1 //===--- Driver.cpp - Clang GCC Compatible Driver -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/Driver/Driver.h" 10 #include "ToolChains/AIX.h" 11 #include "ToolChains/AMDGPU.h" 12 #include "ToolChains/AMDGPUOpenMP.h" 13 #include "ToolChains/AVR.h" 14 #include "ToolChains/Arch/RISCV.h" 15 #include "ToolChains/BareMetal.h" 16 #include "ToolChains/CSKYToolChain.h" 17 #include "ToolChains/Clang.h" 18 #include "ToolChains/CrossWindows.h" 19 #include "ToolChains/Cuda.h" 20 #include "ToolChains/Darwin.h" 21 #include "ToolChains/DragonFly.h" 22 #include "ToolChains/FreeBSD.h" 23 #include "ToolChains/Fuchsia.h" 24 #include "ToolChains/Gnu.h" 25 #include "ToolChains/HIPAMD.h" 26 #include "ToolChains/HIPSPV.h" 27 #include "ToolChains/HLSL.h" 28 #include "ToolChains/Haiku.h" 29 #include "ToolChains/Hexagon.h" 30 #include "ToolChains/Hurd.h" 31 #include "ToolChains/Lanai.h" 32 #include "ToolChains/Linux.h" 33 #include "ToolChains/MSP430.h" 34 #include "ToolChains/MSVC.h" 35 #include "ToolChains/MinGW.h" 36 #include "ToolChains/MipsLinux.h" 37 #include "ToolChains/NaCl.h" 38 #include "ToolChains/NetBSD.h" 39 #include "ToolChains/OHOS.h" 40 #include "ToolChains/OpenBSD.h" 41 #include "ToolChains/PPCFreeBSD.h" 42 #include "ToolChains/PPCLinux.h" 43 #include "ToolChains/PS4CPU.h" 44 #include "ToolChains/RISCVToolchain.h" 45 #include "ToolChains/SPIRV.h" 46 #include "ToolChains/SPIRVOpenMP.h" 47 #include "ToolChains/SYCL.h" 48 #include "ToolChains/Solaris.h" 49 #include "ToolChains/TCE.h" 50 #include "ToolChains/UEFI.h" 51 #include "ToolChains/VEToolchain.h" 52 #include "ToolChains/WebAssembly.h" 53 #include "ToolChains/XCore.h" 54 #include "ToolChains/ZOS.h" 55 #include "clang/Basic/DiagnosticDriver.h" 56 #include "clang/Basic/TargetID.h" 57 #include "clang/Basic/Version.h" 58 #include "clang/Config/config.h" 59 #include "clang/Driver/Action.h" 60 #include "clang/Driver/Compilation.h" 61 #include "clang/Driver/InputInfo.h" 62 #include "clang/Driver/Job.h" 63 #include "clang/Driver/Options.h" 64 #include "clang/Driver/Phases.h" 65 #include "clang/Driver/SanitizerArgs.h" 66 #include "clang/Driver/Tool.h" 67 #include "clang/Driver/ToolChain.h" 68 #include "clang/Driver/Types.h" 69 #include "llvm/ADT/ArrayRef.h" 70 #include "llvm/ADT/STLExtras.h" 71 #include "llvm/ADT/StringExtras.h" 72 #include "llvm/ADT/StringRef.h" 73 #include "llvm/ADT/StringSet.h" 74 #include "llvm/ADT/StringSwitch.h" 75 #include "llvm/Config/llvm-config.h" 76 #include "llvm/MC/TargetRegistry.h" 77 #include "llvm/Option/Arg.h" 78 #include "llvm/Option/ArgList.h" 79 #include "llvm/Option/OptSpecifier.h" 80 #include "llvm/Option/OptTable.h" 81 #include "llvm/Option/Option.h" 82 #include "llvm/Support/CommandLine.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/ExitCodes.h" 85 #include "llvm/Support/FileSystem.h" 86 #include "llvm/Support/FormatVariadic.h" 87 #include "llvm/Support/MD5.h" 88 #include "llvm/Support/Path.h" 89 #include "llvm/Support/PrettyStackTrace.h" 90 #include "llvm/Support/Process.h" 91 #include "llvm/Support/Program.h" 92 #include "llvm/Support/Regex.h" 93 #include "llvm/Support/StringSaver.h" 94 #include "llvm/Support/VirtualFileSystem.h" 95 #include "llvm/Support/raw_ostream.h" 96 #include "llvm/TargetParser/Host.h" 97 #include "llvm/TargetParser/RISCVISAInfo.h" 98 #include <cstdlib> // ::getenv 99 #include <map> 100 #include <memory> 101 #include <optional> 102 #include <set> 103 #include <utility> 104 #if LLVM_ON_UNIX 105 #include <unistd.h> // getpid 106 #endif 107 108 using namespace clang::driver; 109 using namespace clang; 110 using namespace llvm::opt; 111 112 static std::optional<llvm::Triple> getOffloadTargetTriple(const Driver &D, 113 const ArgList &Args) { 114 auto OffloadTargets = Args.getAllArgValues(options::OPT_offload_EQ); 115 // Offload compilation flow does not support multiple targets for now. We 116 // need the HIPActionBuilder (and possibly the CudaActionBuilder{,Base}too) 117 // to support multiple tool chains first. 118 switch (OffloadTargets.size()) { 119 default: 120 D.Diag(diag::err_drv_only_one_offload_target_supported); 121 return std::nullopt; 122 case 0: 123 D.Diag(diag::err_drv_invalid_or_unsupported_offload_target) << ""; 124 return std::nullopt; 125 case 1: 126 break; 127 } 128 return llvm::Triple(OffloadTargets[0]); 129 } 130 131 static std::optional<llvm::Triple> 132 getNVIDIAOffloadTargetTriple(const Driver &D, const ArgList &Args, 133 const llvm::Triple &HostTriple) { 134 if (!Args.hasArg(options::OPT_offload_EQ)) { 135 return llvm::Triple(HostTriple.isArch64Bit() ? "nvptx64-nvidia-cuda" 136 : "nvptx-nvidia-cuda"); 137 } 138 auto TT = getOffloadTargetTriple(D, Args); 139 if (TT && (TT->getArch() == llvm::Triple::spirv32 || 140 TT->getArch() == llvm::Triple::spirv64)) { 141 if (Args.hasArg(options::OPT_emit_llvm)) 142 return TT; 143 D.Diag(diag::err_drv_cuda_offload_only_emit_bc); 144 return std::nullopt; 145 } 146 D.Diag(diag::err_drv_invalid_or_unsupported_offload_target) << TT->str(); 147 return std::nullopt; 148 } 149 static std::optional<llvm::Triple> 150 getHIPOffloadTargetTriple(const Driver &D, const ArgList &Args) { 151 if (!Args.hasArg(options::OPT_offload_EQ)) { 152 auto OffloadArchs = Args.getAllArgValues(options::OPT_offload_arch_EQ); 153 if (llvm::is_contained(OffloadArchs, "amdgcnspirv") && 154 OffloadArchs.size() == 1) 155 return llvm::Triple("spirv64-amd-amdhsa"); 156 return llvm::Triple("amdgcn-amd-amdhsa"); // Default HIP triple. 157 } 158 auto TT = getOffloadTargetTriple(D, Args); 159 if (!TT) 160 return std::nullopt; 161 if (TT->getArch() == llvm::Triple::amdgcn && 162 TT->getVendor() == llvm::Triple::AMD && 163 TT->getOS() == llvm::Triple::AMDHSA) 164 return TT; 165 if (TT->getArch() == llvm::Triple::spirv64) 166 return TT; 167 D.Diag(diag::err_drv_invalid_or_unsupported_offload_target) << TT->str(); 168 return std::nullopt; 169 } 170 171 // static 172 std::string Driver::GetResourcesPath(StringRef BinaryPath) { 173 // Since the resource directory is embedded in the module hash, it's important 174 // that all places that need it call this function, so that they get the 175 // exact same string ("a/../b/" and "b/" get different hashes, for example). 176 177 // Dir is bin/ or lib/, depending on where BinaryPath is. 178 StringRef Dir = llvm::sys::path::parent_path(BinaryPath); 179 SmallString<128> P(Dir); 180 181 StringRef ConfiguredResourceDir(CLANG_RESOURCE_DIR); 182 if (!ConfiguredResourceDir.empty()) { 183 llvm::sys::path::append(P, ConfiguredResourceDir); 184 } else { 185 // On Windows, libclang.dll is in bin/. 186 // On non-Windows, libclang.so/.dylib is in lib/. 187 // With a static-library build of libclang, LibClangPath will contain the 188 // path of the embedding binary, which for LLVM binaries will be in bin/. 189 // ../lib gets us to lib/ in both cases. 190 P = llvm::sys::path::parent_path(Dir); 191 // This search path is also created in the COFF driver of lld, so any 192 // changes here also needs to happen in lld/COFF/Driver.cpp 193 llvm::sys::path::append(P, CLANG_INSTALL_LIBDIR_BASENAME, "clang", 194 CLANG_VERSION_MAJOR_STRING); 195 } 196 197 return std::string(P); 198 } 199 200 CUIDOptions::CUIDOptions(llvm::opt::DerivedArgList &Args, const Driver &D) 201 : UseCUID(Kind::Hash) { 202 if (Arg *A = Args.getLastArg(options::OPT_fuse_cuid_EQ)) { 203 StringRef UseCUIDStr = A->getValue(); 204 UseCUID = llvm::StringSwitch<Kind>(UseCUIDStr) 205 .Case("hash", Kind::Hash) 206 .Case("random", Kind::Random) 207 .Case("none", Kind::None) 208 .Default(Kind::Invalid); 209 if (UseCUID == Kind::Invalid) 210 D.Diag(clang::diag::err_drv_invalid_value) 211 << A->getAsString(Args) << UseCUIDStr; 212 } 213 214 FixedCUID = Args.getLastArgValue(options::OPT_cuid_EQ); 215 if (!FixedCUID.empty()) 216 UseCUID = Kind::Fixed; 217 } 218 219 std::string CUIDOptions::getCUID(StringRef InputFile, 220 llvm::opt::DerivedArgList &Args) const { 221 std::string CUID = FixedCUID.str(); 222 if (CUID.empty()) { 223 if (UseCUID == Kind::Random) 224 CUID = llvm::utohexstr(llvm::sys::Process::GetRandomNumber(), 225 /*LowerCase=*/true); 226 else if (UseCUID == Kind::Hash) { 227 llvm::MD5 Hasher; 228 llvm::MD5::MD5Result Hash; 229 SmallString<256> RealPath; 230 llvm::sys::fs::real_path(InputFile, RealPath, 231 /*expand_tilde=*/true); 232 Hasher.update(RealPath); 233 for (auto *A : Args) { 234 if (A->getOption().matches(options::OPT_INPUT)) 235 continue; 236 Hasher.update(A->getAsString(Args)); 237 } 238 Hasher.final(Hash); 239 CUID = llvm::utohexstr(Hash.low(), /*LowerCase=*/true); 240 } 241 } 242 return CUID; 243 } 244 Driver::Driver(StringRef ClangExecutable, StringRef TargetTriple, 245 DiagnosticsEngine &Diags, std::string Title, 246 IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS) 247 : Diags(Diags), VFS(std::move(VFS)), Mode(GCCMode), 248 SaveTemps(SaveTempsNone), BitcodeEmbed(EmbedNone), 249 Offload(OffloadHostDevice), CXX20HeaderType(HeaderMode_None), 250 ModulesModeCXX20(false), LTOMode(LTOK_None), 251 ClangExecutable(ClangExecutable), SysRoot(DEFAULT_SYSROOT), 252 DriverTitle(Title), CCCPrintBindings(false), CCPrintOptions(false), 253 CCLogDiagnostics(false), CCGenDiagnostics(false), 254 CCPrintProcessStats(false), CCPrintInternalStats(false), 255 TargetTriple(TargetTriple), Saver(Alloc), PrependArg(nullptr), 256 CheckInputsExist(true), ProbePrecompiled(true), 257 SuppressMissingInputWarning(false) { 258 // Provide a sane fallback if no VFS is specified. 259 if (!this->VFS) 260 this->VFS = llvm::vfs::getRealFileSystem(); 261 262 Name = std::string(llvm::sys::path::filename(ClangExecutable)); 263 Dir = std::string(llvm::sys::path::parent_path(ClangExecutable)); 264 265 if ((!SysRoot.empty()) && llvm::sys::path::is_relative(SysRoot)) { 266 // Prepend InstalledDir if SysRoot is relative 267 SmallString<128> P(Dir); 268 llvm::sys::path::append(P, SysRoot); 269 SysRoot = std::string(P); 270 } 271 272 #if defined(CLANG_CONFIG_FILE_SYSTEM_DIR) 273 if (llvm::sys::path::is_absolute(CLANG_CONFIG_FILE_SYSTEM_DIR)) { 274 SystemConfigDir = CLANG_CONFIG_FILE_SYSTEM_DIR; 275 } else { 276 SmallString<128> configFileDir(Dir); 277 llvm::sys::path::append(configFileDir, CLANG_CONFIG_FILE_SYSTEM_DIR); 278 llvm::sys::path::remove_dots(configFileDir, true); 279 SystemConfigDir = static_cast<std::string>(configFileDir); 280 } 281 #endif 282 #if defined(CLANG_CONFIG_FILE_USER_DIR) 283 { 284 SmallString<128> P; 285 llvm::sys::fs::expand_tilde(CLANG_CONFIG_FILE_USER_DIR, P); 286 UserConfigDir = static_cast<std::string>(P); 287 } 288 #endif 289 290 // Compute the path to the resource directory. 291 ResourceDir = GetResourcesPath(ClangExecutable); 292 } 293 294 void Driver::setDriverMode(StringRef Value) { 295 static StringRef OptName = 296 getOpts().getOption(options::OPT_driver_mode).getPrefixedName(); 297 if (auto M = llvm::StringSwitch<std::optional<DriverMode>>(Value) 298 .Case("gcc", GCCMode) 299 .Case("g++", GXXMode) 300 .Case("cpp", CPPMode) 301 .Case("cl", CLMode) 302 .Case("flang", FlangMode) 303 .Case("dxc", DXCMode) 304 .Default(std::nullopt)) 305 Mode = *M; 306 else 307 Diag(diag::err_drv_unsupported_option_argument) << OptName << Value; 308 } 309 310 InputArgList Driver::ParseArgStrings(ArrayRef<const char *> ArgStrings, 311 bool UseDriverMode, 312 bool &ContainsError) const { 313 llvm::PrettyStackTraceString CrashInfo("Command line argument parsing"); 314 ContainsError = false; 315 316 llvm::opt::Visibility VisibilityMask = getOptionVisibilityMask(UseDriverMode); 317 unsigned MissingArgIndex, MissingArgCount; 318 InputArgList Args = getOpts().ParseArgs(ArgStrings, MissingArgIndex, 319 MissingArgCount, VisibilityMask); 320 321 // Check for missing argument error. 322 if (MissingArgCount) { 323 Diag(diag::err_drv_missing_argument) 324 << Args.getArgString(MissingArgIndex) << MissingArgCount; 325 ContainsError |= 326 Diags.getDiagnosticLevel(diag::err_drv_missing_argument, 327 SourceLocation()) > DiagnosticsEngine::Warning; 328 } 329 330 // Check for unsupported options. 331 for (const Arg *A : Args) { 332 if (A->getOption().hasFlag(options::Unsupported)) { 333 Diag(diag::err_drv_unsupported_opt) << A->getAsString(Args); 334 ContainsError |= Diags.getDiagnosticLevel(diag::err_drv_unsupported_opt, 335 SourceLocation()) > 336 DiagnosticsEngine::Warning; 337 continue; 338 } 339 340 // Warn about -mcpu= without an argument. 341 if (A->getOption().matches(options::OPT_mcpu_EQ) && A->containsValue("")) { 342 Diag(diag::warn_drv_empty_joined_argument) << A->getAsString(Args); 343 ContainsError |= Diags.getDiagnosticLevel( 344 diag::warn_drv_empty_joined_argument, 345 SourceLocation()) > DiagnosticsEngine::Warning; 346 } 347 } 348 349 for (const Arg *A : Args.filtered(options::OPT_UNKNOWN)) { 350 unsigned DiagID; 351 auto ArgString = A->getAsString(Args); 352 std::string Nearest; 353 if (getOpts().findNearest(ArgString, Nearest, VisibilityMask) > 1) { 354 if (!IsCLMode() && 355 getOpts().findExact(ArgString, Nearest, 356 llvm::opt::Visibility(options::CC1Option))) { 357 DiagID = diag::err_drv_unknown_argument_with_suggestion; 358 Diags.Report(DiagID) << ArgString << "-Xclang " + Nearest; 359 } else { 360 DiagID = IsCLMode() ? diag::warn_drv_unknown_argument_clang_cl 361 : diag::err_drv_unknown_argument; 362 Diags.Report(DiagID) << ArgString; 363 } 364 } else { 365 DiagID = IsCLMode() 366 ? diag::warn_drv_unknown_argument_clang_cl_with_suggestion 367 : diag::err_drv_unknown_argument_with_suggestion; 368 Diags.Report(DiagID) << ArgString << Nearest; 369 } 370 ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) > 371 DiagnosticsEngine::Warning; 372 } 373 374 for (const Arg *A : Args.filtered(options::OPT_o)) { 375 if (ArgStrings[A->getIndex()] == A->getSpelling()) 376 continue; 377 378 // Warn on joined arguments that are similar to a long argument. 379 std::string ArgString = ArgStrings[A->getIndex()]; 380 std::string Nearest; 381 if (getOpts().findExact("-" + ArgString, Nearest, VisibilityMask)) 382 Diags.Report(diag::warn_drv_potentially_misspelled_joined_argument) 383 << A->getAsString(Args) << Nearest; 384 } 385 386 return Args; 387 } 388 389 // Determine which compilation mode we are in. We look for options which 390 // affect the phase, starting with the earliest phases, and record which 391 // option we used to determine the final phase. 392 phases::ID Driver::getFinalPhase(const DerivedArgList &DAL, 393 Arg **FinalPhaseArg) const { 394 Arg *PhaseArg = nullptr; 395 phases::ID FinalPhase; 396 397 // -{E,EP,P,M,MM} only run the preprocessor. 398 if (CCCIsCPP() || (PhaseArg = DAL.getLastArg(options::OPT_E)) || 399 (PhaseArg = DAL.getLastArg(options::OPT__SLASH_EP)) || 400 (PhaseArg = DAL.getLastArg(options::OPT_M, options::OPT_MM)) || 401 (PhaseArg = DAL.getLastArg(options::OPT__SLASH_P)) || 402 CCGenDiagnostics) { 403 FinalPhase = phases::Preprocess; 404 405 // --precompile only runs up to precompilation. 406 // Options that cause the output of C++20 compiled module interfaces or 407 // header units have the same effect. 408 } else if ((PhaseArg = DAL.getLastArg(options::OPT__precompile)) || 409 (PhaseArg = DAL.getLastArg(options::OPT_extract_api)) || 410 (PhaseArg = DAL.getLastArg(options::OPT_fmodule_header, 411 options::OPT_fmodule_header_EQ))) { 412 FinalPhase = phases::Precompile; 413 // -{fsyntax-only,-analyze,emit-ast} only run up to the compiler. 414 } else if ((PhaseArg = DAL.getLastArg(options::OPT_fsyntax_only)) || 415 (PhaseArg = DAL.getLastArg(options::OPT_print_supported_cpus)) || 416 (PhaseArg = DAL.getLastArg(options::OPT_print_enabled_extensions)) || 417 (PhaseArg = DAL.getLastArg(options::OPT_module_file_info)) || 418 (PhaseArg = DAL.getLastArg(options::OPT_verify_pch)) || 419 (PhaseArg = DAL.getLastArg(options::OPT_rewrite_objc)) || 420 (PhaseArg = DAL.getLastArg(options::OPT_rewrite_legacy_objc)) || 421 (PhaseArg = DAL.getLastArg(options::OPT__migrate)) || 422 (PhaseArg = DAL.getLastArg(options::OPT__analyze)) || 423 (PhaseArg = DAL.getLastArg(options::OPT_emit_cir)) || 424 (PhaseArg = DAL.getLastArg(options::OPT_emit_ast))) { 425 FinalPhase = phases::Compile; 426 427 // -S only runs up to the backend. 428 } else if ((PhaseArg = DAL.getLastArg(options::OPT_S))) { 429 FinalPhase = phases::Backend; 430 431 // -c compilation only runs up to the assembler. 432 } else if ((PhaseArg = DAL.getLastArg(options::OPT_c))) { 433 FinalPhase = phases::Assemble; 434 435 } else if ((PhaseArg = DAL.getLastArg(options::OPT_emit_interface_stubs))) { 436 FinalPhase = phases::IfsMerge; 437 438 // Otherwise do everything. 439 } else 440 FinalPhase = phases::Link; 441 442 if (FinalPhaseArg) 443 *FinalPhaseArg = PhaseArg; 444 445 return FinalPhase; 446 } 447 448 static Arg *MakeInputArg(DerivedArgList &Args, const OptTable &Opts, 449 StringRef Value, bool Claim = true) { 450 Arg *A = new Arg(Opts.getOption(options::OPT_INPUT), Value, 451 Args.getBaseArgs().MakeIndex(Value), Value.data()); 452 Args.AddSynthesizedArg(A); 453 if (Claim) 454 A->claim(); 455 return A; 456 } 457 458 DerivedArgList *Driver::TranslateInputArgs(const InputArgList &Args) const { 459 const llvm::opt::OptTable &Opts = getOpts(); 460 DerivedArgList *DAL = new DerivedArgList(Args); 461 462 bool HasNostdlib = Args.hasArg(options::OPT_nostdlib); 463 bool HasNostdlibxx = Args.hasArg(options::OPT_nostdlibxx); 464 bool HasNodefaultlib = Args.hasArg(options::OPT_nodefaultlibs); 465 bool IgnoreUnused = false; 466 for (Arg *A : Args) { 467 if (IgnoreUnused) 468 A->claim(); 469 470 if (A->getOption().matches(options::OPT_start_no_unused_arguments)) { 471 IgnoreUnused = true; 472 continue; 473 } 474 if (A->getOption().matches(options::OPT_end_no_unused_arguments)) { 475 IgnoreUnused = false; 476 continue; 477 } 478 479 // Unfortunately, we have to parse some forwarding options (-Xassembler, 480 // -Xlinker, -Xpreprocessor) because we either integrate their functionality 481 // (assembler and preprocessor), or bypass a previous driver ('collect2'). 482 483 // Rewrite linker options, to replace --no-demangle with a custom internal 484 // option. 485 if ((A->getOption().matches(options::OPT_Wl_COMMA) || 486 A->getOption().matches(options::OPT_Xlinker)) && 487 A->containsValue("--no-demangle")) { 488 // Add the rewritten no-demangle argument. 489 DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_Xlinker__no_demangle)); 490 491 // Add the remaining values as Xlinker arguments. 492 for (StringRef Val : A->getValues()) 493 if (Val != "--no-demangle") 494 DAL->AddSeparateArg(A, Opts.getOption(options::OPT_Xlinker), Val); 495 496 continue; 497 } 498 499 // Rewrite preprocessor options, to replace -Wp,-MD,FOO which is used by 500 // some build systems. We don't try to be complete here because we don't 501 // care to encourage this usage model. 502 if (A->getOption().matches(options::OPT_Wp_COMMA) && 503 A->getNumValues() > 0 && 504 (A->getValue(0) == StringRef("-MD") || 505 A->getValue(0) == StringRef("-MMD"))) { 506 // Rewrite to -MD/-MMD along with -MF. 507 if (A->getValue(0) == StringRef("-MD")) 508 DAL->AddFlagArg(A, Opts.getOption(options::OPT_MD)); 509 else 510 DAL->AddFlagArg(A, Opts.getOption(options::OPT_MMD)); 511 if (A->getNumValues() == 2) 512 DAL->AddSeparateArg(A, Opts.getOption(options::OPT_MF), A->getValue(1)); 513 continue; 514 } 515 516 // Rewrite reserved library names. 517 if (A->getOption().matches(options::OPT_l)) { 518 StringRef Value = A->getValue(); 519 520 // Rewrite unless -nostdlib is present. 521 if (!HasNostdlib && !HasNodefaultlib && !HasNostdlibxx && 522 Value == "stdc++") { 523 DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_reserved_lib_stdcxx)); 524 continue; 525 } 526 527 // Rewrite unconditionally. 528 if (Value == "cc_kext") { 529 DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_reserved_lib_cckext)); 530 continue; 531 } 532 } 533 534 // Pick up inputs via the -- option. 535 if (A->getOption().matches(options::OPT__DASH_DASH)) { 536 A->claim(); 537 for (StringRef Val : A->getValues()) 538 DAL->append(MakeInputArg(*DAL, Opts, Val, false)); 539 continue; 540 } 541 542 DAL->append(A); 543 } 544 545 // DXC mode quits before assembly if an output object file isn't specified. 546 if (IsDXCMode() && !Args.hasArg(options::OPT_dxc_Fo)) 547 DAL->AddFlagArg(nullptr, Opts.getOption(options::OPT_S)); 548 549 // Enforce -static if -miamcu is present. 550 if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false)) 551 DAL->AddFlagArg(nullptr, Opts.getOption(options::OPT_static)); 552 553 // Add a default value of -mlinker-version=, if one was given and the user 554 // didn't specify one. 555 #if defined(HOST_LINK_VERSION) 556 if (!Args.hasArg(options::OPT_mlinker_version_EQ) && 557 strlen(HOST_LINK_VERSION) > 0) { 558 DAL->AddJoinedArg(0, Opts.getOption(options::OPT_mlinker_version_EQ), 559 HOST_LINK_VERSION); 560 DAL->getLastArg(options::OPT_mlinker_version_EQ)->claim(); 561 } 562 #endif 563 564 return DAL; 565 } 566 567 /// Compute target triple from args. 568 /// 569 /// This routine provides the logic to compute a target triple from various 570 /// args passed to the driver and the default triple string. 571 static llvm::Triple computeTargetTriple(const Driver &D, 572 StringRef TargetTriple, 573 const ArgList &Args, 574 StringRef DarwinArchName = "") { 575 // FIXME: Already done in Compilation *Driver::BuildCompilation 576 if (const Arg *A = Args.getLastArg(options::OPT_target)) 577 TargetTriple = A->getValue(); 578 579 llvm::Triple Target(llvm::Triple::normalize(TargetTriple)); 580 581 // GNU/Hurd's triples should have been -hurd-gnu*, but were historically made 582 // -gnu* only, and we can not change this, so we have to detect that case as 583 // being the Hurd OS. 584 if (TargetTriple.contains("-unknown-gnu") || TargetTriple.contains("-pc-gnu")) 585 Target.setOSName("hurd"); 586 587 // Handle Apple-specific options available here. 588 if (Target.isOSBinFormatMachO()) { 589 // If an explicit Darwin arch name is given, that trumps all. 590 if (!DarwinArchName.empty()) { 591 tools::darwin::setTripleTypeForMachOArchName(Target, DarwinArchName, 592 Args); 593 return Target; 594 } 595 596 // Handle the Darwin '-arch' flag. 597 if (Arg *A = Args.getLastArg(options::OPT_arch)) { 598 StringRef ArchName = A->getValue(); 599 tools::darwin::setTripleTypeForMachOArchName(Target, ArchName, Args); 600 } 601 } 602 603 // Handle pseudo-target flags '-mlittle-endian'/'-EL' and 604 // '-mbig-endian'/'-EB'. 605 if (Arg *A = Args.getLastArgNoClaim(options::OPT_mlittle_endian, 606 options::OPT_mbig_endian)) { 607 llvm::Triple T = A->getOption().matches(options::OPT_mlittle_endian) 608 ? Target.getLittleEndianArchVariant() 609 : Target.getBigEndianArchVariant(); 610 if (T.getArch() != llvm::Triple::UnknownArch) { 611 Target = std::move(T); 612 Args.claimAllArgs(options::OPT_mlittle_endian, options::OPT_mbig_endian); 613 } 614 } 615 616 // Skip further flag support on OSes which don't support '-m32' or '-m64'. 617 if (Target.getArch() == llvm::Triple::tce) 618 return Target; 619 620 // On AIX, the env OBJECT_MODE may affect the resulting arch variant. 621 if (Target.isOSAIX()) { 622 if (std::optional<std::string> ObjectModeValue = 623 llvm::sys::Process::GetEnv("OBJECT_MODE")) { 624 StringRef ObjectMode = *ObjectModeValue; 625 llvm::Triple::ArchType AT = llvm::Triple::UnknownArch; 626 627 if (ObjectMode == "64") { 628 AT = Target.get64BitArchVariant().getArch(); 629 } else if (ObjectMode == "32") { 630 AT = Target.get32BitArchVariant().getArch(); 631 } else { 632 D.Diag(diag::err_drv_invalid_object_mode) << ObjectMode; 633 } 634 635 if (AT != llvm::Triple::UnknownArch && AT != Target.getArch()) 636 Target.setArch(AT); 637 } 638 } 639 640 // The `-maix[32|64]` flags are only valid for AIX targets. 641 if (Arg *A = Args.getLastArgNoClaim(options::OPT_maix32, options::OPT_maix64); 642 A && !Target.isOSAIX()) 643 D.Diag(diag::err_drv_unsupported_opt_for_target) 644 << A->getAsString(Args) << Target.str(); 645 646 // Handle pseudo-target flags '-m64', '-mx32', '-m32' and '-m16'. 647 Arg *A = Args.getLastArg(options::OPT_m64, options::OPT_mx32, 648 options::OPT_m32, options::OPT_m16, 649 options::OPT_maix32, options::OPT_maix64); 650 if (A) { 651 llvm::Triple::ArchType AT = llvm::Triple::UnknownArch; 652 653 if (A->getOption().matches(options::OPT_m64) || 654 A->getOption().matches(options::OPT_maix64)) { 655 AT = Target.get64BitArchVariant().getArch(); 656 if (Target.getEnvironment() == llvm::Triple::GNUX32 || 657 Target.getEnvironment() == llvm::Triple::GNUT64) 658 Target.setEnvironment(llvm::Triple::GNU); 659 else if (Target.getEnvironment() == llvm::Triple::MuslX32) 660 Target.setEnvironment(llvm::Triple::Musl); 661 } else if (A->getOption().matches(options::OPT_mx32) && 662 Target.get64BitArchVariant().getArch() == llvm::Triple::x86_64) { 663 AT = llvm::Triple::x86_64; 664 if (Target.getEnvironment() == llvm::Triple::Musl) 665 Target.setEnvironment(llvm::Triple::MuslX32); 666 else 667 Target.setEnvironment(llvm::Triple::GNUX32); 668 } else if (A->getOption().matches(options::OPT_m32) || 669 A->getOption().matches(options::OPT_maix32)) { 670 AT = Target.get32BitArchVariant().getArch(); 671 if (Target.getEnvironment() == llvm::Triple::GNUX32) 672 Target.setEnvironment(llvm::Triple::GNU); 673 else if (Target.getEnvironment() == llvm::Triple::MuslX32) 674 Target.setEnvironment(llvm::Triple::Musl); 675 } else if (A->getOption().matches(options::OPT_m16) && 676 Target.get32BitArchVariant().getArch() == llvm::Triple::x86) { 677 AT = llvm::Triple::x86; 678 Target.setEnvironment(llvm::Triple::CODE16); 679 } 680 681 if (AT != llvm::Triple::UnknownArch && AT != Target.getArch()) { 682 Target.setArch(AT); 683 if (Target.isWindowsGNUEnvironment()) 684 toolchains::MinGW::fixTripleArch(D, Target, Args); 685 } 686 } 687 688 // Handle -miamcu flag. 689 if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false)) { 690 if (Target.get32BitArchVariant().getArch() != llvm::Triple::x86) 691 D.Diag(diag::err_drv_unsupported_opt_for_target) << "-miamcu" 692 << Target.str(); 693 694 if (A && !A->getOption().matches(options::OPT_m32)) 695 D.Diag(diag::err_drv_argument_not_allowed_with) 696 << "-miamcu" << A->getBaseArg().getAsString(Args); 697 698 Target.setArch(llvm::Triple::x86); 699 Target.setArchName("i586"); 700 Target.setEnvironment(llvm::Triple::UnknownEnvironment); 701 Target.setEnvironmentName(""); 702 Target.setOS(llvm::Triple::ELFIAMCU); 703 Target.setVendor(llvm::Triple::UnknownVendor); 704 Target.setVendorName("intel"); 705 } 706 707 // If target is MIPS adjust the target triple 708 // accordingly to provided ABI name. 709 if (Target.isMIPS()) { 710 if ((A = Args.getLastArg(options::OPT_mabi_EQ))) { 711 StringRef ABIName = A->getValue(); 712 if (ABIName == "32") { 713 Target = Target.get32BitArchVariant(); 714 if (Target.getEnvironment() == llvm::Triple::GNUABI64 || 715 Target.getEnvironment() == llvm::Triple::GNUABIN32) 716 Target.setEnvironment(llvm::Triple::GNU); 717 } else if (ABIName == "n32") { 718 Target = Target.get64BitArchVariant(); 719 if (Target.getEnvironment() == llvm::Triple::GNU || 720 Target.getEnvironment() == llvm::Triple::GNUT64 || 721 Target.getEnvironment() == llvm::Triple::GNUABI64) 722 Target.setEnvironment(llvm::Triple::GNUABIN32); 723 else if (Target.getEnvironment() == llvm::Triple::Musl || 724 Target.getEnvironment() == llvm::Triple::MuslABI64) 725 Target.setEnvironment(llvm::Triple::MuslABIN32); 726 } else if (ABIName == "64") { 727 Target = Target.get64BitArchVariant(); 728 if (Target.getEnvironment() == llvm::Triple::GNU || 729 Target.getEnvironment() == llvm::Triple::GNUT64 || 730 Target.getEnvironment() == llvm::Triple::GNUABIN32) 731 Target.setEnvironment(llvm::Triple::GNUABI64); 732 else if (Target.getEnvironment() == llvm::Triple::Musl || 733 Target.getEnvironment() == llvm::Triple::MuslABIN32) 734 Target.setEnvironment(llvm::Triple::MuslABI64); 735 } 736 } 737 } 738 739 // If target is RISC-V adjust the target triple according to 740 // provided architecture name 741 if (Target.isRISCV()) { 742 if (Args.hasArg(options::OPT_march_EQ) || 743 Args.hasArg(options::OPT_mcpu_EQ)) { 744 std::string ArchName = tools::riscv::getRISCVArch(Args, Target); 745 auto ISAInfo = llvm::RISCVISAInfo::parseArchString( 746 ArchName, /*EnableExperimentalExtensions=*/true); 747 if (!llvm::errorToBool(ISAInfo.takeError())) { 748 unsigned XLen = (*ISAInfo)->getXLen(); 749 if (XLen == 32) 750 Target.setArch(llvm::Triple::riscv32); 751 else if (XLen == 64) 752 Target.setArch(llvm::Triple::riscv64); 753 } 754 } 755 } 756 757 return Target; 758 } 759 760 // Parse the LTO options and record the type of LTO compilation 761 // based on which -f(no-)?lto(=.*)? or -f(no-)?offload-lto(=.*)? 762 // option occurs last. 763 static driver::LTOKind parseLTOMode(Driver &D, const llvm::opt::ArgList &Args, 764 OptSpecifier OptEq, OptSpecifier OptNeg) { 765 if (!Args.hasFlag(OptEq, OptNeg, false)) 766 return LTOK_None; 767 768 const Arg *A = Args.getLastArg(OptEq); 769 StringRef LTOName = A->getValue(); 770 771 driver::LTOKind LTOMode = llvm::StringSwitch<LTOKind>(LTOName) 772 .Case("full", LTOK_Full) 773 .Case("thin", LTOK_Thin) 774 .Default(LTOK_Unknown); 775 776 if (LTOMode == LTOK_Unknown) { 777 D.Diag(diag::err_drv_unsupported_option_argument) 778 << A->getSpelling() << A->getValue(); 779 return LTOK_None; 780 } 781 return LTOMode; 782 } 783 784 // Parse the LTO options. 785 void Driver::setLTOMode(const llvm::opt::ArgList &Args) { 786 LTOMode = 787 parseLTOMode(*this, Args, options::OPT_flto_EQ, options::OPT_fno_lto); 788 789 OffloadLTOMode = parseLTOMode(*this, Args, options::OPT_foffload_lto_EQ, 790 options::OPT_fno_offload_lto); 791 792 // Try to enable `-foffload-lto=full` if `-fopenmp-target-jit` is on. 793 if (Args.hasFlag(options::OPT_fopenmp_target_jit, 794 options::OPT_fno_openmp_target_jit, false)) { 795 if (Arg *A = Args.getLastArg(options::OPT_foffload_lto_EQ, 796 options::OPT_fno_offload_lto)) 797 if (OffloadLTOMode != LTOK_Full) 798 Diag(diag::err_drv_incompatible_options) 799 << A->getSpelling() << "-fopenmp-target-jit"; 800 OffloadLTOMode = LTOK_Full; 801 } 802 } 803 804 /// Compute the desired OpenMP runtime from the flags provided. 805 Driver::OpenMPRuntimeKind Driver::getOpenMPRuntime(const ArgList &Args) const { 806 StringRef RuntimeName(CLANG_DEFAULT_OPENMP_RUNTIME); 807 808 const Arg *A = Args.getLastArg(options::OPT_fopenmp_EQ); 809 if (A) 810 RuntimeName = A->getValue(); 811 812 auto RT = llvm::StringSwitch<OpenMPRuntimeKind>(RuntimeName) 813 .Case("libomp", OMPRT_OMP) 814 .Case("libgomp", OMPRT_GOMP) 815 .Case("libiomp5", OMPRT_IOMP5) 816 .Default(OMPRT_Unknown); 817 818 if (RT == OMPRT_Unknown) { 819 if (A) 820 Diag(diag::err_drv_unsupported_option_argument) 821 << A->getSpelling() << A->getValue(); 822 else 823 // FIXME: We could use a nicer diagnostic here. 824 Diag(diag::err_drv_unsupported_opt) << "-fopenmp"; 825 } 826 827 return RT; 828 } 829 830 static llvm::Triple getSYCLDeviceTriple(StringRef TargetArch) { 831 SmallVector<StringRef, 5> SYCLAlias = {"spir", "spir64", "spirv", "spirv32", 832 "spirv64"}; 833 if (llvm::is_contained(SYCLAlias, TargetArch)) { 834 llvm::Triple TargetTriple; 835 TargetTriple.setArchName(TargetArch); 836 TargetTriple.setVendor(llvm::Triple::UnknownVendor); 837 TargetTriple.setOS(llvm::Triple::UnknownOS); 838 return TargetTriple; 839 } 840 return llvm::Triple(TargetArch); 841 } 842 843 static bool addSYCLDefaultTriple(Compilation &C, 844 SmallVectorImpl<llvm::Triple> &SYCLTriples) { 845 // Check current set of triples to see if the default has already been set. 846 for (const auto &SYCLTriple : SYCLTriples) { 847 if (SYCLTriple.getSubArch() == llvm::Triple::NoSubArch && 848 SYCLTriple.isSPIROrSPIRV()) 849 return false; 850 } 851 // Add the default triple as it was not found. 852 llvm::Triple DefaultTriple = getSYCLDeviceTriple( 853 C.getDefaultToolChain().getTriple().isArch32Bit() ? "spirv32" 854 : "spirv64"); 855 SYCLTriples.insert(SYCLTriples.begin(), DefaultTriple); 856 return true; 857 } 858 859 void Driver::CreateOffloadingDeviceToolChains(Compilation &C, 860 InputList &Inputs) { 861 862 // 863 // CUDA/HIP 864 // 865 // We need to generate a CUDA/HIP toolchain if any of the inputs has a CUDA 866 // or HIP type. However, mixed CUDA/HIP compilation is not supported. 867 bool IsCuda = 868 llvm::any_of(Inputs, [](std::pair<types::ID, const llvm::opt::Arg *> &I) { 869 return types::isCuda(I.first); 870 }); 871 bool IsHIP = 872 llvm::any_of(Inputs, 873 [](std::pair<types::ID, const llvm::opt::Arg *> &I) { 874 return types::isHIP(I.first); 875 }) || 876 C.getInputArgs().hasArg(options::OPT_hip_link) || 877 C.getInputArgs().hasArg(options::OPT_hipstdpar); 878 bool UseLLVMOffload = C.getInputArgs().hasArg( 879 options::OPT_foffload_via_llvm, options::OPT_fno_offload_via_llvm, false); 880 if (IsCuda && IsHIP) { 881 Diag(clang::diag::err_drv_mix_cuda_hip); 882 return; 883 } 884 if (IsCuda && !UseLLVMOffload) { 885 const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>(); 886 const llvm::Triple &HostTriple = HostTC->getTriple(); 887 auto OFK = Action::OFK_Cuda; 888 auto CudaTriple = 889 getNVIDIAOffloadTargetTriple(*this, C.getInputArgs(), HostTriple); 890 if (!CudaTriple) 891 return; 892 // Use the CUDA and host triples as the key into the ToolChains map, 893 // because the device toolchain we create depends on both. 894 auto &CudaTC = ToolChains[CudaTriple->str() + "/" + HostTriple.str()]; 895 if (!CudaTC) { 896 CudaTC = std::make_unique<toolchains::CudaToolChain>( 897 *this, *CudaTriple, *HostTC, C.getInputArgs()); 898 899 // Emit a warning if the detected CUDA version is too new. 900 CudaInstallationDetector &CudaInstallation = 901 static_cast<toolchains::CudaToolChain &>(*CudaTC).CudaInstallation; 902 if (CudaInstallation.isValid()) 903 CudaInstallation.WarnIfUnsupportedVersion(); 904 } 905 C.addOffloadDeviceToolChain(CudaTC.get(), OFK); 906 } else if (IsHIP && !UseLLVMOffload) { 907 if (auto *OMPTargetArg = 908 C.getInputArgs().getLastArg(options::OPT_fopenmp_targets_EQ)) { 909 Diag(clang::diag::err_drv_unsupported_opt_for_language_mode) 910 << OMPTargetArg->getSpelling() << "HIP"; 911 return; 912 } 913 const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>(); 914 auto OFK = Action::OFK_HIP; 915 auto HIPTriple = getHIPOffloadTargetTriple(*this, C.getInputArgs()); 916 if (!HIPTriple) 917 return; 918 auto *HIPTC = &getOffloadingDeviceToolChain(C.getInputArgs(), *HIPTriple, 919 *HostTC, OFK); 920 C.addOffloadDeviceToolChain(HIPTC, OFK); 921 } 922 923 if (IsCuda || IsHIP) 924 CUIDOpts = CUIDOptions(C.getArgs(), *this); 925 926 // 927 // OpenMP 928 // 929 // We need to generate an OpenMP toolchain if the user specified targets with 930 // the -fopenmp-targets option or used --offload-arch with OpenMP enabled. 931 bool IsOpenMPOffloading = 932 ((IsCuda || IsHIP) && UseLLVMOffload) || 933 (C.getInputArgs().hasFlag(options::OPT_fopenmp, options::OPT_fopenmp_EQ, 934 options::OPT_fno_openmp, false) && 935 (C.getInputArgs().hasArg(options::OPT_fopenmp_targets_EQ) || 936 C.getInputArgs().hasArg(options::OPT_offload_arch_EQ))); 937 if (IsOpenMPOffloading) { 938 // We expect that -fopenmp-targets is always used in conjunction with the 939 // option -fopenmp specifying a valid runtime with offloading support, i.e. 940 // libomp or libiomp. 941 OpenMPRuntimeKind RuntimeKind = getOpenMPRuntime(C.getInputArgs()); 942 if (RuntimeKind != OMPRT_OMP && RuntimeKind != OMPRT_IOMP5) { 943 Diag(clang::diag::err_drv_expecting_fopenmp_with_fopenmp_targets); 944 return; 945 } 946 947 llvm::StringMap<llvm::DenseSet<StringRef>> DerivedArchs; 948 llvm::StringMap<StringRef> FoundNormalizedTriples; 949 std::multiset<StringRef> OpenMPTriples; 950 951 // If the user specified -fopenmp-targets= we create a toolchain for each 952 // valid triple. Otherwise, if only --offload-arch= was specified we instead 953 // attempt to derive the appropriate toolchains from the arguments. 954 if (Arg *OpenMPTargets = 955 C.getInputArgs().getLastArg(options::OPT_fopenmp_targets_EQ)) { 956 if (OpenMPTargets && !OpenMPTargets->getNumValues()) { 957 Diag(clang::diag::warn_drv_empty_joined_argument) 958 << OpenMPTargets->getAsString(C.getInputArgs()); 959 return; 960 } 961 for (StringRef T : OpenMPTargets->getValues()) 962 OpenMPTriples.insert(T); 963 } else if (C.getInputArgs().hasArg(options::OPT_offload_arch_EQ) && 964 ((!IsHIP && !IsCuda) || UseLLVMOffload)) { 965 const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>(); 966 auto AMDTriple = getHIPOffloadTargetTriple(*this, C.getInputArgs()); 967 auto NVPTXTriple = getNVIDIAOffloadTargetTriple(*this, C.getInputArgs(), 968 HostTC->getTriple()); 969 970 // Attempt to deduce the offloading triple from the set of architectures. 971 // We can only correctly deduce NVPTX / AMDGPU triples currently. 972 // We need to temporarily create these toolchains so that we can access 973 // tools for inferring architectures. 974 llvm::DenseSet<StringRef> Archs; 975 if (NVPTXTriple) { 976 auto TempTC = std::make_unique<toolchains::CudaToolChain>( 977 *this, *NVPTXTriple, *HostTC, C.getInputArgs()); 978 for (StringRef Arch : getOffloadArchs( 979 C, C.getArgs(), Action::OFK_OpenMP, &*TempTC, true)) 980 Archs.insert(Arch); 981 } 982 if (AMDTriple) { 983 auto TempTC = std::make_unique<toolchains::AMDGPUOpenMPToolChain>( 984 *this, *AMDTriple, *HostTC, C.getInputArgs()); 985 for (StringRef Arch : getOffloadArchs( 986 C, C.getArgs(), Action::OFK_OpenMP, &*TempTC, true)) 987 Archs.insert(Arch); 988 } 989 if (!AMDTriple && !NVPTXTriple) { 990 for (StringRef Arch : 991 getOffloadArchs(C, C.getArgs(), Action::OFK_OpenMP, nullptr, true)) 992 Archs.insert(Arch); 993 } 994 995 for (StringRef Arch : Archs) { 996 if (NVPTXTriple && IsNVIDIAOffloadArch(StringToOffloadArch( 997 getProcessorFromTargetID(*NVPTXTriple, Arch)))) { 998 DerivedArchs[NVPTXTriple->getTriple()].insert(Arch); 999 } else if (AMDTriple && 1000 IsAMDOffloadArch(StringToOffloadArch( 1001 getProcessorFromTargetID(*AMDTriple, Arch)))) { 1002 DerivedArchs[AMDTriple->getTriple()].insert(Arch); 1003 } else { 1004 Diag(clang::diag::err_drv_failed_to_deduce_target_from_arch) << Arch; 1005 return; 1006 } 1007 } 1008 1009 // If the set is empty then we failed to find a native architecture. 1010 if (Archs.empty()) { 1011 Diag(clang::diag::err_drv_failed_to_deduce_target_from_arch) 1012 << "native"; 1013 return; 1014 } 1015 1016 for (const auto &TripleAndArchs : DerivedArchs) 1017 OpenMPTriples.insert(TripleAndArchs.first()); 1018 } 1019 1020 for (StringRef Val : OpenMPTriples) { 1021 llvm::Triple TT(ToolChain::getOpenMPTriple(Val)); 1022 std::string NormalizedName = TT.normalize(); 1023 1024 // Make sure we don't have a duplicate triple. 1025 auto Duplicate = FoundNormalizedTriples.find(NormalizedName); 1026 if (Duplicate != FoundNormalizedTriples.end()) { 1027 Diag(clang::diag::warn_drv_omp_offload_target_duplicate) 1028 << Val << Duplicate->second; 1029 continue; 1030 } 1031 1032 // Store the current triple so that we can check for duplicates in the 1033 // following iterations. 1034 FoundNormalizedTriples[NormalizedName] = Val; 1035 1036 // If the specified target is invalid, emit a diagnostic. 1037 if (TT.getArch() == llvm::Triple::UnknownArch) 1038 Diag(clang::diag::err_drv_invalid_omp_target) << Val; 1039 else { 1040 const ToolChain *TC; 1041 // Device toolchains have to be selected differently. They pair host 1042 // and device in their implementation. 1043 if (TT.isNVPTX() || TT.isAMDGCN() || TT.isSPIRV()) { 1044 const ToolChain *HostTC = 1045 C.getSingleOffloadToolChain<Action::OFK_Host>(); 1046 assert(HostTC && "Host toolchain should be always defined."); 1047 auto &DeviceTC = 1048 ToolChains[TT.str() + "/" + HostTC->getTriple().normalize()]; 1049 if (!DeviceTC) { 1050 if (TT.isNVPTX()) 1051 DeviceTC = std::make_unique<toolchains::CudaToolChain>( 1052 *this, TT, *HostTC, C.getInputArgs()); 1053 else if (TT.isAMDGCN()) 1054 DeviceTC = std::make_unique<toolchains::AMDGPUOpenMPToolChain>( 1055 *this, TT, *HostTC, C.getInputArgs()); 1056 else if (TT.isSPIRV()) 1057 DeviceTC = std::make_unique<toolchains::SPIRVOpenMPToolChain>( 1058 *this, TT, *HostTC, C.getInputArgs()); 1059 else 1060 assert(DeviceTC && "Device toolchain not defined."); 1061 } 1062 1063 TC = DeviceTC.get(); 1064 } else 1065 TC = &getToolChain(C.getInputArgs(), TT); 1066 C.addOffloadDeviceToolChain(TC, Action::OFK_OpenMP); 1067 auto It = DerivedArchs.find(TT.getTriple()); 1068 if (It != DerivedArchs.end()) 1069 KnownArchs[TC] = It->second; 1070 } 1071 } 1072 } else if (C.getInputArgs().hasArg(options::OPT_fopenmp_targets_EQ)) { 1073 Diag(clang::diag::err_drv_expecting_fopenmp_with_fopenmp_targets); 1074 return; 1075 } 1076 1077 // We need to generate a SYCL toolchain if the user specified -fsycl. 1078 bool IsSYCL = C.getInputArgs().hasFlag(options::OPT_fsycl, 1079 options::OPT_fno_sycl, false); 1080 1081 auto argSYCLIncompatible = [&](OptSpecifier OptId) { 1082 if (!IsSYCL) 1083 return; 1084 if (Arg *IncompatArg = C.getInputArgs().getLastArg(OptId)) 1085 Diag(clang::diag::err_drv_argument_not_allowed_with) 1086 << IncompatArg->getSpelling() << "-fsycl"; 1087 }; 1088 // -static-libstdc++ is not compatible with -fsycl. 1089 argSYCLIncompatible(options::OPT_static_libstdcxx); 1090 // -ffreestanding cannot be used with -fsycl 1091 argSYCLIncompatible(options::OPT_ffreestanding); 1092 1093 llvm::SmallVector<llvm::Triple, 4> UniqueSYCLTriplesVec; 1094 1095 if (IsSYCL) { 1096 addSYCLDefaultTriple(C, UniqueSYCLTriplesVec); 1097 1098 // We'll need to use the SYCL and host triples as the key into 1099 // getOffloadingDeviceToolChain, because the device toolchains we're 1100 // going to create will depend on both. 1101 const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>(); 1102 for (const auto &TargetTriple : UniqueSYCLTriplesVec) { 1103 auto SYCLTC = &getOffloadingDeviceToolChain( 1104 C.getInputArgs(), TargetTriple, *HostTC, Action::OFK_SYCL); 1105 C.addOffloadDeviceToolChain(SYCLTC, Action::OFK_SYCL); 1106 } 1107 } 1108 1109 // 1110 // TODO: Add support for other offloading programming models here. 1111 // 1112 } 1113 1114 bool Driver::loadZOSCustomizationFile(llvm::cl::ExpansionContext &ExpCtx) { 1115 if (IsCLMode() || IsDXCMode() || IsFlangMode()) 1116 return false; 1117 1118 SmallString<128> CustomizationFile; 1119 StringRef PathLIBEnv = StringRef(getenv("CLANG_CONFIG_PATH")).trim(); 1120 // If the env var is a directory then append "/clang.cfg" and treat 1121 // that as the config file. Otherwise treat the env var as the 1122 // config file. 1123 if (!PathLIBEnv.empty()) { 1124 llvm::sys::path::append(CustomizationFile, PathLIBEnv); 1125 if (llvm::sys::fs::is_directory(PathLIBEnv)) 1126 llvm::sys::path::append(CustomizationFile, "/clang.cfg"); 1127 if (llvm::sys::fs::is_regular_file(CustomizationFile)) 1128 return readConfigFile(CustomizationFile, ExpCtx); 1129 Diag(diag::err_drv_config_file_not_found) << CustomizationFile; 1130 return true; 1131 } 1132 1133 SmallString<128> BaseDir(llvm::sys::path::parent_path(Dir)); 1134 llvm::sys::path::append(CustomizationFile, BaseDir + "/etc/clang.cfg"); 1135 if (llvm::sys::fs::is_regular_file(CustomizationFile)) 1136 return readConfigFile(CustomizationFile, ExpCtx); 1137 1138 // If no customization file, just return 1139 return false; 1140 } 1141 1142 static void appendOneArg(InputArgList &Args, const Arg *Opt) { 1143 // The args for config files or /clang: flags belong to different InputArgList 1144 // objects than Args. This copies an Arg from one of those other InputArgLists 1145 // to the ownership of Args. 1146 unsigned Index = Args.MakeIndex(Opt->getSpelling()); 1147 Arg *Copy = new Arg(Opt->getOption(), Args.getArgString(Index), Index); 1148 Copy->getValues() = Opt->getValues(); 1149 if (Opt->isClaimed()) 1150 Copy->claim(); 1151 Copy->setOwnsValues(Opt->getOwnsValues()); 1152 Opt->setOwnsValues(false); 1153 Args.append(Copy); 1154 if (Opt->getAlias()) { 1155 const Arg *Alias = Opt->getAlias(); 1156 unsigned Index = Args.MakeIndex(Alias->getSpelling()); 1157 auto AliasCopy = std::make_unique<Arg>(Alias->getOption(), 1158 Args.getArgString(Index), Index); 1159 AliasCopy->getValues() = Alias->getValues(); 1160 AliasCopy->setOwnsValues(false); 1161 if (Alias->isClaimed()) 1162 AliasCopy->claim(); 1163 Copy->setAlias(std::move(AliasCopy)); 1164 } 1165 } 1166 1167 bool Driver::readConfigFile(StringRef FileName, 1168 llvm::cl::ExpansionContext &ExpCtx) { 1169 // Try opening the given file. 1170 auto Status = getVFS().status(FileName); 1171 if (!Status) { 1172 Diag(diag::err_drv_cannot_open_config_file) 1173 << FileName << Status.getError().message(); 1174 return true; 1175 } 1176 if (Status->getType() != llvm::sys::fs::file_type::regular_file) { 1177 Diag(diag::err_drv_cannot_open_config_file) 1178 << FileName << "not a regular file"; 1179 return true; 1180 } 1181 1182 // Try reading the given file. 1183 SmallVector<const char *, 32> NewCfgFileArgs; 1184 if (llvm::Error Err = ExpCtx.readConfigFile(FileName, NewCfgFileArgs)) { 1185 Diag(diag::err_drv_cannot_read_config_file) 1186 << FileName << toString(std::move(Err)); 1187 return true; 1188 } 1189 1190 // Populate head and tail lists. The tail list is used only when linking. 1191 SmallVector<const char *, 32> NewCfgHeadArgs, NewCfgTailArgs; 1192 for (const char *Opt : NewCfgFileArgs) { 1193 // An $-prefixed option should go to the tail list. 1194 if (Opt[0] == '$' && Opt[1]) 1195 NewCfgTailArgs.push_back(Opt + 1); 1196 else 1197 NewCfgHeadArgs.push_back(Opt); 1198 } 1199 1200 // Read options from config file. 1201 llvm::SmallString<128> CfgFileName(FileName); 1202 llvm::sys::path::native(CfgFileName); 1203 bool ContainErrors = false; 1204 auto NewHeadOptions = std::make_unique<InputArgList>( 1205 ParseArgStrings(NewCfgHeadArgs, /*UseDriverMode=*/true, ContainErrors)); 1206 if (ContainErrors) 1207 return true; 1208 auto NewTailOptions = std::make_unique<InputArgList>( 1209 ParseArgStrings(NewCfgTailArgs, /*UseDriverMode=*/true, ContainErrors)); 1210 if (ContainErrors) 1211 return true; 1212 1213 // Claim all arguments that come from a configuration file so that the driver 1214 // does not warn on any that is unused. 1215 for (Arg *A : *NewHeadOptions) 1216 A->claim(); 1217 for (Arg *A : *NewTailOptions) 1218 A->claim(); 1219 1220 if (!CfgOptionsHead) 1221 CfgOptionsHead = std::move(NewHeadOptions); 1222 else { 1223 // If this is a subsequent config file, append options to the previous one. 1224 for (auto *Opt : *NewHeadOptions) 1225 appendOneArg(*CfgOptionsHead, Opt); 1226 } 1227 1228 if (!CfgOptionsTail) 1229 CfgOptionsTail = std::move(NewTailOptions); 1230 else { 1231 // If this is a subsequent config file, append options to the previous one. 1232 for (auto *Opt : *NewTailOptions) 1233 appendOneArg(*CfgOptionsTail, Opt); 1234 } 1235 1236 ConfigFiles.push_back(std::string(CfgFileName)); 1237 return false; 1238 } 1239 1240 bool Driver::loadConfigFiles() { 1241 llvm::cl::ExpansionContext ExpCtx(Saver.getAllocator(), 1242 llvm::cl::tokenizeConfigFile); 1243 ExpCtx.setVFS(&getVFS()); 1244 1245 // Process options that change search path for config files. 1246 if (CLOptions) { 1247 if (CLOptions->hasArg(options::OPT_config_system_dir_EQ)) { 1248 SmallString<128> CfgDir; 1249 CfgDir.append( 1250 CLOptions->getLastArgValue(options::OPT_config_system_dir_EQ)); 1251 if (CfgDir.empty() || getVFS().makeAbsolute(CfgDir)) 1252 SystemConfigDir.clear(); 1253 else 1254 SystemConfigDir = static_cast<std::string>(CfgDir); 1255 } 1256 if (CLOptions->hasArg(options::OPT_config_user_dir_EQ)) { 1257 SmallString<128> CfgDir; 1258 llvm::sys::fs::expand_tilde( 1259 CLOptions->getLastArgValue(options::OPT_config_user_dir_EQ), CfgDir); 1260 if (CfgDir.empty() || getVFS().makeAbsolute(CfgDir)) 1261 UserConfigDir.clear(); 1262 else 1263 UserConfigDir = static_cast<std::string>(CfgDir); 1264 } 1265 } 1266 1267 // Prepare list of directories where config file is searched for. 1268 StringRef CfgFileSearchDirs[] = {UserConfigDir, SystemConfigDir, Dir}; 1269 ExpCtx.setSearchDirs(CfgFileSearchDirs); 1270 1271 // First try to load configuration from the default files, return on error. 1272 if (loadDefaultConfigFiles(ExpCtx)) 1273 return true; 1274 1275 // Then load configuration files specified explicitly. 1276 SmallString<128> CfgFilePath; 1277 if (CLOptions) { 1278 for (auto CfgFileName : CLOptions->getAllArgValues(options::OPT_config)) { 1279 // If argument contains directory separator, treat it as a path to 1280 // configuration file. 1281 if (llvm::sys::path::has_parent_path(CfgFileName)) { 1282 CfgFilePath.assign(CfgFileName); 1283 if (llvm::sys::path::is_relative(CfgFilePath)) { 1284 if (getVFS().makeAbsolute(CfgFilePath)) { 1285 Diag(diag::err_drv_cannot_open_config_file) 1286 << CfgFilePath << "cannot get absolute path"; 1287 return true; 1288 } 1289 } 1290 } else if (!ExpCtx.findConfigFile(CfgFileName, CfgFilePath)) { 1291 // Report an error that the config file could not be found. 1292 Diag(diag::err_drv_config_file_not_found) << CfgFileName; 1293 for (const StringRef &SearchDir : CfgFileSearchDirs) 1294 if (!SearchDir.empty()) 1295 Diag(diag::note_drv_config_file_searched_in) << SearchDir; 1296 return true; 1297 } 1298 1299 // Try to read the config file, return on error. 1300 if (readConfigFile(CfgFilePath, ExpCtx)) 1301 return true; 1302 } 1303 } 1304 1305 // No error occurred. 1306 return false; 1307 } 1308 1309 static bool findTripleConfigFile(llvm::cl::ExpansionContext &ExpCtx, 1310 SmallString<128> &ConfigFilePath, 1311 llvm::Triple Triple, std::string Suffix) { 1312 // First, try the full unmodified triple. 1313 if (ExpCtx.findConfigFile(Triple.str() + Suffix, ConfigFilePath)) 1314 return true; 1315 1316 // Don't continue if we didn't find a parsable version in the triple. 1317 VersionTuple OSVersion = Triple.getOSVersion(); 1318 if (!OSVersion.getMinor().has_value()) 1319 return false; 1320 1321 std::string BaseOSName = Triple.getOSTypeName(Triple.getOS()).str(); 1322 1323 // Next try strip the version to only include the major component. 1324 // e.g. arm64-apple-darwin23.6.0 -> arm64-apple-darwin23 1325 if (OSVersion.getMajor() != 0) { 1326 Triple.setOSName(BaseOSName + llvm::utostr(OSVersion.getMajor())); 1327 if (ExpCtx.findConfigFile(Triple.str() + Suffix, ConfigFilePath)) 1328 return true; 1329 } 1330 1331 // Finally, try without any version suffix at all. 1332 // e.g. arm64-apple-darwin23.6.0 -> arm64-apple-darwin 1333 Triple.setOSName(BaseOSName); 1334 return ExpCtx.findConfigFile(Triple.str() + Suffix, ConfigFilePath); 1335 } 1336 1337 bool Driver::loadDefaultConfigFiles(llvm::cl::ExpansionContext &ExpCtx) { 1338 // Disable default config if CLANG_NO_DEFAULT_CONFIG is set to a non-empty 1339 // value. 1340 if (const char *NoConfigEnv = ::getenv("CLANG_NO_DEFAULT_CONFIG")) { 1341 if (*NoConfigEnv) 1342 return false; 1343 } 1344 if (CLOptions && CLOptions->hasArg(options::OPT_no_default_config)) 1345 return false; 1346 1347 std::string RealMode = getExecutableForDriverMode(Mode); 1348 llvm::Triple Triple; 1349 1350 // If name prefix is present, no --target= override was passed via CLOptions 1351 // and the name prefix is not a valid triple, force it for backwards 1352 // compatibility. 1353 if (!ClangNameParts.TargetPrefix.empty() && 1354 computeTargetTriple(*this, "/invalid/", *CLOptions).str() == 1355 "/invalid/") { 1356 llvm::Triple PrefixTriple{ClangNameParts.TargetPrefix}; 1357 if (PrefixTriple.getArch() == llvm::Triple::UnknownArch || 1358 PrefixTriple.isOSUnknown()) 1359 Triple = PrefixTriple; 1360 } 1361 1362 // Otherwise, use the real triple as used by the driver. 1363 llvm::Triple RealTriple = 1364 computeTargetTriple(*this, TargetTriple, *CLOptions); 1365 if (Triple.str().empty()) { 1366 Triple = RealTriple; 1367 assert(!Triple.str().empty()); 1368 } 1369 1370 // On z/OS, start by loading the customization file before loading 1371 // the usual default config file(s). 1372 if (RealTriple.isOSzOS() && loadZOSCustomizationFile(ExpCtx)) 1373 return true; 1374 1375 // Search for config files in the following order: 1376 // 1. <triple>-<mode>.cfg using real driver mode 1377 // (e.g. i386-pc-linux-gnu-clang++.cfg). 1378 // 2. <triple>-<mode>.cfg using executable suffix 1379 // (e.g. i386-pc-linux-gnu-clang-g++.cfg for *clang-g++). 1380 // 3. <triple>.cfg + <mode>.cfg using real driver mode 1381 // (e.g. i386-pc-linux-gnu.cfg + clang++.cfg). 1382 // 4. <triple>.cfg + <mode>.cfg using executable suffix 1383 // (e.g. i386-pc-linux-gnu.cfg + clang-g++.cfg for *clang-g++). 1384 1385 // Try loading <triple>-<mode>.cfg, and return if we find a match. 1386 SmallString<128> CfgFilePath; 1387 if (findTripleConfigFile(ExpCtx, CfgFilePath, Triple, 1388 "-" + RealMode + ".cfg")) 1389 return readConfigFile(CfgFilePath, ExpCtx); 1390 1391 bool TryModeSuffix = !ClangNameParts.ModeSuffix.empty() && 1392 ClangNameParts.ModeSuffix != RealMode; 1393 if (TryModeSuffix) { 1394 if (findTripleConfigFile(ExpCtx, CfgFilePath, Triple, 1395 "-" + ClangNameParts.ModeSuffix + ".cfg")) 1396 return readConfigFile(CfgFilePath, ExpCtx); 1397 } 1398 1399 // Try loading <mode>.cfg, and return if loading failed. If a matching file 1400 // was not found, still proceed on to try <triple>.cfg. 1401 std::string CfgFileName = RealMode + ".cfg"; 1402 if (ExpCtx.findConfigFile(CfgFileName, CfgFilePath)) { 1403 if (readConfigFile(CfgFilePath, ExpCtx)) 1404 return true; 1405 } else if (TryModeSuffix) { 1406 CfgFileName = ClangNameParts.ModeSuffix + ".cfg"; 1407 if (ExpCtx.findConfigFile(CfgFileName, CfgFilePath) && 1408 readConfigFile(CfgFilePath, ExpCtx)) 1409 return true; 1410 } 1411 1412 // Try loading <triple>.cfg and return if we find a match. 1413 if (findTripleConfigFile(ExpCtx, CfgFilePath, Triple, ".cfg")) 1414 return readConfigFile(CfgFilePath, ExpCtx); 1415 1416 // If we were unable to find a config file deduced from executable name, 1417 // that is not an error. 1418 return false; 1419 } 1420 1421 Compilation *Driver::BuildCompilation(ArrayRef<const char *> ArgList) { 1422 llvm::PrettyStackTraceString CrashInfo("Compilation construction"); 1423 1424 // FIXME: Handle environment options which affect driver behavior, somewhere 1425 // (client?). GCC_EXEC_PREFIX, LPATH, CC_PRINT_OPTIONS. 1426 1427 // We look for the driver mode option early, because the mode can affect 1428 // how other options are parsed. 1429 1430 auto DriverMode = getDriverMode(ClangExecutable, ArgList.slice(1)); 1431 if (!DriverMode.empty()) 1432 setDriverMode(DriverMode); 1433 1434 // FIXME: What are we going to do with -V and -b? 1435 1436 // Arguments specified in command line. 1437 bool ContainsError; 1438 CLOptions = std::make_unique<InputArgList>( 1439 ParseArgStrings(ArgList.slice(1), /*UseDriverMode=*/true, ContainsError)); 1440 1441 // Try parsing configuration file. 1442 if (!ContainsError) 1443 ContainsError = loadConfigFiles(); 1444 bool HasConfigFileHead = !ContainsError && CfgOptionsHead; 1445 bool HasConfigFileTail = !ContainsError && CfgOptionsTail; 1446 1447 // All arguments, from both config file and command line. 1448 InputArgList Args = 1449 HasConfigFileHead ? std::move(*CfgOptionsHead) : std::move(*CLOptions); 1450 1451 if (HasConfigFileHead) 1452 for (auto *Opt : *CLOptions) 1453 if (!Opt->getOption().matches(options::OPT_config)) 1454 appendOneArg(Args, Opt); 1455 1456 // In CL mode, look for any pass-through arguments 1457 if (IsCLMode() && !ContainsError) { 1458 SmallVector<const char *, 16> CLModePassThroughArgList; 1459 for (const auto *A : Args.filtered(options::OPT__SLASH_clang)) { 1460 A->claim(); 1461 CLModePassThroughArgList.push_back(A->getValue()); 1462 } 1463 1464 if (!CLModePassThroughArgList.empty()) { 1465 // Parse any pass through args using default clang processing rather 1466 // than clang-cl processing. 1467 auto CLModePassThroughOptions = std::make_unique<InputArgList>( 1468 ParseArgStrings(CLModePassThroughArgList, /*UseDriverMode=*/false, 1469 ContainsError)); 1470 1471 if (!ContainsError) 1472 for (auto *Opt : *CLModePassThroughOptions) 1473 appendOneArg(Args, Opt); 1474 } 1475 } 1476 1477 // Check for working directory option before accessing any files 1478 if (Arg *WD = Args.getLastArg(options::OPT_working_directory)) 1479 if (VFS->setCurrentWorkingDirectory(WD->getValue())) 1480 Diag(diag::err_drv_unable_to_set_working_directory) << WD->getValue(); 1481 1482 // Check for missing include directories. 1483 if (!Diags.isIgnored(diag::warn_missing_include_dirs, SourceLocation())) { 1484 for (auto IncludeDir : Args.getAllArgValues(options::OPT_I_Group)) { 1485 if (!VFS->exists(IncludeDir)) 1486 Diag(diag::warn_missing_include_dirs) << IncludeDir; 1487 } 1488 } 1489 1490 // FIXME: This stuff needs to go into the Compilation, not the driver. 1491 bool CCCPrintPhases; 1492 1493 // -canonical-prefixes, -no-canonical-prefixes are used very early in main. 1494 Args.ClaimAllArgs(options::OPT_canonical_prefixes); 1495 Args.ClaimAllArgs(options::OPT_no_canonical_prefixes); 1496 1497 // f(no-)integated-cc1 is also used very early in main. 1498 Args.ClaimAllArgs(options::OPT_fintegrated_cc1); 1499 Args.ClaimAllArgs(options::OPT_fno_integrated_cc1); 1500 1501 // Ignore -pipe. 1502 Args.ClaimAllArgs(options::OPT_pipe); 1503 1504 // Extract -ccc args. 1505 // 1506 // FIXME: We need to figure out where this behavior should live. Most of it 1507 // should be outside in the client; the parts that aren't should have proper 1508 // options, either by introducing new ones or by overloading gcc ones like -V 1509 // or -b. 1510 CCCPrintPhases = Args.hasArg(options::OPT_ccc_print_phases); 1511 CCCPrintBindings = Args.hasArg(options::OPT_ccc_print_bindings); 1512 if (const Arg *A = Args.getLastArg(options::OPT_ccc_gcc_name)) 1513 CCCGenericGCCName = A->getValue(); 1514 1515 // Process -fproc-stat-report options. 1516 if (const Arg *A = Args.getLastArg(options::OPT_fproc_stat_report_EQ)) { 1517 CCPrintProcessStats = true; 1518 CCPrintStatReportFilename = A->getValue(); 1519 } 1520 if (Args.hasArg(options::OPT_fproc_stat_report)) 1521 CCPrintProcessStats = true; 1522 1523 // FIXME: TargetTriple is used by the target-prefixed calls to as/ld 1524 // and getToolChain is const. 1525 if (IsCLMode()) { 1526 // clang-cl targets MSVC-style Win32. 1527 llvm::Triple T(TargetTriple); 1528 T.setOS(llvm::Triple::Win32); 1529 T.setVendor(llvm::Triple::PC); 1530 T.setEnvironment(llvm::Triple::MSVC); 1531 T.setObjectFormat(llvm::Triple::COFF); 1532 if (Args.hasArg(options::OPT__SLASH_arm64EC)) 1533 T.setArch(llvm::Triple::aarch64, llvm::Triple::AArch64SubArch_arm64ec); 1534 TargetTriple = T.str(); 1535 } else if (IsDXCMode()) { 1536 // Build TargetTriple from target_profile option for clang-dxc. 1537 if (const Arg *A = Args.getLastArg(options::OPT_target_profile)) { 1538 StringRef TargetProfile = A->getValue(); 1539 if (auto Triple = 1540 toolchains::HLSLToolChain::parseTargetProfile(TargetProfile)) 1541 TargetTriple = *Triple; 1542 else 1543 Diag(diag::err_drv_invalid_directx_shader_module) << TargetProfile; 1544 1545 A->claim(); 1546 1547 if (Args.hasArg(options::OPT_spirv)) { 1548 llvm::Triple T(TargetTriple); 1549 T.setArch(llvm::Triple::spirv); 1550 T.setOS(llvm::Triple::Vulkan); 1551 1552 // Set specific Vulkan version if applicable. 1553 if (const Arg *A = Args.getLastArg(options::OPT_fspv_target_env_EQ)) { 1554 const llvm::StringMap<llvm::Triple::SubArchType> ValidTargets = { 1555 {"vulkan1.2", llvm::Triple::SPIRVSubArch_v15}, 1556 {"vulkan1.3", llvm::Triple::SPIRVSubArch_v16}}; 1557 1558 auto TargetInfo = ValidTargets.find(A->getValue()); 1559 if (TargetInfo != ValidTargets.end()) { 1560 T.setOSName(TargetInfo->getKey()); 1561 T.setArch(llvm::Triple::spirv, TargetInfo->getValue()); 1562 } else { 1563 Diag(diag::err_drv_invalid_value) 1564 << A->getAsString(Args) << A->getValue(); 1565 } 1566 A->claim(); 1567 } 1568 1569 TargetTriple = T.str(); 1570 } 1571 } else { 1572 Diag(diag::err_drv_dxc_missing_target_profile); 1573 } 1574 } 1575 1576 if (const Arg *A = Args.getLastArg(options::OPT_target)) 1577 TargetTriple = A->getValue(); 1578 if (const Arg *A = Args.getLastArg(options::OPT_ccc_install_dir)) 1579 Dir = Dir = A->getValue(); 1580 for (const Arg *A : Args.filtered(options::OPT_B)) { 1581 A->claim(); 1582 PrefixDirs.push_back(A->getValue(0)); 1583 } 1584 if (std::optional<std::string> CompilerPathValue = 1585 llvm::sys::Process::GetEnv("COMPILER_PATH")) { 1586 StringRef CompilerPath = *CompilerPathValue; 1587 while (!CompilerPath.empty()) { 1588 std::pair<StringRef, StringRef> Split = 1589 CompilerPath.split(llvm::sys::EnvPathSeparator); 1590 PrefixDirs.push_back(std::string(Split.first)); 1591 CompilerPath = Split.second; 1592 } 1593 } 1594 if (const Arg *A = Args.getLastArg(options::OPT__sysroot_EQ)) 1595 SysRoot = A->getValue(); 1596 if (const Arg *A = Args.getLastArg(options::OPT__dyld_prefix_EQ)) 1597 DyldPrefix = A->getValue(); 1598 1599 if (const Arg *A = Args.getLastArg(options::OPT_resource_dir)) 1600 ResourceDir = A->getValue(); 1601 1602 if (const Arg *A = Args.getLastArg(options::OPT_save_temps_EQ)) { 1603 SaveTemps = llvm::StringSwitch<SaveTempsMode>(A->getValue()) 1604 .Case("cwd", SaveTempsCwd) 1605 .Case("obj", SaveTempsObj) 1606 .Default(SaveTempsCwd); 1607 } 1608 1609 if (const Arg *A = Args.getLastArg(options::OPT_offload_host_only, 1610 options::OPT_offload_device_only, 1611 options::OPT_offload_host_device)) { 1612 if (A->getOption().matches(options::OPT_offload_host_only)) 1613 Offload = OffloadHost; 1614 else if (A->getOption().matches(options::OPT_offload_device_only)) 1615 Offload = OffloadDevice; 1616 else 1617 Offload = OffloadHostDevice; 1618 } 1619 1620 setLTOMode(Args); 1621 1622 // Process -fembed-bitcode= flags. 1623 if (Arg *A = Args.getLastArg(options::OPT_fembed_bitcode_EQ)) { 1624 StringRef Name = A->getValue(); 1625 unsigned Model = llvm::StringSwitch<unsigned>(Name) 1626 .Case("off", EmbedNone) 1627 .Case("all", EmbedBitcode) 1628 .Case("bitcode", EmbedBitcode) 1629 .Case("marker", EmbedMarker) 1630 .Default(~0U); 1631 if (Model == ~0U) { 1632 Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args) 1633 << Name; 1634 } else 1635 BitcodeEmbed = static_cast<BitcodeEmbedMode>(Model); 1636 } 1637 1638 // Remove existing compilation database so that each job can append to it. 1639 if (Arg *A = Args.getLastArg(options::OPT_MJ)) 1640 llvm::sys::fs::remove(A->getValue()); 1641 1642 // Setting up the jobs for some precompile cases depends on whether we are 1643 // treating them as PCH, implicit modules or C++20 ones. 1644 // TODO: inferring the mode like this seems fragile (it meets the objective 1645 // of not requiring anything new for operation, however). 1646 const Arg *Std = Args.getLastArg(options::OPT_std_EQ); 1647 ModulesModeCXX20 = 1648 !Args.hasArg(options::OPT_fmodules) && Std && 1649 (Std->containsValue("c++20") || Std->containsValue("c++2a") || 1650 Std->containsValue("c++23") || Std->containsValue("c++2b") || 1651 Std->containsValue("c++26") || Std->containsValue("c++2c") || 1652 Std->containsValue("c++latest")); 1653 1654 // Process -fmodule-header{=} flags. 1655 if (Arg *A = Args.getLastArg(options::OPT_fmodule_header_EQ, 1656 options::OPT_fmodule_header)) { 1657 // These flags force C++20 handling of headers. 1658 ModulesModeCXX20 = true; 1659 if (A->getOption().matches(options::OPT_fmodule_header)) 1660 CXX20HeaderType = HeaderMode_Default; 1661 else { 1662 StringRef ArgName = A->getValue(); 1663 unsigned Kind = llvm::StringSwitch<unsigned>(ArgName) 1664 .Case("user", HeaderMode_User) 1665 .Case("system", HeaderMode_System) 1666 .Default(~0U); 1667 if (Kind == ~0U) { 1668 Diags.Report(diag::err_drv_invalid_value) 1669 << A->getAsString(Args) << ArgName; 1670 } else 1671 CXX20HeaderType = static_cast<ModuleHeaderMode>(Kind); 1672 } 1673 } 1674 1675 std::unique_ptr<llvm::opt::InputArgList> UArgs = 1676 std::make_unique<InputArgList>(std::move(Args)); 1677 1678 // Owned by the host. 1679 const ToolChain &TC = 1680 getToolChain(*UArgs, computeTargetTriple(*this, TargetTriple, *UArgs)); 1681 1682 { 1683 SmallVector<std::string> MultilibMacroDefinesStr = 1684 TC.getMultilibMacroDefinesStr(*UArgs); 1685 SmallVector<const char *> MLMacroDefinesChar( 1686 llvm::map_range(MultilibMacroDefinesStr, [&UArgs](const auto &S) { 1687 return UArgs->MakeArgString(Twine("-D") + Twine(S)); 1688 })); 1689 bool MLContainsError; 1690 auto MultilibMacroDefineList = 1691 std::make_unique<InputArgList>(ParseArgStrings( 1692 MLMacroDefinesChar, /*UseDriverMode=*/false, MLContainsError)); 1693 if (!MLContainsError) { 1694 for (auto *Opt : *MultilibMacroDefineList) { 1695 appendOneArg(*UArgs, Opt); 1696 } 1697 } 1698 } 1699 1700 // Perform the default argument translations. 1701 DerivedArgList *TranslatedArgs = TranslateInputArgs(*UArgs); 1702 1703 // Check if the environment version is valid except wasm case. 1704 llvm::Triple Triple = TC.getTriple(); 1705 if (!Triple.isWasm()) { 1706 StringRef TripleVersionName = Triple.getEnvironmentVersionString(); 1707 StringRef TripleObjectFormat = 1708 Triple.getObjectFormatTypeName(Triple.getObjectFormat()); 1709 if (Triple.getEnvironmentVersion().empty() && TripleVersionName != "" && 1710 TripleVersionName != TripleObjectFormat) { 1711 Diags.Report(diag::err_drv_triple_version_invalid) 1712 << TripleVersionName << TC.getTripleString(); 1713 ContainsError = true; 1714 } 1715 } 1716 1717 // Report warning when arm64EC option is overridden by specified target 1718 if ((TC.getTriple().getArch() != llvm::Triple::aarch64 || 1719 TC.getTriple().getSubArch() != llvm::Triple::AArch64SubArch_arm64ec) && 1720 UArgs->hasArg(options::OPT__SLASH_arm64EC)) { 1721 getDiags().Report(clang::diag::warn_target_override_arm64ec) 1722 << TC.getTriple().str(); 1723 } 1724 1725 // A common user mistake is specifying a target of aarch64-none-eabi or 1726 // arm-none-elf whereas the correct names are aarch64-none-elf & 1727 // arm-none-eabi. Detect these cases and issue a warning. 1728 if (TC.getTriple().getOS() == llvm::Triple::UnknownOS && 1729 TC.getTriple().getVendor() == llvm::Triple::UnknownVendor) { 1730 switch (TC.getTriple().getArch()) { 1731 case llvm::Triple::arm: 1732 case llvm::Triple::armeb: 1733 case llvm::Triple::thumb: 1734 case llvm::Triple::thumbeb: 1735 if (TC.getTriple().getEnvironmentName() == "elf") { 1736 Diag(diag::warn_target_unrecognized_env) 1737 << TargetTriple 1738 << (TC.getTriple().getArchName().str() + "-none-eabi"); 1739 } 1740 break; 1741 case llvm::Triple::aarch64: 1742 case llvm::Triple::aarch64_be: 1743 case llvm::Triple::aarch64_32: 1744 if (TC.getTriple().getEnvironmentName().starts_with("eabi")) { 1745 Diag(diag::warn_target_unrecognized_env) 1746 << TargetTriple 1747 << (TC.getTriple().getArchName().str() + "-none-elf"); 1748 } 1749 break; 1750 default: 1751 break; 1752 } 1753 } 1754 1755 // The compilation takes ownership of Args. 1756 Compilation *C = new Compilation(*this, TC, UArgs.release(), TranslatedArgs, 1757 ContainsError); 1758 1759 if (!HandleImmediateArgs(*C)) 1760 return C; 1761 1762 // Construct the list of inputs. 1763 InputList Inputs; 1764 BuildInputs(C->getDefaultToolChain(), *TranslatedArgs, Inputs); 1765 if (HasConfigFileTail && Inputs.size()) { 1766 Arg *FinalPhaseArg; 1767 if (getFinalPhase(*TranslatedArgs, &FinalPhaseArg) == phases::Link) { 1768 DerivedArgList TranslatedLinkerIns(*CfgOptionsTail); 1769 for (Arg *A : *CfgOptionsTail) 1770 TranslatedLinkerIns.append(A); 1771 BuildInputs(C->getDefaultToolChain(), TranslatedLinkerIns, Inputs); 1772 } 1773 } 1774 1775 // Populate the tool chains for the offloading devices, if any. 1776 CreateOffloadingDeviceToolChains(*C, Inputs); 1777 1778 // Construct the list of abstract actions to perform for this compilation. On 1779 // MachO targets this uses the driver-driver and universal actions. 1780 if (TC.getTriple().isOSBinFormatMachO()) 1781 BuildUniversalActions(*C, C->getDefaultToolChain(), Inputs); 1782 else 1783 BuildActions(*C, C->getArgs(), Inputs, C->getActions()); 1784 1785 if (CCCPrintPhases) { 1786 PrintActions(*C); 1787 return C; 1788 } 1789 1790 BuildJobs(*C); 1791 1792 return C; 1793 } 1794 1795 static void printArgList(raw_ostream &OS, const llvm::opt::ArgList &Args) { 1796 llvm::opt::ArgStringList ASL; 1797 for (const auto *A : Args) { 1798 // Use user's original spelling of flags. For example, use 1799 // `/source-charset:utf-8` instead of `-finput-charset=utf-8` if the user 1800 // wrote the former. 1801 while (A->getAlias()) 1802 A = A->getAlias(); 1803 A->render(Args, ASL); 1804 } 1805 1806 for (auto I = ASL.begin(), E = ASL.end(); I != E; ++I) { 1807 if (I != ASL.begin()) 1808 OS << ' '; 1809 llvm::sys::printArg(OS, *I, true); 1810 } 1811 OS << '\n'; 1812 } 1813 1814 bool Driver::getCrashDiagnosticFile(StringRef ReproCrashFilename, 1815 SmallString<128> &CrashDiagDir) { 1816 using namespace llvm::sys; 1817 assert(llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin() && 1818 "Only knows about .crash files on Darwin"); 1819 1820 // The .crash file can be found on at ~/Library/Logs/DiagnosticReports/ 1821 // (or /Library/Logs/DiagnosticReports for root) and has the filename pattern 1822 // clang-<VERSION>_<YYYY-MM-DD-HHMMSS>_<hostname>.crash. 1823 path::home_directory(CrashDiagDir); 1824 if (CrashDiagDir.starts_with("/var/root")) 1825 CrashDiagDir = "/"; 1826 path::append(CrashDiagDir, "Library/Logs/DiagnosticReports"); 1827 int PID = 1828 #if LLVM_ON_UNIX 1829 getpid(); 1830 #else 1831 0; 1832 #endif 1833 std::error_code EC; 1834 fs::file_status FileStatus; 1835 TimePoint<> LastAccessTime; 1836 SmallString<128> CrashFilePath; 1837 // Lookup the .crash files and get the one generated by a subprocess spawned 1838 // by this driver invocation. 1839 for (fs::directory_iterator File(CrashDiagDir, EC), FileEnd; 1840 File != FileEnd && !EC; File.increment(EC)) { 1841 StringRef FileName = path::filename(File->path()); 1842 if (!FileName.starts_with(Name)) 1843 continue; 1844 if (fs::status(File->path(), FileStatus)) 1845 continue; 1846 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> CrashFile = 1847 llvm::MemoryBuffer::getFile(File->path()); 1848 if (!CrashFile) 1849 continue; 1850 // The first line should start with "Process:", otherwise this isn't a real 1851 // .crash file. 1852 StringRef Data = CrashFile.get()->getBuffer(); 1853 if (!Data.starts_with("Process:")) 1854 continue; 1855 // Parse parent process pid line, e.g: "Parent Process: clang-4.0 [79141]" 1856 size_t ParentProcPos = Data.find("Parent Process:"); 1857 if (ParentProcPos == StringRef::npos) 1858 continue; 1859 size_t LineEnd = Data.find_first_of("\n", ParentProcPos); 1860 if (LineEnd == StringRef::npos) 1861 continue; 1862 StringRef ParentProcess = Data.slice(ParentProcPos+15, LineEnd).trim(); 1863 int OpenBracket = -1, CloseBracket = -1; 1864 for (size_t i = 0, e = ParentProcess.size(); i < e; ++i) { 1865 if (ParentProcess[i] == '[') 1866 OpenBracket = i; 1867 if (ParentProcess[i] == ']') 1868 CloseBracket = i; 1869 } 1870 // Extract the parent process PID from the .crash file and check whether 1871 // it matches this driver invocation pid. 1872 int CrashPID; 1873 if (OpenBracket < 0 || CloseBracket < 0 || 1874 ParentProcess.slice(OpenBracket + 1, CloseBracket) 1875 .getAsInteger(10, CrashPID) || CrashPID != PID) { 1876 continue; 1877 } 1878 1879 // Found a .crash file matching the driver pid. To avoid getting an older 1880 // and misleading crash file, continue looking for the most recent. 1881 // FIXME: the driver can dispatch multiple cc1 invocations, leading to 1882 // multiple crashes poiting to the same parent process. Since the driver 1883 // does not collect pid information for the dispatched invocation there's 1884 // currently no way to distinguish among them. 1885 const auto FileAccessTime = FileStatus.getLastModificationTime(); 1886 if (FileAccessTime > LastAccessTime) { 1887 CrashFilePath.assign(File->path()); 1888 LastAccessTime = FileAccessTime; 1889 } 1890 } 1891 1892 // If found, copy it over to the location of other reproducer files. 1893 if (!CrashFilePath.empty()) { 1894 EC = fs::copy_file(CrashFilePath, ReproCrashFilename); 1895 if (EC) 1896 return false; 1897 return true; 1898 } 1899 1900 return false; 1901 } 1902 1903 static const char BugReporMsg[] = 1904 "\n********************\n\n" 1905 "PLEASE ATTACH THE FOLLOWING FILES TO THE BUG REPORT:\n" 1906 "Preprocessed source(s) and associated run script(s) are located at:"; 1907 1908 // When clang crashes, produce diagnostic information including the fully 1909 // preprocessed source file(s). Request that the developer attach the 1910 // diagnostic information to a bug report. 1911 void Driver::generateCompilationDiagnostics( 1912 Compilation &C, const Command &FailingCommand, 1913 StringRef AdditionalInformation, CompilationDiagnosticReport *Report) { 1914 if (C.getArgs().hasArg(options::OPT_fno_crash_diagnostics)) 1915 return; 1916 1917 unsigned Level = 1; 1918 if (Arg *A = C.getArgs().getLastArg(options::OPT_fcrash_diagnostics_EQ)) { 1919 Level = llvm::StringSwitch<unsigned>(A->getValue()) 1920 .Case("off", 0) 1921 .Case("compiler", 1) 1922 .Case("all", 2) 1923 .Default(1); 1924 } 1925 if (!Level) 1926 return; 1927 1928 // Don't try to generate diagnostics for dsymutil jobs. 1929 if (FailingCommand.getCreator().isDsymutilJob()) 1930 return; 1931 1932 bool IsLLD = false; 1933 ArgStringList SavedTemps; 1934 if (FailingCommand.getCreator().isLinkJob()) { 1935 C.getDefaultToolChain().GetLinkerPath(&IsLLD); 1936 if (!IsLLD || Level < 2) 1937 return; 1938 1939 // If lld crashed, we will re-run the same command with the input it used 1940 // to have. In that case we should not remove temp files in 1941 // initCompilationForDiagnostics yet. They will be added back and removed 1942 // later. 1943 SavedTemps = std::move(C.getTempFiles()); 1944 assert(!C.getTempFiles().size()); 1945 } 1946 1947 // Print the version of the compiler. 1948 PrintVersion(C, llvm::errs()); 1949 1950 // Suppress driver output and emit preprocessor output to temp file. 1951 CCGenDiagnostics = true; 1952 1953 // Save the original job command(s). 1954 Command Cmd = FailingCommand; 1955 1956 // Keep track of whether we produce any errors while trying to produce 1957 // preprocessed sources. 1958 DiagnosticErrorTrap Trap(Diags); 1959 1960 // Suppress tool output. 1961 C.initCompilationForDiagnostics(); 1962 1963 // If lld failed, rerun it again with --reproduce. 1964 if (IsLLD) { 1965 const char *TmpName = CreateTempFile(C, "linker-crash", "tar"); 1966 Command NewLLDInvocation = Cmd; 1967 llvm::opt::ArgStringList ArgList = NewLLDInvocation.getArguments(); 1968 StringRef ReproduceOption = 1969 C.getDefaultToolChain().getTriple().isWindowsMSVCEnvironment() 1970 ? "/reproduce:" 1971 : "--reproduce="; 1972 ArgList.push_back(Saver.save(Twine(ReproduceOption) + TmpName).data()); 1973 NewLLDInvocation.replaceArguments(std::move(ArgList)); 1974 1975 // Redirect stdout/stderr to /dev/null. 1976 NewLLDInvocation.Execute({std::nullopt, {""}, {""}}, nullptr, nullptr); 1977 Diag(clang::diag::note_drv_command_failed_diag_msg) << BugReporMsg; 1978 Diag(clang::diag::note_drv_command_failed_diag_msg) << TmpName; 1979 Diag(clang::diag::note_drv_command_failed_diag_msg) 1980 << "\n\n********************"; 1981 if (Report) 1982 Report->TemporaryFiles.push_back(TmpName); 1983 return; 1984 } 1985 1986 // Construct the list of inputs. 1987 InputList Inputs; 1988 BuildInputs(C.getDefaultToolChain(), C.getArgs(), Inputs); 1989 1990 for (InputList::iterator it = Inputs.begin(), ie = Inputs.end(); it != ie;) { 1991 bool IgnoreInput = false; 1992 1993 // Ignore input from stdin or any inputs that cannot be preprocessed. 1994 // Check type first as not all linker inputs have a value. 1995 if (types::getPreprocessedType(it->first) == types::TY_INVALID) { 1996 IgnoreInput = true; 1997 } else if (!strcmp(it->second->getValue(), "-")) { 1998 Diag(clang::diag::note_drv_command_failed_diag_msg) 1999 << "Error generating preprocessed source(s) - " 2000 "ignoring input from stdin."; 2001 IgnoreInput = true; 2002 } 2003 2004 if (IgnoreInput) { 2005 it = Inputs.erase(it); 2006 ie = Inputs.end(); 2007 } else { 2008 ++it; 2009 } 2010 } 2011 2012 if (Inputs.empty()) { 2013 Diag(clang::diag::note_drv_command_failed_diag_msg) 2014 << "Error generating preprocessed source(s) - " 2015 "no preprocessable inputs."; 2016 return; 2017 } 2018 2019 // Don't attempt to generate preprocessed files if multiple -arch options are 2020 // used, unless they're all duplicates. 2021 llvm::StringSet<> ArchNames; 2022 for (const Arg *A : C.getArgs()) { 2023 if (A->getOption().matches(options::OPT_arch)) { 2024 StringRef ArchName = A->getValue(); 2025 ArchNames.insert(ArchName); 2026 } 2027 } 2028 if (ArchNames.size() > 1) { 2029 Diag(clang::diag::note_drv_command_failed_diag_msg) 2030 << "Error generating preprocessed source(s) - cannot generate " 2031 "preprocessed source with multiple -arch options."; 2032 return; 2033 } 2034 2035 // Construct the list of abstract actions to perform for this compilation. On 2036 // Darwin OSes this uses the driver-driver and builds universal actions. 2037 const ToolChain &TC = C.getDefaultToolChain(); 2038 if (TC.getTriple().isOSBinFormatMachO()) 2039 BuildUniversalActions(C, TC, Inputs); 2040 else 2041 BuildActions(C, C.getArgs(), Inputs, C.getActions()); 2042 2043 BuildJobs(C); 2044 2045 // If there were errors building the compilation, quit now. 2046 if (Trap.hasErrorOccurred()) { 2047 Diag(clang::diag::note_drv_command_failed_diag_msg) 2048 << "Error generating preprocessed source(s)."; 2049 return; 2050 } 2051 2052 // Generate preprocessed output. 2053 SmallVector<std::pair<int, const Command *>, 4> FailingCommands; 2054 C.ExecuteJobs(C.getJobs(), FailingCommands); 2055 2056 // If any of the preprocessing commands failed, clean up and exit. 2057 if (!FailingCommands.empty()) { 2058 Diag(clang::diag::note_drv_command_failed_diag_msg) 2059 << "Error generating preprocessed source(s)."; 2060 return; 2061 } 2062 2063 const ArgStringList &TempFiles = C.getTempFiles(); 2064 if (TempFiles.empty()) { 2065 Diag(clang::diag::note_drv_command_failed_diag_msg) 2066 << "Error generating preprocessed source(s)."; 2067 return; 2068 } 2069 2070 Diag(clang::diag::note_drv_command_failed_diag_msg) << BugReporMsg; 2071 2072 SmallString<128> VFS; 2073 SmallString<128> ReproCrashFilename; 2074 for (const char *TempFile : TempFiles) { 2075 Diag(clang::diag::note_drv_command_failed_diag_msg) << TempFile; 2076 if (Report) 2077 Report->TemporaryFiles.push_back(TempFile); 2078 if (ReproCrashFilename.empty()) { 2079 ReproCrashFilename = TempFile; 2080 llvm::sys::path::replace_extension(ReproCrashFilename, ".crash"); 2081 } 2082 if (StringRef(TempFile).ends_with(".cache")) { 2083 // In some cases (modules) we'll dump extra data to help with reproducing 2084 // the crash into a directory next to the output. 2085 VFS = llvm::sys::path::filename(TempFile); 2086 llvm::sys::path::append(VFS, "vfs", "vfs.yaml"); 2087 } 2088 } 2089 2090 for (const char *TempFile : SavedTemps) 2091 C.addTempFile(TempFile); 2092 2093 // Assume associated files are based off of the first temporary file. 2094 CrashReportInfo CrashInfo(TempFiles[0], VFS); 2095 2096 llvm::SmallString<128> Script(CrashInfo.Filename); 2097 llvm::sys::path::replace_extension(Script, "sh"); 2098 std::error_code EC; 2099 llvm::raw_fd_ostream ScriptOS(Script, EC, llvm::sys::fs::CD_CreateNew, 2100 llvm::sys::fs::FA_Write, 2101 llvm::sys::fs::OF_Text); 2102 if (EC) { 2103 Diag(clang::diag::note_drv_command_failed_diag_msg) 2104 << "Error generating run script: " << Script << " " << EC.message(); 2105 } else { 2106 ScriptOS << "# Crash reproducer for " << getClangFullVersion() << "\n" 2107 << "# Driver args: "; 2108 printArgList(ScriptOS, C.getInputArgs()); 2109 ScriptOS << "# Original command: "; 2110 Cmd.Print(ScriptOS, "\n", /*Quote=*/true); 2111 Cmd.Print(ScriptOS, "\n", /*Quote=*/true, &CrashInfo); 2112 if (!AdditionalInformation.empty()) 2113 ScriptOS << "\n# Additional information: " << AdditionalInformation 2114 << "\n"; 2115 if (Report) 2116 Report->TemporaryFiles.push_back(std::string(Script)); 2117 Diag(clang::diag::note_drv_command_failed_diag_msg) << Script; 2118 } 2119 2120 // On darwin, provide information about the .crash diagnostic report. 2121 if (llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin()) { 2122 SmallString<128> CrashDiagDir; 2123 if (getCrashDiagnosticFile(ReproCrashFilename, CrashDiagDir)) { 2124 Diag(clang::diag::note_drv_command_failed_diag_msg) 2125 << ReproCrashFilename.str(); 2126 } else { // Suggest a directory for the user to look for .crash files. 2127 llvm::sys::path::append(CrashDiagDir, Name); 2128 CrashDiagDir += "_<YYYY-MM-DD-HHMMSS>_<hostname>.crash"; 2129 Diag(clang::diag::note_drv_command_failed_diag_msg) 2130 << "Crash backtrace is located in"; 2131 Diag(clang::diag::note_drv_command_failed_diag_msg) 2132 << CrashDiagDir.str(); 2133 Diag(clang::diag::note_drv_command_failed_diag_msg) 2134 << "(choose the .crash file that corresponds to your crash)"; 2135 } 2136 } 2137 2138 Diag(clang::diag::note_drv_command_failed_diag_msg) 2139 << "\n\n********************"; 2140 } 2141 2142 void Driver::setUpResponseFiles(Compilation &C, Command &Cmd) { 2143 // Since commandLineFitsWithinSystemLimits() may underestimate system's 2144 // capacity if the tool does not support response files, there is a chance/ 2145 // that things will just work without a response file, so we silently just 2146 // skip it. 2147 if (Cmd.getResponseFileSupport().ResponseKind == 2148 ResponseFileSupport::RF_None || 2149 llvm::sys::commandLineFitsWithinSystemLimits(Cmd.getExecutable(), 2150 Cmd.getArguments())) 2151 return; 2152 2153 std::string TmpName = GetTemporaryPath("response", "txt"); 2154 Cmd.setResponseFile(C.addTempFile(C.getArgs().MakeArgString(TmpName))); 2155 } 2156 2157 int Driver::ExecuteCompilation( 2158 Compilation &C, 2159 SmallVectorImpl<std::pair<int, const Command *>> &FailingCommands) { 2160 if (C.getArgs().hasArg(options::OPT_fdriver_only)) { 2161 if (C.getArgs().hasArg(options::OPT_v)) 2162 C.getJobs().Print(llvm::errs(), "\n", true); 2163 2164 C.ExecuteJobs(C.getJobs(), FailingCommands, /*LogOnly=*/true); 2165 2166 // If there were errors building the compilation, quit now. 2167 if (!FailingCommands.empty() || Diags.hasErrorOccurred()) 2168 return 1; 2169 2170 return 0; 2171 } 2172 2173 // Just print if -### was present. 2174 if (C.getArgs().hasArg(options::OPT__HASH_HASH_HASH)) { 2175 C.getJobs().Print(llvm::errs(), "\n", true); 2176 return Diags.hasErrorOccurred() ? 1 : 0; 2177 } 2178 2179 // If there were errors building the compilation, quit now. 2180 if (Diags.hasErrorOccurred()) 2181 return 1; 2182 2183 // Set up response file names for each command, if necessary. 2184 for (auto &Job : C.getJobs()) 2185 setUpResponseFiles(C, Job); 2186 2187 C.ExecuteJobs(C.getJobs(), FailingCommands); 2188 2189 // If the command succeeded, we are done. 2190 if (FailingCommands.empty()) 2191 return 0; 2192 2193 // Otherwise, remove result files and print extra information about abnormal 2194 // failures. 2195 int Res = 0; 2196 for (const auto &CmdPair : FailingCommands) { 2197 int CommandRes = CmdPair.first; 2198 const Command *FailingCommand = CmdPair.second; 2199 2200 // Remove result files if we're not saving temps. 2201 if (!isSaveTempsEnabled()) { 2202 const JobAction *JA = cast<JobAction>(&FailingCommand->getSource()); 2203 C.CleanupFileMap(C.getResultFiles(), JA, true); 2204 2205 // Failure result files are valid unless we crashed. 2206 if (CommandRes < 0) 2207 C.CleanupFileMap(C.getFailureResultFiles(), JA, true); 2208 } 2209 2210 // llvm/lib/Support/*/Signals.inc will exit with a special return code 2211 // for SIGPIPE. Do not print diagnostics for this case. 2212 if (CommandRes == EX_IOERR) { 2213 Res = CommandRes; 2214 continue; 2215 } 2216 2217 // Print extra information about abnormal failures, if possible. 2218 // 2219 // This is ad-hoc, but we don't want to be excessively noisy. If the result 2220 // status was 1, assume the command failed normally. In particular, if it 2221 // was the compiler then assume it gave a reasonable error code. Failures 2222 // in other tools are less common, and they generally have worse 2223 // diagnostics, so always print the diagnostic there. 2224 const Tool &FailingTool = FailingCommand->getCreator(); 2225 2226 if (!FailingCommand->getCreator().hasGoodDiagnostics() || CommandRes != 1) { 2227 // FIXME: See FIXME above regarding result code interpretation. 2228 if (CommandRes < 0) 2229 Diag(clang::diag::err_drv_command_signalled) 2230 << FailingTool.getShortName(); 2231 else 2232 Diag(clang::diag::err_drv_command_failed) 2233 << FailingTool.getShortName() << CommandRes; 2234 } 2235 } 2236 return Res; 2237 } 2238 2239 void Driver::PrintHelp(bool ShowHidden) const { 2240 llvm::opt::Visibility VisibilityMask = getOptionVisibilityMask(); 2241 2242 std::string Usage = llvm::formatv("{0} [options] file...", Name).str(); 2243 getOpts().printHelp(llvm::outs(), Usage.c_str(), DriverTitle.c_str(), 2244 ShowHidden, /*ShowAllAliases=*/false, 2245 VisibilityMask); 2246 } 2247 2248 void Driver::PrintVersion(const Compilation &C, raw_ostream &OS) const { 2249 if (IsFlangMode()) { 2250 OS << getClangToolFullVersion("flang") << '\n'; 2251 } else { 2252 // FIXME: The following handlers should use a callback mechanism, we don't 2253 // know what the client would like to do. 2254 OS << getClangFullVersion() << '\n'; 2255 } 2256 const ToolChain &TC = C.getDefaultToolChain(); 2257 OS << "Target: " << TC.getTripleString() << '\n'; 2258 2259 // Print the threading model. 2260 if (Arg *A = C.getArgs().getLastArg(options::OPT_mthread_model)) { 2261 // Don't print if the ToolChain would have barfed on it already 2262 if (TC.isThreadModelSupported(A->getValue())) 2263 OS << "Thread model: " << A->getValue(); 2264 } else 2265 OS << "Thread model: " << TC.getThreadModel(); 2266 OS << '\n'; 2267 2268 // Print out the install directory. 2269 OS << "InstalledDir: " << Dir << '\n'; 2270 2271 // Print the build config if it's non-default. 2272 // Intended to help LLVM developers understand the configs of compilers 2273 // they're investigating. 2274 if (!llvm::cl::getCompilerBuildConfig().empty()) 2275 llvm::cl::printBuildConfig(OS); 2276 2277 // If configuration files were used, print their paths. 2278 for (auto ConfigFile : ConfigFiles) 2279 OS << "Configuration file: " << ConfigFile << '\n'; 2280 } 2281 2282 /// PrintDiagnosticCategories - Implement the --print-diagnostic-categories 2283 /// option. 2284 static void PrintDiagnosticCategories(raw_ostream &OS) { 2285 // Skip the empty category. 2286 for (unsigned i = 1, max = DiagnosticIDs::getNumberOfCategories(); i != max; 2287 ++i) 2288 OS << i << ',' << DiagnosticIDs::getCategoryNameFromID(i) << '\n'; 2289 } 2290 2291 void Driver::HandleAutocompletions(StringRef PassedFlags) const { 2292 if (PassedFlags == "") 2293 return; 2294 // Print out all options that start with a given argument. This is used for 2295 // shell autocompletion. 2296 std::vector<std::string> SuggestedCompletions; 2297 std::vector<std::string> Flags; 2298 2299 llvm::opt::Visibility VisibilityMask(options::ClangOption); 2300 2301 // Make sure that Flang-only options don't pollute the Clang output 2302 // TODO: Make sure that Clang-only options don't pollute Flang output 2303 if (IsFlangMode()) 2304 VisibilityMask = llvm::opt::Visibility(options::FlangOption); 2305 2306 // Distinguish "--autocomplete=-someflag" and "--autocomplete=-someflag," 2307 // because the latter indicates that the user put space before pushing tab 2308 // which should end up in a file completion. 2309 const bool HasSpace = PassedFlags.ends_with(","); 2310 2311 // Parse PassedFlags by "," as all the command-line flags are passed to this 2312 // function separated by "," 2313 StringRef TargetFlags = PassedFlags; 2314 while (TargetFlags != "") { 2315 StringRef CurFlag; 2316 std::tie(CurFlag, TargetFlags) = TargetFlags.split(","); 2317 Flags.push_back(std::string(CurFlag)); 2318 } 2319 2320 // We want to show cc1-only options only when clang is invoked with -cc1 or 2321 // -Xclang. 2322 if (llvm::is_contained(Flags, "-Xclang") || llvm::is_contained(Flags, "-cc1")) 2323 VisibilityMask = llvm::opt::Visibility(options::CC1Option); 2324 2325 const llvm::opt::OptTable &Opts = getOpts(); 2326 StringRef Cur; 2327 Cur = Flags.at(Flags.size() - 1); 2328 StringRef Prev; 2329 if (Flags.size() >= 2) { 2330 Prev = Flags.at(Flags.size() - 2); 2331 SuggestedCompletions = Opts.suggestValueCompletions(Prev, Cur); 2332 } 2333 2334 if (SuggestedCompletions.empty()) 2335 SuggestedCompletions = Opts.suggestValueCompletions(Cur, ""); 2336 2337 // If Flags were empty, it means the user typed `clang [tab]` where we should 2338 // list all possible flags. If there was no value completion and the user 2339 // pressed tab after a space, we should fall back to a file completion. 2340 // We're printing a newline to be consistent with what we print at the end of 2341 // this function. 2342 if (SuggestedCompletions.empty() && HasSpace && !Flags.empty()) { 2343 llvm::outs() << '\n'; 2344 return; 2345 } 2346 2347 // When flag ends with '=' and there was no value completion, return empty 2348 // string and fall back to the file autocompletion. 2349 if (SuggestedCompletions.empty() && !Cur.ends_with("=")) { 2350 // If the flag is in the form of "--autocomplete=-foo", 2351 // we were requested to print out all option names that start with "-foo". 2352 // For example, "--autocomplete=-fsyn" is expanded to "-fsyntax-only". 2353 SuggestedCompletions = Opts.findByPrefix( 2354 Cur, VisibilityMask, 2355 /*DisableFlags=*/options::Unsupported | options::Ignored); 2356 2357 // We have to query the -W flags manually as they're not in the OptTable. 2358 // TODO: Find a good way to add them to OptTable instead and them remove 2359 // this code. 2360 for (StringRef S : DiagnosticIDs::getDiagnosticFlags()) 2361 if (S.starts_with(Cur)) 2362 SuggestedCompletions.push_back(std::string(S)); 2363 } 2364 2365 // Sort the autocomplete candidates so that shells print them out in a 2366 // deterministic order. We could sort in any way, but we chose 2367 // case-insensitive sorting for consistency with the -help option 2368 // which prints out options in the case-insensitive alphabetical order. 2369 llvm::sort(SuggestedCompletions, [](StringRef A, StringRef B) { 2370 if (int X = A.compare_insensitive(B)) 2371 return X < 0; 2372 return A.compare(B) > 0; 2373 }); 2374 2375 llvm::outs() << llvm::join(SuggestedCompletions, "\n") << '\n'; 2376 } 2377 2378 bool Driver::HandleImmediateArgs(Compilation &C) { 2379 // The order these options are handled in gcc is all over the place, but we 2380 // don't expect inconsistencies w.r.t. that to matter in practice. 2381 2382 if (C.getArgs().hasArg(options::OPT_dumpmachine)) { 2383 llvm::outs() << C.getDefaultToolChain().getTripleString() << '\n'; 2384 return false; 2385 } 2386 2387 if (C.getArgs().hasArg(options::OPT_dumpversion)) { 2388 // Since -dumpversion is only implemented for pedantic GCC compatibility, we 2389 // return an answer which matches our definition of __VERSION__. 2390 llvm::outs() << CLANG_VERSION_STRING << "\n"; 2391 return false; 2392 } 2393 2394 if (C.getArgs().hasArg(options::OPT__print_diagnostic_categories)) { 2395 PrintDiagnosticCategories(llvm::outs()); 2396 return false; 2397 } 2398 2399 if (C.getArgs().hasArg(options::OPT_help) || 2400 C.getArgs().hasArg(options::OPT__help_hidden)) { 2401 PrintHelp(C.getArgs().hasArg(options::OPT__help_hidden)); 2402 return false; 2403 } 2404 2405 if (C.getArgs().hasArg(options::OPT__version)) { 2406 // Follow gcc behavior and use stdout for --version and stderr for -v. 2407 PrintVersion(C, llvm::outs()); 2408 return false; 2409 } 2410 2411 if (C.getArgs().hasArg(options::OPT_v) || 2412 C.getArgs().hasArg(options::OPT__HASH_HASH_HASH) || 2413 C.getArgs().hasArg(options::OPT_print_supported_cpus) || 2414 C.getArgs().hasArg(options::OPT_print_supported_extensions) || 2415 C.getArgs().hasArg(options::OPT_print_enabled_extensions)) { 2416 PrintVersion(C, llvm::errs()); 2417 SuppressMissingInputWarning = true; 2418 } 2419 2420 if (C.getArgs().hasArg(options::OPT_v)) { 2421 if (!SystemConfigDir.empty()) 2422 llvm::errs() << "System configuration file directory: " 2423 << SystemConfigDir << "\n"; 2424 if (!UserConfigDir.empty()) 2425 llvm::errs() << "User configuration file directory: " 2426 << UserConfigDir << "\n"; 2427 } 2428 2429 const ToolChain &TC = C.getDefaultToolChain(); 2430 2431 if (C.getArgs().hasArg(options::OPT_v)) 2432 TC.printVerboseInfo(llvm::errs()); 2433 2434 if (C.getArgs().hasArg(options::OPT_print_resource_dir)) { 2435 llvm::outs() << ResourceDir << '\n'; 2436 return false; 2437 } 2438 2439 if (C.getArgs().hasArg(options::OPT_print_search_dirs)) { 2440 llvm::outs() << "programs: ="; 2441 bool separator = false; 2442 // Print -B and COMPILER_PATH. 2443 for (const std::string &Path : PrefixDirs) { 2444 if (separator) 2445 llvm::outs() << llvm::sys::EnvPathSeparator; 2446 llvm::outs() << Path; 2447 separator = true; 2448 } 2449 for (const std::string &Path : TC.getProgramPaths()) { 2450 if (separator) 2451 llvm::outs() << llvm::sys::EnvPathSeparator; 2452 llvm::outs() << Path; 2453 separator = true; 2454 } 2455 llvm::outs() << "\n"; 2456 llvm::outs() << "libraries: =" << ResourceDir; 2457 2458 StringRef sysroot = C.getSysRoot(); 2459 2460 for (const std::string &Path : TC.getFilePaths()) { 2461 // Always print a separator. ResourceDir was the first item shown. 2462 llvm::outs() << llvm::sys::EnvPathSeparator; 2463 // Interpretation of leading '=' is needed only for NetBSD. 2464 if (Path[0] == '=') 2465 llvm::outs() << sysroot << Path.substr(1); 2466 else 2467 llvm::outs() << Path; 2468 } 2469 llvm::outs() << "\n"; 2470 return false; 2471 } 2472 2473 if (C.getArgs().hasArg(options::OPT_print_std_module_manifest_path)) { 2474 llvm::outs() << GetStdModuleManifestPath(C, C.getDefaultToolChain()) 2475 << '\n'; 2476 return false; 2477 } 2478 2479 if (C.getArgs().hasArg(options::OPT_print_runtime_dir)) { 2480 if (std::optional<std::string> RuntimePath = TC.getRuntimePath()) 2481 llvm::outs() << *RuntimePath << '\n'; 2482 else 2483 llvm::outs() << TC.getCompilerRTPath() << '\n'; 2484 return false; 2485 } 2486 2487 if (C.getArgs().hasArg(options::OPT_print_diagnostic_options)) { 2488 std::vector<std::string> Flags = DiagnosticIDs::getDiagnosticFlags(); 2489 for (std::size_t I = 0; I != Flags.size(); I += 2) 2490 llvm::outs() << " " << Flags[I] << "\n " << Flags[I + 1] << "\n\n"; 2491 return false; 2492 } 2493 2494 // FIXME: The following handlers should use a callback mechanism, we don't 2495 // know what the client would like to do. 2496 if (Arg *A = C.getArgs().getLastArg(options::OPT_print_file_name_EQ)) { 2497 llvm::outs() << GetFilePath(A->getValue(), TC) << "\n"; 2498 return false; 2499 } 2500 2501 if (Arg *A = C.getArgs().getLastArg(options::OPT_print_prog_name_EQ)) { 2502 StringRef ProgName = A->getValue(); 2503 2504 // Null program name cannot have a path. 2505 if (! ProgName.empty()) 2506 llvm::outs() << GetProgramPath(ProgName, TC); 2507 2508 llvm::outs() << "\n"; 2509 return false; 2510 } 2511 2512 if (Arg *A = C.getArgs().getLastArg(options::OPT_autocomplete)) { 2513 StringRef PassedFlags = A->getValue(); 2514 HandleAutocompletions(PassedFlags); 2515 return false; 2516 } 2517 2518 if (C.getArgs().hasArg(options::OPT_print_libgcc_file_name)) { 2519 ToolChain::RuntimeLibType RLT = TC.GetRuntimeLibType(C.getArgs()); 2520 const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs())); 2521 // The 'Darwin' toolchain is initialized only when its arguments are 2522 // computed. Get the default arguments for OFK_None to ensure that 2523 // initialization is performed before trying to access properties of 2524 // the toolchain in the functions below. 2525 // FIXME: Remove when darwin's toolchain is initialized during construction. 2526 // FIXME: For some more esoteric targets the default toolchain is not the 2527 // correct one. 2528 C.getArgsForToolChain(&TC, Triple.getArchName(), Action::OFK_None); 2529 RegisterEffectiveTriple TripleRAII(TC, Triple); 2530 switch (RLT) { 2531 case ToolChain::RLT_CompilerRT: 2532 llvm::outs() << TC.getCompilerRT(C.getArgs(), "builtins") << "\n"; 2533 break; 2534 case ToolChain::RLT_Libgcc: 2535 llvm::outs() << GetFilePath("libgcc.a", TC) << "\n"; 2536 break; 2537 } 2538 return false; 2539 } 2540 2541 if (C.getArgs().hasArg(options::OPT_print_multi_lib)) { 2542 for (const Multilib &Multilib : TC.getMultilibs()) 2543 if (!Multilib.isError()) 2544 llvm::outs() << Multilib << "\n"; 2545 return false; 2546 } 2547 2548 if (C.getArgs().hasArg(options::OPT_print_multi_flags)) { 2549 Multilib::flags_list ArgFlags = TC.getMultilibFlags(C.getArgs()); 2550 llvm::StringSet<> ExpandedFlags = TC.getMultilibs().expandFlags(ArgFlags); 2551 std::set<llvm::StringRef> SortedFlags; 2552 for (const auto &FlagEntry : ExpandedFlags) 2553 SortedFlags.insert(FlagEntry.getKey()); 2554 for (auto Flag : SortedFlags) 2555 llvm::outs() << Flag << '\n'; 2556 return false; 2557 } 2558 2559 if (C.getArgs().hasArg(options::OPT_print_multi_directory)) { 2560 for (const Multilib &Multilib : TC.getSelectedMultilibs()) { 2561 if (Multilib.gccSuffix().empty()) 2562 llvm::outs() << ".\n"; 2563 else { 2564 StringRef Suffix(Multilib.gccSuffix()); 2565 assert(Suffix.front() == '/'); 2566 llvm::outs() << Suffix.substr(1) << "\n"; 2567 } 2568 } 2569 return false; 2570 } 2571 2572 if (C.getArgs().hasArg(options::OPT_print_target_triple)) { 2573 llvm::outs() << TC.getTripleString() << "\n"; 2574 return false; 2575 } 2576 2577 if (C.getArgs().hasArg(options::OPT_print_effective_triple)) { 2578 const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs())); 2579 llvm::outs() << Triple.getTriple() << "\n"; 2580 return false; 2581 } 2582 2583 if (C.getArgs().hasArg(options::OPT_print_targets)) { 2584 llvm::TargetRegistry::printRegisteredTargetsForVersion(llvm::outs()); 2585 return false; 2586 } 2587 2588 return true; 2589 } 2590 2591 enum { 2592 TopLevelAction = 0, 2593 HeadSibAction = 1, 2594 OtherSibAction = 2, 2595 }; 2596 2597 // Display an action graph human-readably. Action A is the "sink" node 2598 // and latest-occuring action. Traversal is in pre-order, visiting the 2599 // inputs to each action before printing the action itself. 2600 static unsigned PrintActions1(const Compilation &C, Action *A, 2601 std::map<Action *, unsigned> &Ids, 2602 Twine Indent = {}, int Kind = TopLevelAction) { 2603 if (auto It = Ids.find(A); It != Ids.end()) // A was already visited. 2604 return It->second; 2605 2606 std::string str; 2607 llvm::raw_string_ostream os(str); 2608 2609 auto getSibIndent = [](int K) -> Twine { 2610 return (K == HeadSibAction) ? " " : (K == OtherSibAction) ? "| " : ""; 2611 }; 2612 2613 Twine SibIndent = Indent + getSibIndent(Kind); 2614 int SibKind = HeadSibAction; 2615 os << Action::getClassName(A->getKind()) << ", "; 2616 if (InputAction *IA = dyn_cast<InputAction>(A)) { 2617 os << "\"" << IA->getInputArg().getValue() << "\""; 2618 } else if (BindArchAction *BIA = dyn_cast<BindArchAction>(A)) { 2619 os << '"' << BIA->getArchName() << '"' << ", {" 2620 << PrintActions1(C, *BIA->input_begin(), Ids, SibIndent, SibKind) << "}"; 2621 } else if (OffloadAction *OA = dyn_cast<OffloadAction>(A)) { 2622 bool IsFirst = true; 2623 OA->doOnEachDependence( 2624 [&](Action *A, const ToolChain *TC, const char *BoundArch) { 2625 assert(TC && "Unknown host toolchain"); 2626 // E.g. for two CUDA device dependences whose bound arch is sm_20 and 2627 // sm_35 this will generate: 2628 // "cuda-device" (nvptx64-nvidia-cuda:sm_20) {#ID}, "cuda-device" 2629 // (nvptx64-nvidia-cuda:sm_35) {#ID} 2630 if (!IsFirst) 2631 os << ", "; 2632 os << '"'; 2633 os << A->getOffloadingKindPrefix(); 2634 os << " ("; 2635 os << TC->getTriple().normalize(); 2636 if (BoundArch) 2637 os << ":" << BoundArch; 2638 os << ")"; 2639 os << '"'; 2640 os << " {" << PrintActions1(C, A, Ids, SibIndent, SibKind) << "}"; 2641 IsFirst = false; 2642 SibKind = OtherSibAction; 2643 }); 2644 } else { 2645 const ActionList *AL = &A->getInputs(); 2646 2647 if (AL->size()) { 2648 const char *Prefix = "{"; 2649 for (Action *PreRequisite : *AL) { 2650 os << Prefix << PrintActions1(C, PreRequisite, Ids, SibIndent, SibKind); 2651 Prefix = ", "; 2652 SibKind = OtherSibAction; 2653 } 2654 os << "}"; 2655 } else 2656 os << "{}"; 2657 } 2658 2659 // Append offload info for all options other than the offloading action 2660 // itself (e.g. (cuda-device, sm_20) or (cuda-host)). 2661 std::string offload_str; 2662 llvm::raw_string_ostream offload_os(offload_str); 2663 if (!isa<OffloadAction>(A)) { 2664 auto S = A->getOffloadingKindPrefix(); 2665 if (!S.empty()) { 2666 offload_os << ", (" << S; 2667 if (A->getOffloadingArch()) 2668 offload_os << ", " << A->getOffloadingArch(); 2669 offload_os << ")"; 2670 } 2671 } 2672 2673 auto getSelfIndent = [](int K) -> Twine { 2674 return (K == HeadSibAction) ? "+- " : (K == OtherSibAction) ? "|- " : ""; 2675 }; 2676 2677 unsigned Id = Ids.size(); 2678 Ids[A] = Id; 2679 llvm::errs() << Indent + getSelfIndent(Kind) << Id << ": " << os.str() << ", " 2680 << types::getTypeName(A->getType()) << offload_os.str() << "\n"; 2681 2682 return Id; 2683 } 2684 2685 // Print the action graphs in a compilation C. 2686 // For example "clang -c file1.c file2.c" is composed of two subgraphs. 2687 void Driver::PrintActions(const Compilation &C) const { 2688 std::map<Action *, unsigned> Ids; 2689 for (Action *A : C.getActions()) 2690 PrintActions1(C, A, Ids); 2691 } 2692 2693 /// Check whether the given input tree contains any compilation or 2694 /// assembly actions. 2695 static bool ContainsCompileOrAssembleAction(const Action *A) { 2696 if (isa<CompileJobAction>(A) || isa<BackendJobAction>(A) || 2697 isa<AssembleJobAction>(A)) 2698 return true; 2699 2700 return llvm::any_of(A->inputs(), ContainsCompileOrAssembleAction); 2701 } 2702 2703 void Driver::BuildUniversalActions(Compilation &C, const ToolChain &TC, 2704 const InputList &BAInputs) const { 2705 DerivedArgList &Args = C.getArgs(); 2706 ActionList &Actions = C.getActions(); 2707 llvm::PrettyStackTraceString CrashInfo("Building universal build actions"); 2708 // Collect the list of architectures. Duplicates are allowed, but should only 2709 // be handled once (in the order seen). 2710 llvm::StringSet<> ArchNames; 2711 SmallVector<const char *, 4> Archs; 2712 for (Arg *A : Args) { 2713 if (A->getOption().matches(options::OPT_arch)) { 2714 // Validate the option here; we don't save the type here because its 2715 // particular spelling may participate in other driver choices. 2716 llvm::Triple::ArchType Arch = 2717 tools::darwin::getArchTypeForMachOArchName(A->getValue()); 2718 if (Arch == llvm::Triple::UnknownArch) { 2719 Diag(clang::diag::err_drv_invalid_arch_name) << A->getAsString(Args); 2720 continue; 2721 } 2722 2723 A->claim(); 2724 if (ArchNames.insert(A->getValue()).second) 2725 Archs.push_back(A->getValue()); 2726 } 2727 } 2728 2729 // When there is no explicit arch for this platform, make sure we still bind 2730 // the architecture (to the default) so that -Xarch_ is handled correctly. 2731 if (!Archs.size()) 2732 Archs.push_back(Args.MakeArgString(TC.getDefaultUniversalArchName())); 2733 2734 ActionList SingleActions; 2735 BuildActions(C, Args, BAInputs, SingleActions); 2736 2737 // Add in arch bindings for every top level action, as well as lipo and 2738 // dsymutil steps if needed. 2739 for (Action* Act : SingleActions) { 2740 // Make sure we can lipo this kind of output. If not (and it is an actual 2741 // output) then we disallow, since we can't create an output file with the 2742 // right name without overwriting it. We could remove this oddity by just 2743 // changing the output names to include the arch, which would also fix 2744 // -save-temps. Compatibility wins for now. 2745 2746 if (Archs.size() > 1 && !types::canLipoType(Act->getType())) 2747 Diag(clang::diag::err_drv_invalid_output_with_multiple_archs) 2748 << types::getTypeName(Act->getType()); 2749 2750 ActionList Inputs; 2751 for (unsigned i = 0, e = Archs.size(); i != e; ++i) 2752 Inputs.push_back(C.MakeAction<BindArchAction>(Act, Archs[i])); 2753 2754 // Lipo if necessary, we do it this way because we need to set the arch flag 2755 // so that -Xarch_ gets overwritten. 2756 if (Inputs.size() == 1 || Act->getType() == types::TY_Nothing) 2757 Actions.append(Inputs.begin(), Inputs.end()); 2758 else 2759 Actions.push_back(C.MakeAction<LipoJobAction>(Inputs, Act->getType())); 2760 2761 // Handle debug info queries. 2762 Arg *A = Args.getLastArg(options::OPT_g_Group); 2763 bool enablesDebugInfo = A && !A->getOption().matches(options::OPT_g0) && 2764 !A->getOption().matches(options::OPT_gstabs); 2765 if ((enablesDebugInfo || willEmitRemarks(Args)) && 2766 ContainsCompileOrAssembleAction(Actions.back())) { 2767 2768 // Add a 'dsymutil' step if necessary, when debug info is enabled and we 2769 // have a compile input. We need to run 'dsymutil' ourselves in such cases 2770 // because the debug info will refer to a temporary object file which 2771 // will be removed at the end of the compilation process. 2772 if (Act->getType() == types::TY_Image) { 2773 ActionList Inputs; 2774 Inputs.push_back(Actions.back()); 2775 Actions.pop_back(); 2776 Actions.push_back( 2777 C.MakeAction<DsymutilJobAction>(Inputs, types::TY_dSYM)); 2778 } 2779 2780 // Verify the debug info output. 2781 if (Args.hasArg(options::OPT_verify_debug_info)) { 2782 Action* LastAction = Actions.back(); 2783 Actions.pop_back(); 2784 Actions.push_back(C.MakeAction<VerifyDebugInfoJobAction>( 2785 LastAction, types::TY_Nothing)); 2786 } 2787 } 2788 } 2789 } 2790 2791 bool Driver::DiagnoseInputExistence(const DerivedArgList &Args, StringRef Value, 2792 types::ID Ty, bool TypoCorrect) const { 2793 if (!getCheckInputsExist()) 2794 return true; 2795 2796 // stdin always exists. 2797 if (Value == "-") 2798 return true; 2799 2800 // If it's a header to be found in the system or user search path, then defer 2801 // complaints about its absence until those searches can be done. When we 2802 // are definitely processing headers for C++20 header units, extend this to 2803 // allow the user to put "-fmodule-header -xc++-header vector" for example. 2804 if (Ty == types::TY_CXXSHeader || Ty == types::TY_CXXUHeader || 2805 (ModulesModeCXX20 && Ty == types::TY_CXXHeader)) 2806 return true; 2807 2808 if (getVFS().exists(Value)) 2809 return true; 2810 2811 if (TypoCorrect) { 2812 // Check if the filename is a typo for an option flag. OptTable thinks 2813 // that all args that are not known options and that start with / are 2814 // filenames, but e.g. `/diagnostic:caret` is more likely a typo for 2815 // the option `/diagnostics:caret` than a reference to a file in the root 2816 // directory. 2817 std::string Nearest; 2818 if (getOpts().findNearest(Value, Nearest, getOptionVisibilityMask()) <= 1) { 2819 Diag(clang::diag::err_drv_no_such_file_with_suggestion) 2820 << Value << Nearest; 2821 return false; 2822 } 2823 } 2824 2825 // In CL mode, don't error on apparently non-existent linker inputs, because 2826 // they can be influenced by linker flags the clang driver might not 2827 // understand. 2828 // Examples: 2829 // - `clang-cl main.cc ole32.lib` in a non-MSVC shell will make the driver 2830 // module look for an MSVC installation in the registry. (We could ask 2831 // the MSVCToolChain object if it can find `ole32.lib`, but the logic to 2832 // look in the registry might move into lld-link in the future so that 2833 // lld-link invocations in non-MSVC shells just work too.) 2834 // - `clang-cl ... /link ...` can pass arbitrary flags to the linker, 2835 // including /libpath:, which is used to find .lib and .obj files. 2836 // So do not diagnose this on the driver level. Rely on the linker diagnosing 2837 // it. (If we don't end up invoking the linker, this means we'll emit a 2838 // "'linker' input unused [-Wunused-command-line-argument]" warning instead 2839 // of an error.) 2840 // 2841 // Only do this skip after the typo correction step above. `/Brepo` is treated 2842 // as TY_Object, but it's clearly a typo for `/Brepro`. It seems fine to emit 2843 // an error if we have a flag that's within an edit distance of 1 from a 2844 // flag. (Users can use `-Wl,` or `/linker` to launder the flag past the 2845 // driver in the unlikely case they run into this.) 2846 // 2847 // Don't do this for inputs that start with a '/', else we'd pass options 2848 // like /libpath: through to the linker silently. 2849 // 2850 // Emitting an error for linker inputs can also cause incorrect diagnostics 2851 // with the gcc driver. The command 2852 // clang -fuse-ld=lld -Wl,--chroot,some/dir /file.o 2853 // will make lld look for some/dir/file.o, while we will diagnose here that 2854 // `/file.o` does not exist. However, configure scripts check if 2855 // `clang /GR-` compiles without error to see if the compiler is cl.exe, 2856 // so we can't downgrade diagnostics for `/GR-` from an error to a warning 2857 // in cc mode. (We can in cl mode because cl.exe itself only warns on 2858 // unknown flags.) 2859 if (IsCLMode() && Ty == types::TY_Object && !Value.starts_with("/")) 2860 return true; 2861 2862 Diag(clang::diag::err_drv_no_such_file) << Value; 2863 return false; 2864 } 2865 2866 // Get the C++20 Header Unit type corresponding to the input type. 2867 static types::ID CXXHeaderUnitType(ModuleHeaderMode HM) { 2868 switch (HM) { 2869 case HeaderMode_User: 2870 return types::TY_CXXUHeader; 2871 case HeaderMode_System: 2872 return types::TY_CXXSHeader; 2873 case HeaderMode_Default: 2874 break; 2875 case HeaderMode_None: 2876 llvm_unreachable("should not be called in this case"); 2877 } 2878 return types::TY_CXXHUHeader; 2879 } 2880 2881 // Construct a the list of inputs and their types. 2882 void Driver::BuildInputs(const ToolChain &TC, DerivedArgList &Args, 2883 InputList &Inputs) const { 2884 const llvm::opt::OptTable &Opts = getOpts(); 2885 // Track the current user specified (-x) input. We also explicitly track the 2886 // argument used to set the type; we only want to claim the type when we 2887 // actually use it, so we warn about unused -x arguments. 2888 types::ID InputType = types::TY_Nothing; 2889 Arg *InputTypeArg = nullptr; 2890 2891 // The last /TC or /TP option sets the input type to C or C++ globally. 2892 if (Arg *TCTP = Args.getLastArgNoClaim(options::OPT__SLASH_TC, 2893 options::OPT__SLASH_TP)) { 2894 InputTypeArg = TCTP; 2895 InputType = TCTP->getOption().matches(options::OPT__SLASH_TC) 2896 ? types::TY_C 2897 : types::TY_CXX; 2898 2899 Arg *Previous = nullptr; 2900 bool ShowNote = false; 2901 for (Arg *A : 2902 Args.filtered(options::OPT__SLASH_TC, options::OPT__SLASH_TP)) { 2903 if (Previous) { 2904 Diag(clang::diag::warn_drv_overriding_option) 2905 << Previous->getSpelling() << A->getSpelling(); 2906 ShowNote = true; 2907 } 2908 Previous = A; 2909 } 2910 if (ShowNote) 2911 Diag(clang::diag::note_drv_t_option_is_global); 2912 } 2913 2914 // Warn -x after last input file has no effect 2915 { 2916 Arg *LastXArg = Args.getLastArgNoClaim(options::OPT_x); 2917 Arg *LastInputArg = Args.getLastArgNoClaim(options::OPT_INPUT); 2918 if (LastXArg && LastInputArg && 2919 LastInputArg->getIndex() < LastXArg->getIndex()) 2920 Diag(clang::diag::warn_drv_unused_x) << LastXArg->getValue(); 2921 } 2922 2923 for (Arg *A : Args) { 2924 if (A->getOption().getKind() == Option::InputClass) { 2925 const char *Value = A->getValue(); 2926 types::ID Ty = types::TY_INVALID; 2927 2928 // Infer the input type if necessary. 2929 if (InputType == types::TY_Nothing) { 2930 // If there was an explicit arg for this, claim it. 2931 if (InputTypeArg) 2932 InputTypeArg->claim(); 2933 2934 // stdin must be handled specially. 2935 if (memcmp(Value, "-", 2) == 0) { 2936 if (IsFlangMode()) { 2937 Ty = types::TY_Fortran; 2938 } else if (IsDXCMode()) { 2939 Ty = types::TY_HLSL; 2940 } else { 2941 // If running with -E, treat as a C input (this changes the 2942 // builtin macros, for example). This may be overridden by -ObjC 2943 // below. 2944 // 2945 // Otherwise emit an error but still use a valid type to avoid 2946 // spurious errors (e.g., no inputs). 2947 assert(!CCGenDiagnostics && "stdin produces no crash reproducer"); 2948 if (!Args.hasArgNoClaim(options::OPT_E) && !CCCIsCPP()) 2949 Diag(IsCLMode() ? clang::diag::err_drv_unknown_stdin_type_clang_cl 2950 : clang::diag::err_drv_unknown_stdin_type); 2951 Ty = types::TY_C; 2952 } 2953 } else { 2954 // Otherwise lookup by extension. 2955 // Fallback is C if invoked as C preprocessor, C++ if invoked with 2956 // clang-cl /E, or Object otherwise. 2957 // We use a host hook here because Darwin at least has its own 2958 // idea of what .s is. 2959 if (const char *Ext = strrchr(Value, '.')) 2960 Ty = TC.LookupTypeForExtension(Ext + 1); 2961 2962 if (Ty == types::TY_INVALID) { 2963 if (IsCLMode() && (Args.hasArgNoClaim(options::OPT_E) || CCGenDiagnostics)) 2964 Ty = types::TY_CXX; 2965 else if (CCCIsCPP() || CCGenDiagnostics) 2966 Ty = types::TY_C; 2967 else 2968 Ty = types::TY_Object; 2969 } 2970 2971 // If the driver is invoked as C++ compiler (like clang++ or c++) it 2972 // should autodetect some input files as C++ for g++ compatibility. 2973 if (CCCIsCXX()) { 2974 types::ID OldTy = Ty; 2975 Ty = types::lookupCXXTypeForCType(Ty); 2976 2977 // Do not complain about foo.h, when we are known to be processing 2978 // it as a C++20 header unit. 2979 if (Ty != OldTy && !(OldTy == types::TY_CHeader && hasHeaderMode())) 2980 Diag(clang::diag::warn_drv_treating_input_as_cxx) 2981 << getTypeName(OldTy) << getTypeName(Ty); 2982 } 2983 2984 // If running with -fthinlto-index=, extensions that normally identify 2985 // native object files actually identify LLVM bitcode files. 2986 if (Args.hasArgNoClaim(options::OPT_fthinlto_index_EQ) && 2987 Ty == types::TY_Object) 2988 Ty = types::TY_LLVM_BC; 2989 } 2990 2991 // -ObjC and -ObjC++ override the default language, but only for "source 2992 // files". We just treat everything that isn't a linker input as a 2993 // source file. 2994 // 2995 // FIXME: Clean this up if we move the phase sequence into the type. 2996 if (Ty != types::TY_Object) { 2997 if (Args.hasArg(options::OPT_ObjC)) 2998 Ty = types::TY_ObjC; 2999 else if (Args.hasArg(options::OPT_ObjCXX)) 3000 Ty = types::TY_ObjCXX; 3001 } 3002 3003 // Disambiguate headers that are meant to be header units from those 3004 // intended to be PCH. Avoid missing '.h' cases that are counted as 3005 // C headers by default - we know we are in C++ mode and we do not 3006 // want to issue a complaint about compiling things in the wrong mode. 3007 if ((Ty == types::TY_CXXHeader || Ty == types::TY_CHeader) && 3008 hasHeaderMode()) 3009 Ty = CXXHeaderUnitType(CXX20HeaderType); 3010 } else { 3011 assert(InputTypeArg && "InputType set w/o InputTypeArg"); 3012 if (!InputTypeArg->getOption().matches(options::OPT_x)) { 3013 // If emulating cl.exe, make sure that /TC and /TP don't affect input 3014 // object files. 3015 const char *Ext = strrchr(Value, '.'); 3016 if (Ext && TC.LookupTypeForExtension(Ext + 1) == types::TY_Object) 3017 Ty = types::TY_Object; 3018 } 3019 if (Ty == types::TY_INVALID) { 3020 Ty = InputType; 3021 InputTypeArg->claim(); 3022 } 3023 } 3024 3025 if ((Ty == types::TY_C || Ty == types::TY_CXX) && 3026 Args.hasArgNoClaim(options::OPT_hipstdpar)) 3027 Ty = types::TY_HIP; 3028 3029 if (DiagnoseInputExistence(Args, Value, Ty, /*TypoCorrect=*/true)) 3030 Inputs.push_back(std::make_pair(Ty, A)); 3031 3032 } else if (A->getOption().matches(options::OPT__SLASH_Tc)) { 3033 StringRef Value = A->getValue(); 3034 if (DiagnoseInputExistence(Args, Value, types::TY_C, 3035 /*TypoCorrect=*/false)) { 3036 Arg *InputArg = MakeInputArg(Args, Opts, A->getValue()); 3037 Inputs.push_back(std::make_pair(types::TY_C, InputArg)); 3038 } 3039 A->claim(); 3040 } else if (A->getOption().matches(options::OPT__SLASH_Tp)) { 3041 StringRef Value = A->getValue(); 3042 if (DiagnoseInputExistence(Args, Value, types::TY_CXX, 3043 /*TypoCorrect=*/false)) { 3044 Arg *InputArg = MakeInputArg(Args, Opts, A->getValue()); 3045 Inputs.push_back(std::make_pair(types::TY_CXX, InputArg)); 3046 } 3047 A->claim(); 3048 } else if (A->getOption().hasFlag(options::LinkerInput)) { 3049 // Just treat as object type, we could make a special type for this if 3050 // necessary. 3051 Inputs.push_back(std::make_pair(types::TY_Object, A)); 3052 3053 } else if (A->getOption().matches(options::OPT_x)) { 3054 InputTypeArg = A; 3055 InputType = types::lookupTypeForTypeSpecifier(A->getValue()); 3056 A->claim(); 3057 3058 // Follow gcc behavior and treat as linker input for invalid -x 3059 // options. Its not clear why we shouldn't just revert to unknown; but 3060 // this isn't very important, we might as well be bug compatible. 3061 if (!InputType) { 3062 Diag(clang::diag::err_drv_unknown_language) << A->getValue(); 3063 InputType = types::TY_Object; 3064 } 3065 3066 // If the user has put -fmodule-header{,=} then we treat C++ headers as 3067 // header unit inputs. So we 'promote' -xc++-header appropriately. 3068 if (InputType == types::TY_CXXHeader && hasHeaderMode()) 3069 InputType = CXXHeaderUnitType(CXX20HeaderType); 3070 } else if (A->getOption().getID() == options::OPT_U) { 3071 assert(A->getNumValues() == 1 && "The /U option has one value."); 3072 StringRef Val = A->getValue(0); 3073 if (Val.find_first_of("/\\") != StringRef::npos) { 3074 // Warn about e.g. "/Users/me/myfile.c". 3075 Diag(diag::warn_slash_u_filename) << Val; 3076 Diag(diag::note_use_dashdash); 3077 } 3078 } 3079 } 3080 if (CCCIsCPP() && Inputs.empty()) { 3081 // If called as standalone preprocessor, stdin is processed 3082 // if no other input is present. 3083 Arg *A = MakeInputArg(Args, Opts, "-"); 3084 Inputs.push_back(std::make_pair(types::TY_C, A)); 3085 } 3086 } 3087 3088 namespace { 3089 /// Provides a convenient interface for different programming models to generate 3090 /// the required device actions. 3091 class OffloadingActionBuilder final { 3092 /// Flag used to trace errors in the builder. 3093 bool IsValid = false; 3094 3095 /// The compilation that is using this builder. 3096 Compilation &C; 3097 3098 /// Map between an input argument and the offload kinds used to process it. 3099 std::map<const Arg *, unsigned> InputArgToOffloadKindMap; 3100 3101 /// Map between a host action and its originating input argument. 3102 std::map<Action *, const Arg *> HostActionToInputArgMap; 3103 3104 /// Builder interface. It doesn't build anything or keep any state. 3105 class DeviceActionBuilder { 3106 public: 3107 typedef const llvm::SmallVectorImpl<phases::ID> PhasesTy; 3108 3109 enum ActionBuilderReturnCode { 3110 // The builder acted successfully on the current action. 3111 ABRT_Success, 3112 // The builder didn't have to act on the current action. 3113 ABRT_Inactive, 3114 // The builder was successful and requested the host action to not be 3115 // generated. 3116 ABRT_Ignore_Host, 3117 }; 3118 3119 protected: 3120 /// Compilation associated with this builder. 3121 Compilation &C; 3122 3123 /// Tool chains associated with this builder. The same programming 3124 /// model may have associated one or more tool chains. 3125 SmallVector<const ToolChain *, 2> ToolChains; 3126 3127 /// The derived arguments associated with this builder. 3128 DerivedArgList &Args; 3129 3130 /// The inputs associated with this builder. 3131 const Driver::InputList &Inputs; 3132 3133 /// The associated offload kind. 3134 Action::OffloadKind AssociatedOffloadKind = Action::OFK_None; 3135 3136 public: 3137 DeviceActionBuilder(Compilation &C, DerivedArgList &Args, 3138 const Driver::InputList &Inputs, 3139 Action::OffloadKind AssociatedOffloadKind) 3140 : C(C), Args(Args), Inputs(Inputs), 3141 AssociatedOffloadKind(AssociatedOffloadKind) {} 3142 virtual ~DeviceActionBuilder() {} 3143 3144 /// Fill up the array \a DA with all the device dependences that should be 3145 /// added to the provided host action \a HostAction. By default it is 3146 /// inactive. 3147 virtual ActionBuilderReturnCode 3148 getDeviceDependences(OffloadAction::DeviceDependences &DA, 3149 phases::ID CurPhase, phases::ID FinalPhase, 3150 PhasesTy &Phases) { 3151 return ABRT_Inactive; 3152 } 3153 3154 /// Update the state to include the provided host action \a HostAction as a 3155 /// dependency of the current device action. By default it is inactive. 3156 virtual ActionBuilderReturnCode addDeviceDependences(Action *HostAction) { 3157 return ABRT_Inactive; 3158 } 3159 3160 /// Append top level actions generated by the builder. 3161 virtual void appendTopLevelActions(ActionList &AL) {} 3162 3163 /// Append linker device actions generated by the builder. 3164 virtual void appendLinkDeviceActions(ActionList &AL) {} 3165 3166 /// Append linker host action generated by the builder. 3167 virtual Action* appendLinkHostActions(ActionList &AL) { return nullptr; } 3168 3169 /// Append linker actions generated by the builder. 3170 virtual void appendLinkDependences(OffloadAction::DeviceDependences &DA) {} 3171 3172 /// Initialize the builder. Return true if any initialization errors are 3173 /// found. 3174 virtual bool initialize() { return false; } 3175 3176 /// Return true if the builder can use bundling/unbundling. 3177 virtual bool canUseBundlerUnbundler() const { return false; } 3178 3179 /// Return true if this builder is valid. We have a valid builder if we have 3180 /// associated device tool chains. 3181 bool isValid() { return !ToolChains.empty(); } 3182 3183 /// Return the associated offload kind. 3184 Action::OffloadKind getAssociatedOffloadKind() { 3185 return AssociatedOffloadKind; 3186 } 3187 }; 3188 3189 /// Base class for CUDA/HIP action builder. It injects device code in 3190 /// the host backend action. 3191 class CudaActionBuilderBase : public DeviceActionBuilder { 3192 protected: 3193 /// Flags to signal if the user requested host-only or device-only 3194 /// compilation. 3195 bool CompileHostOnly = false; 3196 bool CompileDeviceOnly = false; 3197 bool EmitLLVM = false; 3198 bool EmitAsm = false; 3199 3200 /// ID to identify each device compilation. For CUDA it is simply the 3201 /// GPU arch string. For HIP it is either the GPU arch string or GPU 3202 /// arch string plus feature strings delimited by a plus sign, e.g. 3203 /// gfx906+xnack. 3204 struct TargetID { 3205 /// Target ID string which is persistent throughout the compilation. 3206 const char *ID; 3207 TargetID(OffloadArch Arch) { ID = OffloadArchToString(Arch); } 3208 TargetID(const char *ID) : ID(ID) {} 3209 operator const char *() { return ID; } 3210 operator StringRef() { return StringRef(ID); } 3211 }; 3212 /// List of GPU architectures to use in this compilation. 3213 SmallVector<TargetID, 4> GpuArchList; 3214 3215 /// The CUDA actions for the current input. 3216 ActionList CudaDeviceActions; 3217 3218 /// The CUDA fat binary if it was generated for the current input. 3219 Action *CudaFatBinary = nullptr; 3220 3221 /// Flag that is set to true if this builder acted on the current input. 3222 bool IsActive = false; 3223 3224 /// Flag for -fgpu-rdc. 3225 bool Relocatable = false; 3226 3227 /// Default GPU architecture if there's no one specified. 3228 OffloadArch DefaultOffloadArch = OffloadArch::UNKNOWN; 3229 3230 /// Compilation unit ID specified by option '-fuse-cuid=' or'-cuid='. 3231 const CUIDOptions &CUIDOpts; 3232 3233 public: 3234 CudaActionBuilderBase(Compilation &C, DerivedArgList &Args, 3235 const Driver::InputList &Inputs, 3236 Action::OffloadKind OFKind) 3237 : DeviceActionBuilder(C, Args, Inputs, OFKind), 3238 CUIDOpts(C.getDriver().getCUIDOpts()) { 3239 3240 CompileDeviceOnly = C.getDriver().offloadDeviceOnly(); 3241 Relocatable = Args.hasFlag(options::OPT_fgpu_rdc, 3242 options::OPT_fno_gpu_rdc, /*Default=*/false); 3243 } 3244 3245 ActionBuilderReturnCode addDeviceDependences(Action *HostAction) override { 3246 // While generating code for CUDA, we only depend on the host input action 3247 // to trigger the creation of all the CUDA device actions. 3248 3249 // If we are dealing with an input action, replicate it for each GPU 3250 // architecture. If we are in host-only mode we return 'success' so that 3251 // the host uses the CUDA offload kind. 3252 if (auto *IA = dyn_cast<InputAction>(HostAction)) { 3253 assert(!GpuArchList.empty() && 3254 "We should have at least one GPU architecture."); 3255 3256 // If the host input is not CUDA or HIP, we don't need to bother about 3257 // this input. 3258 if (!(IA->getType() == types::TY_CUDA || 3259 IA->getType() == types::TY_HIP || 3260 IA->getType() == types::TY_PP_HIP)) { 3261 // The builder will ignore this input. 3262 IsActive = false; 3263 return ABRT_Inactive; 3264 } 3265 3266 // Set the flag to true, so that the builder acts on the current input. 3267 IsActive = true; 3268 3269 if (CUIDOpts.isEnabled()) 3270 IA->setId(CUIDOpts.getCUID(IA->getInputArg().getValue(), Args)); 3271 3272 if (CompileHostOnly) 3273 return ABRT_Success; 3274 3275 // Replicate inputs for each GPU architecture. 3276 auto Ty = IA->getType() == types::TY_HIP ? types::TY_HIP_DEVICE 3277 : types::TY_CUDA_DEVICE; 3278 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) { 3279 CudaDeviceActions.push_back( 3280 C.MakeAction<InputAction>(IA->getInputArg(), Ty, IA->getId())); 3281 } 3282 3283 return ABRT_Success; 3284 } 3285 3286 // If this is an unbundling action use it as is for each CUDA toolchain. 3287 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) { 3288 3289 // If -fgpu-rdc is disabled, should not unbundle since there is no 3290 // device code to link. 3291 if (UA->getType() == types::TY_Object && !Relocatable) 3292 return ABRT_Inactive; 3293 3294 CudaDeviceActions.clear(); 3295 auto *IA = cast<InputAction>(UA->getInputs().back()); 3296 std::string FileName = IA->getInputArg().getAsString(Args); 3297 // Check if the type of the file is the same as the action. Do not 3298 // unbundle it if it is not. Do not unbundle .so files, for example, 3299 // which are not object files. Files with extension ".lib" is classified 3300 // as TY_Object but they are actually archives, therefore should not be 3301 // unbundled here as objects. They will be handled at other places. 3302 const StringRef LibFileExt = ".lib"; 3303 if (IA->getType() == types::TY_Object && 3304 (!llvm::sys::path::has_extension(FileName) || 3305 types::lookupTypeForExtension( 3306 llvm::sys::path::extension(FileName).drop_front()) != 3307 types::TY_Object || 3308 llvm::sys::path::extension(FileName) == LibFileExt)) 3309 return ABRT_Inactive; 3310 3311 for (auto Arch : GpuArchList) { 3312 CudaDeviceActions.push_back(UA); 3313 UA->registerDependentActionInfo(ToolChains[0], Arch, 3314 AssociatedOffloadKind); 3315 } 3316 IsActive = true; 3317 return ABRT_Success; 3318 } 3319 3320 return IsActive ? ABRT_Success : ABRT_Inactive; 3321 } 3322 3323 void appendTopLevelActions(ActionList &AL) override { 3324 // Utility to append actions to the top level list. 3325 auto AddTopLevel = [&](Action *A, TargetID TargetID) { 3326 OffloadAction::DeviceDependences Dep; 3327 Dep.add(*A, *ToolChains.front(), TargetID, AssociatedOffloadKind); 3328 AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType())); 3329 }; 3330 3331 // If we have a fat binary, add it to the list. 3332 if (CudaFatBinary) { 3333 AddTopLevel(CudaFatBinary, OffloadArch::UNUSED); 3334 CudaDeviceActions.clear(); 3335 CudaFatBinary = nullptr; 3336 return; 3337 } 3338 3339 if (CudaDeviceActions.empty()) 3340 return; 3341 3342 // If we have CUDA actions at this point, that's because we have a have 3343 // partial compilation, so we should have an action for each GPU 3344 // architecture. 3345 assert(CudaDeviceActions.size() == GpuArchList.size() && 3346 "Expecting one action per GPU architecture."); 3347 assert(ToolChains.size() == 1 && 3348 "Expecting to have a single CUDA toolchain."); 3349 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) 3350 AddTopLevel(CudaDeviceActions[I], GpuArchList[I]); 3351 3352 CudaDeviceActions.clear(); 3353 } 3354 3355 /// Get canonicalized offload arch option. \returns empty StringRef if the 3356 /// option is invalid. 3357 virtual StringRef getCanonicalOffloadArch(StringRef Arch) = 0; 3358 3359 virtual std::optional<std::pair<llvm::StringRef, llvm::StringRef>> 3360 getConflictOffloadArchCombination(const std::set<StringRef> &GpuArchs) = 0; 3361 3362 bool initialize() override { 3363 assert(AssociatedOffloadKind == Action::OFK_Cuda || 3364 AssociatedOffloadKind == Action::OFK_HIP); 3365 3366 // We don't need to support CUDA. 3367 if (AssociatedOffloadKind == Action::OFK_Cuda && 3368 !C.hasOffloadToolChain<Action::OFK_Cuda>()) 3369 return false; 3370 3371 // We don't need to support HIP. 3372 if (AssociatedOffloadKind == Action::OFK_HIP && 3373 !C.hasOffloadToolChain<Action::OFK_HIP>()) 3374 return false; 3375 3376 const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>(); 3377 assert(HostTC && "No toolchain for host compilation."); 3378 if (HostTC->getTriple().isNVPTX() || 3379 HostTC->getTriple().getArch() == llvm::Triple::amdgcn) { 3380 // We do not support targeting NVPTX/AMDGCN for host compilation. Throw 3381 // an error and abort pipeline construction early so we don't trip 3382 // asserts that assume device-side compilation. 3383 C.getDriver().Diag(diag::err_drv_cuda_host_arch) 3384 << HostTC->getTriple().getArchName(); 3385 return true; 3386 } 3387 3388 ToolChains.push_back( 3389 AssociatedOffloadKind == Action::OFK_Cuda 3390 ? C.getSingleOffloadToolChain<Action::OFK_Cuda>() 3391 : C.getSingleOffloadToolChain<Action::OFK_HIP>()); 3392 3393 CompileHostOnly = C.getDriver().offloadHostOnly(); 3394 EmitLLVM = Args.getLastArg(options::OPT_emit_llvm); 3395 EmitAsm = Args.getLastArg(options::OPT_S); 3396 3397 // --offload and --offload-arch options are mutually exclusive. 3398 if (Args.hasArgNoClaim(options::OPT_offload_EQ) && 3399 Args.hasArgNoClaim(options::OPT_offload_arch_EQ, 3400 options::OPT_no_offload_arch_EQ)) { 3401 C.getDriver().Diag(diag::err_opt_not_valid_with_opt) << "--offload-arch" 3402 << "--offload"; 3403 } 3404 3405 // Collect all offload arch parameters, removing duplicates. 3406 std::set<StringRef> GpuArchs; 3407 bool Error = false; 3408 for (Arg *A : Args) { 3409 if (!(A->getOption().matches(options::OPT_offload_arch_EQ) || 3410 A->getOption().matches(options::OPT_no_offload_arch_EQ))) 3411 continue; 3412 A->claim(); 3413 3414 for (StringRef ArchStr : llvm::split(A->getValue(), ",")) { 3415 if (A->getOption().matches(options::OPT_no_offload_arch_EQ) && 3416 ArchStr == "all") { 3417 GpuArchs.clear(); 3418 } else if (ArchStr == "native") { 3419 const ToolChain &TC = *ToolChains.front(); 3420 auto GPUsOrErr = ToolChains.front()->getSystemGPUArchs(Args); 3421 if (!GPUsOrErr) { 3422 TC.getDriver().Diag(diag::err_drv_undetermined_gpu_arch) 3423 << llvm::Triple::getArchTypeName(TC.getArch()) 3424 << llvm::toString(GPUsOrErr.takeError()) << "--offload-arch"; 3425 continue; 3426 } 3427 3428 for (auto GPU : *GPUsOrErr) { 3429 GpuArchs.insert(Args.MakeArgString(GPU)); 3430 } 3431 } else { 3432 ArchStr = getCanonicalOffloadArch(ArchStr); 3433 if (ArchStr.empty()) { 3434 Error = true; 3435 } else if (A->getOption().matches(options::OPT_offload_arch_EQ)) 3436 GpuArchs.insert(ArchStr); 3437 else if (A->getOption().matches(options::OPT_no_offload_arch_EQ)) 3438 GpuArchs.erase(ArchStr); 3439 else 3440 llvm_unreachable("Unexpected option."); 3441 } 3442 } 3443 } 3444 3445 auto &&ConflictingArchs = getConflictOffloadArchCombination(GpuArchs); 3446 if (ConflictingArchs) { 3447 C.getDriver().Diag(clang::diag::err_drv_bad_offload_arch_combo) 3448 << ConflictingArchs->first << ConflictingArchs->second; 3449 C.setContainsError(); 3450 return true; 3451 } 3452 3453 // Collect list of GPUs remaining in the set. 3454 for (auto Arch : GpuArchs) 3455 GpuArchList.push_back(Arch.data()); 3456 3457 // Default to sm_20 which is the lowest common denominator for 3458 // supported GPUs. sm_20 code should work correctly, if 3459 // suboptimally, on all newer GPUs. 3460 if (GpuArchList.empty()) { 3461 if (ToolChains.front()->getTriple().isSPIRV()) { 3462 if (ToolChains.front()->getTriple().getVendor() == llvm::Triple::AMD) 3463 GpuArchList.push_back(OffloadArch::AMDGCNSPIRV); 3464 else 3465 GpuArchList.push_back(OffloadArch::Generic); 3466 } else { 3467 GpuArchList.push_back(DefaultOffloadArch); 3468 } 3469 } 3470 3471 return Error; 3472 } 3473 }; 3474 3475 /// \brief CUDA action builder. It injects device code in the host backend 3476 /// action. 3477 class CudaActionBuilder final : public CudaActionBuilderBase { 3478 public: 3479 CudaActionBuilder(Compilation &C, DerivedArgList &Args, 3480 const Driver::InputList &Inputs) 3481 : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_Cuda) { 3482 DefaultOffloadArch = OffloadArch::CudaDefault; 3483 } 3484 3485 StringRef getCanonicalOffloadArch(StringRef ArchStr) override { 3486 OffloadArch Arch = StringToOffloadArch(ArchStr); 3487 if (Arch == OffloadArch::UNKNOWN || !IsNVIDIAOffloadArch(Arch)) { 3488 C.getDriver().Diag(clang::diag::err_drv_cuda_bad_gpu_arch) << ArchStr; 3489 return StringRef(); 3490 } 3491 return OffloadArchToString(Arch); 3492 } 3493 3494 std::optional<std::pair<llvm::StringRef, llvm::StringRef>> 3495 getConflictOffloadArchCombination( 3496 const std::set<StringRef> &GpuArchs) override { 3497 return std::nullopt; 3498 } 3499 3500 ActionBuilderReturnCode 3501 getDeviceDependences(OffloadAction::DeviceDependences &DA, 3502 phases::ID CurPhase, phases::ID FinalPhase, 3503 PhasesTy &Phases) override { 3504 if (!IsActive) 3505 return ABRT_Inactive; 3506 3507 // If we don't have more CUDA actions, we don't have any dependences to 3508 // create for the host. 3509 if (CudaDeviceActions.empty()) 3510 return ABRT_Success; 3511 3512 assert(CudaDeviceActions.size() == GpuArchList.size() && 3513 "Expecting one action per GPU architecture."); 3514 assert(!CompileHostOnly && 3515 "Not expecting CUDA actions in host-only compilation."); 3516 3517 // If we are generating code for the device or we are in a backend phase, 3518 // we attempt to generate the fat binary. We compile each arch to ptx and 3519 // assemble to cubin, then feed the cubin *and* the ptx into a device 3520 // "link" action, which uses fatbinary to combine these cubins into one 3521 // fatbin. The fatbin is then an input to the host action if not in 3522 // device-only mode. 3523 if (CompileDeviceOnly || CurPhase == phases::Backend) { 3524 ActionList DeviceActions; 3525 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) { 3526 // Produce the device action from the current phase up to the assemble 3527 // phase. 3528 for (auto Ph : Phases) { 3529 // Skip the phases that were already dealt with. 3530 if (Ph < CurPhase) 3531 continue; 3532 // We have to be consistent with the host final phase. 3533 if (Ph > FinalPhase) 3534 break; 3535 3536 CudaDeviceActions[I] = C.getDriver().ConstructPhaseAction( 3537 C, Args, Ph, CudaDeviceActions[I], Action::OFK_Cuda); 3538 3539 if (Ph == phases::Assemble) 3540 break; 3541 } 3542 3543 // If we didn't reach the assemble phase, we can't generate the fat 3544 // binary. We don't need to generate the fat binary if we are not in 3545 // device-only mode. 3546 if (!isa<AssembleJobAction>(CudaDeviceActions[I]) || 3547 CompileDeviceOnly) 3548 continue; 3549 3550 Action *AssembleAction = CudaDeviceActions[I]; 3551 assert(AssembleAction->getType() == types::TY_Object); 3552 assert(AssembleAction->getInputs().size() == 1); 3553 3554 Action *BackendAction = AssembleAction->getInputs()[0]; 3555 assert(BackendAction->getType() == types::TY_PP_Asm); 3556 3557 for (auto &A : {AssembleAction, BackendAction}) { 3558 OffloadAction::DeviceDependences DDep; 3559 DDep.add(*A, *ToolChains.front(), GpuArchList[I], Action::OFK_Cuda); 3560 DeviceActions.push_back( 3561 C.MakeAction<OffloadAction>(DDep, A->getType())); 3562 } 3563 } 3564 3565 // We generate the fat binary if we have device input actions. 3566 if (!DeviceActions.empty()) { 3567 CudaFatBinary = 3568 C.MakeAction<LinkJobAction>(DeviceActions, types::TY_CUDA_FATBIN); 3569 3570 if (!CompileDeviceOnly) { 3571 DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr, 3572 Action::OFK_Cuda); 3573 // Clear the fat binary, it is already a dependence to an host 3574 // action. 3575 CudaFatBinary = nullptr; 3576 } 3577 3578 // Remove the CUDA actions as they are already connected to an host 3579 // action or fat binary. 3580 CudaDeviceActions.clear(); 3581 } 3582 3583 // We avoid creating host action in device-only mode. 3584 return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success; 3585 } else if (CurPhase > phases::Backend) { 3586 // If we are past the backend phase and still have a device action, we 3587 // don't have to do anything as this action is already a device 3588 // top-level action. 3589 return ABRT_Success; 3590 } 3591 3592 assert(CurPhase < phases::Backend && "Generating single CUDA " 3593 "instructions should only occur " 3594 "before the backend phase!"); 3595 3596 // By default, we produce an action for each device arch. 3597 for (Action *&A : CudaDeviceActions) 3598 A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A); 3599 3600 return ABRT_Success; 3601 } 3602 }; 3603 /// \brief HIP action builder. It injects device code in the host backend 3604 /// action. 3605 class HIPActionBuilder final : public CudaActionBuilderBase { 3606 /// The linker inputs obtained for each device arch. 3607 SmallVector<ActionList, 8> DeviceLinkerInputs; 3608 // The default bundling behavior depends on the type of output, therefore 3609 // BundleOutput needs to be tri-value: None, true, or false. 3610 // Bundle code objects except --no-gpu-output is specified for device 3611 // only compilation. Bundle other type of output files only if 3612 // --gpu-bundle-output is specified for device only compilation. 3613 std::optional<bool> BundleOutput; 3614 std::optional<bool> EmitReloc; 3615 3616 public: 3617 HIPActionBuilder(Compilation &C, DerivedArgList &Args, 3618 const Driver::InputList &Inputs) 3619 : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_HIP) { 3620 3621 DefaultOffloadArch = OffloadArch::HIPDefault; 3622 3623 if (Args.hasArg(options::OPT_fhip_emit_relocatable, 3624 options::OPT_fno_hip_emit_relocatable)) { 3625 EmitReloc = Args.hasFlag(options::OPT_fhip_emit_relocatable, 3626 options::OPT_fno_hip_emit_relocatable, false); 3627 3628 if (*EmitReloc) { 3629 if (Relocatable) { 3630 C.getDriver().Diag(diag::err_opt_not_valid_with_opt) 3631 << "-fhip-emit-relocatable" 3632 << "-fgpu-rdc"; 3633 } 3634 3635 if (!CompileDeviceOnly) { 3636 C.getDriver().Diag(diag::err_opt_not_valid_without_opt) 3637 << "-fhip-emit-relocatable" 3638 << "--cuda-device-only"; 3639 } 3640 } 3641 } 3642 3643 if (Args.hasArg(options::OPT_gpu_bundle_output, 3644 options::OPT_no_gpu_bundle_output)) 3645 BundleOutput = Args.hasFlag(options::OPT_gpu_bundle_output, 3646 options::OPT_no_gpu_bundle_output, true) && 3647 (!EmitReloc || !*EmitReloc); 3648 } 3649 3650 bool canUseBundlerUnbundler() const override { return true; } 3651 3652 StringRef getCanonicalOffloadArch(StringRef IdStr) override { 3653 llvm::StringMap<bool> Features; 3654 // getHIPOffloadTargetTriple() is known to return valid value as it has 3655 // been called successfully in the CreateOffloadingDeviceToolChains(). 3656 auto T = 3657 (IdStr == "amdgcnspirv") 3658 ? llvm::Triple("spirv64-amd-amdhsa") 3659 : *getHIPOffloadTargetTriple(C.getDriver(), C.getInputArgs()); 3660 auto ArchStr = parseTargetID(T, IdStr, &Features); 3661 if (!ArchStr) { 3662 C.getDriver().Diag(clang::diag::err_drv_bad_target_id) << IdStr; 3663 C.setContainsError(); 3664 return StringRef(); 3665 } 3666 auto CanId = getCanonicalTargetID(*ArchStr, Features); 3667 return Args.MakeArgStringRef(CanId); 3668 }; 3669 3670 std::optional<std::pair<llvm::StringRef, llvm::StringRef>> 3671 getConflictOffloadArchCombination( 3672 const std::set<StringRef> &GpuArchs) override { 3673 return getConflictTargetIDCombination(GpuArchs); 3674 } 3675 3676 ActionBuilderReturnCode 3677 getDeviceDependences(OffloadAction::DeviceDependences &DA, 3678 phases::ID CurPhase, phases::ID FinalPhase, 3679 PhasesTy &Phases) override { 3680 if (!IsActive) 3681 return ABRT_Inactive; 3682 3683 // amdgcn does not support linking of object files, therefore we skip 3684 // backend and assemble phases to output LLVM IR. Except for generating 3685 // non-relocatable device code, where we generate fat binary for device 3686 // code and pass to host in Backend phase. 3687 if (CudaDeviceActions.empty()) 3688 return ABRT_Success; 3689 3690 assert(((CurPhase == phases::Link && Relocatable) || 3691 CudaDeviceActions.size() == GpuArchList.size()) && 3692 "Expecting one action per GPU architecture."); 3693 assert(!CompileHostOnly && 3694 "Not expecting HIP actions in host-only compilation."); 3695 3696 bool ShouldLink = !EmitReloc || !*EmitReloc; 3697 3698 if (!Relocatable && CurPhase == phases::Backend && !EmitLLVM && 3699 !EmitAsm && ShouldLink) { 3700 // If we are in backend phase, we attempt to generate the fat binary. 3701 // We compile each arch to IR and use a link action to generate code 3702 // object containing ISA. Then we use a special "link" action to create 3703 // a fat binary containing all the code objects for different GPU's. 3704 // The fat binary is then an input to the host action. 3705 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) { 3706 if (C.getDriver().isUsingOffloadLTO()) { 3707 // When LTO is enabled, skip the backend and assemble phases and 3708 // use lld to link the bitcode. 3709 ActionList AL; 3710 AL.push_back(CudaDeviceActions[I]); 3711 // Create a link action to link device IR with device library 3712 // and generate ISA. 3713 CudaDeviceActions[I] = 3714 C.MakeAction<LinkJobAction>(AL, types::TY_Image); 3715 } else { 3716 // When LTO is not enabled, we follow the conventional 3717 // compiler phases, including backend and assemble phases. 3718 ActionList AL; 3719 Action *BackendAction = nullptr; 3720 if (ToolChains.front()->getTriple().isSPIRV()) { 3721 // Emit LLVM bitcode for SPIR-V targets. SPIR-V device tool chain 3722 // (HIPSPVToolChain) runs post-link LLVM IR passes. 3723 types::ID Output = Args.hasArg(options::OPT_S) 3724 ? types::TY_LLVM_IR 3725 : types::TY_LLVM_BC; 3726 BackendAction = 3727 C.MakeAction<BackendJobAction>(CudaDeviceActions[I], Output); 3728 } else 3729 BackendAction = C.getDriver().ConstructPhaseAction( 3730 C, Args, phases::Backend, CudaDeviceActions[I], 3731 AssociatedOffloadKind); 3732 auto AssembleAction = C.getDriver().ConstructPhaseAction( 3733 C, Args, phases::Assemble, BackendAction, 3734 AssociatedOffloadKind); 3735 AL.push_back(AssembleAction); 3736 // Create a link action to link device IR with device library 3737 // and generate ISA. 3738 CudaDeviceActions[I] = 3739 C.MakeAction<LinkJobAction>(AL, types::TY_Image); 3740 } 3741 3742 // OffloadingActionBuilder propagates device arch until an offload 3743 // action. Since the next action for creating fatbin does 3744 // not have device arch, whereas the above link action and its input 3745 // have device arch, an offload action is needed to stop the null 3746 // device arch of the next action being propagated to the above link 3747 // action. 3748 OffloadAction::DeviceDependences DDep; 3749 DDep.add(*CudaDeviceActions[I], *ToolChains.front(), GpuArchList[I], 3750 AssociatedOffloadKind); 3751 CudaDeviceActions[I] = C.MakeAction<OffloadAction>( 3752 DDep, CudaDeviceActions[I]->getType()); 3753 } 3754 3755 if (!CompileDeviceOnly || !BundleOutput || *BundleOutput) { 3756 // Create HIP fat binary with a special "link" action. 3757 CudaFatBinary = C.MakeAction<LinkJobAction>(CudaDeviceActions, 3758 types::TY_HIP_FATBIN); 3759 3760 if (!CompileDeviceOnly) { 3761 DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr, 3762 AssociatedOffloadKind); 3763 // Clear the fat binary, it is already a dependence to an host 3764 // action. 3765 CudaFatBinary = nullptr; 3766 } 3767 3768 // Remove the CUDA actions as they are already connected to an host 3769 // action or fat binary. 3770 CudaDeviceActions.clear(); 3771 } 3772 3773 return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success; 3774 } else if (CurPhase == phases::Link) { 3775 if (!ShouldLink) 3776 return ABRT_Success; 3777 // Save CudaDeviceActions to DeviceLinkerInputs for each GPU subarch. 3778 // This happens to each device action originated from each input file. 3779 // Later on, device actions in DeviceLinkerInputs are used to create 3780 // device link actions in appendLinkDependences and the created device 3781 // link actions are passed to the offload action as device dependence. 3782 DeviceLinkerInputs.resize(CudaDeviceActions.size()); 3783 auto LI = DeviceLinkerInputs.begin(); 3784 for (auto *A : CudaDeviceActions) { 3785 LI->push_back(A); 3786 ++LI; 3787 } 3788 3789 // We will pass the device action as a host dependence, so we don't 3790 // need to do anything else with them. 3791 CudaDeviceActions.clear(); 3792 return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success; 3793 } 3794 3795 // By default, we produce an action for each device arch. 3796 for (Action *&A : CudaDeviceActions) 3797 A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A, 3798 AssociatedOffloadKind); 3799 3800 if (CompileDeviceOnly && CurPhase == FinalPhase && BundleOutput && 3801 *BundleOutput) { 3802 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) { 3803 OffloadAction::DeviceDependences DDep; 3804 DDep.add(*CudaDeviceActions[I], *ToolChains.front(), GpuArchList[I], 3805 AssociatedOffloadKind); 3806 CudaDeviceActions[I] = C.MakeAction<OffloadAction>( 3807 DDep, CudaDeviceActions[I]->getType()); 3808 } 3809 CudaFatBinary = 3810 C.MakeAction<OffloadBundlingJobAction>(CudaDeviceActions); 3811 CudaDeviceActions.clear(); 3812 } 3813 3814 return (CompileDeviceOnly && 3815 (CurPhase == FinalPhase || 3816 (!ShouldLink && CurPhase == phases::Assemble))) 3817 ? ABRT_Ignore_Host 3818 : ABRT_Success; 3819 } 3820 3821 void appendLinkDeviceActions(ActionList &AL) override { 3822 if (DeviceLinkerInputs.size() == 0) 3823 return; 3824 3825 assert(DeviceLinkerInputs.size() == GpuArchList.size() && 3826 "Linker inputs and GPU arch list sizes do not match."); 3827 3828 ActionList Actions; 3829 unsigned I = 0; 3830 // Append a new link action for each device. 3831 // Each entry in DeviceLinkerInputs corresponds to a GPU arch. 3832 for (auto &LI : DeviceLinkerInputs) { 3833 3834 types::ID Output = Args.hasArg(options::OPT_emit_llvm) 3835 ? types::TY_LLVM_BC 3836 : types::TY_Image; 3837 3838 auto *DeviceLinkAction = C.MakeAction<LinkJobAction>(LI, Output); 3839 // Linking all inputs for the current GPU arch. 3840 // LI contains all the inputs for the linker. 3841 OffloadAction::DeviceDependences DeviceLinkDeps; 3842 DeviceLinkDeps.add(*DeviceLinkAction, *ToolChains[0], 3843 GpuArchList[I], AssociatedOffloadKind); 3844 Actions.push_back(C.MakeAction<OffloadAction>( 3845 DeviceLinkDeps, DeviceLinkAction->getType())); 3846 ++I; 3847 } 3848 DeviceLinkerInputs.clear(); 3849 3850 // If emitting LLVM, do not generate final host/device compilation action 3851 if (Args.hasArg(options::OPT_emit_llvm)) { 3852 AL.append(Actions); 3853 return; 3854 } 3855 3856 // Create a host object from all the device images by embedding them 3857 // in a fat binary for mixed host-device compilation. For device-only 3858 // compilation, creates a fat binary. 3859 OffloadAction::DeviceDependences DDeps; 3860 if (!CompileDeviceOnly || !BundleOutput || *BundleOutput) { 3861 auto *TopDeviceLinkAction = C.MakeAction<LinkJobAction>( 3862 Actions, 3863 CompileDeviceOnly ? types::TY_HIP_FATBIN : types::TY_Object); 3864 DDeps.add(*TopDeviceLinkAction, *ToolChains[0], nullptr, 3865 AssociatedOffloadKind); 3866 // Offload the host object to the host linker. 3867 AL.push_back( 3868 C.MakeAction<OffloadAction>(DDeps, TopDeviceLinkAction->getType())); 3869 } else { 3870 AL.append(Actions); 3871 } 3872 } 3873 3874 Action* appendLinkHostActions(ActionList &AL) override { return AL.back(); } 3875 3876 void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {} 3877 }; 3878 3879 /// 3880 /// TODO: Add the implementation for other specialized builders here. 3881 /// 3882 3883 /// Specialized builders being used by this offloading action builder. 3884 SmallVector<DeviceActionBuilder *, 4> SpecializedBuilders; 3885 3886 /// Flag set to true if all valid builders allow file bundling/unbundling. 3887 bool CanUseBundler; 3888 3889 public: 3890 OffloadingActionBuilder(Compilation &C, DerivedArgList &Args, 3891 const Driver::InputList &Inputs) 3892 : C(C) { 3893 // Create a specialized builder for each device toolchain. 3894 3895 IsValid = true; 3896 3897 // Create a specialized builder for CUDA. 3898 SpecializedBuilders.push_back(new CudaActionBuilder(C, Args, Inputs)); 3899 3900 // Create a specialized builder for HIP. 3901 SpecializedBuilders.push_back(new HIPActionBuilder(C, Args, Inputs)); 3902 3903 // 3904 // TODO: Build other specialized builders here. 3905 // 3906 3907 // Initialize all the builders, keeping track of errors. If all valid 3908 // builders agree that we can use bundling, set the flag to true. 3909 unsigned ValidBuilders = 0u; 3910 unsigned ValidBuildersSupportingBundling = 0u; 3911 for (auto *SB : SpecializedBuilders) { 3912 IsValid = IsValid && !SB->initialize(); 3913 3914 // Update the counters if the builder is valid. 3915 if (SB->isValid()) { 3916 ++ValidBuilders; 3917 if (SB->canUseBundlerUnbundler()) 3918 ++ValidBuildersSupportingBundling; 3919 } 3920 } 3921 CanUseBundler = 3922 ValidBuilders && ValidBuilders == ValidBuildersSupportingBundling; 3923 } 3924 3925 ~OffloadingActionBuilder() { 3926 for (auto *SB : SpecializedBuilders) 3927 delete SB; 3928 } 3929 3930 /// Record a host action and its originating input argument. 3931 void recordHostAction(Action *HostAction, const Arg *InputArg) { 3932 assert(HostAction && "Invalid host action"); 3933 assert(InputArg && "Invalid input argument"); 3934 auto Loc = HostActionToInputArgMap.try_emplace(HostAction, InputArg).first; 3935 assert(Loc->second == InputArg && 3936 "host action mapped to multiple input arguments"); 3937 (void)Loc; 3938 } 3939 3940 /// Generate an action that adds device dependences (if any) to a host action. 3941 /// If no device dependence actions exist, just return the host action \a 3942 /// HostAction. If an error is found or if no builder requires the host action 3943 /// to be generated, return nullptr. 3944 Action * 3945 addDeviceDependencesToHostAction(Action *HostAction, const Arg *InputArg, 3946 phases::ID CurPhase, phases::ID FinalPhase, 3947 DeviceActionBuilder::PhasesTy &Phases) { 3948 if (!IsValid) 3949 return nullptr; 3950 3951 if (SpecializedBuilders.empty()) 3952 return HostAction; 3953 3954 assert(HostAction && "Invalid host action!"); 3955 recordHostAction(HostAction, InputArg); 3956 3957 OffloadAction::DeviceDependences DDeps; 3958 // Check if all the programming models agree we should not emit the host 3959 // action. Also, keep track of the offloading kinds employed. 3960 auto &OffloadKind = InputArgToOffloadKindMap[InputArg]; 3961 unsigned InactiveBuilders = 0u; 3962 unsigned IgnoringBuilders = 0u; 3963 for (auto *SB : SpecializedBuilders) { 3964 if (!SB->isValid()) { 3965 ++InactiveBuilders; 3966 continue; 3967 } 3968 auto RetCode = 3969 SB->getDeviceDependences(DDeps, CurPhase, FinalPhase, Phases); 3970 3971 // If the builder explicitly says the host action should be ignored, 3972 // we need to increment the variable that tracks the builders that request 3973 // the host object to be ignored. 3974 if (RetCode == DeviceActionBuilder::ABRT_Ignore_Host) 3975 ++IgnoringBuilders; 3976 3977 // Unless the builder was inactive for this action, we have to record the 3978 // offload kind because the host will have to use it. 3979 if (RetCode != DeviceActionBuilder::ABRT_Inactive) 3980 OffloadKind |= SB->getAssociatedOffloadKind(); 3981 } 3982 3983 // If all builders agree that the host object should be ignored, just return 3984 // nullptr. 3985 if (IgnoringBuilders && 3986 SpecializedBuilders.size() == (InactiveBuilders + IgnoringBuilders)) 3987 return nullptr; 3988 3989 if (DDeps.getActions().empty()) 3990 return HostAction; 3991 3992 // We have dependences we need to bundle together. We use an offload action 3993 // for that. 3994 OffloadAction::HostDependence HDep( 3995 *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(), 3996 /*BoundArch=*/nullptr, DDeps); 3997 return C.MakeAction<OffloadAction>(HDep, DDeps); 3998 } 3999 4000 /// Generate an action that adds a host dependence to a device action. The 4001 /// results will be kept in this action builder. Return true if an error was 4002 /// found. 4003 bool addHostDependenceToDeviceActions(Action *&HostAction, 4004 const Arg *InputArg) { 4005 if (!IsValid) 4006 return true; 4007 4008 recordHostAction(HostAction, InputArg); 4009 4010 // If we are supporting bundling/unbundling and the current action is an 4011 // input action of non-source file, we replace the host action by the 4012 // unbundling action. The bundler tool has the logic to detect if an input 4013 // is a bundle or not and if the input is not a bundle it assumes it is a 4014 // host file. Therefore it is safe to create an unbundling action even if 4015 // the input is not a bundle. 4016 if (CanUseBundler && isa<InputAction>(HostAction) && 4017 InputArg->getOption().getKind() == llvm::opt::Option::InputClass && 4018 (!types::isSrcFile(HostAction->getType()) || 4019 HostAction->getType() == types::TY_PP_HIP)) { 4020 auto UnbundlingHostAction = 4021 C.MakeAction<OffloadUnbundlingJobAction>(HostAction); 4022 UnbundlingHostAction->registerDependentActionInfo( 4023 C.getSingleOffloadToolChain<Action::OFK_Host>(), 4024 /*BoundArch=*/StringRef(), Action::OFK_Host); 4025 HostAction = UnbundlingHostAction; 4026 recordHostAction(HostAction, InputArg); 4027 } 4028 4029 assert(HostAction && "Invalid host action!"); 4030 4031 // Register the offload kinds that are used. 4032 auto &OffloadKind = InputArgToOffloadKindMap[InputArg]; 4033 for (auto *SB : SpecializedBuilders) { 4034 if (!SB->isValid()) 4035 continue; 4036 4037 auto RetCode = SB->addDeviceDependences(HostAction); 4038 4039 // Host dependences for device actions are not compatible with that same 4040 // action being ignored. 4041 assert(RetCode != DeviceActionBuilder::ABRT_Ignore_Host && 4042 "Host dependence not expected to be ignored.!"); 4043 4044 // Unless the builder was inactive for this action, we have to record the 4045 // offload kind because the host will have to use it. 4046 if (RetCode != DeviceActionBuilder::ABRT_Inactive) 4047 OffloadKind |= SB->getAssociatedOffloadKind(); 4048 } 4049 4050 // Do not use unbundler if the Host does not depend on device action. 4051 if (OffloadKind == Action::OFK_None && CanUseBundler) 4052 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) 4053 HostAction = UA->getInputs().back(); 4054 4055 return false; 4056 } 4057 4058 /// Add the offloading top level actions to the provided action list. This 4059 /// function can replace the host action by a bundling action if the 4060 /// programming models allow it. 4061 bool appendTopLevelActions(ActionList &AL, Action *HostAction, 4062 const Arg *InputArg) { 4063 if (HostAction) 4064 recordHostAction(HostAction, InputArg); 4065 4066 // Get the device actions to be appended. 4067 ActionList OffloadAL; 4068 for (auto *SB : SpecializedBuilders) { 4069 if (!SB->isValid()) 4070 continue; 4071 SB->appendTopLevelActions(OffloadAL); 4072 } 4073 4074 // If we can use the bundler, replace the host action by the bundling one in 4075 // the resulting list. Otherwise, just append the device actions. For 4076 // device only compilation, HostAction is a null pointer, therefore only do 4077 // this when HostAction is not a null pointer. 4078 if (CanUseBundler && HostAction && 4079 HostAction->getType() != types::TY_Nothing && !OffloadAL.empty()) { 4080 // Add the host action to the list in order to create the bundling action. 4081 OffloadAL.push_back(HostAction); 4082 4083 // We expect that the host action was just appended to the action list 4084 // before this method was called. 4085 assert(HostAction == AL.back() && "Host action not in the list??"); 4086 HostAction = C.MakeAction<OffloadBundlingJobAction>(OffloadAL); 4087 recordHostAction(HostAction, InputArg); 4088 AL.back() = HostAction; 4089 } else 4090 AL.append(OffloadAL.begin(), OffloadAL.end()); 4091 4092 // Propagate to the current host action (if any) the offload information 4093 // associated with the current input. 4094 if (HostAction) 4095 HostAction->propagateHostOffloadInfo(InputArgToOffloadKindMap[InputArg], 4096 /*BoundArch=*/nullptr); 4097 return false; 4098 } 4099 4100 void appendDeviceLinkActions(ActionList &AL) { 4101 for (DeviceActionBuilder *SB : SpecializedBuilders) { 4102 if (!SB->isValid()) 4103 continue; 4104 SB->appendLinkDeviceActions(AL); 4105 } 4106 } 4107 4108 Action *makeHostLinkAction() { 4109 // Build a list of device linking actions. 4110 ActionList DeviceAL; 4111 appendDeviceLinkActions(DeviceAL); 4112 if (DeviceAL.empty()) 4113 return nullptr; 4114 4115 // Let builders add host linking actions. 4116 Action* HA = nullptr; 4117 for (DeviceActionBuilder *SB : SpecializedBuilders) { 4118 if (!SB->isValid()) 4119 continue; 4120 HA = SB->appendLinkHostActions(DeviceAL); 4121 // This created host action has no originating input argument, therefore 4122 // needs to set its offloading kind directly. 4123 if (HA) 4124 HA->propagateHostOffloadInfo(SB->getAssociatedOffloadKind(), 4125 /*BoundArch=*/nullptr); 4126 } 4127 return HA; 4128 } 4129 4130 /// Processes the host linker action. This currently consists of replacing it 4131 /// with an offload action if there are device link objects and propagate to 4132 /// the host action all the offload kinds used in the current compilation. The 4133 /// resulting action is returned. 4134 Action *processHostLinkAction(Action *HostAction) { 4135 // Add all the dependences from the device linking actions. 4136 OffloadAction::DeviceDependences DDeps; 4137 for (auto *SB : SpecializedBuilders) { 4138 if (!SB->isValid()) 4139 continue; 4140 4141 SB->appendLinkDependences(DDeps); 4142 } 4143 4144 // Calculate all the offload kinds used in the current compilation. 4145 unsigned ActiveOffloadKinds = 0u; 4146 for (auto &I : InputArgToOffloadKindMap) 4147 ActiveOffloadKinds |= I.second; 4148 4149 // If we don't have device dependencies, we don't have to create an offload 4150 // action. 4151 if (DDeps.getActions().empty()) { 4152 // Set all the active offloading kinds to the link action. Given that it 4153 // is a link action it is assumed to depend on all actions generated so 4154 // far. 4155 HostAction->setHostOffloadInfo(ActiveOffloadKinds, 4156 /*BoundArch=*/nullptr); 4157 // Propagate active offloading kinds for each input to the link action. 4158 // Each input may have different active offloading kind. 4159 for (auto *A : HostAction->inputs()) { 4160 auto ArgLoc = HostActionToInputArgMap.find(A); 4161 if (ArgLoc == HostActionToInputArgMap.end()) 4162 continue; 4163 auto OFKLoc = InputArgToOffloadKindMap.find(ArgLoc->second); 4164 if (OFKLoc == InputArgToOffloadKindMap.end()) 4165 continue; 4166 A->propagateHostOffloadInfo(OFKLoc->second, /*BoundArch=*/nullptr); 4167 } 4168 return HostAction; 4169 } 4170 4171 // Create the offload action with all dependences. When an offload action 4172 // is created the kinds are propagated to the host action, so we don't have 4173 // to do that explicitly here. 4174 OffloadAction::HostDependence HDep( 4175 *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(), 4176 /*BoundArch*/ nullptr, ActiveOffloadKinds); 4177 return C.MakeAction<OffloadAction>(HDep, DDeps); 4178 } 4179 }; 4180 } // anonymous namespace. 4181 4182 void Driver::handleArguments(Compilation &C, DerivedArgList &Args, 4183 const InputList &Inputs, 4184 ActionList &Actions) const { 4185 4186 // Ignore /Yc/Yu if both /Yc and /Yu passed but with different filenames. 4187 Arg *YcArg = Args.getLastArg(options::OPT__SLASH_Yc); 4188 Arg *YuArg = Args.getLastArg(options::OPT__SLASH_Yu); 4189 if (YcArg && YuArg && strcmp(YcArg->getValue(), YuArg->getValue()) != 0) { 4190 Diag(clang::diag::warn_drv_ycyu_different_arg_clang_cl); 4191 Args.eraseArg(options::OPT__SLASH_Yc); 4192 Args.eraseArg(options::OPT__SLASH_Yu); 4193 YcArg = YuArg = nullptr; 4194 } 4195 if (YcArg && Inputs.size() > 1) { 4196 Diag(clang::diag::warn_drv_yc_multiple_inputs_clang_cl); 4197 Args.eraseArg(options::OPT__SLASH_Yc); 4198 YcArg = nullptr; 4199 } 4200 4201 Arg *FinalPhaseArg; 4202 phases::ID FinalPhase = getFinalPhase(Args, &FinalPhaseArg); 4203 4204 if (FinalPhase == phases::Link) { 4205 if (Args.hasArgNoClaim(options::OPT_hipstdpar)) { 4206 Args.AddFlagArg(nullptr, getOpts().getOption(options::OPT_hip_link)); 4207 Args.AddFlagArg(nullptr, 4208 getOpts().getOption(options::OPT_frtlib_add_rpath)); 4209 } 4210 // Emitting LLVM while linking disabled except in HIPAMD Toolchain 4211 if (Args.hasArg(options::OPT_emit_llvm) && !Args.hasArg(options::OPT_hip_link)) 4212 Diag(clang::diag::err_drv_emit_llvm_link); 4213 if (C.getDefaultToolChain().getTriple().isWindowsMSVCEnvironment() && 4214 LTOMode != LTOK_None && 4215 !Args.getLastArgValue(options::OPT_fuse_ld_EQ) 4216 .starts_with_insensitive("lld")) 4217 Diag(clang::diag::err_drv_lto_without_lld); 4218 4219 // If -dumpdir is not specified, give a default prefix derived from the link 4220 // output filename. For example, `clang -g -gsplit-dwarf a.c -o x` passes 4221 // `-dumpdir x-` to cc1. If -o is unspecified, use 4222 // stem(getDefaultImageName()) (usually stem("a.out") = "a"). 4223 if (!Args.hasArg(options::OPT_dumpdir)) { 4224 Arg *FinalOutput = Args.getLastArg(options::OPT_o, options::OPT__SLASH_o); 4225 Arg *Arg = Args.MakeSeparateArg( 4226 nullptr, getOpts().getOption(options::OPT_dumpdir), 4227 Args.MakeArgString( 4228 (FinalOutput ? FinalOutput->getValue() 4229 : llvm::sys::path::stem(getDefaultImageName())) + 4230 "-")); 4231 Arg->claim(); 4232 Args.append(Arg); 4233 } 4234 } 4235 4236 if (FinalPhase == phases::Preprocess || Args.hasArg(options::OPT__SLASH_Y_)) { 4237 // If only preprocessing or /Y- is used, all pch handling is disabled. 4238 // Rather than check for it everywhere, just remove clang-cl pch-related 4239 // flags here. 4240 Args.eraseArg(options::OPT__SLASH_Fp); 4241 Args.eraseArg(options::OPT__SLASH_Yc); 4242 Args.eraseArg(options::OPT__SLASH_Yu); 4243 YcArg = YuArg = nullptr; 4244 } 4245 4246 bool LinkOnly = phases::Link == FinalPhase && Inputs.size() > 0; 4247 for (auto &I : Inputs) { 4248 types::ID InputType = I.first; 4249 const Arg *InputArg = I.second; 4250 4251 auto PL = types::getCompilationPhases(InputType); 4252 4253 phases::ID InitialPhase = PL[0]; 4254 LinkOnly = LinkOnly && phases::Link == InitialPhase && PL.size() == 1; 4255 4256 // If the first step comes after the final phase we are doing as part of 4257 // this compilation, warn the user about it. 4258 if (InitialPhase > FinalPhase) { 4259 if (InputArg->isClaimed()) 4260 continue; 4261 4262 // Claim here to avoid the more general unused warning. 4263 InputArg->claim(); 4264 4265 // Suppress all unused style warnings with -Qunused-arguments 4266 if (Args.hasArg(options::OPT_Qunused_arguments)) 4267 continue; 4268 4269 // Special case when final phase determined by binary name, rather than 4270 // by a command-line argument with a corresponding Arg. 4271 if (CCCIsCPP()) 4272 Diag(clang::diag::warn_drv_input_file_unused_by_cpp) 4273 << InputArg->getAsString(Args) << getPhaseName(InitialPhase); 4274 // Special case '-E' warning on a previously preprocessed file to make 4275 // more sense. 4276 else if (InitialPhase == phases::Compile && 4277 (Args.getLastArg(options::OPT__SLASH_EP, 4278 options::OPT__SLASH_P) || 4279 Args.getLastArg(options::OPT_E) || 4280 Args.getLastArg(options::OPT_M, options::OPT_MM)) && 4281 getPreprocessedType(InputType) == types::TY_INVALID) 4282 Diag(clang::diag::warn_drv_preprocessed_input_file_unused) 4283 << InputArg->getAsString(Args) << !!FinalPhaseArg 4284 << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : ""); 4285 else 4286 Diag(clang::diag::warn_drv_input_file_unused) 4287 << InputArg->getAsString(Args) << getPhaseName(InitialPhase) 4288 << !!FinalPhaseArg 4289 << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : ""); 4290 continue; 4291 } 4292 4293 if (YcArg) { 4294 // Add a separate precompile phase for the compile phase. 4295 if (FinalPhase >= phases::Compile) { 4296 const types::ID HeaderType = lookupHeaderTypeForSourceType(InputType); 4297 // Build the pipeline for the pch file. 4298 Action *ClangClPch = C.MakeAction<InputAction>(*InputArg, HeaderType); 4299 for (phases::ID Phase : types::getCompilationPhases(HeaderType)) 4300 ClangClPch = ConstructPhaseAction(C, Args, Phase, ClangClPch); 4301 assert(ClangClPch); 4302 Actions.push_back(ClangClPch); 4303 // The driver currently exits after the first failed command. This 4304 // relies on that behavior, to make sure if the pch generation fails, 4305 // the main compilation won't run. 4306 // FIXME: If the main compilation fails, the PCH generation should 4307 // probably not be considered successful either. 4308 } 4309 } 4310 } 4311 4312 // Claim any options which are obviously only used for compilation. 4313 if (LinkOnly) { 4314 Args.ClaimAllArgs(options::OPT_CompileOnly_Group); 4315 Args.ClaimAllArgs(options::OPT_cl_compile_Group); 4316 } 4317 } 4318 4319 void Driver::BuildActions(Compilation &C, DerivedArgList &Args, 4320 const InputList &Inputs, ActionList &Actions) const { 4321 llvm::PrettyStackTraceString CrashInfo("Building compilation actions"); 4322 4323 if (!SuppressMissingInputWarning && Inputs.empty()) { 4324 Diag(clang::diag::err_drv_no_input_files); 4325 return; 4326 } 4327 4328 // Diagnose misuse of /Fo. 4329 if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fo)) { 4330 StringRef V = A->getValue(); 4331 if (Inputs.size() > 1 && !V.empty() && 4332 !llvm::sys::path::is_separator(V.back())) { 4333 // Check whether /Fo tries to name an output file for multiple inputs. 4334 Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources) 4335 << A->getSpelling() << V; 4336 Args.eraseArg(options::OPT__SLASH_Fo); 4337 } 4338 } 4339 4340 // Diagnose misuse of /Fa. 4341 if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fa)) { 4342 StringRef V = A->getValue(); 4343 if (Inputs.size() > 1 && !V.empty() && 4344 !llvm::sys::path::is_separator(V.back())) { 4345 // Check whether /Fa tries to name an asm file for multiple inputs. 4346 Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources) 4347 << A->getSpelling() << V; 4348 Args.eraseArg(options::OPT__SLASH_Fa); 4349 } 4350 } 4351 4352 // Diagnose misuse of /o. 4353 if (Arg *A = Args.getLastArg(options::OPT__SLASH_o)) { 4354 if (A->getValue()[0] == '\0') { 4355 // It has to have a value. 4356 Diag(clang::diag::err_drv_missing_argument) << A->getSpelling() << 1; 4357 Args.eraseArg(options::OPT__SLASH_o); 4358 } 4359 } 4360 4361 handleArguments(C, Args, Inputs, Actions); 4362 4363 bool UseNewOffloadingDriver = 4364 C.isOffloadingHostKind(Action::OFK_OpenMP) || 4365 C.isOffloadingHostKind(Action::OFK_SYCL) || 4366 Args.hasFlag(options::OPT_foffload_via_llvm, 4367 options::OPT_fno_offload_via_llvm, false) || 4368 Args.hasFlag(options::OPT_offload_new_driver, 4369 options::OPT_no_offload_new_driver, 4370 C.isOffloadingHostKind(Action::OFK_Cuda)); 4371 4372 // Builder to be used to build offloading actions. 4373 std::unique_ptr<OffloadingActionBuilder> OffloadBuilder = 4374 !UseNewOffloadingDriver 4375 ? std::make_unique<OffloadingActionBuilder>(C, Args, Inputs) 4376 : nullptr; 4377 4378 // Construct the actions to perform. 4379 ExtractAPIJobAction *ExtractAPIAction = nullptr; 4380 ActionList LinkerInputs; 4381 ActionList MergerInputs; 4382 4383 for (auto &I : Inputs) { 4384 types::ID InputType = I.first; 4385 const Arg *InputArg = I.second; 4386 4387 auto PL = types::getCompilationPhases(*this, Args, InputType); 4388 if (PL.empty()) 4389 continue; 4390 4391 auto FullPL = types::getCompilationPhases(InputType); 4392 4393 // Build the pipeline for this file. 4394 Action *Current = C.MakeAction<InputAction>(*InputArg, InputType); 4395 4396 std::string CUID; 4397 if (CUIDOpts.isEnabled() && types::isSrcFile(InputType)) { 4398 CUID = CUIDOpts.getCUID(InputArg->getValue(), Args); 4399 cast<InputAction>(Current)->setId(CUID); 4400 } 4401 4402 // Use the current host action in any of the offloading actions, if 4403 // required. 4404 if (!UseNewOffloadingDriver) 4405 if (OffloadBuilder->addHostDependenceToDeviceActions(Current, InputArg)) 4406 break; 4407 4408 for (phases::ID Phase : PL) { 4409 4410 // Add any offload action the host action depends on. 4411 if (!UseNewOffloadingDriver) 4412 Current = OffloadBuilder->addDeviceDependencesToHostAction( 4413 Current, InputArg, Phase, PL.back(), FullPL); 4414 if (!Current) 4415 break; 4416 4417 // Queue linker inputs. 4418 if (Phase == phases::Link) { 4419 assert(Phase == PL.back() && "linking must be final compilation step."); 4420 // We don't need to generate additional link commands if emitting AMD 4421 // bitcode or compiling only for the offload device 4422 if (!(C.getInputArgs().hasArg(options::OPT_hip_link) && 4423 (C.getInputArgs().hasArg(options::OPT_emit_llvm))) && 4424 !offloadDeviceOnly()) 4425 LinkerInputs.push_back(Current); 4426 Current = nullptr; 4427 break; 4428 } 4429 4430 // TODO: Consider removing this because the merged may not end up being 4431 // the final Phase in the pipeline. Perhaps the merged could just merge 4432 // and then pass an artifact of some sort to the Link Phase. 4433 // Queue merger inputs. 4434 if (Phase == phases::IfsMerge) { 4435 assert(Phase == PL.back() && "merging must be final compilation step."); 4436 MergerInputs.push_back(Current); 4437 Current = nullptr; 4438 break; 4439 } 4440 4441 if (Phase == phases::Precompile && ExtractAPIAction) { 4442 ExtractAPIAction->addHeaderInput(Current); 4443 Current = nullptr; 4444 break; 4445 } 4446 4447 // FIXME: Should we include any prior module file outputs as inputs of 4448 // later actions in the same command line? 4449 4450 // Otherwise construct the appropriate action. 4451 Action *NewCurrent = ConstructPhaseAction(C, Args, Phase, Current); 4452 4453 // We didn't create a new action, so we will just move to the next phase. 4454 if (NewCurrent == Current) 4455 continue; 4456 4457 if (auto *EAA = dyn_cast<ExtractAPIJobAction>(NewCurrent)) 4458 ExtractAPIAction = EAA; 4459 4460 Current = NewCurrent; 4461 4462 // Try to build the offloading actions and add the result as a dependency 4463 // to the host. 4464 if (UseNewOffloadingDriver) 4465 Current = BuildOffloadingActions(C, Args, I, CUID, Current); 4466 // Use the current host action in any of the offloading actions, if 4467 // required. 4468 else if (OffloadBuilder->addHostDependenceToDeviceActions(Current, 4469 InputArg)) 4470 break; 4471 4472 if (Current->getType() == types::TY_Nothing) 4473 break; 4474 } 4475 4476 // If we ended with something, add to the output list. 4477 if (Current) 4478 Actions.push_back(Current); 4479 4480 // Add any top level actions generated for offloading. 4481 if (!UseNewOffloadingDriver) 4482 OffloadBuilder->appendTopLevelActions(Actions, Current, InputArg); 4483 else if (Current) 4484 Current->propagateHostOffloadInfo(C.getActiveOffloadKinds(), 4485 /*BoundArch=*/nullptr); 4486 } 4487 4488 // Add a link action if necessary. 4489 4490 if (LinkerInputs.empty()) { 4491 Arg *FinalPhaseArg; 4492 if (getFinalPhase(Args, &FinalPhaseArg) == phases::Link) 4493 if (!UseNewOffloadingDriver) 4494 OffloadBuilder->appendDeviceLinkActions(Actions); 4495 } 4496 4497 if (!LinkerInputs.empty()) { 4498 if (!UseNewOffloadingDriver) 4499 if (Action *Wrapper = OffloadBuilder->makeHostLinkAction()) 4500 LinkerInputs.push_back(Wrapper); 4501 Action *LA; 4502 // Check if this Linker Job should emit a static library. 4503 if (ShouldEmitStaticLibrary(Args)) { 4504 LA = C.MakeAction<StaticLibJobAction>(LinkerInputs, types::TY_Image); 4505 } else if (UseNewOffloadingDriver || 4506 Args.hasArg(options::OPT_offload_link)) { 4507 LA = C.MakeAction<LinkerWrapperJobAction>(LinkerInputs, types::TY_Image); 4508 LA->propagateHostOffloadInfo(C.getActiveOffloadKinds(), 4509 /*BoundArch=*/nullptr); 4510 } else { 4511 LA = C.MakeAction<LinkJobAction>(LinkerInputs, types::TY_Image); 4512 } 4513 if (!UseNewOffloadingDriver) 4514 LA = OffloadBuilder->processHostLinkAction(LA); 4515 Actions.push_back(LA); 4516 } 4517 4518 // Add an interface stubs merge action if necessary. 4519 if (!MergerInputs.empty()) 4520 Actions.push_back( 4521 C.MakeAction<IfsMergeJobAction>(MergerInputs, types::TY_Image)); 4522 4523 if (Args.hasArg(options::OPT_emit_interface_stubs)) { 4524 auto PhaseList = types::getCompilationPhases( 4525 types::TY_IFS_CPP, 4526 Args.hasArg(options::OPT_c) ? phases::Compile : phases::IfsMerge); 4527 4528 ActionList MergerInputs; 4529 4530 for (auto &I : Inputs) { 4531 types::ID InputType = I.first; 4532 const Arg *InputArg = I.second; 4533 4534 // Currently clang and the llvm assembler do not support generating symbol 4535 // stubs from assembly, so we skip the input on asm files. For ifs files 4536 // we rely on the normal pipeline setup in the pipeline setup code above. 4537 if (InputType == types::TY_IFS || InputType == types::TY_PP_Asm || 4538 InputType == types::TY_Asm) 4539 continue; 4540 4541 Action *Current = C.MakeAction<InputAction>(*InputArg, InputType); 4542 4543 for (auto Phase : PhaseList) { 4544 switch (Phase) { 4545 default: 4546 llvm_unreachable( 4547 "IFS Pipeline can only consist of Compile followed by IfsMerge."); 4548 case phases::Compile: { 4549 // Only IfsMerge (llvm-ifs) can handle .o files by looking for ifs 4550 // files where the .o file is located. The compile action can not 4551 // handle this. 4552 if (InputType == types::TY_Object) 4553 break; 4554 4555 Current = C.MakeAction<CompileJobAction>(Current, types::TY_IFS_CPP); 4556 break; 4557 } 4558 case phases::IfsMerge: { 4559 assert(Phase == PhaseList.back() && 4560 "merging must be final compilation step."); 4561 MergerInputs.push_back(Current); 4562 Current = nullptr; 4563 break; 4564 } 4565 } 4566 } 4567 4568 // If we ended with something, add to the output list. 4569 if (Current) 4570 Actions.push_back(Current); 4571 } 4572 4573 // Add an interface stubs merge action if necessary. 4574 if (!MergerInputs.empty()) 4575 Actions.push_back( 4576 C.MakeAction<IfsMergeJobAction>(MergerInputs, types::TY_Image)); 4577 } 4578 4579 for (auto Opt : {options::OPT_print_supported_cpus, 4580 options::OPT_print_supported_extensions, 4581 options::OPT_print_enabled_extensions}) { 4582 // If --print-supported-cpus, -mcpu=? or -mtune=? is specified, build a 4583 // custom Compile phase that prints out supported cpu models and quits. 4584 // 4585 // If either --print-supported-extensions or --print-enabled-extensions is 4586 // specified, call the corresponding helper function that prints out the 4587 // supported/enabled extensions and quits. 4588 if (Arg *A = Args.getLastArg(Opt)) { 4589 if (Opt == options::OPT_print_supported_extensions && 4590 !C.getDefaultToolChain().getTriple().isRISCV() && 4591 !C.getDefaultToolChain().getTriple().isAArch64() && 4592 !C.getDefaultToolChain().getTriple().isARM()) { 4593 C.getDriver().Diag(diag::err_opt_not_valid_on_target) 4594 << "--print-supported-extensions"; 4595 return; 4596 } 4597 if (Opt == options::OPT_print_enabled_extensions && 4598 !C.getDefaultToolChain().getTriple().isRISCV() && 4599 !C.getDefaultToolChain().getTriple().isAArch64()) { 4600 C.getDriver().Diag(diag::err_opt_not_valid_on_target) 4601 << "--print-enabled-extensions"; 4602 return; 4603 } 4604 4605 // Use the -mcpu=? flag as the dummy input to cc1. 4606 Actions.clear(); 4607 Action *InputAc = C.MakeAction<InputAction>( 4608 *A, IsFlangMode() ? types::TY_Fortran : types::TY_C); 4609 Actions.push_back( 4610 C.MakeAction<PrecompileJobAction>(InputAc, types::TY_Nothing)); 4611 for (auto &I : Inputs) 4612 I.second->claim(); 4613 } 4614 } 4615 4616 // Call validator for dxil when -Vd not in Args. 4617 if (C.getDefaultToolChain().getTriple().isDXIL()) { 4618 // Only add action when needValidation. 4619 const auto &TC = 4620 static_cast<const toolchains::HLSLToolChain &>(C.getDefaultToolChain()); 4621 if (TC.requiresValidation(Args)) { 4622 Action *LastAction = Actions.back(); 4623 Actions.push_back(C.MakeAction<BinaryAnalyzeJobAction>( 4624 LastAction, types::TY_DX_CONTAINER)); 4625 } 4626 } 4627 4628 // Claim ignored clang-cl options. 4629 Args.ClaimAllArgs(options::OPT_cl_ignored_Group); 4630 } 4631 4632 /// Returns the canonical name for the offloading architecture when using a HIP 4633 /// or CUDA architecture. 4634 static StringRef getCanonicalArchString(Compilation &C, 4635 const llvm::opt::DerivedArgList &Args, 4636 StringRef ArchStr, 4637 const llvm::Triple &Triple, 4638 bool SuppressError = false) { 4639 // Lookup the CUDA / HIP architecture string. Only report an error if we were 4640 // expecting the triple to be only NVPTX / AMDGPU. 4641 OffloadArch Arch = 4642 StringToOffloadArch(getProcessorFromTargetID(Triple, ArchStr)); 4643 if (!SuppressError && Triple.isNVPTX() && 4644 (Arch == OffloadArch::UNKNOWN || !IsNVIDIAOffloadArch(Arch))) { 4645 C.getDriver().Diag(clang::diag::err_drv_offload_bad_gpu_arch) 4646 << "CUDA" << ArchStr; 4647 return StringRef(); 4648 } else if (!SuppressError && Triple.isAMDGPU() && 4649 (Arch == OffloadArch::UNKNOWN || !IsAMDOffloadArch(Arch))) { 4650 C.getDriver().Diag(clang::diag::err_drv_offload_bad_gpu_arch) 4651 << "HIP" << ArchStr; 4652 return StringRef(); 4653 } 4654 4655 if (IsNVIDIAOffloadArch(Arch)) 4656 return Args.MakeArgStringRef(OffloadArchToString(Arch)); 4657 4658 if (IsAMDOffloadArch(Arch)) { 4659 llvm::StringMap<bool> Features; 4660 auto HIPTriple = getHIPOffloadTargetTriple(C.getDriver(), C.getInputArgs()); 4661 if (!HIPTriple) 4662 return StringRef(); 4663 auto Arch = parseTargetID(*HIPTriple, ArchStr, &Features); 4664 if (!Arch) { 4665 C.getDriver().Diag(clang::diag::err_drv_bad_target_id) << ArchStr; 4666 C.setContainsError(); 4667 return StringRef(); 4668 } 4669 return Args.MakeArgStringRef(getCanonicalTargetID(*Arch, Features)); 4670 } 4671 4672 // If the input isn't CUDA or HIP just return the architecture. 4673 return ArchStr; 4674 } 4675 4676 /// Checks if the set offloading architectures does not conflict. Returns the 4677 /// incompatible pair if a conflict occurs. 4678 static std::optional<std::pair<llvm::StringRef, llvm::StringRef>> 4679 getConflictOffloadArchCombination(const llvm::DenseSet<StringRef> &Archs, 4680 llvm::Triple Triple) { 4681 if (!Triple.isAMDGPU()) 4682 return std::nullopt; 4683 4684 std::set<StringRef> ArchSet; 4685 llvm::copy(Archs, std::inserter(ArchSet, ArchSet.begin())); 4686 return getConflictTargetIDCombination(ArchSet); 4687 } 4688 4689 llvm::DenseSet<StringRef> 4690 Driver::getOffloadArchs(Compilation &C, const llvm::opt::DerivedArgList &Args, 4691 Action::OffloadKind Kind, const ToolChain *TC, 4692 bool SuppressError) const { 4693 if (!TC) 4694 TC = &C.getDefaultToolChain(); 4695 4696 // --offload and --offload-arch options are mutually exclusive. 4697 if (Args.hasArgNoClaim(options::OPT_offload_EQ) && 4698 Args.hasArgNoClaim(options::OPT_offload_arch_EQ, 4699 options::OPT_no_offload_arch_EQ)) { 4700 C.getDriver().Diag(diag::err_opt_not_valid_with_opt) 4701 << "--offload" 4702 << (Args.hasArgNoClaim(options::OPT_offload_arch_EQ) 4703 ? "--offload-arch" 4704 : "--no-offload-arch"); 4705 } 4706 4707 if (KnownArchs.contains(TC)) 4708 return KnownArchs.lookup(TC); 4709 4710 llvm::DenseSet<StringRef> Archs; 4711 for (auto *Arg : Args) { 4712 // Extract any '--[no-]offload-arch' arguments intended for this toolchain. 4713 std::unique_ptr<llvm::opt::Arg> ExtractedArg = nullptr; 4714 if (Arg->getOption().matches(options::OPT_Xopenmp_target_EQ) && 4715 ToolChain::getOpenMPTriple(Arg->getValue(0)) == TC->getTriple()) { 4716 Arg->claim(); 4717 unsigned Index = Args.getBaseArgs().MakeIndex(Arg->getValue(1)); 4718 unsigned Prev = Index; 4719 ExtractedArg = getOpts().ParseOneArg(Args, Index); 4720 if (!ExtractedArg || Index > Prev + 1) { 4721 TC->getDriver().Diag(diag::err_drv_invalid_Xopenmp_target_with_args) 4722 << Arg->getAsString(Args); 4723 continue; 4724 } 4725 Arg = ExtractedArg.get(); 4726 } 4727 4728 // Add or remove the seen architectures in order of appearance. If an 4729 // invalid architecture is given we simply exit. 4730 if (Arg->getOption().matches(options::OPT_offload_arch_EQ)) { 4731 for (StringRef Arch : llvm::split(Arg->getValue(), ",")) { 4732 if (Arch == "native" || Arch.empty()) { 4733 auto GPUsOrErr = TC->getSystemGPUArchs(Args); 4734 if (!GPUsOrErr) { 4735 if (SuppressError) 4736 llvm::consumeError(GPUsOrErr.takeError()); 4737 else 4738 TC->getDriver().Diag(diag::err_drv_undetermined_gpu_arch) 4739 << llvm::Triple::getArchTypeName(TC->getArch()) 4740 << llvm::toString(GPUsOrErr.takeError()) << "--offload-arch"; 4741 continue; 4742 } 4743 4744 for (auto ArchStr : *GPUsOrErr) { 4745 Archs.insert( 4746 getCanonicalArchString(C, Args, Args.MakeArgString(ArchStr), 4747 TC->getTriple(), SuppressError)); 4748 } 4749 } else { 4750 StringRef ArchStr = getCanonicalArchString( 4751 C, Args, Arch, TC->getTriple(), SuppressError); 4752 if (ArchStr.empty()) 4753 return Archs; 4754 Archs.insert(ArchStr); 4755 } 4756 } 4757 } else if (Arg->getOption().matches(options::OPT_no_offload_arch_EQ)) { 4758 for (StringRef Arch : llvm::split(Arg->getValue(), ",")) { 4759 if (Arch == "all") { 4760 Archs.clear(); 4761 } else { 4762 StringRef ArchStr = getCanonicalArchString( 4763 C, Args, Arch, TC->getTriple(), SuppressError); 4764 if (ArchStr.empty()) 4765 return Archs; 4766 Archs.erase(ArchStr); 4767 } 4768 } 4769 } 4770 } 4771 4772 if (auto ConflictingArchs = 4773 getConflictOffloadArchCombination(Archs, TC->getTriple())) { 4774 C.getDriver().Diag(clang::diag::err_drv_bad_offload_arch_combo) 4775 << ConflictingArchs->first << ConflictingArchs->second; 4776 C.setContainsError(); 4777 } 4778 4779 // Skip filling defaults if we're just querying what is availible. 4780 if (SuppressError) 4781 return Archs; 4782 4783 if (Archs.empty()) { 4784 if (Kind == Action::OFK_Cuda) 4785 Archs.insert(OffloadArchToString(OffloadArch::CudaDefault)); 4786 else if (Kind == Action::OFK_HIP) 4787 Archs.insert(OffloadArchToString(OffloadArch::HIPDefault)); 4788 else if (Kind == Action::OFK_OpenMP) 4789 Archs.insert(StringRef()); 4790 else if (Kind == Action::OFK_SYCL) 4791 Archs.insert(StringRef()); 4792 } else { 4793 Args.ClaimAllArgs(options::OPT_offload_arch_EQ); 4794 Args.ClaimAllArgs(options::OPT_no_offload_arch_EQ); 4795 } 4796 4797 return Archs; 4798 } 4799 4800 Action *Driver::BuildOffloadingActions(Compilation &C, 4801 llvm::opt::DerivedArgList &Args, 4802 const InputTy &Input, StringRef CUID, 4803 Action *HostAction) const { 4804 // Don't build offloading actions if explicitly disabled or we do not have a 4805 // valid source input and compile action to embed it in. If preprocessing only 4806 // ignore embedding. 4807 if (offloadHostOnly() || !types::isSrcFile(Input.first) || 4808 !(isa<CompileJobAction>(HostAction) || 4809 getFinalPhase(Args) == phases::Preprocess)) 4810 return HostAction; 4811 4812 ActionList OffloadActions; 4813 OffloadAction::DeviceDependences DDeps; 4814 4815 const Action::OffloadKind OffloadKinds[] = { 4816 Action::OFK_OpenMP, Action::OFK_Cuda, Action::OFK_HIP, Action::OFK_SYCL}; 4817 4818 for (Action::OffloadKind Kind : OffloadKinds) { 4819 SmallVector<const ToolChain *, 2> ToolChains; 4820 ActionList DeviceActions; 4821 4822 auto TCRange = C.getOffloadToolChains(Kind); 4823 for (auto TI = TCRange.first, TE = TCRange.second; TI != TE; ++TI) 4824 ToolChains.push_back(TI->second); 4825 4826 if (ToolChains.empty()) 4827 continue; 4828 4829 types::ID InputType = Input.first; 4830 const Arg *InputArg = Input.second; 4831 4832 // The toolchain can be active for unsupported file types. 4833 if ((Kind == Action::OFK_Cuda && !types::isCuda(InputType)) || 4834 (Kind == Action::OFK_HIP && !types::isHIP(InputType))) 4835 continue; 4836 4837 // Get the product of all bound architectures and toolchains. 4838 SmallVector<std::pair<const ToolChain *, StringRef>> TCAndArchs; 4839 for (const ToolChain *TC : ToolChains) { 4840 llvm::DenseSet<StringRef> Arches = getOffloadArchs(C, Args, Kind, TC); 4841 SmallVector<StringRef, 0> Sorted(Arches.begin(), Arches.end()); 4842 llvm::sort(Sorted); 4843 for (StringRef Arch : Sorted) { 4844 TCAndArchs.push_back(std::make_pair(TC, Arch)); 4845 DeviceActions.push_back( 4846 C.MakeAction<InputAction>(*InputArg, InputType, CUID)); 4847 } 4848 } 4849 4850 if (DeviceActions.empty()) 4851 return HostAction; 4852 4853 // FIXME: Do not collapse the host side for Darwin targets with SYCL offload 4854 // compilations. The toolchain is not properly initialized for the target. 4855 if (isa<CompileJobAction>(HostAction) && Kind == Action::OFK_SYCL && 4856 HostAction->getType() != types::TY_Nothing && 4857 C.getSingleOffloadToolChain<Action::OFK_Host>() 4858 ->getTriple() 4859 .isOSDarwin()) 4860 HostAction->setCannotBeCollapsedWithNextDependentAction(); 4861 4862 auto PL = types::getCompilationPhases(*this, Args, InputType); 4863 4864 for (phases::ID Phase : PL) { 4865 if (Phase == phases::Link) { 4866 assert(Phase == PL.back() && "linking must be final compilation step."); 4867 break; 4868 } 4869 4870 // Assemble actions are not used for the SYCL device side. Both compile 4871 // and backend actions are used to generate IR and textual IR if needed. 4872 if (Kind == Action::OFK_SYCL && Phase == phases::Assemble) 4873 continue; 4874 4875 auto TCAndArch = TCAndArchs.begin(); 4876 for (Action *&A : DeviceActions) { 4877 if (A->getType() == types::TY_Nothing) 4878 continue; 4879 4880 // Propagate the ToolChain so we can use it in ConstructPhaseAction. 4881 A->propagateDeviceOffloadInfo(Kind, TCAndArch->second.data(), 4882 TCAndArch->first); 4883 A = ConstructPhaseAction(C, Args, Phase, A, Kind); 4884 4885 if (isa<CompileJobAction>(A) && isa<CompileJobAction>(HostAction) && 4886 Kind == Action::OFK_OpenMP && 4887 HostAction->getType() != types::TY_Nothing) { 4888 // OpenMP offloading has a dependency on the host compile action to 4889 // identify which declarations need to be emitted. This shouldn't be 4890 // collapsed with any other actions so we can use it in the device. 4891 HostAction->setCannotBeCollapsedWithNextDependentAction(); 4892 OffloadAction::HostDependence HDep( 4893 *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(), 4894 TCAndArch->second.data(), Kind); 4895 OffloadAction::DeviceDependences DDep; 4896 DDep.add(*A, *TCAndArch->first, TCAndArch->second.data(), Kind); 4897 A = C.MakeAction<OffloadAction>(HDep, DDep); 4898 } 4899 4900 ++TCAndArch; 4901 } 4902 } 4903 4904 // Compiling HIP in non-RDC mode requires linking each action individually. 4905 for (Action *&A : DeviceActions) { 4906 if ((A->getType() != types::TY_Object && 4907 A->getType() != types::TY_LTO_BC) || 4908 Kind != Action::OFK_HIP || 4909 Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc, false)) 4910 continue; 4911 ActionList LinkerInput = {A}; 4912 A = C.MakeAction<LinkJobAction>(LinkerInput, types::TY_Image); 4913 } 4914 4915 auto TCAndArch = TCAndArchs.begin(); 4916 for (Action *A : DeviceActions) { 4917 DDeps.add(*A, *TCAndArch->first, TCAndArch->second.data(), Kind); 4918 OffloadAction::DeviceDependences DDep; 4919 DDep.add(*A, *TCAndArch->first, TCAndArch->second.data(), Kind); 4920 4921 // Compiling CUDA in non-RDC mode uses the PTX output if available. 4922 for (Action *Input : A->getInputs()) 4923 if (Kind == Action::OFK_Cuda && A->getType() == types::TY_Object && 4924 !Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc, 4925 false)) 4926 DDep.add(*Input, *TCAndArch->first, TCAndArch->second.data(), Kind); 4927 OffloadActions.push_back(C.MakeAction<OffloadAction>(DDep, A->getType())); 4928 4929 ++TCAndArch; 4930 } 4931 } 4932 4933 // HIP code in non-RDC mode will bundle the output if it invoked the linker. 4934 bool ShouldBundleHIP = 4935 C.isOffloadingHostKind(Action::OFK_HIP) && 4936 Args.hasFlag(options::OPT_gpu_bundle_output, 4937 options::OPT_no_gpu_bundle_output, true) && 4938 !Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc, false) && 4939 !llvm::any_of(OffloadActions, 4940 [](Action *A) { return A->getType() != types::TY_Image; }); 4941 4942 // All kinds exit now in device-only mode except for non-RDC mode HIP. 4943 if (offloadDeviceOnly() && !ShouldBundleHIP) 4944 return C.MakeAction<OffloadAction>(DDeps, types::TY_Nothing); 4945 4946 if (OffloadActions.empty()) 4947 return HostAction; 4948 4949 OffloadAction::DeviceDependences DDep; 4950 if (C.isOffloadingHostKind(Action::OFK_Cuda) && 4951 !Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc, false)) { 4952 // If we are not in RDC-mode we just emit the final CUDA fatbinary for 4953 // each translation unit without requiring any linking. 4954 Action *FatbinAction = 4955 C.MakeAction<LinkJobAction>(OffloadActions, types::TY_CUDA_FATBIN); 4956 DDep.add(*FatbinAction, *C.getSingleOffloadToolChain<Action::OFK_Cuda>(), 4957 nullptr, Action::OFK_Cuda); 4958 } else if (C.isOffloadingHostKind(Action::OFK_HIP) && 4959 !Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc, 4960 false)) { 4961 // If we are not in RDC-mode we just emit the final HIP fatbinary for each 4962 // translation unit, linking each input individually. 4963 Action *FatbinAction = 4964 C.MakeAction<LinkJobAction>(OffloadActions, types::TY_HIP_FATBIN); 4965 DDep.add(*FatbinAction, *C.getSingleOffloadToolChain<Action::OFK_HIP>(), 4966 nullptr, Action::OFK_HIP); 4967 } else { 4968 // Package all the offloading actions into a single output that can be 4969 // embedded in the host and linked. 4970 Action *PackagerAction = 4971 C.MakeAction<OffloadPackagerJobAction>(OffloadActions, types::TY_Image); 4972 DDep.add(*PackagerAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(), 4973 nullptr, C.getActiveOffloadKinds()); 4974 } 4975 4976 // HIP wants '--offload-device-only' to create a fatbinary by default. 4977 if (offloadDeviceOnly()) 4978 return C.MakeAction<OffloadAction>(DDep, types::TY_Nothing); 4979 4980 // If we are unable to embed a single device output into the host, we need to 4981 // add each device output as a host dependency to ensure they are still built. 4982 bool SingleDeviceOutput = !llvm::any_of(OffloadActions, [](Action *A) { 4983 return A->getType() == types::TY_Nothing; 4984 }) && isa<CompileJobAction>(HostAction); 4985 OffloadAction::HostDependence HDep( 4986 *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(), 4987 /*BoundArch=*/nullptr, SingleDeviceOutput ? DDep : DDeps); 4988 return C.MakeAction<OffloadAction>(HDep, SingleDeviceOutput ? DDep : DDeps); 4989 } 4990 4991 Action *Driver::ConstructPhaseAction( 4992 Compilation &C, const ArgList &Args, phases::ID Phase, Action *Input, 4993 Action::OffloadKind TargetDeviceOffloadKind) const { 4994 llvm::PrettyStackTraceString CrashInfo("Constructing phase actions"); 4995 4996 // Some types skip the assembler phase (e.g., llvm-bc), but we can't 4997 // encode this in the steps because the intermediate type depends on 4998 // arguments. Just special case here. 4999 if (Phase == phases::Assemble && Input->getType() != types::TY_PP_Asm) 5000 return Input; 5001 5002 // Use of --sycl-link will only allow for the link phase to occur. This is 5003 // for all input files. 5004 if (Args.hasArg(options::OPT_sycl_link) && Phase != phases::Link) 5005 return Input; 5006 5007 // Build the appropriate action. 5008 switch (Phase) { 5009 case phases::Link: 5010 llvm_unreachable("link action invalid here."); 5011 case phases::IfsMerge: 5012 llvm_unreachable("ifsmerge action invalid here."); 5013 case phases::Preprocess: { 5014 types::ID OutputTy; 5015 // -M and -MM specify the dependency file name by altering the output type, 5016 // -if -MD and -MMD are not specified. 5017 if (Args.hasArg(options::OPT_M, options::OPT_MM) && 5018 !Args.hasArg(options::OPT_MD, options::OPT_MMD)) { 5019 OutputTy = types::TY_Dependencies; 5020 } else { 5021 OutputTy = Input->getType(); 5022 // For these cases, the preprocessor is only translating forms, the Output 5023 // still needs preprocessing. 5024 if (!Args.hasFlag(options::OPT_frewrite_includes, 5025 options::OPT_fno_rewrite_includes, false) && 5026 !Args.hasFlag(options::OPT_frewrite_imports, 5027 options::OPT_fno_rewrite_imports, false) && 5028 !Args.hasFlag(options::OPT_fdirectives_only, 5029 options::OPT_fno_directives_only, false) && 5030 !CCGenDiagnostics) 5031 OutputTy = types::getPreprocessedType(OutputTy); 5032 assert(OutputTy != types::TY_INVALID && 5033 "Cannot preprocess this input type!"); 5034 } 5035 return C.MakeAction<PreprocessJobAction>(Input, OutputTy); 5036 } 5037 case phases::Precompile: { 5038 // API extraction should not generate an actual precompilation action. 5039 if (Args.hasArg(options::OPT_extract_api)) 5040 return C.MakeAction<ExtractAPIJobAction>(Input, types::TY_API_INFO); 5041 5042 // With 'fexperimental-modules-reduced-bmi', we don't want to run the 5043 // precompile phase unless the user specified '--precompile'. In the case 5044 // the '--precompile' flag is enabled, we will try to emit the reduced BMI 5045 // as a by product in GenerateModuleInterfaceAction. 5046 if (Args.hasArg(options::OPT_modules_reduced_bmi) && 5047 !Args.getLastArg(options::OPT__precompile)) 5048 return Input; 5049 5050 types::ID OutputTy = getPrecompiledType(Input->getType()); 5051 assert(OutputTy != types::TY_INVALID && 5052 "Cannot precompile this input type!"); 5053 5054 // If we're given a module name, precompile header file inputs as a 5055 // module, not as a precompiled header. 5056 const char *ModName = nullptr; 5057 if (OutputTy == types::TY_PCH) { 5058 if (Arg *A = Args.getLastArg(options::OPT_fmodule_name_EQ)) 5059 ModName = A->getValue(); 5060 if (ModName) 5061 OutputTy = types::TY_ModuleFile; 5062 } 5063 5064 if (Args.hasArg(options::OPT_fsyntax_only)) { 5065 // Syntax checks should not emit a PCH file 5066 OutputTy = types::TY_Nothing; 5067 } 5068 5069 return C.MakeAction<PrecompileJobAction>(Input, OutputTy); 5070 } 5071 case phases::Compile: { 5072 if (Args.hasArg(options::OPT_fsyntax_only)) 5073 return C.MakeAction<CompileJobAction>(Input, types::TY_Nothing); 5074 if (Args.hasArg(options::OPT_rewrite_objc)) 5075 return C.MakeAction<CompileJobAction>(Input, types::TY_RewrittenObjC); 5076 if (Args.hasArg(options::OPT_rewrite_legacy_objc)) 5077 return C.MakeAction<CompileJobAction>(Input, 5078 types::TY_RewrittenLegacyObjC); 5079 if (Args.hasArg(options::OPT__analyze)) 5080 return C.MakeAction<AnalyzeJobAction>(Input, types::TY_Plist); 5081 if (Args.hasArg(options::OPT__migrate)) 5082 return C.MakeAction<MigrateJobAction>(Input, types::TY_Remap); 5083 if (Args.hasArg(options::OPT_emit_ast)) 5084 return C.MakeAction<CompileJobAction>(Input, types::TY_AST); 5085 if (Args.hasArg(options::OPT_emit_cir)) 5086 return C.MakeAction<CompileJobAction>(Input, types::TY_CIR); 5087 if (Args.hasArg(options::OPT_module_file_info)) 5088 return C.MakeAction<CompileJobAction>(Input, types::TY_ModuleFile); 5089 if (Args.hasArg(options::OPT_verify_pch)) 5090 return C.MakeAction<VerifyPCHJobAction>(Input, types::TY_Nothing); 5091 if (Args.hasArg(options::OPT_extract_api)) 5092 return C.MakeAction<ExtractAPIJobAction>(Input, types::TY_API_INFO); 5093 return C.MakeAction<CompileJobAction>(Input, types::TY_LLVM_BC); 5094 } 5095 case phases::Backend: { 5096 if (isUsingLTO() && TargetDeviceOffloadKind == Action::OFK_None) { 5097 types::ID Output; 5098 if (Args.hasArg(options::OPT_ffat_lto_objects) && 5099 !Args.hasArg(options::OPT_emit_llvm)) 5100 Output = types::TY_PP_Asm; 5101 else if (Args.hasArg(options::OPT_S)) 5102 Output = types::TY_LTO_IR; 5103 else 5104 Output = types::TY_LTO_BC; 5105 return C.MakeAction<BackendJobAction>(Input, Output); 5106 } 5107 if (isUsingOffloadLTO() && TargetDeviceOffloadKind != Action::OFK_None) { 5108 types::ID Output = 5109 Args.hasArg(options::OPT_S) ? types::TY_LTO_IR : types::TY_LTO_BC; 5110 return C.MakeAction<BackendJobAction>(Input, Output); 5111 } 5112 if (Args.hasArg(options::OPT_emit_llvm) || 5113 TargetDeviceOffloadKind == Action::OFK_SYCL || 5114 (((Input->getOffloadingToolChain() && 5115 Input->getOffloadingToolChain()->getTriple().isAMDGPU()) || 5116 TargetDeviceOffloadKind == Action::OFK_HIP) && 5117 (Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc, 5118 false) || 5119 TargetDeviceOffloadKind == Action::OFK_OpenMP))) { 5120 types::ID Output = 5121 Args.hasArg(options::OPT_S) && 5122 (TargetDeviceOffloadKind == Action::OFK_None || 5123 offloadDeviceOnly() || 5124 (TargetDeviceOffloadKind == Action::OFK_HIP && 5125 !Args.hasFlag(options::OPT_offload_new_driver, 5126 options::OPT_no_offload_new_driver, 5127 C.isOffloadingHostKind(Action::OFK_Cuda)))) 5128 ? types::TY_LLVM_IR 5129 : types::TY_LLVM_BC; 5130 return C.MakeAction<BackendJobAction>(Input, Output); 5131 } 5132 return C.MakeAction<BackendJobAction>(Input, types::TY_PP_Asm); 5133 } 5134 case phases::Assemble: 5135 return C.MakeAction<AssembleJobAction>(std::move(Input), types::TY_Object); 5136 } 5137 5138 llvm_unreachable("invalid phase in ConstructPhaseAction"); 5139 } 5140 5141 void Driver::BuildJobs(Compilation &C) const { 5142 llvm::PrettyStackTraceString CrashInfo("Building compilation jobs"); 5143 5144 Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o); 5145 5146 // It is an error to provide a -o option if we are making multiple output 5147 // files. There are exceptions: 5148 // 5149 // IfsMergeJob: when generating interface stubs enabled we want to be able to 5150 // generate the stub file at the same time that we generate the real 5151 // library/a.out. So when a .o, .so, etc are the output, with clang interface 5152 // stubs there will also be a .ifs and .ifso at the same location. 5153 // 5154 // CompileJob of type TY_IFS_CPP: when generating interface stubs is enabled 5155 // and -c is passed, we still want to be able to generate a .ifs file while 5156 // we are also generating .o files. So we allow more than one output file in 5157 // this case as well. 5158 // 5159 // OffloadClass of type TY_Nothing: device-only output will place many outputs 5160 // into a single offloading action. We should count all inputs to the action 5161 // as outputs. Also ignore device-only outputs if we're compiling with 5162 // -fsyntax-only. 5163 if (FinalOutput) { 5164 unsigned NumOutputs = 0; 5165 unsigned NumIfsOutputs = 0; 5166 for (const Action *A : C.getActions()) { 5167 if (A->getType() != types::TY_Nothing && 5168 A->getType() != types::TY_DX_CONTAINER && 5169 !(A->getKind() == Action::IfsMergeJobClass || 5170 (A->getType() == clang::driver::types::TY_IFS_CPP && 5171 A->getKind() == clang::driver::Action::CompileJobClass && 5172 0 == NumIfsOutputs++) || 5173 (A->getKind() == Action::BindArchClass && A->getInputs().size() && 5174 A->getInputs().front()->getKind() == Action::IfsMergeJobClass))) 5175 ++NumOutputs; 5176 else if (A->getKind() == Action::OffloadClass && 5177 A->getType() == types::TY_Nothing && 5178 !C.getArgs().hasArg(options::OPT_fsyntax_only)) 5179 NumOutputs += A->size(); 5180 } 5181 5182 if (NumOutputs > 1) { 5183 Diag(clang::diag::err_drv_output_argument_with_multiple_files); 5184 FinalOutput = nullptr; 5185 } 5186 } 5187 5188 const llvm::Triple &RawTriple = C.getDefaultToolChain().getTriple(); 5189 5190 // Collect the list of architectures. 5191 llvm::StringSet<> ArchNames; 5192 if (RawTriple.isOSBinFormatMachO()) 5193 for (const Arg *A : C.getArgs()) 5194 if (A->getOption().matches(options::OPT_arch)) 5195 ArchNames.insert(A->getValue()); 5196 5197 // Set of (Action, canonical ToolChain triple) pairs we've built jobs for. 5198 std::map<std::pair<const Action *, std::string>, InputInfoList> CachedResults; 5199 for (Action *A : C.getActions()) { 5200 // If we are linking an image for multiple archs then the linker wants 5201 // -arch_multiple and -final_output <final image name>. Unfortunately, this 5202 // doesn't fit in cleanly because we have to pass this information down. 5203 // 5204 // FIXME: This is a hack; find a cleaner way to integrate this into the 5205 // process. 5206 const char *LinkingOutput = nullptr; 5207 if (isa<LipoJobAction>(A)) { 5208 if (FinalOutput) 5209 LinkingOutput = FinalOutput->getValue(); 5210 else 5211 LinkingOutput = getDefaultImageName(); 5212 } 5213 5214 BuildJobsForAction(C, A, &C.getDefaultToolChain(), 5215 /*BoundArch*/ StringRef(), 5216 /*AtTopLevel*/ true, 5217 /*MultipleArchs*/ ArchNames.size() > 1, 5218 /*LinkingOutput*/ LinkingOutput, CachedResults, 5219 /*TargetDeviceOffloadKind*/ Action::OFK_None); 5220 } 5221 5222 // If we have more than one job, then disable integrated-cc1 for now. Do this 5223 // also when we need to report process execution statistics. 5224 if (C.getJobs().size() > 1 || CCPrintProcessStats) 5225 for (auto &J : C.getJobs()) 5226 J.InProcess = false; 5227 5228 if (CCPrintProcessStats) { 5229 C.setPostCallback([=](const Command &Cmd, int Res) { 5230 std::optional<llvm::sys::ProcessStatistics> ProcStat = 5231 Cmd.getProcessStatistics(); 5232 if (!ProcStat) 5233 return; 5234 5235 const char *LinkingOutput = nullptr; 5236 if (FinalOutput) 5237 LinkingOutput = FinalOutput->getValue(); 5238 else if (!Cmd.getOutputFilenames().empty()) 5239 LinkingOutput = Cmd.getOutputFilenames().front().c_str(); 5240 else 5241 LinkingOutput = getDefaultImageName(); 5242 5243 if (CCPrintStatReportFilename.empty()) { 5244 using namespace llvm; 5245 // Human readable output. 5246 outs() << sys::path::filename(Cmd.getExecutable()) << ": " 5247 << "output=" << LinkingOutput; 5248 outs() << ", total=" 5249 << format("%.3f", ProcStat->TotalTime.count() / 1000.) << " ms" 5250 << ", user=" 5251 << format("%.3f", ProcStat->UserTime.count() / 1000.) << " ms" 5252 << ", mem=" << ProcStat->PeakMemory << " Kb\n"; 5253 } else { 5254 // CSV format. 5255 std::string Buffer; 5256 llvm::raw_string_ostream Out(Buffer); 5257 llvm::sys::printArg(Out, llvm::sys::path::filename(Cmd.getExecutable()), 5258 /*Quote*/ true); 5259 Out << ','; 5260 llvm::sys::printArg(Out, LinkingOutput, true); 5261 Out << ',' << ProcStat->TotalTime.count() << ',' 5262 << ProcStat->UserTime.count() << ',' << ProcStat->PeakMemory 5263 << '\n'; 5264 Out.flush(); 5265 std::error_code EC; 5266 llvm::raw_fd_ostream OS(CCPrintStatReportFilename, EC, 5267 llvm::sys::fs::OF_Append | 5268 llvm::sys::fs::OF_Text); 5269 if (EC) 5270 return; 5271 auto L = OS.lock(); 5272 if (!L) { 5273 llvm::errs() << "ERROR: Cannot lock file " 5274 << CCPrintStatReportFilename << ": " 5275 << toString(L.takeError()) << "\n"; 5276 return; 5277 } 5278 OS << Buffer; 5279 OS.flush(); 5280 } 5281 }); 5282 } 5283 5284 // If the user passed -Qunused-arguments or there were errors, don't warn 5285 // about any unused arguments. 5286 if (Diags.hasErrorOccurred() || 5287 C.getArgs().hasArg(options::OPT_Qunused_arguments)) 5288 return; 5289 5290 // Claim -fdriver-only here. 5291 (void)C.getArgs().hasArg(options::OPT_fdriver_only); 5292 // Claim -### here. 5293 (void)C.getArgs().hasArg(options::OPT__HASH_HASH_HASH); 5294 5295 // Claim --driver-mode, --rsp-quoting, it was handled earlier. 5296 (void)C.getArgs().hasArg(options::OPT_driver_mode); 5297 (void)C.getArgs().hasArg(options::OPT_rsp_quoting); 5298 5299 bool HasAssembleJob = llvm::any_of(C.getJobs(), [](auto &J) { 5300 // Match ClangAs and other derived assemblers of Tool. ClangAs uses a 5301 // longer ShortName "clang integrated assembler" while other assemblers just 5302 // use "assembler". 5303 return strstr(J.getCreator().getShortName(), "assembler"); 5304 }); 5305 for (Arg *A : C.getArgs()) { 5306 // FIXME: It would be nice to be able to send the argument to the 5307 // DiagnosticsEngine, so that extra values, position, and so on could be 5308 // printed. 5309 if (!A->isClaimed()) { 5310 if (A->getOption().hasFlag(options::NoArgumentUnused)) 5311 continue; 5312 5313 // Suppress the warning automatically if this is just a flag, and it is an 5314 // instance of an argument we already claimed. 5315 const Option &Opt = A->getOption(); 5316 if (Opt.getKind() == Option::FlagClass) { 5317 bool DuplicateClaimed = false; 5318 5319 for (const Arg *AA : C.getArgs().filtered(&Opt)) { 5320 if (AA->isClaimed()) { 5321 DuplicateClaimed = true; 5322 break; 5323 } 5324 } 5325 5326 if (DuplicateClaimed) 5327 continue; 5328 } 5329 5330 // In clang-cl, don't mention unknown arguments here since they have 5331 // already been warned about. 5332 if (!IsCLMode() || !A->getOption().matches(options::OPT_UNKNOWN)) { 5333 if (A->getOption().hasFlag(options::TargetSpecific) && 5334 !A->isIgnoredTargetSpecific() && !HasAssembleJob && 5335 // When for example -### or -v is used 5336 // without a file, target specific options are not 5337 // consumed/validated. 5338 // Instead emitting an error emit a warning instead. 5339 !C.getActions().empty()) { 5340 Diag(diag::err_drv_unsupported_opt_for_target) 5341 << A->getSpelling() << getTargetTriple(); 5342 } else { 5343 Diag(clang::diag::warn_drv_unused_argument) 5344 << A->getAsString(C.getArgs()); 5345 } 5346 } 5347 } 5348 } 5349 } 5350 5351 namespace { 5352 /// Utility class to control the collapse of dependent actions and select the 5353 /// tools accordingly. 5354 class ToolSelector final { 5355 /// The tool chain this selector refers to. 5356 const ToolChain &TC; 5357 5358 /// The compilation this selector refers to. 5359 const Compilation &C; 5360 5361 /// The base action this selector refers to. 5362 const JobAction *BaseAction; 5363 5364 /// Set to true if the current toolchain refers to host actions. 5365 bool IsHostSelector; 5366 5367 /// Set to true if save-temps and embed-bitcode functionalities are active. 5368 bool SaveTemps; 5369 bool EmbedBitcode; 5370 5371 /// Get previous dependent action or null if that does not exist. If 5372 /// \a CanBeCollapsed is false, that action must be legal to collapse or 5373 /// null will be returned. 5374 const JobAction *getPrevDependentAction(const ActionList &Inputs, 5375 ActionList &SavedOffloadAction, 5376 bool CanBeCollapsed = true) { 5377 // An option can be collapsed only if it has a single input. 5378 if (Inputs.size() != 1) 5379 return nullptr; 5380 5381 Action *CurAction = *Inputs.begin(); 5382 if (CanBeCollapsed && 5383 !CurAction->isCollapsingWithNextDependentActionLegal()) 5384 return nullptr; 5385 5386 // If the input action is an offload action. Look through it and save any 5387 // offload action that can be dropped in the event of a collapse. 5388 if (auto *OA = dyn_cast<OffloadAction>(CurAction)) { 5389 // If the dependent action is a device action, we will attempt to collapse 5390 // only with other device actions. Otherwise, we would do the same but 5391 // with host actions only. 5392 if (!IsHostSelector) { 5393 if (OA->hasSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)) { 5394 CurAction = 5395 OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true); 5396 if (CanBeCollapsed && 5397 !CurAction->isCollapsingWithNextDependentActionLegal()) 5398 return nullptr; 5399 SavedOffloadAction.push_back(OA); 5400 return dyn_cast<JobAction>(CurAction); 5401 } 5402 } else if (OA->hasHostDependence()) { 5403 CurAction = OA->getHostDependence(); 5404 if (CanBeCollapsed && 5405 !CurAction->isCollapsingWithNextDependentActionLegal()) 5406 return nullptr; 5407 SavedOffloadAction.push_back(OA); 5408 return dyn_cast<JobAction>(CurAction); 5409 } 5410 return nullptr; 5411 } 5412 5413 return dyn_cast<JobAction>(CurAction); 5414 } 5415 5416 /// Return true if an assemble action can be collapsed. 5417 bool canCollapseAssembleAction() const { 5418 return TC.useIntegratedAs() && !SaveTemps && 5419 !C.getArgs().hasArg(options::OPT_via_file_asm) && 5420 !C.getArgs().hasArg(options::OPT__SLASH_FA) && 5421 !C.getArgs().hasArg(options::OPT__SLASH_Fa) && 5422 !C.getArgs().hasArg(options::OPT_dxc_Fc); 5423 } 5424 5425 /// Return true if a preprocessor action can be collapsed. 5426 bool canCollapsePreprocessorAction() const { 5427 return !C.getArgs().hasArg(options::OPT_no_integrated_cpp) && 5428 !C.getArgs().hasArg(options::OPT_traditional_cpp) && !SaveTemps && 5429 !C.getArgs().hasArg(options::OPT_rewrite_objc); 5430 } 5431 5432 /// Struct that relates an action with the offload actions that would be 5433 /// collapsed with it. 5434 struct JobActionInfo final { 5435 /// The action this info refers to. 5436 const JobAction *JA = nullptr; 5437 /// The offload actions we need to take care off if this action is 5438 /// collapsed. 5439 ActionList SavedOffloadAction; 5440 }; 5441 5442 /// Append collapsed offload actions from the give nnumber of elements in the 5443 /// action info array. 5444 static void AppendCollapsedOffloadAction(ActionList &CollapsedOffloadAction, 5445 ArrayRef<JobActionInfo> &ActionInfo, 5446 unsigned ElementNum) { 5447 assert(ElementNum <= ActionInfo.size() && "Invalid number of elements."); 5448 for (unsigned I = 0; I < ElementNum; ++I) 5449 CollapsedOffloadAction.append(ActionInfo[I].SavedOffloadAction.begin(), 5450 ActionInfo[I].SavedOffloadAction.end()); 5451 } 5452 5453 /// Functions that attempt to perform the combining. They detect if that is 5454 /// legal, and if so they update the inputs \a Inputs and the offload action 5455 /// that were collapsed in \a CollapsedOffloadAction. A tool that deals with 5456 /// the combined action is returned. If the combining is not legal or if the 5457 /// tool does not exist, null is returned. 5458 /// Currently three kinds of collapsing are supported: 5459 /// - Assemble + Backend + Compile; 5460 /// - Assemble + Backend ; 5461 /// - Backend + Compile. 5462 const Tool * 5463 combineAssembleBackendCompile(ArrayRef<JobActionInfo> ActionInfo, 5464 ActionList &Inputs, 5465 ActionList &CollapsedOffloadAction) { 5466 if (ActionInfo.size() < 3 || !canCollapseAssembleAction()) 5467 return nullptr; 5468 auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA); 5469 auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA); 5470 auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[2].JA); 5471 if (!AJ || !BJ || !CJ) 5472 return nullptr; 5473 5474 // Get compiler tool. 5475 const Tool *T = TC.SelectTool(*CJ); 5476 if (!T) 5477 return nullptr; 5478 5479 // Can't collapse if we don't have codegen support unless we are 5480 // emitting LLVM IR. 5481 bool OutputIsLLVM = types::isLLVMIR(ActionInfo[0].JA->getType()); 5482 if (!T->hasIntegratedBackend() && !(OutputIsLLVM && T->canEmitIR())) 5483 return nullptr; 5484 5485 // When using -fembed-bitcode, it is required to have the same tool (clang) 5486 // for both CompilerJA and BackendJA. Otherwise, combine two stages. 5487 if (EmbedBitcode) { 5488 const Tool *BT = TC.SelectTool(*BJ); 5489 if (BT == T) 5490 return nullptr; 5491 } 5492 5493 if (!T->hasIntegratedAssembler()) 5494 return nullptr; 5495 5496 Inputs = CJ->getInputs(); 5497 AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo, 5498 /*NumElements=*/3); 5499 return T; 5500 } 5501 const Tool *combineAssembleBackend(ArrayRef<JobActionInfo> ActionInfo, 5502 ActionList &Inputs, 5503 ActionList &CollapsedOffloadAction) { 5504 if (ActionInfo.size() < 2 || !canCollapseAssembleAction()) 5505 return nullptr; 5506 auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA); 5507 auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA); 5508 if (!AJ || !BJ) 5509 return nullptr; 5510 5511 // Get backend tool. 5512 const Tool *T = TC.SelectTool(*BJ); 5513 if (!T) 5514 return nullptr; 5515 5516 if (!T->hasIntegratedAssembler()) 5517 return nullptr; 5518 5519 Inputs = BJ->getInputs(); 5520 AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo, 5521 /*NumElements=*/2); 5522 return T; 5523 } 5524 const Tool *combineBackendCompile(ArrayRef<JobActionInfo> ActionInfo, 5525 ActionList &Inputs, 5526 ActionList &CollapsedOffloadAction) { 5527 if (ActionInfo.size() < 2) 5528 return nullptr; 5529 auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[0].JA); 5530 auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[1].JA); 5531 if (!BJ || !CJ) 5532 return nullptr; 5533 5534 // Check if the initial input (to the compile job or its predessor if one 5535 // exists) is LLVM bitcode. In that case, no preprocessor step is required 5536 // and we can still collapse the compile and backend jobs when we have 5537 // -save-temps. I.e. there is no need for a separate compile job just to 5538 // emit unoptimized bitcode. 5539 bool InputIsBitcode = true; 5540 for (size_t i = 1; i < ActionInfo.size(); i++) 5541 if (ActionInfo[i].JA->getType() != types::TY_LLVM_BC && 5542 ActionInfo[i].JA->getType() != types::TY_LTO_BC) { 5543 InputIsBitcode = false; 5544 break; 5545 } 5546 if (!InputIsBitcode && !canCollapsePreprocessorAction()) 5547 return nullptr; 5548 5549 // Get compiler tool. 5550 const Tool *T = TC.SelectTool(*CJ); 5551 if (!T) 5552 return nullptr; 5553 5554 // Can't collapse if we don't have codegen support unless we are 5555 // emitting LLVM IR. 5556 bool OutputIsLLVM = types::isLLVMIR(ActionInfo[0].JA->getType()); 5557 if (!T->hasIntegratedBackend() && !(OutputIsLLVM && T->canEmitIR())) 5558 return nullptr; 5559 5560 if (T->canEmitIR() && ((SaveTemps && !InputIsBitcode) || EmbedBitcode)) 5561 return nullptr; 5562 5563 Inputs = CJ->getInputs(); 5564 AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo, 5565 /*NumElements=*/2); 5566 return T; 5567 } 5568 5569 /// Updates the inputs if the obtained tool supports combining with 5570 /// preprocessor action, and the current input is indeed a preprocessor 5571 /// action. If combining results in the collapse of offloading actions, those 5572 /// are appended to \a CollapsedOffloadAction. 5573 void combineWithPreprocessor(const Tool *T, ActionList &Inputs, 5574 ActionList &CollapsedOffloadAction) { 5575 if (!T || !canCollapsePreprocessorAction() || !T->hasIntegratedCPP()) 5576 return; 5577 5578 // Attempt to get a preprocessor action dependence. 5579 ActionList PreprocessJobOffloadActions; 5580 ActionList NewInputs; 5581 for (Action *A : Inputs) { 5582 auto *PJ = getPrevDependentAction({A}, PreprocessJobOffloadActions); 5583 if (!PJ || !isa<PreprocessJobAction>(PJ)) { 5584 NewInputs.push_back(A); 5585 continue; 5586 } 5587 5588 // This is legal to combine. Append any offload action we found and add the 5589 // current input to preprocessor inputs. 5590 CollapsedOffloadAction.append(PreprocessJobOffloadActions.begin(), 5591 PreprocessJobOffloadActions.end()); 5592 NewInputs.append(PJ->input_begin(), PJ->input_end()); 5593 } 5594 Inputs = NewInputs; 5595 } 5596 5597 public: 5598 ToolSelector(const JobAction *BaseAction, const ToolChain &TC, 5599 const Compilation &C, bool SaveTemps, bool EmbedBitcode) 5600 : TC(TC), C(C), BaseAction(BaseAction), SaveTemps(SaveTemps), 5601 EmbedBitcode(EmbedBitcode) { 5602 assert(BaseAction && "Invalid base action."); 5603 IsHostSelector = BaseAction->getOffloadingDeviceKind() == Action::OFK_None; 5604 } 5605 5606 /// Check if a chain of actions can be combined and return the tool that can 5607 /// handle the combination of actions. The pointer to the current inputs \a 5608 /// Inputs and the list of offload actions \a CollapsedOffloadActions 5609 /// connected to collapsed actions are updated accordingly. The latter enables 5610 /// the caller of the selector to process them afterwards instead of just 5611 /// dropping them. If no suitable tool is found, null will be returned. 5612 const Tool *getTool(ActionList &Inputs, 5613 ActionList &CollapsedOffloadAction) { 5614 // 5615 // Get the largest chain of actions that we could combine. 5616 // 5617 5618 SmallVector<JobActionInfo, 5> ActionChain(1); 5619 ActionChain.back().JA = BaseAction; 5620 while (ActionChain.back().JA) { 5621 const Action *CurAction = ActionChain.back().JA; 5622 5623 // Grow the chain by one element. 5624 ActionChain.resize(ActionChain.size() + 1); 5625 JobActionInfo &AI = ActionChain.back(); 5626 5627 // Attempt to fill it with the 5628 AI.JA = 5629 getPrevDependentAction(CurAction->getInputs(), AI.SavedOffloadAction); 5630 } 5631 5632 // Pop the last action info as it could not be filled. 5633 ActionChain.pop_back(); 5634 5635 // 5636 // Attempt to combine actions. If all combining attempts failed, just return 5637 // the tool of the provided action. At the end we attempt to combine the 5638 // action with any preprocessor action it may depend on. 5639 // 5640 5641 const Tool *T = combineAssembleBackendCompile(ActionChain, Inputs, 5642 CollapsedOffloadAction); 5643 if (!T) 5644 T = combineAssembleBackend(ActionChain, Inputs, CollapsedOffloadAction); 5645 if (!T) 5646 T = combineBackendCompile(ActionChain, Inputs, CollapsedOffloadAction); 5647 if (!T) { 5648 Inputs = BaseAction->getInputs(); 5649 T = TC.SelectTool(*BaseAction); 5650 } 5651 5652 combineWithPreprocessor(T, Inputs, CollapsedOffloadAction); 5653 return T; 5654 } 5655 }; 5656 } 5657 5658 /// Return a string that uniquely identifies the result of a job. The bound arch 5659 /// is not necessarily represented in the toolchain's triple -- for example, 5660 /// armv7 and armv7s both map to the same triple -- so we need both in our map. 5661 /// Also, we need to add the offloading device kind, as the same tool chain can 5662 /// be used for host and device for some programming models, e.g. OpenMP. 5663 static std::string GetTriplePlusArchString(const ToolChain *TC, 5664 StringRef BoundArch, 5665 Action::OffloadKind OffloadKind) { 5666 std::string TriplePlusArch = TC->getTriple().normalize(); 5667 if (!BoundArch.empty()) { 5668 TriplePlusArch += "-"; 5669 TriplePlusArch += BoundArch; 5670 } 5671 TriplePlusArch += "-"; 5672 TriplePlusArch += Action::GetOffloadKindName(OffloadKind); 5673 return TriplePlusArch; 5674 } 5675 5676 InputInfoList Driver::BuildJobsForAction( 5677 Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch, 5678 bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput, 5679 std::map<std::pair<const Action *, std::string>, InputInfoList> 5680 &CachedResults, 5681 Action::OffloadKind TargetDeviceOffloadKind) const { 5682 std::pair<const Action *, std::string> ActionTC = { 5683 A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)}; 5684 auto CachedResult = CachedResults.find(ActionTC); 5685 if (CachedResult != CachedResults.end()) { 5686 return CachedResult->second; 5687 } 5688 InputInfoList Result = BuildJobsForActionNoCache( 5689 C, A, TC, BoundArch, AtTopLevel, MultipleArchs, LinkingOutput, 5690 CachedResults, TargetDeviceOffloadKind); 5691 CachedResults[ActionTC] = Result; 5692 return Result; 5693 } 5694 5695 static void handleTimeTrace(Compilation &C, const ArgList &Args, 5696 const JobAction *JA, const char *BaseInput, 5697 const InputInfo &Result) { 5698 Arg *A = 5699 Args.getLastArg(options::OPT_ftime_trace, options::OPT_ftime_trace_EQ); 5700 if (!A) 5701 return; 5702 SmallString<128> Path; 5703 if (A->getOption().matches(options::OPT_ftime_trace_EQ)) { 5704 Path = A->getValue(); 5705 if (llvm::sys::fs::is_directory(Path)) { 5706 SmallString<128> Tmp(Result.getFilename()); 5707 llvm::sys::path::replace_extension(Tmp, "json"); 5708 llvm::sys::path::append(Path, llvm::sys::path::filename(Tmp)); 5709 } 5710 } else { 5711 if (Arg *DumpDir = Args.getLastArgNoClaim(options::OPT_dumpdir)) { 5712 // The trace file is ${dumpdir}${basename}.json. Note that dumpdir may not 5713 // end with a path separator. 5714 Path = DumpDir->getValue(); 5715 Path += llvm::sys::path::filename(BaseInput); 5716 } else { 5717 Path = Result.getFilename(); 5718 } 5719 llvm::sys::path::replace_extension(Path, "json"); 5720 } 5721 const char *ResultFile = C.getArgs().MakeArgString(Path); 5722 C.addTimeTraceFile(ResultFile, JA); 5723 C.addResultFile(ResultFile, JA); 5724 } 5725 5726 InputInfoList Driver::BuildJobsForActionNoCache( 5727 Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch, 5728 bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput, 5729 std::map<std::pair<const Action *, std::string>, InputInfoList> 5730 &CachedResults, 5731 Action::OffloadKind TargetDeviceOffloadKind) const { 5732 llvm::PrettyStackTraceString CrashInfo("Building compilation jobs"); 5733 5734 InputInfoList OffloadDependencesInputInfo; 5735 bool BuildingForOffloadDevice = TargetDeviceOffloadKind != Action::OFK_None; 5736 if (const OffloadAction *OA = dyn_cast<OffloadAction>(A)) { 5737 // The 'Darwin' toolchain is initialized only when its arguments are 5738 // computed. Get the default arguments for OFK_None to ensure that 5739 // initialization is performed before processing the offload action. 5740 // FIXME: Remove when darwin's toolchain is initialized during construction. 5741 C.getArgsForToolChain(TC, BoundArch, Action::OFK_None); 5742 5743 // The offload action is expected to be used in four different situations. 5744 // 5745 // a) Set a toolchain/architecture/kind for a host action: 5746 // Host Action 1 -> OffloadAction -> Host Action 2 5747 // 5748 // b) Set a toolchain/architecture/kind for a device action; 5749 // Device Action 1 -> OffloadAction -> Device Action 2 5750 // 5751 // c) Specify a device dependence to a host action; 5752 // Device Action 1 _ 5753 // \ 5754 // Host Action 1 ---> OffloadAction -> Host Action 2 5755 // 5756 // d) Specify a host dependence to a device action. 5757 // Host Action 1 _ 5758 // \ 5759 // Device Action 1 ---> OffloadAction -> Device Action 2 5760 // 5761 // For a) and b), we just return the job generated for the dependences. For 5762 // c) and d) we override the current action with the host/device dependence 5763 // if the current toolchain is host/device and set the offload dependences 5764 // info with the jobs obtained from the device/host dependence(s). 5765 5766 // If there is a single device option or has no host action, just generate 5767 // the job for it. 5768 if (OA->hasSingleDeviceDependence() || !OA->hasHostDependence()) { 5769 InputInfoList DevA; 5770 OA->doOnEachDeviceDependence([&](Action *DepA, const ToolChain *DepTC, 5771 const char *DepBoundArch) { 5772 DevA.append(BuildJobsForAction(C, DepA, DepTC, DepBoundArch, AtTopLevel, 5773 /*MultipleArchs*/ !!DepBoundArch, 5774 LinkingOutput, CachedResults, 5775 DepA->getOffloadingDeviceKind())); 5776 }); 5777 return DevA; 5778 } 5779 5780 // If 'Action 2' is host, we generate jobs for the device dependences and 5781 // override the current action with the host dependence. Otherwise, we 5782 // generate the host dependences and override the action with the device 5783 // dependence. The dependences can't therefore be a top-level action. 5784 OA->doOnEachDependence( 5785 /*IsHostDependence=*/BuildingForOffloadDevice, 5786 [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) { 5787 OffloadDependencesInputInfo.append(BuildJobsForAction( 5788 C, DepA, DepTC, DepBoundArch, /*AtTopLevel=*/false, 5789 /*MultipleArchs*/ !!DepBoundArch, LinkingOutput, CachedResults, 5790 DepA->getOffloadingDeviceKind())); 5791 }); 5792 5793 A = BuildingForOffloadDevice 5794 ? OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true) 5795 : OA->getHostDependence(); 5796 5797 // We may have already built this action as a part of the offloading 5798 // toolchain, return the cached input if so. 5799 std::pair<const Action *, std::string> ActionTC = { 5800 OA->getHostDependence(), 5801 GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)}; 5802 auto It = CachedResults.find(ActionTC); 5803 if (It != CachedResults.end()) { 5804 InputInfoList Inputs = It->second; 5805 Inputs.append(OffloadDependencesInputInfo); 5806 return Inputs; 5807 } 5808 } 5809 5810 if (const InputAction *IA = dyn_cast<InputAction>(A)) { 5811 // FIXME: It would be nice to not claim this here; maybe the old scheme of 5812 // just using Args was better? 5813 const Arg &Input = IA->getInputArg(); 5814 Input.claim(); 5815 if (Input.getOption().matches(options::OPT_INPUT)) { 5816 const char *Name = Input.getValue(); 5817 return {InputInfo(A, Name, /* _BaseInput = */ Name)}; 5818 } 5819 return {InputInfo(A, &Input, /* _BaseInput = */ "")}; 5820 } 5821 5822 if (const BindArchAction *BAA = dyn_cast<BindArchAction>(A)) { 5823 const ToolChain *TC; 5824 StringRef ArchName = BAA->getArchName(); 5825 5826 if (!ArchName.empty()) 5827 TC = &getToolChain(C.getArgs(), 5828 computeTargetTriple(*this, TargetTriple, 5829 C.getArgs(), ArchName)); 5830 else 5831 TC = &C.getDefaultToolChain(); 5832 5833 return BuildJobsForAction(C, *BAA->input_begin(), TC, ArchName, AtTopLevel, 5834 MultipleArchs, LinkingOutput, CachedResults, 5835 TargetDeviceOffloadKind); 5836 } 5837 5838 5839 ActionList Inputs = A->getInputs(); 5840 5841 const JobAction *JA = cast<JobAction>(A); 5842 ActionList CollapsedOffloadActions; 5843 5844 ToolSelector TS(JA, *TC, C, isSaveTempsEnabled(), 5845 embedBitcodeInObject() && !isUsingLTO()); 5846 const Tool *T = TS.getTool(Inputs, CollapsedOffloadActions); 5847 5848 if (!T) 5849 return {InputInfo()}; 5850 5851 // If we've collapsed action list that contained OffloadAction we 5852 // need to build jobs for host/device-side inputs it may have held. 5853 for (const auto *OA : CollapsedOffloadActions) 5854 cast<OffloadAction>(OA)->doOnEachDependence( 5855 /*IsHostDependence=*/BuildingForOffloadDevice, 5856 [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) { 5857 OffloadDependencesInputInfo.append(BuildJobsForAction( 5858 C, DepA, DepTC, DepBoundArch, /* AtTopLevel */ false, 5859 /*MultipleArchs=*/!!DepBoundArch, LinkingOutput, CachedResults, 5860 DepA->getOffloadingDeviceKind())); 5861 }); 5862 5863 // Only use pipes when there is exactly one input. 5864 InputInfoList InputInfos; 5865 for (const Action *Input : Inputs) { 5866 // Treat dsymutil and verify sub-jobs as being at the top-level too, they 5867 // shouldn't get temporary output names. 5868 // FIXME: Clean this up. 5869 bool SubJobAtTopLevel = 5870 AtTopLevel && (isa<DsymutilJobAction>(A) || isa<VerifyJobAction>(A)); 5871 InputInfos.append(BuildJobsForAction( 5872 C, Input, TC, BoundArch, SubJobAtTopLevel, MultipleArchs, LinkingOutput, 5873 CachedResults, A->getOffloadingDeviceKind())); 5874 } 5875 5876 // Always use the first file input as the base input. 5877 const char *BaseInput = InputInfos[0].getBaseInput(); 5878 for (auto &Info : InputInfos) { 5879 if (Info.isFilename()) { 5880 BaseInput = Info.getBaseInput(); 5881 break; 5882 } 5883 } 5884 5885 // ... except dsymutil actions, which use their actual input as the base 5886 // input. 5887 if (JA->getType() == types::TY_dSYM) 5888 BaseInput = InputInfos[0].getFilename(); 5889 5890 // Append outputs of offload device jobs to the input list 5891 if (!OffloadDependencesInputInfo.empty()) 5892 InputInfos.append(OffloadDependencesInputInfo.begin(), 5893 OffloadDependencesInputInfo.end()); 5894 5895 // Set the effective triple of the toolchain for the duration of this job. 5896 llvm::Triple EffectiveTriple; 5897 const ToolChain &ToolTC = T->getToolChain(); 5898 const ArgList &Args = 5899 C.getArgsForToolChain(TC, BoundArch, A->getOffloadingDeviceKind()); 5900 if (InputInfos.size() != 1) { 5901 EffectiveTriple = llvm::Triple(ToolTC.ComputeEffectiveClangTriple(Args)); 5902 } else { 5903 // Pass along the input type if it can be unambiguously determined. 5904 EffectiveTriple = llvm::Triple( 5905 ToolTC.ComputeEffectiveClangTriple(Args, InputInfos[0].getType())); 5906 } 5907 RegisterEffectiveTriple TripleRAII(ToolTC, EffectiveTriple); 5908 5909 // Determine the place to write output to, if any. 5910 InputInfo Result; 5911 InputInfoList UnbundlingResults; 5912 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(JA)) { 5913 // If we have an unbundling job, we need to create results for all the 5914 // outputs. We also update the results cache so that other actions using 5915 // this unbundling action can get the right results. 5916 for (auto &UI : UA->getDependentActionsInfo()) { 5917 assert(UI.DependentOffloadKind != Action::OFK_None && 5918 "Unbundling with no offloading??"); 5919 5920 // Unbundling actions are never at the top level. When we generate the 5921 // offloading prefix, we also do that for the host file because the 5922 // unbundling action does not change the type of the output which can 5923 // cause a overwrite. 5924 std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix( 5925 UI.DependentOffloadKind, 5926 UI.DependentToolChain->getTriple().normalize(), 5927 /*CreatePrefixForHost=*/true); 5928 auto CurI = InputInfo( 5929 UA, 5930 GetNamedOutputPath(C, *UA, BaseInput, UI.DependentBoundArch, 5931 /*AtTopLevel=*/false, 5932 MultipleArchs || 5933 UI.DependentOffloadKind == Action::OFK_HIP, 5934 OffloadingPrefix), 5935 BaseInput); 5936 // Save the unbundling result. 5937 UnbundlingResults.push_back(CurI); 5938 5939 // Get the unique string identifier for this dependence and cache the 5940 // result. 5941 StringRef Arch; 5942 if (TargetDeviceOffloadKind == Action::OFK_HIP) { 5943 if (UI.DependentOffloadKind == Action::OFK_Host) 5944 Arch = StringRef(); 5945 else 5946 Arch = UI.DependentBoundArch; 5947 } else 5948 Arch = BoundArch; 5949 5950 CachedResults[{A, GetTriplePlusArchString(UI.DependentToolChain, Arch, 5951 UI.DependentOffloadKind)}] = { 5952 CurI}; 5953 } 5954 5955 // Now that we have all the results generated, select the one that should be 5956 // returned for the current depending action. 5957 std::pair<const Action *, std::string> ActionTC = { 5958 A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)}; 5959 assert(CachedResults.find(ActionTC) != CachedResults.end() && 5960 "Result does not exist??"); 5961 Result = CachedResults[ActionTC].front(); 5962 } else if (JA->getType() == types::TY_Nothing) 5963 Result = {InputInfo(A, BaseInput)}; 5964 else { 5965 // We only have to generate a prefix for the host if this is not a top-level 5966 // action. 5967 std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix( 5968 A->getOffloadingDeviceKind(), EffectiveTriple.normalize(), 5969 /*CreatePrefixForHost=*/isa<OffloadPackagerJobAction>(A) || 5970 !(A->getOffloadingHostActiveKinds() == Action::OFK_None || 5971 AtTopLevel)); 5972 Result = InputInfo(A, GetNamedOutputPath(C, *JA, BaseInput, BoundArch, 5973 AtTopLevel, MultipleArchs, 5974 OffloadingPrefix), 5975 BaseInput); 5976 if (T->canEmitIR() && OffloadingPrefix.empty()) 5977 handleTimeTrace(C, Args, JA, BaseInput, Result); 5978 } 5979 5980 if (CCCPrintBindings && !CCGenDiagnostics) { 5981 llvm::errs() << "# \"" << T->getToolChain().getTripleString() << '"' 5982 << " - \"" << T->getName() << "\", inputs: ["; 5983 for (unsigned i = 0, e = InputInfos.size(); i != e; ++i) { 5984 llvm::errs() << InputInfos[i].getAsString(); 5985 if (i + 1 != e) 5986 llvm::errs() << ", "; 5987 } 5988 if (UnbundlingResults.empty()) 5989 llvm::errs() << "], output: " << Result.getAsString() << "\n"; 5990 else { 5991 llvm::errs() << "], outputs: ["; 5992 for (unsigned i = 0, e = UnbundlingResults.size(); i != e; ++i) { 5993 llvm::errs() << UnbundlingResults[i].getAsString(); 5994 if (i + 1 != e) 5995 llvm::errs() << ", "; 5996 } 5997 llvm::errs() << "] \n"; 5998 } 5999 } else { 6000 if (UnbundlingResults.empty()) 6001 T->ConstructJob(C, *JA, Result, InputInfos, Args, LinkingOutput); 6002 else 6003 T->ConstructJobMultipleOutputs(C, *JA, UnbundlingResults, InputInfos, 6004 Args, LinkingOutput); 6005 } 6006 return {Result}; 6007 } 6008 6009 const char *Driver::getDefaultImageName() const { 6010 llvm::Triple Target(llvm::Triple::normalize(TargetTriple)); 6011 return Target.isOSWindows() ? "a.exe" : "a.out"; 6012 } 6013 6014 /// Create output filename based on ArgValue, which could either be a 6015 /// full filename, filename without extension, or a directory. If ArgValue 6016 /// does not provide a filename, then use BaseName, and use the extension 6017 /// suitable for FileType. 6018 static const char *MakeCLOutputFilename(const ArgList &Args, StringRef ArgValue, 6019 StringRef BaseName, 6020 types::ID FileType) { 6021 SmallString<128> Filename = ArgValue; 6022 6023 if (ArgValue.empty()) { 6024 // If the argument is empty, output to BaseName in the current dir. 6025 Filename = BaseName; 6026 } else if (llvm::sys::path::is_separator(Filename.back())) { 6027 // If the argument is a directory, output to BaseName in that dir. 6028 llvm::sys::path::append(Filename, BaseName); 6029 } 6030 6031 if (!llvm::sys::path::has_extension(ArgValue)) { 6032 // If the argument didn't provide an extension, then set it. 6033 const char *Extension = types::getTypeTempSuffix(FileType, true); 6034 6035 if (FileType == types::TY_Image && 6036 Args.hasArg(options::OPT__SLASH_LD, options::OPT__SLASH_LDd)) { 6037 // The output file is a dll. 6038 Extension = "dll"; 6039 } 6040 6041 llvm::sys::path::replace_extension(Filename, Extension); 6042 } 6043 6044 return Args.MakeArgString(Filename.c_str()); 6045 } 6046 6047 static bool HasPreprocessOutput(const Action &JA) { 6048 if (isa<PreprocessJobAction>(JA)) 6049 return true; 6050 if (isa<OffloadAction>(JA) && isa<PreprocessJobAction>(JA.getInputs()[0])) 6051 return true; 6052 if (isa<OffloadBundlingJobAction>(JA) && 6053 HasPreprocessOutput(*(JA.getInputs()[0]))) 6054 return true; 6055 return false; 6056 } 6057 6058 const char *Driver::CreateTempFile(Compilation &C, StringRef Prefix, 6059 StringRef Suffix, bool MultipleArchs, 6060 StringRef BoundArch, 6061 bool NeedUniqueDirectory) const { 6062 SmallString<128> TmpName; 6063 Arg *A = C.getArgs().getLastArg(options::OPT_fcrash_diagnostics_dir); 6064 std::optional<std::string> CrashDirectory = 6065 CCGenDiagnostics && A 6066 ? std::string(A->getValue()) 6067 : llvm::sys::Process::GetEnv("CLANG_CRASH_DIAGNOSTICS_DIR"); 6068 if (CrashDirectory) { 6069 if (!getVFS().exists(*CrashDirectory)) 6070 llvm::sys::fs::create_directories(*CrashDirectory); 6071 SmallString<128> Path(*CrashDirectory); 6072 llvm::sys::path::append(Path, Prefix); 6073 const char *Middle = !Suffix.empty() ? "-%%%%%%." : "-%%%%%%"; 6074 if (std::error_code EC = 6075 llvm::sys::fs::createUniqueFile(Path + Middle + Suffix, TmpName)) { 6076 Diag(clang::diag::err_unable_to_make_temp) << EC.message(); 6077 return ""; 6078 } 6079 } else { 6080 if (MultipleArchs && !BoundArch.empty()) { 6081 if (NeedUniqueDirectory) { 6082 TmpName = GetTemporaryDirectory(Prefix); 6083 llvm::sys::path::append(TmpName, 6084 Twine(Prefix) + "-" + BoundArch + "." + Suffix); 6085 } else { 6086 TmpName = 6087 GetTemporaryPath((Twine(Prefix) + "-" + BoundArch).str(), Suffix); 6088 } 6089 6090 } else { 6091 TmpName = GetTemporaryPath(Prefix, Suffix); 6092 } 6093 } 6094 return C.addTempFile(C.getArgs().MakeArgString(TmpName)); 6095 } 6096 6097 // Calculate the output path of the module file when compiling a module unit 6098 // with the `-fmodule-output` option or `-fmodule-output=` option specified. 6099 // The behavior is: 6100 // - If `-fmodule-output=` is specfied, then the module file is 6101 // writing to the value. 6102 // - Otherwise if the output object file of the module unit is specified, the 6103 // output path 6104 // of the module file should be the same with the output object file except 6105 // the corresponding suffix. This requires both `-o` and `-c` are specified. 6106 // - Otherwise, the output path of the module file will be the same with the 6107 // input with the corresponding suffix. 6108 static const char *GetModuleOutputPath(Compilation &C, const JobAction &JA, 6109 const char *BaseInput) { 6110 assert(isa<PrecompileJobAction>(JA) && JA.getType() == types::TY_ModuleFile && 6111 (C.getArgs().hasArg(options::OPT_fmodule_output) || 6112 C.getArgs().hasArg(options::OPT_fmodule_output_EQ))); 6113 6114 SmallString<256> OutputPath = 6115 tools::getCXX20NamedModuleOutputPath(C.getArgs(), BaseInput); 6116 6117 return C.addResultFile(C.getArgs().MakeArgString(OutputPath.c_str()), &JA); 6118 } 6119 6120 const char *Driver::GetNamedOutputPath(Compilation &C, const JobAction &JA, 6121 const char *BaseInput, 6122 StringRef OrigBoundArch, bool AtTopLevel, 6123 bool MultipleArchs, 6124 StringRef OffloadingPrefix) const { 6125 std::string BoundArch = OrigBoundArch.str(); 6126 if (is_style_windows(llvm::sys::path::Style::native)) { 6127 // BoundArch may contains ':', which is invalid in file names on Windows, 6128 // therefore replace it with '%'. 6129 std::replace(BoundArch.begin(), BoundArch.end(), ':', '@'); 6130 } 6131 6132 llvm::PrettyStackTraceString CrashInfo("Computing output path"); 6133 // Output to a user requested destination? 6134 if (AtTopLevel && !isa<DsymutilJobAction>(JA) && !isa<VerifyJobAction>(JA)) { 6135 if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o)) 6136 return C.addResultFile(FinalOutput->getValue(), &JA); 6137 } 6138 6139 // For /P, preprocess to file named after BaseInput. 6140 if (C.getArgs().hasArg(options::OPT__SLASH_P)) { 6141 assert(AtTopLevel && isa<PreprocessJobAction>(JA)); 6142 StringRef BaseName = llvm::sys::path::filename(BaseInput); 6143 StringRef NameArg; 6144 if (Arg *A = C.getArgs().getLastArg(options::OPT__SLASH_Fi)) 6145 NameArg = A->getValue(); 6146 return C.addResultFile( 6147 MakeCLOutputFilename(C.getArgs(), NameArg, BaseName, types::TY_PP_C), 6148 &JA); 6149 } 6150 6151 // Default to writing to stdout? 6152 if (AtTopLevel && !CCGenDiagnostics && HasPreprocessOutput(JA)) { 6153 return "-"; 6154 } 6155 6156 if (JA.getType() == types::TY_ModuleFile && 6157 C.getArgs().getLastArg(options::OPT_module_file_info)) { 6158 return "-"; 6159 } 6160 6161 if (JA.getType() == types::TY_PP_Asm && 6162 C.getArgs().hasArg(options::OPT_dxc_Fc)) { 6163 StringRef FcValue = C.getArgs().getLastArgValue(options::OPT_dxc_Fc); 6164 // TODO: Should we use `MakeCLOutputFilename` here? If so, we can probably 6165 // handle this as part of the SLASH_Fa handling below. 6166 return C.addResultFile(C.getArgs().MakeArgString(FcValue.str()), &JA); 6167 } 6168 6169 if (JA.getType() == types::TY_Object && 6170 C.getArgs().hasArg(options::OPT_dxc_Fo)) { 6171 StringRef FoValue = C.getArgs().getLastArgValue(options::OPT_dxc_Fo); 6172 // TODO: Should we use `MakeCLOutputFilename` here? If so, we can probably 6173 // handle this as part of the SLASH_Fo handling below. 6174 return C.addResultFile(C.getArgs().MakeArgString(FoValue.str()), &JA); 6175 } 6176 6177 // Is this the assembly listing for /FA? 6178 if (JA.getType() == types::TY_PP_Asm && 6179 (C.getArgs().hasArg(options::OPT__SLASH_FA) || 6180 C.getArgs().hasArg(options::OPT__SLASH_Fa))) { 6181 // Use /Fa and the input filename to determine the asm file name. 6182 StringRef BaseName = llvm::sys::path::filename(BaseInput); 6183 StringRef FaValue = C.getArgs().getLastArgValue(options::OPT__SLASH_Fa); 6184 return C.addResultFile( 6185 MakeCLOutputFilename(C.getArgs(), FaValue, BaseName, JA.getType()), 6186 &JA); 6187 } 6188 6189 if (JA.getType() == types::TY_API_INFO && 6190 C.getArgs().hasArg(options::OPT_emit_extension_symbol_graphs) && 6191 C.getArgs().hasArg(options::OPT_o)) 6192 Diag(clang::diag::err_drv_unexpected_symbol_graph_output) 6193 << C.getArgs().getLastArgValue(options::OPT_o); 6194 6195 // DXC defaults to standard out when generating assembly. We check this after 6196 // any DXC flags that might specify a file. 6197 if (AtTopLevel && JA.getType() == types::TY_PP_Asm && IsDXCMode()) 6198 return "-"; 6199 6200 bool SpecifiedModuleOutput = 6201 C.getArgs().hasArg(options::OPT_fmodule_output) || 6202 C.getArgs().hasArg(options::OPT_fmodule_output_EQ); 6203 if (MultipleArchs && SpecifiedModuleOutput) 6204 Diag(clang::diag::err_drv_module_output_with_multiple_arch); 6205 6206 // If we're emitting a module output with the specified option 6207 // `-fmodule-output`. 6208 if (!AtTopLevel && isa<PrecompileJobAction>(JA) && 6209 JA.getType() == types::TY_ModuleFile && SpecifiedModuleOutput) { 6210 assert(!C.getArgs().hasArg(options::OPT_modules_reduced_bmi)); 6211 return GetModuleOutputPath(C, JA, BaseInput); 6212 } 6213 6214 // Output to a temporary file? 6215 if ((!AtTopLevel && !isSaveTempsEnabled() && 6216 !C.getArgs().hasArg(options::OPT__SLASH_Fo)) || 6217 CCGenDiagnostics) { 6218 StringRef Name = llvm::sys::path::filename(BaseInput); 6219 std::pair<StringRef, StringRef> Split = Name.split('.'); 6220 const char *Suffix = 6221 types::getTypeTempSuffix(JA.getType(), IsCLMode() || IsDXCMode()); 6222 // The non-offloading toolchain on Darwin requires deterministic input 6223 // file name for binaries to be deterministic, therefore it needs unique 6224 // directory. 6225 llvm::Triple Triple(C.getDriver().getTargetTriple()); 6226 bool NeedUniqueDirectory = 6227 (JA.getOffloadingDeviceKind() == Action::OFK_None || 6228 JA.getOffloadingDeviceKind() == Action::OFK_Host) && 6229 Triple.isOSDarwin(); 6230 return CreateTempFile(C, Split.first, Suffix, MultipleArchs, BoundArch, 6231 NeedUniqueDirectory); 6232 } 6233 6234 SmallString<128> BasePath(BaseInput); 6235 SmallString<128> ExternalPath(""); 6236 StringRef BaseName; 6237 6238 // Dsymutil actions should use the full path. 6239 if (isa<DsymutilJobAction>(JA) && C.getArgs().hasArg(options::OPT_dsym_dir)) { 6240 ExternalPath += C.getArgs().getLastArg(options::OPT_dsym_dir)->getValue(); 6241 // We use posix style here because the tests (specifically 6242 // darwin-dsymutil.c) demonstrate that posix style paths are acceptable 6243 // even on Windows and if we don't then the similar test covering this 6244 // fails. 6245 llvm::sys::path::append(ExternalPath, llvm::sys::path::Style::posix, 6246 llvm::sys::path::filename(BasePath)); 6247 BaseName = ExternalPath; 6248 } else if (isa<DsymutilJobAction>(JA) || isa<VerifyJobAction>(JA)) 6249 BaseName = BasePath; 6250 else 6251 BaseName = llvm::sys::path::filename(BasePath); 6252 6253 // Determine what the derived output name should be. 6254 const char *NamedOutput; 6255 6256 if ((JA.getType() == types::TY_Object || JA.getType() == types::TY_LTO_BC) && 6257 C.getArgs().hasArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)) { 6258 // The /Fo or /o flag decides the object filename. 6259 StringRef Val = 6260 C.getArgs() 6261 .getLastArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o) 6262 ->getValue(); 6263 NamedOutput = 6264 MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Object); 6265 } else if (JA.getType() == types::TY_Image && 6266 C.getArgs().hasArg(options::OPT__SLASH_Fe, 6267 options::OPT__SLASH_o)) { 6268 // The /Fe or /o flag names the linked file. 6269 StringRef Val = 6270 C.getArgs() 6271 .getLastArg(options::OPT__SLASH_Fe, options::OPT__SLASH_o) 6272 ->getValue(); 6273 NamedOutput = 6274 MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Image); 6275 } else if (JA.getType() == types::TY_Image) { 6276 if (IsCLMode()) { 6277 // clang-cl uses BaseName for the executable name. 6278 NamedOutput = 6279 MakeCLOutputFilename(C.getArgs(), "", BaseName, types::TY_Image); 6280 } else { 6281 SmallString<128> Output(getDefaultImageName()); 6282 // HIP image for device compilation with -fno-gpu-rdc is per compilation 6283 // unit. 6284 bool IsHIPNoRDC = JA.getOffloadingDeviceKind() == Action::OFK_HIP && 6285 !C.getArgs().hasFlag(options::OPT_fgpu_rdc, 6286 options::OPT_fno_gpu_rdc, false); 6287 bool UseOutExtension = IsHIPNoRDC || isa<OffloadPackagerJobAction>(JA); 6288 if (UseOutExtension) { 6289 Output = BaseName; 6290 llvm::sys::path::replace_extension(Output, ""); 6291 } 6292 Output += OffloadingPrefix; 6293 if (MultipleArchs && !BoundArch.empty()) { 6294 Output += "-"; 6295 Output.append(BoundArch); 6296 } 6297 if (UseOutExtension) 6298 Output += ".out"; 6299 NamedOutput = C.getArgs().MakeArgString(Output.c_str()); 6300 } 6301 } else if (JA.getType() == types::TY_PCH && IsCLMode()) { 6302 NamedOutput = C.getArgs().MakeArgString(GetClPchPath(C, BaseName)); 6303 } else if ((JA.getType() == types::TY_Plist || JA.getType() == types::TY_AST) && 6304 C.getArgs().hasArg(options::OPT__SLASH_o)) { 6305 StringRef Val = 6306 C.getArgs() 6307 .getLastArg(options::OPT__SLASH_o) 6308 ->getValue(); 6309 NamedOutput = 6310 MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Object); 6311 } else { 6312 const char *Suffix = 6313 types::getTypeTempSuffix(JA.getType(), IsCLMode() || IsDXCMode()); 6314 assert(Suffix && "All types used for output should have a suffix."); 6315 6316 std::string::size_type End = std::string::npos; 6317 if (!types::appendSuffixForType(JA.getType())) 6318 End = BaseName.rfind('.'); 6319 SmallString<128> Suffixed(BaseName.substr(0, End)); 6320 Suffixed += OffloadingPrefix; 6321 if (MultipleArchs && !BoundArch.empty()) { 6322 Suffixed += "-"; 6323 Suffixed.append(BoundArch); 6324 } 6325 // When using both -save-temps and -emit-llvm, use a ".tmp.bc" suffix for 6326 // the unoptimized bitcode so that it does not get overwritten by the ".bc" 6327 // optimized bitcode output. 6328 auto IsAMDRDCInCompilePhase = [](const JobAction &JA, 6329 const llvm::opt::DerivedArgList &Args) { 6330 // The relocatable compilation in HIP and OpenMP implies -emit-llvm. 6331 // Similarly, use a ".tmp.bc" suffix for the unoptimized bitcode 6332 // (generated in the compile phase.) 6333 const ToolChain *TC = JA.getOffloadingToolChain(); 6334 return isa<CompileJobAction>(JA) && 6335 ((JA.getOffloadingDeviceKind() == Action::OFK_HIP && 6336 Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc, 6337 false)) || 6338 (JA.getOffloadingDeviceKind() == Action::OFK_OpenMP && TC && 6339 TC->getTriple().isAMDGPU())); 6340 }; 6341 if (!AtTopLevel && JA.getType() == types::TY_LLVM_BC && 6342 (C.getArgs().hasArg(options::OPT_emit_llvm) || 6343 IsAMDRDCInCompilePhase(JA, C.getArgs()))) 6344 Suffixed += ".tmp"; 6345 Suffixed += '.'; 6346 Suffixed += Suffix; 6347 NamedOutput = C.getArgs().MakeArgString(Suffixed.c_str()); 6348 } 6349 6350 // Prepend object file path if -save-temps=obj 6351 if (!AtTopLevel && isSaveTempsObj() && C.getArgs().hasArg(options::OPT_o) && 6352 JA.getType() != types::TY_PCH) { 6353 Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o); 6354 SmallString<128> TempPath(FinalOutput->getValue()); 6355 llvm::sys::path::remove_filename(TempPath); 6356 StringRef OutputFileName = llvm::sys::path::filename(NamedOutput); 6357 llvm::sys::path::append(TempPath, OutputFileName); 6358 NamedOutput = C.getArgs().MakeArgString(TempPath.c_str()); 6359 } 6360 6361 // If we're saving temps and the temp file conflicts with the input file, 6362 // then avoid overwriting input file. 6363 if (!AtTopLevel && isSaveTempsEnabled() && NamedOutput == BaseName) { 6364 bool SameFile = false; 6365 SmallString<256> Result; 6366 llvm::sys::fs::current_path(Result); 6367 llvm::sys::path::append(Result, BaseName); 6368 llvm::sys::fs::equivalent(BaseInput, Result.c_str(), SameFile); 6369 // Must share the same path to conflict. 6370 if (SameFile) { 6371 StringRef Name = llvm::sys::path::filename(BaseInput); 6372 std::pair<StringRef, StringRef> Split = Name.split('.'); 6373 std::string TmpName = GetTemporaryPath( 6374 Split.first, 6375 types::getTypeTempSuffix(JA.getType(), IsCLMode() || IsDXCMode())); 6376 return C.addTempFile(C.getArgs().MakeArgString(TmpName)); 6377 } 6378 } 6379 6380 // As an annoying special case, PCH generation doesn't strip the pathname. 6381 if (JA.getType() == types::TY_PCH && !IsCLMode()) { 6382 llvm::sys::path::remove_filename(BasePath); 6383 if (BasePath.empty()) 6384 BasePath = NamedOutput; 6385 else 6386 llvm::sys::path::append(BasePath, NamedOutput); 6387 return C.addResultFile(C.getArgs().MakeArgString(BasePath.c_str()), &JA); 6388 } 6389 6390 return C.addResultFile(NamedOutput, &JA); 6391 } 6392 6393 std::string Driver::GetFilePath(StringRef Name, const ToolChain &TC) const { 6394 // Search for Name in a list of paths. 6395 auto SearchPaths = [&](const llvm::SmallVectorImpl<std::string> &P) 6396 -> std::optional<std::string> { 6397 // Respect a limited subset of the '-Bprefix' functionality in GCC by 6398 // attempting to use this prefix when looking for file paths. 6399 for (const auto &Dir : P) { 6400 if (Dir.empty()) 6401 continue; 6402 SmallString<128> P(Dir[0] == '=' ? SysRoot + Dir.substr(1) : Dir); 6403 llvm::sys::path::append(P, Name); 6404 if (llvm::sys::fs::exists(Twine(P))) 6405 return std::string(P); 6406 } 6407 return std::nullopt; 6408 }; 6409 6410 if (auto P = SearchPaths(PrefixDirs)) 6411 return *P; 6412 6413 SmallString<128> R(ResourceDir); 6414 llvm::sys::path::append(R, Name); 6415 if (llvm::sys::fs::exists(Twine(R))) 6416 return std::string(R); 6417 6418 SmallString<128> P(TC.getCompilerRTPath()); 6419 llvm::sys::path::append(P, Name); 6420 if (llvm::sys::fs::exists(Twine(P))) 6421 return std::string(P); 6422 6423 SmallString<128> D(Dir); 6424 llvm::sys::path::append(D, "..", Name); 6425 if (llvm::sys::fs::exists(Twine(D))) 6426 return std::string(D); 6427 6428 if (auto P = SearchPaths(TC.getLibraryPaths())) 6429 return *P; 6430 6431 if (auto P = SearchPaths(TC.getFilePaths())) 6432 return *P; 6433 6434 SmallString<128> R2(ResourceDir); 6435 llvm::sys::path::append(R2, "..", "..", Name); 6436 if (llvm::sys::fs::exists(Twine(R2))) 6437 return std::string(R2); 6438 6439 return std::string(Name); 6440 } 6441 6442 void Driver::generatePrefixedToolNames( 6443 StringRef Tool, const ToolChain &TC, 6444 SmallVectorImpl<std::string> &Names) const { 6445 // FIXME: Needs a better variable than TargetTriple 6446 Names.emplace_back((TargetTriple + "-" + Tool).str()); 6447 Names.emplace_back(Tool); 6448 } 6449 6450 static bool ScanDirForExecutable(SmallString<128> &Dir, StringRef Name) { 6451 llvm::sys::path::append(Dir, Name); 6452 if (llvm::sys::fs::can_execute(Twine(Dir))) 6453 return true; 6454 llvm::sys::path::remove_filename(Dir); 6455 return false; 6456 } 6457 6458 std::string Driver::GetProgramPath(StringRef Name, const ToolChain &TC) const { 6459 SmallVector<std::string, 2> TargetSpecificExecutables; 6460 generatePrefixedToolNames(Name, TC, TargetSpecificExecutables); 6461 6462 // Respect a limited subset of the '-Bprefix' functionality in GCC by 6463 // attempting to use this prefix when looking for program paths. 6464 for (const auto &PrefixDir : PrefixDirs) { 6465 if (llvm::sys::fs::is_directory(PrefixDir)) { 6466 SmallString<128> P(PrefixDir); 6467 if (ScanDirForExecutable(P, Name)) 6468 return std::string(P); 6469 } else { 6470 SmallString<128> P((PrefixDir + Name).str()); 6471 if (llvm::sys::fs::can_execute(Twine(P))) 6472 return std::string(P); 6473 } 6474 } 6475 6476 const ToolChain::path_list &List = TC.getProgramPaths(); 6477 for (const auto &TargetSpecificExecutable : TargetSpecificExecutables) { 6478 // For each possible name of the tool look for it in 6479 // program paths first, then the path. 6480 // Higher priority names will be first, meaning that 6481 // a higher priority name in the path will be found 6482 // instead of a lower priority name in the program path. 6483 // E.g. <triple>-gcc on the path will be found instead 6484 // of gcc in the program path 6485 for (const auto &Path : List) { 6486 SmallString<128> P(Path); 6487 if (ScanDirForExecutable(P, TargetSpecificExecutable)) 6488 return std::string(P); 6489 } 6490 6491 // Fall back to the path 6492 if (llvm::ErrorOr<std::string> P = 6493 llvm::sys::findProgramByName(TargetSpecificExecutable)) 6494 return *P; 6495 } 6496 6497 return std::string(Name); 6498 } 6499 6500 std::string Driver::GetStdModuleManifestPath(const Compilation &C, 6501 const ToolChain &TC) const { 6502 std::string error = "<NOT PRESENT>"; 6503 6504 switch (TC.GetCXXStdlibType(C.getArgs())) { 6505 case ToolChain::CST_Libcxx: { 6506 auto evaluate = [&](const char *library) -> std::optional<std::string> { 6507 std::string lib = GetFilePath(library, TC); 6508 6509 // Note when there are multiple flavours of libc++ the module json needs 6510 // to look at the command-line arguments for the proper json. These 6511 // flavours do not exist at the moment, but there are plans to provide a 6512 // variant that is built with sanitizer instrumentation enabled. 6513 6514 // For example 6515 // StringRef modules = [&] { 6516 // const SanitizerArgs &Sanitize = TC.getSanitizerArgs(C.getArgs()); 6517 // if (Sanitize.needsAsanRt()) 6518 // return "libc++.modules-asan.json"; 6519 // return "libc++.modules.json"; 6520 // }(); 6521 6522 SmallString<128> path(lib.begin(), lib.end()); 6523 llvm::sys::path::remove_filename(path); 6524 llvm::sys::path::append(path, "libc++.modules.json"); 6525 if (TC.getVFS().exists(path)) 6526 return static_cast<std::string>(path); 6527 6528 return {}; 6529 }; 6530 6531 if (std::optional<std::string> result = evaluate("libc++.so"); result) 6532 return *result; 6533 6534 return evaluate("libc++.a").value_or(error); 6535 } 6536 6537 case ToolChain::CST_Libstdcxx: { 6538 auto evaluate = [&](const char *library) -> std::optional<std::string> { 6539 std::string lib = GetFilePath(library, TC); 6540 6541 SmallString<128> path(lib.begin(), lib.end()); 6542 llvm::sys::path::remove_filename(path); 6543 llvm::sys::path::append(path, "libstdc++.modules.json"); 6544 if (TC.getVFS().exists(path)) 6545 return static_cast<std::string>(path); 6546 6547 return {}; 6548 }; 6549 6550 if (std::optional<std::string> result = evaluate("libstdc++.so"); result) 6551 return *result; 6552 6553 return evaluate("libstdc++.a").value_or(error); 6554 } 6555 } 6556 6557 return error; 6558 } 6559 6560 std::string Driver::GetTemporaryPath(StringRef Prefix, StringRef Suffix) const { 6561 SmallString<128> Path; 6562 std::error_code EC = llvm::sys::fs::createTemporaryFile(Prefix, Suffix, Path); 6563 if (EC) { 6564 Diag(clang::diag::err_unable_to_make_temp) << EC.message(); 6565 return ""; 6566 } 6567 6568 return std::string(Path); 6569 } 6570 6571 std::string Driver::GetTemporaryDirectory(StringRef Prefix) const { 6572 SmallString<128> Path; 6573 std::error_code EC = llvm::sys::fs::createUniqueDirectory(Prefix, Path); 6574 if (EC) { 6575 Diag(clang::diag::err_unable_to_make_temp) << EC.message(); 6576 return ""; 6577 } 6578 6579 return std::string(Path); 6580 } 6581 6582 std::string Driver::GetClPchPath(Compilation &C, StringRef BaseName) const { 6583 SmallString<128> Output; 6584 if (Arg *FpArg = C.getArgs().getLastArg(options::OPT__SLASH_Fp)) { 6585 // FIXME: If anybody needs it, implement this obscure rule: 6586 // "If you specify a directory without a file name, the default file name 6587 // is VCx0.pch., where x is the major version of Visual C++ in use." 6588 Output = FpArg->getValue(); 6589 6590 // "If you do not specify an extension as part of the path name, an 6591 // extension of .pch is assumed. " 6592 if (!llvm::sys::path::has_extension(Output)) 6593 Output += ".pch"; 6594 } else { 6595 if (Arg *YcArg = C.getArgs().getLastArg(options::OPT__SLASH_Yc)) 6596 Output = YcArg->getValue(); 6597 if (Output.empty()) 6598 Output = BaseName; 6599 llvm::sys::path::replace_extension(Output, ".pch"); 6600 } 6601 return std::string(Output); 6602 } 6603 6604 const ToolChain &Driver::getToolChain(const ArgList &Args, 6605 const llvm::Triple &Target) const { 6606 6607 auto &TC = ToolChains[Target.str()]; 6608 if (!TC) { 6609 switch (Target.getOS()) { 6610 case llvm::Triple::AIX: 6611 TC = std::make_unique<toolchains::AIX>(*this, Target, Args); 6612 break; 6613 case llvm::Triple::Haiku: 6614 TC = std::make_unique<toolchains::Haiku>(*this, Target, Args); 6615 break; 6616 case llvm::Triple::Darwin: 6617 case llvm::Triple::MacOSX: 6618 case llvm::Triple::IOS: 6619 case llvm::Triple::TvOS: 6620 case llvm::Triple::WatchOS: 6621 case llvm::Triple::XROS: 6622 case llvm::Triple::DriverKit: 6623 TC = std::make_unique<toolchains::DarwinClang>(*this, Target, Args); 6624 break; 6625 case llvm::Triple::DragonFly: 6626 TC = std::make_unique<toolchains::DragonFly>(*this, Target, Args); 6627 break; 6628 case llvm::Triple::OpenBSD: 6629 TC = std::make_unique<toolchains::OpenBSD>(*this, Target, Args); 6630 break; 6631 case llvm::Triple::NetBSD: 6632 TC = std::make_unique<toolchains::NetBSD>(*this, Target, Args); 6633 break; 6634 case llvm::Triple::FreeBSD: 6635 if (Target.isPPC()) 6636 TC = std::make_unique<toolchains::PPCFreeBSDToolChain>(*this, Target, 6637 Args); 6638 else 6639 TC = std::make_unique<toolchains::FreeBSD>(*this, Target, Args); 6640 break; 6641 case llvm::Triple::Linux: 6642 case llvm::Triple::ELFIAMCU: 6643 if (Target.getArch() == llvm::Triple::hexagon) 6644 TC = std::make_unique<toolchains::HexagonToolChain>(*this, Target, 6645 Args); 6646 else if ((Target.getVendor() == llvm::Triple::MipsTechnologies) && 6647 !Target.hasEnvironment()) 6648 TC = std::make_unique<toolchains::MipsLLVMToolChain>(*this, Target, 6649 Args); 6650 else if (Target.isPPC()) 6651 TC = std::make_unique<toolchains::PPCLinuxToolChain>(*this, Target, 6652 Args); 6653 else if (Target.getArch() == llvm::Triple::ve) 6654 TC = std::make_unique<toolchains::VEToolChain>(*this, Target, Args); 6655 else if (Target.isOHOSFamily()) 6656 TC = std::make_unique<toolchains::OHOS>(*this, Target, Args); 6657 else 6658 TC = std::make_unique<toolchains::Linux>(*this, Target, Args); 6659 break; 6660 case llvm::Triple::NaCl: 6661 TC = std::make_unique<toolchains::NaClToolChain>(*this, Target, Args); 6662 break; 6663 case llvm::Triple::Fuchsia: 6664 TC = std::make_unique<toolchains::Fuchsia>(*this, Target, Args); 6665 break; 6666 case llvm::Triple::Solaris: 6667 TC = std::make_unique<toolchains::Solaris>(*this, Target, Args); 6668 break; 6669 case llvm::Triple::CUDA: 6670 TC = std::make_unique<toolchains::NVPTXToolChain>(*this, Target, Args); 6671 break; 6672 case llvm::Triple::AMDHSA: 6673 TC = std::make_unique<toolchains::ROCMToolChain>(*this, Target, Args); 6674 break; 6675 case llvm::Triple::AMDPAL: 6676 case llvm::Triple::Mesa3D: 6677 TC = std::make_unique<toolchains::AMDGPUToolChain>(*this, Target, Args); 6678 break; 6679 case llvm::Triple::UEFI: 6680 TC = std::make_unique<toolchains::UEFI>(*this, Target, Args); 6681 break; 6682 case llvm::Triple::Win32: 6683 switch (Target.getEnvironment()) { 6684 default: 6685 if (Target.isOSBinFormatELF()) 6686 TC = std::make_unique<toolchains::Generic_ELF>(*this, Target, Args); 6687 else if (Target.isOSBinFormatMachO()) 6688 TC = std::make_unique<toolchains::MachO>(*this, Target, Args); 6689 else 6690 TC = std::make_unique<toolchains::Generic_GCC>(*this, Target, Args); 6691 break; 6692 case llvm::Triple::GNU: 6693 TC = std::make_unique<toolchains::MinGW>(*this, Target, Args); 6694 break; 6695 case llvm::Triple::Itanium: 6696 TC = std::make_unique<toolchains::CrossWindowsToolChain>(*this, Target, 6697 Args); 6698 break; 6699 case llvm::Triple::MSVC: 6700 case llvm::Triple::UnknownEnvironment: 6701 if (Args.getLastArgValue(options::OPT_fuse_ld_EQ) 6702 .starts_with_insensitive("bfd")) 6703 TC = std::make_unique<toolchains::CrossWindowsToolChain>( 6704 *this, Target, Args); 6705 else 6706 TC = 6707 std::make_unique<toolchains::MSVCToolChain>(*this, Target, Args); 6708 break; 6709 } 6710 break; 6711 case llvm::Triple::PS4: 6712 TC = std::make_unique<toolchains::PS4CPU>(*this, Target, Args); 6713 break; 6714 case llvm::Triple::PS5: 6715 TC = std::make_unique<toolchains::PS5CPU>(*this, Target, Args); 6716 break; 6717 case llvm::Triple::Hurd: 6718 TC = std::make_unique<toolchains::Hurd>(*this, Target, Args); 6719 break; 6720 case llvm::Triple::LiteOS: 6721 TC = std::make_unique<toolchains::OHOS>(*this, Target, Args); 6722 break; 6723 case llvm::Triple::ZOS: 6724 TC = std::make_unique<toolchains::ZOS>(*this, Target, Args); 6725 break; 6726 case llvm::Triple::Vulkan: 6727 case llvm::Triple::ShaderModel: 6728 TC = std::make_unique<toolchains::HLSLToolChain>(*this, Target, Args); 6729 break; 6730 default: 6731 // Of these targets, Hexagon is the only one that might have 6732 // an OS of Linux, in which case it got handled above already. 6733 switch (Target.getArch()) { 6734 case llvm::Triple::tce: 6735 TC = std::make_unique<toolchains::TCEToolChain>(*this, Target, Args); 6736 break; 6737 case llvm::Triple::tcele: 6738 TC = std::make_unique<toolchains::TCELEToolChain>(*this, Target, Args); 6739 break; 6740 case llvm::Triple::hexagon: 6741 TC = std::make_unique<toolchains::HexagonToolChain>(*this, Target, 6742 Args); 6743 break; 6744 case llvm::Triple::lanai: 6745 TC = std::make_unique<toolchains::LanaiToolChain>(*this, Target, Args); 6746 break; 6747 case llvm::Triple::xcore: 6748 TC = std::make_unique<toolchains::XCoreToolChain>(*this, Target, Args); 6749 break; 6750 case llvm::Triple::wasm32: 6751 case llvm::Triple::wasm64: 6752 TC = std::make_unique<toolchains::WebAssembly>(*this, Target, Args); 6753 break; 6754 case llvm::Triple::avr: 6755 TC = std::make_unique<toolchains::AVRToolChain>(*this, Target, Args); 6756 break; 6757 case llvm::Triple::msp430: 6758 TC = 6759 std::make_unique<toolchains::MSP430ToolChain>(*this, Target, Args); 6760 break; 6761 case llvm::Triple::riscv32: 6762 case llvm::Triple::riscv64: 6763 if (toolchains::RISCVToolChain::hasGCCToolchain(*this, Args)) 6764 TC = 6765 std::make_unique<toolchains::RISCVToolChain>(*this, Target, Args); 6766 else 6767 TC = std::make_unique<toolchains::BareMetal>(*this, Target, Args); 6768 break; 6769 case llvm::Triple::ve: 6770 TC = std::make_unique<toolchains::VEToolChain>(*this, Target, Args); 6771 break; 6772 case llvm::Triple::spirv32: 6773 case llvm::Triple::spirv64: 6774 TC = std::make_unique<toolchains::SPIRVToolChain>(*this, Target, Args); 6775 break; 6776 case llvm::Triple::csky: 6777 TC = std::make_unique<toolchains::CSKYToolChain>(*this, Target, Args); 6778 break; 6779 default: 6780 if (toolchains::BareMetal::handlesTarget(Target)) 6781 TC = std::make_unique<toolchains::BareMetal>(*this, Target, Args); 6782 else if (Target.isOSBinFormatELF()) 6783 TC = std::make_unique<toolchains::Generic_ELF>(*this, Target, Args); 6784 else if (Target.isAppleMachO()) 6785 TC = std::make_unique<toolchains::AppleMachO>(*this, Target, Args); 6786 else if (Target.isOSBinFormatMachO()) 6787 TC = std::make_unique<toolchains::MachO>(*this, Target, Args); 6788 else 6789 TC = std::make_unique<toolchains::Generic_GCC>(*this, Target, Args); 6790 } 6791 } 6792 } 6793 6794 return *TC; 6795 } 6796 6797 const ToolChain &Driver::getOffloadingDeviceToolChain( 6798 const ArgList &Args, const llvm::Triple &Target, const ToolChain &HostTC, 6799 const Action::OffloadKind &TargetDeviceOffloadKind) const { 6800 // Use device / host triples as the key into the ToolChains map because the 6801 // device ToolChain we create depends on both. 6802 auto &TC = ToolChains[Target.str() + "/" + HostTC.getTriple().str()]; 6803 if (!TC) { 6804 // Categorized by offload kind > arch rather than OS > arch like 6805 // the normal getToolChain call, as it seems a reasonable way to categorize 6806 // things. 6807 switch (TargetDeviceOffloadKind) { 6808 case Action::OFK_HIP: { 6809 if (((Target.getArch() == llvm::Triple::amdgcn || 6810 Target.getArch() == llvm::Triple::spirv64) && 6811 Target.getVendor() == llvm::Triple::AMD && 6812 Target.getOS() == llvm::Triple::AMDHSA) || 6813 !Args.hasArgNoClaim(options::OPT_offload_EQ)) 6814 TC = std::make_unique<toolchains::HIPAMDToolChain>(*this, Target, 6815 HostTC, Args); 6816 else if (Target.getArch() == llvm::Triple::spirv64 && 6817 Target.getVendor() == llvm::Triple::UnknownVendor && 6818 Target.getOS() == llvm::Triple::UnknownOS) 6819 TC = std::make_unique<toolchains::HIPSPVToolChain>(*this, Target, 6820 HostTC, Args); 6821 break; 6822 } 6823 case Action::OFK_SYCL: 6824 if (Target.isSPIROrSPIRV()) 6825 TC = std::make_unique<toolchains::SYCLToolChain>(*this, Target, HostTC, 6826 Args); 6827 break; 6828 default: 6829 break; 6830 } 6831 } 6832 assert(TC && "Could not create offloading device tool chain."); 6833 return *TC; 6834 } 6835 6836 bool Driver::ShouldUseClangCompiler(const JobAction &JA) const { 6837 // Say "no" if there is not exactly one input of a type clang understands. 6838 if (JA.size() != 1 || 6839 !types::isAcceptedByClang((*JA.input_begin())->getType())) 6840 return false; 6841 6842 // And say "no" if this is not a kind of action clang understands. 6843 if (!isa<PreprocessJobAction>(JA) && !isa<PrecompileJobAction>(JA) && 6844 !isa<CompileJobAction>(JA) && !isa<BackendJobAction>(JA) && 6845 !isa<ExtractAPIJobAction>(JA)) 6846 return false; 6847 6848 return true; 6849 } 6850 6851 bool Driver::ShouldUseFlangCompiler(const JobAction &JA) const { 6852 // Say "no" if there is not exactly one input of a type flang understands. 6853 if (JA.size() != 1 || 6854 !types::isAcceptedByFlang((*JA.input_begin())->getType())) 6855 return false; 6856 6857 // And say "no" if this is not a kind of action flang understands. 6858 if (!isa<PreprocessJobAction>(JA) && !isa<PrecompileJobAction>(JA) && 6859 !isa<CompileJobAction>(JA) && !isa<BackendJobAction>(JA)) 6860 return false; 6861 6862 return true; 6863 } 6864 6865 bool Driver::ShouldEmitStaticLibrary(const ArgList &Args) const { 6866 // Only emit static library if the flag is set explicitly. 6867 if (Args.hasArg(options::OPT_emit_static_lib)) 6868 return true; 6869 return false; 6870 } 6871 6872 /// GetReleaseVersion - Parse (([0-9]+)(.([0-9]+)(.([0-9]+)?))?)? and return the 6873 /// grouped values as integers. Numbers which are not provided are set to 0. 6874 /// 6875 /// \return True if the entire string was parsed (9.2), or all groups were 6876 /// parsed (10.3.5extrastuff). 6877 bool Driver::GetReleaseVersion(StringRef Str, unsigned &Major, unsigned &Minor, 6878 unsigned &Micro, bool &HadExtra) { 6879 HadExtra = false; 6880 6881 Major = Minor = Micro = 0; 6882 if (Str.empty()) 6883 return false; 6884 6885 if (Str.consumeInteger(10, Major)) 6886 return false; 6887 if (Str.empty()) 6888 return true; 6889 if (!Str.consume_front(".")) 6890 return false; 6891 6892 if (Str.consumeInteger(10, Minor)) 6893 return false; 6894 if (Str.empty()) 6895 return true; 6896 if (!Str.consume_front(".")) 6897 return false; 6898 6899 if (Str.consumeInteger(10, Micro)) 6900 return false; 6901 if (!Str.empty()) 6902 HadExtra = true; 6903 return true; 6904 } 6905 6906 /// Parse digits from a string \p Str and fulfill \p Digits with 6907 /// the parsed numbers. This method assumes that the max number of 6908 /// digits to look for is equal to Digits.size(). 6909 /// 6910 /// \return True if the entire string was parsed and there are 6911 /// no extra characters remaining at the end. 6912 bool Driver::GetReleaseVersion(StringRef Str, 6913 MutableArrayRef<unsigned> Digits) { 6914 if (Str.empty()) 6915 return false; 6916 6917 unsigned CurDigit = 0; 6918 while (CurDigit < Digits.size()) { 6919 unsigned Digit; 6920 if (Str.consumeInteger(10, Digit)) 6921 return false; 6922 Digits[CurDigit] = Digit; 6923 if (Str.empty()) 6924 return true; 6925 if (!Str.consume_front(".")) 6926 return false; 6927 CurDigit++; 6928 } 6929 6930 // More digits than requested, bail out... 6931 return false; 6932 } 6933 6934 llvm::opt::Visibility 6935 Driver::getOptionVisibilityMask(bool UseDriverMode) const { 6936 if (!UseDriverMode) 6937 return llvm::opt::Visibility(options::ClangOption); 6938 if (IsCLMode()) 6939 return llvm::opt::Visibility(options::CLOption); 6940 if (IsDXCMode()) 6941 return llvm::opt::Visibility(options::DXCOption); 6942 if (IsFlangMode()) { 6943 return llvm::opt::Visibility(options::FlangOption); 6944 } 6945 return llvm::opt::Visibility(options::ClangOption); 6946 } 6947 6948 const char *Driver::getExecutableForDriverMode(DriverMode Mode) { 6949 switch (Mode) { 6950 case GCCMode: 6951 return "clang"; 6952 case GXXMode: 6953 return "clang++"; 6954 case CPPMode: 6955 return "clang-cpp"; 6956 case CLMode: 6957 return "clang-cl"; 6958 case FlangMode: 6959 return "flang"; 6960 case DXCMode: 6961 return "clang-dxc"; 6962 } 6963 6964 llvm_unreachable("Unhandled Mode"); 6965 } 6966 6967 bool clang::driver::isOptimizationLevelFast(const ArgList &Args) { 6968 return Args.hasFlag(options::OPT_Ofast, options::OPT_O_Group, false); 6969 } 6970 6971 bool clang::driver::willEmitRemarks(const ArgList &Args) { 6972 // -fsave-optimization-record enables it. 6973 if (Args.hasFlag(options::OPT_fsave_optimization_record, 6974 options::OPT_fno_save_optimization_record, false)) 6975 return true; 6976 6977 // -fsave-optimization-record=<format> enables it as well. 6978 if (Args.hasFlag(options::OPT_fsave_optimization_record_EQ, 6979 options::OPT_fno_save_optimization_record, false)) 6980 return true; 6981 6982 // -foptimization-record-file alone enables it too. 6983 if (Args.hasFlag(options::OPT_foptimization_record_file_EQ, 6984 options::OPT_fno_save_optimization_record, false)) 6985 return true; 6986 6987 // -foptimization-record-passes alone enables it too. 6988 if (Args.hasFlag(options::OPT_foptimization_record_passes_EQ, 6989 options::OPT_fno_save_optimization_record, false)) 6990 return true; 6991 return false; 6992 } 6993 6994 llvm::StringRef clang::driver::getDriverMode(StringRef ProgName, 6995 ArrayRef<const char *> Args) { 6996 static StringRef OptName = 6997 getDriverOptTable().getOption(options::OPT_driver_mode).getPrefixedName(); 6998 llvm::StringRef Opt; 6999 for (StringRef Arg : Args) { 7000 if (!Arg.starts_with(OptName)) 7001 continue; 7002 Opt = Arg; 7003 } 7004 if (Opt.empty()) 7005 Opt = ToolChain::getTargetAndModeFromProgramName(ProgName).DriverMode; 7006 return Opt.consume_front(OptName) ? Opt : ""; 7007 } 7008 7009 bool driver::IsClangCL(StringRef DriverMode) { return DriverMode == "cl"; } 7010 7011 llvm::Error driver::expandResponseFiles(SmallVectorImpl<const char *> &Args, 7012 bool ClangCLMode, 7013 llvm::BumpPtrAllocator &Alloc, 7014 llvm::vfs::FileSystem *FS) { 7015 // Parse response files using the GNU syntax, unless we're in CL mode. There 7016 // are two ways to put clang in CL compatibility mode: ProgName is either 7017 // clang-cl or cl, or --driver-mode=cl is on the command line. The normal 7018 // command line parsing can't happen until after response file parsing, so we 7019 // have to manually search for a --driver-mode=cl argument the hard way. 7020 // Finally, our -cc1 tools don't care which tokenization mode we use because 7021 // response files written by clang will tokenize the same way in either mode. 7022 enum { Default, POSIX, Windows } RSPQuoting = Default; 7023 for (const char *F : Args) { 7024 if (strcmp(F, "--rsp-quoting=posix") == 0) 7025 RSPQuoting = POSIX; 7026 else if (strcmp(F, "--rsp-quoting=windows") == 0) 7027 RSPQuoting = Windows; 7028 } 7029 7030 // Determines whether we want nullptr markers in Args to indicate response 7031 // files end-of-lines. We only use this for the /LINK driver argument with 7032 // clang-cl.exe on Windows. 7033 bool MarkEOLs = ClangCLMode; 7034 7035 llvm::cl::TokenizerCallback Tokenizer; 7036 if (RSPQuoting == Windows || (RSPQuoting == Default && ClangCLMode)) 7037 Tokenizer = &llvm::cl::TokenizeWindowsCommandLine; 7038 else 7039 Tokenizer = &llvm::cl::TokenizeGNUCommandLine; 7040 7041 if (MarkEOLs && Args.size() > 1 && StringRef(Args[1]).starts_with("-cc1")) 7042 MarkEOLs = false; 7043 7044 llvm::cl::ExpansionContext ECtx(Alloc, Tokenizer); 7045 ECtx.setMarkEOLs(MarkEOLs); 7046 if (FS) 7047 ECtx.setVFS(FS); 7048 7049 if (llvm::Error Err = ECtx.expandResponseFiles(Args)) 7050 return Err; 7051 7052 // If -cc1 came from a response file, remove the EOL sentinels. 7053 auto FirstArg = llvm::find_if(llvm::drop_begin(Args), 7054 [](const char *A) { return A != nullptr; }); 7055 if (FirstArg != Args.end() && StringRef(*FirstArg).starts_with("-cc1")) { 7056 // If -cc1 came from a response file, remove the EOL sentinels. 7057 if (MarkEOLs) { 7058 auto newEnd = std::remove(Args.begin(), Args.end(), nullptr); 7059 Args.resize(newEnd - Args.begin()); 7060 } 7061 } 7062 7063 return llvm::Error::success(); 7064 } 7065 7066 static const char *GetStableCStr(llvm::StringSet<> &SavedStrings, StringRef S) { 7067 return SavedStrings.insert(S).first->getKeyData(); 7068 } 7069 7070 /// Apply a list of edits to the input argument lists. 7071 /// 7072 /// The input string is a space separated list of edits to perform, 7073 /// they are applied in order to the input argument lists. Edits 7074 /// should be one of the following forms: 7075 /// 7076 /// '#': Silence information about the changes to the command line arguments. 7077 /// 7078 /// '^': Add FOO as a new argument at the beginning of the command line. 7079 /// 7080 /// '+': Add FOO as a new argument at the end of the command line. 7081 /// 7082 /// 's/XXX/YYY/': Substitute the regular expression XXX with YYY in the command 7083 /// line. 7084 /// 7085 /// 'xOPTION': Removes all instances of the literal argument OPTION. 7086 /// 7087 /// 'XOPTION': Removes all instances of the literal argument OPTION, 7088 /// and the following argument. 7089 /// 7090 /// 'Ox': Removes all flags matching 'O' or 'O[sz0-9]' and adds 'Ox' 7091 /// at the end of the command line. 7092 /// 7093 /// \param OS - The stream to write edit information to. 7094 /// \param Args - The vector of command line arguments. 7095 /// \param Edit - The override command to perform. 7096 /// \param SavedStrings - Set to use for storing string representations. 7097 static void applyOneOverrideOption(raw_ostream &OS, 7098 SmallVectorImpl<const char *> &Args, 7099 StringRef Edit, 7100 llvm::StringSet<> &SavedStrings) { 7101 // This does not need to be efficient. 7102 7103 if (Edit[0] == '^') { 7104 const char *Str = GetStableCStr(SavedStrings, Edit.substr(1)); 7105 OS << "### Adding argument " << Str << " at beginning\n"; 7106 Args.insert(Args.begin() + 1, Str); 7107 } else if (Edit[0] == '+') { 7108 const char *Str = GetStableCStr(SavedStrings, Edit.substr(1)); 7109 OS << "### Adding argument " << Str << " at end\n"; 7110 Args.push_back(Str); 7111 } else if (Edit[0] == 's' && Edit[1] == '/' && Edit.ends_with("/") && 7112 Edit.slice(2, Edit.size() - 1).contains('/')) { 7113 StringRef MatchPattern = Edit.substr(2).split('/').first; 7114 StringRef ReplPattern = Edit.substr(2).split('/').second; 7115 ReplPattern = ReplPattern.slice(0, ReplPattern.size() - 1); 7116 7117 for (unsigned i = 1, e = Args.size(); i != e; ++i) { 7118 // Ignore end-of-line response file markers 7119 if (Args[i] == nullptr) 7120 continue; 7121 std::string Repl = llvm::Regex(MatchPattern).sub(ReplPattern, Args[i]); 7122 7123 if (Repl != Args[i]) { 7124 OS << "### Replacing '" << Args[i] << "' with '" << Repl << "'\n"; 7125 Args[i] = GetStableCStr(SavedStrings, Repl); 7126 } 7127 } 7128 } else if (Edit[0] == 'x' || Edit[0] == 'X') { 7129 auto Option = Edit.substr(1); 7130 for (unsigned i = 1; i < Args.size();) { 7131 if (Option == Args[i]) { 7132 OS << "### Deleting argument " << Args[i] << '\n'; 7133 Args.erase(Args.begin() + i); 7134 if (Edit[0] == 'X') { 7135 if (i < Args.size()) { 7136 OS << "### Deleting argument " << Args[i] << '\n'; 7137 Args.erase(Args.begin() + i); 7138 } else 7139 OS << "### Invalid X edit, end of command line!\n"; 7140 } 7141 } else 7142 ++i; 7143 } 7144 } else if (Edit[0] == 'O') { 7145 for (unsigned i = 1; i < Args.size();) { 7146 const char *A = Args[i]; 7147 // Ignore end-of-line response file markers 7148 if (A == nullptr) 7149 continue; 7150 if (A[0] == '-' && A[1] == 'O' && 7151 (A[2] == '\0' || (A[3] == '\0' && (A[2] == 's' || A[2] == 'z' || 7152 ('0' <= A[2] && A[2] <= '9'))))) { 7153 OS << "### Deleting argument " << Args[i] << '\n'; 7154 Args.erase(Args.begin() + i); 7155 } else 7156 ++i; 7157 } 7158 OS << "### Adding argument " << Edit << " at end\n"; 7159 Args.push_back(GetStableCStr(SavedStrings, '-' + Edit.str())); 7160 } else { 7161 OS << "### Unrecognized edit: " << Edit << "\n"; 7162 } 7163 } 7164 7165 void driver::applyOverrideOptions(SmallVectorImpl<const char *> &Args, 7166 const char *OverrideStr, 7167 llvm::StringSet<> &SavedStrings, 7168 raw_ostream *OS) { 7169 if (!OS) 7170 OS = &llvm::nulls(); 7171 7172 if (OverrideStr[0] == '#') { 7173 ++OverrideStr; 7174 OS = &llvm::nulls(); 7175 } 7176 7177 *OS << "### CCC_OVERRIDE_OPTIONS: " << OverrideStr << "\n"; 7178 7179 // This does not need to be efficient. 7180 7181 const char *S = OverrideStr; 7182 while (*S) { 7183 const char *End = ::strchr(S, ' '); 7184 if (!End) 7185 End = S + strlen(S); 7186 if (End != S) 7187 applyOneOverrideOption(*OS, Args, std::string(S, End), SavedStrings); 7188 S = End; 7189 if (*S != '\0') 7190 ++S; 7191 } 7192 } 7193