else { 3979 if (log) { 3980 LLDB_LOGF( 3981 log, 3982 "Process::%s (pid = %" PRIu64 3983 ") suppressing state %s (old state %s): should_broadcast == false", 3984 __FUNCTION__, GetID(), StateAsCString(new_state), 3985 StateAsCString(GetState())); 3986 } 3987 } 3988 } 3989 3990 Status Process::HaltPrivate() { 3991 EventSP event_sp; 3992 Status error(WillHalt()); 3993 if (error.Fail()) 3994 return error; 3995 3996 // Ask the process subclass to actually halt our process 3997 bool caused_stop; 3998 error = DoHalt(caused_stop); 3999 4000 DidHalt(); 4001 return error; 4002 } 4003 4004 thread_result_t Process::RunPrivateStateThread(bool is_secondary_thread) { 4005 bool control_only = true; 4006 4007 Log *log = GetLog(LLDBLog::Process); 4008 LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread starting...", 4009 __FUNCTION__, static_cast<void *>(this), GetID()); 4010 4011 bool exit_now = false; 4012 bool interrupt_requested = false; 4013 while (!exit_now) { 4014 EventSP event_sp; 4015 GetEventsPrivate(event_sp, std::nullopt, control_only); 4016 if (event_sp->BroadcasterIs(&m_private_state_control_broadcaster)) { 4017 LLDB_LOGF(log, 4018 "Process::%s (arg = %p, pid = %" PRIu64 4019 ") got a control event: %d", 4020 __FUNCTION__, static_cast<void *>(this), GetID(), 4021 event_sp->GetType()); 4022 4023 switch (event_sp->GetType()) { 4024 case eBroadcastInternalStateControlStop: 4025 exit_now = true; 4026 break; // doing any internal state management below 4027 4028 case eBroadcastInternalStateControlPause: 4029 control_only = true; 4030 break; 4031 4032 case eBroadcastInternalStateControlResume: 4033 control_only = false; 4034 break; 4035 } 4036 4037 continue; 4038 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 4039 if (m_public_state.GetValue() == eStateAttaching) { 4040 LLDB_LOGF(log, 4041 "Process::%s (arg = %p, pid = %" PRIu64 4042 ") woke up with an interrupt while attaching - " 4043 "forwarding interrupt.", 4044 __FUNCTION__, static_cast<void *>(this), GetID()); 4045 // The server may be spinning waiting for a process to appear, in which 4046 // case we should tell it to stop doing that. Normally, we don't NEED 4047 // to do that because we will next close the communication to the stub 4048 // and that will get it to shut down. But there are remote debugging 4049 // cases where relying on that side-effect causes the shutdown to be 4050 // flakey, so we should send a positive signal to interrupt the wait. 4051 Status error = HaltPrivate(); 4052 BroadcastEvent(eBroadcastBitInterrupt, nullptr); 4053 } else if (StateIsRunningState(m_last_broadcast_state)) { 4054 LLDB_LOGF(log, 4055 "Process::%s (arg = %p, pid = %" PRIu64 4056 ") woke up with an interrupt - Halting.", 4057 __FUNCTION__, static_cast<void *>(this), GetID()); 4058 Status error = HaltPrivate(); 4059 if (error.Fail() && log) 4060 LLDB_LOGF(log, 4061 "Process::%s (arg = %p, pid = %" PRIu64 4062 ") failed to halt the process: %s", 4063 __FUNCTION__, static_cast<void *>(this), GetID(), 4064 error.AsCString()); 4065 // Halt should generate a stopped event. Make a note of the fact that 4066 // we were doing the interrupt, so we can set the interrupted flag 4067 // after we receive the event. We deliberately set this to true even if 4068 // HaltPrivate failed, so that we can interrupt on the next natural 4069 // stop. 4070 interrupt_requested = true; 4071 } else { 4072 // This can happen when someone (e.g. Process::Halt) sees that we are 4073 // running and sends an interrupt request, but the process actually 4074 // stops before we receive it. In that case, we can just ignore the 4075 // request. We use m_last_broadcast_state, because the Stopped event 4076 // may not have been popped of the event queue yet, which is when the 4077 // public state gets updated. 4078 LLDB_LOGF(log, 4079 "Process::%s ignoring interrupt as we have already stopped.", 4080 __FUNCTION__); 4081 } 4082 continue; 4083 } 4084 4085 const StateType internal_state = 4086 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 4087 4088 if (internal_state != eStateInvalid) { 4089 if (m_clear_thread_plans_on_stop && 4090 StateIsStoppedState(internal_state, true)) { 4091 m_clear_thread_plans_on_stop = false; 4092 m_thread_list.DiscardThreadPlans(); 4093 } 4094 4095 if (interrupt_requested) { 4096 if (StateIsStoppedState(internal_state, true)) { 4097 // We requested the interrupt, so mark this as such in the stop event 4098 // so clients can tell an interrupted process from a natural stop 4099 ProcessEventData::SetInterruptedInEvent(event_sp.get(), true); 4100 interrupt_requested = false; 4101 } else if (log) { 4102 LLDB_LOGF(log, 4103 "Process::%s interrupt_requested, but a non-stopped " 4104 "state '%s' received.", 4105 __FUNCTION__, StateAsCString(internal_state)); 4106 } 4107 } 4108 4109 HandlePrivateEvent(event_sp); 4110 } 4111 4112 if (internal_state == eStateInvalid || internal_state == eStateExited || 4113 internal_state == eStateDetached) { 4114 LLDB_LOGF(log, 4115 "Process::%s (arg = %p, pid = %" PRIu64 4116 ") about to exit with internal state %s...", 4117 __FUNCTION__, static_cast<void *>(this), GetID(), 4118 StateAsCString(internal_state)); 4119 4120 break; 4121 } 4122 } 4123 4124 // Verify log is still enabled before attempting to write to it... 4125 LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread exiting...", 4126 __FUNCTION__, static_cast<void *>(this), GetID()); 4127 4128 // If we are a secondary thread, then the primary thread we are working for 4129 // will have already acquired the public_run_lock, and isn't done with what 4130 // it was doing yet, so don't try to change it on the way out. 4131 if (!is_secondary_thread) 4132 m_public_run_lock.SetStopped(); 4133 return {}; 4134 } 4135 4136 // Process Event Data 4137 4138 Process::ProcessEventData::ProcessEventData() : EventData(), m_process_wp() {} 4139 4140 Process::ProcessEventData::ProcessEventData(const ProcessSP &process_sp, 4141 StateType state) 4142 : EventData(), m_process_wp(), m_state(state) { 4143 if (process_sp) 4144 m_process_wp = process_sp; 4145 } 4146 4147 Process::ProcessEventData::~ProcessEventData() = default; 4148 4149 llvm::StringRef Process::ProcessEventData::GetFlavorString() { 4150 return "Process::ProcessEventData"; 4151 } 4152 4153 llvm::StringRef Process::ProcessEventData::GetFlavor() const { 4154 return ProcessEventData::GetFlavorString(); 4155 } 4156 4157 bool Process::ProcessEventData::ShouldStop(Event *event_ptr, 4158 bool &found_valid_stopinfo) { 4159 found_valid_stopinfo = false; 4160 4161 ProcessSP process_sp(m_process_wp.lock()); 4162 if (!process_sp) 4163 return false; 4164 4165 ThreadList &curr_thread_list = process_sp->GetThreadList(); 4166 uint32_t num_threads = curr_thread_list.GetSize(); 4167 4168 // The actions might change one of the thread's stop_info's opinions about 4169 // whether we should stop the process, so we need to query that as we go. 4170 4171 // One other complication here, is that we try to catch any case where the 4172 // target has run (except for expressions) and immediately exit, but if we 4173 // get that wrong (which is possible) then the thread list might have 4174 // changed, and that would cause our iteration here to crash. We could 4175 // make a copy of the thread list, but we'd really like to also know if it 4176 // has changed at all, so we store the original thread ID's of all threads and 4177 // check what we get back against this list & bag out if anything differs. 4178 std::vector<std::pair<ThreadSP, size_t>> not_suspended_threads; 4179 for (uint32_t idx = 0; idx < num_threads; ++idx) { 4180 lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx); 4181 4182 /* 4183 Filter out all suspended threads, they could not be the reason 4184 of stop and no need to perform any actions on them. 4185 */ 4186 if (thread_sp->GetResumeState() != eStateSuspended) 4187 not_suspended_threads.emplace_back(thread_sp, thread_sp->GetIndexID()); 4188 } 4189 4190 // Use this to track whether we should continue from here. We will only 4191 // continue the target running if no thread says we should stop. Of course 4192 // if some thread's PerformAction actually sets the target running, then it 4193 // doesn't matter what the other threads say... 4194 4195 bool still_should_stop = false; 4196 4197 // Sometimes - for instance if we have a bug in the stub we are talking to, 4198 // we stop but no thread has a valid stop reason. In that case we should 4199 // just stop, because we have no way of telling what the right thing to do 4200 // is, and it's better to let the user decide than continue behind their 4201 // backs. 4202 4203 for (auto [thread_sp, thread_index] : not_suspended_threads) { 4204 if (curr_thread_list.GetSize() != num_threads) { 4205 Log *log(GetLog(LLDBLog::Step | LLDBLog::Process)); 4206 LLDB_LOGF( 4207 log, 4208 "Number of threads changed from %u to %u while processing event.", 4209 num_threads, curr_thread_list.GetSize()); 4210 break; 4211 } 4212 4213 if (thread_sp->GetIndexID() != thread_index) { 4214 Log *log(GetLog(LLDBLog::Step | LLDBLog::Process)); 4215 LLDB_LOG(log, 4216 "The thread {0} changed from {1} to {2} while processing event.", 4217 thread_sp.get(), thread_index, thread_sp->GetIndexID()); 4218 break; 4219 } 4220 4221 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 4222 if (stop_info_sp && stop_info_sp->IsValid()) { 4223 found_valid_stopinfo = true; 4224 bool this_thread_wants_to_stop; 4225 if (stop_info_sp->GetOverrideShouldStop()) { 4226 this_thread_wants_to_stop = 4227 stop_info_sp->GetOverriddenShouldStopValue(); 4228 } else { 4229 stop_info_sp->PerformAction(event_ptr); 4230 // The stop action might restart the target. If it does, then we 4231 // want to mark that in the event so that whoever is receiving it 4232 // will know to wait for the running event and reflect that state 4233 // appropriately. We also need to stop processing actions, since they 4234 // aren't expecting the target to be running. 4235 4236 // FIXME: we might have run. 4237 if (stop_info_sp->HasTargetRunSinceMe()) { 4238 SetRestarted(true); 4239 break; 4240 } 4241 4242 this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr); 4243 } 4244 4245 if (!still_should_stop) 4246 still_should_stop = this_thread_wants_to_stop; 4247 } 4248 } 4249 4250 return still_should_stop; 4251 } 4252 4253 bool Process::ProcessEventData::ForwardEventToPendingListeners( 4254 Event *event_ptr) { 4255 // STDIO and the other async event notifications should always be forwarded. 4256 if (event_ptr->GetType() != Process::eBroadcastBitStateChanged) 4257 return true; 4258 4259 // For state changed events, if the update state is zero, we are handling 4260 // this on the private state thread. We should wait for the public event. 4261 return m_update_state == 1; 4262 } 4263 4264 void Process::ProcessEventData::DoOnRemoval(Event *event_ptr) { 4265 // We only have work to do for state changed events: 4266 if (event_ptr->GetType() != Process::eBroadcastBitStateChanged) 4267 return; 4268 4269 ProcessSP process_sp(m_process_wp.lock()); 4270 4271 if (!process_sp) 4272 return; 4273 4274 // This function gets called twice for each event, once when the event gets 4275 // pulled off of the private process event queue, and then any number of 4276 // times, first when it gets pulled off of the public event queue, then other 4277 // times when we're pretending that this is where we stopped at the end of 4278 // expression evaluation. m_update_state is used to distinguish these three 4279 // cases; it is 0 when we're just pulling it off for private handling, and > 4280 // 1 for expression evaluation, and we don't want to do the breakpoint 4281 // command handling then. 4282 if (m_update_state != 1) 4283 return; 4284 4285 process_sp->SetPublicState( 4286 m_state, Process::ProcessEventData::GetRestartedFromEvent(event_ptr)); 4287 4288 if (m_state == eStateStopped && !m_restarted) { 4289 // Let process subclasses know we are about to do a public stop and do 4290 // anything they might need to in order to speed up register and memory 4291 // accesses. 4292 process_sp->WillPublicStop(); 4293 } 4294 4295 // If this is a halt event, even if the halt stopped with some reason other 4296 // than a plain interrupt (e.g. we had already stopped for a breakpoint when 4297 // the halt request came through) don't do the StopInfo actions, as they may 4298 // end up restarting the process. 4299 if (m_interrupted) 4300 return; 4301 4302 // If we're not stopped or have restarted, then skip the StopInfo actions: 4303 if (m_state != eStateStopped || m_restarted) { 4304 return; 4305 } 4306 4307 bool does_anybody_have_an_opinion = false; 4308 bool still_should_stop = ShouldStop(event_ptr, does_anybody_have_an_opinion); 4309 4310 if (GetRestarted()) { 4311 return; 4312 } 4313 4314 if (!still_should_stop && does_anybody_have_an_opinion) { 4315 // We've been asked to continue, so do that here. 4316 SetRestarted(true); 4317 // Use the private resume method here, since we aren't changing the run 4318 // lock state. 4319 process_sp->PrivateResume(); 4320 } else { 4321 bool hijacked = process_sp->IsHijackedForEvent(eBroadcastBitStateChanged) && 4322 !process_sp->StateChangedIsHijackedForSynchronousResume(); 4323 4324 if (!hijacked) { 4325 // If we didn't restart, run the Stop Hooks here. 4326 // Don't do that if state changed events aren't hooked up to the 4327 // public (or SyncResume) broadcasters. StopHooks are just for 4328 // real public stops. They might also restart the target, 4329 // so watch for that. 4330 if (process_sp->GetTarget().RunStopHooks()) 4331 SetRestarted(true); 4332 } 4333 } 4334 } 4335 4336 void Process::ProcessEventData::Dump(Stream *s) const { 4337 ProcessSP process_sp(m_process_wp.lock()); 4338 4339 if (process_sp) 4340 s->Printf(" process = %p (pid = %" PRIu64 "), ", 4341 static_cast<void *>(process_sp.get()), process_sp->GetID()); 4342 else 4343 s->PutCString(" process = NULL, "); 4344 4345 s->Printf("state = %s", StateAsCString(GetState())); 4346 } 4347 4348 const Process::ProcessEventData * 4349 Process::ProcessEventData::GetEventDataFromEvent(const Event *event_ptr) { 4350 if (event_ptr) { 4351 const EventData *event_data = event_ptr->GetData(); 4352 if (event_data && 4353 event_data->GetFlavor() == ProcessEventData::GetFlavorString()) 4354 return static_cast<const ProcessEventData *>(event_ptr->GetData()); 4355 } 4356 return nullptr; 4357 } 4358 4359 ProcessSP 4360 Process::ProcessEventData::GetProcessFromEvent(const Event *event_ptr) { 4361 ProcessSP process_sp; 4362 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4363 if (data) 4364 process_sp = data->GetProcessSP(); 4365 return process_sp; 4366 } 4367 4368 StateType Process::ProcessEventData::GetStateFromEvent(const Event *event_ptr) { 4369 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4370 if (data == nullptr) 4371 return eStateInvalid; 4372 else 4373 return data->GetState(); 4374 } 4375 4376 bool Process::ProcessEventData::GetRestartedFromEvent(const Event *event_ptr) { 4377 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4378 if (data == nullptr) 4379 return false; 4380 else 4381 return data->GetRestarted(); 4382 } 4383 4384 void Process::ProcessEventData::SetRestartedInEvent(Event *event_ptr, 4385 bool new_value) { 4386 ProcessEventData *data = 4387 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4388 if (data != nullptr) 4389 data->SetRestarted(new_value); 4390 } 4391 4392 size_t 4393 Process::ProcessEventData::GetNumRestartedReasons(const Event *event_ptr) { 4394 ProcessEventData *data = 4395 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4396 if (data != nullptr) 4397 return data->GetNumRestartedReasons(); 4398 else 4399 return 0; 4400 } 4401 4402 const char * 4403 Process::ProcessEventData::GetRestartedReasonAtIndex(const Event *event_ptr, 4404 size_t idx) { 4405 ProcessEventData *data = 4406 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4407 if (data != nullptr) 4408 return data->GetRestartedReasonAtIndex(idx); 4409 else 4410 return nullptr; 4411 } 4412 4413 void Process::ProcessEventData::AddRestartedReason(Event *event_ptr, 4414 const char *reason) { 4415 ProcessEventData *data = 4416 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4417 if (data != nullptr) 4418 data->AddRestartedReason(reason); 4419 } 4420 4421 bool Process::ProcessEventData::GetInterruptedFromEvent( 4422 const Event *event_ptr) { 4423 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4424 if (data == nullptr) 4425 return false; 4426 else 4427 return data->GetInterrupted(); 4428 } 4429 4430 void Process::ProcessEventData::SetInterruptedInEvent(Event *event_ptr, 4431 bool new_value) { 4432 ProcessEventData *data = 4433 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4434 if (data != nullptr) 4435 data->SetInterrupted(new_value); 4436 } 4437 4438 bool Process::ProcessEventData::SetUpdateStateOnRemoval(Event *event_ptr) { 4439 ProcessEventData *data = 4440 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4441 if (data) { 4442 data->SetUpdateStateOnRemoval(); 4443 return true; 4444 } 4445 return false; 4446 } 4447 4448 lldb::TargetSP Process::CalculateTarget() { return m_target_wp.lock(); } 4449 4450 void Process::CalculateExecutionContext(ExecutionContext &exe_ctx) { 4451 exe_ctx.SetTargetPtr(&GetTarget()); 4452 exe_ctx.SetProcessPtr(this); 4453 exe_ctx.SetThreadPtr(nullptr); 4454 exe_ctx.SetFramePtr(nullptr); 4455 } 4456 4457 // uint32_t 4458 // Process::ListProcessesMatchingName (const char *name, StringList &matches, 4459 // std::vector<lldb::pid_t> &pids) 4460 //{ 4461 // return 0; 4462 //} 4463 // 4464 // ArchSpec 4465 // Process::GetArchSpecForExistingProcess (lldb::pid_t pid) 4466 //{ 4467 // return Host::GetArchSpecForExistingProcess (pid); 4468 //} 4469 // 4470 // ArchSpec 4471 // Process::GetArchSpecForExistingProcess (const char *process_name) 4472 //{ 4473 // return Host::GetArchSpecForExistingProcess (process_name); 4474 //} 4475 4476 EventSP Process::CreateEventFromProcessState(uint32_t event_type) { 4477 auto event_data_sp = 4478 std::make_shared<ProcessEventData>(shared_from_this(), GetState()); 4479 return std::make_shared<Event>(event_type, event_data_sp); 4480 } 4481 4482 void Process::AppendSTDOUT(const char *s, size_t len) { 4483 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4484 m_stdout_data.append(s, len); 4485 auto event_sp = CreateEventFromProcessState(eBroadcastBitSTDOUT); 4486 BroadcastEventIfUnique(event_sp); 4487 } 4488 4489 void Process::AppendSTDERR(const char *s, size_t len) { 4490 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4491 m_stderr_data.append(s, len); 4492 auto event_sp = CreateEventFromProcessState(eBroadcastBitSTDERR); 4493 BroadcastEventIfUnique(event_sp); 4494 } 4495 4496 void Process::BroadcastAsyncProfileData(const std::string &one_profile_data) { 4497 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4498 m_profile_data.push_back(one_profile_data); 4499 auto event_sp = CreateEventFromProcessState(eBroadcastBitProfileData); 4500 BroadcastEventIfUnique(event_sp); 4501 } 4502 4503 void Process::BroadcastStructuredData(const StructuredData::ObjectSP &object_sp, 4504 const StructuredDataPluginSP &plugin_sp) { 4505 auto data_sp = std::make_shared<EventDataStructuredData>( 4506 shared_from_this(), object_sp, plugin_sp); 4507 BroadcastEvent(eBroadcastBitStructuredData, data_sp); 4508 } 4509 4510 StructuredDataPluginSP 4511 Process::GetStructuredDataPlugin(llvm::StringRef type_name) const { 4512 auto find_it = m_structured_data_plugin_map.find(type_name); 4513 if (find_it != m_structured_data_plugin_map.end()) 4514 return find_it->second; 4515 else 4516 return StructuredDataPluginSP(); 4517 } 4518 4519 size_t Process::GetAsyncProfileData(char *buf, size_t buf_size, Status &error) { 4520 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4521 if (m_profile_data.empty()) 4522 return 0; 4523 4524 std::string &one_profile_data = m_profile_data.front(); 4525 size_t bytes_available = one_profile_data.size(); 4526 if (bytes_available > 0) { 4527 Log *log = GetLog(LLDBLog::Process); 4528 LLDB_LOGF(log, "Process::GetProfileData (buf = %p, size = %" PRIu64 ")", 4529 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4530 if (bytes_available > buf_size) { 4531 memcpy(buf, one_profile_data.c_str(), buf_size); 4532 one_profile_data.erase(0, buf_size); 4533 bytes_available = buf_size; 4534 } else { 4535 memcpy(buf, one_profile_data.c_str(), bytes_available); 4536 m_profile_data.erase(m_profile_data.begin()); 4537 } 4538 } 4539 return bytes_available; 4540 } 4541 4542 // Process STDIO 4543 4544 size_t Process::GetSTDOUT(char *buf, size_t buf_size, Status &error) { 4545 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4546 size_t bytes_available = m_stdout_data.size(); 4547 if (bytes_available > 0) { 4548 Log *log = GetLog(LLDBLog::Process); 4549 LLDB_LOGF(log, "Process::GetSTDOUT (buf = %p, size = %" PRIu64 ")", 4550 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4551 if (bytes_available > buf_size) { 4552 memcpy(buf, m_stdout_data.c_str(), buf_size); 4553 m_stdout_data.erase(0, buf_size); 4554 bytes_available = buf_size; 4555 } else { 4556 memcpy(buf, m_stdout_data.c_str(), bytes_available); 4557 m_stdout_data.clear(); 4558 } 4559 } 4560 return bytes_available; 4561 } 4562 4563 size_t Process::GetSTDERR(char *buf, size_t buf_size, Status &error) { 4564 std::lock_guard<std::recursive_mutex> gaurd(m_stdio_communication_mutex); 4565 size_t bytes_available = m_stderr_data.size(); 4566 if (bytes_available > 0) { 4567 Log *log = GetLog(LLDBLog::Process); 4568 LLDB_LOGF(log, "Process::GetSTDERR (buf = %p, size = %" PRIu64 ")", 4569 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4570 if (bytes_available > buf_size) { 4571 memcpy(buf, m_stderr_data.c_str(), buf_size); 4572 m_stderr_data.erase(0, buf_size); 4573 bytes_available = buf_size; 4574 } else { 4575 memcpy(buf, m_stderr_data.c_str(), bytes_available); 4576 m_stderr_data.clear(); 4577 } 4578 } 4579 return bytes_available; 4580 } 4581 4582 void Process::STDIOReadThreadBytesReceived(void *baton, const void *src, 4583 size_t src_len) { 4584 Process *process = (Process *)baton; 4585 process->AppendSTDOUT(static_cast<const char *>(src), src_len); 4586 } 4587 4588 class IOHandlerProcessSTDIO : public IOHandler { 4589 public: 4590 IOHandlerProcessSTDIO(Process *process, int write_fd) 4591 : IOHandler(process->GetTarget().GetDebugger(), 4592 IOHandler::Type::ProcessIO), 4593 m_process(process), 4594 m_read_file(GetInputFD(), File::eOpenOptionReadOnly, false), 4595 m_write_file(write_fd, File::eOpenOptionWriteOnly, false) { 4596 m_pipe.CreateNew(false); 4597 } 4598 4599 ~IOHandlerProcessSTDIO() override = default; 4600 4601 void SetIsRunning(bool running) { 4602 std::lock_guard<std::mutex> guard(m_mutex); 4603 SetIsDone(!running); 4604 m_is_running = running; 4605 } 4606 4607 // Each IOHandler gets to run until it is done. It should read data from the 4608 // "in" and place output into "out" and "err and return when done. 4609 void Run() override { 4610 if (!m_read_file.IsValid() || !m_write_file.IsValid() || 4611 !m_pipe.CanRead() || !m_pipe.CanWrite()) { 4612 SetIsDone(true); 4613 return; 4614 } 4615 4616 SetIsDone(false); 4617 const int read_fd = m_read_file.GetDescriptor(); 4618 Terminal terminal(read_fd); 4619 TerminalState terminal_state(terminal, false); 4620 // FIXME: error handling? 4621 llvm::consumeError(terminal.SetCanonical(false)); 4622 llvm::consumeError(terminal.SetEcho(false)); 4623 // FD_ZERO, FD_SET are not supported on windows 4624 #ifndef _WIN32 4625 const int pipe_read_fd = m_pipe.GetReadFileDescriptor(); 4626 SetIsRunning(true); 4627 while (true) { 4628 { 4629 std::lock_guard<std::mutex> guard(m_mutex); 4630 if (GetIsDone()) 4631 break; 4632 } 4633 4634 SelectHelper select_helper; 4635 select_helper.FDSetRead(read_fd); 4636 select_helper.FDSetRead(pipe_read_fd); 4637 Status error = select_helper.Select(); 4638 4639 if (error.Fail()) 4640 break; 4641 4642 char ch = 0; 4643 size_t n; 4644 if (select_helper.FDIsSetRead(read_fd)) { 4645 n = 1; 4646 if (m_read_file.Read(&ch, n).Success() && n == 1) { 4647 if (m_write_file.Write(&ch, n).Fail() || n != 1) 4648 break; 4649 } else 4650 break; 4651 } 4652 4653 if (select_helper.FDIsSetRead(pipe_read_fd)) { 4654 size_t bytes_read; 4655 // Consume the interrupt byte 4656 Status error = m_pipe.Read(&ch, 1, bytes_read); 4657 if (error.Success()) { 4658 if (ch == 'q') 4659 break; 4660 if (ch == 'i') 4661 if (StateIsRunningState(m_process->GetState())) 4662 m_process->SendAsyncInterrupt(); 4663 } 4664 } 4665 } 4666 SetIsRunning(false); 4667 #endif 4668 } 4669 4670 void Cancel() override { 4671 std::lock_guard<std::mutex> guard(m_mutex); 4672 SetIsDone(true); 4673 // Only write to our pipe to cancel if we are in 4674 // IOHandlerProcessSTDIO::Run(). We can end up with a python command that 4675 // is being run from the command interpreter: 4676 // 4677 // (lldb) step_process_thousands_of_times 4678 // 4679 // In this case the command interpreter will be in the middle of handling 4680 // the command and if the process pushes and pops the IOHandler thousands 4681 // of times, we can end up writing to m_pipe without ever consuming the 4682 // bytes from the pipe in IOHandlerProcessSTDIO::Run() and end up 4683 // deadlocking when the pipe gets fed up and blocks until data is consumed. 4684 if (m_is_running) { 4685 char ch = 'q'; // Send 'q' for quit 4686 size_t bytes_written = 0; 4687 m_pipe.Write(&ch, 1, bytes_written); 4688 } 4689 } 4690 4691 bool Interrupt() override { 4692 // Do only things that are safe to do in an interrupt context (like in a 4693 // SIGINT handler), like write 1 byte to a file descriptor. This will 4694 // interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte 4695 // that was written to the pipe and then call 4696 // m_process->SendAsyncInterrupt() from a much safer location in code. 4697 if (m_active) { 4698 char ch = 'i'; // Send 'i' for interrupt 4699 size_t bytes_written = 0; 4700 Status result = m_pipe.Write(&ch, 1, bytes_written); 4701 return result.Success(); 4702 } else { 4703 // This IOHandler might be pushed on the stack, but not being run 4704 // currently so do the right thing if we aren't actively watching for 4705 // STDIN by sending the interrupt to the process. Otherwise the write to 4706 // the pipe above would do nothing. This can happen when the command 4707 // interpreter is running and gets a "expression ...". It will be on the 4708 // IOHandler thread and sending the input is complete to the delegate 4709 // which will cause the expression to run, which will push the process IO 4710 // handler, but not run it. 4711 4712 if (StateIsRunningState(m_process->GetState())) { 4713 m_process->SendAsyncInterrupt(); 4714 return true; 4715 } 4716 } 4717 return false; 4718 } 4719 4720 void GotEOF() override {} 4721 4722 protected: 4723 Process *m_process; 4724 NativeFile m_read_file; // Read from this file (usually actual STDIN for LLDB 4725 NativeFile m_write_file; // Write to this file (usually the primary pty for 4726 // getting io to debuggee) 4727 Pipe m_pipe; 4728 std::mutex m_mutex; 4729 bool m_is_running = false; 4730 }; 4731 4732 void Process::SetSTDIOFileDescriptor(int fd) { 4733 // First set up the Read Thread for reading/handling process I/O 4734 m_stdio_communication.SetConnection( 4735 std::make_unique<ConnectionFileDescriptor>(fd, true)); 4736 if (m_stdio_communication.IsConnected()) { 4737 m_stdio_communication.SetReadThreadBytesReceivedCallback( 4738 STDIOReadThreadBytesReceived, this); 4739 m_stdio_communication.StartReadThread(); 4740 4741 // Now read thread is set up, set up input reader. 4742 { 4743 std::lock_guard<std::mutex> guard(m_process_input_reader_mutex); 4744 if (!m_process_input_reader) 4745 m_process_input_reader = 4746 std::make_shared<IOHandlerProcessSTDIO>(this, fd); 4747 } 4748 } 4749 } 4750 4751 bool Process::ProcessIOHandlerIsActive() { 4752 std::lock_guard<std::mutex> guard(m_process_input_reader_mutex); 4753 IOHandlerSP io_handler_sp(m_process_input_reader); 4754 if (io_handler_sp) 4755 return GetTarget().GetDebugger().IsTopIOHandler(io_handler_sp); 4756 return false; 4757 } 4758 4759 bool Process::PushProcessIOHandler() { 4760 std::lock_guard<std::mutex> guard(m_process_input_reader_mutex); 4761 IOHandlerSP io_handler_sp(m_process_input_reader); 4762 if (io_handler_sp) { 4763 Log *log = GetLog(LLDBLog::Process); 4764 LLDB_LOGF(log, "Process::%s pushing IO handler", __FUNCTION__); 4765 4766 io_handler_sp->SetIsDone(false); 4767 // If we evaluate an utility function, then we don't cancel the current 4768 // IOHandler. Our IOHandler is non-interactive and shouldn't disturb the 4769 // existing IOHandler that potentially provides the user interface (e.g. 4770 // the IOHandler for Editline). 4771 bool cancel_top_handler = !m_mod_id.IsRunningUtilityFunction(); 4772 GetTarget().GetDebugger().RunIOHandlerAsync(io_handler_sp, 4773 cancel_top_handler); 4774 return true; 4775 } 4776 return false; 4777 } 4778 4779 bool Process::PopProcessIOHandler() { 4780 std::lock_guard<std::mutex> guard(m_process_input_reader_mutex); 4781 IOHandlerSP io_handler_sp(m_process_input_reader); 4782 if (io_handler_sp) 4783 return GetTarget().GetDebugger().RemoveIOHandler(io_handler_sp); 4784 return false; 4785 } 4786 4787 // The process needs to know about installed plug-ins 4788 void Process::SettingsInitialize() { Thread::SettingsInitialize(); } 4789 4790 void Process::SettingsTerminate() { Thread::SettingsTerminate(); } 4791 4792 namespace { 4793 // RestorePlanState is used to record the "is private", "is controlling" and 4794 // "okay 4795 // to discard" fields of the plan we are running, and reset it on Clean or on 4796 // destruction. It will only reset the state once, so you can call Clean and 4797 // then monkey with the state and it won't get reset on you again. 4798 4799 class RestorePlanState { 4800 public: 4801 RestorePlanState(lldb::ThreadPlanSP thread_plan_sp) 4802 : m_thread_plan_sp(thread_plan_sp) { 4803 if (m_thread_plan_sp) { 4804 m_private = m_thread_plan_sp->GetPrivate(); 4805 m_is_controlling = m_thread_plan_sp->IsControllingPlan(); 4806 m_okay_to_discard = m_thread_plan_sp->OkayToDiscard(); 4807 } 4808 } 4809 4810 ~RestorePlanState() { Clean(); } 4811 4812 void Clean() { 4813 if (!m_already_reset && m_thread_plan_sp) { 4814 m_already_reset = true; 4815 m_thread_plan_sp->SetPrivate(m_private); 4816 m_thread_plan_sp->SetIsControllingPlan(m_is_controlling); 4817 m_thread_plan_sp->SetOkayToDiscard(m_okay_to_discard); 4818 } 4819 } 4820 4821 private: 4822 lldb::ThreadPlanSP m_thread_plan_sp; 4823 bool m_already_reset = false; 4824 bool m_private = false; 4825 bool m_is_controlling = false; 4826 bool m_okay_to_discard = false; 4827 }; 4828 } // anonymous namespace 4829 4830 static microseconds 4831 GetOneThreadExpressionTimeout(const EvaluateExpressionOptions &options) { 4832 const milliseconds default_one_thread_timeout(250); 4833 4834 // If the overall wait is forever, then we don't need to worry about it. 4835 if (!options.GetTimeout()) { 4836 return options.GetOneThreadTimeout() ? *options.GetOneThreadTimeout() 4837 : default_one_thread_timeout; 4838 } 4839 4840 // If the one thread timeout is set, use it. 4841 if (options.GetOneThreadTimeout()) 4842 return *options.GetOneThreadTimeout(); 4843 4844 // Otherwise use half the total timeout, bounded by the 4845 // default_one_thread_timeout. 4846 return std::min<microseconds>(default_one_thread_timeout, 4847 *options.GetTimeout() / 2); 4848 } 4849 4850 static Timeout<std::micro> 4851 GetExpressionTimeout(const EvaluateExpressionOptions &options, 4852 bool before_first_timeout) { 4853 // If we are going to run all threads the whole time, or if we are only going 4854 // to run one thread, we can just return the overall timeout. 4855 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 4856 return options.GetTimeout(); 4857 4858 if (before_first_timeout) 4859 return GetOneThreadExpressionTimeout(options); 4860 4861 if (!options.GetTimeout()) 4862 return std::nullopt; 4863 else 4864 return *options.GetTimeout() - GetOneThreadExpressionTimeout(options); 4865 } 4866 4867 static std::optional<ExpressionResults> 4868 HandleStoppedEvent(lldb::tid_t thread_id, const ThreadPlanSP &thread_plan_sp, 4869 RestorePlanState &restorer, const EventSP &event_sp, 4870 EventSP &event_to_broadcast_sp, 4871 const EvaluateExpressionOptions &options, 4872 bool handle_interrupts) { 4873 Log *log = GetLog(LLDBLog::Step | LLDBLog::Process); 4874 4875 ThreadSP thread_sp = thread_plan_sp->GetTarget() 4876 .GetProcessSP() 4877 ->GetThreadList() 4878 .FindThreadByID(thread_id); 4879 if (!thread_sp) { 4880 LLDB_LOG(log, 4881 "The thread on which we were running the " 4882 "expression: tid = {0}, exited while " 4883 "the expression was running.", 4884 thread_id); 4885 return eExpressionThreadVanished; 4886 } 4887 4888 ThreadPlanSP plan = thread_sp->GetCompletedPlan(); 4889 if (plan == thread_plan_sp && plan->PlanSucceeded()) { 4890 LLDB_LOG(log, "execution completed successfully"); 4891 4892 // Restore the plan state so it will get reported as intended when we are 4893 // done. 4894 restorer.Clean(); 4895 return eExpressionCompleted; 4896 } 4897 4898 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 4899 if (stop_info_sp && stop_info_sp->GetStopReason() == eStopReasonBreakpoint && 4900 stop_info_sp->ShouldNotify(event_sp.get())) { 4901 LLDB_LOG(log, "stopped for breakpoint: {0}.", stop_info_sp->GetDescription()); 4902 if (!options.DoesIgnoreBreakpoints()) { 4903 // Restore the plan state and then force Private to false. We are going 4904 // to stop because of this plan so we need it to become a public plan or 4905 // it won't report correctly when we continue to its termination later 4906 // on. 4907 restorer.Clean(); 4908 thread_plan_sp->SetPrivate(false); 4909 event_to_broadcast_sp = event_sp; 4910 } 4911 return eExpressionHitBreakpoint; 4912 } 4913 4914 if (!handle_interrupts && 4915 Process::ProcessEventData::GetInterruptedFromEvent(event_sp.get())) 4916 return std::nullopt; 4917 4918 LLDB_LOG(log, "thread plan did not successfully complete"); 4919 if (!options.DoesUnwindOnError()) 4920 event_to_broadcast_sp = event_sp; 4921 return eExpressionInterrupted; 4922 } 4923 4924 ExpressionResults 4925 Process::RunThreadPlan(ExecutionContext &exe_ctx, 4926 lldb::ThreadPlanSP &thread_plan_sp, 4927 const EvaluateExpressionOptions &options, 4928 DiagnosticManager &diagnostic_manager) { 4929 ExpressionResults return_value = eExpressionSetupError; 4930 4931 std::lock_guard<std::mutex> run_thread_plan_locker(m_run_thread_plan_lock); 4932 4933 if (!thread_plan_sp) { 4934 diagnostic_manager.PutString( 4935 lldb::eSeverityError, "RunThreadPlan called with empty thread plan."); 4936 return eExpressionSetupError; 4937 } 4938 4939 if (!thread_plan_sp->ValidatePlan(nullptr)) { 4940 diagnostic_manager.PutString( 4941 lldb::eSeverityError, 4942 "RunThreadPlan called with an invalid thread plan."); 4943 return eExpressionSetupError; 4944 } 4945 4946 if (exe_ctx.GetProcessPtr() != this) { 4947 diagnostic_manager.PutString(lldb::eSeverityError, 4948 "RunThreadPlan called on wrong process."); 4949 return eExpressionSetupError; 4950 } 4951 4952 Thread *thread = exe_ctx.GetThreadPtr(); 4953 if (thread == nullptr) { 4954 diagnostic_manager.PutString(lldb::eSeverityError, 4955 "RunThreadPlan called with invalid thread."); 4956 return eExpressionSetupError; 4957 } 4958 4959 // Record the thread's id so we can tell when a thread we were using 4960 // to run the expression exits during the expression evaluation. 4961 lldb::tid_t expr_thread_id = thread->GetID(); 4962 4963 // We need to change some of the thread plan attributes for the thread plan 4964 // runner. This will restore them when we are done: 4965 4966 RestorePlanState thread_plan_restorer(thread_plan_sp); 4967 4968 // We rely on the thread plan we are running returning "PlanCompleted" if 4969 // when it successfully completes. For that to be true the plan can't be 4970 // private - since private plans suppress themselves in the GetCompletedPlan 4971 // call. 4972 4973 thread_plan_sp->SetPrivate(false); 4974 4975 // The plans run with RunThreadPlan also need to be terminal controlling plans 4976 // or when they are done we will end up asking the plan above us whether we 4977 // should stop, which may give the wrong answer. 4978 4979 thread_plan_sp->SetIsControllingPlan(true); 4980 thread_plan_sp->SetOkayToDiscard(false); 4981 4982 // If we are running some utility expression for LLDB, we now have to mark 4983 // this in the ProcesModID of this process. This RAII takes care of marking 4984 // and reverting the mark it once we are done running the expression. 4985 UtilityFunctionScope util_scope(options.IsForUtilityExpr() ? this : nullptr); 4986 4987 if (m_private_state.GetValue() != eStateStopped) { 4988 diagnostic_manager.PutString( 4989 lldb::eSeverityError, 4990 "RunThreadPlan called while the private state was not stopped."); 4991 return eExpressionSetupError; 4992 } 4993 4994 // Save the thread & frame from the exe_ctx for restoration after we run 4995 const uint32_t thread_idx_id = thread->GetIndexID(); 4996 StackFrameSP selected_frame_sp = 4997 thread->GetSelectedFrame(DoNoSelectMostRelevantFrame); 4998 if (!selected_frame_sp) { 4999 thread->SetSelectedFrame(nullptr); 5000 selected_frame_sp = thread->GetSelectedFrame(DoNoSelectMostRelevantFrame); 5001 if (!selected_frame_sp) { 5002 diagnostic_manager.Printf( 5003 lldb::eSeverityError, 5004 "RunThreadPlan called without a selected frame on thread %d", 5005 thread_idx_id); 5006 return eExpressionSetupError; 5007 } 5008 } 5009 5010 // Make sure the timeout values make sense. The one thread timeout needs to 5011 // be smaller than the overall timeout. 5012 if (options.GetOneThreadTimeout() && options.GetTimeout() && 5013 *options.GetTimeout() < *options.GetOneThreadTimeout()) { 5014 diagnostic_manager.PutString(lldb::eSeverityError, 5015 "RunThreadPlan called with one thread " 5016 "timeout greater than total timeout"); 5017 return eExpressionSetupError; 5018 } 5019 5020 StackID ctx_frame_id = selected_frame_sp->GetStackID(); 5021 5022 // N.B. Running the target may unset the currently selected thread and frame. 5023 // We don't want to do that either, so we should arrange to reset them as 5024 // well. 5025 5026 lldb::ThreadSP selected_thread_sp = GetThreadList().GetSelectedThread(); 5027 5028 uint32_t selected_tid; 5029 StackID selected_stack_id; 5030 if (selected_thread_sp) { 5031 selected_tid = selected_thread_sp->GetIndexID(); 5032 selected_stack_id = 5033 selected_thread_sp->GetSelectedFrame(DoNoSelectMostRelevantFrame) 5034 ->GetStackID(); 5035 } else { 5036 selected_tid = LLDB_INVALID_THREAD_ID; 5037 } 5038 5039 HostThread backup_private_state_thread; 5040 lldb::StateType old_state = eStateInvalid; 5041 lldb::ThreadPlanSP stopper_base_plan_sp; 5042 5043 Log *log(GetLog(LLDBLog::Step | LLDBLog::Process)); 5044 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) { 5045 // Yikes, we are running on the private state thread! So we can't wait for 5046 // public events on this thread, since we are the thread that is generating 5047 // public events. The simplest thing to do is to spin up a temporary thread 5048 // to handle private state thread events while we are fielding public 5049 // events here. 5050 LLDB_LOGF(log, "Running thread plan on private state thread, spinning up " 5051 "another state thread to handle the events."); 5052 5053 backup_private_state_thread = m_private_state_thread; 5054 5055 // One other bit of business: we want to run just this thread plan and 5056 // anything it pushes, and then stop, returning control here. But in the 5057 // normal course of things, the plan above us on the stack would be given a 5058 // shot at the stop event before deciding to stop, and we don't want that. 5059 // So we insert a "stopper" base plan on the stack before the plan we want 5060 // to run. Since base plans always stop and return control to the user, 5061 // that will do just what we want. 5062 stopper_base_plan_sp.reset(new ThreadPlanBase(*thread)); 5063 thread->QueueThreadPlan(stopper_base_plan_sp, false); 5064 // Have to make sure our public state is stopped, since otherwise the 5065 // reporting logic below doesn't work correctly. 5066 old_state = m_public_state.GetValue(); 5067 m_public_state.SetValueNoLock(eStateStopped); 5068 5069 // Now spin up the private state thread: 5070 StartPrivateStateThread(true); 5071 } 5072 5073 thread->QueueThreadPlan( 5074 thread_plan_sp, false); // This used to pass "true" does that make sense? 5075 5076 if (options.GetDebug()) { 5077 // In this case, we aren't actually going to run, we just want to stop 5078 // right away. Flush this thread so we will refetch the stacks and show the 5079 // correct backtrace. 5080 // FIXME: To make this prettier we should invent some stop reason for this, 5081 // but that 5082 // is only cosmetic, and this functionality is only of use to lldb 5083 // developers who can live with not pretty... 5084 thread->Flush(); 5085 return eExpressionStoppedForDebug; 5086 } 5087 5088 ListenerSP listener_sp( 5089 Listener::MakeListener("lldb.process.listener.run-thread-plan")); 5090 5091 lldb::EventSP event_to_broadcast_sp; 5092 5093 { 5094 // This process event hijacker Hijacks the Public events and its destructor 5095 // makes sure that the process events get restored on exit to the function. 5096 // 5097 // If the event needs to propagate beyond the hijacker (e.g., the process 5098 // exits during execution), then the event is put into 5099 // event_to_broadcast_sp for rebroadcasting. 5100 5101 ProcessEventHijacker run_thread_plan_hijacker(*this, listener_sp); 5102 5103 if (log) { 5104 StreamString s; 5105 thread_plan_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose); 5106 LLDB_LOGF(log, 5107 "Process::RunThreadPlan(): Resuming thread %u - 0x%4.4" PRIx64 5108 " to run thread plan \"%s\".", 5109 thread_idx_id, expr_thread_id, s.GetData()); 5110 } 5111 5112 bool got_event; 5113 lldb::EventSP event_sp; 5114 lldb::StateType stop_state = lldb::eStateInvalid; 5115 5116 bool before_first_timeout = true; // This is set to false the first time 5117 // that we have to halt the target. 5118 bool do_resume = true; 5119 bool handle_running_event = true; 5120 5121 // This is just for accounting: 5122 uint32_t num_resumes = 0; 5123 5124 // If we are going to run all threads the whole time, or if we are only 5125 // going to run one thread, then we don't need the first timeout. So we 5126 // pretend we are after the first timeout already. 5127 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 5128 before_first_timeout = false; 5129 5130 LLDB_LOGF(log, "Stop others: %u, try all: %u, before_first: %u.\n", 5131 options.GetStopOthers(), options.GetTryAllThreads(), 5132 before_first_timeout); 5133 5134 // This isn't going to work if there are unfetched events on the queue. Are 5135 // there cases where we might want to run the remaining events here, and 5136 // then try to call the function? That's probably being too tricky for our 5137 // own good. 5138 5139 Event *other_events = listener_sp->PeekAtNextEvent(); 5140 if (other_events != nullptr) { 5141 diagnostic_manager.PutString( 5142 lldb::eSeverityError, 5143 "RunThreadPlan called with pending events on the queue."); 5144 return eExpressionSetupError; 5145 } 5146 5147 // We also need to make sure that the next event is delivered. We might be 5148 // calling a function as part of a thread plan, in which case the last 5149 // delivered event could be the running event, and we don't want event 5150 // coalescing to cause us to lose OUR running event... 5151 ForceNextEventDelivery(); 5152 5153 // This while loop must exit out the bottom, there's cleanup that we need to do 5154 // when we are done. So don't call return anywhere within it. 5155 5156 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 5157 // It's pretty much impossible to write test cases for things like: One 5158 // thread timeout expires, I go to halt, but the process already stopped on 5159 // the function call stop breakpoint. Turning on this define will make us 5160 // not fetch the first event till after the halt. So if you run a quick 5161 // function, it will have completed, and the completion event will be 5162 // waiting, when you interrupt for halt. The expression evaluation should 5163 // still succeed. 5164 bool miss_first_event = true; 5165 #endif 5166 while (true) { 5167 // We usually want to resume the process if we get to the top of the 5168 // loop. The only exception is if we get two running events with no 5169 // intervening stop, which can happen, we will just wait for then next 5170 // stop event. 5171 LLDB_LOGF(log, 5172 "Top of while loop: do_resume: %i handle_running_event: %i " 5173 "before_first_timeout: %i.", 5174 do_resume, handle_running_event, before_first_timeout); 5175 5176 if (do_resume || handle_running_event) { 5177 // Do the initial resume and wait for the running event before going 5178 // further. 5179 5180 if (do_resume) { 5181 num_resumes++; 5182 Status resume_error = PrivateResume(); 5183 if (!resume_error.Success()) { 5184 diagnostic_manager.Printf( 5185 lldb::eSeverityError, 5186 "couldn't resume inferior the %d time: \"%s\".", num_resumes, 5187 resume_error.AsCString()); 5188 return_value = eExpressionSetupError; 5189 break; 5190 } 5191 } 5192 5193 got_event = 5194 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout()); 5195 if (!got_event) { 5196 LLDB_LOGF(log, 5197 "Process::RunThreadPlan(): didn't get any event after " 5198 "resume %" PRIu32 ", exiting.", 5199 num_resumes); 5200 5201 diagnostic_manager.Printf(lldb::eSeverityError, 5202 "didn't get any event after resume %" PRIu32 5203 ", exiting.", 5204 num_resumes); 5205 return_value = eExpressionSetupError; 5206 break; 5207 } 5208 5209 stop_state = 5210 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5211 5212 if (stop_state != eStateRunning) { 5213 bool restarted = false; 5214 5215 if (stop_state == eStateStopped) { 5216 restarted = Process::ProcessEventData::GetRestartedFromEvent( 5217 event_sp.get()); 5218 LLDB_LOGF( 5219 log, 5220 "Process::RunThreadPlan(): didn't get running event after " 5221 "resume %d, got %s instead (restarted: %i, do_resume: %i, " 5222 "handle_running_event: %i).", 5223 num_resumes, StateAsCString(stop_state), restarted, do_resume, 5224 handle_running_event); 5225 } 5226 5227 if (restarted) { 5228 // This is probably an overabundance of caution, I don't think I 5229 // should ever get a stopped & restarted event here. But if I do, 5230 // the best thing is to Halt and then get out of here. 5231 const bool clear_thread_plans = false; 5232 const bool use_run_lock = false; 5233 Halt(clear_thread_plans, use_run_lock); 5234 } 5235 5236 diagnostic_manager.Printf( 5237 lldb::eSeverityError, 5238 "didn't get running event after initial resume, got %s instead.", 5239 StateAsCString(stop_state)); 5240 return_value = eExpressionSetupError; 5241 break; 5242 } 5243 5244 if (log) 5245 log->PutCString("Process::RunThreadPlan(): resuming succeeded."); 5246 // We need to call the function synchronously, so spin waiting for it 5247 // to return. If we get interrupted while executing, we're going to 5248 // lose our context, and won't be able to gather the result at this 5249 // point. We set the timeout AFTER the resume, since the resume takes 5250 // some time and we don't want to charge that to the timeout. 5251 } else { 5252 if (log) 5253 log->PutCString("Process::RunThreadPlan(): waiting for next event."); 5254 } 5255 5256 do_resume = true; 5257 handle_running_event = true; 5258 5259 // Now wait for the process to stop again: 5260 event_sp.reset(); 5261 5262 Timeout<std::micro> timeout = 5263 GetExpressionTimeout(options, before_first_timeout); 5264 if (log) { 5265 if (timeout) { 5266 auto now = system_clock::now(); 5267 LLDB_LOGF(log, 5268 "Process::RunThreadPlan(): about to wait - now is %s - " 5269 "endpoint is %s", 5270 llvm::to_string(now).c_str(), 5271 llvm::to_string(now + *timeout).c_str()); 5272 } else { 5273 LLDB_LOGF(log, "Process::RunThreadPlan(): about to wait forever."); 5274 } 5275 } 5276 5277 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 5278 // See comment above... 5279 if (miss_first_event) { 5280 std::this_thread::sleep_for(std::chrono::milliseconds(1)); 5281 miss_first_event = false; 5282 got_event = false; 5283 } else 5284 #endif 5285 got_event = listener_sp->GetEvent(event_sp, timeout); 5286 5287 if (got_event) { 5288 if (event_sp) { 5289 bool keep_going = false; 5290 if (event_sp->GetType() == eBroadcastBitInterrupt) { 5291 const bool clear_thread_plans = false; 5292 const bool use_run_lock = false; 5293 Halt(clear_thread_plans, use_run_lock); 5294 return_value = eExpressionInterrupted; 5295 diagnostic_manager.PutString(lldb::eSeverityInfo, 5296 "execution halted by user interrupt."); 5297 LLDB_LOGF(log, "Process::RunThreadPlan(): Got interrupted by " 5298 "eBroadcastBitInterrupted, exiting."); 5299 break; 5300 } else { 5301 stop_state = 5302 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5303 LLDB_LOGF(log, 5304 "Process::RunThreadPlan(): in while loop, got event: %s.", 5305 StateAsCString(stop_state)); 5306 5307 switch (stop_state) { 5308 case lldb::eStateStopped: { 5309 if (Process::ProcessEventData::GetRestartedFromEvent( 5310 event_sp.get())) { 5311 // If we were restarted, we just need to go back up to fetch 5312 // another event. 5313 LLDB_LOGF(log, "Process::RunThreadPlan(): Got a stop and " 5314 "restart, so we'll continue waiting."); 5315 keep_going = true; 5316 do_resume = false; 5317 handle_running_event = true; 5318 } else { 5319 const bool handle_interrupts = true; 5320 return_value = *HandleStoppedEvent( 5321 expr_thread_id, thread_plan_sp, thread_plan_restorer, 5322 event_sp, event_to_broadcast_sp, options, 5323 handle_interrupts); 5324 if (return_value == eExpressionThreadVanished) 5325 keep_going = false; 5326 } 5327 } break; 5328 5329 case lldb::eStateRunning: 5330 // This shouldn't really happen, but sometimes we do get two 5331 // running events without an intervening stop, and in that case 5332 // we should just go back to waiting for the stop. 5333 do_resume = false; 5334 keep_going = true; 5335 handle_running_event = false; 5336 break; 5337 5338 default: 5339 LLDB_LOGF(log, 5340 "Process::RunThreadPlan(): execution stopped with " 5341 "unexpected state: %s.", 5342 StateAsCString(stop_state)); 5343 5344 if (stop_state == eStateExited) 5345 event_to_broadcast_sp = event_sp; 5346 5347 diagnostic_manager.PutString( 5348 lldb::eSeverityError, 5349 "execution stopped with unexpected state."); 5350 return_value = eExpressionInterrupted; 5351 break; 5352 } 5353 } 5354 5355 if (keep_going) 5356 continue; 5357 else 5358 break; 5359 } else { 5360 if (log) 5361 log->PutCString("Process::RunThreadPlan(): got_event was true, but " 5362 "the event pointer was null. How odd..."); 5363 return_value = eExpressionInterrupted; 5364 break; 5365 } 5366 } else { 5367 // If we didn't get an event that means we've timed out... We will 5368 // interrupt the process here. Depending on what we were asked to do 5369 // we will either exit, or try with all threads running for the same 5370 // timeout. 5371 5372 if (log) { 5373 if (options.GetTryAllThreads()) { 5374 if (before_first_timeout) { 5375 LLDB_LOG(log, 5376 "Running function with one thread timeout timed out."); 5377 } else 5378 LLDB_LOG(log, "Restarting function with all threads enabled and " 5379 "timeout: {0} timed out, abandoning execution.", 5380 timeout); 5381 } else 5382 LLDB_LOG(log, "Running function with timeout: {0} timed out, " 5383 "abandoning execution.", 5384 timeout); 5385 } 5386 5387 // It is possible that between the time we issued the Halt, and we get 5388 // around to calling Halt the target could have stopped. That's fine, 5389 // Halt will figure that out and send the appropriate Stopped event. 5390 // BUT it is also possible that we stopped & restarted (e.g. hit a 5391 // signal with "stop" set to false.) In 5392 // that case, we'll get the stopped & restarted event, and we should go 5393 // back to waiting for the Halt's stopped event. That's what this 5394 // while loop does. 5395 5396 bool back_to_top = true; 5397 uint32_t try_halt_again = 0; 5398 bool do_halt = true; 5399 const uint32_t num_retries = 5; 5400 while (try_halt_again < num_retries) { 5401 Status halt_error; 5402 if (do_halt) { 5403 LLDB_LOGF(log, "Process::RunThreadPlan(): Running Halt."); 5404 const bool clear_thread_plans = false; 5405 const bool use_run_lock = false; 5406 Halt(clear_thread_plans, use_run_lock); 5407 } 5408 if (halt_error.Success()) { 5409 if (log) 5410 log->PutCString("Process::RunThreadPlan(): Halt succeeded."); 5411 5412 got_event = 5413 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout()); 5414 5415 if (got_event) { 5416 stop_state = 5417 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5418 if (log) { 5419 LLDB_LOGF(log, 5420 "Process::RunThreadPlan(): Stopped with event: %s", 5421 StateAsCString(stop_state)); 5422 if (stop_state == lldb::eStateStopped && 5423 Process::ProcessEventData::GetInterruptedFromEvent( 5424 event_sp.get())) 5425 log->PutCString(" Event was the Halt interruption event."); 5426 } 5427 5428 if (stop_state == lldb::eStateStopped) { 5429 if (Process::ProcessEventData::GetRestartedFromEvent( 5430 event_sp.get())) { 5431 if (log) 5432 log->PutCString("Process::RunThreadPlan(): Went to halt " 5433 "but got a restarted event, there must be " 5434 "an un-restarted stopped event so try " 5435 "again... " 5436 "Exiting wait loop."); 5437 try_halt_again++; 5438 do_halt = false; 5439 continue; 5440 } 5441 5442 // Between the time we initiated the Halt and the time we 5443 // delivered it, the process could have already finished its 5444 // job. Check that here: 5445 const bool handle_interrupts = false; 5446 if (auto result = HandleStoppedEvent( 5447 expr_thread_id, thread_plan_sp, thread_plan_restorer, 5448 event_sp, event_to_broadcast_sp, options, 5449 handle_interrupts)) { 5450 return_value = *result; 5451 back_to_top = false; 5452 break; 5453 } 5454 5455 if (!options.GetTryAllThreads()) { 5456 if (log) 5457 log->PutCString("Process::RunThreadPlan(): try_all_threads " 5458 "was false, we stopped so now we're " 5459 "quitting."); 5460 return_value = eExpressionInterrupted; 5461 back_to_top = false; 5462 break; 5463 } 5464 5465 if (before_first_timeout) { 5466 // Set all the other threads to run, and return to the top of 5467 // the loop, which will continue; 5468 before_first_timeout = false; 5469 thread_plan_sp->SetStopOthers(false); 5470 if (log) 5471 log->PutCString( 5472 "Process::RunThreadPlan(): about to resume."); 5473 5474 back_to_top = true; 5475 break; 5476 } else { 5477 // Running all threads failed, so return Interrupted. 5478 if (log) 5479 log->PutCString("Process::RunThreadPlan(): running all " 5480 "threads timed out."); 5481 return_value = eExpressionInterrupted; 5482 back_to_top = false; 5483 break; 5484 } 5485 } 5486 } else { 5487 if (log) 5488 log->PutCString("Process::RunThreadPlan(): halt said it " 5489 "succeeded, but I got no event. " 5490 "I'm getting out of here passing Interrupted."); 5491 return_value = eExpressionInterrupted; 5492 back_to_top = false; 5493 break; 5494 } 5495 } else { 5496 try_halt_again++; 5497 continue; 5498 } 5499 } 5500 5501 if (!back_to_top || try_halt_again > num_retries) 5502 break; 5503 else 5504 continue; 5505 } 5506 } // END WAIT LOOP 5507 5508 // If we had to start up a temporary private state thread to run this 5509 // thread plan, shut it down now. 5510 if (backup_private_state_thread.IsJoinable()) { 5511 StopPrivateStateThread(); 5512 Status error; 5513 m_private_state_thread = backup_private_state_thread; 5514 if (stopper_base_plan_sp) { 5515 thread->DiscardThreadPlansUpToPlan(stopper_base_plan_sp); 5516 } 5517 if (old_state != eStateInvalid) 5518 m_public_state.SetValueNoLock(old_state); 5519 } 5520 5521 // If our thread went away on us, we need to get out of here without 5522 // doing any more work. We don't have to clean up the thread plan, that 5523 // will have happened when the Thread was destroyed. 5524 if (return_value == eExpressionThreadVanished) { 5525 return return_value; 5526 } 5527 5528 if (return_value != eExpressionCompleted && log) { 5529 // Print a backtrace into the log so we can figure out where we are: 5530 StreamString s; 5531 s.PutCString("Thread state after unsuccessful completion: \n"); 5532 thread->GetStackFrameStatus(s, 0, UINT32_MAX, true, UINT32_MAX); 5533 log->PutString(s.GetString()); 5534 } 5535 // Restore the thread state if we are going to discard the plan execution. 5536 // There are three cases where this could happen: 1) The execution 5537 // successfully completed 2) We hit a breakpoint, and ignore_breakpoints 5538 // was true 3) We got some other error, and discard_on_error was true 5539 bool should_unwind = (return_value == eExpressionInterrupted && 5540 options.DoesUnwindOnError()) || 5541 (return_value == eExpressionHitBreakpoint && 5542 options.DoesIgnoreBreakpoints()); 5543 5544 if (return_value == eExpressionCompleted || should_unwind) { 5545 thread_plan_sp->RestoreThreadState(); 5546 } 5547 5548 // Now do some processing on the results of the run: 5549 if (return_value == eExpressionInterrupted || 5550 return_value == eExpressionHitBreakpoint) { 5551 if (log) { 5552 StreamString s; 5553 if (event_sp) 5554 event_sp->Dump(&s); 5555 else { 5556 log->PutCString("Process::RunThreadPlan(): Stop event that " 5557 "interrupted us is NULL."); 5558 } 5559 5560 StreamString ts; 5561 5562 const char *event_explanation = nullptr; 5563 5564 do { 5565 if (!event_sp) { 5566 event_explanation = "<no event>"; 5567 break; 5568 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 5569 event_explanation = "<user interrupt>"; 5570 break; 5571 } else { 5572 const Process::ProcessEventData *event_data = 5573 Process::ProcessEventData::GetEventDataFromEvent( 5574 event_sp.get()); 5575 5576 if (!event_data) { 5577 event_explanation = "<no event data>"; 5578 break; 5579 } 5580 5581 Process *process = event_data->GetProcessSP().get(); 5582 5583 if (!process) { 5584 event_explanation = "<no process>"; 5585 break; 5586 } 5587 5588 ThreadList &thread_list = process->GetThreadList(); 5589 5590 uint32_t num_threads = thread_list.GetSize(); 5591 uint32_t thread_index; 5592 5593 ts.Printf("<%u threads> ", num_threads); 5594 5595 for (thread_index = 0; thread_index < num_threads; ++thread_index) { 5596 Thread *thread = thread_list.GetThreadAtIndex(thread_index).get(); 5597 5598 if (!thread) { 5599 ts.Printf("<?> "); 5600 continue; 5601 } 5602 5603 ts.Printf("<0x%4.4" PRIx64 " ", thread->GetID()); 5604 RegisterContext *register_context = 5605 thread->GetRegisterContext().get(); 5606 5607 if (register_context) 5608 ts.Printf("[ip 0x%" PRIx64 "] ", register_context->GetPC()); 5609 else 5610 ts.Printf("[ip unknown] "); 5611 5612 // Show the private stop info here, the public stop info will be 5613 // from the last natural stop. 5614 lldb::StopInfoSP stop_info_sp = thread->GetPrivateStopInfo(); 5615 if (stop_info_sp) { 5616 const char *stop_desc = stop_info_sp->GetDescription(); 5617 if (stop_desc) 5618 ts.PutCString(stop_desc); 5619 } 5620 ts.Printf(">"); 5621 } 5622 5623 event_explanation = ts.GetData(); 5624 } 5625 } while (false); 5626 5627 if (event_explanation) 5628 LLDB_LOGF(log, 5629 "Process::RunThreadPlan(): execution interrupted: %s %s", 5630 s.GetData(), event_explanation); 5631 else 5632 LLDB_LOGF(log, "Process::RunThreadPlan(): execution interrupted: %s", 5633 s.GetData()); 5634 } 5635 5636 if (should_unwind) { 5637 LLDB_LOGF(log, 5638 "Process::RunThreadPlan: ExecutionInterrupted - " 5639 "discarding thread plans up to %p.", 5640 static_cast<void *>(thread_plan_sp.get())); 5641 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5642 } else { 5643 LLDB_LOGF(log, 5644 "Process::RunThreadPlan: ExecutionInterrupted - for " 5645 "plan: %p not discarding.", 5646 static_cast<void *>(thread_plan_sp.get())); 5647 } 5648 } else if (return_value == eExpressionSetupError) { 5649 if (log) 5650 log->PutCString("Process::RunThreadPlan(): execution set up error."); 5651 5652 if (options.DoesUnwindOnError()) { 5653 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5654 } 5655 } else { 5656 if (thread->IsThreadPlanDone(thread_plan_sp.get())) { 5657 if (log) 5658 log->PutCString("Process::RunThreadPlan(): thread plan is done"); 5659 return_value = eExpressionCompleted; 5660 } else if (thread->WasThreadPlanDiscarded(thread_plan_sp.get())) { 5661 if (log) 5662 log->PutCString( 5663 "Process::RunThreadPlan(): thread plan was discarded"); 5664 return_value = eExpressionDiscarded; 5665 } else { 5666 if (log) 5667 log->PutCString( 5668 "Process::RunThreadPlan(): thread plan stopped in mid course"); 5669 if (options.DoesUnwindOnError() && thread_plan_sp) { 5670 if (log) 5671 log->PutCString("Process::RunThreadPlan(): discarding thread plan " 5672 "'cause unwind_on_error is set."); 5673 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5674 } 5675 } 5676 } 5677 5678 // Thread we ran the function in may have gone away because we ran the 5679 // target Check that it's still there, and if it is put it back in the 5680 // context. Also restore the frame in the context if it is still present. 5681 thread = GetThreadList().FindThreadByIndexID(thread_idx_id, true).get(); 5682 if (thread) { 5683 exe_ctx.SetFrameSP(thread->GetFrameWithStackID(ctx_frame_id)); 5684 } 5685 5686 // Also restore the current process'es selected frame & thread, since this 5687 // function calling may be done behind the user's back. 5688 5689 if (selected_tid != LLDB_INVALID_THREAD_ID) { 5690 if (GetThreadList().SetSelectedThreadByIndexID(selected_tid) && 5691 selected_stack_id.IsValid()) { 5692 // We were able to restore the selected thread, now restore the frame: 5693 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5694 StackFrameSP old_frame_sp = 5695 GetThreadList().GetSelectedThread()->GetFrameWithStackID( 5696 selected_stack_id); 5697 if (old_frame_sp) 5698 GetThreadList().GetSelectedThread()->SetSelectedFrame( 5699 old_frame_sp.get()); 5700 } 5701 } 5702 } 5703 5704 // If the process exited during the run of the thread plan, notify everyone. 5705 5706 if (event_to_broadcast_sp) { 5707 if (log) 5708 log->PutCString("Process::RunThreadPlan(): rebroadcasting event."); 5709 BroadcastEvent(event_to_broadcast_sp); 5710 } 5711 5712 return return_value; 5713 } 5714 5715 const char *Process::ExecutionResultAsCString(ExpressionResults result) { 5716 const char *result_name = "<unknown>"; 5717 5718 switch (result) { 5719 case eExpressionCompleted: 5720 result_name = "eExpressionCompleted"; 5721 break; 5722 case eExpressionDiscarded: 5723 result_name = "eExpressionDiscarded"; 5724 break; 5725 case eExpressionInterrupted: 5726 result_name = "eExpressionInterrupted"; 5727 break; 5728 case eExpressionHitBreakpoint: 5729 result_name = "eExpressionHitBreakpoint"; 5730 break; 5731 case eExpressionSetupError: 5732 result_name = "eExpressionSetupError"; 5733 break; 5734 case eExpressionParseError: 5735 result_name = "eExpressionParseError"; 5736 break; 5737 case eExpressionResultUnavailable: 5738 result_name = "eExpressionResultUnavailable"; 5739 break; 5740 case eExpressionTimedOut: 5741 result_name = "eExpressionTimedOut"; 5742 break; 5743 case eExpressionStoppedForDebug: 5744 result_name = "eExpressionStoppedForDebug"; 5745 break; 5746 case eExpressionThreadVanished: 5747 result_name = "eExpressionThreadVanished"; 5748 } 5749 return result_name; 5750 } 5751 5752 void Process::GetStatus(Stream &strm) { 5753 const StateType state = GetState(); 5754 if (StateIsStoppedState(state, false)) { 5755 if (state == eStateExited) { 5756 int exit_status = GetExitStatus(); 5757 const char *exit_description = GetExitDescription(); 5758 strm.Printf("Process %" PRIu64 " exited with status = %i (0x%8.8x) %s\n", 5759 GetID(), exit_status, exit_status, 5760 exit_description ? exit_description : ""); 5761 } else { 5762 if (state == eStateConnected) 5763 strm.Printf("Connected to remote target.\n"); 5764 else 5765 strm.Printf("Process %" PRIu64 " %s\n", GetID(), StateAsCString(state)); 5766 } 5767 } else { 5768 strm.Printf("Process %" PRIu64 " is running.\n", GetID()); 5769 } 5770 } 5771 5772 size_t Process::GetThreadStatus(Stream &strm, 5773 bool only_threads_with_stop_reason, 5774 uint32_t start_frame, uint32_t num_frames, 5775 uint32_t num_frames_with_source, 5776 bool stop_format) { 5777 size_t num_thread_infos_dumped = 0; 5778 5779 // You can't hold the thread list lock while calling Thread::GetStatus. That 5780 // very well might run code (e.g. if we need it to get return values or 5781 // arguments.) For that to work the process has to be able to acquire it. 5782 // So instead copy the thread ID's, and look them up one by one: 5783 5784 uint32_t num_threads; 5785 std::vector<lldb::tid_t> thread_id_array; 5786 // Scope for thread list locker; 5787 { 5788 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5789 ThreadList &curr_thread_list = GetThreadList(); 5790 num_threads = curr_thread_list.GetSize(); 5791 uint32_t idx; 5792 thread_id_array.resize(num_threads); 5793 for (idx = 0; idx < num_threads; ++idx) 5794 thread_id_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetID(); 5795 } 5796 5797 for (uint32_t i = 0; i < num_threads; i++) { 5798 ThreadSP thread_sp(GetThreadList().FindThreadByID(thread_id_array[i])); 5799 if (thread_sp) { 5800 if (only_threads_with_stop_reason) { 5801 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 5802 if (!stop_info_sp || !stop_info_sp->IsValid()) 5803 continue; 5804 } 5805 thread_sp->GetStatus(strm, start_frame, num_frames, 5806 num_frames_with_source, 5807 stop_format); 5808 ++num_thread_infos_dumped; 5809 } else { 5810 Log *log = GetLog(LLDBLog::Process); 5811 LLDB_LOGF(log, "Process::GetThreadStatus - thread 0x" PRIu64 5812 " vanished while running Thread::GetStatus."); 5813 } 5814 } 5815 return num_thread_infos_dumped; 5816 } 5817 5818 void Process::AddInvalidMemoryRegion(const LoadRange ®ion) { 5819 m_memory_cache.AddInvalidRange(region.GetRangeBase(), region.GetByteSize()); 5820 } 5821 5822 bool Process::RemoveInvalidMemoryRange(const LoadRange ®ion) { 5823 return m_memory_cache.RemoveInvalidRange(region.GetRangeBase(), 5824 region.GetByteSize()); 5825 } 5826 5827 void Process::AddPreResumeAction(PreResumeActionCallback callback, 5828 void *baton) { 5829 m_pre_resume_actions.push_back(PreResumeCallbackAndBaton(callback, baton)); 5830 } 5831 5832 bool Process::RunPreResumeActions() { 5833 bool result = true; 5834 while (!m_pre_resume_actions.empty()) { 5835 struct PreResumeCallbackAndBaton action = m_pre_resume_actions.back(); 5836 m_pre_resume_actions.pop_back(); 5837 bool this_result = action.callback(action.baton); 5838 if (result) 5839 result = this_result; 5840 } 5841 return result; 5842 } 5843 5844 void Process::ClearPreResumeActions() { m_pre_resume_actions.clear(); } 5845 5846 void Process::ClearPreResumeAction(PreResumeActionCallback callback, void *baton) 5847 { 5848 PreResumeCallbackAndBaton element(callback, baton); 5849 auto found_iter = std::find(m_pre_resume_actions.begin(), m_pre_resume_actions.end(), element); 5850 if (found_iter != m_pre_resume_actions.end()) 5851 { 5852 m_pre_resume_actions.erase(found_iter); 5853 } 5854 } 5855 5856 ProcessRunLock &Process::GetRunLock() { 5857 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) 5858 return m_private_run_lock; 5859 else 5860 return m_public_run_lock; 5861 } 5862 5863 bool Process::CurrentThreadIsPrivateStateThread() 5864 { 5865 return m_private_state_thread.EqualsThread(Host::GetCurrentThread()); 5866 } 5867 5868 5869 void Process::Flush() { 5870 m_thread_list.Flush(); 5871 m_extended_thread_list.Flush(); 5872 m_extended_thread_stop_id = 0; 5873 m_queue_list.Clear(); 5874 m_queue_list_stop_id = 0; 5875 } 5876 5877 lldb::addr_t Process::GetCodeAddressMask() { 5878 if (uint32_t num_bits_setting = GetVirtualAddressableBits()) 5879 return AddressableBits::AddressableBitToMask(num_bits_setting); 5880 5881 return m_code_address_mask; 5882 } 5883 5884 lldb::addr_t Process::GetDataAddressMask() { 5885 if (uint32_t num_bits_setting = GetVirtualAddressableBits()) 5886 return AddressableBits::AddressableBitToMask(num_bits_setting); 5887 5888 return m_data_address_mask; 5889 } 5890 5891 lldb::addr_t Process::GetHighmemCodeAddressMask() { 5892 if (uint32_t num_bits_setting = GetHighmemVirtualAddressableBits()) 5893 return AddressableBits::AddressableBitToMask(num_bits_setting); 5894 5895 if (m_highmem_code_address_mask != LLDB_INVALID_ADDRESS_MASK) 5896 return m_highmem_code_address_mask; 5897 return GetCodeAddressMask(); 5898 } 5899 5900 lldb::addr_t Process::GetHighmemDataAddressMask() { 5901 if (uint32_t num_bits_setting = GetHighmemVirtualAddressableBits()) 5902 return AddressableBits::AddressableBitToMask(num_bits_setting); 5903 5904 if (m_highmem_data_address_mask != LLDB_INVALID_ADDRESS_MASK) 5905 return m_highmem_data_address_mask; 5906 return GetDataAddressMask(); 5907 } 5908 5909 void Process::SetCodeAddressMask(lldb::addr_t code_address_mask) { 5910 LLDB_LOG(GetLog(LLDBLog::Process), 5911 "Setting Process code address mask to {0:x}", code_address_mask); 5912 m_code_address_mask = code_address_mask; 5913 } 5914 5915 void Process::SetDataAddressMask(lldb::addr_t data_address_mask) { 5916 LLDB_LOG(GetLog(LLDBLog::Process), 5917 "Setting Process data address mask to {0:x}", data_address_mask); 5918 m_data_address_mask = data_address_mask; 5919 } 5920 5921 void Process::SetHighmemCodeAddressMask(lldb::addr_t code_address_mask) { 5922 LLDB_LOG(GetLog(LLDBLog::Process), 5923 "Setting Process highmem code address mask to {0:x}", 5924 code_address_mask); 5925 m_highmem_code_address_mask = code_address_mask; 5926 } 5927 5928 void Process::SetHighmemDataAddressMask(lldb::addr_t data_address_mask) { 5929 LLDB_LOG(GetLog(LLDBLog::Process), 5930 "Setting Process highmem data address mask to {0:x}", 5931 data_address_mask); 5932 m_highmem_data_address_mask = data_address_mask; 5933 } 5934 5935 addr_t Process::FixCodeAddress(addr_t addr) { 5936 if (ABISP abi_sp = GetABI()) 5937 addr = abi_sp->FixCodeAddress(addr); 5938 return addr; 5939 } 5940 5941 addr_t Process::FixDataAddress(addr_t addr) { 5942 if (ABISP abi_sp = GetABI()) 5943 addr = abi_sp->FixDataAddress(addr); 5944 return addr; 5945 } 5946 5947 addr_t Process::FixAnyAddress(addr_t addr) { 5948 if (ABISP abi_sp = GetABI()) 5949 addr = abi_sp->FixAnyAddress(addr); 5950 return addr; 5951 } 5952 5953 void Process::DidExec() { 5954 Log *log = GetLog(LLDBLog::Process); 5955 LLDB_LOGF(log, "Process::%s()", __FUNCTION__); 5956 5957 Target &target = GetTarget(); 5958 target.CleanupProcess(); 5959 target.ClearModules(false); 5960 m_dynamic_checkers_up.reset(); 5961 m_abi_sp.reset(); 5962 m_system_runtime_up.reset(); 5963 m_os_up.reset(); 5964 m_dyld_up.reset(); 5965 m_jit_loaders_up.reset(); 5966 m_image_tokens.clear(); 5967 // After an exec, the inferior is a new process and these memory regions are 5968 // no longer allocated. 5969 m_allocated_memory_cache.Clear(/*deallocte_memory=*/false); 5970 { 5971 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 5972 m_language_runtimes.clear(); 5973 } 5974 m_instrumentation_runtimes.clear(); 5975 m_thread_list.DiscardThreadPlans(); 5976 m_memory_cache.Clear(true); 5977 DoDidExec(); 5978 CompleteAttach(); 5979 // Flush the process (threads and all stack frames) after running 5980 // CompleteAttach() in case the dynamic loader loaded things in new 5981 // locations. 5982 Flush(); 5983 5984 // After we figure out what was loaded/unloaded in CompleteAttach, we need to 5985 // let the target know so it can do any cleanup it needs to. 5986 target.DidExec(); 5987 } 5988 5989 addr_t Process::ResolveIndirectFunction(const Address *address, Status &error) { 5990 if (address == nullptr) { 5991 error.SetErrorString("Invalid address argument"); 5992 return LLDB_INVALID_ADDRESS; 5993 } 5994 5995 addr_t function_addr = LLDB_INVALID_ADDRESS; 5996 5997 addr_t addr = address->GetLoadAddress(&GetTarget()); 5998 std::map<addr_t, addr_t>::const_iterator iter = 5999 m_resolved_indirect_addresses.find(addr); 6000 if (iter != m_resolved_indirect_addresses.end()) { 6001 function_addr = (*iter).second; 6002 } else { 6003 if (!CallVoidArgVoidPtrReturn(address, function_addr)) { 6004 Symbol *symbol = address->CalculateSymbolContextSymbol(); 6005 error.SetErrorStringWithFormat( 6006 "Unable to call resolver for indirect function %s", 6007 symbol ? symbol->GetName().AsCString() : "<UNKNOWN>"); 6008 function_addr = LLDB_INVALID_ADDRESS; 6009 } else { 6010 if (ABISP abi_sp = GetABI()) 6011 function_addr = abi_sp->FixCodeAddress(function_addr); 6012 m_resolved_indirect_addresses.insert( 6013 std::pair<addr_t, addr_t>(addr, function_addr)); 6014 } 6015 } 6016 return function_addr; 6017 } 6018 6019 void Process::ModulesDidLoad(ModuleList &module_list) { 6020 // Inform the system runtime of the modified modules. 6021 SystemRuntime *sys_runtime = GetSystemRuntime(); 6022 if (sys_runtime) 6023 sys_runtime->ModulesDidLoad(module_list); 6024 6025 GetJITLoaders().ModulesDidLoad(module_list); 6026 6027 // Give the instrumentation runtimes a chance to be created before informing 6028 // them of the modified modules. 6029 InstrumentationRuntime::ModulesDidLoad(module_list, this, 6030 m_instrumentation_runtimes); 6031 for (auto &runtime : m_instrumentation_runtimes) 6032 runtime.second->ModulesDidLoad(module_list); 6033 6034 // Give the language runtimes a chance to be created before informing them of 6035 // the modified modules. 6036 for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) { 6037 if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type)) 6038 runtime->ModulesDidLoad(module_list); 6039 } 6040 6041 // If we don't have an operating system plug-in, try to load one since 6042 // loading shared libraries might cause a new one to try and load 6043 if (!m_os_up) 6044 LoadOperatingSystemPlugin(false); 6045 6046 // Inform the structured-data plugins of the modified modules. 6047 for (auto &pair : m_structured_data_plugin_map) { 6048 if (pair.second) 6049 pair.second->ModulesDidLoad(*this, module_list); 6050 } 6051 } 6052 6053 void Process::PrintWarningOptimization(const SymbolContext &sc) { 6054 if (!GetWarningsOptimization()) 6055 return; 6056 if (!sc.module_sp || !sc.function || !sc.function->GetIsOptimized()) 6057 return; 6058 sc.module_sp->ReportWarningOptimization(GetTarget().GetDebugger().GetID()); 6059 } 6060 6061 void Process::PrintWarningUnsupportedLanguage(const SymbolContext &sc) { 6062 if (!GetWarningsUnsupportedLanguage()) 6063 return; 6064 if (!sc.module_sp) 6065 return; 6066 LanguageType language = sc.GetLanguage(); 6067 if (language == eLanguageTypeUnknown || 6068 language == lldb::eLanguageTypeAssembly || 6069 language == lldb::eLanguageTypeMipsAssembler) 6070 return; 6071 LanguageSet plugins = 6072 PluginManager::GetAllTypeSystemSupportedLanguagesForTypes(); 6073 if (plugins[language]) 6074 return; 6075 sc.module_sp->ReportWarningUnsupportedLanguage( 6076 language, GetTarget().GetDebugger().GetID()); 6077 } 6078 6079 bool Process::GetProcessInfo(ProcessInstanceInfo &info) { 6080 info.Clear(); 6081 6082 PlatformSP platform_sp = GetTarget().GetPlatform(); 6083 if (!platform_sp) 6084 return false; 6085 6086 return platform_sp->GetProcessInfo(GetID(), info); 6087 } 6088 6089 ThreadCollectionSP Process::GetHistoryThreads(lldb::addr_t addr) { 6090 ThreadCollectionSP threads; 6091 6092 const MemoryHistorySP &memory_history = 6093 MemoryHistory::FindPlugin(shared_from_this()); 6094 6095 if (!memory_history) { 6096 return threads; 6097 } 6098 6099 threads = std::make_shared<ThreadCollection>( 6100 memory_history->GetHistoryThreads(addr)); 6101 6102 return threads; 6103 } 6104 6105 InstrumentationRuntimeSP 6106 Process::GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type) { 6107 InstrumentationRuntimeCollection::iterator pos; 6108 pos = m_instrumentation_runtimes.find(type); 6109 if (pos == m_instrumentation_runtimes.end()) { 6110 return InstrumentationRuntimeSP(); 6111 } else 6112 return (*pos).second; 6113 } 6114 6115 bool Process::GetModuleSpec(const FileSpec &module_file_spec, 6116 const ArchSpec &arch, ModuleSpec &module_spec) { 6117 module_spec.Clear(); 6118 return false; 6119 } 6120 6121 size_t Process::AddImageToken(lldb::addr_t image_ptr) { 6122 m_image_tokens.push_back(image_ptr); 6123 return m_image_tokens.size() - 1; 6124 } 6125 6126 lldb::addr_t Process::GetImagePtrFromToken(size_t token) const { 6127 if (token < m_image_tokens.size()) 6128 return m_image_tokens[token]; 6129 return LLDB_INVALID_IMAGE_TOKEN; 6130 } 6131 6132 void Process::ResetImageToken(size_t token) { 6133 if (token < m_image_tokens.size()) 6134 m_image_tokens[token] = LLDB_INVALID_IMAGE_TOKEN; 6135 } 6136 6137 Address 6138 Process::AdvanceAddressToNextBranchInstruction(Address default_stop_addr, 6139 AddressRange range_bounds) { 6140 Target &target = GetTarget(); 6141 DisassemblerSP disassembler_sp; 6142 InstructionList *insn_list = nullptr; 6143 6144 Address retval = default_stop_addr; 6145 6146 if (!target.GetUseFastStepping()) 6147 return retval; 6148 if (!default_stop_addr.IsValid()) 6149 return retval; 6150 6151 const char *plugin_name = nullptr; 6152 const char *flavor = nullptr; 6153 disassembler_sp = Disassembler::DisassembleRange( 6154 target.GetArchitecture(), plugin_name, flavor, GetTarget(), range_bounds); 6155 if (disassembler_sp) 6156 insn_list = &disassembler_sp->GetInstructionList(); 6157 6158 if (insn_list == nullptr) { 6159 return retval; 6160 } 6161 6162 size_t insn_offset = 6163 insn_list->GetIndexOfInstructionAtAddress(default_stop_addr); 6164 if (insn_offset == UINT32_MAX) { 6165 return retval; 6166 } 6167 6168 uint32_t branch_index = insn_list->GetIndexOfNextBranchInstruction( 6169 insn_offset, false /* ignore_calls*/, nullptr); 6170 if (branch_index == UINT32_MAX) { 6171 return retval; 6172 } 6173 6174 if (branch_index > insn_offset) { 6175 Address next_branch_insn_address = 6176 insn_list->GetInstructionAtIndex(branch_index)->GetAddress(); 6177 if (next_branch_insn_address.IsValid() && 6178 range_bounds.ContainsFileAddress(next_branch_insn_address)) { 6179 retval = next_branch_insn_address; 6180 } 6181 } 6182 6183 return retval; 6184 } 6185 6186 Status Process::GetMemoryRegionInfo(lldb::addr_t load_addr, 6187 MemoryRegionInfo &range_info) { 6188 if (const lldb::ABISP &abi = GetABI()) 6189 load_addr = abi->FixAnyAddress(load_addr); 6190 return DoGetMemoryRegionInfo(load_addr, range_info); 6191 } 6192 6193 Status Process::GetMemoryRegions(lldb_private::MemoryRegionInfos ®ion_list) { 6194 Status error; 6195 6196 lldb::addr_t range_end = 0; 6197 const lldb::ABISP &abi = GetABI(); 6198 6199 region_list.clear(); 6200 do { 6201 lldb_private::MemoryRegionInfo region_info; 6202 error = GetMemoryRegionInfo(range_end, region_info); 6203 // GetMemoryRegionInfo should only return an error if it is unimplemented. 6204 if (error.Fail()) { 6205 region_list.clear(); 6206 break; 6207 } 6208 6209 // We only check the end address, not start and end, because we assume that 6210 // the start will not have non-address bits until the first unmappable 6211 // region. We will have exited the loop by that point because the previous 6212 // region, the last mappable region, will have non-address bits in its end 6213 // address. 6214 range_end = region_info.GetRange().GetRangeEnd(); 6215 if (region_info.GetMapped() == MemoryRegionInfo::eYes) { 6216 region_list.push_back(std::move(region_info)); 6217 } 6218 } while ( 6219 // For a process with no non-address bits, all address bits 6220 // set means the end of memory. 6221 range_end != LLDB_INVALID_ADDRESS && 6222 // If we have non-address bits and some are set then the end 6223 // is at or beyond the end of mappable memory. 6224 !(abi && (abi->FixAnyAddress(range_end) != range_end))); 6225 6226 return error; 6227 } 6228 6229 Status 6230 Process::ConfigureStructuredData(llvm::StringRef type_name, 6231 const StructuredData::ObjectSP &config_sp) { 6232 // If you get this, the Process-derived class needs to implement a method to 6233 // enable an already-reported asynchronous structured data feature. See 6234 // ProcessGDBRemote for an example implementation over gdb-remote. 6235 return Status("unimplemented"); 6236 } 6237 6238 void Process::MapSupportedStructuredDataPlugins( 6239 const StructuredData::Array &supported_type_names) { 6240 Log *log = GetLog(LLDBLog::Process); 6241 6242 // Bail out early if there are no type names to map. 6243 if (supported_type_names.GetSize() == 0) { 6244 LLDB_LOG(log, "no structured data types supported"); 6245 return; 6246 } 6247 6248 // These StringRefs are backed by the input parameter. 6249 std::set<llvm::StringRef> type_names; 6250 6251 LLDB_LOG(log, 6252 "the process supports the following async structured data types:"); 6253 6254 supported_type_names.ForEach( 6255 [&type_names, &log](StructuredData::Object *object) { 6256 // There shouldn't be null objects in the array. 6257 if (!object) 6258 return false; 6259 6260 // All type names should be strings. 6261 const llvm::StringRef type_name = object->GetStringValue(); 6262 if (type_name.empty()) 6263 return false; 6264 6265 type_names.insert(type_name); 6266 LLDB_LOG(log, "- {0}", type_name); 6267 return true; 6268 }); 6269 6270 // For each StructuredDataPlugin, if the plugin handles any of the types in 6271 // the supported_type_names, map that type name to that plugin. Stop when 6272 // we've consumed all the type names. 6273 // FIXME: should we return an error if there are type names nobody 6274 // supports? 6275 for (uint32_t plugin_index = 0; !type_names.empty(); plugin_index++) { 6276 auto create_instance = 6277 PluginManager::GetStructuredDataPluginCreateCallbackAtIndex( 6278 plugin_index); 6279 if (!create_instance) 6280 break; 6281 6282 // Create the plugin. 6283 StructuredDataPluginSP plugin_sp = (*create_instance)(*this); 6284 if (!plugin_sp) { 6285 // This plugin doesn't think it can work with the process. Move on to the 6286 // next. 6287 continue; 6288 } 6289 6290 // For any of the remaining type names, map any that this plugin supports. 6291 std::vector<llvm::StringRef> names_to_remove; 6292 for (llvm::StringRef type_name : type_names) { 6293 if (plugin_sp->SupportsStructuredDataType(type_name)) { 6294 m_structured_data_plugin_map.insert( 6295 std::make_pair(type_name, plugin_sp)); 6296 names_to_remove.push_back(type_name); 6297 LLDB_LOG(log, "using plugin {0} for type name {1}", 6298 plugin_sp->GetPluginName(), type_name); 6299 } 6300 } 6301 6302 // Remove the type names that were consumed by this plugin. 6303 for (llvm::StringRef type_name : names_to_remove) 6304 type_names.erase(type_name); 6305 } 6306 } 6307 6308 bool Process::RouteAsyncStructuredData( 6309 const StructuredData::ObjectSP object_sp) { 6310 // Nothing to do if there's no data. 6311 if (!object_sp) 6312 return false; 6313 6314 // The contract is this must be a dictionary, so we can look up the routing 6315 // key via the top-level 'type' string value within the dictionary. 6316 StructuredData::Dictionary *dictionary = object_sp->GetAsDictionary(); 6317 if (!dictionary) 6318 return false; 6319 6320 // Grab the async structured type name (i.e. the feature/plugin name). 6321 llvm::StringRef type_name; 6322 if (!dictionary->GetValueForKeyAsString("type", type_name)) 6323 return false; 6324 6325 // Check if there's a plugin registered for this type name. 6326 auto find_it = m_structured_data_plugin_map.find(type_name); 6327 if (find_it == m_structured_data_plugin_map.end()) { 6328 // We don't have a mapping for this structured data type. 6329 return false; 6330 } 6331 6332 // Route the structured data to the plugin. 6333 find_it->second->HandleArrivalOfStructuredData(*this, type_name, object_sp); 6334 return true; 6335 } 6336 6337 Status Process::UpdateAutomaticSignalFiltering() { 6338 // Default implementation does nothign. 6339 // No automatic signal filtering to speak of. 6340 return Status(); 6341 } 6342 6343 UtilityFunction *Process::GetLoadImageUtilityFunction( 6344 Platform *platform, 6345 llvm::function_ref<std::unique_ptr<UtilityFunction>()> factory) { 6346 if (platform != GetTarget().GetPlatform().get()) 6347 return nullptr; 6348 llvm::call_once(m_dlopen_utility_func_flag_once, 6349 [&] { m_dlopen_utility_func_up = factory(); }); 6350 return m_dlopen_utility_func_up.get(); 6351 } 6352 6353 llvm::Expected<TraceSupportedResponse> Process::TraceSupported() { 6354 if (!IsLiveDebugSession()) 6355 return llvm::createStringError(llvm::inconvertibleErrorCode(), 6356 "Can't trace a non-live process."); 6357 return llvm::make_error<UnimplementedError>(); 6358 } 6359 6360 bool Process::CallVoidArgVoidPtrReturn(const Address *address, 6361 addr_t &returned_func, 6362 bool trap_exceptions) { 6363 Thread *thread = GetThreadList().GetExpressionExecutionThread().get(); 6364 if (thread == nullptr || address == nullptr) 6365 return false; 6366 6367 EvaluateExpressionOptions options; 6368 options.SetStopOthers(true); 6369 options.SetUnwindOnError(true); 6370 options.SetIgnoreBreakpoints(true); 6371 options.SetTryAllThreads(true); 6372 options.SetDebug(false); 6373 options.SetTimeout(GetUtilityExpressionTimeout()); 6374 options.SetTrapExceptions(trap_exceptions); 6375 6376 auto type_system_or_err = 6377 GetTarget().GetScratchTypeSystemForLanguage(eLanguageTypeC); 6378 if (!type_system_or_err) { 6379 llvm::consumeError(type_system_or_err.takeError()); 6380 return false; 6381 } 6382 auto ts = *type_system_or_err; 6383 if (!ts) 6384 return false; 6385 CompilerType void_ptr_type = 6386 ts->GetBasicTypeFromAST(eBasicTypeVoid).GetPointerType(); 6387 lldb::ThreadPlanSP call_plan_sp(new ThreadPlanCallFunction( 6388 *thread, *address, void_ptr_type, llvm::ArrayRef<addr_t>(), options)); 6389 if (call_plan_sp) { 6390 DiagnosticManager diagnostics; 6391 6392 StackFrame *frame = thread->GetStackFrameAtIndex(0).get(); 6393 if (frame) { 6394 ExecutionContext exe_ctx; 6395 frame->CalculateExecutionContext(exe_ctx); 6396 ExpressionResults result = 6397 RunThreadPlan(exe_ctx, call_plan_sp, options, diagnostics); 6398 if (result == eExpressionCompleted) { 6399 returned_func = 6400 call_plan_sp->GetReturnValueObject()->GetValueAsUnsigned( 6401 LLDB_INVALID_ADDRESS); 6402 6403 if (GetAddressByteSize() == 4) { 6404 if (returned_func == UINT32_MAX) 6405 return false; 6406 } else if (GetAddressByteSize() == 8) { 6407 if (returned_func == UINT64_MAX) 6408 return false; 6409 } 6410 return true; 6411 } 6412 } 6413 } 6414 6415 return false; 6416 } 6417 6418 llvm::Expected<const MemoryTagManager *> Process::GetMemoryTagManager() { 6419 Architecture *arch = GetTarget().GetArchitecturePlugin(); 6420 const MemoryTagManager *tag_manager = 6421 arch ? arch->GetMemoryTagManager() : nullptr; 6422 if (!arch || !tag_manager) { 6423 return llvm::createStringError( 6424 llvm::inconvertibleErrorCode(), 6425 "This architecture does not support memory tagging"); 6426 } 6427 6428 if (!SupportsMemoryTagging()) { 6429 return llvm::createStringError(llvm::inconvertibleErrorCode(), 6430 "Process does not support memory tagging"); 6431 } 6432 6433 return tag_manager; 6434 } 6435 6436 llvm::Expected<std::vector<lldb::addr_t>> 6437 Process::ReadMemoryTags(lldb::addr_t addr, size_t len) { 6438 llvm::Expected<const MemoryTagManager *> tag_manager_or_err = 6439 GetMemoryTagManager(); 6440 if (!tag_manager_or_err) 6441 return tag_manager_or_err.takeError(); 6442 6443 const MemoryTagManager *tag_manager = *tag_manager_or_err; 6444 llvm::Expected<std::vector<uint8_t>> tag_data = 6445 DoReadMemoryTags(addr, len, tag_manager->GetAllocationTagType()); 6446 if (!tag_data) 6447 return tag_data.takeError(); 6448 6449 return tag_manager->UnpackTagsData(*tag_data, 6450 len / tag_manager->GetGranuleSize()); 6451 } 6452 6453 Status Process::WriteMemoryTags(lldb::addr_t addr, size_t len, 6454 const std::vector<lldb::addr_t> &tags) { 6455 llvm::Expected<const MemoryTagManager *> tag_manager_or_err = 6456 GetMemoryTagManager(); 6457 if (!tag_manager_or_err) 6458 return Status(tag_manager_or_err.takeError()); 6459 6460 const MemoryTagManager *tag_manager = *tag_manager_or_err; 6461 llvm::Expected<std::vector<uint8_t>> packed_tags = 6462 tag_manager->PackTags(tags); 6463 if (!packed_tags) { 6464 return Status(packed_tags.takeError()); 6465 } 6466 6467 return DoWriteMemoryTags(addr, len, tag_manager->GetAllocationTagType(), 6468 *packed_tags); 6469 } 6470 6471 // Create a CoreFileMemoryRange from a MemoryRegionInfo 6472 static Process::CoreFileMemoryRange 6473 CreateCoreFileMemoryRange(const MemoryRegionInfo ®ion) { 6474 const addr_t addr = region.GetRange().GetRangeBase(); 6475 llvm::AddressRange range(addr, addr + region.GetRange().GetByteSize()); 6476 return {range, region.GetLLDBPermissions()}; 6477 } 6478 6479 // Add dirty pages to the core file ranges and return true if dirty pages 6480 // were added. Return false if the dirty page information is not valid or in 6481 // the region. 6482 static bool AddDirtyPages(const MemoryRegionInfo ®ion, 6483 Process::CoreFileMemoryRanges &ranges) { 6484 const auto &dirty_page_list = region.GetDirtyPageList(); 6485 if (!dirty_page_list) 6486 return false; 6487 const uint32_t lldb_permissions = region.GetLLDBPermissions(); 6488 const addr_t page_size = region.GetPageSize(); 6489 if (page_size == 0) 6490 return false; 6491 llvm::AddressRange range(0, 0); 6492 for (addr_t page_addr : *dirty_page_list) { 6493 if (range.empty()) { 6494 // No range yet, initialize the range with the current dirty page. 6495 range = llvm::AddressRange(page_addr, page_addr + page_size); 6496 } else { 6497 if (range.end() == page_addr) { 6498 // Combine consective ranges. 6499 range = llvm::AddressRange(range.start(), page_addr + page_size); 6500 } else { 6501 // Add previous contiguous range and init the new range with the 6502 // current dirty page. 6503 ranges.push_back({range, lldb_permissions}); 6504 range = llvm::AddressRange(page_addr, page_addr + page_size); 6505 } 6506 } 6507 } 6508 // The last range 6509 if (!range.empty()) 6510 ranges.push_back({range, lldb_permissions}); 6511 return true; 6512 } 6513 6514 // Given a region, add the region to \a ranges. 6515 // 6516 // Only add the region if it isn't empty and if it has some permissions. 6517 // If \a try_dirty_pages is true, then try to add only the dirty pages for a 6518 // given region. If the region has dirty page information, only dirty pages 6519 // will be added to \a ranges, else the entire range will be added to \a 6520 // ranges. 6521 static void AddRegion(const MemoryRegionInfo ®ion, bool try_dirty_pages, 6522 Process::CoreFileMemoryRanges &ranges) { 6523 // Don't add empty ranges. 6524 if (region.GetRange().GetByteSize() == 0) 6525 return; 6526 // Don't add ranges with no read permissions. 6527 if ((region.GetLLDBPermissions() & lldb::ePermissionsReadable) == 0) 6528 return; 6529 if (try_dirty_pages && AddDirtyPages(region, ranges)) 6530 return; 6531 ranges.push_back(CreateCoreFileMemoryRange(region)); 6532 } 6533 6534 static void SaveOffRegionsWithStackPointers( 6535 Process &process, const MemoryRegionInfos ®ions, 6536 Process::CoreFileMemoryRanges &ranges, std::set<addr_t> &stack_ends) { 6537 const bool try_dirty_pages = true; 6538 6539 // Before we take any dump, we want to save off the used portions of the 6540 // stacks and mark those memory regions as saved. This prevents us from saving 6541 // the unused portion of the stack below the stack pointer. Saving space on 6542 // the dump. 6543 for (lldb::ThreadSP thread_sp : process.GetThreadList().Threads()) { 6544 if (!thread_sp) 6545 continue; 6546 StackFrameSP frame_sp = thread_sp->GetStackFrameAtIndex(0); 6547 if (!frame_sp) 6548 continue; 6549 RegisterContextSP reg_ctx_sp = frame_sp->GetRegisterContext(); 6550 if (!reg_ctx_sp) 6551 continue; 6552 const addr_t sp = reg_ctx_sp->GetSP(); 6553 const size_t red_zone = process.GetABI()->GetRedZoneSize(); 6554 lldb_private::MemoryRegionInfo sp_region; 6555 if (process.GetMemoryRegionInfo(sp, sp_region).Success()) { 6556 const size_t stack_head = (sp - red_zone); 6557 const size_t stack_size = sp_region.GetRange().GetRangeEnd() - stack_head; 6558 sp_region.GetRange().SetRangeBase(stack_head); 6559 sp_region.GetRange().SetByteSize(stack_size); 6560 stack_ends.insert(sp_region.GetRange().GetRangeEnd()); 6561 AddRegion(sp_region, try_dirty_pages, ranges); 6562 } 6563 } 6564 } 6565 6566 // Save all memory regions that are not empty or have at least some permissions 6567 // for a full core file style. 6568 static void GetCoreFileSaveRangesFull(Process &process, 6569 const MemoryRegionInfos ®ions, 6570 Process::CoreFileMemoryRanges &ranges, 6571 std::set<addr_t> &stack_ends) { 6572 6573 // Don't add only dirty pages, add full regions. 6574 const bool try_dirty_pages = false; 6575 for (const auto ®ion : regions) 6576 if (stack_ends.count(region.GetRange().GetRangeEnd()) == 0) 6577 AddRegion(region, try_dirty_pages, ranges); 6578 } 6579 6580 // Save only the dirty pages to the core file. Make sure the process has at 6581 // least some dirty pages, as some OS versions don't support reporting what 6582 // pages are dirty within an memory region. If no memory regions have dirty 6583 // page information fall back to saving out all ranges with write permissions. 6584 static void GetCoreFileSaveRangesDirtyOnly( 6585 Process &process, const MemoryRegionInfos ®ions, 6586 Process::CoreFileMemoryRanges &ranges, std::set<addr_t> &stack_ends) { 6587 6588 // Iterate over the regions and find all dirty pages. 6589 bool have_dirty_page_info = false; 6590 for (const auto ®ion : regions) { 6591 if (stack_ends.count(region.GetRange().GetRangeEnd()) == 0 && 6592 AddDirtyPages(region, ranges)) 6593 have_dirty_page_info = true; 6594 } 6595 6596 if (!have_dirty_page_info) { 6597 // We didn't find support for reporting dirty pages from the process 6598 // plug-in so fall back to any region with write access permissions. 6599 const bool try_dirty_pages = false; 6600 for (const auto ®ion : regions) 6601 if (stack_ends.count(region.GetRange().GetRangeEnd()) == 0 && 6602 region.GetWritable() == MemoryRegionInfo::eYes) 6603 AddRegion(region, try_dirty_pages, ranges); 6604 } 6605 } 6606 6607 // Save all thread stacks to the core file. Some OS versions support reporting 6608 // when a memory region is stack related. We check on this information, but we 6609 // also use the stack pointers of each thread and add those in case the OS 6610 // doesn't support reporting stack memory. This function also attempts to only 6611 // emit dirty pages from the stack if the memory regions support reporting 6612 // dirty regions as this will make the core file smaller. If the process 6613 // doesn't support dirty regions, then it will fall back to adding the full 6614 // stack region. 6615 static void GetCoreFileSaveRangesStackOnly( 6616 Process &process, const MemoryRegionInfos ®ions, 6617 Process::CoreFileMemoryRanges &ranges, std::set<addr_t> &stack_ends) { 6618 const bool try_dirty_pages = true; 6619 // Some platforms support annotating the region information that tell us that 6620 // it comes from a thread stack. So look for those regions first. 6621 6622 for (const auto ®ion : regions) { 6623 // Save all the stack memory ranges not associated with a stack pointer. 6624 if (stack_ends.count(region.GetRange().GetRangeEnd()) == 0 && 6625 region.IsStackMemory() == MemoryRegionInfo::eYes) 6626 AddRegion(region, try_dirty_pages, ranges); 6627 } 6628 } 6629 6630 Status Process::CalculateCoreFileSaveRanges(lldb::SaveCoreStyle core_style, 6631 CoreFileMemoryRanges &ranges) { 6632 lldb_private::MemoryRegionInfos regions; 6633 Status err = GetMemoryRegions(regions); 6634 if (err.Fail()) 6635 return err; 6636 if (regions.empty()) 6637 return Status("failed to get any valid memory regions from the process"); 6638 if (core_style == eSaveCoreUnspecified) 6639 return Status("callers must set the core_style to something other than " 6640 "eSaveCoreUnspecified"); 6641 6642 std::set<addr_t> stack_ends; 6643 SaveOffRegionsWithStackPointers(*this, regions, ranges, stack_ends); 6644 6645 switch (core_style) { 6646 case eSaveCoreUnspecified: 6647 break; 6648 6649 case eSaveCoreFull: 6650 GetCoreFileSaveRangesFull(*this, regions, ranges, stack_ends); 6651 break; 6652 6653 case eSaveCoreDirtyOnly: 6654 GetCoreFileSaveRangesDirtyOnly(*this, regions, ranges, stack_ends); 6655 break; 6656 6657 case eSaveCoreStackOnly: 6658 GetCoreFileSaveRangesStackOnly(*this, regions, ranges, stack_ends); 6659 break; 6660 } 6661 6662 if (err.Fail()) 6663 return err; 6664 6665 if (ranges.empty()) 6666 return Status("no valid address ranges found for core style"); 6667 6668 return Status(); // Success! 6669 } 6670 6671 void Process::SetAddressableBitMasks(AddressableBits bit_masks) { 6672 uint32_t low_memory_addr_bits = bit_masks.GetLowmemAddressableBits(); 6673 uint32_t high_memory_addr_bits = bit_masks.GetHighmemAddressableBits(); 6674 6675 if (low_memory_addr_bits == 0 && high_memory_addr_bits == 0) 6676 return; 6677 6678 if (low_memory_addr_bits != 0) { 6679 addr_t low_addr_mask = 6680 AddressableBits::AddressableBitToMask(low_memory_addr_bits); 6681 SetCodeAddressMask(low_addr_mask); 6682 SetDataAddressMask(low_addr_mask); 6683 } 6684 6685 if (high_memory_addr_bits != 0) { 6686 addr_t high_addr_mask = 6687 AddressableBits::AddressableBitToMask(high_memory_addr_bits); 6688 SetHighmemCodeAddressMask(high_addr_mask); 6689 SetHighmemDataAddressMask(high_addr_mask); 6690 } 6691 } 6692