1 //===- CloneFunction.cpp - Clone a function into another function ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the CloneFunctionInto interface, which is used as the
10 // low-level function cloner. This is used by the CloneFunction and function
11 // inliner to do the dirty work of copying the body of a function around.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/Analysis/ConstantFolding.h"
18 #include "llvm/Analysis/DomTreeUpdater.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/IR/CFG.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DebugInfo.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/MDBuilder.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
34 #include "llvm/Transforms/Utils/Cloning.h"
35 #include "llvm/Transforms/Utils/Local.h"
36 #include "llvm/Transforms/Utils/ValueMapper.h"
37 #include <map>
38 using namespace llvm;
39
40 #define DEBUG_TYPE "clone-function"
41
42 /// See comments in Cloning.h.
CloneBasicBlock(const BasicBlock * BB,ValueToValueMapTy & VMap,const Twine & NameSuffix,Function * F,ClonedCodeInfo * CodeInfo,DebugInfoFinder * DIFinder)43 BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap,
44 const Twine &NameSuffix, Function *F,
45 ClonedCodeInfo *CodeInfo,
46 DebugInfoFinder *DIFinder) {
47 DenseMap<const MDNode *, MDNode *> Cache;
48 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
49 if (BB->hasName())
50 NewBB->setName(BB->getName() + NameSuffix);
51
52 bool hasCalls = false, hasDynamicAllocas = false;
53 Module *TheModule = F ? F->getParent() : nullptr;
54
55 // Loop over all instructions, and copy them over.
56 for (const Instruction &I : *BB) {
57 if (DIFinder && TheModule)
58 DIFinder->processInstruction(*TheModule, I);
59
60 Instruction *NewInst = I.clone();
61 if (I.hasName())
62 NewInst->setName(I.getName() + NameSuffix);
63 NewBB->getInstList().push_back(NewInst);
64 VMap[&I] = NewInst; // Add instruction map to value.
65
66 hasCalls |= (isa<CallInst>(I) && !isa<DbgInfoIntrinsic>(I));
67 if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
68 if (!AI->isStaticAlloca()) {
69 hasDynamicAllocas = true;
70 }
71 }
72 }
73
74 if (CodeInfo) {
75 CodeInfo->ContainsCalls |= hasCalls;
76 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
77 }
78 return NewBB;
79 }
80
81 // Clone OldFunc into NewFunc, transforming the old arguments into references to
82 // VMap values.
83 //
CloneFunctionInto(Function * NewFunc,const Function * OldFunc,ValueToValueMapTy & VMap,CloneFunctionChangeType Changes,SmallVectorImpl<ReturnInst * > & Returns,const char * NameSuffix,ClonedCodeInfo * CodeInfo,ValueMapTypeRemapper * TypeMapper,ValueMaterializer * Materializer)84 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
85 ValueToValueMapTy &VMap,
86 CloneFunctionChangeType Changes,
87 SmallVectorImpl<ReturnInst *> &Returns,
88 const char *NameSuffix, ClonedCodeInfo *CodeInfo,
89 ValueMapTypeRemapper *TypeMapper,
90 ValueMaterializer *Materializer) {
91 assert(NameSuffix && "NameSuffix cannot be null!");
92
93 #ifndef NDEBUG
94 for (const Argument &I : OldFunc->args())
95 assert(VMap.count(&I) && "No mapping from source argument specified!");
96 #endif
97
98 bool ModuleLevelChanges = Changes > CloneFunctionChangeType::LocalChangesOnly;
99
100 // Copy all attributes other than those stored in the AttributeList. We need
101 // to remap the parameter indices of the AttributeList.
102 AttributeList NewAttrs = NewFunc->getAttributes();
103 NewFunc->copyAttributesFrom(OldFunc);
104 NewFunc->setAttributes(NewAttrs);
105
106 // Fix up the personality function that got copied over.
107 if (OldFunc->hasPersonalityFn())
108 NewFunc->setPersonalityFn(
109 MapValue(OldFunc->getPersonalityFn(), VMap,
110 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
111 TypeMapper, Materializer));
112
113 SmallVector<AttributeSet, 4> NewArgAttrs(NewFunc->arg_size());
114 AttributeList OldAttrs = OldFunc->getAttributes();
115
116 // Clone any argument attributes that are present in the VMap.
117 for (const Argument &OldArg : OldFunc->args()) {
118 if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) {
119 NewArgAttrs[NewArg->getArgNo()] =
120 OldAttrs.getParamAttributes(OldArg.getArgNo());
121 }
122 }
123
124 NewFunc->setAttributes(
125 AttributeList::get(NewFunc->getContext(), OldAttrs.getFnAttributes(),
126 OldAttrs.getRetAttributes(), NewArgAttrs));
127
128 // Everything else beyond this point deals with function instructions,
129 // so if we are dealing with a function declaration, we're done.
130 if (OldFunc->isDeclaration())
131 return;
132
133 // When we remap instructions within the same module, we want to avoid
134 // duplicating inlined DISubprograms, so record all subprograms we find as we
135 // duplicate instructions and then freeze them in the MD map. We also record
136 // information about dbg.value and dbg.declare to avoid duplicating the
137 // types.
138 Optional<DebugInfoFinder> DIFinder;
139
140 // Track the subprogram attachment that needs to be cloned to fine-tune the
141 // mapping within the same module.
142 DISubprogram *SPClonedWithinModule = nullptr;
143 if (Changes < CloneFunctionChangeType::DifferentModule) {
144 assert((NewFunc->getParent() == nullptr ||
145 NewFunc->getParent() == OldFunc->getParent()) &&
146 "Expected NewFunc to have the same parent, or no parent");
147
148 // Need to find subprograms, types, and compile units.
149 DIFinder.emplace();
150
151 SPClonedWithinModule = OldFunc->getSubprogram();
152 if (SPClonedWithinModule)
153 DIFinder->processSubprogram(SPClonedWithinModule);
154 } else {
155 assert((NewFunc->getParent() == nullptr ||
156 NewFunc->getParent() != OldFunc->getParent()) &&
157 "Expected NewFunc to have different parents, or no parent");
158
159 if (Changes == CloneFunctionChangeType::DifferentModule) {
160 assert(NewFunc->getParent() &&
161 "Need parent of new function to maintain debug info invariants");
162
163 // Need to find all the compile units.
164 DIFinder.emplace();
165 }
166 }
167
168 // Loop over all of the basic blocks in the function, cloning them as
169 // appropriate. Note that we save BE this way in order to handle cloning of
170 // recursive functions into themselves.
171 for (const BasicBlock &BB : *OldFunc) {
172
173 // Create a new basic block and copy instructions into it!
174 BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo,
175 DIFinder ? &*DIFinder : nullptr);
176
177 // Add basic block mapping.
178 VMap[&BB] = CBB;
179
180 // It is only legal to clone a function if a block address within that
181 // function is never referenced outside of the function. Given that, we
182 // want to map block addresses from the old function to block addresses in
183 // the clone. (This is different from the generic ValueMapper
184 // implementation, which generates an invalid blockaddress when
185 // cloning a function.)
186 if (BB.hasAddressTaken()) {
187 Constant *OldBBAddr = BlockAddress::get(const_cast<Function *>(OldFunc),
188 const_cast<BasicBlock *>(&BB));
189 VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB);
190 }
191
192 // Note return instructions for the caller.
193 if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
194 Returns.push_back(RI);
195 }
196
197 if (Changes < CloneFunctionChangeType::DifferentModule &&
198 DIFinder->subprogram_count() > 0) {
199 // Turn on module-level changes, since we need to clone (some of) the
200 // debug info metadata.
201 //
202 // FIXME: Metadata effectively owned by a function should be made
203 // local, and only that local metadata should be cloned.
204 ModuleLevelChanges = true;
205
206 auto mapToSelfIfNew = [&VMap](MDNode *N) {
207 // Avoid clobbering an existing mapping.
208 (void)VMap.MD().try_emplace(N, N);
209 };
210
211 // Avoid cloning types, compile units, and (other) subprograms.
212 for (DISubprogram *ISP : DIFinder->subprograms())
213 if (ISP != SPClonedWithinModule)
214 mapToSelfIfNew(ISP);
215
216 for (DICompileUnit *CU : DIFinder->compile_units())
217 mapToSelfIfNew(CU);
218
219 for (DIType *Type : DIFinder->types())
220 mapToSelfIfNew(Type);
221 } else {
222 assert(!SPClonedWithinModule &&
223 "Subprogram should be in DIFinder->subprogram_count()...");
224 }
225
226 const auto RemapFlag = ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges;
227 // Duplicate the metadata that is attached to the cloned function.
228 // Subprograms/CUs/types that were already mapped to themselves won't be
229 // duplicated.
230 SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
231 OldFunc->getAllMetadata(MDs);
232 for (auto MD : MDs) {
233 NewFunc->addMetadata(MD.first, *MapMetadata(MD.second, VMap, RemapFlag,
234 TypeMapper, Materializer));
235 }
236
237 // Loop over all of the instructions in the new function, fixing up operand
238 // references as we go. This uses VMap to do all the hard work.
239 for (Function::iterator
240 BB = cast<BasicBlock>(VMap[&OldFunc->front()])->getIterator(),
241 BE = NewFunc->end();
242 BB != BE; ++BB)
243 // Loop over all instructions, fixing each one as we find it...
244 for (Instruction &II : *BB)
245 RemapInstruction(&II, VMap, RemapFlag, TypeMapper, Materializer);
246
247 // Only update !llvm.dbg.cu for DifferentModule (not CloneModule). In the
248 // same module, the compile unit will already be listed (or not). When
249 // cloning a module, CloneModule() will handle creating the named metadata.
250 if (Changes != CloneFunctionChangeType::DifferentModule)
251 return;
252
253 // Update !llvm.dbg.cu with compile units added to the new module if this
254 // function is being cloned in isolation.
255 //
256 // FIXME: This is making global / module-level changes, which doesn't seem
257 // like the right encapsulation Consider dropping the requirement to update
258 // !llvm.dbg.cu (either obsoleting the node, or restricting it to
259 // non-discardable compile units) instead of discovering compile units by
260 // visiting the metadata attached to global values, which would allow this
261 // code to be deleted. Alternatively, perhaps give responsibility for this
262 // update to CloneFunctionInto's callers.
263 auto *NewModule = NewFunc->getParent();
264 auto *NMD = NewModule->getOrInsertNamedMetadata("llvm.dbg.cu");
265 // Avoid multiple insertions of the same DICompileUnit to NMD.
266 SmallPtrSet<const void *, 8> Visited;
267 for (auto *Operand : NMD->operands())
268 Visited.insert(Operand);
269 for (auto *Unit : DIFinder->compile_units()) {
270 MDNode *MappedUnit =
271 MapMetadata(Unit, VMap, RF_None, TypeMapper, Materializer);
272 if (Visited.insert(MappedUnit).second)
273 NMD->addOperand(MappedUnit);
274 }
275 }
276
277 /// Return a copy of the specified function and add it to that function's
278 /// module. Also, any references specified in the VMap are changed to refer to
279 /// their mapped value instead of the original one. If any of the arguments to
280 /// the function are in the VMap, the arguments are deleted from the resultant
281 /// function. The VMap is updated to include mappings from all of the
282 /// instructions and basicblocks in the function from their old to new values.
283 ///
CloneFunction(Function * F,ValueToValueMapTy & VMap,ClonedCodeInfo * CodeInfo)284 Function *llvm::CloneFunction(Function *F, ValueToValueMapTy &VMap,
285 ClonedCodeInfo *CodeInfo) {
286 std::vector<Type *> ArgTypes;
287
288 // The user might be deleting arguments to the function by specifying them in
289 // the VMap. If so, we need to not add the arguments to the arg ty vector
290 //
291 for (const Argument &I : F->args())
292 if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet?
293 ArgTypes.push_back(I.getType());
294
295 // Create a new function type...
296 FunctionType *FTy =
297 FunctionType::get(F->getFunctionType()->getReturnType(), ArgTypes,
298 F->getFunctionType()->isVarArg());
299
300 // Create the new function...
301 Function *NewF = Function::Create(FTy, F->getLinkage(), F->getAddressSpace(),
302 F->getName(), F->getParent());
303
304 // Loop over the arguments, copying the names of the mapped arguments over...
305 Function::arg_iterator DestI = NewF->arg_begin();
306 for (const Argument &I : F->args())
307 if (VMap.count(&I) == 0) { // Is this argument preserved?
308 DestI->setName(I.getName()); // Copy the name over...
309 VMap[&I] = &*DestI++; // Add mapping to VMap
310 }
311
312 SmallVector<ReturnInst *, 8> Returns; // Ignore returns cloned.
313 CloneFunctionInto(NewF, F, VMap, CloneFunctionChangeType::LocalChangesOnly,
314 Returns, "", CodeInfo);
315
316 return NewF;
317 }
318
319 namespace {
320 /// This is a private class used to implement CloneAndPruneFunctionInto.
321 struct PruningFunctionCloner {
322 Function *NewFunc;
323 const Function *OldFunc;
324 ValueToValueMapTy &VMap;
325 bool ModuleLevelChanges;
326 const char *NameSuffix;
327 ClonedCodeInfo *CodeInfo;
328
329 public:
PruningFunctionCloner__anonb09140f00211::PruningFunctionCloner330 PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
331 ValueToValueMapTy &valueMap, bool moduleLevelChanges,
332 const char *nameSuffix, ClonedCodeInfo *codeInfo)
333 : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap),
334 ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix),
335 CodeInfo(codeInfo) {}
336
337 /// The specified block is found to be reachable, clone it and
338 /// anything that it can reach.
339 void CloneBlock(const BasicBlock *BB, BasicBlock::const_iterator StartingInst,
340 std::vector<const BasicBlock *> &ToClone);
341 };
342 } // namespace
343
344 /// The specified block is found to be reachable, clone it and
345 /// anything that it can reach.
CloneBlock(const BasicBlock * BB,BasicBlock::const_iterator StartingInst,std::vector<const BasicBlock * > & ToClone)346 void PruningFunctionCloner::CloneBlock(
347 const BasicBlock *BB, BasicBlock::const_iterator StartingInst,
348 std::vector<const BasicBlock *> &ToClone) {
349 WeakTrackingVH &BBEntry = VMap[BB];
350
351 // Have we already cloned this block?
352 if (BBEntry)
353 return;
354
355 // Nope, clone it now.
356 BasicBlock *NewBB;
357 BBEntry = NewBB = BasicBlock::Create(BB->getContext());
358 if (BB->hasName())
359 NewBB->setName(BB->getName() + NameSuffix);
360
361 // It is only legal to clone a function if a block address within that
362 // function is never referenced outside of the function. Given that, we
363 // want to map block addresses from the old function to block addresses in
364 // the clone. (This is different from the generic ValueMapper
365 // implementation, which generates an invalid blockaddress when
366 // cloning a function.)
367 //
368 // Note that we don't need to fix the mapping for unreachable blocks;
369 // the default mapping there is safe.
370 if (BB->hasAddressTaken()) {
371 Constant *OldBBAddr = BlockAddress::get(const_cast<Function *>(OldFunc),
372 const_cast<BasicBlock *>(BB));
373 VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB);
374 }
375
376 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
377
378 // Loop over all instructions, and copy them over, DCE'ing as we go. This
379 // loop doesn't include the terminator.
380 for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end(); II != IE;
381 ++II) {
382
383 Instruction *NewInst = II->clone();
384
385 // Eagerly remap operands to the newly cloned instruction, except for PHI
386 // nodes for which we defer processing until we update the CFG.
387 if (!isa<PHINode>(NewInst)) {
388 RemapInstruction(NewInst, VMap,
389 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
390
391 // If we can simplify this instruction to some other value, simply add
392 // a mapping to that value rather than inserting a new instruction into
393 // the basic block.
394 if (Value *V =
395 SimplifyInstruction(NewInst, BB->getModule()->getDataLayout())) {
396 // On the off-chance that this simplifies to an instruction in the old
397 // function, map it back into the new function.
398 if (NewFunc != OldFunc)
399 if (Value *MappedV = VMap.lookup(V))
400 V = MappedV;
401
402 if (!NewInst->mayHaveSideEffects()) {
403 VMap[&*II] = V;
404 NewInst->deleteValue();
405 continue;
406 }
407 }
408 }
409
410 if (II->hasName())
411 NewInst->setName(II->getName() + NameSuffix);
412 VMap[&*II] = NewInst; // Add instruction map to value.
413 NewBB->getInstList().push_back(NewInst);
414 hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
415
416 if (CodeInfo)
417 if (auto *CB = dyn_cast<CallBase>(&*II))
418 if (CB->hasOperandBundles())
419 CodeInfo->OperandBundleCallSites.push_back(NewInst);
420
421 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
422 if (isa<ConstantInt>(AI->getArraySize()))
423 hasStaticAllocas = true;
424 else
425 hasDynamicAllocas = true;
426 }
427 }
428
429 // Finally, clone over the terminator.
430 const Instruction *OldTI = BB->getTerminator();
431 bool TerminatorDone = false;
432 if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
433 if (BI->isConditional()) {
434 // If the condition was a known constant in the callee...
435 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
436 // Or is a known constant in the caller...
437 if (!Cond) {
438 Value *V = VMap.lookup(BI->getCondition());
439 Cond = dyn_cast_or_null<ConstantInt>(V);
440 }
441
442 // Constant fold to uncond branch!
443 if (Cond) {
444 BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
445 VMap[OldTI] = BranchInst::Create(Dest, NewBB);
446 ToClone.push_back(Dest);
447 TerminatorDone = true;
448 }
449 }
450 } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
451 // If switching on a value known constant in the caller.
452 ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
453 if (!Cond) { // Or known constant after constant prop in the callee...
454 Value *V = VMap.lookup(SI->getCondition());
455 Cond = dyn_cast_or_null<ConstantInt>(V);
456 }
457 if (Cond) { // Constant fold to uncond branch!
458 SwitchInst::ConstCaseHandle Case = *SI->findCaseValue(Cond);
459 BasicBlock *Dest = const_cast<BasicBlock *>(Case.getCaseSuccessor());
460 VMap[OldTI] = BranchInst::Create(Dest, NewBB);
461 ToClone.push_back(Dest);
462 TerminatorDone = true;
463 }
464 }
465
466 if (!TerminatorDone) {
467 Instruction *NewInst = OldTI->clone();
468 if (OldTI->hasName())
469 NewInst->setName(OldTI->getName() + NameSuffix);
470 NewBB->getInstList().push_back(NewInst);
471 VMap[OldTI] = NewInst; // Add instruction map to value.
472
473 if (CodeInfo)
474 if (auto *CB = dyn_cast<CallBase>(OldTI))
475 if (CB->hasOperandBundles())
476 CodeInfo->OperandBundleCallSites.push_back(NewInst);
477
478 // Recursively clone any reachable successor blocks.
479 append_range(ToClone, successors(BB->getTerminator()));
480 }
481
482 if (CodeInfo) {
483 CodeInfo->ContainsCalls |= hasCalls;
484 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
485 CodeInfo->ContainsDynamicAllocas |=
486 hasStaticAllocas && BB != &BB->getParent()->front();
487 }
488 }
489
490 /// This works like CloneAndPruneFunctionInto, except that it does not clone the
491 /// entire function. Instead it starts at an instruction provided by the caller
492 /// and copies (and prunes) only the code reachable from that instruction.
CloneAndPruneIntoFromInst(Function * NewFunc,const Function * OldFunc,const Instruction * StartingInst,ValueToValueMapTy & VMap,bool ModuleLevelChanges,SmallVectorImpl<ReturnInst * > & Returns,const char * NameSuffix,ClonedCodeInfo * CodeInfo)493 void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
494 const Instruction *StartingInst,
495 ValueToValueMapTy &VMap,
496 bool ModuleLevelChanges,
497 SmallVectorImpl<ReturnInst *> &Returns,
498 const char *NameSuffix,
499 ClonedCodeInfo *CodeInfo) {
500 assert(NameSuffix && "NameSuffix cannot be null!");
501
502 ValueMapTypeRemapper *TypeMapper = nullptr;
503 ValueMaterializer *Materializer = nullptr;
504
505 #ifndef NDEBUG
506 // If the cloning starts at the beginning of the function, verify that
507 // the function arguments are mapped.
508 if (!StartingInst)
509 for (const Argument &II : OldFunc->args())
510 assert(VMap.count(&II) && "No mapping from source argument specified!");
511 #endif
512
513 PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges,
514 NameSuffix, CodeInfo);
515 const BasicBlock *StartingBB;
516 if (StartingInst)
517 StartingBB = StartingInst->getParent();
518 else {
519 StartingBB = &OldFunc->getEntryBlock();
520 StartingInst = &StartingBB->front();
521 }
522
523 // Clone the entry block, and anything recursively reachable from it.
524 std::vector<const BasicBlock *> CloneWorklist;
525 PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist);
526 while (!CloneWorklist.empty()) {
527 const BasicBlock *BB = CloneWorklist.back();
528 CloneWorklist.pop_back();
529 PFC.CloneBlock(BB, BB->begin(), CloneWorklist);
530 }
531
532 // Loop over all of the basic blocks in the old function. If the block was
533 // reachable, we have cloned it and the old block is now in the value map:
534 // insert it into the new function in the right order. If not, ignore it.
535 //
536 // Defer PHI resolution until rest of function is resolved.
537 SmallVector<const PHINode *, 16> PHIToResolve;
538 for (const BasicBlock &BI : *OldFunc) {
539 Value *V = VMap.lookup(&BI);
540 BasicBlock *NewBB = cast_or_null<BasicBlock>(V);
541 if (!NewBB)
542 continue; // Dead block.
543
544 // Add the new block to the new function.
545 NewFunc->getBasicBlockList().push_back(NewBB);
546
547 // Handle PHI nodes specially, as we have to remove references to dead
548 // blocks.
549 for (const PHINode &PN : BI.phis()) {
550 // PHI nodes may have been remapped to non-PHI nodes by the caller or
551 // during the cloning process.
552 if (isa<PHINode>(VMap[&PN]))
553 PHIToResolve.push_back(&PN);
554 else
555 break;
556 }
557
558 // Finally, remap the terminator instructions, as those can't be remapped
559 // until all BBs are mapped.
560 RemapInstruction(NewBB->getTerminator(), VMap,
561 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
562 TypeMapper, Materializer);
563 }
564
565 // Defer PHI resolution until rest of function is resolved, PHI resolution
566 // requires the CFG to be up-to-date.
567 for (unsigned phino = 0, e = PHIToResolve.size(); phino != e;) {
568 const PHINode *OPN = PHIToResolve[phino];
569 unsigned NumPreds = OPN->getNumIncomingValues();
570 const BasicBlock *OldBB = OPN->getParent();
571 BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]);
572
573 // Map operands for blocks that are live and remove operands for blocks
574 // that are dead.
575 for (; phino != PHIToResolve.size() &&
576 PHIToResolve[phino]->getParent() == OldBB;
577 ++phino) {
578 OPN = PHIToResolve[phino];
579 PHINode *PN = cast<PHINode>(VMap[OPN]);
580 for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
581 Value *V = VMap.lookup(PN->getIncomingBlock(pred));
582 if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) {
583 Value *InVal =
584 MapValue(PN->getIncomingValue(pred), VMap,
585 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
586 assert(InVal && "Unknown input value?");
587 PN->setIncomingValue(pred, InVal);
588 PN->setIncomingBlock(pred, MappedBlock);
589 } else {
590 PN->removeIncomingValue(pred, false);
591 --pred; // Revisit the next entry.
592 --e;
593 }
594 }
595 }
596
597 // The loop above has removed PHI entries for those blocks that are dead
598 // and has updated others. However, if a block is live (i.e. copied over)
599 // but its terminator has been changed to not go to this block, then our
600 // phi nodes will have invalid entries. Update the PHI nodes in this
601 // case.
602 PHINode *PN = cast<PHINode>(NewBB->begin());
603 NumPreds = pred_size(NewBB);
604 if (NumPreds != PN->getNumIncomingValues()) {
605 assert(NumPreds < PN->getNumIncomingValues());
606 // Count how many times each predecessor comes to this block.
607 std::map<BasicBlock *, unsigned> PredCount;
608 for (BasicBlock *Pred : predecessors(NewBB))
609 --PredCount[Pred];
610
611 // Figure out how many entries to remove from each PHI.
612 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
613 ++PredCount[PN->getIncomingBlock(i)];
614
615 // At this point, the excess predecessor entries are positive in the
616 // map. Loop over all of the PHIs and remove excess predecessor
617 // entries.
618 BasicBlock::iterator I = NewBB->begin();
619 for (; (PN = dyn_cast<PHINode>(I)); ++I) {
620 for (const auto &PCI : PredCount) {
621 BasicBlock *Pred = PCI.first;
622 for (unsigned NumToRemove = PCI.second; NumToRemove; --NumToRemove)
623 PN->removeIncomingValue(Pred, false);
624 }
625 }
626 }
627
628 // If the loops above have made these phi nodes have 0 or 1 operand,
629 // replace them with undef or the input value. We must do this for
630 // correctness, because 0-operand phis are not valid.
631 PN = cast<PHINode>(NewBB->begin());
632 if (PN->getNumIncomingValues() == 0) {
633 BasicBlock::iterator I = NewBB->begin();
634 BasicBlock::const_iterator OldI = OldBB->begin();
635 while ((PN = dyn_cast<PHINode>(I++))) {
636 Value *NV = UndefValue::get(PN->getType());
637 PN->replaceAllUsesWith(NV);
638 assert(VMap[&*OldI] == PN && "VMap mismatch");
639 VMap[&*OldI] = NV;
640 PN->eraseFromParent();
641 ++OldI;
642 }
643 }
644 }
645
646 // Make a second pass over the PHINodes now that all of them have been
647 // remapped into the new function, simplifying the PHINode and performing any
648 // recursive simplifications exposed. This will transparently update the
649 // WeakTrackingVH in the VMap. Notably, we rely on that so that if we coalesce
650 // two PHINodes, the iteration over the old PHIs remains valid, and the
651 // mapping will just map us to the new node (which may not even be a PHI
652 // node).
653 const DataLayout &DL = NewFunc->getParent()->getDataLayout();
654 SmallSetVector<const Value *, 8> Worklist;
655 for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx)
656 if (isa<PHINode>(VMap[PHIToResolve[Idx]]))
657 Worklist.insert(PHIToResolve[Idx]);
658
659 // Note that we must test the size on each iteration, the worklist can grow.
660 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
661 const Value *OrigV = Worklist[Idx];
662 auto *I = dyn_cast_or_null<Instruction>(VMap.lookup(OrigV));
663 if (!I)
664 continue;
665
666 // Skip over non-intrinsic callsites, we don't want to remove any nodes from
667 // the CGSCC.
668 CallBase *CB = dyn_cast<CallBase>(I);
669 if (CB && CB->getCalledFunction() &&
670 !CB->getCalledFunction()->isIntrinsic())
671 continue;
672
673 // See if this instruction simplifies.
674 Value *SimpleV = SimplifyInstruction(I, DL);
675 if (!SimpleV)
676 continue;
677
678 // Stash away all the uses of the old instruction so we can check them for
679 // recursive simplifications after a RAUW. This is cheaper than checking all
680 // uses of To on the recursive step in most cases.
681 for (const User *U : OrigV->users())
682 Worklist.insert(cast<Instruction>(U));
683
684 // Replace the instruction with its simplified value.
685 I->replaceAllUsesWith(SimpleV);
686
687 // If the original instruction had no side effects, remove it.
688 if (isInstructionTriviallyDead(I))
689 I->eraseFromParent();
690 else
691 VMap[OrigV] = I;
692 }
693
694 // Now that the inlined function body has been fully constructed, go through
695 // and zap unconditional fall-through branches. This happens all the time when
696 // specializing code: code specialization turns conditional branches into
697 // uncond branches, and this code folds them.
698 Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator();
699 Function::iterator I = Begin;
700 while (I != NewFunc->end()) {
701 // We need to simplify conditional branches and switches with a constant
702 // operand. We try to prune these out when cloning, but if the
703 // simplification required looking through PHI nodes, those are only
704 // available after forming the full basic block. That may leave some here,
705 // and we still want to prune the dead code as early as possible.
706 //
707 // Do the folding before we check if the block is dead since we want code
708 // like
709 // bb:
710 // br i1 undef, label %bb, label %bb
711 // to be simplified to
712 // bb:
713 // br label %bb
714 // before we call I->getSinglePredecessor().
715 ConstantFoldTerminator(&*I);
716
717 // Check if this block has become dead during inlining or other
718 // simplifications. Note that the first block will appear dead, as it has
719 // not yet been wired up properly.
720 if (I != Begin && (pred_empty(&*I) || I->getSinglePredecessor() == &*I)) {
721 BasicBlock *DeadBB = &*I++;
722 DeleteDeadBlock(DeadBB);
723 continue;
724 }
725
726 BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
727 if (!BI || BI->isConditional()) {
728 ++I;
729 continue;
730 }
731
732 BasicBlock *Dest = BI->getSuccessor(0);
733 if (!Dest->getSinglePredecessor()) {
734 ++I;
735 continue;
736 }
737
738 // We shouldn't be able to get single-entry PHI nodes here, as instsimplify
739 // above should have zapped all of them..
740 assert(!isa<PHINode>(Dest->begin()));
741
742 // We know all single-entry PHI nodes in the inlined function have been
743 // removed, so we just need to splice the blocks.
744 BI->eraseFromParent();
745
746 // Make all PHI nodes that referred to Dest now refer to I as their source.
747 Dest->replaceAllUsesWith(&*I);
748
749 // Move all the instructions in the succ to the pred.
750 I->getInstList().splice(I->end(), Dest->getInstList());
751
752 // Remove the dest block.
753 Dest->eraseFromParent();
754
755 // Do not increment I, iteratively merge all things this block branches to.
756 }
757
758 // Make a final pass over the basic blocks from the old function to gather
759 // any return instructions which survived folding. We have to do this here
760 // because we can iteratively remove and merge returns above.
761 for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(),
762 E = NewFunc->end();
763 I != E; ++I)
764 if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator()))
765 Returns.push_back(RI);
766 }
767
768 /// This works exactly like CloneFunctionInto,
769 /// except that it does some simple constant prop and DCE on the fly. The
770 /// effect of this is to copy significantly less code in cases where (for
771 /// example) a function call with constant arguments is inlined, and those
772 /// constant arguments cause a significant amount of code in the callee to be
773 /// dead. Since this doesn't produce an exact copy of the input, it can't be
774 /// used for things like CloneFunction or CloneModule.
CloneAndPruneFunctionInto(Function * NewFunc,const Function * OldFunc,ValueToValueMapTy & VMap,bool ModuleLevelChanges,SmallVectorImpl<ReturnInst * > & Returns,const char * NameSuffix,ClonedCodeInfo * CodeInfo,Instruction * TheCall)775 void llvm::CloneAndPruneFunctionInto(
776 Function *NewFunc, const Function *OldFunc, ValueToValueMapTy &VMap,
777 bool ModuleLevelChanges, SmallVectorImpl<ReturnInst *> &Returns,
778 const char *NameSuffix, ClonedCodeInfo *CodeInfo, Instruction *TheCall) {
779 CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap,
780 ModuleLevelChanges, Returns, NameSuffix, CodeInfo);
781 }
782
783 /// Remaps instructions in \p Blocks using the mapping in \p VMap.
remapInstructionsInBlocks(const SmallVectorImpl<BasicBlock * > & Blocks,ValueToValueMapTy & VMap)784 void llvm::remapInstructionsInBlocks(
785 const SmallVectorImpl<BasicBlock *> &Blocks, ValueToValueMapTy &VMap) {
786 // Rewrite the code to refer to itself.
787 for (auto *BB : Blocks)
788 for (auto &Inst : *BB)
789 RemapInstruction(&Inst, VMap,
790 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
791 }
792
793 /// Clones a loop \p OrigLoop. Returns the loop and the blocks in \p
794 /// Blocks.
795 ///
796 /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block
797 /// \p LoopDomBB. Insert the new blocks before block specified in \p Before.
cloneLoopWithPreheader(BasicBlock * Before,BasicBlock * LoopDomBB,Loop * OrigLoop,ValueToValueMapTy & VMap,const Twine & NameSuffix,LoopInfo * LI,DominatorTree * DT,SmallVectorImpl<BasicBlock * > & Blocks)798 Loop *llvm::cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB,
799 Loop *OrigLoop, ValueToValueMapTy &VMap,
800 const Twine &NameSuffix, LoopInfo *LI,
801 DominatorTree *DT,
802 SmallVectorImpl<BasicBlock *> &Blocks) {
803 Function *F = OrigLoop->getHeader()->getParent();
804 Loop *ParentLoop = OrigLoop->getParentLoop();
805 DenseMap<Loop *, Loop *> LMap;
806
807 Loop *NewLoop = LI->AllocateLoop();
808 LMap[OrigLoop] = NewLoop;
809 if (ParentLoop)
810 ParentLoop->addChildLoop(NewLoop);
811 else
812 LI->addTopLevelLoop(NewLoop);
813
814 BasicBlock *OrigPH = OrigLoop->getLoopPreheader();
815 assert(OrigPH && "No preheader");
816 BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F);
817 // To rename the loop PHIs.
818 VMap[OrigPH] = NewPH;
819 Blocks.push_back(NewPH);
820
821 // Update LoopInfo.
822 if (ParentLoop)
823 ParentLoop->addBasicBlockToLoop(NewPH, *LI);
824
825 // Update DominatorTree.
826 DT->addNewBlock(NewPH, LoopDomBB);
827
828 for (Loop *CurLoop : OrigLoop->getLoopsInPreorder()) {
829 Loop *&NewLoop = LMap[CurLoop];
830 if (!NewLoop) {
831 NewLoop = LI->AllocateLoop();
832
833 // Establish the parent/child relationship.
834 Loop *OrigParent = CurLoop->getParentLoop();
835 assert(OrigParent && "Could not find the original parent loop");
836 Loop *NewParentLoop = LMap[OrigParent];
837 assert(NewParentLoop && "Could not find the new parent loop");
838
839 NewParentLoop->addChildLoop(NewLoop);
840 }
841 }
842
843 for (BasicBlock *BB : OrigLoop->getBlocks()) {
844 Loop *CurLoop = LI->getLoopFor(BB);
845 Loop *&NewLoop = LMap[CurLoop];
846 assert(NewLoop && "Expecting new loop to be allocated");
847
848 BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F);
849 VMap[BB] = NewBB;
850
851 // Update LoopInfo.
852 NewLoop->addBasicBlockToLoop(NewBB, *LI);
853
854 // Add DominatorTree node. After seeing all blocks, update to correct
855 // IDom.
856 DT->addNewBlock(NewBB, NewPH);
857
858 Blocks.push_back(NewBB);
859 }
860
861 for (BasicBlock *BB : OrigLoop->getBlocks()) {
862 // Update loop headers.
863 Loop *CurLoop = LI->getLoopFor(BB);
864 if (BB == CurLoop->getHeader())
865 LMap[CurLoop]->moveToHeader(cast<BasicBlock>(VMap[BB]));
866
867 // Update DominatorTree.
868 BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock();
869 DT->changeImmediateDominator(cast<BasicBlock>(VMap[BB]),
870 cast<BasicBlock>(VMap[IDomBB]));
871 }
872
873 // Move them physically from the end of the block list.
874 F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
875 NewPH);
876 F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
877 NewLoop->getHeader()->getIterator(), F->end());
878
879 return NewLoop;
880 }
881
882 /// Duplicate non-Phi instructions from the beginning of block up to
883 /// StopAt instruction into a split block between BB and its predecessor.
DuplicateInstructionsInSplitBetween(BasicBlock * BB,BasicBlock * PredBB,Instruction * StopAt,ValueToValueMapTy & ValueMapping,DomTreeUpdater & DTU)884 BasicBlock *llvm::DuplicateInstructionsInSplitBetween(
885 BasicBlock *BB, BasicBlock *PredBB, Instruction *StopAt,
886 ValueToValueMapTy &ValueMapping, DomTreeUpdater &DTU) {
887
888 assert(count(successors(PredBB), BB) == 1 &&
889 "There must be a single edge between PredBB and BB!");
890 // We are going to have to map operands from the original BB block to the new
891 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to
892 // account for entry from PredBB.
893 BasicBlock::iterator BI = BB->begin();
894 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
895 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
896
897 BasicBlock *NewBB = SplitEdge(PredBB, BB);
898 NewBB->setName(PredBB->getName() + ".split");
899 Instruction *NewTerm = NewBB->getTerminator();
900
901 // FIXME: SplitEdge does not yet take a DTU, so we include the split edge
902 // in the update set here.
903 DTU.applyUpdates({{DominatorTree::Delete, PredBB, BB},
904 {DominatorTree::Insert, PredBB, NewBB},
905 {DominatorTree::Insert, NewBB, BB}});
906
907 // Clone the non-phi instructions of BB into NewBB, keeping track of the
908 // mapping and using it to remap operands in the cloned instructions.
909 // Stop once we see the terminator too. This covers the case where BB's
910 // terminator gets replaced and StopAt == BB's terminator.
911 for (; StopAt != &*BI && BB->getTerminator() != &*BI; ++BI) {
912 Instruction *New = BI->clone();
913 New->setName(BI->getName());
914 New->insertBefore(NewTerm);
915 ValueMapping[&*BI] = New;
916
917 // Remap operands to patch up intra-block references.
918 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
919 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
920 auto I = ValueMapping.find(Inst);
921 if (I != ValueMapping.end())
922 New->setOperand(i, I->second);
923 }
924 }
925
926 return NewBB;
927 }
928
cloneNoAliasScopes(ArrayRef<MDNode * > NoAliasDeclScopes,DenseMap<MDNode *,MDNode * > & ClonedScopes,StringRef Ext,LLVMContext & Context)929 void llvm::cloneNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes,
930 DenseMap<MDNode *, MDNode *> &ClonedScopes,
931 StringRef Ext, LLVMContext &Context) {
932 MDBuilder MDB(Context);
933
934 for (auto *ScopeList : NoAliasDeclScopes) {
935 for (auto &MDOperand : ScopeList->operands()) {
936 if (MDNode *MD = dyn_cast<MDNode>(MDOperand)) {
937 AliasScopeNode SNANode(MD);
938
939 std::string Name;
940 auto ScopeName = SNANode.getName();
941 if (!ScopeName.empty())
942 Name = (Twine(ScopeName) + ":" + Ext).str();
943 else
944 Name = std::string(Ext);
945
946 MDNode *NewScope = MDB.createAnonymousAliasScope(
947 const_cast<MDNode *>(SNANode.getDomain()), Name);
948 ClonedScopes.insert(std::make_pair(MD, NewScope));
949 }
950 }
951 }
952 }
953
adaptNoAliasScopes(Instruction * I,const DenseMap<MDNode *,MDNode * > & ClonedScopes,LLVMContext & Context)954 void llvm::adaptNoAliasScopes(Instruction *I,
955 const DenseMap<MDNode *, MDNode *> &ClonedScopes,
956 LLVMContext &Context) {
957 auto CloneScopeList = [&](const MDNode *ScopeList) -> MDNode * {
958 bool NeedsReplacement = false;
959 SmallVector<Metadata *, 8> NewScopeList;
960 for (auto &MDOp : ScopeList->operands()) {
961 if (MDNode *MD = dyn_cast<MDNode>(MDOp)) {
962 if (auto *NewMD = ClonedScopes.lookup(MD)) {
963 NewScopeList.push_back(NewMD);
964 NeedsReplacement = true;
965 continue;
966 }
967 NewScopeList.push_back(MD);
968 }
969 }
970 if (NeedsReplacement)
971 return MDNode::get(Context, NewScopeList);
972 return nullptr;
973 };
974
975 if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(I))
976 if (auto *NewScopeList = CloneScopeList(Decl->getScopeList()))
977 Decl->setScopeList(NewScopeList);
978
979 auto replaceWhenNeeded = [&](unsigned MD_ID) {
980 if (const MDNode *CSNoAlias = I->getMetadata(MD_ID))
981 if (auto *NewScopeList = CloneScopeList(CSNoAlias))
982 I->setMetadata(MD_ID, NewScopeList);
983 };
984 replaceWhenNeeded(LLVMContext::MD_noalias);
985 replaceWhenNeeded(LLVMContext::MD_alias_scope);
986 }
987
cloneAndAdaptNoAliasScopes(ArrayRef<MDNode * > NoAliasDeclScopes,ArrayRef<BasicBlock * > NewBlocks,LLVMContext & Context,StringRef Ext)988 void llvm::cloneAndAdaptNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes,
989 ArrayRef<BasicBlock *> NewBlocks,
990 LLVMContext &Context, StringRef Ext) {
991 if (NoAliasDeclScopes.empty())
992 return;
993
994 DenseMap<MDNode *, MDNode *> ClonedScopes;
995 LLVM_DEBUG(dbgs() << "cloneAndAdaptNoAliasScopes: cloning "
996 << NoAliasDeclScopes.size() << " node(s)\n");
997
998 cloneNoAliasScopes(NoAliasDeclScopes, ClonedScopes, Ext, Context);
999 // Identify instructions using metadata that needs adaptation
1000 for (BasicBlock *NewBlock : NewBlocks)
1001 for (Instruction &I : *NewBlock)
1002 adaptNoAliasScopes(&I, ClonedScopes, Context);
1003 }
1004
cloneAndAdaptNoAliasScopes(ArrayRef<MDNode * > NoAliasDeclScopes,Instruction * IStart,Instruction * IEnd,LLVMContext & Context,StringRef Ext)1005 void llvm::cloneAndAdaptNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes,
1006 Instruction *IStart, Instruction *IEnd,
1007 LLVMContext &Context, StringRef Ext) {
1008 if (NoAliasDeclScopes.empty())
1009 return;
1010
1011 DenseMap<MDNode *, MDNode *> ClonedScopes;
1012 LLVM_DEBUG(dbgs() << "cloneAndAdaptNoAliasScopes: cloning "
1013 << NoAliasDeclScopes.size() << " node(s)\n");
1014
1015 cloneNoAliasScopes(NoAliasDeclScopes, ClonedScopes, Ext, Context);
1016 // Identify instructions using metadata that needs adaptation
1017 assert(IStart->getParent() == IEnd->getParent() && "different basic block ?");
1018 auto ItStart = IStart->getIterator();
1019 auto ItEnd = IEnd->getIterator();
1020 ++ItEnd; // IEnd is included, increment ItEnd to get the end of the range
1021 for (auto &I : llvm::make_range(ItStart, ItEnd))
1022 adaptNoAliasScopes(&I, ClonedScopes, Context);
1023 }
1024
identifyNoAliasScopesToClone(ArrayRef<BasicBlock * > BBs,SmallVectorImpl<MDNode * > & NoAliasDeclScopes)1025 void llvm::identifyNoAliasScopesToClone(
1026 ArrayRef<BasicBlock *> BBs, SmallVectorImpl<MDNode *> &NoAliasDeclScopes) {
1027 for (BasicBlock *BB : BBs)
1028 for (Instruction &I : *BB)
1029 if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
1030 NoAliasDeclScopes.push_back(Decl->getScopeList());
1031 }
1032
identifyNoAliasScopesToClone(BasicBlock::iterator Start,BasicBlock::iterator End,SmallVectorImpl<MDNode * > & NoAliasDeclScopes)1033 void llvm::identifyNoAliasScopesToClone(
1034 BasicBlock::iterator Start, BasicBlock::iterator End,
1035 SmallVectorImpl<MDNode *> &NoAliasDeclScopes) {
1036 for (Instruction &I : make_range(Start, End))
1037 if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
1038 NoAliasDeclScopes.push_back(Decl->getScopeList());
1039 }
1040