xref: /netbsd-src/external/apache2/llvm/dist/llvm/lib/Transforms/Utils/CloneFunction.cpp (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 //===- CloneFunction.cpp - Clone a function into another function ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the CloneFunctionInto interface, which is used as the
10 // low-level function cloner.  This is used by the CloneFunction and function
11 // inliner to do the dirty work of copying the body of a function around.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/Analysis/ConstantFolding.h"
18 #include "llvm/Analysis/DomTreeUpdater.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/IR/CFG.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DebugInfo.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/MDBuilder.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
34 #include "llvm/Transforms/Utils/Cloning.h"
35 #include "llvm/Transforms/Utils/Local.h"
36 #include "llvm/Transforms/Utils/ValueMapper.h"
37 #include <map>
38 using namespace llvm;
39 
40 #define DEBUG_TYPE "clone-function"
41 
42 /// See comments in Cloning.h.
CloneBasicBlock(const BasicBlock * BB,ValueToValueMapTy & VMap,const Twine & NameSuffix,Function * F,ClonedCodeInfo * CodeInfo,DebugInfoFinder * DIFinder)43 BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap,
44                                   const Twine &NameSuffix, Function *F,
45                                   ClonedCodeInfo *CodeInfo,
46                                   DebugInfoFinder *DIFinder) {
47   DenseMap<const MDNode *, MDNode *> Cache;
48   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
49   if (BB->hasName())
50     NewBB->setName(BB->getName() + NameSuffix);
51 
52   bool hasCalls = false, hasDynamicAllocas = false;
53   Module *TheModule = F ? F->getParent() : nullptr;
54 
55   // Loop over all instructions, and copy them over.
56   for (const Instruction &I : *BB) {
57     if (DIFinder && TheModule)
58       DIFinder->processInstruction(*TheModule, I);
59 
60     Instruction *NewInst = I.clone();
61     if (I.hasName())
62       NewInst->setName(I.getName() + NameSuffix);
63     NewBB->getInstList().push_back(NewInst);
64     VMap[&I] = NewInst; // Add instruction map to value.
65 
66     hasCalls |= (isa<CallInst>(I) && !isa<DbgInfoIntrinsic>(I));
67     if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
68       if (!AI->isStaticAlloca()) {
69         hasDynamicAllocas = true;
70       }
71     }
72   }
73 
74   if (CodeInfo) {
75     CodeInfo->ContainsCalls |= hasCalls;
76     CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
77   }
78   return NewBB;
79 }
80 
81 // Clone OldFunc into NewFunc, transforming the old arguments into references to
82 // VMap values.
83 //
CloneFunctionInto(Function * NewFunc,const Function * OldFunc,ValueToValueMapTy & VMap,CloneFunctionChangeType Changes,SmallVectorImpl<ReturnInst * > & Returns,const char * NameSuffix,ClonedCodeInfo * CodeInfo,ValueMapTypeRemapper * TypeMapper,ValueMaterializer * Materializer)84 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
85                              ValueToValueMapTy &VMap,
86                              CloneFunctionChangeType Changes,
87                              SmallVectorImpl<ReturnInst *> &Returns,
88                              const char *NameSuffix, ClonedCodeInfo *CodeInfo,
89                              ValueMapTypeRemapper *TypeMapper,
90                              ValueMaterializer *Materializer) {
91   assert(NameSuffix && "NameSuffix cannot be null!");
92 
93 #ifndef NDEBUG
94   for (const Argument &I : OldFunc->args())
95     assert(VMap.count(&I) && "No mapping from source argument specified!");
96 #endif
97 
98   bool ModuleLevelChanges = Changes > CloneFunctionChangeType::LocalChangesOnly;
99 
100   // Copy all attributes other than those stored in the AttributeList.  We need
101   // to remap the parameter indices of the AttributeList.
102   AttributeList NewAttrs = NewFunc->getAttributes();
103   NewFunc->copyAttributesFrom(OldFunc);
104   NewFunc->setAttributes(NewAttrs);
105 
106   // Fix up the personality function that got copied over.
107   if (OldFunc->hasPersonalityFn())
108     NewFunc->setPersonalityFn(
109         MapValue(OldFunc->getPersonalityFn(), VMap,
110                  ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
111                  TypeMapper, Materializer));
112 
113   SmallVector<AttributeSet, 4> NewArgAttrs(NewFunc->arg_size());
114   AttributeList OldAttrs = OldFunc->getAttributes();
115 
116   // Clone any argument attributes that are present in the VMap.
117   for (const Argument &OldArg : OldFunc->args()) {
118     if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) {
119       NewArgAttrs[NewArg->getArgNo()] =
120           OldAttrs.getParamAttributes(OldArg.getArgNo());
121     }
122   }
123 
124   NewFunc->setAttributes(
125       AttributeList::get(NewFunc->getContext(), OldAttrs.getFnAttributes(),
126                          OldAttrs.getRetAttributes(), NewArgAttrs));
127 
128   // Everything else beyond this point deals with function instructions,
129   // so if we are dealing with a function declaration, we're done.
130   if (OldFunc->isDeclaration())
131     return;
132 
133   // When we remap instructions within the same module, we want to avoid
134   // duplicating inlined DISubprograms, so record all subprograms we find as we
135   // duplicate instructions and then freeze them in the MD map. We also record
136   // information about dbg.value and dbg.declare to avoid duplicating the
137   // types.
138   Optional<DebugInfoFinder> DIFinder;
139 
140   // Track the subprogram attachment that needs to be cloned to fine-tune the
141   // mapping within the same module.
142   DISubprogram *SPClonedWithinModule = nullptr;
143   if (Changes < CloneFunctionChangeType::DifferentModule) {
144     assert((NewFunc->getParent() == nullptr ||
145             NewFunc->getParent() == OldFunc->getParent()) &&
146            "Expected NewFunc to have the same parent, or no parent");
147 
148     // Need to find subprograms, types, and compile units.
149     DIFinder.emplace();
150 
151     SPClonedWithinModule = OldFunc->getSubprogram();
152     if (SPClonedWithinModule)
153       DIFinder->processSubprogram(SPClonedWithinModule);
154   } else {
155     assert((NewFunc->getParent() == nullptr ||
156             NewFunc->getParent() != OldFunc->getParent()) &&
157            "Expected NewFunc to have different parents, or no parent");
158 
159     if (Changes == CloneFunctionChangeType::DifferentModule) {
160       assert(NewFunc->getParent() &&
161              "Need parent of new function to maintain debug info invariants");
162 
163       // Need to find all the compile units.
164       DIFinder.emplace();
165     }
166   }
167 
168   // Loop over all of the basic blocks in the function, cloning them as
169   // appropriate.  Note that we save BE this way in order to handle cloning of
170   // recursive functions into themselves.
171   for (const BasicBlock &BB : *OldFunc) {
172 
173     // Create a new basic block and copy instructions into it!
174     BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo,
175                                       DIFinder ? &*DIFinder : nullptr);
176 
177     // Add basic block mapping.
178     VMap[&BB] = CBB;
179 
180     // It is only legal to clone a function if a block address within that
181     // function is never referenced outside of the function.  Given that, we
182     // want to map block addresses from the old function to block addresses in
183     // the clone. (This is different from the generic ValueMapper
184     // implementation, which generates an invalid blockaddress when
185     // cloning a function.)
186     if (BB.hasAddressTaken()) {
187       Constant *OldBBAddr = BlockAddress::get(const_cast<Function *>(OldFunc),
188                                               const_cast<BasicBlock *>(&BB));
189       VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB);
190     }
191 
192     // Note return instructions for the caller.
193     if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
194       Returns.push_back(RI);
195   }
196 
197   if (Changes < CloneFunctionChangeType::DifferentModule &&
198       DIFinder->subprogram_count() > 0) {
199     // Turn on module-level changes, since we need to clone (some of) the
200     // debug info metadata.
201     //
202     // FIXME: Metadata effectively owned by a function should be made
203     // local, and only that local metadata should be cloned.
204     ModuleLevelChanges = true;
205 
206     auto mapToSelfIfNew = [&VMap](MDNode *N) {
207       // Avoid clobbering an existing mapping.
208       (void)VMap.MD().try_emplace(N, N);
209     };
210 
211     // Avoid cloning types, compile units, and (other) subprograms.
212     for (DISubprogram *ISP : DIFinder->subprograms())
213       if (ISP != SPClonedWithinModule)
214         mapToSelfIfNew(ISP);
215 
216     for (DICompileUnit *CU : DIFinder->compile_units())
217       mapToSelfIfNew(CU);
218 
219     for (DIType *Type : DIFinder->types())
220       mapToSelfIfNew(Type);
221   } else {
222     assert(!SPClonedWithinModule &&
223            "Subprogram should be in DIFinder->subprogram_count()...");
224   }
225 
226   const auto RemapFlag = ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges;
227   // Duplicate the metadata that is attached to the cloned function.
228   // Subprograms/CUs/types that were already mapped to themselves won't be
229   // duplicated.
230   SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
231   OldFunc->getAllMetadata(MDs);
232   for (auto MD : MDs) {
233     NewFunc->addMetadata(MD.first, *MapMetadata(MD.second, VMap, RemapFlag,
234                                                 TypeMapper, Materializer));
235   }
236 
237   // Loop over all of the instructions in the new function, fixing up operand
238   // references as we go. This uses VMap to do all the hard work.
239   for (Function::iterator
240            BB = cast<BasicBlock>(VMap[&OldFunc->front()])->getIterator(),
241            BE = NewFunc->end();
242        BB != BE; ++BB)
243     // Loop over all instructions, fixing each one as we find it...
244     for (Instruction &II : *BB)
245       RemapInstruction(&II, VMap, RemapFlag, TypeMapper, Materializer);
246 
247   // Only update !llvm.dbg.cu for DifferentModule (not CloneModule). In the
248   // same module, the compile unit will already be listed (or not). When
249   // cloning a module, CloneModule() will handle creating the named metadata.
250   if (Changes != CloneFunctionChangeType::DifferentModule)
251     return;
252 
253   // Update !llvm.dbg.cu with compile units added to the new module if this
254   // function is being cloned in isolation.
255   //
256   // FIXME: This is making global / module-level changes, which doesn't seem
257   // like the right encapsulation  Consider dropping the requirement to update
258   // !llvm.dbg.cu (either obsoleting the node, or restricting it to
259   // non-discardable compile units) instead of discovering compile units by
260   // visiting the metadata attached to global values, which would allow this
261   // code to be deleted. Alternatively, perhaps give responsibility for this
262   // update to CloneFunctionInto's callers.
263   auto *NewModule = NewFunc->getParent();
264   auto *NMD = NewModule->getOrInsertNamedMetadata("llvm.dbg.cu");
265   // Avoid multiple insertions of the same DICompileUnit to NMD.
266   SmallPtrSet<const void *, 8> Visited;
267   for (auto *Operand : NMD->operands())
268     Visited.insert(Operand);
269   for (auto *Unit : DIFinder->compile_units()) {
270     MDNode *MappedUnit =
271         MapMetadata(Unit, VMap, RF_None, TypeMapper, Materializer);
272     if (Visited.insert(MappedUnit).second)
273       NMD->addOperand(MappedUnit);
274   }
275 }
276 
277 /// Return a copy of the specified function and add it to that function's
278 /// module.  Also, any references specified in the VMap are changed to refer to
279 /// their mapped value instead of the original one.  If any of the arguments to
280 /// the function are in the VMap, the arguments are deleted from the resultant
281 /// function.  The VMap is updated to include mappings from all of the
282 /// instructions and basicblocks in the function from their old to new values.
283 ///
CloneFunction(Function * F,ValueToValueMapTy & VMap,ClonedCodeInfo * CodeInfo)284 Function *llvm::CloneFunction(Function *F, ValueToValueMapTy &VMap,
285                               ClonedCodeInfo *CodeInfo) {
286   std::vector<Type *> ArgTypes;
287 
288   // The user might be deleting arguments to the function by specifying them in
289   // the VMap.  If so, we need to not add the arguments to the arg ty vector
290   //
291   for (const Argument &I : F->args())
292     if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet?
293       ArgTypes.push_back(I.getType());
294 
295   // Create a new function type...
296   FunctionType *FTy =
297       FunctionType::get(F->getFunctionType()->getReturnType(), ArgTypes,
298                         F->getFunctionType()->isVarArg());
299 
300   // Create the new function...
301   Function *NewF = Function::Create(FTy, F->getLinkage(), F->getAddressSpace(),
302                                     F->getName(), F->getParent());
303 
304   // Loop over the arguments, copying the names of the mapped arguments over...
305   Function::arg_iterator DestI = NewF->arg_begin();
306   for (const Argument &I : F->args())
307     if (VMap.count(&I) == 0) {     // Is this argument preserved?
308       DestI->setName(I.getName()); // Copy the name over...
309       VMap[&I] = &*DestI++;        // Add mapping to VMap
310     }
311 
312   SmallVector<ReturnInst *, 8> Returns; // Ignore returns cloned.
313   CloneFunctionInto(NewF, F, VMap, CloneFunctionChangeType::LocalChangesOnly,
314                     Returns, "", CodeInfo);
315 
316   return NewF;
317 }
318 
319 namespace {
320 /// This is a private class used to implement CloneAndPruneFunctionInto.
321 struct PruningFunctionCloner {
322   Function *NewFunc;
323   const Function *OldFunc;
324   ValueToValueMapTy &VMap;
325   bool ModuleLevelChanges;
326   const char *NameSuffix;
327   ClonedCodeInfo *CodeInfo;
328 
329 public:
PruningFunctionCloner__anonb09140f00211::PruningFunctionCloner330   PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
331                         ValueToValueMapTy &valueMap, bool moduleLevelChanges,
332                         const char *nameSuffix, ClonedCodeInfo *codeInfo)
333       : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap),
334         ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix),
335         CodeInfo(codeInfo) {}
336 
337   /// The specified block is found to be reachable, clone it and
338   /// anything that it can reach.
339   void CloneBlock(const BasicBlock *BB, BasicBlock::const_iterator StartingInst,
340                   std::vector<const BasicBlock *> &ToClone);
341 };
342 } // namespace
343 
344 /// The specified block is found to be reachable, clone it and
345 /// anything that it can reach.
CloneBlock(const BasicBlock * BB,BasicBlock::const_iterator StartingInst,std::vector<const BasicBlock * > & ToClone)346 void PruningFunctionCloner::CloneBlock(
347     const BasicBlock *BB, BasicBlock::const_iterator StartingInst,
348     std::vector<const BasicBlock *> &ToClone) {
349   WeakTrackingVH &BBEntry = VMap[BB];
350 
351   // Have we already cloned this block?
352   if (BBEntry)
353     return;
354 
355   // Nope, clone it now.
356   BasicBlock *NewBB;
357   BBEntry = NewBB = BasicBlock::Create(BB->getContext());
358   if (BB->hasName())
359     NewBB->setName(BB->getName() + NameSuffix);
360 
361   // It is only legal to clone a function if a block address within that
362   // function is never referenced outside of the function.  Given that, we
363   // want to map block addresses from the old function to block addresses in
364   // the clone. (This is different from the generic ValueMapper
365   // implementation, which generates an invalid blockaddress when
366   // cloning a function.)
367   //
368   // Note that we don't need to fix the mapping for unreachable blocks;
369   // the default mapping there is safe.
370   if (BB->hasAddressTaken()) {
371     Constant *OldBBAddr = BlockAddress::get(const_cast<Function *>(OldFunc),
372                                             const_cast<BasicBlock *>(BB));
373     VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB);
374   }
375 
376   bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
377 
378   // Loop over all instructions, and copy them over, DCE'ing as we go.  This
379   // loop doesn't include the terminator.
380   for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end(); II != IE;
381        ++II) {
382 
383     Instruction *NewInst = II->clone();
384 
385     // Eagerly remap operands to the newly cloned instruction, except for PHI
386     // nodes for which we defer processing until we update the CFG.
387     if (!isa<PHINode>(NewInst)) {
388       RemapInstruction(NewInst, VMap,
389                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
390 
391       // If we can simplify this instruction to some other value, simply add
392       // a mapping to that value rather than inserting a new instruction into
393       // the basic block.
394       if (Value *V =
395               SimplifyInstruction(NewInst, BB->getModule()->getDataLayout())) {
396         // On the off-chance that this simplifies to an instruction in the old
397         // function, map it back into the new function.
398         if (NewFunc != OldFunc)
399           if (Value *MappedV = VMap.lookup(V))
400             V = MappedV;
401 
402         if (!NewInst->mayHaveSideEffects()) {
403           VMap[&*II] = V;
404           NewInst->deleteValue();
405           continue;
406         }
407       }
408     }
409 
410     if (II->hasName())
411       NewInst->setName(II->getName() + NameSuffix);
412     VMap[&*II] = NewInst; // Add instruction map to value.
413     NewBB->getInstList().push_back(NewInst);
414     hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
415 
416     if (CodeInfo)
417       if (auto *CB = dyn_cast<CallBase>(&*II))
418         if (CB->hasOperandBundles())
419           CodeInfo->OperandBundleCallSites.push_back(NewInst);
420 
421     if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
422       if (isa<ConstantInt>(AI->getArraySize()))
423         hasStaticAllocas = true;
424       else
425         hasDynamicAllocas = true;
426     }
427   }
428 
429   // Finally, clone over the terminator.
430   const Instruction *OldTI = BB->getTerminator();
431   bool TerminatorDone = false;
432   if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
433     if (BI->isConditional()) {
434       // If the condition was a known constant in the callee...
435       ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
436       // Or is a known constant in the caller...
437       if (!Cond) {
438         Value *V = VMap.lookup(BI->getCondition());
439         Cond = dyn_cast_or_null<ConstantInt>(V);
440       }
441 
442       // Constant fold to uncond branch!
443       if (Cond) {
444         BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
445         VMap[OldTI] = BranchInst::Create(Dest, NewBB);
446         ToClone.push_back(Dest);
447         TerminatorDone = true;
448       }
449     }
450   } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
451     // If switching on a value known constant in the caller.
452     ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
453     if (!Cond) { // Or known constant after constant prop in the callee...
454       Value *V = VMap.lookup(SI->getCondition());
455       Cond = dyn_cast_or_null<ConstantInt>(V);
456     }
457     if (Cond) { // Constant fold to uncond branch!
458       SwitchInst::ConstCaseHandle Case = *SI->findCaseValue(Cond);
459       BasicBlock *Dest = const_cast<BasicBlock *>(Case.getCaseSuccessor());
460       VMap[OldTI] = BranchInst::Create(Dest, NewBB);
461       ToClone.push_back(Dest);
462       TerminatorDone = true;
463     }
464   }
465 
466   if (!TerminatorDone) {
467     Instruction *NewInst = OldTI->clone();
468     if (OldTI->hasName())
469       NewInst->setName(OldTI->getName() + NameSuffix);
470     NewBB->getInstList().push_back(NewInst);
471     VMap[OldTI] = NewInst; // Add instruction map to value.
472 
473     if (CodeInfo)
474       if (auto *CB = dyn_cast<CallBase>(OldTI))
475         if (CB->hasOperandBundles())
476           CodeInfo->OperandBundleCallSites.push_back(NewInst);
477 
478     // Recursively clone any reachable successor blocks.
479     append_range(ToClone, successors(BB->getTerminator()));
480   }
481 
482   if (CodeInfo) {
483     CodeInfo->ContainsCalls |= hasCalls;
484     CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
485     CodeInfo->ContainsDynamicAllocas |=
486         hasStaticAllocas && BB != &BB->getParent()->front();
487   }
488 }
489 
490 /// This works like CloneAndPruneFunctionInto, except that it does not clone the
491 /// entire function. Instead it starts at an instruction provided by the caller
492 /// and copies (and prunes) only the code reachable from that instruction.
CloneAndPruneIntoFromInst(Function * NewFunc,const Function * OldFunc,const Instruction * StartingInst,ValueToValueMapTy & VMap,bool ModuleLevelChanges,SmallVectorImpl<ReturnInst * > & Returns,const char * NameSuffix,ClonedCodeInfo * CodeInfo)493 void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
494                                      const Instruction *StartingInst,
495                                      ValueToValueMapTy &VMap,
496                                      bool ModuleLevelChanges,
497                                      SmallVectorImpl<ReturnInst *> &Returns,
498                                      const char *NameSuffix,
499                                      ClonedCodeInfo *CodeInfo) {
500   assert(NameSuffix && "NameSuffix cannot be null!");
501 
502   ValueMapTypeRemapper *TypeMapper = nullptr;
503   ValueMaterializer *Materializer = nullptr;
504 
505 #ifndef NDEBUG
506   // If the cloning starts at the beginning of the function, verify that
507   // the function arguments are mapped.
508   if (!StartingInst)
509     for (const Argument &II : OldFunc->args())
510       assert(VMap.count(&II) && "No mapping from source argument specified!");
511 #endif
512 
513   PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges,
514                             NameSuffix, CodeInfo);
515   const BasicBlock *StartingBB;
516   if (StartingInst)
517     StartingBB = StartingInst->getParent();
518   else {
519     StartingBB = &OldFunc->getEntryBlock();
520     StartingInst = &StartingBB->front();
521   }
522 
523   // Clone the entry block, and anything recursively reachable from it.
524   std::vector<const BasicBlock *> CloneWorklist;
525   PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist);
526   while (!CloneWorklist.empty()) {
527     const BasicBlock *BB = CloneWorklist.back();
528     CloneWorklist.pop_back();
529     PFC.CloneBlock(BB, BB->begin(), CloneWorklist);
530   }
531 
532   // Loop over all of the basic blocks in the old function.  If the block was
533   // reachable, we have cloned it and the old block is now in the value map:
534   // insert it into the new function in the right order.  If not, ignore it.
535   //
536   // Defer PHI resolution until rest of function is resolved.
537   SmallVector<const PHINode *, 16> PHIToResolve;
538   for (const BasicBlock &BI : *OldFunc) {
539     Value *V = VMap.lookup(&BI);
540     BasicBlock *NewBB = cast_or_null<BasicBlock>(V);
541     if (!NewBB)
542       continue; // Dead block.
543 
544     // Add the new block to the new function.
545     NewFunc->getBasicBlockList().push_back(NewBB);
546 
547     // Handle PHI nodes specially, as we have to remove references to dead
548     // blocks.
549     for (const PHINode &PN : BI.phis()) {
550       // PHI nodes may have been remapped to non-PHI nodes by the caller or
551       // during the cloning process.
552       if (isa<PHINode>(VMap[&PN]))
553         PHIToResolve.push_back(&PN);
554       else
555         break;
556     }
557 
558     // Finally, remap the terminator instructions, as those can't be remapped
559     // until all BBs are mapped.
560     RemapInstruction(NewBB->getTerminator(), VMap,
561                      ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
562                      TypeMapper, Materializer);
563   }
564 
565   // Defer PHI resolution until rest of function is resolved, PHI resolution
566   // requires the CFG to be up-to-date.
567   for (unsigned phino = 0, e = PHIToResolve.size(); phino != e;) {
568     const PHINode *OPN = PHIToResolve[phino];
569     unsigned NumPreds = OPN->getNumIncomingValues();
570     const BasicBlock *OldBB = OPN->getParent();
571     BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]);
572 
573     // Map operands for blocks that are live and remove operands for blocks
574     // that are dead.
575     for (; phino != PHIToResolve.size() &&
576            PHIToResolve[phino]->getParent() == OldBB;
577          ++phino) {
578       OPN = PHIToResolve[phino];
579       PHINode *PN = cast<PHINode>(VMap[OPN]);
580       for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
581         Value *V = VMap.lookup(PN->getIncomingBlock(pred));
582         if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) {
583           Value *InVal =
584               MapValue(PN->getIncomingValue(pred), VMap,
585                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
586           assert(InVal && "Unknown input value?");
587           PN->setIncomingValue(pred, InVal);
588           PN->setIncomingBlock(pred, MappedBlock);
589         } else {
590           PN->removeIncomingValue(pred, false);
591           --pred; // Revisit the next entry.
592           --e;
593         }
594       }
595     }
596 
597     // The loop above has removed PHI entries for those blocks that are dead
598     // and has updated others.  However, if a block is live (i.e. copied over)
599     // but its terminator has been changed to not go to this block, then our
600     // phi nodes will have invalid entries.  Update the PHI nodes in this
601     // case.
602     PHINode *PN = cast<PHINode>(NewBB->begin());
603     NumPreds = pred_size(NewBB);
604     if (NumPreds != PN->getNumIncomingValues()) {
605       assert(NumPreds < PN->getNumIncomingValues());
606       // Count how many times each predecessor comes to this block.
607       std::map<BasicBlock *, unsigned> PredCount;
608       for (BasicBlock *Pred : predecessors(NewBB))
609         --PredCount[Pred];
610 
611       // Figure out how many entries to remove from each PHI.
612       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
613         ++PredCount[PN->getIncomingBlock(i)];
614 
615       // At this point, the excess predecessor entries are positive in the
616       // map.  Loop over all of the PHIs and remove excess predecessor
617       // entries.
618       BasicBlock::iterator I = NewBB->begin();
619       for (; (PN = dyn_cast<PHINode>(I)); ++I) {
620         for (const auto &PCI : PredCount) {
621           BasicBlock *Pred = PCI.first;
622           for (unsigned NumToRemove = PCI.second; NumToRemove; --NumToRemove)
623             PN->removeIncomingValue(Pred, false);
624         }
625       }
626     }
627 
628     // If the loops above have made these phi nodes have 0 or 1 operand,
629     // replace them with undef or the input value.  We must do this for
630     // correctness, because 0-operand phis are not valid.
631     PN = cast<PHINode>(NewBB->begin());
632     if (PN->getNumIncomingValues() == 0) {
633       BasicBlock::iterator I = NewBB->begin();
634       BasicBlock::const_iterator OldI = OldBB->begin();
635       while ((PN = dyn_cast<PHINode>(I++))) {
636         Value *NV = UndefValue::get(PN->getType());
637         PN->replaceAllUsesWith(NV);
638         assert(VMap[&*OldI] == PN && "VMap mismatch");
639         VMap[&*OldI] = NV;
640         PN->eraseFromParent();
641         ++OldI;
642       }
643     }
644   }
645 
646   // Make a second pass over the PHINodes now that all of them have been
647   // remapped into the new function, simplifying the PHINode and performing any
648   // recursive simplifications exposed. This will transparently update the
649   // WeakTrackingVH in the VMap. Notably, we rely on that so that if we coalesce
650   // two PHINodes, the iteration over the old PHIs remains valid, and the
651   // mapping will just map us to the new node (which may not even be a PHI
652   // node).
653   const DataLayout &DL = NewFunc->getParent()->getDataLayout();
654   SmallSetVector<const Value *, 8> Worklist;
655   for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx)
656     if (isa<PHINode>(VMap[PHIToResolve[Idx]]))
657       Worklist.insert(PHIToResolve[Idx]);
658 
659   // Note that we must test the size on each iteration, the worklist can grow.
660   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
661     const Value *OrigV = Worklist[Idx];
662     auto *I = dyn_cast_or_null<Instruction>(VMap.lookup(OrigV));
663     if (!I)
664       continue;
665 
666     // Skip over non-intrinsic callsites, we don't want to remove any nodes from
667     // the CGSCC.
668     CallBase *CB = dyn_cast<CallBase>(I);
669     if (CB && CB->getCalledFunction() &&
670         !CB->getCalledFunction()->isIntrinsic())
671       continue;
672 
673     // See if this instruction simplifies.
674     Value *SimpleV = SimplifyInstruction(I, DL);
675     if (!SimpleV)
676       continue;
677 
678     // Stash away all the uses of the old instruction so we can check them for
679     // recursive simplifications after a RAUW. This is cheaper than checking all
680     // uses of To on the recursive step in most cases.
681     for (const User *U : OrigV->users())
682       Worklist.insert(cast<Instruction>(U));
683 
684     // Replace the instruction with its simplified value.
685     I->replaceAllUsesWith(SimpleV);
686 
687     // If the original instruction had no side effects, remove it.
688     if (isInstructionTriviallyDead(I))
689       I->eraseFromParent();
690     else
691       VMap[OrigV] = I;
692   }
693 
694   // Now that the inlined function body has been fully constructed, go through
695   // and zap unconditional fall-through branches. This happens all the time when
696   // specializing code: code specialization turns conditional branches into
697   // uncond branches, and this code folds them.
698   Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator();
699   Function::iterator I = Begin;
700   while (I != NewFunc->end()) {
701     // We need to simplify conditional branches and switches with a constant
702     // operand. We try to prune these out when cloning, but if the
703     // simplification required looking through PHI nodes, those are only
704     // available after forming the full basic block. That may leave some here,
705     // and we still want to prune the dead code as early as possible.
706     //
707     // Do the folding before we check if the block is dead since we want code
708     // like
709     //  bb:
710     //    br i1 undef, label %bb, label %bb
711     // to be simplified to
712     //  bb:
713     //    br label %bb
714     // before we call I->getSinglePredecessor().
715     ConstantFoldTerminator(&*I);
716 
717     // Check if this block has become dead during inlining or other
718     // simplifications. Note that the first block will appear dead, as it has
719     // not yet been wired up properly.
720     if (I != Begin && (pred_empty(&*I) || I->getSinglePredecessor() == &*I)) {
721       BasicBlock *DeadBB = &*I++;
722       DeleteDeadBlock(DeadBB);
723       continue;
724     }
725 
726     BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
727     if (!BI || BI->isConditional()) {
728       ++I;
729       continue;
730     }
731 
732     BasicBlock *Dest = BI->getSuccessor(0);
733     if (!Dest->getSinglePredecessor()) {
734       ++I;
735       continue;
736     }
737 
738     // We shouldn't be able to get single-entry PHI nodes here, as instsimplify
739     // above should have zapped all of them..
740     assert(!isa<PHINode>(Dest->begin()));
741 
742     // We know all single-entry PHI nodes in the inlined function have been
743     // removed, so we just need to splice the blocks.
744     BI->eraseFromParent();
745 
746     // Make all PHI nodes that referred to Dest now refer to I as their source.
747     Dest->replaceAllUsesWith(&*I);
748 
749     // Move all the instructions in the succ to the pred.
750     I->getInstList().splice(I->end(), Dest->getInstList());
751 
752     // Remove the dest block.
753     Dest->eraseFromParent();
754 
755     // Do not increment I, iteratively merge all things this block branches to.
756   }
757 
758   // Make a final pass over the basic blocks from the old function to gather
759   // any return instructions which survived folding. We have to do this here
760   // because we can iteratively remove and merge returns above.
761   for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(),
762                           E = NewFunc->end();
763        I != E; ++I)
764     if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator()))
765       Returns.push_back(RI);
766 }
767 
768 /// This works exactly like CloneFunctionInto,
769 /// except that it does some simple constant prop and DCE on the fly.  The
770 /// effect of this is to copy significantly less code in cases where (for
771 /// example) a function call with constant arguments is inlined, and those
772 /// constant arguments cause a significant amount of code in the callee to be
773 /// dead.  Since this doesn't produce an exact copy of the input, it can't be
774 /// used for things like CloneFunction or CloneModule.
CloneAndPruneFunctionInto(Function * NewFunc,const Function * OldFunc,ValueToValueMapTy & VMap,bool ModuleLevelChanges,SmallVectorImpl<ReturnInst * > & Returns,const char * NameSuffix,ClonedCodeInfo * CodeInfo,Instruction * TheCall)775 void llvm::CloneAndPruneFunctionInto(
776     Function *NewFunc, const Function *OldFunc, ValueToValueMapTy &VMap,
777     bool ModuleLevelChanges, SmallVectorImpl<ReturnInst *> &Returns,
778     const char *NameSuffix, ClonedCodeInfo *CodeInfo, Instruction *TheCall) {
779   CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap,
780                             ModuleLevelChanges, Returns, NameSuffix, CodeInfo);
781 }
782 
783 /// Remaps instructions in \p Blocks using the mapping in \p VMap.
remapInstructionsInBlocks(const SmallVectorImpl<BasicBlock * > & Blocks,ValueToValueMapTy & VMap)784 void llvm::remapInstructionsInBlocks(
785     const SmallVectorImpl<BasicBlock *> &Blocks, ValueToValueMapTy &VMap) {
786   // Rewrite the code to refer to itself.
787   for (auto *BB : Blocks)
788     for (auto &Inst : *BB)
789       RemapInstruction(&Inst, VMap,
790                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
791 }
792 
793 /// Clones a loop \p OrigLoop.  Returns the loop and the blocks in \p
794 /// Blocks.
795 ///
796 /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block
797 /// \p LoopDomBB.  Insert the new blocks before block specified in \p Before.
cloneLoopWithPreheader(BasicBlock * Before,BasicBlock * LoopDomBB,Loop * OrigLoop,ValueToValueMapTy & VMap,const Twine & NameSuffix,LoopInfo * LI,DominatorTree * DT,SmallVectorImpl<BasicBlock * > & Blocks)798 Loop *llvm::cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB,
799                                    Loop *OrigLoop, ValueToValueMapTy &VMap,
800                                    const Twine &NameSuffix, LoopInfo *LI,
801                                    DominatorTree *DT,
802                                    SmallVectorImpl<BasicBlock *> &Blocks) {
803   Function *F = OrigLoop->getHeader()->getParent();
804   Loop *ParentLoop = OrigLoop->getParentLoop();
805   DenseMap<Loop *, Loop *> LMap;
806 
807   Loop *NewLoop = LI->AllocateLoop();
808   LMap[OrigLoop] = NewLoop;
809   if (ParentLoop)
810     ParentLoop->addChildLoop(NewLoop);
811   else
812     LI->addTopLevelLoop(NewLoop);
813 
814   BasicBlock *OrigPH = OrigLoop->getLoopPreheader();
815   assert(OrigPH && "No preheader");
816   BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F);
817   // To rename the loop PHIs.
818   VMap[OrigPH] = NewPH;
819   Blocks.push_back(NewPH);
820 
821   // Update LoopInfo.
822   if (ParentLoop)
823     ParentLoop->addBasicBlockToLoop(NewPH, *LI);
824 
825   // Update DominatorTree.
826   DT->addNewBlock(NewPH, LoopDomBB);
827 
828   for (Loop *CurLoop : OrigLoop->getLoopsInPreorder()) {
829     Loop *&NewLoop = LMap[CurLoop];
830     if (!NewLoop) {
831       NewLoop = LI->AllocateLoop();
832 
833       // Establish the parent/child relationship.
834       Loop *OrigParent = CurLoop->getParentLoop();
835       assert(OrigParent && "Could not find the original parent loop");
836       Loop *NewParentLoop = LMap[OrigParent];
837       assert(NewParentLoop && "Could not find the new parent loop");
838 
839       NewParentLoop->addChildLoop(NewLoop);
840     }
841   }
842 
843   for (BasicBlock *BB : OrigLoop->getBlocks()) {
844     Loop *CurLoop = LI->getLoopFor(BB);
845     Loop *&NewLoop = LMap[CurLoop];
846     assert(NewLoop && "Expecting new loop to be allocated");
847 
848     BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F);
849     VMap[BB] = NewBB;
850 
851     // Update LoopInfo.
852     NewLoop->addBasicBlockToLoop(NewBB, *LI);
853 
854     // Add DominatorTree node. After seeing all blocks, update to correct
855     // IDom.
856     DT->addNewBlock(NewBB, NewPH);
857 
858     Blocks.push_back(NewBB);
859   }
860 
861   for (BasicBlock *BB : OrigLoop->getBlocks()) {
862     // Update loop headers.
863     Loop *CurLoop = LI->getLoopFor(BB);
864     if (BB == CurLoop->getHeader())
865       LMap[CurLoop]->moveToHeader(cast<BasicBlock>(VMap[BB]));
866 
867     // Update DominatorTree.
868     BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock();
869     DT->changeImmediateDominator(cast<BasicBlock>(VMap[BB]),
870                                  cast<BasicBlock>(VMap[IDomBB]));
871   }
872 
873   // Move them physically from the end of the block list.
874   F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
875                                 NewPH);
876   F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
877                                 NewLoop->getHeader()->getIterator(), F->end());
878 
879   return NewLoop;
880 }
881 
882 /// Duplicate non-Phi instructions from the beginning of block up to
883 /// StopAt instruction into a split block between BB and its predecessor.
DuplicateInstructionsInSplitBetween(BasicBlock * BB,BasicBlock * PredBB,Instruction * StopAt,ValueToValueMapTy & ValueMapping,DomTreeUpdater & DTU)884 BasicBlock *llvm::DuplicateInstructionsInSplitBetween(
885     BasicBlock *BB, BasicBlock *PredBB, Instruction *StopAt,
886     ValueToValueMapTy &ValueMapping, DomTreeUpdater &DTU) {
887 
888   assert(count(successors(PredBB), BB) == 1 &&
889          "There must be a single edge between PredBB and BB!");
890   // We are going to have to map operands from the original BB block to the new
891   // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
892   // account for entry from PredBB.
893   BasicBlock::iterator BI = BB->begin();
894   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
895     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
896 
897   BasicBlock *NewBB = SplitEdge(PredBB, BB);
898   NewBB->setName(PredBB->getName() + ".split");
899   Instruction *NewTerm = NewBB->getTerminator();
900 
901   // FIXME: SplitEdge does not yet take a DTU, so we include the split edge
902   //        in the update set here.
903   DTU.applyUpdates({{DominatorTree::Delete, PredBB, BB},
904                     {DominatorTree::Insert, PredBB, NewBB},
905                     {DominatorTree::Insert, NewBB, BB}});
906 
907   // Clone the non-phi instructions of BB into NewBB, keeping track of the
908   // mapping and using it to remap operands in the cloned instructions.
909   // Stop once we see the terminator too. This covers the case where BB's
910   // terminator gets replaced and StopAt == BB's terminator.
911   for (; StopAt != &*BI && BB->getTerminator() != &*BI; ++BI) {
912     Instruction *New = BI->clone();
913     New->setName(BI->getName());
914     New->insertBefore(NewTerm);
915     ValueMapping[&*BI] = New;
916 
917     // Remap operands to patch up intra-block references.
918     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
919       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
920         auto I = ValueMapping.find(Inst);
921         if (I != ValueMapping.end())
922           New->setOperand(i, I->second);
923       }
924   }
925 
926   return NewBB;
927 }
928 
cloneNoAliasScopes(ArrayRef<MDNode * > NoAliasDeclScopes,DenseMap<MDNode *,MDNode * > & ClonedScopes,StringRef Ext,LLVMContext & Context)929 void llvm::cloneNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes,
930                               DenseMap<MDNode *, MDNode *> &ClonedScopes,
931                               StringRef Ext, LLVMContext &Context) {
932   MDBuilder MDB(Context);
933 
934   for (auto *ScopeList : NoAliasDeclScopes) {
935     for (auto &MDOperand : ScopeList->operands()) {
936       if (MDNode *MD = dyn_cast<MDNode>(MDOperand)) {
937         AliasScopeNode SNANode(MD);
938 
939         std::string Name;
940         auto ScopeName = SNANode.getName();
941         if (!ScopeName.empty())
942           Name = (Twine(ScopeName) + ":" + Ext).str();
943         else
944           Name = std::string(Ext);
945 
946         MDNode *NewScope = MDB.createAnonymousAliasScope(
947             const_cast<MDNode *>(SNANode.getDomain()), Name);
948         ClonedScopes.insert(std::make_pair(MD, NewScope));
949       }
950     }
951   }
952 }
953 
adaptNoAliasScopes(Instruction * I,const DenseMap<MDNode *,MDNode * > & ClonedScopes,LLVMContext & Context)954 void llvm::adaptNoAliasScopes(Instruction *I,
955                               const DenseMap<MDNode *, MDNode *> &ClonedScopes,
956                               LLVMContext &Context) {
957   auto CloneScopeList = [&](const MDNode *ScopeList) -> MDNode * {
958     bool NeedsReplacement = false;
959     SmallVector<Metadata *, 8> NewScopeList;
960     for (auto &MDOp : ScopeList->operands()) {
961       if (MDNode *MD = dyn_cast<MDNode>(MDOp)) {
962         if (auto *NewMD = ClonedScopes.lookup(MD)) {
963           NewScopeList.push_back(NewMD);
964           NeedsReplacement = true;
965           continue;
966         }
967         NewScopeList.push_back(MD);
968       }
969     }
970     if (NeedsReplacement)
971       return MDNode::get(Context, NewScopeList);
972     return nullptr;
973   };
974 
975   if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(I))
976     if (auto *NewScopeList = CloneScopeList(Decl->getScopeList()))
977       Decl->setScopeList(NewScopeList);
978 
979   auto replaceWhenNeeded = [&](unsigned MD_ID) {
980     if (const MDNode *CSNoAlias = I->getMetadata(MD_ID))
981       if (auto *NewScopeList = CloneScopeList(CSNoAlias))
982         I->setMetadata(MD_ID, NewScopeList);
983   };
984   replaceWhenNeeded(LLVMContext::MD_noalias);
985   replaceWhenNeeded(LLVMContext::MD_alias_scope);
986 }
987 
cloneAndAdaptNoAliasScopes(ArrayRef<MDNode * > NoAliasDeclScopes,ArrayRef<BasicBlock * > NewBlocks,LLVMContext & Context,StringRef Ext)988 void llvm::cloneAndAdaptNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes,
989                                       ArrayRef<BasicBlock *> NewBlocks,
990                                       LLVMContext &Context, StringRef Ext) {
991   if (NoAliasDeclScopes.empty())
992     return;
993 
994   DenseMap<MDNode *, MDNode *> ClonedScopes;
995   LLVM_DEBUG(dbgs() << "cloneAndAdaptNoAliasScopes: cloning "
996                     << NoAliasDeclScopes.size() << " node(s)\n");
997 
998   cloneNoAliasScopes(NoAliasDeclScopes, ClonedScopes, Ext, Context);
999   // Identify instructions using metadata that needs adaptation
1000   for (BasicBlock *NewBlock : NewBlocks)
1001     for (Instruction &I : *NewBlock)
1002       adaptNoAliasScopes(&I, ClonedScopes, Context);
1003 }
1004 
cloneAndAdaptNoAliasScopes(ArrayRef<MDNode * > NoAliasDeclScopes,Instruction * IStart,Instruction * IEnd,LLVMContext & Context,StringRef Ext)1005 void llvm::cloneAndAdaptNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes,
1006                                       Instruction *IStart, Instruction *IEnd,
1007                                       LLVMContext &Context, StringRef Ext) {
1008   if (NoAliasDeclScopes.empty())
1009     return;
1010 
1011   DenseMap<MDNode *, MDNode *> ClonedScopes;
1012   LLVM_DEBUG(dbgs() << "cloneAndAdaptNoAliasScopes: cloning "
1013                     << NoAliasDeclScopes.size() << " node(s)\n");
1014 
1015   cloneNoAliasScopes(NoAliasDeclScopes, ClonedScopes, Ext, Context);
1016   // Identify instructions using metadata that needs adaptation
1017   assert(IStart->getParent() == IEnd->getParent() && "different basic block ?");
1018   auto ItStart = IStart->getIterator();
1019   auto ItEnd = IEnd->getIterator();
1020   ++ItEnd; // IEnd is included, increment ItEnd to get the end of the range
1021   for (auto &I : llvm::make_range(ItStart, ItEnd))
1022     adaptNoAliasScopes(&I, ClonedScopes, Context);
1023 }
1024 
identifyNoAliasScopesToClone(ArrayRef<BasicBlock * > BBs,SmallVectorImpl<MDNode * > & NoAliasDeclScopes)1025 void llvm::identifyNoAliasScopesToClone(
1026     ArrayRef<BasicBlock *> BBs, SmallVectorImpl<MDNode *> &NoAliasDeclScopes) {
1027   for (BasicBlock *BB : BBs)
1028     for (Instruction &I : *BB)
1029       if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
1030         NoAliasDeclScopes.push_back(Decl->getScopeList());
1031 }
1032 
identifyNoAliasScopesToClone(BasicBlock::iterator Start,BasicBlock::iterator End,SmallVectorImpl<MDNode * > & NoAliasDeclScopes)1033 void llvm::identifyNoAliasScopesToClone(
1034     BasicBlock::iterator Start, BasicBlock::iterator End,
1035     SmallVectorImpl<MDNode *> &NoAliasDeclScopes) {
1036   for (Instruction &I : make_range(Start, End))
1037     if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
1038       NoAliasDeclScopes.push_back(Decl->getScopeList());
1039 }
1040