1 //===-- Process.cpp -------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include <atomic> 10 #include <memory> 11 #include <mutex> 12 #include <optional> 13 14 #include "llvm/ADT/ScopeExit.h" 15 #include "llvm/Support/ScopedPrinter.h" 16 #include "llvm/Support/Threading.h" 17 18 #include "lldb/Breakpoint/BreakpointLocation.h" 19 #include "lldb/Breakpoint/StoppointCallbackContext.h" 20 #include "lldb/Core/Debugger.h" 21 #include "lldb/Core/Module.h" 22 #include "lldb/Core/ModuleSpec.h" 23 #include "lldb/Core/PluginManager.h" 24 #include "lldb/Core/Progress.h" 25 #include "lldb/Expression/DiagnosticManager.h" 26 #include "lldb/Expression/DynamicCheckerFunctions.h" 27 #include "lldb/Expression/UserExpression.h" 28 #include "lldb/Expression/UtilityFunction.h" 29 #include "lldb/Host/ConnectionFileDescriptor.h" 30 #include "lldb/Host/FileSystem.h" 31 #include "lldb/Host/Host.h" 32 #include "lldb/Host/HostInfo.h" 33 #include "lldb/Host/OptionParser.h" 34 #include "lldb/Host/Pipe.h" 35 #include "lldb/Host/Terminal.h" 36 #include "lldb/Host/ThreadLauncher.h" 37 #include "lldb/Interpreter/CommandInterpreter.h" 38 #include "lldb/Interpreter/OptionArgParser.h" 39 #include "lldb/Interpreter/OptionValueProperties.h" 40 #include "lldb/Symbol/Function.h" 41 #include "lldb/Symbol/Symbol.h" 42 #include "lldb/Target/ABI.h" 43 #include "lldb/Target/AssertFrameRecognizer.h" 44 #include "lldb/Target/DynamicLoader.h" 45 #include "lldb/Target/InstrumentationRuntime.h" 46 #include "lldb/Target/JITLoader.h" 47 #include "lldb/Target/JITLoaderList.h" 48 #include "lldb/Target/Language.h" 49 #include "lldb/Target/LanguageRuntime.h" 50 #include "lldb/Target/MemoryHistory.h" 51 #include "lldb/Target/MemoryRegionInfo.h" 52 #include "lldb/Target/OperatingSystem.h" 53 #include "lldb/Target/Platform.h" 54 #include "lldb/Target/Process.h" 55 #include "lldb/Target/RegisterContext.h" 56 #include "lldb/Target/StopInfo.h" 57 #include "lldb/Target/StructuredDataPlugin.h" 58 #include "lldb/Target/SystemRuntime.h" 59 #include "lldb/Target/Target.h" 60 #include "lldb/Target/TargetList.h" 61 #include "lldb/Target/Thread.h" 62 #include "lldb/Target/ThreadPlan.h" 63 #include "lldb/Target/ThreadPlanBase.h" 64 #include "lldb/Target/ThreadPlanCallFunction.h" 65 #include "lldb/Target/ThreadPlanStack.h" 66 #include "lldb/Target/UnixSignals.h" 67 #include "lldb/Target/VerboseTrapFrameRecognizer.h" 68 #include "lldb/Utility/AddressableBits.h" 69 #include "lldb/Utility/Event.h" 70 #include "lldb/Utility/LLDBLog.h" 71 #include "lldb/Utility/Log.h" 72 #include "lldb/Utility/NameMatches.h" 73 #include "lldb/Utility/ProcessInfo.h" 74 #include "lldb/Utility/SelectHelper.h" 75 #include "lldb/Utility/State.h" 76 #include "lldb/Utility/Timer.h" 77 78 using namespace lldb; 79 using namespace lldb_private; 80 using namespace std::chrono; 81 82 // Comment out line below to disable memory caching, overriding the process 83 // setting target.process.disable-memory-cache 84 #define ENABLE_MEMORY_CACHING 85 86 #ifdef ENABLE_MEMORY_CACHING 87 #define DISABLE_MEM_CACHE_DEFAULT false 88 #else 89 #define DISABLE_MEM_CACHE_DEFAULT true 90 #endif 91 92 class ProcessOptionValueProperties 93 : public Cloneable<ProcessOptionValueProperties, OptionValueProperties> { 94 public: 95 ProcessOptionValueProperties(llvm::StringRef name) : Cloneable(name) {} 96 97 const Property * 98 GetPropertyAtIndex(size_t idx, 99 const ExecutionContext *exe_ctx) const override { 100 // When getting the value for a key from the process options, we will 101 // always try and grab the setting from the current process if there is 102 // one. Else we just use the one from this instance. 103 if (exe_ctx) { 104 Process *process = exe_ctx->GetProcessPtr(); 105 if (process) { 106 ProcessOptionValueProperties *instance_properties = 107 static_cast<ProcessOptionValueProperties *>( 108 process->GetValueProperties().get()); 109 if (this != instance_properties) 110 return instance_properties->ProtectedGetPropertyAtIndex(idx); 111 } 112 } 113 return ProtectedGetPropertyAtIndex(idx); 114 } 115 }; 116 117 static constexpr OptionEnumValueElement g_follow_fork_mode_values[] = { 118 { 119 eFollowParent, 120 "parent", 121 "Continue tracing the parent process and detach the child.", 122 }, 123 { 124 eFollowChild, 125 "child", 126 "Trace the child process and detach the parent.", 127 }, 128 }; 129 130 #define LLDB_PROPERTIES_process 131 #include "TargetProperties.inc" 132 133 enum { 134 #define LLDB_PROPERTIES_process 135 #include "TargetPropertiesEnum.inc" 136 ePropertyExperimental, 137 }; 138 139 #define LLDB_PROPERTIES_process_experimental 140 #include "TargetProperties.inc" 141 142 enum { 143 #define LLDB_PROPERTIES_process_experimental 144 #include "TargetPropertiesEnum.inc" 145 }; 146 147 class ProcessExperimentalOptionValueProperties 148 : public Cloneable<ProcessExperimentalOptionValueProperties, 149 OptionValueProperties> { 150 public: 151 ProcessExperimentalOptionValueProperties() 152 : Cloneable(Properties::GetExperimentalSettingsName()) {} 153 }; 154 155 ProcessExperimentalProperties::ProcessExperimentalProperties() 156 : Properties(OptionValuePropertiesSP( 157 new ProcessExperimentalOptionValueProperties())) { 158 m_collection_sp->Initialize(g_process_experimental_properties); 159 } 160 161 ProcessProperties::ProcessProperties(lldb_private::Process *process) 162 : Properties(), 163 m_process(process) // Can be nullptr for global ProcessProperties 164 { 165 if (process == nullptr) { 166 // Global process properties, set them up one time 167 m_collection_sp = std::make_shared<ProcessOptionValueProperties>("process"); 168 m_collection_sp->Initialize(g_process_properties); 169 m_collection_sp->AppendProperty( 170 "thread", "Settings specific to threads.", true, 171 Thread::GetGlobalProperties().GetValueProperties()); 172 } else { 173 m_collection_sp = 174 OptionValueProperties::CreateLocalCopy(Process::GetGlobalProperties()); 175 m_collection_sp->SetValueChangedCallback( 176 ePropertyPythonOSPluginPath, 177 [this] { m_process->LoadOperatingSystemPlugin(true); }); 178 } 179 180 m_experimental_properties_up = 181 std::make_unique<ProcessExperimentalProperties>(); 182 m_collection_sp->AppendProperty( 183 Properties::GetExperimentalSettingsName(), 184 "Experimental settings - setting these won't produce " 185 "errors if the setting is not present.", 186 true, m_experimental_properties_up->GetValueProperties()); 187 } 188 189 ProcessProperties::~ProcessProperties() = default; 190 191 bool ProcessProperties::GetDisableMemoryCache() const { 192 const uint32_t idx = ePropertyDisableMemCache; 193 return GetPropertyAtIndexAs<bool>( 194 idx, g_process_properties[idx].default_uint_value != 0); 195 } 196 197 uint64_t ProcessProperties::GetMemoryCacheLineSize() const { 198 const uint32_t idx = ePropertyMemCacheLineSize; 199 return GetPropertyAtIndexAs<uint64_t>( 200 idx, g_process_properties[idx].default_uint_value); 201 } 202 203 Args ProcessProperties::GetExtraStartupCommands() const { 204 Args args; 205 const uint32_t idx = ePropertyExtraStartCommand; 206 m_collection_sp->GetPropertyAtIndexAsArgs(idx, args); 207 return args; 208 } 209 210 void ProcessProperties::SetExtraStartupCommands(const Args &args) { 211 const uint32_t idx = ePropertyExtraStartCommand; 212 m_collection_sp->SetPropertyAtIndexFromArgs(idx, args); 213 } 214 215 FileSpec ProcessProperties::GetPythonOSPluginPath() const { 216 const uint32_t idx = ePropertyPythonOSPluginPath; 217 return GetPropertyAtIndexAs<FileSpec>(idx, {}); 218 } 219 220 uint32_t ProcessProperties::GetVirtualAddressableBits() const { 221 const uint32_t idx = ePropertyVirtualAddressableBits; 222 return GetPropertyAtIndexAs<uint64_t>( 223 idx, g_process_properties[idx].default_uint_value); 224 } 225 226 void ProcessProperties::SetVirtualAddressableBits(uint32_t bits) { 227 const uint32_t idx = ePropertyVirtualAddressableBits; 228 SetPropertyAtIndex(idx, static_cast<uint64_t>(bits)); 229 } 230 231 uint32_t ProcessProperties::GetHighmemVirtualAddressableBits() const { 232 const uint32_t idx = ePropertyHighmemVirtualAddressableBits; 233 return GetPropertyAtIndexAs<uint64_t>( 234 idx, g_process_properties[idx].default_uint_value); 235 } 236 237 void ProcessProperties::SetHighmemVirtualAddressableBits(uint32_t bits) { 238 const uint32_t idx = ePropertyHighmemVirtualAddressableBits; 239 SetPropertyAtIndex(idx, static_cast<uint64_t>(bits)); 240 } 241 242 void ProcessProperties::SetPythonOSPluginPath(const FileSpec &file) { 243 const uint32_t idx = ePropertyPythonOSPluginPath; 244 SetPropertyAtIndex(idx, file); 245 } 246 247 bool ProcessProperties::GetIgnoreBreakpointsInExpressions() const { 248 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 249 return GetPropertyAtIndexAs<bool>( 250 idx, g_process_properties[idx].default_uint_value != 0); 251 } 252 253 void ProcessProperties::SetIgnoreBreakpointsInExpressions(bool ignore) { 254 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 255 SetPropertyAtIndex(idx, ignore); 256 } 257 258 bool ProcessProperties::GetUnwindOnErrorInExpressions() const { 259 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 260 return GetPropertyAtIndexAs<bool>( 261 idx, g_process_properties[idx].default_uint_value != 0); 262 } 263 264 void ProcessProperties::SetUnwindOnErrorInExpressions(bool ignore) { 265 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 266 SetPropertyAtIndex(idx, ignore); 267 } 268 269 bool ProcessProperties::GetStopOnSharedLibraryEvents() const { 270 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 271 return GetPropertyAtIndexAs<bool>( 272 idx, g_process_properties[idx].default_uint_value != 0); 273 } 274 275 void ProcessProperties::SetStopOnSharedLibraryEvents(bool stop) { 276 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 277 SetPropertyAtIndex(idx, stop); 278 } 279 280 bool ProcessProperties::GetDisableLangRuntimeUnwindPlans() const { 281 const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans; 282 return GetPropertyAtIndexAs<bool>( 283 idx, g_process_properties[idx].default_uint_value != 0); 284 } 285 286 void ProcessProperties::SetDisableLangRuntimeUnwindPlans(bool disable) { 287 const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans; 288 SetPropertyAtIndex(idx, disable); 289 m_process->Flush(); 290 } 291 292 bool ProcessProperties::GetDetachKeepsStopped() const { 293 const uint32_t idx = ePropertyDetachKeepsStopped; 294 return GetPropertyAtIndexAs<bool>( 295 idx, g_process_properties[idx].default_uint_value != 0); 296 } 297 298 void ProcessProperties::SetDetachKeepsStopped(bool stop) { 299 const uint32_t idx = ePropertyDetachKeepsStopped; 300 SetPropertyAtIndex(idx, stop); 301 } 302 303 bool ProcessProperties::GetWarningsOptimization() const { 304 const uint32_t idx = ePropertyWarningOptimization; 305 return GetPropertyAtIndexAs<bool>( 306 idx, g_process_properties[idx].default_uint_value != 0); 307 } 308 309 bool ProcessProperties::GetWarningsUnsupportedLanguage() const { 310 const uint32_t idx = ePropertyWarningUnsupportedLanguage; 311 return GetPropertyAtIndexAs<bool>( 312 idx, g_process_properties[idx].default_uint_value != 0); 313 } 314 315 bool ProcessProperties::GetStopOnExec() const { 316 const uint32_t idx = ePropertyStopOnExec; 317 return GetPropertyAtIndexAs<bool>( 318 idx, g_process_properties[idx].default_uint_value != 0); 319 } 320 321 std::chrono::seconds ProcessProperties::GetUtilityExpressionTimeout() const { 322 const uint32_t idx = ePropertyUtilityExpressionTimeout; 323 uint64_t value = GetPropertyAtIndexAs<uint64_t>( 324 idx, g_process_properties[idx].default_uint_value); 325 return std::chrono::seconds(value); 326 } 327 328 std::chrono::seconds ProcessProperties::GetInterruptTimeout() const { 329 const uint32_t idx = ePropertyInterruptTimeout; 330 uint64_t value = GetPropertyAtIndexAs<uint64_t>( 331 idx, g_process_properties[idx].default_uint_value); 332 return std::chrono::seconds(value); 333 } 334 335 bool ProcessProperties::GetSteppingRunsAllThreads() const { 336 const uint32_t idx = ePropertySteppingRunsAllThreads; 337 return GetPropertyAtIndexAs<bool>( 338 idx, g_process_properties[idx].default_uint_value != 0); 339 } 340 341 bool ProcessProperties::GetOSPluginReportsAllThreads() const { 342 const bool fail_value = true; 343 const Property *exp_property = 344 m_collection_sp->GetPropertyAtIndex(ePropertyExperimental); 345 OptionValueProperties *exp_values = 346 exp_property->GetValue()->GetAsProperties(); 347 if (!exp_values) 348 return fail_value; 349 350 return exp_values 351 ->GetPropertyAtIndexAs<bool>(ePropertyOSPluginReportsAllThreads) 352 .value_or(fail_value); 353 } 354 355 void ProcessProperties::SetOSPluginReportsAllThreads(bool does_report) { 356 const Property *exp_property = 357 m_collection_sp->GetPropertyAtIndex(ePropertyExperimental); 358 OptionValueProperties *exp_values = 359 exp_property->GetValue()->GetAsProperties(); 360 if (exp_values) 361 exp_values->SetPropertyAtIndex(ePropertyOSPluginReportsAllThreads, 362 does_report); 363 } 364 365 FollowForkMode ProcessProperties::GetFollowForkMode() const { 366 const uint32_t idx = ePropertyFollowForkMode; 367 return GetPropertyAtIndexAs<FollowForkMode>( 368 idx, static_cast<FollowForkMode>( 369 g_process_properties[idx].default_uint_value)); 370 } 371 372 ProcessSP Process::FindPlugin(lldb::TargetSP target_sp, 373 llvm::StringRef plugin_name, 374 ListenerSP listener_sp, 375 const FileSpec *crash_file_path, 376 bool can_connect) { 377 static uint32_t g_process_unique_id = 0; 378 379 ProcessSP process_sp; 380 ProcessCreateInstance create_callback = nullptr; 381 if (!plugin_name.empty()) { 382 create_callback = 383 PluginManager::GetProcessCreateCallbackForPluginName(plugin_name); 384 if (create_callback) { 385 process_sp = create_callback(target_sp, listener_sp, crash_file_path, 386 can_connect); 387 if (process_sp) { 388 if (process_sp->CanDebug(target_sp, true)) { 389 process_sp->m_process_unique_id = ++g_process_unique_id; 390 } else 391 process_sp.reset(); 392 } 393 } 394 } else { 395 for (uint32_t idx = 0; 396 (create_callback = 397 PluginManager::GetProcessCreateCallbackAtIndex(idx)) != nullptr; 398 ++idx) { 399 process_sp = create_callback(target_sp, listener_sp, crash_file_path, 400 can_connect); 401 if (process_sp) { 402 if (process_sp->CanDebug(target_sp, false)) { 403 process_sp->m_process_unique_id = ++g_process_unique_id; 404 break; 405 } else 406 process_sp.reset(); 407 } 408 } 409 } 410 return process_sp; 411 } 412 413 llvm::StringRef Process::GetStaticBroadcasterClass() { 414 static constexpr llvm::StringLiteral class_name("lldb.process"); 415 return class_name; 416 } 417 418 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp) 419 : Process(target_sp, listener_sp, UnixSignals::CreateForHost()) { 420 // This constructor just delegates to the full Process constructor, 421 // defaulting to using the Host's UnixSignals. 422 } 423 424 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp, 425 const UnixSignalsSP &unix_signals_sp) 426 : ProcessProperties(this), 427 Broadcaster((target_sp->GetDebugger().GetBroadcasterManager()), 428 Process::GetStaticBroadcasterClass().str()), 429 m_target_wp(target_sp), m_public_state(eStateUnloaded), 430 m_private_state(eStateUnloaded), 431 m_private_state_broadcaster(nullptr, 432 "lldb.process.internal_state_broadcaster"), 433 m_private_state_control_broadcaster( 434 nullptr, "lldb.process.internal_state_control_broadcaster"), 435 m_private_state_listener_sp( 436 Listener::MakeListener("lldb.process.internal_state_listener")), 437 m_mod_id(), m_process_unique_id(0), m_thread_index_id(0), 438 m_thread_id_to_index_id_map(), m_exit_status(-1), 439 m_thread_list_real(*this), m_thread_list(*this), m_thread_plans(*this), 440 m_extended_thread_list(*this), m_extended_thread_stop_id(0), 441 m_queue_list(this), m_queue_list_stop_id(0), 442 m_unix_signals_sp(unix_signals_sp), m_abi_sp(), m_process_input_reader(), 443 m_stdio_communication("process.stdio"), m_stdio_communication_mutex(), 444 m_stdin_forward(false), m_stdout_data(), m_stderr_data(), 445 m_profile_data_comm_mutex(), m_profile_data(), m_iohandler_sync(0), 446 m_memory_cache(*this), m_allocated_memory_cache(*this), 447 m_should_detach(false), m_next_event_action_up(), m_public_run_lock(), 448 m_private_run_lock(), m_currently_handling_do_on_removals(false), 449 m_resume_requested(false), m_interrupt_tid(LLDB_INVALID_THREAD_ID), 450 m_finalizing(false), m_destructing(false), 451 m_clear_thread_plans_on_stop(false), m_force_next_event_delivery(false), 452 m_last_broadcast_state(eStateInvalid), m_destroy_in_process(false), 453 m_can_interpret_function_calls(false), m_run_thread_plan_lock(), 454 m_can_jit(eCanJITDontKnow), 455 m_crash_info_dict_sp(new StructuredData::Dictionary()) { 456 CheckInWithManager(); 457 458 Log *log = GetLog(LLDBLog::Object); 459 LLDB_LOGF(log, "%p Process::Process()", static_cast<void *>(this)); 460 461 if (!m_unix_signals_sp) 462 m_unix_signals_sp = std::make_shared<UnixSignals>(); 463 464 SetEventName(eBroadcastBitStateChanged, "state-changed"); 465 SetEventName(eBroadcastBitInterrupt, "interrupt"); 466 SetEventName(eBroadcastBitSTDOUT, "stdout-available"); 467 SetEventName(eBroadcastBitSTDERR, "stderr-available"); 468 SetEventName(eBroadcastBitProfileData, "profile-data-available"); 469 SetEventName(eBroadcastBitStructuredData, "structured-data-available"); 470 471 m_private_state_control_broadcaster.SetEventName( 472 eBroadcastInternalStateControlStop, "control-stop"); 473 m_private_state_control_broadcaster.SetEventName( 474 eBroadcastInternalStateControlPause, "control-pause"); 475 m_private_state_control_broadcaster.SetEventName( 476 eBroadcastInternalStateControlResume, "control-resume"); 477 478 // The listener passed into process creation is the primary listener: 479 // It always listens for all the event bits for Process: 480 SetPrimaryListener(listener_sp); 481 482 m_private_state_listener_sp->StartListeningForEvents( 483 &m_private_state_broadcaster, 484 eBroadcastBitStateChanged | eBroadcastBitInterrupt); 485 486 m_private_state_listener_sp->StartListeningForEvents( 487 &m_private_state_control_broadcaster, 488 eBroadcastInternalStateControlStop | eBroadcastInternalStateControlPause | 489 eBroadcastInternalStateControlResume); 490 // We need something valid here, even if just the default UnixSignalsSP. 491 assert(m_unix_signals_sp && "null m_unix_signals_sp after initialization"); 492 493 // Allow the platform to override the default cache line size 494 OptionValueSP value_sp = 495 m_collection_sp->GetPropertyAtIndex(ePropertyMemCacheLineSize) 496 ->GetValue(); 497 uint64_t platform_cache_line_size = 498 target_sp->GetPlatform()->GetDefaultMemoryCacheLineSize(); 499 if (!value_sp->OptionWasSet() && platform_cache_line_size != 0) 500 value_sp->SetValueAs(platform_cache_line_size); 501 502 // FIXME: Frame recognizer registration should not be done in Target. 503 // We should have a plugin do the registration instead, for example, a 504 // common C LanguageRuntime plugin. 505 RegisterAssertFrameRecognizer(this); 506 RegisterVerboseTrapFrameRecognizer(*this); 507 } 508 509 Process::~Process() { 510 Log *log = GetLog(LLDBLog::Object); 511 LLDB_LOGF(log, "%p Process::~Process()", static_cast<void *>(this)); 512 StopPrivateStateThread(); 513 514 // ThreadList::Clear() will try to acquire this process's mutex, so 515 // explicitly clear the thread list here to ensure that the mutex is not 516 // destroyed before the thread list. 517 m_thread_list.Clear(); 518 } 519 520 ProcessProperties &Process::GetGlobalProperties() { 521 // NOTE: intentional leak so we don't crash if global destructor chain gets 522 // called as other threads still use the result of this function 523 static ProcessProperties *g_settings_ptr = 524 new ProcessProperties(nullptr); 525 return *g_settings_ptr; 526 } 527 528 void Process::Finalize(bool destructing) { 529 if (m_finalizing.exchange(true)) 530 return; 531 if (destructing) 532 m_destructing.exchange(true); 533 534 // Destroy the process. This will call the virtual function DoDestroy under 535 // the hood, giving our derived class a chance to do the ncessary tear down. 536 DestroyImpl(false); 537 538 // Clear our broadcaster before we proceed with destroying 539 Broadcaster::Clear(); 540 541 // Do any cleanup needed prior to being destructed... Subclasses that 542 // override this method should call this superclass method as well. 543 544 // We need to destroy the loader before the derived Process class gets 545 // destroyed since it is very likely that undoing the loader will require 546 // access to the real process. 547 m_dynamic_checkers_up.reset(); 548 m_abi_sp.reset(); 549 m_os_up.reset(); 550 m_system_runtime_up.reset(); 551 m_dyld_up.reset(); 552 m_jit_loaders_up.reset(); 553 m_thread_plans.Clear(); 554 m_thread_list_real.Destroy(); 555 m_thread_list.Destroy(); 556 m_extended_thread_list.Destroy(); 557 m_queue_list.Clear(); 558 m_queue_list_stop_id = 0; 559 m_watchpoint_resource_list.Clear(); 560 std::vector<Notifications> empty_notifications; 561 m_notifications.swap(empty_notifications); 562 m_image_tokens.clear(); 563 m_memory_cache.Clear(); 564 m_allocated_memory_cache.Clear(/*deallocate_memory=*/true); 565 { 566 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 567 m_language_runtimes.clear(); 568 } 569 m_instrumentation_runtimes.clear(); 570 m_next_event_action_up.reset(); 571 // Clear the last natural stop ID since it has a strong reference to this 572 // process 573 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 574 // We have to be very careful here as the m_private_state_listener might 575 // contain events that have ProcessSP values in them which can keep this 576 // process around forever. These events need to be cleared out. 577 m_private_state_listener_sp->Clear(); 578 m_public_run_lock.TrySetRunning(); // This will do nothing if already locked 579 m_public_run_lock.SetStopped(); 580 m_private_run_lock.TrySetRunning(); // This will do nothing if already locked 581 m_private_run_lock.SetStopped(); 582 m_structured_data_plugin_map.clear(); 583 } 584 585 void Process::RegisterNotificationCallbacks(const Notifications &callbacks) { 586 m_notifications.push_back(callbacks); 587 if (callbacks.initialize != nullptr) 588 callbacks.initialize(callbacks.baton, this); 589 } 590 591 bool Process::UnregisterNotificationCallbacks(const Notifications &callbacks) { 592 std::vector<Notifications>::iterator pos, end = m_notifications.end(); 593 for (pos = m_notifications.begin(); pos != end; ++pos) { 594 if (pos->baton == callbacks.baton && 595 pos->initialize == callbacks.initialize && 596 pos->process_state_changed == callbacks.process_state_changed) { 597 m_notifications.erase(pos); 598 return true; 599 } 600 } 601 return false; 602 } 603 604 void Process::SynchronouslyNotifyStateChanged(StateType state) { 605 std::vector<Notifications>::iterator notification_pos, 606 notification_end = m_notifications.end(); 607 for (notification_pos = m_notifications.begin(); 608 notification_pos != notification_end; ++notification_pos) { 609 if (notification_pos->process_state_changed) 610 notification_pos->process_state_changed(notification_pos->baton, this, 611 state); 612 } 613 } 614 615 // FIXME: We need to do some work on events before the general Listener sees 616 // them. 617 // For instance if we are continuing from a breakpoint, we need to ensure that 618 // we do the little "insert real insn, step & stop" trick. But we can't do 619 // that when the event is delivered by the broadcaster - since that is done on 620 // the thread that is waiting for new events, so if we needed more than one 621 // event for our handling, we would stall. So instead we do it when we fetch 622 // the event off of the queue. 623 // 624 625 StateType Process::GetNextEvent(EventSP &event_sp) { 626 StateType state = eStateInvalid; 627 628 if (GetPrimaryListener()->GetEventForBroadcaster(this, event_sp, 629 std::chrono::seconds(0)) && 630 event_sp) 631 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 632 633 return state; 634 } 635 636 void Process::SyncIOHandler(uint32_t iohandler_id, 637 const Timeout<std::micro> &timeout) { 638 // don't sync (potentially context switch) in case where there is no process 639 // IO 640 if (!ProcessIOHandlerExists()) 641 return; 642 643 auto Result = m_iohandler_sync.WaitForValueNotEqualTo(iohandler_id, timeout); 644 645 Log *log = GetLog(LLDBLog::Process); 646 if (Result) { 647 LLDB_LOG( 648 log, 649 "waited from m_iohandler_sync to change from {0}. New value is {1}.", 650 iohandler_id, *Result); 651 } else { 652 LLDB_LOG(log, "timed out waiting for m_iohandler_sync to change from {0}.", 653 iohandler_id); 654 } 655 } 656 657 StateType Process::WaitForProcessToStop( 658 const Timeout<std::micro> &timeout, EventSP *event_sp_ptr, bool wait_always, 659 ListenerSP hijack_listener_sp, Stream *stream, bool use_run_lock, 660 SelectMostRelevant select_most_relevant) { 661 // We can't just wait for a "stopped" event, because the stopped event may 662 // have restarted the target. We have to actually check each event, and in 663 // the case of a stopped event check the restarted flag on the event. 664 if (event_sp_ptr) 665 event_sp_ptr->reset(); 666 StateType state = GetState(); 667 // If we are exited or detached, we won't ever get back to any other valid 668 // state... 669 if (state == eStateDetached || state == eStateExited) 670 return state; 671 672 Log *log = GetLog(LLDBLog::Process); 673 LLDB_LOG(log, "timeout = {0}", timeout); 674 675 if (!wait_always && StateIsStoppedState(state, true) && 676 StateIsStoppedState(GetPrivateState(), true)) { 677 LLDB_LOGF(log, 678 "Process::%s returning without waiting for events; process " 679 "private and public states are already 'stopped'.", 680 __FUNCTION__); 681 // We need to toggle the run lock as this won't get done in 682 // SetPublicState() if the process is hijacked. 683 if (hijack_listener_sp && use_run_lock) 684 m_public_run_lock.SetStopped(); 685 return state; 686 } 687 688 while (state != eStateInvalid) { 689 EventSP event_sp; 690 state = GetStateChangedEvents(event_sp, timeout, hijack_listener_sp); 691 if (event_sp_ptr && event_sp) 692 *event_sp_ptr = event_sp; 693 694 bool pop_process_io_handler = (hijack_listener_sp.get() != nullptr); 695 Process::HandleProcessStateChangedEvent( 696 event_sp, stream, select_most_relevant, pop_process_io_handler); 697 698 switch (state) { 699 case eStateCrashed: 700 case eStateDetached: 701 case eStateExited: 702 case eStateUnloaded: 703 // We need to toggle the run lock as this won't get done in 704 // SetPublicState() if the process is hijacked. 705 if (hijack_listener_sp && use_run_lock) 706 m_public_run_lock.SetStopped(); 707 return state; 708 case eStateStopped: 709 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) 710 continue; 711 else { 712 // We need to toggle the run lock as this won't get done in 713 // SetPublicState() if the process is hijacked. 714 if (hijack_listener_sp && use_run_lock) 715 m_public_run_lock.SetStopped(); 716 return state; 717 } 718 default: 719 continue; 720 } 721 } 722 return state; 723 } 724 725 bool Process::HandleProcessStateChangedEvent( 726 const EventSP &event_sp, Stream *stream, 727 SelectMostRelevant select_most_relevant, 728 bool &pop_process_io_handler) { 729 const bool handle_pop = pop_process_io_handler; 730 731 pop_process_io_handler = false; 732 ProcessSP process_sp = 733 Process::ProcessEventData::GetProcessFromEvent(event_sp.get()); 734 735 if (!process_sp) 736 return false; 737 738 StateType event_state = 739 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 740 if (event_state == eStateInvalid) 741 return false; 742 743 switch (event_state) { 744 case eStateInvalid: 745 case eStateUnloaded: 746 case eStateAttaching: 747 case eStateLaunching: 748 case eStateStepping: 749 case eStateDetached: 750 if (stream) 751 stream->Printf("Process %" PRIu64 " %s\n", process_sp->GetID(), 752 StateAsCString(event_state)); 753 if (event_state == eStateDetached) 754 pop_process_io_handler = true; 755 break; 756 757 case eStateConnected: 758 case eStateRunning: 759 // Don't be chatty when we run... 760 break; 761 762 case eStateExited: 763 if (stream) 764 process_sp->GetStatus(*stream); 765 pop_process_io_handler = true; 766 break; 767 768 case eStateStopped: 769 case eStateCrashed: 770 case eStateSuspended: 771 // Make sure the program hasn't been auto-restarted: 772 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 773 if (stream) { 774 size_t num_reasons = 775 Process::ProcessEventData::GetNumRestartedReasons(event_sp.get()); 776 if (num_reasons > 0) { 777 // FIXME: Do we want to report this, or would that just be annoyingly 778 // chatty? 779 if (num_reasons == 1) { 780 const char *reason = 781 Process::ProcessEventData::GetRestartedReasonAtIndex( 782 event_sp.get(), 0); 783 stream->Printf("Process %" PRIu64 " stopped and restarted: %s\n", 784 process_sp->GetID(), 785 reason ? reason : "<UNKNOWN REASON>"); 786 } else { 787 stream->Printf("Process %" PRIu64 788 " stopped and restarted, reasons:\n", 789 process_sp->GetID()); 790 791 for (size_t i = 0; i < num_reasons; i++) { 792 const char *reason = 793 Process::ProcessEventData::GetRestartedReasonAtIndex( 794 event_sp.get(), i); 795 stream->Printf("\t%s\n", reason ? reason : "<UNKNOWN REASON>"); 796 } 797 } 798 } 799 } 800 } else { 801 StopInfoSP curr_thread_stop_info_sp; 802 // Lock the thread list so it doesn't change on us, this is the scope for 803 // the locker: 804 { 805 ThreadList &thread_list = process_sp->GetThreadList(); 806 std::lock_guard<std::recursive_mutex> guard(thread_list.GetMutex()); 807 808 ThreadSP curr_thread(thread_list.GetSelectedThread()); 809 ThreadSP thread; 810 StopReason curr_thread_stop_reason = eStopReasonInvalid; 811 bool prefer_curr_thread = false; 812 if (curr_thread && curr_thread->IsValid()) { 813 curr_thread_stop_reason = curr_thread->GetStopReason(); 814 switch (curr_thread_stop_reason) { 815 case eStopReasonNone: 816 case eStopReasonInvalid: 817 // Don't prefer the current thread if it didn't stop for a reason. 818 break; 819 case eStopReasonSignal: { 820 // We need to do the same computation we do for other threads 821 // below in case the current thread happens to be the one that 822 // stopped for the no-stop signal. 823 uint64_t signo = curr_thread->GetStopInfo()->GetValue(); 824 if (process_sp->GetUnixSignals()->GetShouldStop(signo)) 825 prefer_curr_thread = true; 826 } break; 827 default: 828 prefer_curr_thread = true; 829 break; 830 } 831 curr_thread_stop_info_sp = curr_thread->GetStopInfo(); 832 } 833 834 if (!prefer_curr_thread) { 835 // Prefer a thread that has just completed its plan over another 836 // thread as current thread. 837 ThreadSP plan_thread; 838 ThreadSP other_thread; 839 840 const size_t num_threads = thread_list.GetSize(); 841 size_t i; 842 for (i = 0; i < num_threads; ++i) { 843 thread = thread_list.GetThreadAtIndex(i); 844 StopReason thread_stop_reason = thread->GetStopReason(); 845 switch (thread_stop_reason) { 846 case eStopReasonInvalid: 847 case eStopReasonNone: 848 break; 849 850 case eStopReasonSignal: { 851 // Don't select a signal thread if we weren't going to stop at 852 // that signal. We have to have had another reason for stopping 853 // here, and the user doesn't want to see this thread. 854 uint64_t signo = thread->GetStopInfo()->GetValue(); 855 if (process_sp->GetUnixSignals()->GetShouldStop(signo)) { 856 if (!other_thread) 857 other_thread = thread; 858 } 859 break; 860 } 861 case eStopReasonTrace: 862 case eStopReasonBreakpoint: 863 case eStopReasonWatchpoint: 864 case eStopReasonException: 865 case eStopReasonExec: 866 case eStopReasonFork: 867 case eStopReasonVFork: 868 case eStopReasonVForkDone: 869 case eStopReasonThreadExiting: 870 case eStopReasonInstrumentation: 871 case eStopReasonProcessorTrace: 872 case eStopReasonInterrupt: 873 if (!other_thread) 874 other_thread = thread; 875 break; 876 case eStopReasonPlanComplete: 877 if (!plan_thread) 878 plan_thread = thread; 879 break; 880 } 881 } 882 if (plan_thread) 883 thread_list.SetSelectedThreadByID(plan_thread->GetID()); 884 else if (other_thread) 885 thread_list.SetSelectedThreadByID(other_thread->GetID()); 886 else { 887 if (curr_thread && curr_thread->IsValid()) 888 thread = curr_thread; 889 else 890 thread = thread_list.GetThreadAtIndex(0); 891 892 if (thread) 893 thread_list.SetSelectedThreadByID(thread->GetID()); 894 } 895 } 896 } 897 // Drop the ThreadList mutex by here, since GetThreadStatus below might 898 // have to run code, e.g. for Data formatters, and if we hold the 899 // ThreadList mutex, then the process is going to have a hard time 900 // restarting the process. 901 if (stream) { 902 Debugger &debugger = process_sp->GetTarget().GetDebugger(); 903 if (debugger.GetTargetList().GetSelectedTarget().get() == 904 &process_sp->GetTarget()) { 905 ThreadSP thread_sp = process_sp->GetThreadList().GetSelectedThread(); 906 907 if (!thread_sp || !thread_sp->IsValid()) 908 return false; 909 910 const bool only_threads_with_stop_reason = true; 911 const uint32_t start_frame = 912 thread_sp->GetSelectedFrameIndex(select_most_relevant); 913 const uint32_t num_frames = 1; 914 const uint32_t num_frames_with_source = 1; 915 const bool stop_format = true; 916 917 process_sp->GetStatus(*stream); 918 process_sp->GetThreadStatus(*stream, only_threads_with_stop_reason, 919 start_frame, num_frames, 920 num_frames_with_source, 921 stop_format); 922 if (curr_thread_stop_info_sp) { 923 lldb::addr_t crashing_address; 924 ValueObjectSP valobj_sp = StopInfo::GetCrashingDereference( 925 curr_thread_stop_info_sp, &crashing_address); 926 if (valobj_sp) { 927 const ValueObject::GetExpressionPathFormat format = 928 ValueObject::GetExpressionPathFormat:: 929 eGetExpressionPathFormatHonorPointers; 930 stream->PutCString("Likely cause: "); 931 valobj_sp->GetExpressionPath(*stream, format); 932 stream->Printf(" accessed 0x%" PRIx64 "\n", crashing_address); 933 } 934 } 935 } else { 936 uint32_t target_idx = debugger.GetTargetList().GetIndexOfTarget( 937 process_sp->GetTarget().shared_from_this()); 938 if (target_idx != UINT32_MAX) 939 stream->Printf("Target %d: (", target_idx); 940 else 941 stream->Printf("Target <unknown index>: ("); 942 process_sp->GetTarget().Dump(stream, eDescriptionLevelBrief); 943 stream->Printf(") stopped.\n"); 944 } 945 } 946 947 // Pop the process IO handler 948 pop_process_io_handler = true; 949 } 950 break; 951 } 952 953 if (handle_pop && pop_process_io_handler) 954 process_sp->PopProcessIOHandler(); 955 956 return true; 957 } 958 959 bool Process::HijackProcessEvents(ListenerSP listener_sp) { 960 if (listener_sp) { 961 return HijackBroadcaster(listener_sp, eBroadcastBitStateChanged | 962 eBroadcastBitInterrupt); 963 } else 964 return false; 965 } 966 967 void Process::RestoreProcessEvents() { RestoreBroadcaster(); } 968 969 StateType Process::GetStateChangedEvents(EventSP &event_sp, 970 const Timeout<std::micro> &timeout, 971 ListenerSP hijack_listener_sp) { 972 Log *log = GetLog(LLDBLog::Process); 973 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 974 975 ListenerSP listener_sp = hijack_listener_sp; 976 if (!listener_sp) 977 listener_sp = GetPrimaryListener(); 978 979 StateType state = eStateInvalid; 980 if (listener_sp->GetEventForBroadcasterWithType( 981 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 982 timeout)) { 983 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 984 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 985 else 986 LLDB_LOG(log, "got no event or was interrupted."); 987 } 988 989 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, state); 990 return state; 991 } 992 993 Event *Process::PeekAtStateChangedEvents() { 994 Log *log = GetLog(LLDBLog::Process); 995 996 LLDB_LOGF(log, "Process::%s...", __FUNCTION__); 997 998 Event *event_ptr; 999 event_ptr = GetPrimaryListener()->PeekAtNextEventForBroadcasterWithType( 1000 this, eBroadcastBitStateChanged); 1001 if (log) { 1002 if (event_ptr) { 1003 LLDB_LOGF(log, "Process::%s (event_ptr) => %s", __FUNCTION__, 1004 StateAsCString(ProcessEventData::GetStateFromEvent(event_ptr))); 1005 } else { 1006 LLDB_LOGF(log, "Process::%s no events found", __FUNCTION__); 1007 } 1008 } 1009 return event_ptr; 1010 } 1011 1012 StateType 1013 Process::GetStateChangedEventsPrivate(EventSP &event_sp, 1014 const Timeout<std::micro> &timeout) { 1015 Log *log = GetLog(LLDBLog::Process); 1016 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1017 1018 StateType state = eStateInvalid; 1019 if (m_private_state_listener_sp->GetEventForBroadcasterWithType( 1020 &m_private_state_broadcaster, 1021 eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 1022 timeout)) 1023 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 1024 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1025 1026 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, 1027 state == eStateInvalid ? "TIMEOUT" : StateAsCString(state)); 1028 return state; 1029 } 1030 1031 bool Process::GetEventsPrivate(EventSP &event_sp, 1032 const Timeout<std::micro> &timeout, 1033 bool control_only) { 1034 Log *log = GetLog(LLDBLog::Process); 1035 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1036 1037 if (control_only) 1038 return m_private_state_listener_sp->GetEventForBroadcaster( 1039 &m_private_state_control_broadcaster, event_sp, timeout); 1040 else 1041 return m_private_state_listener_sp->GetEvent(event_sp, timeout); 1042 } 1043 1044 bool Process::IsRunning() const { 1045 return StateIsRunningState(m_public_state.GetValue()); 1046 } 1047 1048 int Process::GetExitStatus() { 1049 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1050 1051 if (m_public_state.GetValue() == eStateExited) 1052 return m_exit_status; 1053 return -1; 1054 } 1055 1056 const char *Process::GetExitDescription() { 1057 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1058 1059 if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty()) 1060 return m_exit_string.c_str(); 1061 return nullptr; 1062 } 1063 1064 bool Process::SetExitStatus(int status, llvm::StringRef exit_string) { 1065 // Use a mutex to protect setting the exit status. 1066 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1067 1068 Log *log(GetLog(LLDBLog::State | LLDBLog::Process)); 1069 LLDB_LOG(log, "(plugin = {0} status = {1} ({1:x8}), description=\"{2}\")", 1070 GetPluginName(), status, exit_string); 1071 1072 // We were already in the exited state 1073 if (m_private_state.GetValue() == eStateExited) { 1074 LLDB_LOG( 1075 log, 1076 "(plugin = {0}) ignoring exit status because state was already set " 1077 "to eStateExited", 1078 GetPluginName()); 1079 return false; 1080 } 1081 1082 m_exit_status = status; 1083 if (!exit_string.empty()) 1084 m_exit_string = exit_string.str(); 1085 else 1086 m_exit_string.clear(); 1087 1088 // Clear the last natural stop ID since it has a strong reference to this 1089 // process 1090 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 1091 1092 SetPrivateState(eStateExited); 1093 1094 // Allow subclasses to do some cleanup 1095 DidExit(); 1096 1097 return true; 1098 } 1099 1100 bool Process::IsAlive() { 1101 switch (m_private_state.GetValue()) { 1102 case eStateConnected: 1103 case eStateAttaching: 1104 case eStateLaunching: 1105 case eStateStopped: 1106 case eStateRunning: 1107 case eStateStepping: 1108 case eStateCrashed: 1109 case eStateSuspended: 1110 return true; 1111 default: 1112 return false; 1113 } 1114 } 1115 1116 // This static callback can be used to watch for local child processes on the 1117 // current host. The child process exits, the process will be found in the 1118 // global target list (we want to be completely sure that the 1119 // lldb_private::Process doesn't go away before we can deliver the signal. 1120 bool Process::SetProcessExitStatus( 1121 lldb::pid_t pid, bool exited, 1122 int signo, // Zero for no signal 1123 int exit_status // Exit value of process if signal is zero 1124 ) { 1125 Log *log = GetLog(LLDBLog::Process); 1126 LLDB_LOGF(log, 1127 "Process::SetProcessExitStatus (pid=%" PRIu64 1128 ", exited=%i, signal=%i, exit_status=%i)\n", 1129 pid, exited, signo, exit_status); 1130 1131 if (exited) { 1132 TargetSP target_sp(Debugger::FindTargetWithProcessID(pid)); 1133 if (target_sp) { 1134 ProcessSP process_sp(target_sp->GetProcessSP()); 1135 if (process_sp) { 1136 llvm::StringRef signal_str = 1137 process_sp->GetUnixSignals()->GetSignalAsStringRef(signo); 1138 process_sp->SetExitStatus(exit_status, signal_str); 1139 } 1140 } 1141 return true; 1142 } 1143 return false; 1144 } 1145 1146 bool Process::UpdateThreadList(ThreadList &old_thread_list, 1147 ThreadList &new_thread_list) { 1148 m_thread_plans.ClearThreadCache(); 1149 return DoUpdateThreadList(old_thread_list, new_thread_list); 1150 } 1151 1152 void Process::UpdateThreadListIfNeeded() { 1153 const uint32_t stop_id = GetStopID(); 1154 if (m_thread_list.GetSize(false) == 0 || 1155 stop_id != m_thread_list.GetStopID()) { 1156 bool clear_unused_threads = true; 1157 const StateType state = GetPrivateState(); 1158 if (StateIsStoppedState(state, true)) { 1159 std::lock_guard<std::recursive_mutex> guard(m_thread_list.GetMutex()); 1160 m_thread_list.SetStopID(stop_id); 1161 1162 // m_thread_list does have its own mutex, but we need to hold onto the 1163 // mutex between the call to UpdateThreadList(...) and the 1164 // os->UpdateThreadList(...) so it doesn't change on us 1165 ThreadList &old_thread_list = m_thread_list; 1166 ThreadList real_thread_list(*this); 1167 ThreadList new_thread_list(*this); 1168 // Always update the thread list with the protocol specific thread list, 1169 // but only update if "true" is returned 1170 if (UpdateThreadList(m_thread_list_real, real_thread_list)) { 1171 // Don't call into the OperatingSystem to update the thread list if we 1172 // are shutting down, since that may call back into the SBAPI's, 1173 // requiring the API lock which is already held by whoever is shutting 1174 // us down, causing a deadlock. 1175 OperatingSystem *os = GetOperatingSystem(); 1176 if (os && !m_destroy_in_process) { 1177 // Clear any old backing threads where memory threads might have been 1178 // backed by actual threads from the lldb_private::Process subclass 1179 size_t num_old_threads = old_thread_list.GetSize(false); 1180 for (size_t i = 0; i < num_old_threads; ++i) 1181 old_thread_list.GetThreadAtIndex(i, false)->ClearBackingThread(); 1182 // See if the OS plugin reports all threads. If it does, then 1183 // it is safe to clear unseen thread's plans here. Otherwise we 1184 // should preserve them in case they show up again: 1185 clear_unused_threads = os->DoesPluginReportAllThreads(); 1186 1187 // Turn off dynamic types to ensure we don't run any expressions. 1188 // Objective-C can run an expression to determine if a SBValue is a 1189 // dynamic type or not and we need to avoid this. OperatingSystem 1190 // plug-ins can't run expressions that require running code... 1191 1192 Target &target = GetTarget(); 1193 const lldb::DynamicValueType saved_prefer_dynamic = 1194 target.GetPreferDynamicValue(); 1195 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1196 target.SetPreferDynamicValue(lldb::eNoDynamicValues); 1197 1198 // Now let the OperatingSystem plug-in update the thread list 1199 1200 os->UpdateThreadList( 1201 old_thread_list, // Old list full of threads created by OS plug-in 1202 real_thread_list, // The actual thread list full of threads 1203 // created by each lldb_private::Process 1204 // subclass 1205 new_thread_list); // The new thread list that we will show to the 1206 // user that gets filled in 1207 1208 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1209 target.SetPreferDynamicValue(saved_prefer_dynamic); 1210 } else { 1211 // No OS plug-in, the new thread list is the same as the real thread 1212 // list. 1213 new_thread_list = real_thread_list; 1214 } 1215 1216 m_thread_list_real.Update(real_thread_list); 1217 m_thread_list.Update(new_thread_list); 1218 m_thread_list.SetStopID(stop_id); 1219 1220 if (GetLastNaturalStopID() != m_extended_thread_stop_id) { 1221 // Clear any extended threads that we may have accumulated previously 1222 m_extended_thread_list.Clear(); 1223 m_extended_thread_stop_id = GetLastNaturalStopID(); 1224 1225 m_queue_list.Clear(); 1226 m_queue_list_stop_id = GetLastNaturalStopID(); 1227 } 1228 } 1229 // Now update the plan stack map. 1230 // If we do have an OS plugin, any absent real threads in the 1231 // m_thread_list have already been removed from the ThreadPlanStackMap. 1232 // So any remaining threads are OS Plugin threads, and those we want to 1233 // preserve in case they show up again. 1234 m_thread_plans.Update(m_thread_list, clear_unused_threads); 1235 } 1236 } 1237 } 1238 1239 ThreadPlanStack *Process::FindThreadPlans(lldb::tid_t tid) { 1240 return m_thread_plans.Find(tid); 1241 } 1242 1243 bool Process::PruneThreadPlansForTID(lldb::tid_t tid) { 1244 return m_thread_plans.PrunePlansForTID(tid); 1245 } 1246 1247 void Process::PruneThreadPlans() { 1248 m_thread_plans.Update(GetThreadList(), true, false); 1249 } 1250 1251 bool Process::DumpThreadPlansForTID(Stream &strm, lldb::tid_t tid, 1252 lldb::DescriptionLevel desc_level, 1253 bool internal, bool condense_trivial, 1254 bool skip_unreported_plans) { 1255 return m_thread_plans.DumpPlansForTID( 1256 strm, tid, desc_level, internal, condense_trivial, skip_unreported_plans); 1257 } 1258 void Process::DumpThreadPlans(Stream &strm, lldb::DescriptionLevel desc_level, 1259 bool internal, bool condense_trivial, 1260 bool skip_unreported_plans) { 1261 m_thread_plans.DumpPlans(strm, desc_level, internal, condense_trivial, 1262 skip_unreported_plans); 1263 } 1264 1265 void Process::UpdateQueueListIfNeeded() { 1266 if (m_system_runtime_up) { 1267 if (m_queue_list.GetSize() == 0 || 1268 m_queue_list_stop_id != GetLastNaturalStopID()) { 1269 const StateType state = GetPrivateState(); 1270 if (StateIsStoppedState(state, true)) { 1271 m_system_runtime_up->PopulateQueueList(m_queue_list); 1272 m_queue_list_stop_id = GetLastNaturalStopID(); 1273 } 1274 } 1275 } 1276 } 1277 1278 ThreadSP Process::CreateOSPluginThread(lldb::tid_t tid, lldb::addr_t context) { 1279 OperatingSystem *os = GetOperatingSystem(); 1280 if (os) 1281 return os->CreateThread(tid, context); 1282 return ThreadSP(); 1283 } 1284 1285 uint32_t Process::GetNextThreadIndexID(uint64_t thread_id) { 1286 return AssignIndexIDToThread(thread_id); 1287 } 1288 1289 bool Process::HasAssignedIndexIDToThread(uint64_t thread_id) { 1290 return (m_thread_id_to_index_id_map.find(thread_id) != 1291 m_thread_id_to_index_id_map.end()); 1292 } 1293 1294 uint32_t Process::AssignIndexIDToThread(uint64_t thread_id) { 1295 auto [iterator, inserted] = 1296 m_thread_id_to_index_id_map.try_emplace(thread_id, m_thread_index_id + 1); 1297 if (inserted) 1298 ++m_thread_index_id; 1299 1300 return iterator->second; 1301 } 1302 1303 StateType Process::GetState() { 1304 if (CurrentThreadIsPrivateStateThread()) 1305 return m_private_state.GetValue(); 1306 else 1307 return m_public_state.GetValue(); 1308 } 1309 1310 void Process::SetPublicState(StateType new_state, bool restarted) { 1311 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1312 if (new_state_is_stopped) { 1313 // This will only set the time if the public stop time has no value, so 1314 // it is ok to call this multiple times. With a public stop we can't look 1315 // at the stop ID because many private stops might have happened, so we 1316 // can't check for a stop ID of zero. This allows the "statistics" command 1317 // to dump the time it takes to reach somewhere in your code, like a 1318 // breakpoint you set. 1319 GetTarget().GetStatistics().SetFirstPublicStopTime(); 1320 } 1321 1322 Log *log(GetLog(LLDBLog::State | LLDBLog::Process)); 1323 LLDB_LOGF(log, "(plugin = %s, state = %s, restarted = %i)", 1324 GetPluginName().data(), StateAsCString(new_state), restarted); 1325 const StateType old_state = m_public_state.GetValue(); 1326 m_public_state.SetValue(new_state); 1327 1328 // On the transition from Run to Stopped, we unlock the writer end of the run 1329 // lock. The lock gets locked in Resume, which is the public API to tell the 1330 // program to run. 1331 if (!StateChangedIsExternallyHijacked()) { 1332 if (new_state == eStateDetached) { 1333 LLDB_LOGF(log, 1334 "(plugin = %s, state = %s) -- unlocking run lock for detach", 1335 GetPluginName().data(), StateAsCString(new_state)); 1336 m_public_run_lock.SetStopped(); 1337 } else { 1338 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1339 if ((old_state_is_stopped != new_state_is_stopped)) { 1340 if (new_state_is_stopped && !restarted) { 1341 LLDB_LOGF(log, "(plugin = %s, state = %s) -- unlocking run lock", 1342 GetPluginName().data(), StateAsCString(new_state)); 1343 m_public_run_lock.SetStopped(); 1344 } 1345 } 1346 } 1347 } 1348 } 1349 1350 Status Process::Resume() { 1351 Log *log(GetLog(LLDBLog::State | LLDBLog::Process)); 1352 LLDB_LOGF(log, "(plugin = %s) -- locking run lock", GetPluginName().data()); 1353 if (!m_public_run_lock.TrySetRunning()) { 1354 LLDB_LOGF(log, "(plugin = %s) -- TrySetRunning failed, not resuming.", 1355 GetPluginName().data()); 1356 return Status::FromErrorString( 1357 "Resume request failed - process still running."); 1358 } 1359 Status error = PrivateResume(); 1360 if (!error.Success()) { 1361 // Undo running state change 1362 m_public_run_lock.SetStopped(); 1363 } 1364 return error; 1365 } 1366 1367 Status Process::ResumeSynchronous(Stream *stream) { 1368 Log *log(GetLog(LLDBLog::State | LLDBLog::Process)); 1369 LLDB_LOGF(log, "Process::ResumeSynchronous -- locking run lock"); 1370 if (!m_public_run_lock.TrySetRunning()) { 1371 LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming."); 1372 return Status::FromErrorString( 1373 "Resume request failed - process still running."); 1374 } 1375 1376 ListenerSP listener_sp( 1377 Listener::MakeListener(ResumeSynchronousHijackListenerName.data())); 1378 HijackProcessEvents(listener_sp); 1379 1380 Status error = PrivateResume(); 1381 if (error.Success()) { 1382 StateType state = 1383 WaitForProcessToStop(std::nullopt, nullptr, true, listener_sp, stream, 1384 true /* use_run_lock */, SelectMostRelevantFrame); 1385 const bool must_be_alive = 1386 false; // eStateExited is ok, so this must be false 1387 if (!StateIsStoppedState(state, must_be_alive)) 1388 error = Status::FromErrorStringWithFormat( 1389 "process not in stopped state after synchronous resume: %s", 1390 StateAsCString(state)); 1391 } else { 1392 // Undo running state change 1393 m_public_run_lock.SetStopped(); 1394 } 1395 1396 // Undo the hijacking of process events... 1397 RestoreProcessEvents(); 1398 1399 return error; 1400 } 1401 1402 bool Process::StateChangedIsExternallyHijacked() { 1403 if (IsHijackedForEvent(eBroadcastBitStateChanged)) { 1404 llvm::StringRef hijacking_name = GetHijackingListenerName(); 1405 if (!hijacking_name.starts_with("lldb.internal")) 1406 return true; 1407 } 1408 return false; 1409 } 1410 1411 bool Process::StateChangedIsHijackedForSynchronousResume() { 1412 if (IsHijackedForEvent(eBroadcastBitStateChanged)) { 1413 llvm::StringRef hijacking_name = GetHijackingListenerName(); 1414 if (hijacking_name == ResumeSynchronousHijackListenerName) 1415 return true; 1416 } 1417 return false; 1418 } 1419 1420 StateType Process::GetPrivateState() { return m_private_state.GetValue(); } 1421 1422 void Process::SetPrivateState(StateType new_state) { 1423 // Use m_destructing not m_finalizing here. If we are finalizing a process 1424 // that we haven't started tearing down, we'd like to be able to nicely 1425 // detach if asked, but that requires the event system be live. That will 1426 // not be true for an in-the-middle-of-being-destructed Process, since the 1427 // event system relies on Process::shared_from_this, which may have already 1428 // been destroyed. 1429 if (m_destructing) 1430 return; 1431 1432 Log *log(GetLog(LLDBLog::State | LLDBLog::Process | LLDBLog::Unwind)); 1433 bool state_changed = false; 1434 1435 LLDB_LOGF(log, "(plugin = %s, state = %s)", GetPluginName().data(), 1436 StateAsCString(new_state)); 1437 1438 std::lock_guard<std::recursive_mutex> thread_guard(m_thread_list.GetMutex()); 1439 std::lock_guard<std::recursive_mutex> guard(m_private_state.GetMutex()); 1440 1441 const StateType old_state = m_private_state.GetValueNoLock(); 1442 state_changed = old_state != new_state; 1443 1444 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1445 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1446 if (old_state_is_stopped != new_state_is_stopped) { 1447 if (new_state_is_stopped) 1448 m_private_run_lock.SetStopped(); 1449 else 1450 m_private_run_lock.SetRunning(); 1451 } 1452 1453 if (state_changed) { 1454 m_private_state.SetValueNoLock(new_state); 1455 EventSP event_sp( 1456 new Event(eBroadcastBitStateChanged, 1457 new ProcessEventData(shared_from_this(), new_state))); 1458 if (StateIsStoppedState(new_state, false)) { 1459 // Note, this currently assumes that all threads in the list stop when 1460 // the process stops. In the future we will want to support a debugging 1461 // model where some threads continue to run while others are stopped. 1462 // When that happens we will either need a way for the thread list to 1463 // identify which threads are stopping or create a special thread list 1464 // containing only threads which actually stopped. 1465 // 1466 // The process plugin is responsible for managing the actual behavior of 1467 // the threads and should have stopped any threads that are going to stop 1468 // before we get here. 1469 m_thread_list.DidStop(); 1470 1471 if (m_mod_id.BumpStopID() == 0) 1472 GetTarget().GetStatistics().SetFirstPrivateStopTime(); 1473 1474 if (!m_mod_id.IsLastResumeForUserExpression()) 1475 m_mod_id.SetStopEventForLastNaturalStopID(event_sp); 1476 m_memory_cache.Clear(); 1477 LLDB_LOGF(log, "(plugin = %s, state = %s, stop_id = %u", 1478 GetPluginName().data(), StateAsCString(new_state), 1479 m_mod_id.GetStopID()); 1480 } 1481 1482 m_private_state_broadcaster.BroadcastEvent(event_sp); 1483 } else { 1484 LLDB_LOGF(log, "(plugin = %s, state = %s) state didn't change. Ignoring...", 1485 GetPluginName().data(), StateAsCString(new_state)); 1486 } 1487 } 1488 1489 void Process::SetRunningUserExpression(bool on) { 1490 m_mod_id.SetRunningUserExpression(on); 1491 } 1492 1493 void Process::SetRunningUtilityFunction(bool on) { 1494 m_mod_id.SetRunningUtilityFunction(on); 1495 } 1496 1497 addr_t Process::GetImageInfoAddress() { return LLDB_INVALID_ADDRESS; } 1498 1499 const lldb::ABISP &Process::GetABI() { 1500 if (!m_abi_sp) 1501 m_abi_sp = ABI::FindPlugin(shared_from_this(), GetTarget().GetArchitecture()); 1502 return m_abi_sp; 1503 } 1504 1505 std::vector<LanguageRuntime *> Process::GetLanguageRuntimes() { 1506 std::vector<LanguageRuntime *> language_runtimes; 1507 1508 if (m_finalizing) 1509 return language_runtimes; 1510 1511 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 1512 // Before we pass off a copy of the language runtimes, we must make sure that 1513 // our collection is properly populated. It's possible that some of the 1514 // language runtimes were not loaded yet, either because nobody requested it 1515 // yet or the proper condition for loading wasn't yet met (e.g. libc++.so 1516 // hadn't been loaded). 1517 for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) { 1518 if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type)) 1519 language_runtimes.emplace_back(runtime); 1520 } 1521 1522 return language_runtimes; 1523 } 1524 1525 LanguageRuntime *Process::GetLanguageRuntime(lldb::LanguageType language) { 1526 if (m_finalizing) 1527 return nullptr; 1528 1529 LanguageRuntime *runtime = nullptr; 1530 1531 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 1532 LanguageRuntimeCollection::iterator pos; 1533 pos = m_language_runtimes.find(language); 1534 if (pos == m_language_runtimes.end() || !pos->second) { 1535 lldb::LanguageRuntimeSP runtime_sp( 1536 LanguageRuntime::FindPlugin(this, language)); 1537 1538 m_language_runtimes[language] = runtime_sp; 1539 runtime = runtime_sp.get(); 1540 } else 1541 runtime = pos->second.get(); 1542 1543 if (runtime) 1544 // It's possible that a language runtime can support multiple LanguageTypes, 1545 // for example, CPPLanguageRuntime will support eLanguageTypeC_plus_plus, 1546 // eLanguageTypeC_plus_plus_03, etc. Because of this, we should get the 1547 // primary language type and make sure that our runtime supports it. 1548 assert(runtime->GetLanguageType() == Language::GetPrimaryLanguage(language)); 1549 1550 return runtime; 1551 } 1552 1553 bool Process::IsPossibleDynamicValue(ValueObject &in_value) { 1554 if (m_finalizing) 1555 return false; 1556 1557 if (in_value.IsDynamic()) 1558 return false; 1559 LanguageType known_type = in_value.GetObjectRuntimeLanguage(); 1560 1561 if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) { 1562 LanguageRuntime *runtime = GetLanguageRuntime(known_type); 1563 return runtime ? runtime->CouldHaveDynamicValue(in_value) : false; 1564 } 1565 1566 for (LanguageRuntime *runtime : GetLanguageRuntimes()) { 1567 if (runtime->CouldHaveDynamicValue(in_value)) 1568 return true; 1569 } 1570 1571 return false; 1572 } 1573 1574 void Process::SetDynamicCheckers(DynamicCheckerFunctions *dynamic_checkers) { 1575 m_dynamic_checkers_up.reset(dynamic_checkers); 1576 } 1577 1578 StopPointSiteList<BreakpointSite> &Process::GetBreakpointSiteList() { 1579 return m_breakpoint_site_list; 1580 } 1581 1582 const StopPointSiteList<BreakpointSite> & 1583 Process::GetBreakpointSiteList() const { 1584 return m_breakpoint_site_list; 1585 } 1586 1587 void Process::DisableAllBreakpointSites() { 1588 m_breakpoint_site_list.ForEach([this](BreakpointSite *bp_site) -> void { 1589 // bp_site->SetEnabled(true); 1590 DisableBreakpointSite(bp_site); 1591 }); 1592 } 1593 1594 Status Process::ClearBreakpointSiteByID(lldb::user_id_t break_id) { 1595 Status error(DisableBreakpointSiteByID(break_id)); 1596 1597 if (error.Success()) 1598 m_breakpoint_site_list.Remove(break_id); 1599 1600 return error; 1601 } 1602 1603 Status Process::DisableBreakpointSiteByID(lldb::user_id_t break_id) { 1604 Status error; 1605 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1606 if (bp_site_sp) { 1607 if (bp_site_sp->IsEnabled()) 1608 error = DisableBreakpointSite(bp_site_sp.get()); 1609 } else { 1610 error = Status::FromErrorStringWithFormat( 1611 "invalid breakpoint site ID: %" PRIu64, break_id); 1612 } 1613 1614 return error; 1615 } 1616 1617 Status Process::EnableBreakpointSiteByID(lldb::user_id_t break_id) { 1618 Status error; 1619 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1620 if (bp_site_sp) { 1621 if (!bp_site_sp->IsEnabled()) 1622 error = EnableBreakpointSite(bp_site_sp.get()); 1623 } else { 1624 error = Status::FromErrorStringWithFormat( 1625 "invalid breakpoint site ID: %" PRIu64, break_id); 1626 } 1627 return error; 1628 } 1629 1630 lldb::break_id_t 1631 Process::CreateBreakpointSite(const BreakpointLocationSP &constituent, 1632 bool use_hardware) { 1633 addr_t load_addr = LLDB_INVALID_ADDRESS; 1634 1635 bool show_error = true; 1636 switch (GetState()) { 1637 case eStateInvalid: 1638 case eStateUnloaded: 1639 case eStateConnected: 1640 case eStateAttaching: 1641 case eStateLaunching: 1642 case eStateDetached: 1643 case eStateExited: 1644 show_error = false; 1645 break; 1646 1647 case eStateStopped: 1648 case eStateRunning: 1649 case eStateStepping: 1650 case eStateCrashed: 1651 case eStateSuspended: 1652 show_error = IsAlive(); 1653 break; 1654 } 1655 1656 // Reset the IsIndirect flag here, in case the location changes from pointing 1657 // to a indirect symbol to a regular symbol. 1658 constituent->SetIsIndirect(false); 1659 1660 if (constituent->ShouldResolveIndirectFunctions()) { 1661 Symbol *symbol = constituent->GetAddress().CalculateSymbolContextSymbol(); 1662 if (symbol && symbol->IsIndirect()) { 1663 Status error; 1664 Address symbol_address = symbol->GetAddress(); 1665 load_addr = ResolveIndirectFunction(&symbol_address, error); 1666 if (!error.Success() && show_error) { 1667 GetTarget().GetDebugger().GetErrorStream().Printf( 1668 "warning: failed to resolve indirect function at 0x%" PRIx64 1669 " for breakpoint %i.%i: %s\n", 1670 symbol->GetLoadAddress(&GetTarget()), 1671 constituent->GetBreakpoint().GetID(), constituent->GetID(), 1672 error.AsCString() ? error.AsCString() : "unknown error"); 1673 return LLDB_INVALID_BREAK_ID; 1674 } 1675 Address resolved_address(load_addr); 1676 load_addr = resolved_address.GetOpcodeLoadAddress(&GetTarget()); 1677 constituent->SetIsIndirect(true); 1678 } else 1679 load_addr = constituent->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1680 } else 1681 load_addr = constituent->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1682 1683 if (load_addr != LLDB_INVALID_ADDRESS) { 1684 BreakpointSiteSP bp_site_sp; 1685 1686 // Look up this breakpoint site. If it exists, then add this new 1687 // constituent, otherwise create a new breakpoint site and add it. 1688 1689 bp_site_sp = m_breakpoint_site_list.FindByAddress(load_addr); 1690 1691 if (bp_site_sp) { 1692 bp_site_sp->AddConstituent(constituent); 1693 constituent->SetBreakpointSite(bp_site_sp); 1694 return bp_site_sp->GetID(); 1695 } else { 1696 bp_site_sp.reset( 1697 new BreakpointSite(constituent, load_addr, use_hardware)); 1698 if (bp_site_sp) { 1699 Status error = EnableBreakpointSite(bp_site_sp.get()); 1700 if (error.Success()) { 1701 constituent->SetBreakpointSite(bp_site_sp); 1702 return m_breakpoint_site_list.Add(bp_site_sp); 1703 } else { 1704 if (show_error || use_hardware) { 1705 // Report error for setting breakpoint... 1706 GetTarget().GetDebugger().GetErrorStream().Printf( 1707 "warning: failed to set breakpoint site at 0x%" PRIx64 1708 " for breakpoint %i.%i: %s\n", 1709 load_addr, constituent->GetBreakpoint().GetID(), 1710 constituent->GetID(), 1711 error.AsCString() ? error.AsCString() : "unknown error"); 1712 } 1713 } 1714 } 1715 } 1716 } 1717 // We failed to enable the breakpoint 1718 return LLDB_INVALID_BREAK_ID; 1719 } 1720 1721 void Process::RemoveConstituentFromBreakpointSite( 1722 lldb::user_id_t constituent_id, lldb::user_id_t constituent_loc_id, 1723 BreakpointSiteSP &bp_site_sp) { 1724 uint32_t num_constituents = 1725 bp_site_sp->RemoveConstituent(constituent_id, constituent_loc_id); 1726 if (num_constituents == 0) { 1727 // Don't try to disable the site if we don't have a live process anymore. 1728 if (IsAlive()) 1729 DisableBreakpointSite(bp_site_sp.get()); 1730 m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress()); 1731 } 1732 } 1733 1734 size_t Process::RemoveBreakpointOpcodesFromBuffer(addr_t bp_addr, size_t size, 1735 uint8_t *buf) const { 1736 size_t bytes_removed = 0; 1737 StopPointSiteList<BreakpointSite> bp_sites_in_range; 1738 1739 if (m_breakpoint_site_list.FindInRange(bp_addr, bp_addr + size, 1740 bp_sites_in_range)) { 1741 bp_sites_in_range.ForEach([bp_addr, size, 1742 buf](BreakpointSite *bp_site) -> void { 1743 if (bp_site->GetType() == BreakpointSite::eSoftware) { 1744 addr_t intersect_addr; 1745 size_t intersect_size; 1746 size_t opcode_offset; 1747 if (bp_site->IntersectsRange(bp_addr, size, &intersect_addr, 1748 &intersect_size, &opcode_offset)) { 1749 assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size); 1750 assert(bp_addr < intersect_addr + intersect_size && 1751 intersect_addr + intersect_size <= bp_addr + size); 1752 assert(opcode_offset + intersect_size <= bp_site->GetByteSize()); 1753 size_t buf_offset = intersect_addr - bp_addr; 1754 ::memcpy(buf + buf_offset, 1755 bp_site->GetSavedOpcodeBytes() + opcode_offset, 1756 intersect_size); 1757 } 1758 } 1759 }); 1760 } 1761 return bytes_removed; 1762 } 1763 1764 size_t Process::GetSoftwareBreakpointTrapOpcode(BreakpointSite *bp_site) { 1765 PlatformSP platform_sp(GetTarget().GetPlatform()); 1766 if (platform_sp) 1767 return platform_sp->GetSoftwareBreakpointTrapOpcode(GetTarget(), bp_site); 1768 return 0; 1769 } 1770 1771 Status Process::EnableSoftwareBreakpoint(BreakpointSite *bp_site) { 1772 Status error; 1773 assert(bp_site != nullptr); 1774 Log *log = GetLog(LLDBLog::Breakpoints); 1775 const addr_t bp_addr = bp_site->GetLoadAddress(); 1776 LLDB_LOGF( 1777 log, "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64, 1778 bp_site->GetID(), (uint64_t)bp_addr); 1779 if (bp_site->IsEnabled()) { 1780 LLDB_LOGF( 1781 log, 1782 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1783 " -- already enabled", 1784 bp_site->GetID(), (uint64_t)bp_addr); 1785 return error; 1786 } 1787 1788 if (bp_addr == LLDB_INVALID_ADDRESS) { 1789 error = Status::FromErrorString( 1790 "BreakpointSite contains an invalid load address."); 1791 return error; 1792 } 1793 // Ask the lldb::Process subclass to fill in the correct software breakpoint 1794 // trap for the breakpoint site 1795 const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site); 1796 1797 if (bp_opcode_size == 0) { 1798 error = Status::FromErrorStringWithFormat( 1799 "Process::GetSoftwareBreakpointTrapOpcode() " 1800 "returned zero, unable to get breakpoint " 1801 "trap for address 0x%" PRIx64, 1802 bp_addr); 1803 } else { 1804 const uint8_t *const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes(); 1805 1806 if (bp_opcode_bytes == nullptr) { 1807 error = Status::FromErrorString( 1808 "BreakpointSite doesn't contain a valid breakpoint trap opcode."); 1809 return error; 1810 } 1811 1812 // Save the original opcode by reading it 1813 if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size, 1814 error) == bp_opcode_size) { 1815 // Write a software breakpoint in place of the original opcode 1816 if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) == 1817 bp_opcode_size) { 1818 uint8_t verify_bp_opcode_bytes[64]; 1819 if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size, 1820 error) == bp_opcode_size) { 1821 if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes, 1822 bp_opcode_size) == 0) { 1823 bp_site->SetEnabled(true); 1824 bp_site->SetType(BreakpointSite::eSoftware); 1825 LLDB_LOGF(log, 1826 "Process::EnableSoftwareBreakpoint (site_id = %d) " 1827 "addr = 0x%" PRIx64 " -- SUCCESS", 1828 bp_site->GetID(), (uint64_t)bp_addr); 1829 } else 1830 error = Status::FromErrorString( 1831 "failed to verify the breakpoint trap in memory."); 1832 } else 1833 error = Status::FromErrorString( 1834 "Unable to read memory to verify breakpoint trap."); 1835 } else 1836 error = Status::FromErrorString( 1837 "Unable to write breakpoint trap to memory."); 1838 } else 1839 error = Status::FromErrorString( 1840 "Unable to read memory at breakpoint address."); 1841 } 1842 if (log && error.Fail()) 1843 LLDB_LOGF( 1844 log, 1845 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1846 " -- FAILED: %s", 1847 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 1848 return error; 1849 } 1850 1851 Status Process::DisableSoftwareBreakpoint(BreakpointSite *bp_site) { 1852 Status error; 1853 assert(bp_site != nullptr); 1854 Log *log = GetLog(LLDBLog::Breakpoints); 1855 addr_t bp_addr = bp_site->GetLoadAddress(); 1856 lldb::user_id_t breakID = bp_site->GetID(); 1857 LLDB_LOGF(log, 1858 "Process::DisableSoftwareBreakpoint (breakID = %" PRIu64 1859 ") addr = 0x%" PRIx64, 1860 breakID, (uint64_t)bp_addr); 1861 1862 if (bp_site->IsHardware()) { 1863 error = 1864 Status::FromErrorString("Breakpoint site is a hardware breakpoint."); 1865 } else if (bp_site->IsEnabled()) { 1866 const size_t break_op_size = bp_site->GetByteSize(); 1867 const uint8_t *const break_op = bp_site->GetTrapOpcodeBytes(); 1868 if (break_op_size > 0) { 1869 // Clear a software breakpoint instruction 1870 uint8_t curr_break_op[8]; 1871 assert(break_op_size <= sizeof(curr_break_op)); 1872 bool break_op_found = false; 1873 1874 // Read the breakpoint opcode 1875 if (DoReadMemory(bp_addr, curr_break_op, break_op_size, error) == 1876 break_op_size) { 1877 bool verify = false; 1878 // Make sure the breakpoint opcode exists at this address 1879 if (::memcmp(curr_break_op, break_op, break_op_size) == 0) { 1880 break_op_found = true; 1881 // We found a valid breakpoint opcode at this address, now restore 1882 // the saved opcode. 1883 if (DoWriteMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), 1884 break_op_size, error) == break_op_size) { 1885 verify = true; 1886 } else 1887 error = Status::FromErrorString( 1888 "Memory write failed when restoring original opcode."); 1889 } else { 1890 error = Status::FromErrorString( 1891 "Original breakpoint trap is no longer in memory."); 1892 // Set verify to true and so we can check if the original opcode has 1893 // already been restored 1894 verify = true; 1895 } 1896 1897 if (verify) { 1898 uint8_t verify_opcode[8]; 1899 assert(break_op_size < sizeof(verify_opcode)); 1900 // Verify that our original opcode made it back to the inferior 1901 if (DoReadMemory(bp_addr, verify_opcode, break_op_size, error) == 1902 break_op_size) { 1903 // compare the memory we just read with the original opcode 1904 if (::memcmp(bp_site->GetSavedOpcodeBytes(), verify_opcode, 1905 break_op_size) == 0) { 1906 // SUCCESS 1907 bp_site->SetEnabled(false); 1908 LLDB_LOGF(log, 1909 "Process::DisableSoftwareBreakpoint (site_id = %d) " 1910 "addr = 0x%" PRIx64 " -- SUCCESS", 1911 bp_site->GetID(), (uint64_t)bp_addr); 1912 return error; 1913 } else { 1914 if (break_op_found) 1915 error = Status::FromErrorString( 1916 "Failed to restore original opcode."); 1917 } 1918 } else 1919 error = 1920 Status::FromErrorString("Failed to read memory to verify that " 1921 "breakpoint trap was restored."); 1922 } 1923 } else 1924 error = Status::FromErrorString( 1925 "Unable to read memory that should contain the breakpoint trap."); 1926 } 1927 } else { 1928 LLDB_LOGF( 1929 log, 1930 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1931 " -- already disabled", 1932 bp_site->GetID(), (uint64_t)bp_addr); 1933 return error; 1934 } 1935 1936 LLDB_LOGF( 1937 log, 1938 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1939 " -- FAILED: %s", 1940 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 1941 return error; 1942 } 1943 1944 // Uncomment to verify memory caching works after making changes to caching 1945 // code 1946 //#define VERIFY_MEMORY_READS 1947 1948 size_t Process::ReadMemory(addr_t addr, void *buf, size_t size, Status &error) { 1949 if (ABISP abi_sp = GetABI()) 1950 addr = abi_sp->FixAnyAddress(addr); 1951 1952 error.Clear(); 1953 if (!GetDisableMemoryCache()) { 1954 #if defined(VERIFY_MEMORY_READS) 1955 // Memory caching is enabled, with debug verification 1956 1957 if (buf && size) { 1958 // Uncomment the line below to make sure memory caching is working. 1959 // I ran this through the test suite and got no assertions, so I am 1960 // pretty confident this is working well. If any changes are made to 1961 // memory caching, uncomment the line below and test your changes! 1962 1963 // Verify all memory reads by using the cache first, then redundantly 1964 // reading the same memory from the inferior and comparing to make sure 1965 // everything is exactly the same. 1966 std::string verify_buf(size, '\0'); 1967 assert(verify_buf.size() == size); 1968 const size_t cache_bytes_read = 1969 m_memory_cache.Read(this, addr, buf, size, error); 1970 Status verify_error; 1971 const size_t verify_bytes_read = 1972 ReadMemoryFromInferior(addr, const_cast<char *>(verify_buf.data()), 1973 verify_buf.size(), verify_error); 1974 assert(cache_bytes_read == verify_bytes_read); 1975 assert(memcmp(buf, verify_buf.data(), verify_buf.size()) == 0); 1976 assert(verify_error.Success() == error.Success()); 1977 return cache_bytes_read; 1978 } 1979 return 0; 1980 #else // !defined(VERIFY_MEMORY_READS) 1981 // Memory caching is enabled, without debug verification 1982 1983 return m_memory_cache.Read(addr, buf, size, error); 1984 #endif // defined (VERIFY_MEMORY_READS) 1985 } else { 1986 // Memory caching is disabled 1987 1988 return ReadMemoryFromInferior(addr, buf, size, error); 1989 } 1990 } 1991 1992 void Process::DoFindInMemory(lldb::addr_t start_addr, lldb::addr_t end_addr, 1993 const uint8_t *buf, size_t size, 1994 AddressRanges &matches, size_t alignment, 1995 size_t max_matches) { 1996 // Inputs are already validated in FindInMemory() functions. 1997 assert(buf != nullptr); 1998 assert(size > 0); 1999 assert(alignment > 0); 2000 assert(max_matches > 0); 2001 assert(start_addr != LLDB_INVALID_ADDRESS); 2002 assert(end_addr != LLDB_INVALID_ADDRESS); 2003 assert(start_addr < end_addr); 2004 2005 lldb::addr_t start = llvm::alignTo(start_addr, alignment); 2006 while (matches.size() < max_matches && (start + size) < end_addr) { 2007 const lldb::addr_t found_addr = FindInMemory(start, end_addr, buf, size); 2008 if (found_addr == LLDB_INVALID_ADDRESS) 2009 break; 2010 2011 if (found_addr % alignment) { 2012 // We need to check the alignment because the FindInMemory uses a special 2013 // algorithm to efficiently search mememory but doesn't support alignment. 2014 start = llvm::alignTo(start + 1, alignment); 2015 continue; 2016 } 2017 2018 matches.emplace_back(found_addr, size); 2019 start = found_addr + alignment; 2020 } 2021 } 2022 2023 AddressRanges Process::FindRangesInMemory(const uint8_t *buf, uint64_t size, 2024 const AddressRanges &ranges, 2025 size_t alignment, size_t max_matches, 2026 Status &error) { 2027 AddressRanges matches; 2028 if (buf == nullptr) { 2029 error = Status::FromErrorString("buffer is null"); 2030 return matches; 2031 } 2032 if (size == 0) { 2033 error = Status::FromErrorString("buffer size is zero"); 2034 return matches; 2035 } 2036 if (ranges.empty()) { 2037 error = Status::FromErrorString("empty ranges"); 2038 return matches; 2039 } 2040 if (alignment == 0) { 2041 error = Status::FromErrorString("alignment must be greater than zero"); 2042 return matches; 2043 } 2044 if (max_matches == 0) { 2045 error = Status::FromErrorString("max_matches must be greater than zero"); 2046 return matches; 2047 } 2048 2049 int resolved_ranges = 0; 2050 Target &target = GetTarget(); 2051 for (size_t i = 0; i < ranges.size(); ++i) { 2052 if (matches.size() >= max_matches) 2053 break; 2054 const AddressRange &range = ranges[i]; 2055 if (range.IsValid() == false) 2056 continue; 2057 2058 const lldb::addr_t start_addr = 2059 range.GetBaseAddress().GetLoadAddress(&target); 2060 if (start_addr == LLDB_INVALID_ADDRESS) 2061 continue; 2062 2063 ++resolved_ranges; 2064 const lldb::addr_t end_addr = start_addr + range.GetByteSize(); 2065 DoFindInMemory(start_addr, end_addr, buf, size, matches, alignment, 2066 max_matches); 2067 } 2068 2069 if (resolved_ranges > 0) 2070 error.Clear(); 2071 else 2072 error = Status::FromErrorString("unable to resolve any ranges"); 2073 2074 return matches; 2075 } 2076 2077 lldb::addr_t Process::FindInMemory(const uint8_t *buf, uint64_t size, 2078 const AddressRange &range, size_t alignment, 2079 Status &error) { 2080 if (buf == nullptr) { 2081 error = Status::FromErrorString("buffer is null"); 2082 return LLDB_INVALID_ADDRESS; 2083 } 2084 if (size == 0) { 2085 error = Status::FromErrorString("buffer size is zero"); 2086 return LLDB_INVALID_ADDRESS; 2087 } 2088 if (!range.IsValid()) { 2089 error = Status::FromErrorString("range is invalid"); 2090 return LLDB_INVALID_ADDRESS; 2091 } 2092 if (alignment == 0) { 2093 error = Status::FromErrorString("alignment must be greater than zero"); 2094 return LLDB_INVALID_ADDRESS; 2095 } 2096 2097 Target &target = GetTarget(); 2098 const lldb::addr_t start_addr = 2099 range.GetBaseAddress().GetLoadAddress(&target); 2100 if (start_addr == LLDB_INVALID_ADDRESS) { 2101 error = Status::FromErrorString("range load address is invalid"); 2102 return LLDB_INVALID_ADDRESS; 2103 } 2104 const lldb::addr_t end_addr = start_addr + range.GetByteSize(); 2105 2106 AddressRanges matches; 2107 DoFindInMemory(start_addr, end_addr, buf, size, matches, alignment, 1); 2108 if (matches.empty()) 2109 return LLDB_INVALID_ADDRESS; 2110 2111 error.Clear(); 2112 return matches[0].GetBaseAddress().GetLoadAddress(&target); 2113 } 2114 2115 size_t Process::ReadCStringFromMemory(addr_t addr, std::string &out_str, 2116 Status &error) { 2117 char buf[256]; 2118 out_str.clear(); 2119 addr_t curr_addr = addr; 2120 while (true) { 2121 size_t length = ReadCStringFromMemory(curr_addr, buf, sizeof(buf), error); 2122 if (length == 0) 2123 break; 2124 out_str.append(buf, length); 2125 // If we got "length - 1" bytes, we didn't get the whole C string, we need 2126 // to read some more characters 2127 if (length == sizeof(buf) - 1) 2128 curr_addr += length; 2129 else 2130 break; 2131 } 2132 return out_str.size(); 2133 } 2134 2135 // Deprecated in favor of ReadStringFromMemory which has wchar support and 2136 // correct code to find null terminators. 2137 size_t Process::ReadCStringFromMemory(addr_t addr, char *dst, 2138 size_t dst_max_len, 2139 Status &result_error) { 2140 size_t total_cstr_len = 0; 2141 if (dst && dst_max_len) { 2142 result_error.Clear(); 2143 // NULL out everything just to be safe 2144 memset(dst, 0, dst_max_len); 2145 addr_t curr_addr = addr; 2146 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 2147 size_t bytes_left = dst_max_len - 1; 2148 char *curr_dst = dst; 2149 2150 while (bytes_left > 0) { 2151 addr_t cache_line_bytes_left = 2152 cache_line_size - (curr_addr % cache_line_size); 2153 addr_t bytes_to_read = 2154 std::min<addr_t>(bytes_left, cache_line_bytes_left); 2155 Status error; 2156 size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error); 2157 2158 if (bytes_read == 0) { 2159 result_error = std::move(error); 2160 dst[total_cstr_len] = '\0'; 2161 break; 2162 } 2163 const size_t len = strlen(curr_dst); 2164 2165 total_cstr_len += len; 2166 2167 if (len < bytes_to_read) 2168 break; 2169 2170 curr_dst += bytes_read; 2171 curr_addr += bytes_read; 2172 bytes_left -= bytes_read; 2173 } 2174 } else { 2175 if (dst == nullptr) 2176 result_error = Status::FromErrorString("invalid arguments"); 2177 else 2178 result_error.Clear(); 2179 } 2180 return total_cstr_len; 2181 } 2182 2183 size_t Process::ReadMemoryFromInferior(addr_t addr, void *buf, size_t size, 2184 Status &error) { 2185 LLDB_SCOPED_TIMER(); 2186 2187 if (ABISP abi_sp = GetABI()) 2188 addr = abi_sp->FixAnyAddress(addr); 2189 2190 if (buf == nullptr || size == 0) 2191 return 0; 2192 2193 size_t bytes_read = 0; 2194 uint8_t *bytes = (uint8_t *)buf; 2195 2196 while (bytes_read < size) { 2197 const size_t curr_size = size - bytes_read; 2198 const size_t curr_bytes_read = 2199 DoReadMemory(addr + bytes_read, bytes + bytes_read, curr_size, error); 2200 bytes_read += curr_bytes_read; 2201 if (curr_bytes_read == curr_size || curr_bytes_read == 0) 2202 break; 2203 } 2204 2205 // Replace any software breakpoint opcodes that fall into this range back 2206 // into "buf" before we return 2207 if (bytes_read > 0) 2208 RemoveBreakpointOpcodesFromBuffer(addr, bytes_read, (uint8_t *)buf); 2209 return bytes_read; 2210 } 2211 2212 uint64_t Process::ReadUnsignedIntegerFromMemory(lldb::addr_t vm_addr, 2213 size_t integer_byte_size, 2214 uint64_t fail_value, 2215 Status &error) { 2216 Scalar scalar; 2217 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, false, scalar, 2218 error)) 2219 return scalar.ULongLong(fail_value); 2220 return fail_value; 2221 } 2222 2223 int64_t Process::ReadSignedIntegerFromMemory(lldb::addr_t vm_addr, 2224 size_t integer_byte_size, 2225 int64_t fail_value, 2226 Status &error) { 2227 Scalar scalar; 2228 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, true, scalar, 2229 error)) 2230 return scalar.SLongLong(fail_value); 2231 return fail_value; 2232 } 2233 2234 addr_t Process::ReadPointerFromMemory(lldb::addr_t vm_addr, Status &error) { 2235 Scalar scalar; 2236 if (ReadScalarIntegerFromMemory(vm_addr, GetAddressByteSize(), false, scalar, 2237 error)) 2238 return scalar.ULongLong(LLDB_INVALID_ADDRESS); 2239 return LLDB_INVALID_ADDRESS; 2240 } 2241 2242 bool Process::WritePointerToMemory(lldb::addr_t vm_addr, lldb::addr_t ptr_value, 2243 Status &error) { 2244 Scalar scalar; 2245 const uint32_t addr_byte_size = GetAddressByteSize(); 2246 if (addr_byte_size <= 4) 2247 scalar = (uint32_t)ptr_value; 2248 else 2249 scalar = ptr_value; 2250 return WriteScalarToMemory(vm_addr, scalar, addr_byte_size, error) == 2251 addr_byte_size; 2252 } 2253 2254 size_t Process::WriteMemoryPrivate(addr_t addr, const void *buf, size_t size, 2255 Status &error) { 2256 size_t bytes_written = 0; 2257 const uint8_t *bytes = (const uint8_t *)buf; 2258 2259 while (bytes_written < size) { 2260 const size_t curr_size = size - bytes_written; 2261 const size_t curr_bytes_written = DoWriteMemory( 2262 addr + bytes_written, bytes + bytes_written, curr_size, error); 2263 bytes_written += curr_bytes_written; 2264 if (curr_bytes_written == curr_size || curr_bytes_written == 0) 2265 break; 2266 } 2267 return bytes_written; 2268 } 2269 2270 size_t Process::WriteMemory(addr_t addr, const void *buf, size_t size, 2271 Status &error) { 2272 if (ABISP abi_sp = GetABI()) 2273 addr = abi_sp->FixAnyAddress(addr); 2274 2275 #if defined(ENABLE_MEMORY_CACHING) 2276 m_memory_cache.Flush(addr, size); 2277 #endif 2278 2279 if (buf == nullptr || size == 0) 2280 return 0; 2281 2282 m_mod_id.BumpMemoryID(); 2283 2284 // We need to write any data that would go where any current software traps 2285 // (enabled software breakpoints) any software traps (breakpoints) that we 2286 // may have placed in our tasks memory. 2287 2288 StopPointSiteList<BreakpointSite> bp_sites_in_range; 2289 if (!m_breakpoint_site_list.FindInRange(addr, addr + size, bp_sites_in_range)) 2290 return WriteMemoryPrivate(addr, buf, size, error); 2291 2292 // No breakpoint sites overlap 2293 if (bp_sites_in_range.IsEmpty()) 2294 return WriteMemoryPrivate(addr, buf, size, error); 2295 2296 const uint8_t *ubuf = (const uint8_t *)buf; 2297 uint64_t bytes_written = 0; 2298 2299 bp_sites_in_range.ForEach([this, addr, size, &bytes_written, &ubuf, 2300 &error](BreakpointSite *bp) -> void { 2301 if (error.Fail()) 2302 return; 2303 2304 if (bp->GetType() != BreakpointSite::eSoftware) 2305 return; 2306 2307 addr_t intersect_addr; 2308 size_t intersect_size; 2309 size_t opcode_offset; 2310 const bool intersects = bp->IntersectsRange( 2311 addr, size, &intersect_addr, &intersect_size, &opcode_offset); 2312 UNUSED_IF_ASSERT_DISABLED(intersects); 2313 assert(intersects); 2314 assert(addr <= intersect_addr && intersect_addr < addr + size); 2315 assert(addr < intersect_addr + intersect_size && 2316 intersect_addr + intersect_size <= addr + size); 2317 assert(opcode_offset + intersect_size <= bp->GetByteSize()); 2318 2319 // Check for bytes before this breakpoint 2320 const addr_t curr_addr = addr + bytes_written; 2321 if (intersect_addr > curr_addr) { 2322 // There are some bytes before this breakpoint that we need to just 2323 // write to memory 2324 size_t curr_size = intersect_addr - curr_addr; 2325 size_t curr_bytes_written = 2326 WriteMemoryPrivate(curr_addr, ubuf + bytes_written, curr_size, error); 2327 bytes_written += curr_bytes_written; 2328 if (curr_bytes_written != curr_size) { 2329 // We weren't able to write all of the requested bytes, we are 2330 // done looping and will return the number of bytes that we have 2331 // written so far. 2332 if (error.Success()) 2333 error = Status::FromErrorString("could not write all bytes"); 2334 } 2335 } 2336 // Now write any bytes that would cover up any software breakpoints 2337 // directly into the breakpoint opcode buffer 2338 ::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, ubuf + bytes_written, 2339 intersect_size); 2340 bytes_written += intersect_size; 2341 }); 2342 2343 // Write any remaining bytes after the last breakpoint if we have any left 2344 if (bytes_written < size) 2345 bytes_written += 2346 WriteMemoryPrivate(addr + bytes_written, ubuf + bytes_written, 2347 size - bytes_written, error); 2348 2349 return bytes_written; 2350 } 2351 2352 size_t Process::WriteScalarToMemory(addr_t addr, const Scalar &scalar, 2353 size_t byte_size, Status &error) { 2354 if (byte_size == UINT32_MAX) 2355 byte_size = scalar.GetByteSize(); 2356 if (byte_size > 0) { 2357 uint8_t buf[32]; 2358 const size_t mem_size = 2359 scalar.GetAsMemoryData(buf, byte_size, GetByteOrder(), error); 2360 if (mem_size > 0) 2361 return WriteMemory(addr, buf, mem_size, error); 2362 else 2363 error = Status::FromErrorString("failed to get scalar as memory data"); 2364 } else { 2365 error = Status::FromErrorString("invalid scalar value"); 2366 } 2367 return 0; 2368 } 2369 2370 size_t Process::ReadScalarIntegerFromMemory(addr_t addr, uint32_t byte_size, 2371 bool is_signed, Scalar &scalar, 2372 Status &error) { 2373 uint64_t uval = 0; 2374 if (byte_size == 0) { 2375 error = Status::FromErrorString("byte size is zero"); 2376 } else if (byte_size & (byte_size - 1)) { 2377 error = Status::FromErrorStringWithFormat( 2378 "byte size %u is not a power of 2", byte_size); 2379 } else if (byte_size <= sizeof(uval)) { 2380 const size_t bytes_read = ReadMemory(addr, &uval, byte_size, error); 2381 if (bytes_read == byte_size) { 2382 DataExtractor data(&uval, sizeof(uval), GetByteOrder(), 2383 GetAddressByteSize()); 2384 lldb::offset_t offset = 0; 2385 if (byte_size <= 4) 2386 scalar = data.GetMaxU32(&offset, byte_size); 2387 else 2388 scalar = data.GetMaxU64(&offset, byte_size); 2389 if (is_signed) 2390 scalar.SignExtend(byte_size * 8); 2391 return bytes_read; 2392 } 2393 } else { 2394 error = Status::FromErrorStringWithFormat( 2395 "byte size of %u is too large for integer scalar type", byte_size); 2396 } 2397 return 0; 2398 } 2399 2400 Status Process::WriteObjectFile(std::vector<ObjectFile::LoadableData> entries) { 2401 Status error; 2402 for (const auto &Entry : entries) { 2403 WriteMemory(Entry.Dest, Entry.Contents.data(), Entry.Contents.size(), 2404 error); 2405 if (!error.Success()) 2406 break; 2407 } 2408 return error; 2409 } 2410 2411 #define USE_ALLOCATE_MEMORY_CACHE 1 2412 addr_t Process::AllocateMemory(size_t size, uint32_t permissions, 2413 Status &error) { 2414 if (GetPrivateState() != eStateStopped) { 2415 error = Status::FromErrorString( 2416 "cannot allocate memory while process is running"); 2417 return LLDB_INVALID_ADDRESS; 2418 } 2419 2420 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2421 return m_allocated_memory_cache.AllocateMemory(size, permissions, error); 2422 #else 2423 addr_t allocated_addr = DoAllocateMemory(size, permissions, error); 2424 Log *log = GetLog(LLDBLog::Process); 2425 LLDB_LOGF(log, 2426 "Process::AllocateMemory(size=%" PRIu64 2427 ", permissions=%s) => 0x%16.16" PRIx64 2428 " (m_stop_id = %u m_memory_id = %u)", 2429 (uint64_t)size, GetPermissionsAsCString(permissions), 2430 (uint64_t)allocated_addr, m_mod_id.GetStopID(), 2431 m_mod_id.GetMemoryID()); 2432 return allocated_addr; 2433 #endif 2434 } 2435 2436 addr_t Process::CallocateMemory(size_t size, uint32_t permissions, 2437 Status &error) { 2438 addr_t return_addr = AllocateMemory(size, permissions, error); 2439 if (error.Success()) { 2440 std::string buffer(size, 0); 2441 WriteMemory(return_addr, buffer.c_str(), size, error); 2442 } 2443 return return_addr; 2444 } 2445 2446 bool Process::CanJIT() { 2447 if (m_can_jit == eCanJITDontKnow) { 2448 Log *log = GetLog(LLDBLog::Process); 2449 Status err; 2450 2451 uint64_t allocated_memory = AllocateMemory( 2452 8, ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable, 2453 err); 2454 2455 if (err.Success()) { 2456 m_can_jit = eCanJITYes; 2457 LLDB_LOGF(log, 2458 "Process::%s pid %" PRIu64 2459 " allocation test passed, CanJIT () is true", 2460 __FUNCTION__, GetID()); 2461 } else { 2462 m_can_jit = eCanJITNo; 2463 LLDB_LOGF(log, 2464 "Process::%s pid %" PRIu64 2465 " allocation test failed, CanJIT () is false: %s", 2466 __FUNCTION__, GetID(), err.AsCString()); 2467 } 2468 2469 DeallocateMemory(allocated_memory); 2470 } 2471 2472 return m_can_jit == eCanJITYes; 2473 } 2474 2475 void Process::SetCanJIT(bool can_jit) { 2476 m_can_jit = (can_jit ? eCanJITYes : eCanJITNo); 2477 } 2478 2479 void Process::SetCanRunCode(bool can_run_code) { 2480 SetCanJIT(can_run_code); 2481 m_can_interpret_function_calls = can_run_code; 2482 } 2483 2484 Status Process::DeallocateMemory(addr_t ptr) { 2485 Status error; 2486 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2487 if (!m_allocated_memory_cache.DeallocateMemory(ptr)) { 2488 error = Status::FromErrorStringWithFormat( 2489 "deallocation of memory at 0x%" PRIx64 " failed.", (uint64_t)ptr); 2490 } 2491 #else 2492 error = DoDeallocateMemory(ptr); 2493 2494 Log *log = GetLog(LLDBLog::Process); 2495 LLDB_LOGF(log, 2496 "Process::DeallocateMemory(addr=0x%16.16" PRIx64 2497 ") => err = %s (m_stop_id = %u, m_memory_id = %u)", 2498 ptr, error.AsCString("SUCCESS"), m_mod_id.GetStopID(), 2499 m_mod_id.GetMemoryID()); 2500 #endif 2501 return error; 2502 } 2503 2504 bool Process::GetWatchpointReportedAfter() { 2505 if (std::optional<bool> subclass_override = DoGetWatchpointReportedAfter()) 2506 return *subclass_override; 2507 2508 bool reported_after = true; 2509 const ArchSpec &arch = GetTarget().GetArchitecture(); 2510 if (!arch.IsValid()) 2511 return reported_after; 2512 llvm::Triple triple = arch.GetTriple(); 2513 2514 if (triple.isMIPS() || triple.isPPC64() || triple.isRISCV() || 2515 triple.isAArch64() || triple.isArmMClass() || triple.isARM() || 2516 triple.isLoongArch()) 2517 reported_after = false; 2518 2519 return reported_after; 2520 } 2521 2522 ModuleSP Process::ReadModuleFromMemory(const FileSpec &file_spec, 2523 lldb::addr_t header_addr, 2524 size_t size_to_read) { 2525 Log *log = GetLog(LLDBLog::Host); 2526 if (log) { 2527 LLDB_LOGF(log, 2528 "Process::ReadModuleFromMemory reading %s binary from memory", 2529 file_spec.GetPath().c_str()); 2530 } 2531 ModuleSP module_sp(new Module(file_spec, ArchSpec())); 2532 if (module_sp) { 2533 Status error; 2534 std::unique_ptr<Progress> progress_up; 2535 // Reading an ObjectFile from a local corefile is very fast, 2536 // only print a progress update if we're reading from a 2537 // live session which might go over gdb remote serial protocol. 2538 if (IsLiveDebugSession()) 2539 progress_up = std::make_unique<Progress>( 2540 "Reading binary from memory", file_spec.GetFilename().GetString()); 2541 2542 ObjectFile *objfile = module_sp->GetMemoryObjectFile( 2543 shared_from_this(), header_addr, error, size_to_read); 2544 if (objfile) 2545 return module_sp; 2546 } 2547 return ModuleSP(); 2548 } 2549 2550 bool Process::GetLoadAddressPermissions(lldb::addr_t load_addr, 2551 uint32_t &permissions) { 2552 MemoryRegionInfo range_info; 2553 permissions = 0; 2554 Status error(GetMemoryRegionInfo(load_addr, range_info)); 2555 if (!error.Success()) 2556 return false; 2557 if (range_info.GetReadable() == MemoryRegionInfo::eDontKnow || 2558 range_info.GetWritable() == MemoryRegionInfo::eDontKnow || 2559 range_info.GetExecutable() == MemoryRegionInfo::eDontKnow) { 2560 return false; 2561 } 2562 permissions = range_info.GetLLDBPermissions(); 2563 return true; 2564 } 2565 2566 Status Process::EnableWatchpoint(WatchpointSP wp_sp, bool notify) { 2567 Status error; 2568 error = Status::FromErrorString("watchpoints are not supported"); 2569 return error; 2570 } 2571 2572 Status Process::DisableWatchpoint(WatchpointSP wp_sp, bool notify) { 2573 Status error; 2574 error = Status::FromErrorString("watchpoints are not supported"); 2575 return error; 2576 } 2577 2578 StateType 2579 Process::WaitForProcessStopPrivate(EventSP &event_sp, 2580 const Timeout<std::micro> &timeout) { 2581 StateType state; 2582 2583 while (true) { 2584 event_sp.reset(); 2585 state = GetStateChangedEventsPrivate(event_sp, timeout); 2586 2587 if (StateIsStoppedState(state, false)) 2588 break; 2589 2590 // If state is invalid, then we timed out 2591 if (state == eStateInvalid) 2592 break; 2593 2594 if (event_sp) 2595 HandlePrivateEvent(event_sp); 2596 } 2597 return state; 2598 } 2599 2600 void Process::LoadOperatingSystemPlugin(bool flush) { 2601 std::lock_guard<std::recursive_mutex> guard(m_thread_mutex); 2602 if (flush) 2603 m_thread_list.Clear(); 2604 m_os_up.reset(OperatingSystem::FindPlugin(this, nullptr)); 2605 if (flush) 2606 Flush(); 2607 } 2608 2609 Status Process::Launch(ProcessLaunchInfo &launch_info) { 2610 StateType state_after_launch = eStateInvalid; 2611 EventSP first_stop_event_sp; 2612 Status status = 2613 LaunchPrivate(launch_info, state_after_launch, first_stop_event_sp); 2614 if (status.Fail()) 2615 return status; 2616 2617 if (state_after_launch != eStateStopped && 2618 state_after_launch != eStateCrashed) 2619 return Status(); 2620 2621 // Note, the stop event was consumed above, but not handled. This 2622 // was done to give DidLaunch a chance to run. The target is either 2623 // stopped or crashed. Directly set the state. This is done to 2624 // prevent a stop message with a bunch of spurious output on thread 2625 // status, as well as not pop a ProcessIOHandler. 2626 SetPublicState(state_after_launch, false); 2627 2628 if (PrivateStateThreadIsValid()) 2629 ResumePrivateStateThread(); 2630 else 2631 StartPrivateStateThread(); 2632 2633 // Target was stopped at entry as was intended. Need to notify the 2634 // listeners about it. 2635 if (launch_info.GetFlags().Test(eLaunchFlagStopAtEntry)) 2636 HandlePrivateEvent(first_stop_event_sp); 2637 2638 return Status(); 2639 } 2640 2641 Status Process::LaunchPrivate(ProcessLaunchInfo &launch_info, StateType &state, 2642 EventSP &event_sp) { 2643 Status error; 2644 m_abi_sp.reset(); 2645 m_dyld_up.reset(); 2646 m_jit_loaders_up.reset(); 2647 m_system_runtime_up.reset(); 2648 m_os_up.reset(); 2649 2650 { 2651 std::lock_guard<std::mutex> guard(m_process_input_reader_mutex); 2652 m_process_input_reader.reset(); 2653 } 2654 2655 Module *exe_module = GetTarget().GetExecutableModulePointer(); 2656 2657 // The "remote executable path" is hooked up to the local Executable 2658 // module. But we should be able to debug a remote process even if the 2659 // executable module only exists on the remote. However, there needs to 2660 // be a way to express this path, without actually having a module. 2661 // The way to do that is to set the ExecutableFile in the LaunchInfo. 2662 // Figure that out here: 2663 2664 FileSpec exe_spec_to_use; 2665 if (!exe_module) { 2666 if (!launch_info.GetExecutableFile() && !launch_info.IsScriptedProcess()) { 2667 error = Status::FromErrorString("executable module does not exist"); 2668 return error; 2669 } 2670 exe_spec_to_use = launch_info.GetExecutableFile(); 2671 } else 2672 exe_spec_to_use = exe_module->GetFileSpec(); 2673 2674 if (exe_module && FileSystem::Instance().Exists(exe_module->GetFileSpec())) { 2675 // Install anything that might need to be installed prior to launching. 2676 // For host systems, this will do nothing, but if we are connected to a 2677 // remote platform it will install any needed binaries 2678 error = GetTarget().Install(&launch_info); 2679 if (error.Fail()) 2680 return error; 2681 } 2682 2683 // Listen and queue events that are broadcasted during the process launch. 2684 ListenerSP listener_sp(Listener::MakeListener("LaunchEventHijack")); 2685 HijackProcessEvents(listener_sp); 2686 auto on_exit = llvm::make_scope_exit([this]() { RestoreProcessEvents(); }); 2687 2688 if (PrivateStateThreadIsValid()) 2689 PausePrivateStateThread(); 2690 2691 error = WillLaunch(exe_module); 2692 if (error.Fail()) { 2693 std::string local_exec_file_path = exe_spec_to_use.GetPath(); 2694 return Status::FromErrorStringWithFormat("file doesn't exist: '%s'", 2695 local_exec_file_path.c_str()); 2696 } 2697 2698 const bool restarted = false; 2699 SetPublicState(eStateLaunching, restarted); 2700 m_should_detach = false; 2701 2702 if (m_public_run_lock.TrySetRunning()) { 2703 // Now launch using these arguments. 2704 error = DoLaunch(exe_module, launch_info); 2705 } else { 2706 // This shouldn't happen 2707 error = Status::FromErrorString("failed to acquire process run lock"); 2708 } 2709 2710 if (error.Fail()) { 2711 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2712 SetID(LLDB_INVALID_PROCESS_ID); 2713 const char *error_string = error.AsCString(); 2714 if (error_string == nullptr) 2715 error_string = "launch failed"; 2716 SetExitStatus(-1, error_string); 2717 } 2718 return error; 2719 } 2720 2721 // Now wait for the process to launch and return control to us, and then 2722 // call DidLaunch: 2723 state = WaitForProcessStopPrivate(event_sp, seconds(10)); 2724 2725 if (state == eStateInvalid || !event_sp) { 2726 // We were able to launch the process, but we failed to catch the 2727 // initial stop. 2728 error = Status::FromErrorString("failed to catch stop after launch"); 2729 SetExitStatus(0, error.AsCString()); 2730 Destroy(false); 2731 return error; 2732 } 2733 2734 if (state == eStateExited) { 2735 // We exited while trying to launch somehow. Don't call DidLaunch 2736 // as that's not likely to work, and return an invalid pid. 2737 HandlePrivateEvent(event_sp); 2738 return Status(); 2739 } 2740 2741 if (state == eStateStopped || state == eStateCrashed) { 2742 DidLaunch(); 2743 2744 // Now that we know the process type, update its signal responses from the 2745 // ones stored in the Target: 2746 if (m_unix_signals_sp) { 2747 StreamSP warning_strm = GetTarget().GetDebugger().GetAsyncErrorStream(); 2748 GetTarget().UpdateSignalsFromDummy(m_unix_signals_sp, warning_strm); 2749 } 2750 2751 DynamicLoader *dyld = GetDynamicLoader(); 2752 if (dyld) 2753 dyld->DidLaunch(); 2754 2755 GetJITLoaders().DidLaunch(); 2756 2757 SystemRuntime *system_runtime = GetSystemRuntime(); 2758 if (system_runtime) 2759 system_runtime->DidLaunch(); 2760 2761 if (!m_os_up) 2762 LoadOperatingSystemPlugin(false); 2763 2764 // We successfully launched the process and stopped, now it the 2765 // right time to set up signal filters before resuming. 2766 UpdateAutomaticSignalFiltering(); 2767 return Status(); 2768 } 2769 2770 return Status::FromErrorStringWithFormat( 2771 "Unexpected process state after the launch: %s, expected %s, " 2772 "%s, %s or %s", 2773 StateAsCString(state), StateAsCString(eStateInvalid), 2774 StateAsCString(eStateExited), StateAsCString(eStateStopped), 2775 StateAsCString(eStateCrashed)); 2776 } 2777 2778 Status Process::LoadCore() { 2779 Status error = DoLoadCore(); 2780 if (error.Success()) { 2781 ListenerSP listener_sp( 2782 Listener::MakeListener("lldb.process.load_core_listener")); 2783 HijackProcessEvents(listener_sp); 2784 2785 if (PrivateStateThreadIsValid()) 2786 ResumePrivateStateThread(); 2787 else 2788 StartPrivateStateThread(); 2789 2790 DynamicLoader *dyld = GetDynamicLoader(); 2791 if (dyld) 2792 dyld->DidAttach(); 2793 2794 GetJITLoaders().DidAttach(); 2795 2796 SystemRuntime *system_runtime = GetSystemRuntime(); 2797 if (system_runtime) 2798 system_runtime->DidAttach(); 2799 2800 if (!m_os_up) 2801 LoadOperatingSystemPlugin(false); 2802 2803 // We successfully loaded a core file, now pretend we stopped so we can 2804 // show all of the threads in the core file and explore the crashed state. 2805 SetPrivateState(eStateStopped); 2806 2807 // Wait for a stopped event since we just posted one above... 2808 lldb::EventSP event_sp; 2809 StateType state = 2810 WaitForProcessToStop(std::nullopt, &event_sp, true, listener_sp, 2811 nullptr, true, SelectMostRelevantFrame); 2812 2813 if (!StateIsStoppedState(state, false)) { 2814 Log *log = GetLog(LLDBLog::Process); 2815 LLDB_LOGF(log, "Process::Halt() failed to stop, state is: %s", 2816 StateAsCString(state)); 2817 error = Status::FromErrorString( 2818 "Did not get stopped event after loading the core file."); 2819 } 2820 RestoreProcessEvents(); 2821 } 2822 return error; 2823 } 2824 2825 DynamicLoader *Process::GetDynamicLoader() { 2826 if (!m_dyld_up) 2827 m_dyld_up.reset(DynamicLoader::FindPlugin(this, "")); 2828 return m_dyld_up.get(); 2829 } 2830 2831 void Process::SetDynamicLoader(DynamicLoaderUP dyld_up) { 2832 m_dyld_up = std::move(dyld_up); 2833 } 2834 2835 DataExtractor Process::GetAuxvData() { return DataExtractor(); } 2836 2837 llvm::Expected<bool> Process::SaveCore(llvm::StringRef outfile) { 2838 return false; 2839 } 2840 2841 JITLoaderList &Process::GetJITLoaders() { 2842 if (!m_jit_loaders_up) { 2843 m_jit_loaders_up = std::make_unique<JITLoaderList>(); 2844 JITLoader::LoadPlugins(this, *m_jit_loaders_up); 2845 } 2846 return *m_jit_loaders_up; 2847 } 2848 2849 SystemRuntime *Process::GetSystemRuntime() { 2850 if (!m_system_runtime_up) 2851 m_system_runtime_up.reset(SystemRuntime::FindPlugin(this)); 2852 return m_system_runtime_up.get(); 2853 } 2854 2855 Process::AttachCompletionHandler::AttachCompletionHandler(Process *process, 2856 uint32_t exec_count) 2857 : NextEventAction(process), m_exec_count(exec_count) { 2858 Log *log = GetLog(LLDBLog::Process); 2859 LLDB_LOGF( 2860 log, 2861 "Process::AttachCompletionHandler::%s process=%p, exec_count=%" PRIu32, 2862 __FUNCTION__, static_cast<void *>(process), exec_count); 2863 } 2864 2865 Process::NextEventAction::EventActionResult 2866 Process::AttachCompletionHandler::PerformAction(lldb::EventSP &event_sp) { 2867 Log *log = GetLog(LLDBLog::Process); 2868 2869 StateType state = ProcessEventData::GetStateFromEvent(event_sp.get()); 2870 LLDB_LOGF(log, 2871 "Process::AttachCompletionHandler::%s called with state %s (%d)", 2872 __FUNCTION__, StateAsCString(state), static_cast<int>(state)); 2873 2874 switch (state) { 2875 case eStateAttaching: 2876 return eEventActionSuccess; 2877 2878 case eStateRunning: 2879 case eStateConnected: 2880 return eEventActionRetry; 2881 2882 case eStateStopped: 2883 case eStateCrashed: 2884 // During attach, prior to sending the eStateStopped event, 2885 // lldb_private::Process subclasses must set the new process ID. 2886 assert(m_process->GetID() != LLDB_INVALID_PROCESS_ID); 2887 // We don't want these events to be reported, so go set the 2888 // ShouldReportStop here: 2889 m_process->GetThreadList().SetShouldReportStop(eVoteNo); 2890 2891 if (m_exec_count > 0) { 2892 --m_exec_count; 2893 2894 LLDB_LOGF(log, 2895 "Process::AttachCompletionHandler::%s state %s: reduced " 2896 "remaining exec count to %" PRIu32 ", requesting resume", 2897 __FUNCTION__, StateAsCString(state), m_exec_count); 2898 2899 RequestResume(); 2900 return eEventActionRetry; 2901 } else { 2902 LLDB_LOGF(log, 2903 "Process::AttachCompletionHandler::%s state %s: no more " 2904 "execs expected to start, continuing with attach", 2905 __FUNCTION__, StateAsCString(state)); 2906 2907 m_process->CompleteAttach(); 2908 return eEventActionSuccess; 2909 } 2910 break; 2911 2912 default: 2913 case eStateExited: 2914 case eStateInvalid: 2915 break; 2916 } 2917 2918 m_exit_string.assign("No valid Process"); 2919 return eEventActionExit; 2920 } 2921 2922 Process::NextEventAction::EventActionResult 2923 Process::AttachCompletionHandler::HandleBeingInterrupted() { 2924 return eEventActionSuccess; 2925 } 2926 2927 const char *Process::AttachCompletionHandler::GetExitString() { 2928 return m_exit_string.c_str(); 2929 } 2930 2931 ListenerSP ProcessAttachInfo::GetListenerForProcess(Debugger &debugger) { 2932 if (m_listener_sp) 2933 return m_listener_sp; 2934 else 2935 return debugger.GetListener(); 2936 } 2937 2938 Status Process::WillLaunch(Module *module) { 2939 return DoWillLaunch(module); 2940 } 2941 2942 Status Process::WillAttachToProcessWithID(lldb::pid_t pid) { 2943 return DoWillAttachToProcessWithID(pid); 2944 } 2945 2946 Status Process::WillAttachToProcessWithName(const char *process_name, 2947 bool wait_for_launch) { 2948 return DoWillAttachToProcessWithName(process_name, wait_for_launch); 2949 } 2950 2951 Status Process::Attach(ProcessAttachInfo &attach_info) { 2952 m_abi_sp.reset(); 2953 { 2954 std::lock_guard<std::mutex> guard(m_process_input_reader_mutex); 2955 m_process_input_reader.reset(); 2956 } 2957 m_dyld_up.reset(); 2958 m_jit_loaders_up.reset(); 2959 m_system_runtime_up.reset(); 2960 m_os_up.reset(); 2961 2962 lldb::pid_t attach_pid = attach_info.GetProcessID(); 2963 Status error; 2964 if (attach_pid == LLDB_INVALID_PROCESS_ID) { 2965 char process_name[PATH_MAX]; 2966 2967 if (attach_info.GetExecutableFile().GetPath(process_name, 2968 sizeof(process_name))) { 2969 const bool wait_for_launch = attach_info.GetWaitForLaunch(); 2970 2971 if (wait_for_launch) { 2972 error = WillAttachToProcessWithName(process_name, wait_for_launch); 2973 if (error.Success()) { 2974 if (m_public_run_lock.TrySetRunning()) { 2975 m_should_detach = true; 2976 const bool restarted = false; 2977 SetPublicState(eStateAttaching, restarted); 2978 // Now attach using these arguments. 2979 error = DoAttachToProcessWithName(process_name, attach_info); 2980 } else { 2981 // This shouldn't happen 2982 error = 2983 Status::FromErrorString("failed to acquire process run lock"); 2984 } 2985 2986 if (error.Fail()) { 2987 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2988 SetID(LLDB_INVALID_PROCESS_ID); 2989 if (error.AsCString() == nullptr) 2990 error = Status::FromErrorString("attach failed"); 2991 2992 SetExitStatus(-1, error.AsCString()); 2993 } 2994 } else { 2995 SetNextEventAction(new Process::AttachCompletionHandler( 2996 this, attach_info.GetResumeCount())); 2997 StartPrivateStateThread(); 2998 } 2999 return error; 3000 } 3001 } else { 3002 ProcessInstanceInfoList process_infos; 3003 PlatformSP platform_sp(GetTarget().GetPlatform()); 3004 3005 if (platform_sp) { 3006 ProcessInstanceInfoMatch match_info; 3007 match_info.GetProcessInfo() = attach_info; 3008 match_info.SetNameMatchType(NameMatch::Equals); 3009 platform_sp->FindProcesses(match_info, process_infos); 3010 const uint32_t num_matches = process_infos.size(); 3011 if (num_matches == 1) { 3012 attach_pid = process_infos[0].GetProcessID(); 3013 // Fall through and attach using the above process ID 3014 } else { 3015 match_info.GetProcessInfo().GetExecutableFile().GetPath( 3016 process_name, sizeof(process_name)); 3017 if (num_matches > 1) { 3018 StreamString s; 3019 ProcessInstanceInfo::DumpTableHeader(s, true, false); 3020 for (size_t i = 0; i < num_matches; i++) { 3021 process_infos[i].DumpAsTableRow( 3022 s, platform_sp->GetUserIDResolver(), true, false); 3023 } 3024 error = Status::FromErrorStringWithFormat( 3025 "more than one process named %s:\n%s", process_name, 3026 s.GetData()); 3027 } else 3028 error = Status::FromErrorStringWithFormat( 3029 "could not find a process named %s", process_name); 3030 } 3031 } else { 3032 error = Status::FromErrorString( 3033 "invalid platform, can't find processes by name"); 3034 return error; 3035 } 3036 } 3037 } else { 3038 error = Status::FromErrorString("invalid process name"); 3039 } 3040 } 3041 3042 if (attach_pid != LLDB_INVALID_PROCESS_ID) { 3043 error = WillAttachToProcessWithID(attach_pid); 3044 if (error.Success()) { 3045 3046 if (m_public_run_lock.TrySetRunning()) { 3047 // Now attach using these arguments. 3048 m_should_detach = true; 3049 const bool restarted = false; 3050 SetPublicState(eStateAttaching, restarted); 3051 error = DoAttachToProcessWithID(attach_pid, attach_info); 3052 } else { 3053 // This shouldn't happen 3054 error = Status::FromErrorString("failed to acquire process run lock"); 3055 } 3056 3057 if (error.Success()) { 3058 SetNextEventAction(new Process::AttachCompletionHandler( 3059 this, attach_info.GetResumeCount())); 3060 StartPrivateStateThread(); 3061 } else { 3062 if (GetID() != LLDB_INVALID_PROCESS_ID) 3063 SetID(LLDB_INVALID_PROCESS_ID); 3064 3065 const char *error_string = error.AsCString(); 3066 if (error_string == nullptr) 3067 error_string = "attach failed"; 3068 3069 SetExitStatus(-1, error_string); 3070 } 3071 } 3072 } 3073 return error; 3074 } 3075 3076 void Process::CompleteAttach() { 3077 Log *log(GetLog(LLDBLog::Process | LLDBLog::Target)); 3078 LLDB_LOGF(log, "Process::%s()", __FUNCTION__); 3079 3080 // Let the process subclass figure out at much as it can about the process 3081 // before we go looking for a dynamic loader plug-in. 3082 ArchSpec process_arch; 3083 DidAttach(process_arch); 3084 3085 if (process_arch.IsValid()) { 3086 LLDB_LOG(log, 3087 "Process::{0} replacing process architecture with DidAttach() " 3088 "architecture: \"{1}\"", 3089 __FUNCTION__, process_arch.GetTriple().getTriple()); 3090 GetTarget().SetArchitecture(process_arch); 3091 } 3092 3093 // We just attached. If we have a platform, ask it for the process 3094 // architecture, and if it isn't the same as the one we've already set, 3095 // switch architectures. 3096 PlatformSP platform_sp(GetTarget().GetPlatform()); 3097 assert(platform_sp); 3098 ArchSpec process_host_arch = GetSystemArchitecture(); 3099 if (platform_sp) { 3100 const ArchSpec &target_arch = GetTarget().GetArchitecture(); 3101 if (target_arch.IsValid() && !platform_sp->IsCompatibleArchitecture( 3102 target_arch, process_host_arch, 3103 ArchSpec::CompatibleMatch, nullptr)) { 3104 ArchSpec platform_arch; 3105 platform_sp = GetTarget().GetDebugger().GetPlatformList().GetOrCreate( 3106 target_arch, process_host_arch, &platform_arch); 3107 if (platform_sp) { 3108 GetTarget().SetPlatform(platform_sp); 3109 GetTarget().SetArchitecture(platform_arch); 3110 LLDB_LOG(log, 3111 "switching platform to {0} and architecture to {1} based on " 3112 "info from attach", 3113 platform_sp->GetName(), platform_arch.GetTriple().getTriple()); 3114 } 3115 } else if (!process_arch.IsValid()) { 3116 ProcessInstanceInfo process_info; 3117 GetProcessInfo(process_info); 3118 const ArchSpec &process_arch = process_info.GetArchitecture(); 3119 const ArchSpec &target_arch = GetTarget().GetArchitecture(); 3120 if (process_arch.IsValid() && 3121 target_arch.IsCompatibleMatch(process_arch) && 3122 !target_arch.IsExactMatch(process_arch)) { 3123 GetTarget().SetArchitecture(process_arch); 3124 LLDB_LOGF(log, 3125 "Process::%s switching architecture to %s based on info " 3126 "the platform retrieved for pid %" PRIu64, 3127 __FUNCTION__, process_arch.GetTriple().getTriple().c_str(), 3128 GetID()); 3129 } 3130 } 3131 } 3132 // Now that we know the process type, update its signal responses from the 3133 // ones stored in the Target: 3134 if (m_unix_signals_sp) { 3135 StreamSP warning_strm = GetTarget().GetDebugger().GetAsyncErrorStream(); 3136 GetTarget().UpdateSignalsFromDummy(m_unix_signals_sp, warning_strm); 3137 } 3138 3139 // We have completed the attach, now it is time to find the dynamic loader 3140 // plug-in 3141 DynamicLoader *dyld = GetDynamicLoader(); 3142 if (dyld) { 3143 dyld->DidAttach(); 3144 if (log) { 3145 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 3146 LLDB_LOG(log, 3147 "after DynamicLoader::DidAttach(), target " 3148 "executable is {0} (using {1} plugin)", 3149 exe_module_sp ? exe_module_sp->GetFileSpec() : FileSpec(), 3150 dyld->GetPluginName()); 3151 } 3152 } 3153 3154 GetJITLoaders().DidAttach(); 3155 3156 SystemRuntime *system_runtime = GetSystemRuntime(); 3157 if (system_runtime) { 3158 system_runtime->DidAttach(); 3159 if (log) { 3160 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 3161 LLDB_LOG(log, 3162 "after SystemRuntime::DidAttach(), target " 3163 "executable is {0} (using {1} plugin)", 3164 exe_module_sp ? exe_module_sp->GetFileSpec() : FileSpec(), 3165 system_runtime->GetPluginName()); 3166 } 3167 } 3168 3169 if (!m_os_up) { 3170 LoadOperatingSystemPlugin(false); 3171 if (m_os_up) { 3172 // Somebody might have gotten threads before now, but we need to force the 3173 // update after we've loaded the OperatingSystem plugin or it won't get a 3174 // chance to process the threads. 3175 m_thread_list.Clear(); 3176 UpdateThreadListIfNeeded(); 3177 } 3178 } 3179 // Figure out which one is the executable, and set that in our target: 3180 ModuleSP new_executable_module_sp; 3181 for (ModuleSP module_sp : GetTarget().GetImages().Modules()) { 3182 if (module_sp && module_sp->IsExecutable()) { 3183 if (GetTarget().GetExecutableModulePointer() != module_sp.get()) 3184 new_executable_module_sp = module_sp; 3185 break; 3186 } 3187 } 3188 if (new_executable_module_sp) { 3189 GetTarget().SetExecutableModule(new_executable_module_sp, 3190 eLoadDependentsNo); 3191 if (log) { 3192 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 3193 LLDB_LOGF( 3194 log, 3195 "Process::%s after looping through modules, target executable is %s", 3196 __FUNCTION__, 3197 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 3198 : "<none>"); 3199 } 3200 } 3201 } 3202 3203 Status Process::ConnectRemote(llvm::StringRef remote_url) { 3204 m_abi_sp.reset(); 3205 { 3206 std::lock_guard<std::mutex> guard(m_process_input_reader_mutex); 3207 m_process_input_reader.reset(); 3208 } 3209 3210 // Find the process and its architecture. Make sure it matches the 3211 // architecture of the current Target, and if not adjust it. 3212 3213 Status error(DoConnectRemote(remote_url)); 3214 if (error.Success()) { 3215 if (GetID() != LLDB_INVALID_PROCESS_ID) { 3216 EventSP event_sp; 3217 StateType state = WaitForProcessStopPrivate(event_sp, std::nullopt); 3218 3219 if (state == eStateStopped || state == eStateCrashed) { 3220 // If we attached and actually have a process on the other end, then 3221 // this ended up being the equivalent of an attach. 3222 CompleteAttach(); 3223 3224 // This delays passing the stopped event to listeners till 3225 // CompleteAttach gets a chance to complete... 3226 HandlePrivateEvent(event_sp); 3227 } 3228 } 3229 3230 if (PrivateStateThreadIsValid()) 3231 ResumePrivateStateThread(); 3232 else 3233 StartPrivateStateThread(); 3234 } 3235 return error; 3236 } 3237 3238 Status Process::PrivateResume() { 3239 Log *log(GetLog(LLDBLog::Process | LLDBLog::Step)); 3240 LLDB_LOGF(log, 3241 "Process::PrivateResume() m_stop_id = %u, public state: %s " 3242 "private state: %s", 3243 m_mod_id.GetStopID(), StateAsCString(m_public_state.GetValue()), 3244 StateAsCString(m_private_state.GetValue())); 3245 3246 // If signals handing status changed we might want to update our signal 3247 // filters before resuming. 3248 UpdateAutomaticSignalFiltering(); 3249 // Clear any crash info we accumulated for this stop, but don't do so if we 3250 // are running functions; we don't want to wipe out the real stop's info. 3251 if (!GetModID().IsLastResumeForUserExpression()) 3252 ResetExtendedCrashInfoDict(); 3253 3254 Status error(WillResume()); 3255 // Tell the process it is about to resume before the thread list 3256 if (error.Success()) { 3257 // Now let the thread list know we are about to resume so it can let all of 3258 // our threads know that they are about to be resumed. Threads will each be 3259 // called with Thread::WillResume(StateType) where StateType contains the 3260 // state that they are supposed to have when the process is resumed 3261 // (suspended/running/stepping). Threads should also check their resume 3262 // signal in lldb::Thread::GetResumeSignal() to see if they are supposed to 3263 // start back up with a signal. 3264 if (m_thread_list.WillResume()) { 3265 // Last thing, do the PreResumeActions. 3266 if (!RunPreResumeActions()) { 3267 error = Status::FromErrorString( 3268 "Process::PrivateResume PreResumeActions failed, not resuming."); 3269 } else { 3270 m_mod_id.BumpResumeID(); 3271 error = DoResume(); 3272 if (error.Success()) { 3273 DidResume(); 3274 m_thread_list.DidResume(); 3275 LLDB_LOGF(log, "Process thinks the process has resumed."); 3276 } else { 3277 LLDB_LOGF(log, "Process::PrivateResume() DoResume failed."); 3278 return error; 3279 } 3280 } 3281 } else { 3282 // Somebody wanted to run without running (e.g. we were faking a step 3283 // from one frame of a set of inlined frames that share the same PC to 3284 // another.) So generate a continue & a stopped event, and let the world 3285 // handle them. 3286 LLDB_LOGF(log, 3287 "Process::PrivateResume() asked to simulate a start & stop."); 3288 3289 SetPrivateState(eStateRunning); 3290 SetPrivateState(eStateStopped); 3291 } 3292 } else 3293 LLDB_LOGF(log, "Process::PrivateResume() got an error \"%s\".", 3294 error.AsCString("<unknown error>")); 3295 return error; 3296 } 3297 3298 Status Process::Halt(bool clear_thread_plans, bool use_run_lock) { 3299 if (!StateIsRunningState(m_public_state.GetValue())) 3300 return Status::FromErrorString("Process is not running."); 3301 3302 // Don't clear the m_clear_thread_plans_on_stop, only set it to true if in 3303 // case it was already set and some thread plan logic calls halt on its own. 3304 m_clear_thread_plans_on_stop |= clear_thread_plans; 3305 3306 ListenerSP halt_listener_sp( 3307 Listener::MakeListener("lldb.process.halt_listener")); 3308 HijackProcessEvents(halt_listener_sp); 3309 3310 EventSP event_sp; 3311 3312 SendAsyncInterrupt(); 3313 3314 if (m_public_state.GetValue() == eStateAttaching) { 3315 // Don't hijack and eat the eStateExited as the code that was doing the 3316 // attach will be waiting for this event... 3317 RestoreProcessEvents(); 3318 Destroy(false); 3319 SetExitStatus(SIGKILL, "Cancelled async attach."); 3320 return Status(); 3321 } 3322 3323 // Wait for the process halt timeout seconds for the process to stop. 3324 // If we are going to use the run lock, that means we're stopping out to the 3325 // user, so we should also select the most relevant frame. 3326 SelectMostRelevant select_most_relevant = 3327 use_run_lock ? SelectMostRelevantFrame : DoNoSelectMostRelevantFrame; 3328 StateType state = WaitForProcessToStop(GetInterruptTimeout(), &event_sp, true, 3329 halt_listener_sp, nullptr, 3330 use_run_lock, select_most_relevant); 3331 RestoreProcessEvents(); 3332 3333 if (state == eStateInvalid || !event_sp) { 3334 // We timed out and didn't get a stop event... 3335 return Status::FromErrorStringWithFormat("Halt timed out. State = %s", 3336 StateAsCString(GetState())); 3337 } 3338 3339 BroadcastEvent(event_sp); 3340 3341 return Status(); 3342 } 3343 3344 lldb::addr_t Process::FindInMemory(lldb::addr_t low, lldb::addr_t high, 3345 const uint8_t *buf, size_t size) { 3346 const size_t region_size = high - low; 3347 3348 if (region_size < size) 3349 return LLDB_INVALID_ADDRESS; 3350 3351 // See "Boyer-Moore string search algorithm". 3352 std::vector<size_t> bad_char_heuristic(256, size); 3353 for (size_t idx = 0; idx < size - 1; idx++) { 3354 decltype(bad_char_heuristic)::size_type bcu_idx = buf[idx]; 3355 bad_char_heuristic[bcu_idx] = size - idx - 1; 3356 } 3357 3358 // Memory we're currently searching through. 3359 llvm::SmallVector<uint8_t, 0> mem; 3360 // Position of the memory buffer. 3361 addr_t mem_pos = low; 3362 // Maximum number of bytes read (and buffered). We need to read at least 3363 // `size` bytes for a successful match. 3364 const size_t max_read_size = std::max<size_t>(size, 0x10000); 3365 3366 for (addr_t cur_addr = low; cur_addr <= (high - size);) { 3367 if (cur_addr + size > mem_pos + mem.size()) { 3368 // We need to read more data. We don't attempt to reuse the data we've 3369 // already read (up to `size-1` bytes from `cur_addr` to 3370 // `mem_pos+mem.size()`). This is fine for patterns much smaller than 3371 // max_read_size. For very 3372 // long patterns we may need to do something more elaborate. 3373 mem.resize_for_overwrite(max_read_size); 3374 Status error; 3375 mem.resize(ReadMemory(cur_addr, mem.data(), 3376 std::min<addr_t>(mem.size(), high - cur_addr), 3377 error)); 3378 mem_pos = cur_addr; 3379 if (size > mem.size()) { 3380 // We didn't read enough data. Skip to the next memory region. 3381 MemoryRegionInfo info; 3382 error = GetMemoryRegionInfo(mem_pos + mem.size(), info); 3383 if (error.Fail()) 3384 break; 3385 cur_addr = info.GetRange().GetRangeEnd(); 3386 continue; 3387 } 3388 } 3389 int64_t j = size - 1; 3390 while (j >= 0 && buf[j] == mem[cur_addr + j - mem_pos]) 3391 j--; 3392 if (j < 0) 3393 return cur_addr; // We have a match. 3394 cur_addr += bad_char_heuristic[mem[cur_addr + size - 1 - mem_pos]]; 3395 } 3396 3397 return LLDB_INVALID_ADDRESS; 3398 } 3399 3400 Status Process::StopForDestroyOrDetach(lldb::EventSP &exit_event_sp) { 3401 Status error; 3402 3403 // Check both the public & private states here. If we're hung evaluating an 3404 // expression, for instance, then the public state will be stopped, but we 3405 // still need to interrupt. 3406 if (m_public_state.GetValue() == eStateRunning || 3407 m_private_state.GetValue() == eStateRunning) { 3408 Log *log = GetLog(LLDBLog::Process); 3409 LLDB_LOGF(log, "Process::%s() About to stop.", __FUNCTION__); 3410 3411 ListenerSP listener_sp( 3412 Listener::MakeListener("lldb.Process.StopForDestroyOrDetach.hijack")); 3413 HijackProcessEvents(listener_sp); 3414 3415 SendAsyncInterrupt(); 3416 3417 // Consume the interrupt event. 3418 StateType state = WaitForProcessToStop(GetInterruptTimeout(), 3419 &exit_event_sp, true, listener_sp); 3420 3421 RestoreProcessEvents(); 3422 3423 // If the process exited while we were waiting for it to stop, put the 3424 // exited event into the shared pointer passed in and return. Our caller 3425 // doesn't need to do anything else, since they don't have a process 3426 // anymore... 3427 3428 if (state == eStateExited || m_private_state.GetValue() == eStateExited) { 3429 LLDB_LOGF(log, "Process::%s() Process exited while waiting to stop.", 3430 __FUNCTION__); 3431 return error; 3432 } else 3433 exit_event_sp.reset(); // It is ok to consume any non-exit stop events 3434 3435 if (state != eStateStopped) { 3436 LLDB_LOGF(log, "Process::%s() failed to stop, state is: %s", __FUNCTION__, 3437 StateAsCString(state)); 3438 // If we really couldn't stop the process then we should just error out 3439 // here, but if the lower levels just bobbled sending the event and we 3440 // really are stopped, then continue on. 3441 StateType private_state = m_private_state.GetValue(); 3442 if (private_state != eStateStopped) { 3443 return Status::FromErrorStringWithFormat( 3444 "Attempt to stop the target in order to detach timed out. " 3445 "State = %s", 3446 StateAsCString(GetState())); 3447 } 3448 } 3449 } 3450 return error; 3451 } 3452 3453 Status Process::Detach(bool keep_stopped) { 3454 EventSP exit_event_sp; 3455 Status error; 3456 m_destroy_in_process = true; 3457 3458 error = WillDetach(); 3459 3460 if (error.Success()) { 3461 if (DetachRequiresHalt()) { 3462 error = StopForDestroyOrDetach(exit_event_sp); 3463 if (!error.Success()) { 3464 m_destroy_in_process = false; 3465 return error; 3466 } else if (exit_event_sp) { 3467 // We shouldn't need to do anything else here. There's no process left 3468 // to detach from... 3469 StopPrivateStateThread(); 3470 m_destroy_in_process = false; 3471 return error; 3472 } 3473 } 3474 3475 m_thread_list.DiscardThreadPlans(); 3476 DisableAllBreakpointSites(); 3477 3478 error = DoDetach(keep_stopped); 3479 if (error.Success()) { 3480 DidDetach(); 3481 StopPrivateStateThread(); 3482 } else { 3483 return error; 3484 } 3485 } 3486 m_destroy_in_process = false; 3487 3488 // If we exited when we were waiting for a process to stop, then forward the 3489 // event here so we don't lose the event 3490 if (exit_event_sp) { 3491 // Directly broadcast our exited event because we shut down our private 3492 // state thread above 3493 BroadcastEvent(exit_event_sp); 3494 } 3495 3496 // If we have been interrupted (to kill us) in the middle of running, we may 3497 // not end up propagating the last events through the event system, in which 3498 // case we might strand the write lock. Unlock it here so when we do to tear 3499 // down the process we don't get an error destroying the lock. 3500 3501 m_public_run_lock.SetStopped(); 3502 return error; 3503 } 3504 3505 Status Process::Destroy(bool force_kill) { 3506 // If we've already called Process::Finalize then there's nothing useful to 3507 // be done here. Finalize has actually called Destroy already. 3508 if (m_finalizing) 3509 return {}; 3510 return DestroyImpl(force_kill); 3511 } 3512 3513 Status Process::DestroyImpl(bool force_kill) { 3514 // Tell ourselves we are in the process of destroying the process, so that we 3515 // don't do any unnecessary work that might hinder the destruction. Remember 3516 // to set this back to false when we are done. That way if the attempt 3517 // failed and the process stays around for some reason it won't be in a 3518 // confused state. 3519 3520 if (force_kill) 3521 m_should_detach = false; 3522 3523 if (GetShouldDetach()) { 3524 // FIXME: This will have to be a process setting: 3525 bool keep_stopped = false; 3526 Detach(keep_stopped); 3527 } 3528 3529 m_destroy_in_process = true; 3530 3531 Status error(WillDestroy()); 3532 if (error.Success()) { 3533 EventSP exit_event_sp; 3534 if (DestroyRequiresHalt()) { 3535 error = StopForDestroyOrDetach(exit_event_sp); 3536 } 3537 3538 if (m_public_state.GetValue() == eStateStopped) { 3539 // Ditch all thread plans, and remove all our breakpoints: in case we 3540 // have to restart the target to kill it, we don't want it hitting a 3541 // breakpoint... Only do this if we've stopped, however, since if we 3542 // didn't manage to halt it above, then we're not going to have much luck 3543 // doing this now. 3544 m_thread_list.DiscardThreadPlans(); 3545 DisableAllBreakpointSites(); 3546 } 3547 3548 error = DoDestroy(); 3549 if (error.Success()) { 3550 DidDestroy(); 3551 StopPrivateStateThread(); 3552 } 3553 m_stdio_communication.StopReadThread(); 3554 m_stdio_communication.Disconnect(); 3555 m_stdin_forward = false; 3556 3557 { 3558 std::lock_guard<std::mutex> guard(m_process_input_reader_mutex); 3559 if (m_process_input_reader) { 3560 m_process_input_reader->SetIsDone(true); 3561 m_process_input_reader->Cancel(); 3562 m_process_input_reader.reset(); 3563 } 3564 } 3565 3566 // If we exited when we were waiting for a process to stop, then forward 3567 // the event here so we don't lose the event 3568 if (exit_event_sp) { 3569 // Directly broadcast our exited event because we shut down our private 3570 // state thread above 3571 BroadcastEvent(exit_event_sp); 3572 } 3573 3574 // If we have been interrupted (to kill us) in the middle of running, we 3575 // may not end up propagating the last events through the event system, in 3576 // which case we might strand the write lock. Unlock it here so when we do 3577 // to tear down the process we don't get an error destroying the lock. 3578 m_public_run_lock.SetStopped(); 3579 } 3580 3581 m_destroy_in_process = false; 3582 3583 return error; 3584 } 3585 3586 Status Process::Signal(int signal) { 3587 Status error(WillSignal()); 3588 if (error.Success()) { 3589 error = DoSignal(signal); 3590 if (error.Success()) 3591 DidSignal(); 3592 } 3593 return error; 3594 } 3595 3596 void Process::SetUnixSignals(UnixSignalsSP &&signals_sp) { 3597 assert(signals_sp && "null signals_sp"); 3598 m_unix_signals_sp = std::move(signals_sp); 3599 } 3600 3601 const lldb::UnixSignalsSP &Process::GetUnixSignals() { 3602 assert(m_unix_signals_sp && "null m_unix_signals_sp"); 3603 return m_unix_signals_sp; 3604 } 3605 3606 lldb::ByteOrder Process::GetByteOrder() const { 3607 return GetTarget().GetArchitecture().GetByteOrder(); 3608 } 3609 3610 uint32_t Process::GetAddressByteSize() const { 3611 return GetTarget().GetArchitecture().GetAddressByteSize(); 3612 } 3613 3614 bool Process::ShouldBroadcastEvent(Event *event_ptr) { 3615 const StateType state = 3616 Process::ProcessEventData::GetStateFromEvent(event_ptr); 3617 bool return_value = true; 3618 Log *log(GetLog(LLDBLog::Events | LLDBLog::Process)); 3619 3620 switch (state) { 3621 case eStateDetached: 3622 case eStateExited: 3623 case eStateUnloaded: 3624 m_stdio_communication.SynchronizeWithReadThread(); 3625 m_stdio_communication.StopReadThread(); 3626 m_stdio_communication.Disconnect(); 3627 m_stdin_forward = false; 3628 3629 [[fallthrough]]; 3630 case eStateConnected: 3631 case eStateAttaching: 3632 case eStateLaunching: 3633 // These events indicate changes in the state of the debugging session, 3634 // always report them. 3635 return_value = true; 3636 break; 3637 case eStateInvalid: 3638 // We stopped for no apparent reason, don't report it. 3639 return_value = false; 3640 break; 3641 case eStateRunning: 3642 case eStateStepping: 3643 // If we've started the target running, we handle the cases where we are 3644 // already running and where there is a transition from stopped to running 3645 // differently. running -> running: Automatically suppress extra running 3646 // events stopped -> running: Report except when there is one or more no 3647 // votes 3648 // and no yes votes. 3649 SynchronouslyNotifyStateChanged(state); 3650 if (m_force_next_event_delivery) 3651 return_value = true; 3652 else { 3653 switch (m_last_broadcast_state) { 3654 case eStateRunning: 3655 case eStateStepping: 3656 // We always suppress multiple runnings with no PUBLIC stop in between. 3657 return_value = false; 3658 break; 3659 default: 3660 // TODO: make this work correctly. For now always report 3661 // run if we aren't running so we don't miss any running events. If I 3662 // run the lldb/test/thread/a.out file and break at main.cpp:58, run 3663 // and hit the breakpoints on multiple threads, then somehow during the 3664 // stepping over of all breakpoints no run gets reported. 3665 3666 // This is a transition from stop to run. 3667 switch (m_thread_list.ShouldReportRun(event_ptr)) { 3668 case eVoteYes: 3669 case eVoteNoOpinion: 3670 return_value = true; 3671 break; 3672 case eVoteNo: 3673 return_value = false; 3674 break; 3675 } 3676 break; 3677 } 3678 } 3679 break; 3680 case eStateStopped: 3681 case eStateCrashed: 3682 case eStateSuspended: 3683 // We've stopped. First see if we're going to restart the target. If we 3684 // are going to stop, then we always broadcast the event. If we aren't 3685 // going to stop, let the thread plans decide if we're going to report this 3686 // event. If no thread has an opinion, we don't report it. 3687 3688 m_stdio_communication.SynchronizeWithReadThread(); 3689 RefreshStateAfterStop(); 3690 if (ProcessEventData::GetInterruptedFromEvent(event_ptr)) { 3691 LLDB_LOGF(log, 3692 "Process::ShouldBroadcastEvent (%p) stopped due to an " 3693 "interrupt, state: %s", 3694 static_cast<void *>(event_ptr), StateAsCString(state)); 3695 // Even though we know we are going to stop, we should let the threads 3696 // have a look at the stop, so they can properly set their state. 3697 m_thread_list.ShouldStop(event_ptr); 3698 return_value = true; 3699 } else { 3700 bool was_restarted = ProcessEventData::GetRestartedFromEvent(event_ptr); 3701 bool should_resume = false; 3702 3703 // It makes no sense to ask "ShouldStop" if we've already been 3704 // restarted... Asking the thread list is also not likely to go well, 3705 // since we are running again. So in that case just report the event. 3706 3707 if (!was_restarted) 3708 should_resume = !m_thread_list.ShouldStop(event_ptr); 3709 3710 if (was_restarted || should_resume || m_resume_requested) { 3711 Vote report_stop_vote = m_thread_list.ShouldReportStop(event_ptr); 3712 LLDB_LOGF(log, 3713 "Process::ShouldBroadcastEvent: should_resume: %i state: " 3714 "%s was_restarted: %i report_stop_vote: %d.", 3715 should_resume, StateAsCString(state), was_restarted, 3716 report_stop_vote); 3717 3718 switch (report_stop_vote) { 3719 case eVoteYes: 3720 return_value = true; 3721 break; 3722 case eVoteNoOpinion: 3723 case eVoteNo: 3724 return_value = false; 3725 break; 3726 } 3727 3728 if (!was_restarted) { 3729 LLDB_LOGF(log, 3730 "Process::ShouldBroadcastEvent (%p) Restarting process " 3731 "from state: %s", 3732 static_cast<void *>(event_ptr), StateAsCString(state)); 3733 ProcessEventData::SetRestartedInEvent(event_ptr, true); 3734 PrivateResume(); 3735 } 3736 } else { 3737 return_value = true; 3738 SynchronouslyNotifyStateChanged(state); 3739 } 3740 } 3741 break; 3742 } 3743 3744 // Forcing the next event delivery is a one shot deal. So reset it here. 3745 m_force_next_event_delivery = false; 3746 3747 // We do some coalescing of events (for instance two consecutive running 3748 // events get coalesced.) But we only coalesce against events we actually 3749 // broadcast. So we use m_last_broadcast_state to track that. NB - you 3750 // can't use "m_public_state.GetValue()" for that purpose, as was originally 3751 // done, because the PublicState reflects the last event pulled off the 3752 // queue, and there may be several events stacked up on the queue unserviced. 3753 // So the PublicState may not reflect the last broadcasted event yet. 3754 // m_last_broadcast_state gets updated here. 3755 3756 if (return_value) 3757 m_last_broadcast_state = state; 3758 3759 LLDB_LOGF(log, 3760 "Process::ShouldBroadcastEvent (%p) => new state: %s, last " 3761 "broadcast state: %s - %s", 3762 static_cast<void *>(event_ptr), StateAsCString(state), 3763 StateAsCString(m_last_broadcast_state), 3764 return_value ? "YES" : "NO"); 3765 return return_value; 3766 } 3767 3768 bool Process::StartPrivateStateThread(bool is_secondary_thread) { 3769 Log *log = GetLog(LLDBLog::Events); 3770 3771 bool already_running = PrivateStateThreadIsValid(); 3772 LLDB_LOGF(log, "Process::%s()%s ", __FUNCTION__, 3773 already_running ? " already running" 3774 : " starting private state thread"); 3775 3776 if (!is_secondary_thread && already_running) 3777 return true; 3778 3779 // Create a thread that watches our internal state and controls which events 3780 // make it to clients (into the DCProcess event queue). 3781 char thread_name[1024]; 3782 uint32_t max_len = llvm::get_max_thread_name_length(); 3783 if (max_len > 0 && max_len <= 30) { 3784 // On platforms with abbreviated thread name lengths, choose thread names 3785 // that fit within the limit. 3786 if (already_running) 3787 snprintf(thread_name, sizeof(thread_name), "intern-state-OV"); 3788 else 3789 snprintf(thread_name, sizeof(thread_name), "intern-state"); 3790 } else { 3791 if (already_running) 3792 snprintf(thread_name, sizeof(thread_name), 3793 "<lldb.process.internal-state-override(pid=%" PRIu64 ")>", 3794 GetID()); 3795 else 3796 snprintf(thread_name, sizeof(thread_name), 3797 "<lldb.process.internal-state(pid=%" PRIu64 ")>", GetID()); 3798 } 3799 3800 llvm::Expected<HostThread> private_state_thread = 3801 ThreadLauncher::LaunchThread( 3802 thread_name, 3803 [this, is_secondary_thread] { 3804 return RunPrivateStateThread(is_secondary_thread); 3805 }, 3806 8 * 1024 * 1024); 3807 if (!private_state_thread) { 3808 LLDB_LOG_ERROR(GetLog(LLDBLog::Host), private_state_thread.takeError(), 3809 "failed to launch host thread: {0}"); 3810 return false; 3811 } 3812 3813 assert(private_state_thread->IsJoinable()); 3814 m_private_state_thread = *private_state_thread; 3815 ResumePrivateStateThread(); 3816 return true; 3817 } 3818 3819 void Process::PausePrivateStateThread() { 3820 ControlPrivateStateThread(eBroadcastInternalStateControlPause); 3821 } 3822 3823 void Process::ResumePrivateStateThread() { 3824 ControlPrivateStateThread(eBroadcastInternalStateControlResume); 3825 } 3826 3827 void Process::StopPrivateStateThread() { 3828 if (m_private_state_thread.IsJoinable()) 3829 ControlPrivateStateThread(eBroadcastInternalStateControlStop); 3830 else { 3831 Log *log = GetLog(LLDBLog::Process); 3832 LLDB_LOGF( 3833 log, 3834 "Went to stop the private state thread, but it was already invalid."); 3835 } 3836 } 3837 3838 void Process::ControlPrivateStateThread(uint32_t signal) { 3839 Log *log = GetLog(LLDBLog::Process); 3840 3841 assert(signal == eBroadcastInternalStateControlStop || 3842 signal == eBroadcastInternalStateControlPause || 3843 signal == eBroadcastInternalStateControlResume); 3844 3845 LLDB_LOGF(log, "Process::%s (signal = %d)", __FUNCTION__, signal); 3846 3847 // Signal the private state thread 3848 if (m_private_state_thread.IsJoinable()) { 3849 // Broadcast the event. 3850 // It is important to do this outside of the if below, because it's 3851 // possible that the thread state is invalid but that the thread is waiting 3852 // on a control event instead of simply being on its way out (this should 3853 // not happen, but it apparently can). 3854 LLDB_LOGF(log, "Sending control event of type: %d.", signal); 3855 std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt()); 3856 m_private_state_control_broadcaster.BroadcastEvent(signal, 3857 event_receipt_sp); 3858 3859 // Wait for the event receipt or for the private state thread to exit 3860 bool receipt_received = false; 3861 if (PrivateStateThreadIsValid()) { 3862 while (!receipt_received) { 3863 // Check for a receipt for n seconds and then check if the private 3864 // state thread is still around. 3865 receipt_received = 3866 event_receipt_sp->WaitForEventReceived(GetUtilityExpressionTimeout()); 3867 if (!receipt_received) { 3868 // Check if the private state thread is still around. If it isn't 3869 // then we are done waiting 3870 if (!PrivateStateThreadIsValid()) 3871 break; // Private state thread exited or is exiting, we are done 3872 } 3873 } 3874 } 3875 3876 if (signal == eBroadcastInternalStateControlStop) { 3877 thread_result_t result = {}; 3878 m_private_state_thread.Join(&result); 3879 m_private_state_thread.Reset(); 3880 } 3881 } else { 3882 LLDB_LOGF( 3883 log, 3884 "Private state thread already dead, no need to signal it to stop."); 3885 } 3886 } 3887 3888 void Process::SendAsyncInterrupt(Thread *thread) { 3889 if (thread != nullptr) 3890 m_interrupt_tid = thread->GetProtocolID(); 3891 else 3892 m_interrupt_tid = LLDB_INVALID_THREAD_ID; 3893 if (PrivateStateThreadIsValid()) 3894 m_private_state_broadcaster.BroadcastEvent(Process::eBroadcastBitInterrupt, 3895 nullptr); 3896 else 3897 BroadcastEvent(Process::eBroadcastBitInterrupt, nullptr); 3898 } 3899 3900 void Process::HandlePrivateEvent(EventSP &event_sp) { 3901 Log *log = GetLog(LLDBLog::Process); 3902 m_resume_requested = false; 3903 3904 const StateType new_state = 3905 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 3906 3907 // First check to see if anybody wants a shot at this event: 3908 if (m_next_event_action_up) { 3909 NextEventAction::EventActionResult action_result = 3910 m_next_event_action_up->PerformAction(event_sp); 3911 LLDB_LOGF(log, "Ran next event action, result was %d.", action_result); 3912 3913 switch (action_result) { 3914 case NextEventAction::eEventActionSuccess: 3915 SetNextEventAction(nullptr); 3916 break; 3917 3918 case NextEventAction::eEventActionRetry: 3919 break; 3920 3921 case NextEventAction::eEventActionExit: 3922 // Handle Exiting Here. If we already got an exited event, we should 3923 // just propagate it. Otherwise, swallow this event, and set our state 3924 // to exit so the next event will kill us. 3925 if (new_state != eStateExited) { 3926 // FIXME: should cons up an exited event, and discard this one. 3927 SetExitStatus(0, m_next_event_action_up->GetExitString()); 3928 SetNextEventAction(nullptr); 3929 return; 3930 } 3931 SetNextEventAction(nullptr); 3932 break; 3933 } 3934 } 3935 3936 // See if we should broadcast this state to external clients? 3937 const bool should_broadcast = ShouldBroadcastEvent(event_sp.get()); 3938 3939 if (should_broadcast) { 3940 const bool is_hijacked = IsHijackedForEvent(eBroadcastBitStateChanged); 3941 if (log) { 3942 LLDB_LOGF(log, 3943 "Process::%s (pid = %" PRIu64 3944 ") broadcasting new state %s (old state %s) to %s", 3945 __FUNCTION__, GetID(), StateAsCString(new_state), 3946 StateAsCString(GetState()), 3947 is_hijacked ? "hijacked" : "public"); 3948 } 3949 Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp.get()); 3950 if (StateIsRunningState(new_state)) { 3951 // Only push the input handler if we aren't fowarding events, as this 3952 // means the curses GUI is in use... Or don't push it if we are launching 3953 // since it will come up stopped. 3954 if (!GetTarget().GetDebugger().IsForwardingEvents() && 3955 new_state != eStateLaunching && new_state != eStateAttaching) { 3956 PushProcessIOHandler(); 3957 m_iohandler_sync.SetValue(m_iohandler_sync.GetValue() + 1, 3958 eBroadcastAlways); 3959 LLDB_LOGF(log, "Process::%s updated m_iohandler_sync to %d", 3960 __FUNCTION__, m_iohandler_sync.GetValue()); 3961 } 3962 } else if (StateIsStoppedState(new_state, false)) { 3963 if (!Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 3964 // If the lldb_private::Debugger is handling the events, we don't want 3965 // to pop the process IOHandler here, we want to do it when we receive 3966 // the stopped event so we can carefully control when the process 3967 // IOHandler is popped because when we stop we want to display some 3968 // text stating how and why we stopped, then maybe some 3969 // process/thread/frame info, and then we want the "(lldb) " prompt to 3970 // show up. If we pop the process IOHandler here, then we will cause 3971 // the command interpreter to become the top IOHandler after the 3972 // process pops off and it will update its prompt right away... See the 3973 // Debugger.cpp file where it calls the function as 3974 // "process_sp->PopProcessIOHandler()" to see where I am talking about. 3975 // Otherwise we end up getting overlapping "(lldb) " prompts and 3976 // garbled output. 3977 // 3978 // If we aren't handling the events in the debugger (which is indicated 3979 // by "m_target.GetDebugger().IsHandlingEvents()" returning false) or 3980 // we are hijacked, then we always pop the process IO handler manually. 3981 // Hijacking happens when the internal process state thread is running 3982 // thread plans, or when commands want to run in synchronous mode and 3983 // they call "process->WaitForProcessToStop()". An example of something 3984 // that will hijack the events is a simple expression: 3985 // 3986 // (lldb) expr (int)puts("hello") 3987 // 3988 // This will cause the internal process state thread to resume and halt 3989 // the process (and _it_ will hijack the eBroadcastBitStateChanged 3990 // events) and we do need the IO handler to be pushed and popped 3991 // correctly. 3992 3993 if (is_hijacked || !GetTarget().GetDebugger().IsHandlingEvents()) 3994 PopProcessIOHandler(); 3995 } 3996 } 3997 3998 BroadcastEvent(event_sp); 3999 } else { 4000 if (log) { 4001 LLDB_LOGF( 4002 log, 4003 "Process::%s (pid = %" PRIu64 4004 ") suppressing state %s (old state %s): should_broadcast == false", 4005 __FUNCTION__, GetID(), StateAsCString(new_state), 4006 StateAsCString(GetState())); 4007 } 4008 } 4009 } 4010 4011 Status Process::HaltPrivate() { 4012 EventSP event_sp; 4013 Status error(WillHalt()); 4014 if (error.Fail()) 4015 return error; 4016 4017 // Ask the process subclass to actually halt our process 4018 bool caused_stop; 4019 error = DoHalt(caused_stop); 4020 4021 DidHalt(); 4022 return error; 4023 } 4024 4025 thread_result_t Process::RunPrivateStateThread(bool is_secondary_thread) { 4026 bool control_only = true; 4027 4028 Log *log = GetLog(LLDBLog::Process); 4029 LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread starting...", 4030 __FUNCTION__, static_cast<void *>(this), GetID()); 4031 4032 bool exit_now = false; 4033 bool interrupt_requested = false; 4034 while (!exit_now) { 4035 EventSP event_sp; 4036 GetEventsPrivate(event_sp, std::nullopt, control_only); 4037 if (event_sp->BroadcasterIs(&m_private_state_control_broadcaster)) { 4038 LLDB_LOGF(log, 4039 "Process::%s (arg = %p, pid = %" PRIu64 4040 ") got a control event: %d", 4041 __FUNCTION__, static_cast<void *>(this), GetID(), 4042 event_sp->GetType()); 4043 4044 switch (event_sp->GetType()) { 4045 case eBroadcastInternalStateControlStop: 4046 exit_now = true; 4047 break; // doing any internal state management below 4048 4049 case eBroadcastInternalStateControlPause: 4050 control_only = true; 4051 break; 4052 4053 case eBroadcastInternalStateControlResume: 4054 control_only = false; 4055 break; 4056 } 4057 4058 continue; 4059 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 4060 if (m_public_state.GetValue() == eStateAttaching) { 4061 LLDB_LOGF(log, 4062 "Process::%s (arg = %p, pid = %" PRIu64 4063 ") woke up with an interrupt while attaching - " 4064 "forwarding interrupt.", 4065 __FUNCTION__, static_cast<void *>(this), GetID()); 4066 // The server may be spinning waiting for a process to appear, in which 4067 // case we should tell it to stop doing that. Normally, we don't NEED 4068 // to do that because we will next close the communication to the stub 4069 // and that will get it to shut down. But there are remote debugging 4070 // cases where relying on that side-effect causes the shutdown to be 4071 // flakey, so we should send a positive signal to interrupt the wait. 4072 Status error = HaltPrivate(); 4073 BroadcastEvent(eBroadcastBitInterrupt, nullptr); 4074 } else if (StateIsRunningState(m_last_broadcast_state)) { 4075 LLDB_LOGF(log, 4076 "Process::%s (arg = %p, pid = %" PRIu64 4077 ") woke up with an interrupt - Halting.", 4078 __FUNCTION__, static_cast<void *>(this), GetID()); 4079 Status error = HaltPrivate(); 4080 if (error.Fail() && log) 4081 LLDB_LOGF(log, 4082 "Process::%s (arg = %p, pid = %" PRIu64 4083 ") failed to halt the process: %s", 4084 __FUNCTION__, static_cast<void *>(this), GetID(), 4085 error.AsCString()); 4086 // Halt should generate a stopped event. Make a note of the fact that 4087 // we were doing the interrupt, so we can set the interrupted flag 4088 // after we receive the event. We deliberately set this to true even if 4089 // HaltPrivate failed, so that we can interrupt on the next natural 4090 // stop. 4091 interrupt_requested = true; 4092 } else { 4093 // This can happen when someone (e.g. Process::Halt) sees that we are 4094 // running and sends an interrupt request, but the process actually 4095 // stops before we receive it. In that case, we can just ignore the 4096 // request. We use m_last_broadcast_state, because the Stopped event 4097 // may not have been popped of the event queue yet, which is when the 4098 // public state gets updated. 4099 LLDB_LOGF(log, 4100 "Process::%s ignoring interrupt as we have already stopped.", 4101 __FUNCTION__); 4102 } 4103 continue; 4104 } 4105 4106 const StateType internal_state = 4107 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 4108 4109 if (internal_state != eStateInvalid) { 4110 if (m_clear_thread_plans_on_stop && 4111 StateIsStoppedState(internal_state, true)) { 4112 m_clear_thread_plans_on_stop = false; 4113 m_thread_list.DiscardThreadPlans(); 4114 } 4115 4116 if (interrupt_requested) { 4117 if (StateIsStoppedState(internal_state, true)) { 4118 // Only mark interrupt event if it is not thread specific async 4119 // interrupt. 4120 if (m_interrupt_tid == LLDB_INVALID_THREAD_ID) { 4121 // We requested the interrupt, so mark this as such in the stop 4122 // event so clients can tell an interrupted process from a natural 4123 // stop 4124 ProcessEventData::SetInterruptedInEvent(event_sp.get(), true); 4125 } 4126 interrupt_requested = false; 4127 } else if (log) { 4128 LLDB_LOGF(log, 4129 "Process::%s interrupt_requested, but a non-stopped " 4130 "state '%s' received.", 4131 __FUNCTION__, StateAsCString(internal_state)); 4132 } 4133 } 4134 4135 HandlePrivateEvent(event_sp); 4136 } 4137 4138 if (internal_state == eStateInvalid || internal_state == eStateExited || 4139 internal_state == eStateDetached) { 4140 LLDB_LOGF(log, 4141 "Process::%s (arg = %p, pid = %" PRIu64 4142 ") about to exit with internal state %s...", 4143 __FUNCTION__, static_cast<void *>(this), GetID(), 4144 StateAsCString(internal_state)); 4145 4146 break; 4147 } 4148 } 4149 4150 // Verify log is still enabled before attempting to write to it... 4151 LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread exiting...", 4152 __FUNCTION__, static_cast<void *>(this), GetID()); 4153 4154 // If we are a secondary thread, then the primary thread we are working for 4155 // will have already acquired the public_run_lock, and isn't done with what 4156 // it was doing yet, so don't try to change it on the way out. 4157 if (!is_secondary_thread) 4158 m_public_run_lock.SetStopped(); 4159 return {}; 4160 } 4161 4162 // Process Event Data 4163 4164 Process::ProcessEventData::ProcessEventData() : EventData(), m_process_wp() {} 4165 4166 Process::ProcessEventData::ProcessEventData(const ProcessSP &process_sp, 4167 StateType state) 4168 : EventData(), m_process_wp(), m_state(state) { 4169 if (process_sp) 4170 m_process_wp = process_sp; 4171 } 4172 4173 Process::ProcessEventData::~ProcessEventData() = default; 4174 4175 llvm::StringRef Process::ProcessEventData::GetFlavorString() { 4176 return "Process::ProcessEventData"; 4177 } 4178 4179 llvm::StringRef Process::ProcessEventData::GetFlavor() const { 4180 return ProcessEventData::GetFlavorString(); 4181 } 4182 4183 bool Process::ProcessEventData::ShouldStop(Event *event_ptr, 4184 bool &found_valid_stopinfo) { 4185 found_valid_stopinfo = false; 4186 4187 ProcessSP process_sp(m_process_wp.lock()); 4188 if (!process_sp) 4189 return false; 4190 4191 ThreadList &curr_thread_list = process_sp->GetThreadList(); 4192 uint32_t num_threads = curr_thread_list.GetSize(); 4193 4194 // The actions might change one of the thread's stop_info's opinions about 4195 // whether we should stop the process, so we need to query that as we go. 4196 4197 // One other complication here, is that we try to catch any case where the 4198 // target has run (except for expressions) and immediately exit, but if we 4199 // get that wrong (which is possible) then the thread list might have 4200 // changed, and that would cause our iteration here to crash. We could 4201 // make a copy of the thread list, but we'd really like to also know if it 4202 // has changed at all, so we store the original thread ID's of all threads and 4203 // check what we get back against this list & bag out if anything differs. 4204 std::vector<std::pair<ThreadSP, size_t>> not_suspended_threads; 4205 for (uint32_t idx = 0; idx < num_threads; ++idx) { 4206 lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx); 4207 4208 /* 4209 Filter out all suspended threads, they could not be the reason 4210 of stop and no need to perform any actions on them. 4211 */ 4212 if (thread_sp->GetResumeState() != eStateSuspended) 4213 not_suspended_threads.emplace_back(thread_sp, thread_sp->GetIndexID()); 4214 } 4215 4216 // Use this to track whether we should continue from here. We will only 4217 // continue the target running if no thread says we should stop. Of course 4218 // if some thread's PerformAction actually sets the target running, then it 4219 // doesn't matter what the other threads say... 4220 4221 bool still_should_stop = false; 4222 4223 // Sometimes - for instance if we have a bug in the stub we are talking to, 4224 // we stop but no thread has a valid stop reason. In that case we should 4225 // just stop, because we have no way of telling what the right thing to do 4226 // is, and it's better to let the user decide than continue behind their 4227 // backs. 4228 4229 for (auto [thread_sp, thread_index] : not_suspended_threads) { 4230 if (curr_thread_list.GetSize() != num_threads) { 4231 Log *log(GetLog(LLDBLog::Step | LLDBLog::Process)); 4232 LLDB_LOGF( 4233 log, 4234 "Number of threads changed from %u to %u while processing event.", 4235 num_threads, curr_thread_list.GetSize()); 4236 break; 4237 } 4238 4239 if (thread_sp->GetIndexID() != thread_index) { 4240 Log *log(GetLog(LLDBLog::Step | LLDBLog::Process)); 4241 LLDB_LOG(log, 4242 "The thread {0} changed from {1} to {2} while processing event.", 4243 thread_sp.get(), thread_index, thread_sp->GetIndexID()); 4244 break; 4245 } 4246 4247 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 4248 if (stop_info_sp && stop_info_sp->IsValid()) { 4249 found_valid_stopinfo = true; 4250 bool this_thread_wants_to_stop; 4251 if (stop_info_sp->GetOverrideShouldStop()) { 4252 this_thread_wants_to_stop = 4253 stop_info_sp->GetOverriddenShouldStopValue(); 4254 } else { 4255 stop_info_sp->PerformAction(event_ptr); 4256 // The stop action might restart the target. If it does, then we 4257 // want to mark that in the event so that whoever is receiving it 4258 // will know to wait for the running event and reflect that state 4259 // appropriately. We also need to stop processing actions, since they 4260 // aren't expecting the target to be running. 4261 4262 // FIXME: we might have run. 4263 if (stop_info_sp->HasTargetRunSinceMe()) { 4264 SetRestarted(true); 4265 break; 4266 } 4267 4268 this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr); 4269 } 4270 4271 if (!still_should_stop) 4272 still_should_stop = this_thread_wants_to_stop; 4273 } 4274 } 4275 4276 return still_should_stop; 4277 } 4278 4279 bool Process::ProcessEventData::ForwardEventToPendingListeners( 4280 Event *event_ptr) { 4281 // STDIO and the other async event notifications should always be forwarded. 4282 if (event_ptr->GetType() != Process::eBroadcastBitStateChanged) 4283 return true; 4284 4285 // For state changed events, if the update state is zero, we are handling 4286 // this on the private state thread. We should wait for the public event. 4287 return m_update_state == 1; 4288 } 4289 4290 void Process::ProcessEventData::DoOnRemoval(Event *event_ptr) { 4291 // We only have work to do for state changed events: 4292 if (event_ptr->GetType() != Process::eBroadcastBitStateChanged) 4293 return; 4294 4295 ProcessSP process_sp(m_process_wp.lock()); 4296 4297 if (!process_sp) 4298 return; 4299 4300 // This function gets called twice for each event, once when the event gets 4301 // pulled off of the private process event queue, and then any number of 4302 // times, first when it gets pulled off of the public event queue, then other 4303 // times when we're pretending that this is where we stopped at the end of 4304 // expression evaluation. m_update_state is used to distinguish these three 4305 // cases; it is 0 when we're just pulling it off for private handling, and > 4306 // 1 for expression evaluation, and we don't want to do the breakpoint 4307 // command handling then. 4308 if (m_update_state != 1) 4309 return; 4310 4311 process_sp->SetPublicState( 4312 m_state, Process::ProcessEventData::GetRestartedFromEvent(event_ptr)); 4313 4314 if (m_state == eStateStopped && !m_restarted) { 4315 // Let process subclasses know we are about to do a public stop and do 4316 // anything they might need to in order to speed up register and memory 4317 // accesses. 4318 process_sp->WillPublicStop(); 4319 } 4320 4321 // If this is a halt event, even if the halt stopped with some reason other 4322 // than a plain interrupt (e.g. we had already stopped for a breakpoint when 4323 // the halt request came through) don't do the StopInfo actions, as they may 4324 // end up restarting the process. 4325 if (m_interrupted) 4326 return; 4327 4328 // If we're not stopped or have restarted, then skip the StopInfo actions: 4329 if (m_state != eStateStopped || m_restarted) { 4330 return; 4331 } 4332 4333 bool does_anybody_have_an_opinion = false; 4334 bool still_should_stop = ShouldStop(event_ptr, does_anybody_have_an_opinion); 4335 4336 if (GetRestarted()) { 4337 return; 4338 } 4339 4340 if (!still_should_stop && does_anybody_have_an_opinion) { 4341 // We've been asked to continue, so do that here. 4342 SetRestarted(true); 4343 // Use the private resume method here, since we aren't changing the run 4344 // lock state. 4345 process_sp->PrivateResume(); 4346 } else { 4347 bool hijacked = process_sp->IsHijackedForEvent(eBroadcastBitStateChanged) && 4348 !process_sp->StateChangedIsHijackedForSynchronousResume(); 4349 4350 if (!hijacked) { 4351 // If we didn't restart, run the Stop Hooks here. 4352 // Don't do that if state changed events aren't hooked up to the 4353 // public (or SyncResume) broadcasters. StopHooks are just for 4354 // real public stops. They might also restart the target, 4355 // so watch for that. 4356 if (process_sp->GetTarget().RunStopHooks()) 4357 SetRestarted(true); 4358 } 4359 } 4360 } 4361 4362 void Process::ProcessEventData::Dump(Stream *s) const { 4363 ProcessSP process_sp(m_process_wp.lock()); 4364 4365 if (process_sp) 4366 s->Printf(" process = %p (pid = %" PRIu64 "), ", 4367 static_cast<void *>(process_sp.get()), process_sp->GetID()); 4368 else 4369 s->PutCString(" process = NULL, "); 4370 4371 s->Printf("state = %s", StateAsCString(GetState())); 4372 } 4373 4374 const Process::ProcessEventData * 4375 Process::ProcessEventData::GetEventDataFromEvent(const Event *event_ptr) { 4376 if (event_ptr) { 4377 const EventData *event_data = event_ptr->GetData(); 4378 if (event_data && 4379 event_data->GetFlavor() == ProcessEventData::GetFlavorString()) 4380 return static_cast<const ProcessEventData *>(event_ptr->GetData()); 4381 } 4382 return nullptr; 4383 } 4384 4385 ProcessSP 4386 Process::ProcessEventData::GetProcessFromEvent(const Event *event_ptr) { 4387 ProcessSP process_sp; 4388 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4389 if (data) 4390 process_sp = data->GetProcessSP(); 4391 return process_sp; 4392 } 4393 4394 StateType Process::ProcessEventData::GetStateFromEvent(const Event *event_ptr) { 4395 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4396 if (data == nullptr) 4397 return eStateInvalid; 4398 else 4399 return data->GetState(); 4400 } 4401 4402 bool Process::ProcessEventData::GetRestartedFromEvent(const Event *event_ptr) { 4403 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4404 if (data == nullptr) 4405 return false; 4406 else 4407 return data->GetRestarted(); 4408 } 4409 4410 void Process::ProcessEventData::SetRestartedInEvent(Event *event_ptr, 4411 bool new_value) { 4412 ProcessEventData *data = 4413 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4414 if (data != nullptr) 4415 data->SetRestarted(new_value); 4416 } 4417 4418 size_t 4419 Process::ProcessEventData::GetNumRestartedReasons(const Event *event_ptr) { 4420 ProcessEventData *data = 4421 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4422 if (data != nullptr) 4423 return data->GetNumRestartedReasons(); 4424 else 4425 return 0; 4426 } 4427 4428 const char * 4429 Process::ProcessEventData::GetRestartedReasonAtIndex(const Event *event_ptr, 4430 size_t idx) { 4431 ProcessEventData *data = 4432 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4433 if (data != nullptr) 4434 return data->GetRestartedReasonAtIndex(idx); 4435 else 4436 return nullptr; 4437 } 4438 4439 void Process::ProcessEventData::AddRestartedReason(Event *event_ptr, 4440 const char *reason) { 4441 ProcessEventData *data = 4442 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4443 if (data != nullptr) 4444 data->AddRestartedReason(reason); 4445 } 4446 4447 bool Process::ProcessEventData::GetInterruptedFromEvent( 4448 const Event *event_ptr) { 4449 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4450 if (data == nullptr) 4451 return false; 4452 else 4453 return data->GetInterrupted(); 4454 } 4455 4456 void Process::ProcessEventData::SetInterruptedInEvent(Event *event_ptr, 4457 bool new_value) { 4458 ProcessEventData *data = 4459 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4460 if (data != nullptr) 4461 data->SetInterrupted(new_value); 4462 } 4463 4464 bool Process::ProcessEventData::SetUpdateStateOnRemoval(Event *event_ptr) { 4465 ProcessEventData *data = 4466 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4467 if (data) { 4468 data->SetUpdateStateOnRemoval(); 4469 return true; 4470 } 4471 return false; 4472 } 4473 4474 lldb::TargetSP Process::CalculateTarget() { return m_target_wp.lock(); } 4475 4476 void Process::CalculateExecutionContext(ExecutionContext &exe_ctx) { 4477 exe_ctx.SetTargetPtr(&GetTarget()); 4478 exe_ctx.SetProcessPtr(this); 4479 exe_ctx.SetThreadPtr(nullptr); 4480 exe_ctx.SetFramePtr(nullptr); 4481 } 4482 4483 // uint32_t 4484 // Process::ListProcessesMatchingName (const char *name, StringList &matches, 4485 // std::vector<lldb::pid_t> &pids) 4486 //{ 4487 // return 0; 4488 //} 4489 // 4490 // ArchSpec 4491 // Process::GetArchSpecForExistingProcess (lldb::pid_t pid) 4492 //{ 4493 // return Host::GetArchSpecForExistingProcess (pid); 4494 //} 4495 // 4496 // ArchSpec 4497 // Process::GetArchSpecForExistingProcess (const char *process_name) 4498 //{ 4499 // return Host::GetArchSpecForExistingProcess (process_name); 4500 //} 4501 4502 EventSP Process::CreateEventFromProcessState(uint32_t event_type) { 4503 auto event_data_sp = 4504 std::make_shared<ProcessEventData>(shared_from_this(), GetState()); 4505 return std::make_shared<Event>(event_type, event_data_sp); 4506 } 4507 4508 void Process::AppendSTDOUT(const char *s, size_t len) { 4509 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4510 m_stdout_data.append(s, len); 4511 auto event_sp = CreateEventFromProcessState(eBroadcastBitSTDOUT); 4512 BroadcastEventIfUnique(event_sp); 4513 } 4514 4515 void Process::AppendSTDERR(const char *s, size_t len) { 4516 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4517 m_stderr_data.append(s, len); 4518 auto event_sp = CreateEventFromProcessState(eBroadcastBitSTDERR); 4519 BroadcastEventIfUnique(event_sp); 4520 } 4521 4522 void Process::BroadcastAsyncProfileData(const std::string &one_profile_data) { 4523 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4524 m_profile_data.push_back(one_profile_data); 4525 auto event_sp = CreateEventFromProcessState(eBroadcastBitProfileData); 4526 BroadcastEventIfUnique(event_sp); 4527 } 4528 4529 void Process::BroadcastStructuredData(const StructuredData::ObjectSP &object_sp, 4530 const StructuredDataPluginSP &plugin_sp) { 4531 auto data_sp = std::make_shared<EventDataStructuredData>( 4532 shared_from_this(), object_sp, plugin_sp); 4533 BroadcastEvent(eBroadcastBitStructuredData, data_sp); 4534 } 4535 4536 StructuredDataPluginSP 4537 Process::GetStructuredDataPlugin(llvm::StringRef type_name) const { 4538 auto find_it = m_structured_data_plugin_map.find(type_name); 4539 if (find_it != m_structured_data_plugin_map.end()) 4540 return find_it->second; 4541 else 4542 return StructuredDataPluginSP(); 4543 } 4544 4545 size_t Process::GetAsyncProfileData(char *buf, size_t buf_size, Status &error) { 4546 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4547 if (m_profile_data.empty()) 4548 return 0; 4549 4550 std::string &one_profile_data = m_profile_data.front(); 4551 size_t bytes_available = one_profile_data.size(); 4552 if (bytes_available > 0) { 4553 Log *log = GetLog(LLDBLog::Process); 4554 LLDB_LOGF(log, "Process::GetProfileData (buf = %p, size = %" PRIu64 ")", 4555 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4556 if (bytes_available > buf_size) { 4557 memcpy(buf, one_profile_data.c_str(), buf_size); 4558 one_profile_data.erase(0, buf_size); 4559 bytes_available = buf_size; 4560 } else { 4561 memcpy(buf, one_profile_data.c_str(), bytes_available); 4562 m_profile_data.erase(m_profile_data.begin()); 4563 } 4564 } 4565 return bytes_available; 4566 } 4567 4568 // Process STDIO 4569 4570 size_t Process::GetSTDOUT(char *buf, size_t buf_size, Status &error) { 4571 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4572 size_t bytes_available = m_stdout_data.size(); 4573 if (bytes_available > 0) { 4574 Log *log = GetLog(LLDBLog::Process); 4575 LLDB_LOGF(log, "Process::GetSTDOUT (buf = %p, size = %" PRIu64 ")", 4576 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4577 if (bytes_available > buf_size) { 4578 memcpy(buf, m_stdout_data.c_str(), buf_size); 4579 m_stdout_data.erase(0, buf_size); 4580 bytes_available = buf_size; 4581 } else { 4582 memcpy(buf, m_stdout_data.c_str(), bytes_available); 4583 m_stdout_data.clear(); 4584 } 4585 } 4586 return bytes_available; 4587 } 4588 4589 size_t Process::GetSTDERR(char *buf, size_t buf_size, Status &error) { 4590 std::lock_guard<std::recursive_mutex> gaurd(m_stdio_communication_mutex); 4591 size_t bytes_available = m_stderr_data.size(); 4592 if (bytes_available > 0) { 4593 Log *log = GetLog(LLDBLog::Process); 4594 LLDB_LOGF(log, "Process::GetSTDERR (buf = %p, size = %" PRIu64 ")", 4595 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4596 if (bytes_available > buf_size) { 4597 memcpy(buf, m_stderr_data.c_str(), buf_size); 4598 m_stderr_data.erase(0, buf_size); 4599 bytes_available = buf_size; 4600 } else { 4601 memcpy(buf, m_stderr_data.c_str(), bytes_available); 4602 m_stderr_data.clear(); 4603 } 4604 } 4605 return bytes_available; 4606 } 4607 4608 void Process::STDIOReadThreadBytesReceived(void *baton, const void *src, 4609 size_t src_len) { 4610 Process *process = (Process *)baton; 4611 process->AppendSTDOUT(static_cast<const char *>(src), src_len); 4612 } 4613 4614 class IOHandlerProcessSTDIO : public IOHandler { 4615 public: 4616 IOHandlerProcessSTDIO(Process *process, int write_fd) 4617 : IOHandler(process->GetTarget().GetDebugger(), 4618 IOHandler::Type::ProcessIO), 4619 m_process(process), 4620 m_read_file(GetInputFD(), File::eOpenOptionReadOnly, false), 4621 m_write_file(write_fd, File::eOpenOptionWriteOnly, false) { 4622 m_pipe.CreateNew(false); 4623 } 4624 4625 ~IOHandlerProcessSTDIO() override = default; 4626 4627 void SetIsRunning(bool running) { 4628 std::lock_guard<std::mutex> guard(m_mutex); 4629 SetIsDone(!running); 4630 m_is_running = running; 4631 } 4632 4633 // Each IOHandler gets to run until it is done. It should read data from the 4634 // "in" and place output into "out" and "err and return when done. 4635 void Run() override { 4636 if (!m_read_file.IsValid() || !m_write_file.IsValid() || 4637 !m_pipe.CanRead() || !m_pipe.CanWrite()) { 4638 SetIsDone(true); 4639 return; 4640 } 4641 4642 SetIsDone(false); 4643 const int read_fd = m_read_file.GetDescriptor(); 4644 Terminal terminal(read_fd); 4645 TerminalState terminal_state(terminal, false); 4646 // FIXME: error handling? 4647 llvm::consumeError(terminal.SetCanonical(false)); 4648 llvm::consumeError(terminal.SetEcho(false)); 4649 // FD_ZERO, FD_SET are not supported on windows 4650 #ifndef _WIN32 4651 const int pipe_read_fd = m_pipe.GetReadFileDescriptor(); 4652 SetIsRunning(true); 4653 while (true) { 4654 { 4655 std::lock_guard<std::mutex> guard(m_mutex); 4656 if (GetIsDone()) 4657 break; 4658 } 4659 4660 SelectHelper select_helper; 4661 select_helper.FDSetRead(read_fd); 4662 select_helper.FDSetRead(pipe_read_fd); 4663 Status error = select_helper.Select(); 4664 4665 if (error.Fail()) 4666 break; 4667 4668 char ch = 0; 4669 size_t n; 4670 if (select_helper.FDIsSetRead(read_fd)) { 4671 n = 1; 4672 if (m_read_file.Read(&ch, n).Success() && n == 1) { 4673 if (m_write_file.Write(&ch, n).Fail() || n != 1) 4674 break; 4675 } else 4676 break; 4677 } 4678 4679 if (select_helper.FDIsSetRead(pipe_read_fd)) { 4680 size_t bytes_read; 4681 // Consume the interrupt byte 4682 Status error = m_pipe.Read(&ch, 1, bytes_read); 4683 if (error.Success()) { 4684 if (ch == 'q') 4685 break; 4686 if (ch == 'i') 4687 if (StateIsRunningState(m_process->GetState())) 4688 m_process->SendAsyncInterrupt(); 4689 } 4690 } 4691 } 4692 SetIsRunning(false); 4693 #endif 4694 } 4695 4696 void Cancel() override { 4697 std::lock_guard<std::mutex> guard(m_mutex); 4698 SetIsDone(true); 4699 // Only write to our pipe to cancel if we are in 4700 // IOHandlerProcessSTDIO::Run(). We can end up with a python command that 4701 // is being run from the command interpreter: 4702 // 4703 // (lldb) step_process_thousands_of_times 4704 // 4705 // In this case the command interpreter will be in the middle of handling 4706 // the command and if the process pushes and pops the IOHandler thousands 4707 // of times, we can end up writing to m_pipe without ever consuming the 4708 // bytes from the pipe in IOHandlerProcessSTDIO::Run() and end up 4709 // deadlocking when the pipe gets fed up and blocks until data is consumed. 4710 if (m_is_running) { 4711 char ch = 'q'; // Send 'q' for quit 4712 size_t bytes_written = 0; 4713 m_pipe.Write(&ch, 1, bytes_written); 4714 } 4715 } 4716 4717 bool Interrupt() override { 4718 // Do only things that are safe to do in an interrupt context (like in a 4719 // SIGINT handler), like write 1 byte to a file descriptor. This will 4720 // interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte 4721 // that was written to the pipe and then call 4722 // m_process->SendAsyncInterrupt() from a much safer location in code. 4723 if (m_active) { 4724 char ch = 'i'; // Send 'i' for interrupt 4725 size_t bytes_written = 0; 4726 Status result = m_pipe.Write(&ch, 1, bytes_written); 4727 return result.Success(); 4728 } else { 4729 // This IOHandler might be pushed on the stack, but not being run 4730 // currently so do the right thing if we aren't actively watching for 4731 // STDIN by sending the interrupt to the process. Otherwise the write to 4732 // the pipe above would do nothing. This can happen when the command 4733 // interpreter is running and gets a "expression ...". It will be on the 4734 // IOHandler thread and sending the input is complete to the delegate 4735 // which will cause the expression to run, which will push the process IO 4736 // handler, but not run it. 4737 4738 if (StateIsRunningState(m_process->GetState())) { 4739 m_process->SendAsyncInterrupt(); 4740 return true; 4741 } 4742 } 4743 return false; 4744 } 4745 4746 void GotEOF() override {} 4747 4748 protected: 4749 Process *m_process; 4750 NativeFile m_read_file; // Read from this file (usually actual STDIN for LLDB 4751 NativeFile m_write_file; // Write to this file (usually the primary pty for 4752 // getting io to debuggee) 4753 Pipe m_pipe; 4754 std::mutex m_mutex; 4755 bool m_is_running = false; 4756 }; 4757 4758 void Process::SetSTDIOFileDescriptor(int fd) { 4759 // First set up the Read Thread for reading/handling process I/O 4760 m_stdio_communication.SetConnection( 4761 std::make_unique<ConnectionFileDescriptor>(fd, true)); 4762 if (m_stdio_communication.IsConnected()) { 4763 m_stdio_communication.SetReadThreadBytesReceivedCallback( 4764 STDIOReadThreadBytesReceived, this); 4765 m_stdio_communication.StartReadThread(); 4766 4767 // Now read thread is set up, set up input reader. 4768 { 4769 std::lock_guard<std::mutex> guard(m_process_input_reader_mutex); 4770 if (!m_process_input_reader) 4771 m_process_input_reader = 4772 std::make_shared<IOHandlerProcessSTDIO>(this, fd); 4773 } 4774 } 4775 } 4776 4777 bool Process::ProcessIOHandlerIsActive() { 4778 std::lock_guard<std::mutex> guard(m_process_input_reader_mutex); 4779 IOHandlerSP io_handler_sp(m_process_input_reader); 4780 if (io_handler_sp) 4781 return GetTarget().GetDebugger().IsTopIOHandler(io_handler_sp); 4782 return false; 4783 } 4784 4785 bool Process::PushProcessIOHandler() { 4786 std::lock_guard<std::mutex> guard(m_process_input_reader_mutex); 4787 IOHandlerSP io_handler_sp(m_process_input_reader); 4788 if (io_handler_sp) { 4789 Log *log = GetLog(LLDBLog::Process); 4790 LLDB_LOGF(log, "Process::%s pushing IO handler", __FUNCTION__); 4791 4792 io_handler_sp->SetIsDone(false); 4793 // If we evaluate an utility function, then we don't cancel the current 4794 // IOHandler. Our IOHandler is non-interactive and shouldn't disturb the 4795 // existing IOHandler that potentially provides the user interface (e.g. 4796 // the IOHandler for Editline). 4797 bool cancel_top_handler = !m_mod_id.IsRunningUtilityFunction(); 4798 GetTarget().GetDebugger().RunIOHandlerAsync(io_handler_sp, 4799 cancel_top_handler); 4800 return true; 4801 } 4802 return false; 4803 } 4804 4805 bool Process::PopProcessIOHandler() { 4806 std::lock_guard<std::mutex> guard(m_process_input_reader_mutex); 4807 IOHandlerSP io_handler_sp(m_process_input_reader); 4808 if (io_handler_sp) 4809 return GetTarget().GetDebugger().RemoveIOHandler(io_handler_sp); 4810 return false; 4811 } 4812 4813 // The process needs to know about installed plug-ins 4814 void Process::SettingsInitialize() { Thread::SettingsInitialize(); } 4815 4816 void Process::SettingsTerminate() { Thread::SettingsTerminate(); } 4817 4818 namespace { 4819 // RestorePlanState is used to record the "is private", "is controlling" and 4820 // "okay 4821 // to discard" fields of the plan we are running, and reset it on Clean or on 4822 // destruction. It will only reset the state once, so you can call Clean and 4823 // then monkey with the state and it won't get reset on you again. 4824 4825 class RestorePlanState { 4826 public: 4827 RestorePlanState(lldb::ThreadPlanSP thread_plan_sp) 4828 : m_thread_plan_sp(thread_plan_sp) { 4829 if (m_thread_plan_sp) { 4830 m_private = m_thread_plan_sp->GetPrivate(); 4831 m_is_controlling = m_thread_plan_sp->IsControllingPlan(); 4832 m_okay_to_discard = m_thread_plan_sp->OkayToDiscard(); 4833 } 4834 } 4835 4836 ~RestorePlanState() { Clean(); } 4837 4838 void Clean() { 4839 if (!m_already_reset && m_thread_plan_sp) { 4840 m_already_reset = true; 4841 m_thread_plan_sp->SetPrivate(m_private); 4842 m_thread_plan_sp->SetIsControllingPlan(m_is_controlling); 4843 m_thread_plan_sp->SetOkayToDiscard(m_okay_to_discard); 4844 } 4845 } 4846 4847 private: 4848 lldb::ThreadPlanSP m_thread_plan_sp; 4849 bool m_already_reset = false; 4850 bool m_private = false; 4851 bool m_is_controlling = false; 4852 bool m_okay_to_discard = false; 4853 }; 4854 } // anonymous namespace 4855 4856 static microseconds 4857 GetOneThreadExpressionTimeout(const EvaluateExpressionOptions &options) { 4858 const milliseconds default_one_thread_timeout(250); 4859 4860 // If the overall wait is forever, then we don't need to worry about it. 4861 if (!options.GetTimeout()) { 4862 return options.GetOneThreadTimeout() ? *options.GetOneThreadTimeout() 4863 : default_one_thread_timeout; 4864 } 4865 4866 // If the one thread timeout is set, use it. 4867 if (options.GetOneThreadTimeout()) 4868 return *options.GetOneThreadTimeout(); 4869 4870 // Otherwise use half the total timeout, bounded by the 4871 // default_one_thread_timeout. 4872 return std::min<microseconds>(default_one_thread_timeout, 4873 *options.GetTimeout() / 2); 4874 } 4875 4876 static Timeout<std::micro> 4877 GetExpressionTimeout(const EvaluateExpressionOptions &options, 4878 bool before_first_timeout) { 4879 // If we are going to run all threads the whole time, or if we are only going 4880 // to run one thread, we can just return the overall timeout. 4881 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 4882 return options.GetTimeout(); 4883 4884 if (before_first_timeout) 4885 return GetOneThreadExpressionTimeout(options); 4886 4887 if (!options.GetTimeout()) 4888 return std::nullopt; 4889 else 4890 return *options.GetTimeout() - GetOneThreadExpressionTimeout(options); 4891 } 4892 4893 static std::optional<ExpressionResults> 4894 HandleStoppedEvent(lldb::tid_t thread_id, const ThreadPlanSP &thread_plan_sp, 4895 RestorePlanState &restorer, const EventSP &event_sp, 4896 EventSP &event_to_broadcast_sp, 4897 const EvaluateExpressionOptions &options, 4898 bool handle_interrupts) { 4899 Log *log = GetLog(LLDBLog::Step | LLDBLog::Process); 4900 4901 ThreadSP thread_sp = thread_plan_sp->GetTarget() 4902 .GetProcessSP() 4903 ->GetThreadList() 4904 .FindThreadByID(thread_id); 4905 if (!thread_sp) { 4906 LLDB_LOG(log, 4907 "The thread on which we were running the " 4908 "expression: tid = {0}, exited while " 4909 "the expression was running.", 4910 thread_id); 4911 return eExpressionThreadVanished; 4912 } 4913 4914 ThreadPlanSP plan = thread_sp->GetCompletedPlan(); 4915 if (plan == thread_plan_sp && plan->PlanSucceeded()) { 4916 LLDB_LOG(log, "execution completed successfully"); 4917 4918 // Restore the plan state so it will get reported as intended when we are 4919 // done. 4920 restorer.Clean(); 4921 return eExpressionCompleted; 4922 } 4923 4924 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 4925 if (stop_info_sp && stop_info_sp->GetStopReason() == eStopReasonBreakpoint && 4926 stop_info_sp->ShouldNotify(event_sp.get())) { 4927 LLDB_LOG(log, "stopped for breakpoint: {0}.", stop_info_sp->GetDescription()); 4928 if (!options.DoesIgnoreBreakpoints()) { 4929 // Restore the plan state and then force Private to false. We are going 4930 // to stop because of this plan so we need it to become a public plan or 4931 // it won't report correctly when we continue to its termination later 4932 // on. 4933 restorer.Clean(); 4934 thread_plan_sp->SetPrivate(false); 4935 event_to_broadcast_sp = event_sp; 4936 } 4937 return eExpressionHitBreakpoint; 4938 } 4939 4940 if (!handle_interrupts && 4941 Process::ProcessEventData::GetInterruptedFromEvent(event_sp.get())) 4942 return std::nullopt; 4943 4944 LLDB_LOG(log, "thread plan did not successfully complete"); 4945 if (!options.DoesUnwindOnError()) 4946 event_to_broadcast_sp = event_sp; 4947 return eExpressionInterrupted; 4948 } 4949 4950 ExpressionResults 4951 Process::RunThreadPlan(ExecutionContext &exe_ctx, 4952 lldb::ThreadPlanSP &thread_plan_sp, 4953 const EvaluateExpressionOptions &options, 4954 DiagnosticManager &diagnostic_manager) { 4955 ExpressionResults return_value = eExpressionSetupError; 4956 4957 std::lock_guard<std::mutex> run_thread_plan_locker(m_run_thread_plan_lock); 4958 4959 if (!thread_plan_sp) { 4960 diagnostic_manager.PutString( 4961 lldb::eSeverityError, "RunThreadPlan called with empty thread plan."); 4962 return eExpressionSetupError; 4963 } 4964 4965 if (!thread_plan_sp->ValidatePlan(nullptr)) { 4966 diagnostic_manager.PutString( 4967 lldb::eSeverityError, 4968 "RunThreadPlan called with an invalid thread plan."); 4969 return eExpressionSetupError; 4970 } 4971 4972 if (exe_ctx.GetProcessPtr() != this) { 4973 diagnostic_manager.PutString(lldb::eSeverityError, 4974 "RunThreadPlan called on wrong process."); 4975 return eExpressionSetupError; 4976 } 4977 4978 Thread *thread = exe_ctx.GetThreadPtr(); 4979 if (thread == nullptr) { 4980 diagnostic_manager.PutString(lldb::eSeverityError, 4981 "RunThreadPlan called with invalid thread."); 4982 return eExpressionSetupError; 4983 } 4984 4985 // Record the thread's id so we can tell when a thread we were using 4986 // to run the expression exits during the expression evaluation. 4987 lldb::tid_t expr_thread_id = thread->GetID(); 4988 4989 // We need to change some of the thread plan attributes for the thread plan 4990 // runner. This will restore them when we are done: 4991 4992 RestorePlanState thread_plan_restorer(thread_plan_sp); 4993 4994 // We rely on the thread plan we are running returning "PlanCompleted" if 4995 // when it successfully completes. For that to be true the plan can't be 4996 // private - since private plans suppress themselves in the GetCompletedPlan 4997 // call. 4998 4999 thread_plan_sp->SetPrivate(false); 5000 5001 // The plans run with RunThreadPlan also need to be terminal controlling plans 5002 // or when they are done we will end up asking the plan above us whether we 5003 // should stop, which may give the wrong answer. 5004 5005 thread_plan_sp->SetIsControllingPlan(true); 5006 thread_plan_sp->SetOkayToDiscard(false); 5007 5008 // If we are running some utility expression for LLDB, we now have to mark 5009 // this in the ProcesModID of this process. This RAII takes care of marking 5010 // and reverting the mark it once we are done running the expression. 5011 UtilityFunctionScope util_scope(options.IsForUtilityExpr() ? this : nullptr); 5012 5013 if (m_private_state.GetValue() != eStateStopped) { 5014 diagnostic_manager.PutString( 5015 lldb::eSeverityError, 5016 "RunThreadPlan called while the private state was not stopped."); 5017 return eExpressionSetupError; 5018 } 5019 5020 // Save the thread & frame from the exe_ctx for restoration after we run 5021 const uint32_t thread_idx_id = thread->GetIndexID(); 5022 StackFrameSP selected_frame_sp = 5023 thread->GetSelectedFrame(DoNoSelectMostRelevantFrame); 5024 if (!selected_frame_sp) { 5025 thread->SetSelectedFrame(nullptr); 5026 selected_frame_sp = thread->GetSelectedFrame(DoNoSelectMostRelevantFrame); 5027 if (!selected_frame_sp) { 5028 diagnostic_manager.Printf( 5029 lldb::eSeverityError, 5030 "RunThreadPlan called without a selected frame on thread %d", 5031 thread_idx_id); 5032 return eExpressionSetupError; 5033 } 5034 } 5035 5036 // Make sure the timeout values make sense. The one thread timeout needs to 5037 // be smaller than the overall timeout. 5038 if (options.GetOneThreadTimeout() && options.GetTimeout() && 5039 *options.GetTimeout() < *options.GetOneThreadTimeout()) { 5040 diagnostic_manager.PutString(lldb::eSeverityError, 5041 "RunThreadPlan called with one thread " 5042 "timeout greater than total timeout"); 5043 return eExpressionSetupError; 5044 } 5045 5046 StackID ctx_frame_id = selected_frame_sp->GetStackID(); 5047 5048 // N.B. Running the target may unset the currently selected thread and frame. 5049 // We don't want to do that either, so we should arrange to reset them as 5050 // well. 5051 5052 lldb::ThreadSP selected_thread_sp = GetThreadList().GetSelectedThread(); 5053 5054 uint32_t selected_tid; 5055 StackID selected_stack_id; 5056 if (selected_thread_sp) { 5057 selected_tid = selected_thread_sp->GetIndexID(); 5058 selected_stack_id = 5059 selected_thread_sp->GetSelectedFrame(DoNoSelectMostRelevantFrame) 5060 ->GetStackID(); 5061 } else { 5062 selected_tid = LLDB_INVALID_THREAD_ID; 5063 } 5064 5065 HostThread backup_private_state_thread; 5066 lldb::StateType old_state = eStateInvalid; 5067 lldb::ThreadPlanSP stopper_base_plan_sp; 5068 5069 Log *log(GetLog(LLDBLog::Step | LLDBLog::Process)); 5070 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) { 5071 // Yikes, we are running on the private state thread! So we can't wait for 5072 // public events on this thread, since we are the thread that is generating 5073 // public events. The simplest thing to do is to spin up a temporary thread 5074 // to handle private state thread events while we are fielding public 5075 // events here. 5076 LLDB_LOGF(log, "Running thread plan on private state thread, spinning up " 5077 "another state thread to handle the events."); 5078 5079 backup_private_state_thread = m_private_state_thread; 5080 5081 // One other bit of business: we want to run just this thread plan and 5082 // anything it pushes, and then stop, returning control here. But in the 5083 // normal course of things, the plan above us on the stack would be given a 5084 // shot at the stop event before deciding to stop, and we don't want that. 5085 // So we insert a "stopper" base plan on the stack before the plan we want 5086 // to run. Since base plans always stop and return control to the user, 5087 // that will do just what we want. 5088 stopper_base_plan_sp.reset(new ThreadPlanBase(*thread)); 5089 thread->QueueThreadPlan(stopper_base_plan_sp, false); 5090 // Have to make sure our public state is stopped, since otherwise the 5091 // reporting logic below doesn't work correctly. 5092 old_state = m_public_state.GetValue(); 5093 m_public_state.SetValueNoLock(eStateStopped); 5094 5095 // Now spin up the private state thread: 5096 StartPrivateStateThread(true); 5097 } 5098 5099 thread->QueueThreadPlan( 5100 thread_plan_sp, false); // This used to pass "true" does that make sense? 5101 5102 if (options.GetDebug()) { 5103 // In this case, we aren't actually going to run, we just want to stop 5104 // right away. Flush this thread so we will refetch the stacks and show the 5105 // correct backtrace. 5106 // FIXME: To make this prettier we should invent some stop reason for this, 5107 // but that 5108 // is only cosmetic, and this functionality is only of use to lldb 5109 // developers who can live with not pretty... 5110 thread->Flush(); 5111 return eExpressionStoppedForDebug; 5112 } 5113 5114 ListenerSP listener_sp( 5115 Listener::MakeListener("lldb.process.listener.run-thread-plan")); 5116 5117 lldb::EventSP event_to_broadcast_sp; 5118 5119 { 5120 // This process event hijacker Hijacks the Public events and its destructor 5121 // makes sure that the process events get restored on exit to the function. 5122 // 5123 // If the event needs to propagate beyond the hijacker (e.g., the process 5124 // exits during execution), then the event is put into 5125 // event_to_broadcast_sp for rebroadcasting. 5126 5127 ProcessEventHijacker run_thread_plan_hijacker(*this, listener_sp); 5128 5129 if (log) { 5130 StreamString s; 5131 thread_plan_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose); 5132 LLDB_LOGF(log, 5133 "Process::RunThreadPlan(): Resuming thread %u - 0x%4.4" PRIx64 5134 " to run thread plan \"%s\".", 5135 thread_idx_id, expr_thread_id, s.GetData()); 5136 } 5137 5138 bool got_event; 5139 lldb::EventSP event_sp; 5140 lldb::StateType stop_state = lldb::eStateInvalid; 5141 5142 bool before_first_timeout = true; // This is set to false the first time 5143 // that we have to halt the target. 5144 bool do_resume = true; 5145 bool handle_running_event = true; 5146 5147 // This is just for accounting: 5148 uint32_t num_resumes = 0; 5149 5150 // If we are going to run all threads the whole time, or if we are only 5151 // going to run one thread, then we don't need the first timeout. So we 5152 // pretend we are after the first timeout already. 5153 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 5154 before_first_timeout = false; 5155 5156 LLDB_LOGF(log, "Stop others: %u, try all: %u, before_first: %u.\n", 5157 options.GetStopOthers(), options.GetTryAllThreads(), 5158 before_first_timeout); 5159 5160 // This isn't going to work if there are unfetched events on the queue. Are 5161 // there cases where we might want to run the remaining events here, and 5162 // then try to call the function? That's probably being too tricky for our 5163 // own good. 5164 5165 Event *other_events = listener_sp->PeekAtNextEvent(); 5166 if (other_events != nullptr) { 5167 diagnostic_manager.PutString( 5168 lldb::eSeverityError, 5169 "RunThreadPlan called with pending events on the queue."); 5170 return eExpressionSetupError; 5171 } 5172 5173 // We also need to make sure that the next event is delivered. We might be 5174 // calling a function as part of a thread plan, in which case the last 5175 // delivered event could be the running event, and we don't want event 5176 // coalescing to cause us to lose OUR running event... 5177 ForceNextEventDelivery(); 5178 5179 // This while loop must exit out the bottom, there's cleanup that we need to do 5180 // when we are done. So don't call return anywhere within it. 5181 5182 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 5183 // It's pretty much impossible to write test cases for things like: One 5184 // thread timeout expires, I go to halt, but the process already stopped on 5185 // the function call stop breakpoint. Turning on this define will make us 5186 // not fetch the first event till after the halt. So if you run a quick 5187 // function, it will have completed, and the completion event will be 5188 // waiting, when you interrupt for halt. The expression evaluation should 5189 // still succeed. 5190 bool miss_first_event = true; 5191 #endif 5192 while (true) { 5193 // We usually want to resume the process if we get to the top of the 5194 // loop. The only exception is if we get two running events with no 5195 // intervening stop, which can happen, we will just wait for then next 5196 // stop event. 5197 LLDB_LOGF(log, 5198 "Top of while loop: do_resume: %i handle_running_event: %i " 5199 "before_first_timeout: %i.", 5200 do_resume, handle_running_event, before_first_timeout); 5201 5202 if (do_resume || handle_running_event) { 5203 // Do the initial resume and wait for the running event before going 5204 // further. 5205 5206 if (do_resume) { 5207 num_resumes++; 5208 Status resume_error = PrivateResume(); 5209 if (!resume_error.Success()) { 5210 diagnostic_manager.Printf( 5211 lldb::eSeverityError, 5212 "couldn't resume inferior the %d time: \"%s\".", num_resumes, 5213 resume_error.AsCString()); 5214 return_value = eExpressionSetupError; 5215 break; 5216 } 5217 } 5218 5219 got_event = 5220 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout()); 5221 if (!got_event) { 5222 LLDB_LOGF(log, 5223 "Process::RunThreadPlan(): didn't get any event after " 5224 "resume %" PRIu32 ", exiting.", 5225 num_resumes); 5226 5227 diagnostic_manager.Printf(lldb::eSeverityError, 5228 "didn't get any event after resume %" PRIu32 5229 ", exiting.", 5230 num_resumes); 5231 return_value = eExpressionSetupError; 5232 break; 5233 } 5234 5235 stop_state = 5236 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5237 5238 if (stop_state != eStateRunning) { 5239 bool restarted = false; 5240 5241 if (stop_state == eStateStopped) { 5242 restarted = Process::ProcessEventData::GetRestartedFromEvent( 5243 event_sp.get()); 5244 LLDB_LOGF( 5245 log, 5246 "Process::RunThreadPlan(): didn't get running event after " 5247 "resume %d, got %s instead (restarted: %i, do_resume: %i, " 5248 "handle_running_event: %i).", 5249 num_resumes, StateAsCString(stop_state), restarted, do_resume, 5250 handle_running_event); 5251 } 5252 5253 if (restarted) { 5254 // This is probably an overabundance of caution, I don't think I 5255 // should ever get a stopped & restarted event here. But if I do, 5256 // the best thing is to Halt and then get out of here. 5257 const bool clear_thread_plans = false; 5258 const bool use_run_lock = false; 5259 Halt(clear_thread_plans, use_run_lock); 5260 } 5261 5262 diagnostic_manager.Printf( 5263 lldb::eSeverityError, 5264 "didn't get running event after initial resume, got %s instead.", 5265 StateAsCString(stop_state)); 5266 return_value = eExpressionSetupError; 5267 break; 5268 } 5269 5270 if (log) 5271 log->PutCString("Process::RunThreadPlan(): resuming succeeded."); 5272 // We need to call the function synchronously, so spin waiting for it 5273 // to return. If we get interrupted while executing, we're going to 5274 // lose our context, and won't be able to gather the result at this 5275 // point. We set the timeout AFTER the resume, since the resume takes 5276 // some time and we don't want to charge that to the timeout. 5277 } else { 5278 if (log) 5279 log->PutCString("Process::RunThreadPlan(): waiting for next event."); 5280 } 5281 5282 do_resume = true; 5283 handle_running_event = true; 5284 5285 // Now wait for the process to stop again: 5286 event_sp.reset(); 5287 5288 Timeout<std::micro> timeout = 5289 GetExpressionTimeout(options, before_first_timeout); 5290 if (log) { 5291 if (timeout) { 5292 auto now = system_clock::now(); 5293 LLDB_LOGF(log, 5294 "Process::RunThreadPlan(): about to wait - now is %s - " 5295 "endpoint is %s", 5296 llvm::to_string(now).c_str(), 5297 llvm::to_string(now + *timeout).c_str()); 5298 } else { 5299 LLDB_LOGF(log, "Process::RunThreadPlan(): about to wait forever."); 5300 } 5301 } 5302 5303 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 5304 // See comment above... 5305 if (miss_first_event) { 5306 std::this_thread::sleep_for(std::chrono::milliseconds(1)); 5307 miss_first_event = false; 5308 got_event = false; 5309 } else 5310 #endif 5311 got_event = listener_sp->GetEvent(event_sp, timeout); 5312 5313 if (got_event) { 5314 if (event_sp) { 5315 bool keep_going = false; 5316 if (event_sp->GetType() == eBroadcastBitInterrupt) { 5317 const bool clear_thread_plans = false; 5318 const bool use_run_lock = false; 5319 Halt(clear_thread_plans, use_run_lock); 5320 return_value = eExpressionInterrupted; 5321 diagnostic_manager.PutString(lldb::eSeverityInfo, 5322 "execution halted by user interrupt."); 5323 LLDB_LOGF(log, "Process::RunThreadPlan(): Got interrupted by " 5324 "eBroadcastBitInterrupted, exiting."); 5325 break; 5326 } else { 5327 stop_state = 5328 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5329 LLDB_LOGF(log, 5330 "Process::RunThreadPlan(): in while loop, got event: %s.", 5331 StateAsCString(stop_state)); 5332 5333 switch (stop_state) { 5334 case lldb::eStateStopped: { 5335 if (Process::ProcessEventData::GetRestartedFromEvent( 5336 event_sp.get())) { 5337 // If we were restarted, we just need to go back up to fetch 5338 // another event. 5339 LLDB_LOGF(log, "Process::RunThreadPlan(): Got a stop and " 5340 "restart, so we'll continue waiting."); 5341 keep_going = true; 5342 do_resume = false; 5343 handle_running_event = true; 5344 } else { 5345 const bool handle_interrupts = true; 5346 return_value = *HandleStoppedEvent( 5347 expr_thread_id, thread_plan_sp, thread_plan_restorer, 5348 event_sp, event_to_broadcast_sp, options, 5349 handle_interrupts); 5350 if (return_value == eExpressionThreadVanished) 5351 keep_going = false; 5352 } 5353 } break; 5354 5355 case lldb::eStateRunning: 5356 // This shouldn't really happen, but sometimes we do get two 5357 // running events without an intervening stop, and in that case 5358 // we should just go back to waiting for the stop. 5359 do_resume = false; 5360 keep_going = true; 5361 handle_running_event = false; 5362 break; 5363 5364 default: 5365 LLDB_LOGF(log, 5366 "Process::RunThreadPlan(): execution stopped with " 5367 "unexpected state: %s.", 5368 StateAsCString(stop_state)); 5369 5370 if (stop_state == eStateExited) 5371 event_to_broadcast_sp = event_sp; 5372 5373 diagnostic_manager.PutString( 5374 lldb::eSeverityError, 5375 "execution stopped with unexpected state."); 5376 return_value = eExpressionInterrupted; 5377 break; 5378 } 5379 } 5380 5381 if (keep_going) 5382 continue; 5383 else 5384 break; 5385 } else { 5386 if (log) 5387 log->PutCString("Process::RunThreadPlan(): got_event was true, but " 5388 "the event pointer was null. How odd..."); 5389 return_value = eExpressionInterrupted; 5390 break; 5391 } 5392 } else { 5393 // If we didn't get an event that means we've timed out... We will 5394 // interrupt the process here. Depending on what we were asked to do 5395 // we will either exit, or try with all threads running for the same 5396 // timeout. 5397 5398 if (log) { 5399 if (options.GetTryAllThreads()) { 5400 if (before_first_timeout) { 5401 LLDB_LOG(log, 5402 "Running function with one thread timeout timed out."); 5403 } else 5404 LLDB_LOG(log, "Restarting function with all threads enabled and " 5405 "timeout: {0} timed out, abandoning execution.", 5406 timeout); 5407 } else 5408 LLDB_LOG(log, "Running function with timeout: {0} timed out, " 5409 "abandoning execution.", 5410 timeout); 5411 } 5412 5413 // It is possible that between the time we issued the Halt, and we get 5414 // around to calling Halt the target could have stopped. That's fine, 5415 // Halt will figure that out and send the appropriate Stopped event. 5416 // BUT it is also possible that we stopped & restarted (e.g. hit a 5417 // signal with "stop" set to false.) In 5418 // that case, we'll get the stopped & restarted event, and we should go 5419 // back to waiting for the Halt's stopped event. That's what this 5420 // while loop does. 5421 5422 bool back_to_top = true; 5423 uint32_t try_halt_again = 0; 5424 bool do_halt = true; 5425 const uint32_t num_retries = 5; 5426 while (try_halt_again < num_retries) { 5427 Status halt_error; 5428 if (do_halt) { 5429 LLDB_LOGF(log, "Process::RunThreadPlan(): Running Halt."); 5430 const bool clear_thread_plans = false; 5431 const bool use_run_lock = false; 5432 Halt(clear_thread_plans, use_run_lock); 5433 } 5434 if (halt_error.Success()) { 5435 if (log) 5436 log->PutCString("Process::RunThreadPlan(): Halt succeeded."); 5437 5438 got_event = 5439 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout()); 5440 5441 if (got_event) { 5442 stop_state = 5443 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5444 if (log) { 5445 LLDB_LOGF(log, 5446 "Process::RunThreadPlan(): Stopped with event: %s", 5447 StateAsCString(stop_state)); 5448 if (stop_state == lldb::eStateStopped && 5449 Process::ProcessEventData::GetInterruptedFromEvent( 5450 event_sp.get())) 5451 log->PutCString(" Event was the Halt interruption event."); 5452 } 5453 5454 if (stop_state == lldb::eStateStopped) { 5455 if (Process::ProcessEventData::GetRestartedFromEvent( 5456 event_sp.get())) { 5457 if (log) 5458 log->PutCString("Process::RunThreadPlan(): Went to halt " 5459 "but got a restarted event, there must be " 5460 "an un-restarted stopped event so try " 5461 "again... " 5462 "Exiting wait loop."); 5463 try_halt_again++; 5464 do_halt = false; 5465 continue; 5466 } 5467 5468 // Between the time we initiated the Halt and the time we 5469 // delivered it, the process could have already finished its 5470 // job. Check that here: 5471 const bool handle_interrupts = false; 5472 if (auto result = HandleStoppedEvent( 5473 expr_thread_id, thread_plan_sp, thread_plan_restorer, 5474 event_sp, event_to_broadcast_sp, options, 5475 handle_interrupts)) { 5476 return_value = *result; 5477 back_to_top = false; 5478 break; 5479 } 5480 5481 if (!options.GetTryAllThreads()) { 5482 if (log) 5483 log->PutCString("Process::RunThreadPlan(): try_all_threads " 5484 "was false, we stopped so now we're " 5485 "quitting."); 5486 return_value = eExpressionInterrupted; 5487 back_to_top = false; 5488 break; 5489 } 5490 5491 if (before_first_timeout) { 5492 // Set all the other threads to run, and return to the top of 5493 // the loop, which will continue; 5494 before_first_timeout = false; 5495 thread_plan_sp->SetStopOthers(false); 5496 if (log) 5497 log->PutCString( 5498 "Process::RunThreadPlan(): about to resume."); 5499 5500 back_to_top = true; 5501 break; 5502 } else { 5503 // Running all threads failed, so return Interrupted. 5504 if (log) 5505 log->PutCString("Process::RunThreadPlan(): running all " 5506 "threads timed out."); 5507 return_value = eExpressionInterrupted; 5508 back_to_top = false; 5509 break; 5510 } 5511 } 5512 } else { 5513 if (log) 5514 log->PutCString("Process::RunThreadPlan(): halt said it " 5515 "succeeded, but I got no event. " 5516 "I'm getting out of here passing Interrupted."); 5517 return_value = eExpressionInterrupted; 5518 back_to_top = false; 5519 break; 5520 } 5521 } else { 5522 try_halt_again++; 5523 continue; 5524 } 5525 } 5526 5527 if (!back_to_top || try_halt_again > num_retries) 5528 break; 5529 else 5530 continue; 5531 } 5532 } // END WAIT LOOP 5533 5534 // If we had to start up a temporary private state thread to run this 5535 // thread plan, shut it down now. 5536 if (backup_private_state_thread.IsJoinable()) { 5537 StopPrivateStateThread(); 5538 Status error; 5539 m_private_state_thread = backup_private_state_thread; 5540 if (stopper_base_plan_sp) { 5541 thread->DiscardThreadPlansUpToPlan(stopper_base_plan_sp); 5542 } 5543 if (old_state != eStateInvalid) 5544 m_public_state.SetValueNoLock(old_state); 5545 } 5546 5547 // If our thread went away on us, we need to get out of here without 5548 // doing any more work. We don't have to clean up the thread plan, that 5549 // will have happened when the Thread was destroyed. 5550 if (return_value == eExpressionThreadVanished) { 5551 return return_value; 5552 } 5553 5554 if (return_value != eExpressionCompleted && log) { 5555 // Print a backtrace into the log so we can figure out where we are: 5556 StreamString s; 5557 s.PutCString("Thread state after unsuccessful completion: \n"); 5558 thread->GetStackFrameStatus(s, 0, UINT32_MAX, true, UINT32_MAX, 5559 /*show_hidden*/ true); 5560 log->PutString(s.GetString()); 5561 } 5562 // Restore the thread state if we are going to discard the plan execution. 5563 // There are three cases where this could happen: 1) The execution 5564 // successfully completed 2) We hit a breakpoint, and ignore_breakpoints 5565 // was true 3) We got some other error, and discard_on_error was true 5566 bool should_unwind = (return_value == eExpressionInterrupted && 5567 options.DoesUnwindOnError()) || 5568 (return_value == eExpressionHitBreakpoint && 5569 options.DoesIgnoreBreakpoints()); 5570 5571 if (return_value == eExpressionCompleted || should_unwind) { 5572 thread_plan_sp->RestoreThreadState(); 5573 } 5574 5575 // Now do some processing on the results of the run: 5576 if (return_value == eExpressionInterrupted || 5577 return_value == eExpressionHitBreakpoint) { 5578 if (log) { 5579 StreamString s; 5580 if (event_sp) 5581 event_sp->Dump(&s); 5582 else { 5583 log->PutCString("Process::RunThreadPlan(): Stop event that " 5584 "interrupted us is NULL."); 5585 } 5586 5587 StreamString ts; 5588 5589 const char *event_explanation = nullptr; 5590 5591 do { 5592 if (!event_sp) { 5593 event_explanation = "<no event>"; 5594 break; 5595 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 5596 event_explanation = "<user interrupt>"; 5597 break; 5598 } else { 5599 const Process::ProcessEventData *event_data = 5600 Process::ProcessEventData::GetEventDataFromEvent( 5601 event_sp.get()); 5602 5603 if (!event_data) { 5604 event_explanation = "<no event data>"; 5605 break; 5606 } 5607 5608 Process *process = event_data->GetProcessSP().get(); 5609 5610 if (!process) { 5611 event_explanation = "<no process>"; 5612 break; 5613 } 5614 5615 ThreadList &thread_list = process->GetThreadList(); 5616 5617 uint32_t num_threads = thread_list.GetSize(); 5618 uint32_t thread_index; 5619 5620 ts.Printf("<%u threads> ", num_threads); 5621 5622 for (thread_index = 0; thread_index < num_threads; ++thread_index) { 5623 Thread *thread = thread_list.GetThreadAtIndex(thread_index).get(); 5624 5625 if (!thread) { 5626 ts.Printf("<?> "); 5627 continue; 5628 } 5629 5630 ts.Printf("<0x%4.4" PRIx64 " ", thread->GetID()); 5631 RegisterContext *register_context = 5632 thread->GetRegisterContext().get(); 5633 5634 if (register_context) 5635 ts.Printf("[ip 0x%" PRIx64 "] ", register_context->GetPC()); 5636 else 5637 ts.Printf("[ip unknown] "); 5638 5639 // Show the private stop info here, the public stop info will be 5640 // from the last natural stop. 5641 lldb::StopInfoSP stop_info_sp = thread->GetPrivateStopInfo(); 5642 if (stop_info_sp) { 5643 const char *stop_desc = stop_info_sp->GetDescription(); 5644 if (stop_desc) 5645 ts.PutCString(stop_desc); 5646 } 5647 ts.Printf(">"); 5648 } 5649 5650 event_explanation = ts.GetData(); 5651 } 5652 } while (false); 5653 5654 if (event_explanation) 5655 LLDB_LOGF(log, 5656 "Process::RunThreadPlan(): execution interrupted: %s %s", 5657 s.GetData(), event_explanation); 5658 else 5659 LLDB_LOGF(log, "Process::RunThreadPlan(): execution interrupted: %s", 5660 s.GetData()); 5661 } 5662 5663 if (should_unwind) { 5664 LLDB_LOGF(log, 5665 "Process::RunThreadPlan: ExecutionInterrupted - " 5666 "discarding thread plans up to %p.", 5667 static_cast<void *>(thread_plan_sp.get())); 5668 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5669 } else { 5670 LLDB_LOGF(log, 5671 "Process::RunThreadPlan: ExecutionInterrupted - for " 5672 "plan: %p not discarding.", 5673 static_cast<void *>(thread_plan_sp.get())); 5674 } 5675 } else if (return_value == eExpressionSetupError) { 5676 if (log) 5677 log->PutCString("Process::RunThreadPlan(): execution set up error."); 5678 5679 if (options.DoesUnwindOnError()) { 5680 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5681 } 5682 } else { 5683 if (thread->IsThreadPlanDone(thread_plan_sp.get())) { 5684 if (log) 5685 log->PutCString("Process::RunThreadPlan(): thread plan is done"); 5686 return_value = eExpressionCompleted; 5687 } else if (thread->WasThreadPlanDiscarded(thread_plan_sp.get())) { 5688 if (log) 5689 log->PutCString( 5690 "Process::RunThreadPlan(): thread plan was discarded"); 5691 return_value = eExpressionDiscarded; 5692 } else { 5693 if (log) 5694 log->PutCString( 5695 "Process::RunThreadPlan(): thread plan stopped in mid course"); 5696 if (options.DoesUnwindOnError() && thread_plan_sp) { 5697 if (log) 5698 log->PutCString("Process::RunThreadPlan(): discarding thread plan " 5699 "'cause unwind_on_error is set."); 5700 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5701 } 5702 } 5703 } 5704 5705 // Thread we ran the function in may have gone away because we ran the 5706 // target Check that it's still there, and if it is put it back in the 5707 // context. Also restore the frame in the context if it is still present. 5708 thread = GetThreadList().FindThreadByIndexID(thread_idx_id, true).get(); 5709 if (thread) { 5710 exe_ctx.SetFrameSP(thread->GetFrameWithStackID(ctx_frame_id)); 5711 } 5712 5713 // Also restore the current process'es selected frame & thread, since this 5714 // function calling may be done behind the user's back. 5715 5716 if (selected_tid != LLDB_INVALID_THREAD_ID) { 5717 if (GetThreadList().SetSelectedThreadByIndexID(selected_tid) && 5718 selected_stack_id.IsValid()) { 5719 // We were able to restore the selected thread, now restore the frame: 5720 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5721 StackFrameSP old_frame_sp = 5722 GetThreadList().GetSelectedThread()->GetFrameWithStackID( 5723 selected_stack_id); 5724 if (old_frame_sp) 5725 GetThreadList().GetSelectedThread()->SetSelectedFrame( 5726 old_frame_sp.get()); 5727 } 5728 } 5729 } 5730 5731 // If the process exited during the run of the thread plan, notify everyone. 5732 5733 if (event_to_broadcast_sp) { 5734 if (log) 5735 log->PutCString("Process::RunThreadPlan(): rebroadcasting event."); 5736 BroadcastEvent(event_to_broadcast_sp); 5737 } 5738 5739 return return_value; 5740 } 5741 5742 void Process::GetStatus(Stream &strm) { 5743 const StateType state = GetState(); 5744 if (StateIsStoppedState(state, false)) { 5745 if (state == eStateExited) { 5746 int exit_status = GetExitStatus(); 5747 const char *exit_description = GetExitDescription(); 5748 strm.Printf("Process %" PRIu64 " exited with status = %i (0x%8.8x) %s\n", 5749 GetID(), exit_status, exit_status, 5750 exit_description ? exit_description : ""); 5751 } else { 5752 if (state == eStateConnected) 5753 strm.Printf("Connected to remote target.\n"); 5754 else 5755 strm.Printf("Process %" PRIu64 " %s\n", GetID(), StateAsCString(state)); 5756 } 5757 } else { 5758 strm.Printf("Process %" PRIu64 " is running.\n", GetID()); 5759 } 5760 } 5761 5762 size_t Process::GetThreadStatus(Stream &strm, 5763 bool only_threads_with_stop_reason, 5764 uint32_t start_frame, uint32_t num_frames, 5765 uint32_t num_frames_with_source, 5766 bool stop_format) { 5767 size_t num_thread_infos_dumped = 0; 5768 5769 // You can't hold the thread list lock while calling Thread::GetStatus. That 5770 // very well might run code (e.g. if we need it to get return values or 5771 // arguments.) For that to work the process has to be able to acquire it. 5772 // So instead copy the thread ID's, and look them up one by one: 5773 5774 uint32_t num_threads; 5775 std::vector<lldb::tid_t> thread_id_array; 5776 // Scope for thread list locker; 5777 { 5778 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5779 ThreadList &curr_thread_list = GetThreadList(); 5780 num_threads = curr_thread_list.GetSize(); 5781 uint32_t idx; 5782 thread_id_array.resize(num_threads); 5783 for (idx = 0; idx < num_threads; ++idx) 5784 thread_id_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetID(); 5785 } 5786 5787 for (uint32_t i = 0; i < num_threads; i++) { 5788 ThreadSP thread_sp(GetThreadList().FindThreadByID(thread_id_array[i])); 5789 if (thread_sp) { 5790 if (only_threads_with_stop_reason) { 5791 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 5792 if (!stop_info_sp || !stop_info_sp->IsValid()) 5793 continue; 5794 } 5795 thread_sp->GetStatus(strm, start_frame, num_frames, 5796 num_frames_with_source, stop_format, 5797 /*show_hidden*/ num_frames <= 1); 5798 ++num_thread_infos_dumped; 5799 } else { 5800 Log *log = GetLog(LLDBLog::Process); 5801 LLDB_LOGF(log, "Process::GetThreadStatus - thread 0x" PRIu64 5802 " vanished while running Thread::GetStatus."); 5803 } 5804 } 5805 return num_thread_infos_dumped; 5806 } 5807 5808 void Process::AddInvalidMemoryRegion(const LoadRange ®ion) { 5809 m_memory_cache.AddInvalidRange(region.GetRangeBase(), region.GetByteSize()); 5810 } 5811 5812 bool Process::RemoveInvalidMemoryRange(const LoadRange ®ion) { 5813 return m_memory_cache.RemoveInvalidRange(region.GetRangeBase(), 5814 region.GetByteSize()); 5815 } 5816 5817 void Process::AddPreResumeAction(PreResumeActionCallback callback, 5818 void *baton) { 5819 m_pre_resume_actions.push_back(PreResumeCallbackAndBaton(callback, baton)); 5820 } 5821 5822 bool Process::RunPreResumeActions() { 5823 bool result = true; 5824 while (!m_pre_resume_actions.empty()) { 5825 struct PreResumeCallbackAndBaton action = m_pre_resume_actions.back(); 5826 m_pre_resume_actions.pop_back(); 5827 bool this_result = action.callback(action.baton); 5828 if (result) 5829 result = this_result; 5830 } 5831 return result; 5832 } 5833 5834 void Process::ClearPreResumeActions() { m_pre_resume_actions.clear(); } 5835 5836 void Process::ClearPreResumeAction(PreResumeActionCallback callback, void *baton) 5837 { 5838 PreResumeCallbackAndBaton element(callback, baton); 5839 auto found_iter = std::find(m_pre_resume_actions.begin(), m_pre_resume_actions.end(), element); 5840 if (found_iter != m_pre_resume_actions.end()) 5841 { 5842 m_pre_resume_actions.erase(found_iter); 5843 } 5844 } 5845 5846 ProcessRunLock &Process::GetRunLock() { 5847 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) 5848 return m_private_run_lock; 5849 else 5850 return m_public_run_lock; 5851 } 5852 5853 bool Process::CurrentThreadIsPrivateStateThread() 5854 { 5855 return m_private_state_thread.EqualsThread(Host::GetCurrentThread()); 5856 } 5857 5858 5859 void Process::Flush() { 5860 m_thread_list.Flush(); 5861 m_extended_thread_list.Flush(); 5862 m_extended_thread_stop_id = 0; 5863 m_queue_list.Clear(); 5864 m_queue_list_stop_id = 0; 5865 } 5866 5867 lldb::addr_t Process::GetCodeAddressMask() { 5868 if (uint32_t num_bits_setting = GetVirtualAddressableBits()) 5869 return AddressableBits::AddressableBitToMask(num_bits_setting); 5870 5871 return m_code_address_mask; 5872 } 5873 5874 lldb::addr_t Process::GetDataAddressMask() { 5875 if (uint32_t num_bits_setting = GetVirtualAddressableBits()) 5876 return AddressableBits::AddressableBitToMask(num_bits_setting); 5877 5878 return m_data_address_mask; 5879 } 5880 5881 lldb::addr_t Process::GetHighmemCodeAddressMask() { 5882 if (uint32_t num_bits_setting = GetHighmemVirtualAddressableBits()) 5883 return AddressableBits::AddressableBitToMask(num_bits_setting); 5884 5885 if (m_highmem_code_address_mask != LLDB_INVALID_ADDRESS_MASK) 5886 return m_highmem_code_address_mask; 5887 return GetCodeAddressMask(); 5888 } 5889 5890 lldb::addr_t Process::GetHighmemDataAddressMask() { 5891 if (uint32_t num_bits_setting = GetHighmemVirtualAddressableBits()) 5892 return AddressableBits::AddressableBitToMask(num_bits_setting); 5893 5894 if (m_highmem_data_address_mask != LLDB_INVALID_ADDRESS_MASK) 5895 return m_highmem_data_address_mask; 5896 return GetDataAddressMask(); 5897 } 5898 5899 void Process::SetCodeAddressMask(lldb::addr_t code_address_mask) { 5900 LLDB_LOG(GetLog(LLDBLog::Process), 5901 "Setting Process code address mask to {0:x}", code_address_mask); 5902 m_code_address_mask = code_address_mask; 5903 } 5904 5905 void Process::SetDataAddressMask(lldb::addr_t data_address_mask) { 5906 LLDB_LOG(GetLog(LLDBLog::Process), 5907 "Setting Process data address mask to {0:x}", data_address_mask); 5908 m_data_address_mask = data_address_mask; 5909 } 5910 5911 void Process::SetHighmemCodeAddressMask(lldb::addr_t code_address_mask) { 5912 LLDB_LOG(GetLog(LLDBLog::Process), 5913 "Setting Process highmem code address mask to {0:x}", 5914 code_address_mask); 5915 m_highmem_code_address_mask = code_address_mask; 5916 } 5917 5918 void Process::SetHighmemDataAddressMask(lldb::addr_t data_address_mask) { 5919 LLDB_LOG(GetLog(LLDBLog::Process), 5920 "Setting Process highmem data address mask to {0:x}", 5921 data_address_mask); 5922 m_highmem_data_address_mask = data_address_mask; 5923 } 5924 5925 addr_t Process::FixCodeAddress(addr_t addr) { 5926 if (ABISP abi_sp = GetABI()) 5927 addr = abi_sp->FixCodeAddress(addr); 5928 return addr; 5929 } 5930 5931 addr_t Process::FixDataAddress(addr_t addr) { 5932 if (ABISP abi_sp = GetABI()) 5933 addr = abi_sp->FixDataAddress(addr); 5934 return addr; 5935 } 5936 5937 addr_t Process::FixAnyAddress(addr_t addr) { 5938 if (ABISP abi_sp = GetABI()) 5939 addr = abi_sp->FixAnyAddress(addr); 5940 return addr; 5941 } 5942 5943 void Process::DidExec() { 5944 Log *log = GetLog(LLDBLog::Process); 5945 LLDB_LOGF(log, "Process::%s()", __FUNCTION__); 5946 5947 Target &target = GetTarget(); 5948 target.CleanupProcess(); 5949 target.ClearModules(false); 5950 m_dynamic_checkers_up.reset(); 5951 m_abi_sp.reset(); 5952 m_system_runtime_up.reset(); 5953 m_os_up.reset(); 5954 m_dyld_up.reset(); 5955 m_jit_loaders_up.reset(); 5956 m_image_tokens.clear(); 5957 // After an exec, the inferior is a new process and these memory regions are 5958 // no longer allocated. 5959 m_allocated_memory_cache.Clear(/*deallocte_memory=*/false); 5960 { 5961 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 5962 m_language_runtimes.clear(); 5963 } 5964 m_instrumentation_runtimes.clear(); 5965 m_thread_list.DiscardThreadPlans(); 5966 m_memory_cache.Clear(true); 5967 DoDidExec(); 5968 CompleteAttach(); 5969 // Flush the process (threads and all stack frames) after running 5970 // CompleteAttach() in case the dynamic loader loaded things in new 5971 // locations. 5972 Flush(); 5973 5974 // After we figure out what was loaded/unloaded in CompleteAttach, we need to 5975 // let the target know so it can do any cleanup it needs to. 5976 target.DidExec(); 5977 } 5978 5979 addr_t Process::ResolveIndirectFunction(const Address *address, Status &error) { 5980 if (address == nullptr) { 5981 error = Status::FromErrorString("Invalid address argument"); 5982 return LLDB_INVALID_ADDRESS; 5983 } 5984 5985 addr_t function_addr = LLDB_INVALID_ADDRESS; 5986 5987 addr_t addr = address->GetLoadAddress(&GetTarget()); 5988 std::map<addr_t, addr_t>::const_iterator iter = 5989 m_resolved_indirect_addresses.find(addr); 5990 if (iter != m_resolved_indirect_addresses.end()) { 5991 function_addr = (*iter).second; 5992 } else { 5993 if (!CallVoidArgVoidPtrReturn(address, function_addr)) { 5994 Symbol *symbol = address->CalculateSymbolContextSymbol(); 5995 error = Status::FromErrorStringWithFormat( 5996 "Unable to call resolver for indirect function %s", 5997 symbol ? symbol->GetName().AsCString() : "<UNKNOWN>"); 5998 function_addr = LLDB_INVALID_ADDRESS; 5999 } else { 6000 if (ABISP abi_sp = GetABI()) 6001 function_addr = abi_sp->FixCodeAddress(function_addr); 6002 m_resolved_indirect_addresses.insert( 6003 std::pair<addr_t, addr_t>(addr, function_addr)); 6004 } 6005 } 6006 return function_addr; 6007 } 6008 6009 void Process::ModulesDidLoad(ModuleList &module_list) { 6010 // Inform the system runtime of the modified modules. 6011 SystemRuntime *sys_runtime = GetSystemRuntime(); 6012 if (sys_runtime) 6013 sys_runtime->ModulesDidLoad(module_list); 6014 6015 GetJITLoaders().ModulesDidLoad(module_list); 6016 6017 // Give the instrumentation runtimes a chance to be created before informing 6018 // them of the modified modules. 6019 InstrumentationRuntime::ModulesDidLoad(module_list, this, 6020 m_instrumentation_runtimes); 6021 for (auto &runtime : m_instrumentation_runtimes) 6022 runtime.second->ModulesDidLoad(module_list); 6023 6024 // Give the language runtimes a chance to be created before informing them of 6025 // the modified modules. 6026 for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) { 6027 if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type)) 6028 runtime->ModulesDidLoad(module_list); 6029 } 6030 6031 // If we don't have an operating system plug-in, try to load one since 6032 // loading shared libraries might cause a new one to try and load 6033 if (!m_os_up) 6034 LoadOperatingSystemPlugin(false); 6035 6036 // Inform the structured-data plugins of the modified modules. 6037 for (auto &pair : m_structured_data_plugin_map) { 6038 if (pair.second) 6039 pair.second->ModulesDidLoad(*this, module_list); 6040 } 6041 } 6042 6043 void Process::PrintWarningOptimization(const SymbolContext &sc) { 6044 if (!GetWarningsOptimization()) 6045 return; 6046 if (!sc.module_sp || !sc.function || !sc.function->GetIsOptimized()) 6047 return; 6048 sc.module_sp->ReportWarningOptimization(GetTarget().GetDebugger().GetID()); 6049 } 6050 6051 void Process::PrintWarningUnsupportedLanguage(const SymbolContext &sc) { 6052 if (!GetWarningsUnsupportedLanguage()) 6053 return; 6054 if (!sc.module_sp) 6055 return; 6056 LanguageType language = sc.GetLanguage(); 6057 if (language == eLanguageTypeUnknown || 6058 language == lldb::eLanguageTypeAssembly || 6059 language == lldb::eLanguageTypeMipsAssembler) 6060 return; 6061 LanguageSet plugins = 6062 PluginManager::GetAllTypeSystemSupportedLanguagesForTypes(); 6063 if (plugins[language]) 6064 return; 6065 sc.module_sp->ReportWarningUnsupportedLanguage( 6066 language, GetTarget().GetDebugger().GetID()); 6067 } 6068 6069 bool Process::GetProcessInfo(ProcessInstanceInfo &info) { 6070 info.Clear(); 6071 6072 PlatformSP platform_sp = GetTarget().GetPlatform(); 6073 if (!platform_sp) 6074 return false; 6075 6076 return platform_sp->GetProcessInfo(GetID(), info); 6077 } 6078 6079 lldb_private::UUID Process::FindModuleUUID(const llvm::StringRef path) { 6080 return lldb_private::UUID(); 6081 } 6082 6083 ThreadCollectionSP Process::GetHistoryThreads(lldb::addr_t addr) { 6084 ThreadCollectionSP threads; 6085 6086 const MemoryHistorySP &memory_history = 6087 MemoryHistory::FindPlugin(shared_from_this()); 6088 6089 if (!memory_history) { 6090 return threads; 6091 } 6092 6093 threads = std::make_shared<ThreadCollection>( 6094 memory_history->GetHistoryThreads(addr)); 6095 6096 return threads; 6097 } 6098 6099 InstrumentationRuntimeSP 6100 Process::GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type) { 6101 InstrumentationRuntimeCollection::iterator pos; 6102 pos = m_instrumentation_runtimes.find(type); 6103 if (pos == m_instrumentation_runtimes.end()) { 6104 return InstrumentationRuntimeSP(); 6105 } else 6106 return (*pos).second; 6107 } 6108 6109 bool Process::GetModuleSpec(const FileSpec &module_file_spec, 6110 const ArchSpec &arch, ModuleSpec &module_spec) { 6111 module_spec.Clear(); 6112 return false; 6113 } 6114 6115 size_t Process::AddImageToken(lldb::addr_t image_ptr) { 6116 m_image_tokens.push_back(image_ptr); 6117 return m_image_tokens.size() - 1; 6118 } 6119 6120 lldb::addr_t Process::GetImagePtrFromToken(size_t token) const { 6121 if (token < m_image_tokens.size()) 6122 return m_image_tokens[token]; 6123 return LLDB_INVALID_IMAGE_TOKEN; 6124 } 6125 6126 void Process::ResetImageToken(size_t token) { 6127 if (token < m_image_tokens.size()) 6128 m_image_tokens[token] = LLDB_INVALID_IMAGE_TOKEN; 6129 } 6130 6131 Address 6132 Process::AdvanceAddressToNextBranchInstruction(Address default_stop_addr, 6133 AddressRange range_bounds) { 6134 Target &target = GetTarget(); 6135 DisassemblerSP disassembler_sp; 6136 InstructionList *insn_list = nullptr; 6137 6138 Address retval = default_stop_addr; 6139 6140 if (!target.GetUseFastStepping()) 6141 return retval; 6142 if (!default_stop_addr.IsValid()) 6143 return retval; 6144 6145 const char *plugin_name = nullptr; 6146 const char *flavor = nullptr; 6147 const char *cpu = nullptr; 6148 const char *features = nullptr; 6149 disassembler_sp = Disassembler::DisassembleRange( 6150 target.GetArchitecture(), plugin_name, flavor, cpu, features, GetTarget(), 6151 range_bounds); 6152 if (disassembler_sp) 6153 insn_list = &disassembler_sp->GetInstructionList(); 6154 6155 if (insn_list == nullptr) { 6156 return retval; 6157 } 6158 6159 size_t insn_offset = 6160 insn_list->GetIndexOfInstructionAtAddress(default_stop_addr); 6161 if (insn_offset == UINT32_MAX) { 6162 return retval; 6163 } 6164 6165 uint32_t branch_index = insn_list->GetIndexOfNextBranchInstruction( 6166 insn_offset, false /* ignore_calls*/, nullptr); 6167 if (branch_index == UINT32_MAX) { 6168 return retval; 6169 } 6170 6171 if (branch_index > insn_offset) { 6172 Address next_branch_insn_address = 6173 insn_list->GetInstructionAtIndex(branch_index)->GetAddress(); 6174 if (next_branch_insn_address.IsValid() && 6175 range_bounds.ContainsFileAddress(next_branch_insn_address)) { 6176 retval = next_branch_insn_address; 6177 } 6178 } 6179 6180 return retval; 6181 } 6182 6183 Status Process::GetMemoryRegionInfo(lldb::addr_t load_addr, 6184 MemoryRegionInfo &range_info) { 6185 if (const lldb::ABISP &abi = GetABI()) 6186 load_addr = abi->FixAnyAddress(load_addr); 6187 Status error = DoGetMemoryRegionInfo(load_addr, range_info); 6188 // Reject a region that does not contain the requested address. 6189 if (error.Success() && !range_info.GetRange().Contains(load_addr)) 6190 error = Status::FromErrorString("Invalid memory region"); 6191 6192 return error; 6193 } 6194 6195 Status Process::GetMemoryRegions(lldb_private::MemoryRegionInfos ®ion_list) { 6196 Status error; 6197 6198 lldb::addr_t range_end = 0; 6199 const lldb::ABISP &abi = GetABI(); 6200 6201 region_list.clear(); 6202 do { 6203 lldb_private::MemoryRegionInfo region_info; 6204 error = GetMemoryRegionInfo(range_end, region_info); 6205 // GetMemoryRegionInfo should only return an error if it is unimplemented. 6206 if (error.Fail()) { 6207 region_list.clear(); 6208 break; 6209 } 6210 6211 // We only check the end address, not start and end, because we assume that 6212 // the start will not have non-address bits until the first unmappable 6213 // region. We will have exited the loop by that point because the previous 6214 // region, the last mappable region, will have non-address bits in its end 6215 // address. 6216 range_end = region_info.GetRange().GetRangeEnd(); 6217 if (region_info.GetMapped() == MemoryRegionInfo::eYes) { 6218 region_list.push_back(std::move(region_info)); 6219 } 6220 } while ( 6221 // For a process with no non-address bits, all address bits 6222 // set means the end of memory. 6223 range_end != LLDB_INVALID_ADDRESS && 6224 // If we have non-address bits and some are set then the end 6225 // is at or beyond the end of mappable memory. 6226 !(abi && (abi->FixAnyAddress(range_end) != range_end))); 6227 6228 return error; 6229 } 6230 6231 Status 6232 Process::ConfigureStructuredData(llvm::StringRef type_name, 6233 const StructuredData::ObjectSP &config_sp) { 6234 // If you get this, the Process-derived class needs to implement a method to 6235 // enable an already-reported asynchronous structured data feature. See 6236 // ProcessGDBRemote for an example implementation over gdb-remote. 6237 return Status::FromErrorString("unimplemented"); 6238 } 6239 6240 void Process::MapSupportedStructuredDataPlugins( 6241 const StructuredData::Array &supported_type_names) { 6242 Log *log = GetLog(LLDBLog::Process); 6243 6244 // Bail out early if there are no type names to map. 6245 if (supported_type_names.GetSize() == 0) { 6246 LLDB_LOG(log, "no structured data types supported"); 6247 return; 6248 } 6249 6250 // These StringRefs are backed by the input parameter. 6251 std::set<llvm::StringRef> type_names; 6252 6253 LLDB_LOG(log, 6254 "the process supports the following async structured data types:"); 6255 6256 supported_type_names.ForEach( 6257 [&type_names, &log](StructuredData::Object *object) { 6258 // There shouldn't be null objects in the array. 6259 if (!object) 6260 return false; 6261 6262 // All type names should be strings. 6263 const llvm::StringRef type_name = object->GetStringValue(); 6264 if (type_name.empty()) 6265 return false; 6266 6267 type_names.insert(type_name); 6268 LLDB_LOG(log, "- {0}", type_name); 6269 return true; 6270 }); 6271 6272 // For each StructuredDataPlugin, if the plugin handles any of the types in 6273 // the supported_type_names, map that type name to that plugin. Stop when 6274 // we've consumed all the type names. 6275 // FIXME: should we return an error if there are type names nobody 6276 // supports? 6277 for (uint32_t plugin_index = 0; !type_names.empty(); plugin_index++) { 6278 auto create_instance = 6279 PluginManager::GetStructuredDataPluginCreateCallbackAtIndex( 6280 plugin_index); 6281 if (!create_instance) 6282 break; 6283 6284 // Create the plugin. 6285 StructuredDataPluginSP plugin_sp = (*create_instance)(*this); 6286 if (!plugin_sp) { 6287 // This plugin doesn't think it can work with the process. Move on to the 6288 // next. 6289 continue; 6290 } 6291 6292 // For any of the remaining type names, map any that this plugin supports. 6293 std::vector<llvm::StringRef> names_to_remove; 6294 for (llvm::StringRef type_name : type_names) { 6295 if (plugin_sp->SupportsStructuredDataType(type_name)) { 6296 m_structured_data_plugin_map.insert( 6297 std::make_pair(type_name, plugin_sp)); 6298 names_to_remove.push_back(type_name); 6299 LLDB_LOG(log, "using plugin {0} for type name {1}", 6300 plugin_sp->GetPluginName(), type_name); 6301 } 6302 } 6303 6304 // Remove the type names that were consumed by this plugin. 6305 for (llvm::StringRef type_name : names_to_remove) 6306 type_names.erase(type_name); 6307 } 6308 } 6309 6310 bool Process::RouteAsyncStructuredData( 6311 const StructuredData::ObjectSP object_sp) { 6312 // Nothing to do if there's no data. 6313 if (!object_sp) 6314 return false; 6315 6316 // The contract is this must be a dictionary, so we can look up the routing 6317 // key via the top-level 'type' string value within the dictionary. 6318 StructuredData::Dictionary *dictionary = object_sp->GetAsDictionary(); 6319 if (!dictionary) 6320 return false; 6321 6322 // Grab the async structured type name (i.e. the feature/plugin name). 6323 llvm::StringRef type_name; 6324 if (!dictionary->GetValueForKeyAsString("type", type_name)) 6325 return false; 6326 6327 // Check if there's a plugin registered for this type name. 6328 auto find_it = m_structured_data_plugin_map.find(type_name); 6329 if (find_it == m_structured_data_plugin_map.end()) { 6330 // We don't have a mapping for this structured data type. 6331 return false; 6332 } 6333 6334 // Route the structured data to the plugin. 6335 find_it->second->HandleArrivalOfStructuredData(*this, type_name, object_sp); 6336 return true; 6337 } 6338 6339 Status Process::UpdateAutomaticSignalFiltering() { 6340 // Default implementation does nothign. 6341 // No automatic signal filtering to speak of. 6342 return Status(); 6343 } 6344 6345 UtilityFunction *Process::GetLoadImageUtilityFunction( 6346 Platform *platform, 6347 llvm::function_ref<std::unique_ptr<UtilityFunction>()> factory) { 6348 if (platform != GetTarget().GetPlatform().get()) 6349 return nullptr; 6350 llvm::call_once(m_dlopen_utility_func_flag_once, 6351 [&] { m_dlopen_utility_func_up = factory(); }); 6352 return m_dlopen_utility_func_up.get(); 6353 } 6354 6355 llvm::Expected<TraceSupportedResponse> Process::TraceSupported() { 6356 if (!IsLiveDebugSession()) 6357 return llvm::createStringError(llvm::inconvertibleErrorCode(), 6358 "Can't trace a non-live process."); 6359 return llvm::make_error<UnimplementedError>(); 6360 } 6361 6362 bool Process::CallVoidArgVoidPtrReturn(const Address *address, 6363 addr_t &returned_func, 6364 bool trap_exceptions) { 6365 Thread *thread = GetThreadList().GetExpressionExecutionThread().get(); 6366 if (thread == nullptr || address == nullptr) 6367 return false; 6368 6369 EvaluateExpressionOptions options; 6370 options.SetStopOthers(true); 6371 options.SetUnwindOnError(true); 6372 options.SetIgnoreBreakpoints(true); 6373 options.SetTryAllThreads(true); 6374 options.SetDebug(false); 6375 options.SetTimeout(GetUtilityExpressionTimeout()); 6376 options.SetTrapExceptions(trap_exceptions); 6377 6378 auto type_system_or_err = 6379 GetTarget().GetScratchTypeSystemForLanguage(eLanguageTypeC); 6380 if (!type_system_or_err) { 6381 llvm::consumeError(type_system_or_err.takeError()); 6382 return false; 6383 } 6384 auto ts = *type_system_or_err; 6385 if (!ts) 6386 return false; 6387 CompilerType void_ptr_type = 6388 ts->GetBasicTypeFromAST(eBasicTypeVoid).GetPointerType(); 6389 lldb::ThreadPlanSP call_plan_sp(new ThreadPlanCallFunction( 6390 *thread, *address, void_ptr_type, llvm::ArrayRef<addr_t>(), options)); 6391 if (call_plan_sp) { 6392 DiagnosticManager diagnostics; 6393 6394 StackFrame *frame = thread->GetStackFrameAtIndex(0).get(); 6395 if (frame) { 6396 ExecutionContext exe_ctx; 6397 frame->CalculateExecutionContext(exe_ctx); 6398 ExpressionResults result = 6399 RunThreadPlan(exe_ctx, call_plan_sp, options, diagnostics); 6400 if (result == eExpressionCompleted) { 6401 returned_func = 6402 call_plan_sp->GetReturnValueObject()->GetValueAsUnsigned( 6403 LLDB_INVALID_ADDRESS); 6404 6405 if (GetAddressByteSize() == 4) { 6406 if (returned_func == UINT32_MAX) 6407 return false; 6408 } else if (GetAddressByteSize() == 8) { 6409 if (returned_func == UINT64_MAX) 6410 return false; 6411 } 6412 return true; 6413 } 6414 } 6415 } 6416 6417 return false; 6418 } 6419 6420 llvm::Expected<const MemoryTagManager *> Process::GetMemoryTagManager() { 6421 Architecture *arch = GetTarget().GetArchitecturePlugin(); 6422 const MemoryTagManager *tag_manager = 6423 arch ? arch->GetMemoryTagManager() : nullptr; 6424 if (!arch || !tag_manager) { 6425 return llvm::createStringError( 6426 llvm::inconvertibleErrorCode(), 6427 "This architecture does not support memory tagging"); 6428 } 6429 6430 if (!SupportsMemoryTagging()) { 6431 return llvm::createStringError(llvm::inconvertibleErrorCode(), 6432 "Process does not support memory tagging"); 6433 } 6434 6435 return tag_manager; 6436 } 6437 6438 llvm::Expected<std::vector<lldb::addr_t>> 6439 Process::ReadMemoryTags(lldb::addr_t addr, size_t len) { 6440 llvm::Expected<const MemoryTagManager *> tag_manager_or_err = 6441 GetMemoryTagManager(); 6442 if (!tag_manager_or_err) 6443 return tag_manager_or_err.takeError(); 6444 6445 const MemoryTagManager *tag_manager = *tag_manager_or_err; 6446 llvm::Expected<std::vector<uint8_t>> tag_data = 6447 DoReadMemoryTags(addr, len, tag_manager->GetAllocationTagType()); 6448 if (!tag_data) 6449 return tag_data.takeError(); 6450 6451 return tag_manager->UnpackTagsData(*tag_data, 6452 len / tag_manager->GetGranuleSize()); 6453 } 6454 6455 Status Process::WriteMemoryTags(lldb::addr_t addr, size_t len, 6456 const std::vector<lldb::addr_t> &tags) { 6457 llvm::Expected<const MemoryTagManager *> tag_manager_or_err = 6458 GetMemoryTagManager(); 6459 if (!tag_manager_or_err) 6460 return Status::FromError(tag_manager_or_err.takeError()); 6461 6462 const MemoryTagManager *tag_manager = *tag_manager_or_err; 6463 llvm::Expected<std::vector<uint8_t>> packed_tags = 6464 tag_manager->PackTags(tags); 6465 if (!packed_tags) { 6466 return Status::FromError(packed_tags.takeError()); 6467 } 6468 6469 return DoWriteMemoryTags(addr, len, tag_manager->GetAllocationTagType(), 6470 *packed_tags); 6471 } 6472 6473 // Create a CoreFileMemoryRange from a MemoryRegionInfo 6474 static CoreFileMemoryRange 6475 CreateCoreFileMemoryRange(const MemoryRegionInfo ®ion) { 6476 const addr_t addr = region.GetRange().GetRangeBase(); 6477 llvm::AddressRange range(addr, addr + region.GetRange().GetByteSize()); 6478 return {range, region.GetLLDBPermissions()}; 6479 } 6480 6481 // Add dirty pages to the core file ranges and return true if dirty pages 6482 // were added. Return false if the dirty page information is not valid or in 6483 // the region. 6484 static bool AddDirtyPages(const MemoryRegionInfo ®ion, 6485 CoreFileMemoryRanges &ranges) { 6486 const auto &dirty_page_list = region.GetDirtyPageList(); 6487 if (!dirty_page_list) 6488 return false; 6489 const uint32_t lldb_permissions = region.GetLLDBPermissions(); 6490 const addr_t page_size = region.GetPageSize(); 6491 if (page_size == 0) 6492 return false; 6493 llvm::AddressRange range(0, 0); 6494 for (addr_t page_addr : *dirty_page_list) { 6495 if (range.empty()) { 6496 // No range yet, initialize the range with the current dirty page. 6497 range = llvm::AddressRange(page_addr, page_addr + page_size); 6498 } else { 6499 if (range.end() == page_addr) { 6500 // Combine consective ranges. 6501 range = llvm::AddressRange(range.start(), page_addr + page_size); 6502 } else { 6503 // Add previous contiguous range and init the new range with the 6504 // current dirty page. 6505 ranges.Append(range.start(), range.size(), {range, lldb_permissions}); 6506 range = llvm::AddressRange(page_addr, page_addr + page_size); 6507 } 6508 } 6509 } 6510 // The last range 6511 if (!range.empty()) 6512 ranges.Append(range.start(), range.size(), {range, lldb_permissions}); 6513 return true; 6514 } 6515 6516 // Given a region, add the region to \a ranges. 6517 // 6518 // Only add the region if it isn't empty and if it has some permissions. 6519 // If \a try_dirty_pages is true, then try to add only the dirty pages for a 6520 // given region. If the region has dirty page information, only dirty pages 6521 // will be added to \a ranges, else the entire range will be added to \a 6522 // ranges. 6523 static void AddRegion(const MemoryRegionInfo ®ion, bool try_dirty_pages, 6524 CoreFileMemoryRanges &ranges) { 6525 // Don't add empty ranges. 6526 if (region.GetRange().GetByteSize() == 0) 6527 return; 6528 // Don't add ranges with no read permissions. 6529 if ((region.GetLLDBPermissions() & lldb::ePermissionsReadable) == 0) 6530 return; 6531 if (try_dirty_pages && AddDirtyPages(region, ranges)) 6532 return; 6533 6534 ranges.Append(region.GetRange().GetRangeBase(), 6535 region.GetRange().GetByteSize(), 6536 CreateCoreFileMemoryRange(region)); 6537 } 6538 6539 static void SaveDynamicLoaderSections(Process &process, 6540 const SaveCoreOptions &options, 6541 CoreFileMemoryRanges &ranges, 6542 std::set<addr_t> &stack_ends) { 6543 DynamicLoader *dyld = process.GetDynamicLoader(); 6544 if (!dyld) 6545 return; 6546 6547 std::vector<MemoryRegionInfo> dynamic_loader_mem_regions; 6548 std::function<bool(const lldb_private::Thread &)> save_thread_predicate = 6549 [&](const lldb_private::Thread &t) -> bool { 6550 return options.ShouldThreadBeSaved(t.GetID()); 6551 }; 6552 dyld->CalculateDynamicSaveCoreRanges(process, dynamic_loader_mem_regions, 6553 save_thread_predicate); 6554 for (const auto ®ion : dynamic_loader_mem_regions) { 6555 // The Dynamic Loader can give us regions that could include a truncated 6556 // stack 6557 if (stack_ends.count(region.GetRange().GetRangeEnd()) == 0) 6558 AddRegion(region, true, ranges); 6559 } 6560 } 6561 6562 static void SaveOffRegionsWithStackPointers(Process &process, 6563 const SaveCoreOptions &core_options, 6564 const MemoryRegionInfos ®ions, 6565 CoreFileMemoryRanges &ranges, 6566 std::set<addr_t> &stack_ends) { 6567 const bool try_dirty_pages = true; 6568 6569 // Before we take any dump, we want to save off the used portions of the 6570 // stacks and mark those memory regions as saved. This prevents us from saving 6571 // the unused portion of the stack below the stack pointer. Saving space on 6572 // the dump. 6573 for (lldb::ThreadSP thread_sp : process.GetThreadList().Threads()) { 6574 if (!thread_sp) 6575 continue; 6576 StackFrameSP frame_sp = thread_sp->GetStackFrameAtIndex(0); 6577 if (!frame_sp) 6578 continue; 6579 RegisterContextSP reg_ctx_sp = frame_sp->GetRegisterContext(); 6580 if (!reg_ctx_sp) 6581 continue; 6582 const addr_t sp = reg_ctx_sp->GetSP(); 6583 const size_t red_zone = process.GetABI()->GetRedZoneSize(); 6584 lldb_private::MemoryRegionInfo sp_region; 6585 if (process.GetMemoryRegionInfo(sp, sp_region).Success()) { 6586 const size_t stack_head = (sp - red_zone); 6587 const size_t stack_size = sp_region.GetRange().GetRangeEnd() - stack_head; 6588 // Even if the SaveCoreOption doesn't want us to save the stack 6589 // we still need to populate the stack_ends set so it doesn't get saved 6590 // off in other calls 6591 sp_region.GetRange().SetRangeBase(stack_head); 6592 sp_region.GetRange().SetByteSize(stack_size); 6593 const addr_t range_end = sp_region.GetRange().GetRangeEnd(); 6594 stack_ends.insert(range_end); 6595 // This will return true if the threadlist the user specified is empty, 6596 // or contains the thread id from thread_sp. 6597 if (core_options.ShouldThreadBeSaved(thread_sp->GetID())) { 6598 AddRegion(sp_region, try_dirty_pages, ranges); 6599 } 6600 } 6601 } 6602 } 6603 6604 // Save all memory regions that are not empty or have at least some permissions 6605 // for a full core file style. 6606 static void GetCoreFileSaveRangesFull(Process &process, 6607 const MemoryRegionInfos ®ions, 6608 CoreFileMemoryRanges &ranges, 6609 std::set<addr_t> &stack_ends) { 6610 6611 // Don't add only dirty pages, add full regions. 6612 const bool try_dirty_pages = false; 6613 for (const auto ®ion : regions) 6614 if (stack_ends.count(region.GetRange().GetRangeEnd()) == 0) 6615 AddRegion(region, try_dirty_pages, ranges); 6616 } 6617 6618 // Save only the dirty pages to the core file. Make sure the process has at 6619 // least some dirty pages, as some OS versions don't support reporting what 6620 // pages are dirty within an memory region. If no memory regions have dirty 6621 // page information fall back to saving out all ranges with write permissions. 6622 static void GetCoreFileSaveRangesDirtyOnly(Process &process, 6623 const MemoryRegionInfos ®ions, 6624 CoreFileMemoryRanges &ranges, 6625 std::set<addr_t> &stack_ends) { 6626 6627 // Iterate over the regions and find all dirty pages. 6628 bool have_dirty_page_info = false; 6629 for (const auto ®ion : regions) { 6630 if (stack_ends.count(region.GetRange().GetRangeEnd()) == 0 && 6631 AddDirtyPages(region, ranges)) 6632 have_dirty_page_info = true; 6633 } 6634 6635 if (!have_dirty_page_info) { 6636 // We didn't find support for reporting dirty pages from the process 6637 // plug-in so fall back to any region with write access permissions. 6638 const bool try_dirty_pages = false; 6639 for (const auto ®ion : regions) 6640 if (stack_ends.count(region.GetRange().GetRangeEnd()) == 0 && 6641 region.GetWritable() == MemoryRegionInfo::eYes) 6642 AddRegion(region, try_dirty_pages, ranges); 6643 } 6644 } 6645 6646 // Save all thread stacks to the core file. Some OS versions support reporting 6647 // when a memory region is stack related. We check on this information, but we 6648 // also use the stack pointers of each thread and add those in case the OS 6649 // doesn't support reporting stack memory. This function also attempts to only 6650 // emit dirty pages from the stack if the memory regions support reporting 6651 // dirty regions as this will make the core file smaller. If the process 6652 // doesn't support dirty regions, then it will fall back to adding the full 6653 // stack region. 6654 static void GetCoreFileSaveRangesStackOnly(Process &process, 6655 const MemoryRegionInfos ®ions, 6656 CoreFileMemoryRanges &ranges, 6657 std::set<addr_t> &stack_ends) { 6658 const bool try_dirty_pages = true; 6659 // Some platforms support annotating the region information that tell us that 6660 // it comes from a thread stack. So look for those regions first. 6661 6662 for (const auto ®ion : regions) { 6663 // Save all the stack memory ranges not associated with a stack pointer. 6664 if (stack_ends.count(region.GetRange().GetRangeEnd()) == 0 && 6665 region.IsStackMemory() == MemoryRegionInfo::eYes) 6666 AddRegion(region, try_dirty_pages, ranges); 6667 } 6668 } 6669 6670 static void GetUserSpecifiedCoreFileSaveRanges(Process &process, 6671 const MemoryRegionInfos ®ions, 6672 const SaveCoreOptions &options, 6673 CoreFileMemoryRanges &ranges) { 6674 const auto &option_ranges = options.GetCoreFileMemoryRanges(); 6675 if (option_ranges.IsEmpty()) 6676 return; 6677 6678 for (const auto &range : regions) { 6679 auto entry = option_ranges.FindEntryThatContains(range.GetRange()); 6680 if (entry) { 6681 ranges.Append(range.GetRange().GetRangeBase(), 6682 range.GetRange().GetByteSize(), 6683 CreateCoreFileMemoryRange(range)); 6684 } 6685 } 6686 } 6687 6688 Status Process::CalculateCoreFileSaveRanges(const SaveCoreOptions &options, 6689 CoreFileMemoryRanges &ranges) { 6690 lldb_private::MemoryRegionInfos regions; 6691 Status err = GetMemoryRegions(regions); 6692 SaveCoreStyle core_style = options.GetStyle(); 6693 if (err.Fail()) 6694 return err; 6695 if (regions.empty()) 6696 return Status::FromErrorString( 6697 "failed to get any valid memory regions from the process"); 6698 if (core_style == eSaveCoreUnspecified) 6699 return Status::FromErrorString( 6700 "callers must set the core_style to something other than " 6701 "eSaveCoreUnspecified"); 6702 6703 GetUserSpecifiedCoreFileSaveRanges(*this, regions, options, ranges); 6704 6705 std::set<addr_t> stack_ends; 6706 // For fully custom set ups, we don't want to even look at threads if there 6707 // are no threads specified. 6708 if (core_style != lldb::eSaveCoreCustomOnly || 6709 options.HasSpecifiedThreads()) { 6710 SaveOffRegionsWithStackPointers(*this, options, regions, ranges, 6711 stack_ends); 6712 // Save off the dynamic loader sections, so if we are on an architecture 6713 // that supports Thread Locals, that we include those as well. 6714 SaveDynamicLoaderSections(*this, options, ranges, stack_ends); 6715 } 6716 6717 switch (core_style) { 6718 case eSaveCoreUnspecified: 6719 case eSaveCoreCustomOnly: 6720 break; 6721 6722 case eSaveCoreFull: 6723 GetCoreFileSaveRangesFull(*this, regions, ranges, stack_ends); 6724 break; 6725 6726 case eSaveCoreDirtyOnly: 6727 GetCoreFileSaveRangesDirtyOnly(*this, regions, ranges, stack_ends); 6728 break; 6729 6730 case eSaveCoreStackOnly: 6731 GetCoreFileSaveRangesStackOnly(*this, regions, ranges, stack_ends); 6732 break; 6733 } 6734 6735 if (err.Fail()) 6736 return err; 6737 6738 if (ranges.IsEmpty()) 6739 return Status::FromErrorStringWithFormat( 6740 "no valid address ranges found for core style"); 6741 6742 return ranges.FinalizeCoreFileSaveRanges(); 6743 } 6744 6745 std::vector<ThreadSP> 6746 Process::CalculateCoreFileThreadList(const SaveCoreOptions &core_options) { 6747 std::vector<ThreadSP> thread_list; 6748 for (const lldb::ThreadSP &thread_sp : m_thread_list.Threads()) { 6749 if (core_options.ShouldThreadBeSaved(thread_sp->GetID())) { 6750 thread_list.push_back(thread_sp); 6751 } 6752 } 6753 6754 return thread_list; 6755 } 6756 6757 void Process::SetAddressableBitMasks(AddressableBits bit_masks) { 6758 uint32_t low_memory_addr_bits = bit_masks.GetLowmemAddressableBits(); 6759 uint32_t high_memory_addr_bits = bit_masks.GetHighmemAddressableBits(); 6760 6761 if (low_memory_addr_bits == 0 && high_memory_addr_bits == 0) 6762 return; 6763 6764 if (low_memory_addr_bits != 0) { 6765 addr_t low_addr_mask = 6766 AddressableBits::AddressableBitToMask(low_memory_addr_bits); 6767 SetCodeAddressMask(low_addr_mask); 6768 SetDataAddressMask(low_addr_mask); 6769 } 6770 6771 if (high_memory_addr_bits != 0) { 6772 addr_t high_addr_mask = 6773 AddressableBits::AddressableBitToMask(high_memory_addr_bits); 6774 SetHighmemCodeAddressMask(high_addr_mask); 6775 SetHighmemDataAddressMask(high_addr_mask); 6776 } 6777 } 6778