1 //===- Dominators.cpp - Dominator Calculation -----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements simple dominator construction algorithms for finding
10 // forward dominators. Postdominators are available in libanalysis, but are not
11 // included in libvmcore, because it's not needed. Forward dominators are
12 // needed to support the Verifier pass.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/IR/Dominators.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/Config/llvm-config.h"
19 #include "llvm/IR/CFG.h"
20 #include "llvm/IR/Function.h"
21 #include "llvm/IR/Instruction.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/PassManager.h"
24 #include "llvm/InitializePasses.h"
25 #include "llvm/PassRegistry.h"
26 #include "llvm/Support/Casting.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/raw_ostream.h"
29
30 #include <cassert>
31
32 namespace llvm {
33 class Argument;
34 class Constant;
35 class Value;
36 } // namespace llvm
37 using namespace llvm;
38
39 bool llvm::VerifyDomInfo = false;
40 static cl::opt<bool, true>
41 VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo), cl::Hidden,
42 cl::desc("Verify dominator info (time consuming)"));
43
44 #ifdef EXPENSIVE_CHECKS
45 static constexpr bool ExpensiveChecksEnabled = true;
46 #else
47 static constexpr bool ExpensiveChecksEnabled = false;
48 #endif
49
isSingleEdge() const50 bool BasicBlockEdge::isSingleEdge() const {
51 const Instruction *TI = Start->getTerminator();
52 unsigned NumEdgesToEnd = 0;
53 for (unsigned int i = 0, n = TI->getNumSuccessors(); i < n; ++i) {
54 if (TI->getSuccessor(i) == End)
55 ++NumEdgesToEnd;
56 if (NumEdgesToEnd >= 2)
57 return false;
58 }
59 assert(NumEdgesToEnd == 1);
60 return true;
61 }
62
63 //===----------------------------------------------------------------------===//
64 // DominatorTree Implementation
65 //===----------------------------------------------------------------------===//
66 //
67 // Provide public access to DominatorTree information. Implementation details
68 // can be found in Dominators.h, GenericDomTree.h, and
69 // GenericDomTreeConstruction.h.
70 //
71 //===----------------------------------------------------------------------===//
72
73 template class llvm::DomTreeNodeBase<BasicBlock>;
74 template class llvm::DominatorTreeBase<BasicBlock, false>; // DomTreeBase
75 template class llvm::DominatorTreeBase<BasicBlock, true>; // PostDomTreeBase
76
77 template class llvm::cfg::Update<BasicBlock *>;
78
79 template void llvm::DomTreeBuilder::Calculate<DomTreeBuilder::BBDomTree>(
80 DomTreeBuilder::BBDomTree &DT);
81 template void
82 llvm::DomTreeBuilder::CalculateWithUpdates<DomTreeBuilder::BBDomTree>(
83 DomTreeBuilder::BBDomTree &DT, BBUpdates U);
84
85 template void llvm::DomTreeBuilder::Calculate<DomTreeBuilder::BBPostDomTree>(
86 DomTreeBuilder::BBPostDomTree &DT);
87 // No CalculateWithUpdates<PostDomTree> instantiation, unless a usecase arises.
88
89 template void llvm::DomTreeBuilder::InsertEdge<DomTreeBuilder::BBDomTree>(
90 DomTreeBuilder::BBDomTree &DT, BasicBlock *From, BasicBlock *To);
91 template void llvm::DomTreeBuilder::InsertEdge<DomTreeBuilder::BBPostDomTree>(
92 DomTreeBuilder::BBPostDomTree &DT, BasicBlock *From, BasicBlock *To);
93
94 template void llvm::DomTreeBuilder::DeleteEdge<DomTreeBuilder::BBDomTree>(
95 DomTreeBuilder::BBDomTree &DT, BasicBlock *From, BasicBlock *To);
96 template void llvm::DomTreeBuilder::DeleteEdge<DomTreeBuilder::BBPostDomTree>(
97 DomTreeBuilder::BBPostDomTree &DT, BasicBlock *From, BasicBlock *To);
98
99 template void llvm::DomTreeBuilder::ApplyUpdates<DomTreeBuilder::BBDomTree>(
100 DomTreeBuilder::BBDomTree &DT, DomTreeBuilder::BBDomTreeGraphDiff &,
101 DomTreeBuilder::BBDomTreeGraphDiff *);
102 template void llvm::DomTreeBuilder::ApplyUpdates<DomTreeBuilder::BBPostDomTree>(
103 DomTreeBuilder::BBPostDomTree &DT, DomTreeBuilder::BBPostDomTreeGraphDiff &,
104 DomTreeBuilder::BBPostDomTreeGraphDiff *);
105
106 template bool llvm::DomTreeBuilder::Verify<DomTreeBuilder::BBDomTree>(
107 const DomTreeBuilder::BBDomTree &DT,
108 DomTreeBuilder::BBDomTree::VerificationLevel VL);
109 template bool llvm::DomTreeBuilder::Verify<DomTreeBuilder::BBPostDomTree>(
110 const DomTreeBuilder::BBPostDomTree &DT,
111 DomTreeBuilder::BBPostDomTree::VerificationLevel VL);
112
invalidate(Function & F,const PreservedAnalyses & PA,FunctionAnalysisManager::Invalidator &)113 bool DominatorTree::invalidate(Function &F, const PreservedAnalyses &PA,
114 FunctionAnalysisManager::Invalidator &) {
115 // Check whether the analysis, all analyses on functions, or the function's
116 // CFG have been preserved.
117 auto PAC = PA.getChecker<DominatorTreeAnalysis>();
118 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() ||
119 PAC.preservedSet<CFGAnalyses>());
120 }
121
dominates(const BasicBlock * BB,const Use & U) const122 bool DominatorTree::dominates(const BasicBlock *BB, const Use &U) const {
123 Instruction *UserInst = cast<Instruction>(U.getUser());
124 if (auto *PN = dyn_cast<PHINode>(UserInst))
125 // A phi use using a value from a block is dominated by the end of that
126 // block. Note that the phi's parent block may not be.
127 return dominates(BB, PN->getIncomingBlock(U));
128 else
129 return properlyDominates(BB, UserInst->getParent());
130 }
131
132 // dominates - Return true if Def dominates a use in User. This performs
133 // the special checks necessary if Def and User are in the same basic block.
134 // Note that Def doesn't dominate a use in Def itself!
dominates(const Value * DefV,const Instruction * User) const135 bool DominatorTree::dominates(const Value *DefV,
136 const Instruction *User) const {
137 const Instruction *Def = dyn_cast<Instruction>(DefV);
138 if (!Def) {
139 assert((isa<Argument>(DefV) || isa<Constant>(DefV)) &&
140 "Should be called with an instruction, argument or constant");
141 return true; // Arguments and constants dominate everything.
142 }
143
144 const BasicBlock *UseBB = User->getParent();
145 const BasicBlock *DefBB = Def->getParent();
146
147 // Any unreachable use is dominated, even if Def == User.
148 if (!isReachableFromEntry(UseBB))
149 return true;
150
151 // Unreachable definitions don't dominate anything.
152 if (!isReachableFromEntry(DefBB))
153 return false;
154
155 // An instruction doesn't dominate a use in itself.
156 if (Def == User)
157 return false;
158
159 // The value defined by an invoke dominates an instruction only if it
160 // dominates every instruction in UseBB.
161 // A PHI is dominated only if the instruction dominates every possible use in
162 // the UseBB.
163 if (isa<InvokeInst>(Def) || isa<CallBrInst>(Def) || isa<PHINode>(User))
164 return dominates(Def, UseBB);
165
166 if (DefBB != UseBB)
167 return dominates(DefBB, UseBB);
168
169 return Def->comesBefore(User);
170 }
171
172 // true if Def would dominate a use in any instruction in UseBB.
173 // note that dominates(Def, Def->getParent()) is false.
dominates(const Instruction * Def,const BasicBlock * UseBB) const174 bool DominatorTree::dominates(const Instruction *Def,
175 const BasicBlock *UseBB) const {
176 const BasicBlock *DefBB = Def->getParent();
177
178 // Any unreachable use is dominated, even if DefBB == UseBB.
179 if (!isReachableFromEntry(UseBB))
180 return true;
181
182 // Unreachable definitions don't dominate anything.
183 if (!isReachableFromEntry(DefBB))
184 return false;
185
186 if (DefBB == UseBB)
187 return false;
188
189 // Invoke results are only usable in the normal destination, not in the
190 // exceptional destination.
191 if (const auto *II = dyn_cast<InvokeInst>(Def)) {
192 BasicBlock *NormalDest = II->getNormalDest();
193 BasicBlockEdge E(DefBB, NormalDest);
194 return dominates(E, UseBB);
195 }
196
197 // Callbr results are similarly only usable in the default destination.
198 if (const auto *CBI = dyn_cast<CallBrInst>(Def)) {
199 BasicBlock *NormalDest = CBI->getDefaultDest();
200 BasicBlockEdge E(DefBB, NormalDest);
201 return dominates(E, UseBB);
202 }
203
204 return dominates(DefBB, UseBB);
205 }
206
dominates(const BasicBlockEdge & BBE,const BasicBlock * UseBB) const207 bool DominatorTree::dominates(const BasicBlockEdge &BBE,
208 const BasicBlock *UseBB) const {
209 // If the BB the edge ends in doesn't dominate the use BB, then the
210 // edge also doesn't.
211 const BasicBlock *Start = BBE.getStart();
212 const BasicBlock *End = BBE.getEnd();
213 if (!dominates(End, UseBB))
214 return false;
215
216 // Simple case: if the end BB has a single predecessor, the fact that it
217 // dominates the use block implies that the edge also does.
218 if (End->getSinglePredecessor())
219 return true;
220
221 // The normal edge from the invoke is critical. Conceptually, what we would
222 // like to do is split it and check if the new block dominates the use.
223 // With X being the new block, the graph would look like:
224 //
225 // DefBB
226 // /\ . .
227 // / \ . .
228 // / \ . .
229 // / \ | |
230 // A X B C
231 // | \ | /
232 // . \|/
233 // . NormalDest
234 // .
235 //
236 // Given the definition of dominance, NormalDest is dominated by X iff X
237 // dominates all of NormalDest's predecessors (X, B, C in the example). X
238 // trivially dominates itself, so we only have to find if it dominates the
239 // other predecessors. Since the only way out of X is via NormalDest, X can
240 // only properly dominate a node if NormalDest dominates that node too.
241 int IsDuplicateEdge = 0;
242 for (const BasicBlock *BB : predecessors(End)) {
243 if (BB == Start) {
244 // If there are multiple edges between Start and End, by definition they
245 // can't dominate anything.
246 if (IsDuplicateEdge++)
247 return false;
248 continue;
249 }
250
251 if (!dominates(End, BB))
252 return false;
253 }
254 return true;
255 }
256
dominates(const BasicBlockEdge & BBE,const Use & U) const257 bool DominatorTree::dominates(const BasicBlockEdge &BBE, const Use &U) const {
258 Instruction *UserInst = cast<Instruction>(U.getUser());
259 // A PHI in the end of the edge is dominated by it.
260 PHINode *PN = dyn_cast<PHINode>(UserInst);
261 if (PN && PN->getParent() == BBE.getEnd() &&
262 PN->getIncomingBlock(U) == BBE.getStart())
263 return true;
264
265 // Otherwise use the edge-dominates-block query, which
266 // handles the crazy critical edge cases properly.
267 const BasicBlock *UseBB;
268 if (PN)
269 UseBB = PN->getIncomingBlock(U);
270 else
271 UseBB = UserInst->getParent();
272 return dominates(BBE, UseBB);
273 }
274
dominates(const Value * DefV,const Use & U) const275 bool DominatorTree::dominates(const Value *DefV, const Use &U) const {
276 const Instruction *Def = dyn_cast<Instruction>(DefV);
277 if (!Def) {
278 assert((isa<Argument>(DefV) || isa<Constant>(DefV)) &&
279 "Should be called with an instruction, argument or constant");
280 return true; // Arguments and constants dominate everything.
281 }
282
283 Instruction *UserInst = cast<Instruction>(U.getUser());
284 const BasicBlock *DefBB = Def->getParent();
285
286 // Determine the block in which the use happens. PHI nodes use
287 // their operands on edges; simulate this by thinking of the use
288 // happening at the end of the predecessor block.
289 const BasicBlock *UseBB;
290 if (PHINode *PN = dyn_cast<PHINode>(UserInst))
291 UseBB = PN->getIncomingBlock(U);
292 else
293 UseBB = UserInst->getParent();
294
295 // Any unreachable use is dominated, even if Def == User.
296 if (!isReachableFromEntry(UseBB))
297 return true;
298
299 // Unreachable definitions don't dominate anything.
300 if (!isReachableFromEntry(DefBB))
301 return false;
302
303 // Invoke instructions define their return values on the edges to their normal
304 // successors, so we have to handle them specially.
305 // Among other things, this means they don't dominate anything in
306 // their own block, except possibly a phi, so we don't need to
307 // walk the block in any case.
308 if (const InvokeInst *II = dyn_cast<InvokeInst>(Def)) {
309 BasicBlock *NormalDest = II->getNormalDest();
310 BasicBlockEdge E(DefBB, NormalDest);
311 return dominates(E, U);
312 }
313
314 // Callbr results are similarly only usable in the default destination.
315 if (const auto *CBI = dyn_cast<CallBrInst>(Def)) {
316 BasicBlock *NormalDest = CBI->getDefaultDest();
317 BasicBlockEdge E(DefBB, NormalDest);
318 return dominates(E, U);
319 }
320
321 // If the def and use are in different blocks, do a simple CFG dominator
322 // tree query.
323 if (DefBB != UseBB)
324 return dominates(DefBB, UseBB);
325
326 // Ok, def and use are in the same block. If the def is an invoke, it
327 // doesn't dominate anything in the block. If it's a PHI, it dominates
328 // everything in the block.
329 if (isa<PHINode>(UserInst))
330 return true;
331
332 return Def->comesBefore(UserInst);
333 }
334
isReachableFromEntry(const Use & U) const335 bool DominatorTree::isReachableFromEntry(const Use &U) const {
336 Instruction *I = dyn_cast<Instruction>(U.getUser());
337
338 // ConstantExprs aren't really reachable from the entry block, but they
339 // don't need to be treated like unreachable code either.
340 if (!I) return true;
341
342 // PHI nodes use their operands on their incoming edges.
343 if (PHINode *PN = dyn_cast<PHINode>(I))
344 return isReachableFromEntry(PN->getIncomingBlock(U));
345
346 // Everything else uses their operands in their own block.
347 return isReachableFromEntry(I->getParent());
348 }
349
350 // Edge BBE1 dominates edge BBE2 if they match or BBE1 dominates start of BBE2.
dominates(const BasicBlockEdge & BBE1,const BasicBlockEdge & BBE2) const351 bool DominatorTree::dominates(const BasicBlockEdge &BBE1,
352 const BasicBlockEdge &BBE2) const {
353 if (BBE1.getStart() == BBE2.getStart() && BBE1.getEnd() == BBE2.getEnd())
354 return true;
355 return dominates(BBE1, BBE2.getStart());
356 }
357
findNearestCommonDominator(Instruction * I1,Instruction * I2) const358 Instruction *DominatorTree::findNearestCommonDominator(Instruction *I1,
359 Instruction *I2) const {
360 BasicBlock *BB1 = I1->getParent();
361 BasicBlock *BB2 = I2->getParent();
362 if (BB1 == BB2)
363 return I1->comesBefore(I2) ? I1 : I2;
364 if (!isReachableFromEntry(BB2))
365 return I1;
366 if (!isReachableFromEntry(BB1))
367 return I2;
368 BasicBlock *DomBB = findNearestCommonDominator(BB1, BB2);
369 if (BB1 == DomBB)
370 return I1;
371 if (BB2 == DomBB)
372 return I2;
373 return DomBB->getTerminator();
374 }
375
376 //===----------------------------------------------------------------------===//
377 // DominatorTreeAnalysis and related pass implementations
378 //===----------------------------------------------------------------------===//
379 //
380 // This implements the DominatorTreeAnalysis which is used with the new pass
381 // manager. It also implements some methods from utility passes.
382 //
383 //===----------------------------------------------------------------------===//
384
run(Function & F,FunctionAnalysisManager &)385 DominatorTree DominatorTreeAnalysis::run(Function &F,
386 FunctionAnalysisManager &) {
387 DominatorTree DT;
388 DT.recalculate(F);
389 return DT;
390 }
391
392 AnalysisKey DominatorTreeAnalysis::Key;
393
DominatorTreePrinterPass(raw_ostream & OS)394 DominatorTreePrinterPass::DominatorTreePrinterPass(raw_ostream &OS) : OS(OS) {}
395
run(Function & F,FunctionAnalysisManager & AM)396 PreservedAnalyses DominatorTreePrinterPass::run(Function &F,
397 FunctionAnalysisManager &AM) {
398 OS << "DominatorTree for function: " << F.getName() << "\n";
399 AM.getResult<DominatorTreeAnalysis>(F).print(OS);
400
401 return PreservedAnalyses::all();
402 }
403
run(Function & F,FunctionAnalysisManager & AM)404 PreservedAnalyses DominatorTreeVerifierPass::run(Function &F,
405 FunctionAnalysisManager &AM) {
406 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
407 assert(DT.verify());
408 (void)DT;
409 return PreservedAnalyses::all();
410 }
411
412 //===----------------------------------------------------------------------===//
413 // DominatorTreeWrapperPass Implementation
414 //===----------------------------------------------------------------------===//
415 //
416 // The implementation details of the wrapper pass that holds a DominatorTree
417 // suitable for use with the legacy pass manager.
418 //
419 //===----------------------------------------------------------------------===//
420
421 char DominatorTreeWrapperPass::ID = 0;
422
DominatorTreeWrapperPass()423 DominatorTreeWrapperPass::DominatorTreeWrapperPass() : FunctionPass(ID) {
424 initializeDominatorTreeWrapperPassPass(*PassRegistry::getPassRegistry());
425 }
426
427 INITIALIZE_PASS(DominatorTreeWrapperPass, "domtree",
428 "Dominator Tree Construction", true, true)
429
runOnFunction(Function & F)430 bool DominatorTreeWrapperPass::runOnFunction(Function &F) {
431 DT.recalculate(F);
432 return false;
433 }
434
verifyAnalysis() const435 void DominatorTreeWrapperPass::verifyAnalysis() const {
436 if (VerifyDomInfo)
437 assert(DT.verify(DominatorTree::VerificationLevel::Full));
438 else if (ExpensiveChecksEnabled)
439 assert(DT.verify(DominatorTree::VerificationLevel::Basic));
440 }
441
print(raw_ostream & OS,const Module *) const442 void DominatorTreeWrapperPass::print(raw_ostream &OS, const Module *) const {
443 DT.print(OS);
444 }
445