1 //===- PassManager.h - Pass management infrastructure -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// 10 /// This header defines various interfaces for pass management in LLVM. There 11 /// is no "pass" interface in LLVM per se. Instead, an instance of any class 12 /// which supports a method to 'run' it over a unit of IR can be used as 13 /// a pass. A pass manager is generally a tool to collect a sequence of passes 14 /// which run over a particular IR construct, and run each of them in sequence 15 /// over each such construct in the containing IR construct. As there is no 16 /// containing IR construct for a Module, a manager for passes over modules 17 /// forms the base case which runs its managed passes in sequence over the 18 /// single module provided. 19 /// 20 /// The core IR library provides managers for running passes over 21 /// modules and functions. 22 /// 23 /// * FunctionPassManager can run over a Module, runs each pass over 24 /// a Function. 25 /// * ModulePassManager must be directly run, runs each pass over the Module. 26 /// 27 /// Note that the implementations of the pass managers use concept-based 28 /// polymorphism as outlined in the "Value Semantics and Concept-based 29 /// Polymorphism" talk (or its abbreviated sibling "Inheritance Is The Base 30 /// Class of Evil") by Sean Parent: 31 /// * http://github.com/sean-parent/sean-parent.github.com/wiki/Papers-and-Presentations 32 /// * http://www.youtube.com/watch?v=_BpMYeUFXv8 33 /// * http://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil 34 /// 35 //===----------------------------------------------------------------------===// 36 37 #ifndef LLVM_IR_PASSMANAGER_H 38 #define LLVM_IR_PASSMANAGER_H 39 40 #include "llvm/ADT/DenseMap.h" 41 #include "llvm/ADT/STLExtras.h" 42 #include "llvm/ADT/StringRef.h" 43 #include "llvm/ADT/TinyPtrVector.h" 44 #include "llvm/IR/Analysis.h" 45 #include "llvm/IR/PassManagerInternal.h" 46 #include "llvm/Support/TypeName.h" 47 #include <cassert> 48 #include <cstring> 49 #include <iterator> 50 #include <list> 51 #include <memory> 52 #include <tuple> 53 #include <type_traits> 54 #include <utility> 55 #include <vector> 56 57 namespace llvm { 58 59 class Function; 60 class Module; 61 62 // Forward declare the analysis manager template. 63 template <typename IRUnitT, typename... ExtraArgTs> class AnalysisManager; 64 65 /// A CRTP mix-in to automatically provide informational APIs needed for 66 /// passes. 67 /// 68 /// This provides some boilerplate for types that are passes. 69 template <typename DerivedT> struct PassInfoMixin { 70 /// Gets the name of the pass we are mixed into. 71 static StringRef name() { 72 static_assert(std::is_base_of<PassInfoMixin, DerivedT>::value, 73 "Must pass the derived type as the template argument!"); 74 StringRef Name = getTypeName<DerivedT>(); 75 Name.consume_front("llvm::"); 76 return Name; 77 } 78 79 void printPipeline(raw_ostream &OS, 80 function_ref<StringRef(StringRef)> MapClassName2PassName) { 81 StringRef ClassName = DerivedT::name(); 82 auto PassName = MapClassName2PassName(ClassName); 83 OS << PassName; 84 } 85 }; 86 87 /// A CRTP mix-in that provides informational APIs needed for analysis passes. 88 /// 89 /// This provides some boilerplate for types that are analysis passes. It 90 /// automatically mixes in \c PassInfoMixin. 91 template <typename DerivedT> 92 struct AnalysisInfoMixin : PassInfoMixin<DerivedT> { 93 /// Returns an opaque, unique ID for this analysis type. 94 /// 95 /// This ID is a pointer type that is guaranteed to be 8-byte aligned and thus 96 /// suitable for use in sets, maps, and other data structures that use the low 97 /// bits of pointers. 98 /// 99 /// Note that this requires the derived type provide a static \c AnalysisKey 100 /// member called \c Key. 101 /// 102 /// FIXME: The only reason the mixin type itself can't declare the Key value 103 /// is that some compilers cannot correctly unique a templated static variable 104 /// so it has the same addresses in each instantiation. The only currently 105 /// known platform with this limitation is Windows DLL builds, specifically 106 /// building each part of LLVM as a DLL. If we ever remove that build 107 /// configuration, this mixin can provide the static key as well. 108 static AnalysisKey *ID() { 109 static_assert(std::is_base_of<AnalysisInfoMixin, DerivedT>::value, 110 "Must pass the derived type as the template argument!"); 111 return &DerivedT::Key; 112 } 113 }; 114 115 namespace detail { 116 117 /// Actual unpacker of extra arguments in getAnalysisResult, 118 /// passes only those tuple arguments that are mentioned in index_sequence. 119 template <typename PassT, typename IRUnitT, typename AnalysisManagerT, 120 typename... ArgTs, size_t... Ns> 121 typename PassT::Result 122 getAnalysisResultUnpackTuple(AnalysisManagerT &AM, IRUnitT &IR, 123 std::tuple<ArgTs...> Args, 124 std::index_sequence<Ns...>) { 125 (void)Args; 126 return AM.template getResult<PassT>(IR, std::get<Ns>(Args)...); 127 } 128 129 /// Helper for *partial* unpacking of extra arguments in getAnalysisResult. 130 /// 131 /// Arguments passed in tuple come from PassManager, so they might have extra 132 /// arguments after those AnalysisManager's ExtraArgTs ones that we need to 133 /// pass to getResult. 134 template <typename PassT, typename IRUnitT, typename... AnalysisArgTs, 135 typename... MainArgTs> 136 typename PassT::Result 137 getAnalysisResult(AnalysisManager<IRUnitT, AnalysisArgTs...> &AM, IRUnitT &IR, 138 std::tuple<MainArgTs...> Args) { 139 return (getAnalysisResultUnpackTuple< 140 PassT, IRUnitT>)(AM, IR, Args, 141 std::index_sequence_for<AnalysisArgTs...>{}); 142 } 143 144 } // namespace detail 145 146 /// Manages a sequence of passes over a particular unit of IR. 147 /// 148 /// A pass manager contains a sequence of passes to run over a particular unit 149 /// of IR (e.g. Functions, Modules). It is itself a valid pass over that unit of 150 /// IR, and when run over some given IR will run each of its contained passes in 151 /// sequence. Pass managers are the primary and most basic building block of a 152 /// pass pipeline. 153 /// 154 /// When you run a pass manager, you provide an \c AnalysisManager<IRUnitT> 155 /// argument. The pass manager will propagate that analysis manager to each 156 /// pass it runs, and will call the analysis manager's invalidation routine with 157 /// the PreservedAnalyses of each pass it runs. 158 template <typename IRUnitT, 159 typename AnalysisManagerT = AnalysisManager<IRUnitT>, 160 typename... ExtraArgTs> 161 class PassManager : public PassInfoMixin< 162 PassManager<IRUnitT, AnalysisManagerT, ExtraArgTs...>> { 163 public: 164 /// Construct a pass manager. 165 explicit PassManager() = default; 166 167 // FIXME: These are equivalent to the default move constructor/move 168 // assignment. However, using = default triggers linker errors due to the 169 // explicit instantiations below. Find away to use the default and remove the 170 // duplicated code here. 171 PassManager(PassManager &&Arg) : Passes(std::move(Arg.Passes)) {} 172 173 PassManager &operator=(PassManager &&RHS) { 174 Passes = std::move(RHS.Passes); 175 return *this; 176 } 177 178 void printPipeline(raw_ostream &OS, 179 function_ref<StringRef(StringRef)> MapClassName2PassName) { 180 for (unsigned Idx = 0, Size = Passes.size(); Idx != Size; ++Idx) { 181 auto *P = Passes[Idx].get(); 182 P->printPipeline(OS, MapClassName2PassName); 183 if (Idx + 1 < Size) 184 OS << ','; 185 } 186 } 187 188 /// Run all of the passes in this manager over the given unit of IR. 189 /// ExtraArgs are passed to each pass. 190 PreservedAnalyses run(IRUnitT &IR, AnalysisManagerT &AM, 191 ExtraArgTs... ExtraArgs); 192 193 template <typename PassT> 194 LLVM_ATTRIBUTE_MINSIZE std::enable_if_t<!std::is_same_v<PassT, PassManager>> 195 addPass(PassT &&Pass) { 196 using PassModelT = 197 detail::PassModel<IRUnitT, PassT, AnalysisManagerT, ExtraArgTs...>; 198 // Do not use make_unique or emplace_back, they cause too many template 199 // instantiations, causing terrible compile times. 200 Passes.push_back(std::unique_ptr<PassConceptT>( 201 new PassModelT(std::forward<PassT>(Pass)))); 202 } 203 204 /// When adding a pass manager pass that has the same type as this pass 205 /// manager, simply move the passes over. This is because we don't have 206 /// use cases rely on executing nested pass managers. Doing this could 207 /// reduce implementation complexity and avoid potential invalidation 208 /// issues that may happen with nested pass managers of the same type. 209 template <typename PassT> 210 LLVM_ATTRIBUTE_MINSIZE std::enable_if_t<std::is_same_v<PassT, PassManager>> 211 addPass(PassT &&Pass) { 212 for (auto &P : Pass.Passes) 213 Passes.push_back(std::move(P)); 214 } 215 216 /// Returns if the pass manager contains any passes. 217 bool isEmpty() const { return Passes.empty(); } 218 219 static bool isRequired() { return true; } 220 221 protected: 222 using PassConceptT = 223 detail::PassConcept<IRUnitT, AnalysisManagerT, ExtraArgTs...>; 224 225 std::vector<std::unique_ptr<PassConceptT>> Passes; 226 }; 227 228 template <typename IRUnitT> 229 void printIRUnitNameForStackTrace(raw_ostream &OS, const IRUnitT &IR); 230 231 template <> 232 void printIRUnitNameForStackTrace<Module>(raw_ostream &OS, const Module &IR); 233 234 extern template class PassManager<Module>; 235 236 /// Convenience typedef for a pass manager over modules. 237 using ModulePassManager = PassManager<Module>; 238 239 template <> 240 void printIRUnitNameForStackTrace<Function>(raw_ostream &OS, 241 const Function &IR); 242 243 extern template class PassManager<Function>; 244 245 /// Convenience typedef for a pass manager over functions. 246 using FunctionPassManager = PassManager<Function>; 247 248 /// A container for analyses that lazily runs them and caches their 249 /// results. 250 /// 251 /// This class can manage analyses for any IR unit where the address of the IR 252 /// unit sufficies as its identity. 253 template <typename IRUnitT, typename... ExtraArgTs> class AnalysisManager { 254 public: 255 class Invalidator; 256 257 private: 258 // Now that we've defined our invalidator, we can define the concept types. 259 using ResultConceptT = detail::AnalysisResultConcept<IRUnitT, Invalidator>; 260 using PassConceptT = 261 detail::AnalysisPassConcept<IRUnitT, Invalidator, ExtraArgTs...>; 262 263 /// List of analysis pass IDs and associated concept pointers. 264 /// 265 /// Requires iterators to be valid across appending new entries and arbitrary 266 /// erases. Provides the analysis ID to enable finding iterators to a given 267 /// entry in maps below, and provides the storage for the actual result 268 /// concept. 269 using AnalysisResultListT = 270 std::list<std::pair<AnalysisKey *, std::unique_ptr<ResultConceptT>>>; 271 272 /// Map type from IRUnitT pointer to our custom list type. 273 using AnalysisResultListMapT = DenseMap<IRUnitT *, AnalysisResultListT>; 274 275 /// Map type from a pair of analysis ID and IRUnitT pointer to an 276 /// iterator into a particular result list (which is where the actual analysis 277 /// result is stored). 278 using AnalysisResultMapT = 279 DenseMap<std::pair<AnalysisKey *, IRUnitT *>, 280 typename AnalysisResultListT::iterator>; 281 282 public: 283 /// API to communicate dependencies between analyses during invalidation. 284 /// 285 /// When an analysis result embeds handles to other analysis results, it 286 /// needs to be invalidated both when its own information isn't preserved and 287 /// when any of its embedded analysis results end up invalidated. We pass an 288 /// \c Invalidator object as an argument to \c invalidate() in order to let 289 /// the analysis results themselves define the dependency graph on the fly. 290 /// This lets us avoid building an explicit representation of the 291 /// dependencies between analysis results. 292 class Invalidator { 293 public: 294 /// Trigger the invalidation of some other analysis pass if not already 295 /// handled and return whether it was in fact invalidated. 296 /// 297 /// This is expected to be called from within a given analysis result's \c 298 /// invalidate method to trigger a depth-first walk of all inter-analysis 299 /// dependencies. The same \p IR unit and \p PA passed to that result's \c 300 /// invalidate method should in turn be provided to this routine. 301 /// 302 /// The first time this is called for a given analysis pass, it will call 303 /// the corresponding result's \c invalidate method. Subsequent calls will 304 /// use a cache of the results of that initial call. It is an error to form 305 /// cyclic dependencies between analysis results. 306 /// 307 /// This returns true if the given analysis's result is invalid. Any 308 /// dependecies on it will become invalid as a result. 309 template <typename PassT> 310 bool invalidate(IRUnitT &IR, const PreservedAnalyses &PA) { 311 using ResultModelT = 312 detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result, 313 Invalidator>; 314 315 return invalidateImpl<ResultModelT>(PassT::ID(), IR, PA); 316 } 317 318 /// A type-erased variant of the above invalidate method with the same core 319 /// API other than passing an analysis ID rather than an analysis type 320 /// parameter. 321 /// 322 /// This is sadly less efficient than the above routine, which leverages 323 /// the type parameter to avoid the type erasure overhead. 324 bool invalidate(AnalysisKey *ID, IRUnitT &IR, const PreservedAnalyses &PA) { 325 return invalidateImpl<>(ID, IR, PA); 326 } 327 328 private: 329 friend class AnalysisManager; 330 331 template <typename ResultT = ResultConceptT> 332 bool invalidateImpl(AnalysisKey *ID, IRUnitT &IR, 333 const PreservedAnalyses &PA) { 334 // If we've already visited this pass, return true if it was invalidated 335 // and false otherwise. 336 auto IMapI = IsResultInvalidated.find(ID); 337 if (IMapI != IsResultInvalidated.end()) 338 return IMapI->second; 339 340 // Otherwise look up the result object. 341 auto RI = Results.find({ID, &IR}); 342 assert(RI != Results.end() && 343 "Trying to invalidate a dependent result that isn't in the " 344 "manager's cache is always an error, likely due to a stale result " 345 "handle!"); 346 347 auto &Result = static_cast<ResultT &>(*RI->second->second); 348 349 // Insert into the map whether the result should be invalidated and return 350 // that. Note that we cannot reuse IMapI and must do a fresh insert here, 351 // as calling invalidate could (recursively) insert things into the map, 352 // making any iterator or reference invalid. 353 bool Inserted; 354 std::tie(IMapI, Inserted) = 355 IsResultInvalidated.insert({ID, Result.invalidate(IR, PA, *this)}); 356 (void)Inserted; 357 assert(Inserted && "Should not have already inserted this ID, likely " 358 "indicates a dependency cycle!"); 359 return IMapI->second; 360 } 361 362 Invalidator(SmallDenseMap<AnalysisKey *, bool, 8> &IsResultInvalidated, 363 const AnalysisResultMapT &Results) 364 : IsResultInvalidated(IsResultInvalidated), Results(Results) {} 365 366 SmallDenseMap<AnalysisKey *, bool, 8> &IsResultInvalidated; 367 const AnalysisResultMapT &Results; 368 }; 369 370 /// Construct an empty analysis manager. 371 AnalysisManager(); 372 AnalysisManager(AnalysisManager &&); 373 AnalysisManager &operator=(AnalysisManager &&); 374 375 /// Returns true if the analysis manager has an empty results cache. 376 bool empty() const { 377 assert(AnalysisResults.empty() == AnalysisResultLists.empty() && 378 "The storage and index of analysis results disagree on how many " 379 "there are!"); 380 return AnalysisResults.empty(); 381 } 382 383 /// Clear any cached analysis results for a single unit of IR. 384 /// 385 /// This doesn't invalidate, but instead simply deletes, the relevant results. 386 /// It is useful when the IR is being removed and we want to clear out all the 387 /// memory pinned for it. 388 void clear(IRUnitT &IR, llvm::StringRef Name); 389 390 /// Clear all analysis results cached by this AnalysisManager. 391 /// 392 /// Like \c clear(IRUnitT&), this doesn't invalidate the results; it simply 393 /// deletes them. This lets you clean up the AnalysisManager when the set of 394 /// IR units itself has potentially changed, and thus we can't even look up a 395 /// a result and invalidate/clear it directly. 396 void clear() { 397 AnalysisResults.clear(); 398 AnalysisResultLists.clear(); 399 } 400 401 /// Get the result of an analysis pass for a given IR unit. 402 /// 403 /// Runs the analysis if a cached result is not available. 404 template <typename PassT> 405 typename PassT::Result &getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs) { 406 assert(AnalysisPasses.count(PassT::ID()) && 407 "This analysis pass was not registered prior to being queried"); 408 ResultConceptT &ResultConcept = 409 getResultImpl(PassT::ID(), IR, ExtraArgs...); 410 411 using ResultModelT = 412 detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result, 413 Invalidator>; 414 415 return static_cast<ResultModelT &>(ResultConcept).Result; 416 } 417 418 /// Get the cached result of an analysis pass for a given IR unit. 419 /// 420 /// This method never runs the analysis. 421 /// 422 /// \returns null if there is no cached result. 423 template <typename PassT> 424 typename PassT::Result *getCachedResult(IRUnitT &IR) const { 425 assert(AnalysisPasses.count(PassT::ID()) && 426 "This analysis pass was not registered prior to being queried"); 427 428 ResultConceptT *ResultConcept = getCachedResultImpl(PassT::ID(), IR); 429 if (!ResultConcept) 430 return nullptr; 431 432 using ResultModelT = 433 detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result, 434 Invalidator>; 435 436 return &static_cast<ResultModelT *>(ResultConcept)->Result; 437 } 438 439 /// Verify that the given Result cannot be invalidated, assert otherwise. 440 template <typename PassT> 441 void verifyNotInvalidated(IRUnitT &IR, typename PassT::Result *Result) const { 442 PreservedAnalyses PA = PreservedAnalyses::none(); 443 SmallDenseMap<AnalysisKey *, bool, 8> IsResultInvalidated; 444 Invalidator Inv(IsResultInvalidated, AnalysisResults); 445 assert(!Result->invalidate(IR, PA, Inv) && 446 "Cached result cannot be invalidated"); 447 } 448 449 /// Register an analysis pass with the manager. 450 /// 451 /// The parameter is a callable whose result is an analysis pass. This allows 452 /// passing in a lambda to construct the analysis. 453 /// 454 /// The analysis type to register is the type returned by calling the \c 455 /// PassBuilder argument. If that type has already been registered, then the 456 /// argument will not be called and this function will return false. 457 /// Otherwise, we register the analysis returned by calling \c PassBuilder(), 458 /// and this function returns true. 459 /// 460 /// (Note: Although the return value of this function indicates whether or not 461 /// an analysis was previously registered, there intentionally isn't a way to 462 /// query this directly. Instead, you should just register all the analyses 463 /// you might want and let this class run them lazily. This idiom lets us 464 /// minimize the number of times we have to look up analyses in our 465 /// hashtable.) 466 template <typename PassBuilderT> 467 bool registerPass(PassBuilderT &&PassBuilder) { 468 using PassT = decltype(PassBuilder()); 469 using PassModelT = 470 detail::AnalysisPassModel<IRUnitT, PassT, Invalidator, ExtraArgTs...>; 471 472 auto &PassPtr = AnalysisPasses[PassT::ID()]; 473 if (PassPtr) 474 // Already registered this pass type! 475 return false; 476 477 // Construct a new model around the instance returned by the builder. 478 PassPtr.reset(new PassModelT(PassBuilder())); 479 return true; 480 } 481 482 /// Invalidate cached analyses for an IR unit. 483 /// 484 /// Walk through all of the analyses pertaining to this unit of IR and 485 /// invalidate them, unless they are preserved by the PreservedAnalyses set. 486 void invalidate(IRUnitT &IR, const PreservedAnalyses &PA); 487 488 private: 489 /// Look up a registered analysis pass. 490 PassConceptT &lookUpPass(AnalysisKey *ID) { 491 typename AnalysisPassMapT::iterator PI = AnalysisPasses.find(ID); 492 assert(PI != AnalysisPasses.end() && 493 "Analysis passes must be registered prior to being queried!"); 494 return *PI->second; 495 } 496 497 /// Look up a registered analysis pass. 498 const PassConceptT &lookUpPass(AnalysisKey *ID) const { 499 typename AnalysisPassMapT::const_iterator PI = AnalysisPasses.find(ID); 500 assert(PI != AnalysisPasses.end() && 501 "Analysis passes must be registered prior to being queried!"); 502 return *PI->second; 503 } 504 505 /// Get an analysis result, running the pass if necessary. 506 ResultConceptT &getResultImpl(AnalysisKey *ID, IRUnitT &IR, 507 ExtraArgTs... ExtraArgs); 508 509 /// Get a cached analysis result or return null. 510 ResultConceptT *getCachedResultImpl(AnalysisKey *ID, IRUnitT &IR) const { 511 typename AnalysisResultMapT::const_iterator RI = 512 AnalysisResults.find({ID, &IR}); 513 return RI == AnalysisResults.end() ? nullptr : &*RI->second->second; 514 } 515 516 /// Map type from analysis pass ID to pass concept pointer. 517 using AnalysisPassMapT = 518 DenseMap<AnalysisKey *, std::unique_ptr<PassConceptT>>; 519 520 /// Collection of analysis passes, indexed by ID. 521 AnalysisPassMapT AnalysisPasses; 522 523 /// Map from IR unit to a list of analysis results. 524 /// 525 /// Provides linear time removal of all analysis results for a IR unit and 526 /// the ultimate storage for a particular cached analysis result. 527 AnalysisResultListMapT AnalysisResultLists; 528 529 /// Map from an analysis ID and IR unit to a particular cached 530 /// analysis result. 531 AnalysisResultMapT AnalysisResults; 532 }; 533 534 extern template class AnalysisManager<Module>; 535 536 /// Convenience typedef for the Module analysis manager. 537 using ModuleAnalysisManager = AnalysisManager<Module>; 538 539 extern template class AnalysisManager<Function>; 540 541 /// Convenience typedef for the Function analysis manager. 542 using FunctionAnalysisManager = AnalysisManager<Function>; 543 544 /// An analysis over an "outer" IR unit that provides access to an 545 /// analysis manager over an "inner" IR unit. The inner unit must be contained 546 /// in the outer unit. 547 /// 548 /// For example, InnerAnalysisManagerProxy<FunctionAnalysisManager, Module> is 549 /// an analysis over Modules (the "outer" unit) that provides access to a 550 /// Function analysis manager. The FunctionAnalysisManager is the "inner" 551 /// manager being proxied, and Functions are the "inner" unit. The inner/outer 552 /// relationship is valid because each Function is contained in one Module. 553 /// 554 /// If you're (transitively) within a pass manager for an IR unit U that 555 /// contains IR unit V, you should never use an analysis manager over V, except 556 /// via one of these proxies. 557 /// 558 /// Note that the proxy's result is a move-only RAII object. The validity of 559 /// the analyses in the inner analysis manager is tied to its lifetime. 560 template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs> 561 class InnerAnalysisManagerProxy 562 : public AnalysisInfoMixin< 563 InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT>> { 564 public: 565 class Result { 566 public: 567 explicit Result(AnalysisManagerT &InnerAM) : InnerAM(&InnerAM) {} 568 569 Result(Result &&Arg) : InnerAM(std::move(Arg.InnerAM)) { 570 // We have to null out the analysis manager in the moved-from state 571 // because we are taking ownership of the responsibilty to clear the 572 // analysis state. 573 Arg.InnerAM = nullptr; 574 } 575 576 ~Result() { 577 // InnerAM is cleared in a moved from state where there is nothing to do. 578 if (!InnerAM) 579 return; 580 581 // Clear out the analysis manager if we're being destroyed -- it means we 582 // didn't even see an invalidate call when we got invalidated. 583 InnerAM->clear(); 584 } 585 586 Result &operator=(Result &&RHS) { 587 InnerAM = RHS.InnerAM; 588 // We have to null out the analysis manager in the moved-from state 589 // because we are taking ownership of the responsibilty to clear the 590 // analysis state. 591 RHS.InnerAM = nullptr; 592 return *this; 593 } 594 595 /// Accessor for the analysis manager. 596 AnalysisManagerT &getManager() { return *InnerAM; } 597 598 /// Handler for invalidation of the outer IR unit, \c IRUnitT. 599 /// 600 /// If the proxy analysis itself is not preserved, we assume that the set of 601 /// inner IR objects contained in IRUnit may have changed. In this case, 602 /// we have to call \c clear() on the inner analysis manager, as it may now 603 /// have stale pointers to its inner IR objects. 604 /// 605 /// Regardless of whether the proxy analysis is marked as preserved, all of 606 /// the analyses in the inner analysis manager are potentially invalidated 607 /// based on the set of preserved analyses. 608 bool invalidate( 609 IRUnitT &IR, const PreservedAnalyses &PA, 610 typename AnalysisManager<IRUnitT, ExtraArgTs...>::Invalidator &Inv); 611 612 private: 613 AnalysisManagerT *InnerAM; 614 }; 615 616 explicit InnerAnalysisManagerProxy(AnalysisManagerT &InnerAM) 617 : InnerAM(&InnerAM) {} 618 619 /// Run the analysis pass and create our proxy result object. 620 /// 621 /// This doesn't do any interesting work; it is primarily used to insert our 622 /// proxy result object into the outer analysis cache so that we can proxy 623 /// invalidation to the inner analysis manager. 624 Result run(IRUnitT &IR, AnalysisManager<IRUnitT, ExtraArgTs...> &AM, 625 ExtraArgTs...) { 626 return Result(*InnerAM); 627 } 628 629 private: 630 friend AnalysisInfoMixin< 631 InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT>>; 632 633 static AnalysisKey Key; 634 635 AnalysisManagerT *InnerAM; 636 }; 637 638 template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs> 639 AnalysisKey 640 InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>::Key; 641 642 /// Provide the \c FunctionAnalysisManager to \c Module proxy. 643 using FunctionAnalysisManagerModuleProxy = 644 InnerAnalysisManagerProxy<FunctionAnalysisManager, Module>; 645 646 /// Specialization of the invalidate method for the \c 647 /// FunctionAnalysisManagerModuleProxy's result. 648 template <> 649 bool FunctionAnalysisManagerModuleProxy::Result::invalidate( 650 Module &M, const PreservedAnalyses &PA, 651 ModuleAnalysisManager::Invalidator &Inv); 652 653 // Ensure the \c FunctionAnalysisManagerModuleProxy is provided as an extern 654 // template. 655 extern template class InnerAnalysisManagerProxy<FunctionAnalysisManager, 656 Module>; 657 658 /// An analysis over an "inner" IR unit that provides access to an 659 /// analysis manager over a "outer" IR unit. The inner unit must be contained 660 /// in the outer unit. 661 /// 662 /// For example OuterAnalysisManagerProxy<ModuleAnalysisManager, Function> is an 663 /// analysis over Functions (the "inner" unit) which provides access to a Module 664 /// analysis manager. The ModuleAnalysisManager is the "outer" manager being 665 /// proxied, and Modules are the "outer" IR unit. The inner/outer relationship 666 /// is valid because each Function is contained in one Module. 667 /// 668 /// This proxy only exposes the const interface of the outer analysis manager, 669 /// to indicate that you cannot cause an outer analysis to run from within an 670 /// inner pass. Instead, you must rely on the \c getCachedResult API. This is 671 /// due to keeping potential future concurrency in mind. To give an example, 672 /// running a module analysis before any function passes may give a different 673 /// result than running it in a function pass. Both may be valid, but it would 674 /// produce non-deterministic results. GlobalsAA is a good analysis example, 675 /// because the cached information has the mod/ref info for all memory for each 676 /// function at the time the analysis was computed. The information is still 677 /// valid after a function transformation, but it may be *different* if 678 /// recomputed after that transform. GlobalsAA is never invalidated. 679 680 /// 681 /// This proxy doesn't manage invalidation in any way -- that is handled by the 682 /// recursive return path of each layer of the pass manager. A consequence of 683 /// this is the outer analyses may be stale. We invalidate the outer analyses 684 /// only when we're done running passes over the inner IR units. 685 template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs> 686 class OuterAnalysisManagerProxy 687 : public AnalysisInfoMixin< 688 OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>> { 689 public: 690 /// Result proxy object for \c OuterAnalysisManagerProxy. 691 class Result { 692 public: 693 explicit Result(const AnalysisManagerT &OuterAM) : OuterAM(&OuterAM) {} 694 695 /// Get a cached analysis. If the analysis can be invalidated, this will 696 /// assert. 697 template <typename PassT, typename IRUnitTParam> 698 typename PassT::Result *getCachedResult(IRUnitTParam &IR) const { 699 typename PassT::Result *Res = 700 OuterAM->template getCachedResult<PassT>(IR); 701 if (Res) 702 OuterAM->template verifyNotInvalidated<PassT>(IR, Res); 703 return Res; 704 } 705 706 /// Method provided for unit testing, not intended for general use. 707 template <typename PassT, typename IRUnitTParam> 708 bool cachedResultExists(IRUnitTParam &IR) const { 709 typename PassT::Result *Res = 710 OuterAM->template getCachedResult<PassT>(IR); 711 return Res != nullptr; 712 } 713 714 /// When invalidation occurs, remove any registered invalidation events. 715 bool invalidate( 716 IRUnitT &IRUnit, const PreservedAnalyses &PA, 717 typename AnalysisManager<IRUnitT, ExtraArgTs...>::Invalidator &Inv) { 718 // Loop over the set of registered outer invalidation mappings and if any 719 // of them map to an analysis that is now invalid, clear it out. 720 SmallVector<AnalysisKey *, 4> DeadKeys; 721 for (auto &KeyValuePair : OuterAnalysisInvalidationMap) { 722 AnalysisKey *OuterID = KeyValuePair.first; 723 auto &InnerIDs = KeyValuePair.second; 724 llvm::erase_if(InnerIDs, [&](AnalysisKey *InnerID) { 725 return Inv.invalidate(InnerID, IRUnit, PA); 726 }); 727 if (InnerIDs.empty()) 728 DeadKeys.push_back(OuterID); 729 } 730 731 for (auto *OuterID : DeadKeys) 732 OuterAnalysisInvalidationMap.erase(OuterID); 733 734 // The proxy itself remains valid regardless of anything else. 735 return false; 736 } 737 738 /// Register a deferred invalidation event for when the outer analysis 739 /// manager processes its invalidations. 740 template <typename OuterAnalysisT, typename InvalidatedAnalysisT> 741 void registerOuterAnalysisInvalidation() { 742 AnalysisKey *OuterID = OuterAnalysisT::ID(); 743 AnalysisKey *InvalidatedID = InvalidatedAnalysisT::ID(); 744 745 auto &InvalidatedIDList = OuterAnalysisInvalidationMap[OuterID]; 746 // Note, this is a linear scan. If we end up with large numbers of 747 // analyses that all trigger invalidation on the same outer analysis, 748 // this entire system should be changed to some other deterministic 749 // data structure such as a `SetVector` of a pair of pointers. 750 if (!llvm::is_contained(InvalidatedIDList, InvalidatedID)) 751 InvalidatedIDList.push_back(InvalidatedID); 752 } 753 754 /// Access the map from outer analyses to deferred invalidation requiring 755 /// analyses. 756 const SmallDenseMap<AnalysisKey *, TinyPtrVector<AnalysisKey *>, 2> & 757 getOuterInvalidations() const { 758 return OuterAnalysisInvalidationMap; 759 } 760 761 private: 762 const AnalysisManagerT *OuterAM; 763 764 /// A map from an outer analysis ID to the set of this IR-unit's analyses 765 /// which need to be invalidated. 766 SmallDenseMap<AnalysisKey *, TinyPtrVector<AnalysisKey *>, 2> 767 OuterAnalysisInvalidationMap; 768 }; 769 770 OuterAnalysisManagerProxy(const AnalysisManagerT &OuterAM) 771 : OuterAM(&OuterAM) {} 772 773 /// Run the analysis pass and create our proxy result object. 774 /// Nothing to see here, it just forwards the \c OuterAM reference into the 775 /// result. 776 Result run(IRUnitT &, AnalysisManager<IRUnitT, ExtraArgTs...> &, 777 ExtraArgTs...) { 778 return Result(*OuterAM); 779 } 780 781 private: 782 friend AnalysisInfoMixin< 783 OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>>; 784 785 static AnalysisKey Key; 786 787 const AnalysisManagerT *OuterAM; 788 }; 789 790 template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs> 791 AnalysisKey 792 OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>::Key; 793 794 extern template class OuterAnalysisManagerProxy<ModuleAnalysisManager, 795 Function>; 796 /// Provide the \c ModuleAnalysisManager to \c Function proxy. 797 using ModuleAnalysisManagerFunctionProxy = 798 OuterAnalysisManagerProxy<ModuleAnalysisManager, Function>; 799 800 /// Trivial adaptor that maps from a module to its functions. 801 /// 802 /// Designed to allow composition of a FunctionPass(Manager) and 803 /// a ModulePassManager, by running the FunctionPass(Manager) over every 804 /// function in the module. 805 /// 806 /// Function passes run within this adaptor can rely on having exclusive access 807 /// to the function they are run over. They should not read or modify any other 808 /// functions! Other threads or systems may be manipulating other functions in 809 /// the module, and so their state should never be relied on. 810 /// FIXME: Make the above true for all of LLVM's actual passes, some still 811 /// violate this principle. 812 /// 813 /// Function passes can also read the module containing the function, but they 814 /// should not modify that module outside of the use lists of various globals. 815 /// For example, a function pass is not permitted to add functions to the 816 /// module. 817 /// FIXME: Make the above true for all of LLVM's actual passes, some still 818 /// violate this principle. 819 /// 820 /// Note that although function passes can access module analyses, module 821 /// analyses are not invalidated while the function passes are running, so they 822 /// may be stale. Function analyses will not be stale. 823 class ModuleToFunctionPassAdaptor 824 : public PassInfoMixin<ModuleToFunctionPassAdaptor> { 825 public: 826 using PassConceptT = detail::PassConcept<Function, FunctionAnalysisManager>; 827 828 explicit ModuleToFunctionPassAdaptor(std::unique_ptr<PassConceptT> Pass, 829 bool EagerlyInvalidate) 830 : Pass(std::move(Pass)), EagerlyInvalidate(EagerlyInvalidate) {} 831 832 /// Runs the function pass across every function in the module. 833 PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM); 834 void printPipeline(raw_ostream &OS, 835 function_ref<StringRef(StringRef)> MapClassName2PassName); 836 837 static bool isRequired() { return true; } 838 839 private: 840 std::unique_ptr<PassConceptT> Pass; 841 bool EagerlyInvalidate; 842 }; 843 844 /// A function to deduce a function pass type and wrap it in the 845 /// templated adaptor. 846 template <typename FunctionPassT> 847 ModuleToFunctionPassAdaptor 848 createModuleToFunctionPassAdaptor(FunctionPassT &&Pass, 849 bool EagerlyInvalidate = false) { 850 using PassModelT = 851 detail::PassModel<Function, FunctionPassT, FunctionAnalysisManager>; 852 // Do not use make_unique, it causes too many template instantiations, 853 // causing terrible compile times. 854 return ModuleToFunctionPassAdaptor( 855 std::unique_ptr<ModuleToFunctionPassAdaptor::PassConceptT>( 856 new PassModelT(std::forward<FunctionPassT>(Pass))), 857 EagerlyInvalidate); 858 } 859 860 /// A utility pass template to force an analysis result to be available. 861 /// 862 /// If there are extra arguments at the pass's run level there may also be 863 /// extra arguments to the analysis manager's \c getResult routine. We can't 864 /// guess how to effectively map the arguments from one to the other, and so 865 /// this specialization just ignores them. 866 /// 867 /// Specific patterns of run-method extra arguments and analysis manager extra 868 /// arguments will have to be defined as appropriate specializations. 869 template <typename AnalysisT, typename IRUnitT, 870 typename AnalysisManagerT = AnalysisManager<IRUnitT>, 871 typename... ExtraArgTs> 872 struct RequireAnalysisPass 873 : PassInfoMixin<RequireAnalysisPass<AnalysisT, IRUnitT, AnalysisManagerT, 874 ExtraArgTs...>> { 875 /// Run this pass over some unit of IR. 876 /// 877 /// This pass can be run over any unit of IR and use any analysis manager 878 /// provided they satisfy the basic API requirements. When this pass is 879 /// created, these methods can be instantiated to satisfy whatever the 880 /// context requires. 881 PreservedAnalyses run(IRUnitT &Arg, AnalysisManagerT &AM, 882 ExtraArgTs &&... Args) { 883 (void)AM.template getResult<AnalysisT>(Arg, 884 std::forward<ExtraArgTs>(Args)...); 885 886 return PreservedAnalyses::all(); 887 } 888 void printPipeline(raw_ostream &OS, 889 function_ref<StringRef(StringRef)> MapClassName2PassName) { 890 auto ClassName = AnalysisT::name(); 891 auto PassName = MapClassName2PassName(ClassName); 892 OS << "require<" << PassName << '>'; 893 } 894 static bool isRequired() { return true; } 895 }; 896 897 /// A no-op pass template which simply forces a specific analysis result 898 /// to be invalidated. 899 template <typename AnalysisT> 900 struct InvalidateAnalysisPass 901 : PassInfoMixin<InvalidateAnalysisPass<AnalysisT>> { 902 /// Run this pass over some unit of IR. 903 /// 904 /// This pass can be run over any unit of IR and use any analysis manager, 905 /// provided they satisfy the basic API requirements. When this pass is 906 /// created, these methods can be instantiated to satisfy whatever the 907 /// context requires. 908 template <typename IRUnitT, typename AnalysisManagerT, typename... ExtraArgTs> 909 PreservedAnalyses run(IRUnitT &Arg, AnalysisManagerT &AM, ExtraArgTs &&...) { 910 auto PA = PreservedAnalyses::all(); 911 PA.abandon<AnalysisT>(); 912 return PA; 913 } 914 void printPipeline(raw_ostream &OS, 915 function_ref<StringRef(StringRef)> MapClassName2PassName) { 916 auto ClassName = AnalysisT::name(); 917 auto PassName = MapClassName2PassName(ClassName); 918 OS << "invalidate<" << PassName << '>'; 919 } 920 }; 921 922 /// A utility pass that does nothing, but preserves no analyses. 923 /// 924 /// Because this preserves no analyses, any analysis passes queried after this 925 /// pass runs will recompute fresh results. 926 struct InvalidateAllAnalysesPass : PassInfoMixin<InvalidateAllAnalysesPass> { 927 /// Run this pass over some unit of IR. 928 template <typename IRUnitT, typename AnalysisManagerT, typename... ExtraArgTs> 929 PreservedAnalyses run(IRUnitT &, AnalysisManagerT &, ExtraArgTs &&...) { 930 return PreservedAnalyses::none(); 931 } 932 }; 933 934 } // end namespace llvm 935 936 #endif // LLVM_IR_PASSMANAGER_H 937