xref: /llvm-project/clang/lib/Sema/SemaDecl.cpp (revision 820c6ac7f5e438cc268ecb1fa2c6b17f0d168000)
1 //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements semantic analysis for declarations.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "TypeLocBuilder.h"
14 #include "clang/AST/ASTConsumer.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTLambda.h"
17 #include "clang/AST/CXXInheritance.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/EvaluatedExprVisitor.h"
24 #include "clang/AST/Expr.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/MangleNumberingContext.h"
27 #include "clang/AST/NonTrivialTypeVisitor.h"
28 #include "clang/AST/Randstruct.h"
29 #include "clang/AST/StmtCXX.h"
30 #include "clang/AST/Type.h"
31 #include "clang/Basic/Builtins.h"
32 #include "clang/Basic/DiagnosticComment.h"
33 #include "clang/Basic/PartialDiagnostic.h"
34 #include "clang/Basic/SourceManager.h"
35 #include "clang/Basic/TargetInfo.h"
36 #include "clang/Lex/HeaderSearch.h" // TODO: Sema shouldn't depend on Lex
37 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
38 #include "clang/Lex/ModuleLoader.h" // TODO: Sema shouldn't depend on Lex
39 #include "clang/Lex/Preprocessor.h" // Included for isCodeCompletionEnabled()
40 #include "clang/Sema/CXXFieldCollector.h"
41 #include "clang/Sema/DeclSpec.h"
42 #include "clang/Sema/DelayedDiagnostic.h"
43 #include "clang/Sema/Initialization.h"
44 #include "clang/Sema/Lookup.h"
45 #include "clang/Sema/ParsedTemplate.h"
46 #include "clang/Sema/Scope.h"
47 #include "clang/Sema/ScopeInfo.h"
48 #include "clang/Sema/SemaARM.h"
49 #include "clang/Sema/SemaCUDA.h"
50 #include "clang/Sema/SemaHLSL.h"
51 #include "clang/Sema/SemaInternal.h"
52 #include "clang/Sema/SemaObjC.h"
53 #include "clang/Sema/SemaOpenMP.h"
54 #include "clang/Sema/SemaPPC.h"
55 #include "clang/Sema/SemaRISCV.h"
56 #include "clang/Sema/SemaSYCL.h"
57 #include "clang/Sema/SemaSwift.h"
58 #include "clang/Sema/SemaWasm.h"
59 #include "clang/Sema/Template.h"
60 #include "llvm/ADT/STLForwardCompat.h"
61 #include "llvm/ADT/SmallString.h"
62 #include "llvm/ADT/StringExtras.h"
63 #include "llvm/TargetParser/Triple.h"
64 #include <algorithm>
65 #include <cstring>
66 #include <optional>
67 #include <unordered_map>
68 
69 using namespace clang;
70 using namespace sema;
71 
72 Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
73   if (OwnedType) {
74     Decl *Group[2] = { OwnedType, Ptr };
75     return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
76   }
77 
78   return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
79 }
80 
81 namespace {
82 
83 class TypeNameValidatorCCC final : public CorrectionCandidateCallback {
84  public:
85    TypeNameValidatorCCC(bool AllowInvalid, bool WantClass = false,
86                         bool AllowTemplates = false,
87                         bool AllowNonTemplates = true)
88        : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass),
89          AllowTemplates(AllowTemplates), AllowNonTemplates(AllowNonTemplates) {
90      WantExpressionKeywords = false;
91      WantCXXNamedCasts = false;
92      WantRemainingKeywords = false;
93   }
94 
95   bool ValidateCandidate(const TypoCorrection &candidate) override {
96     if (NamedDecl *ND = candidate.getCorrectionDecl()) {
97       if (!AllowInvalidDecl && ND->isInvalidDecl())
98         return false;
99 
100       if (getAsTypeTemplateDecl(ND))
101         return AllowTemplates;
102 
103       bool IsType = isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND);
104       if (!IsType)
105         return false;
106 
107       if (AllowNonTemplates)
108         return true;
109 
110       // An injected-class-name of a class template (specialization) is valid
111       // as a template or as a non-template.
112       if (AllowTemplates) {
113         auto *RD = dyn_cast<CXXRecordDecl>(ND);
114         if (!RD || !RD->isInjectedClassName())
115           return false;
116         RD = cast<CXXRecordDecl>(RD->getDeclContext());
117         return RD->getDescribedClassTemplate() ||
118                isa<ClassTemplateSpecializationDecl>(RD);
119       }
120 
121       return false;
122     }
123 
124     return !WantClassName && candidate.isKeyword();
125   }
126 
127   std::unique_ptr<CorrectionCandidateCallback> clone() override {
128     return std::make_unique<TypeNameValidatorCCC>(*this);
129   }
130 
131  private:
132   bool AllowInvalidDecl;
133   bool WantClassName;
134   bool AllowTemplates;
135   bool AllowNonTemplates;
136 };
137 
138 } // end anonymous namespace
139 
140 namespace {
141 enum class UnqualifiedTypeNameLookupResult {
142   NotFound,
143   FoundNonType,
144   FoundType
145 };
146 } // end anonymous namespace
147 
148 /// Tries to perform unqualified lookup of the type decls in bases for
149 /// dependent class.
150 /// \return \a NotFound if no any decls is found, \a FoundNotType if found not a
151 /// type decl, \a FoundType if only type decls are found.
152 static UnqualifiedTypeNameLookupResult
153 lookupUnqualifiedTypeNameInBase(Sema &S, const IdentifierInfo &II,
154                                 SourceLocation NameLoc,
155                                 const CXXRecordDecl *RD) {
156   if (!RD->hasDefinition())
157     return UnqualifiedTypeNameLookupResult::NotFound;
158   // Look for type decls in base classes.
159   UnqualifiedTypeNameLookupResult FoundTypeDecl =
160       UnqualifiedTypeNameLookupResult::NotFound;
161   for (const auto &Base : RD->bases()) {
162     const CXXRecordDecl *BaseRD = nullptr;
163     if (auto *BaseTT = Base.getType()->getAs<TagType>())
164       BaseRD = BaseTT->getAsCXXRecordDecl();
165     else if (auto *TST = Base.getType()->getAs<TemplateSpecializationType>()) {
166       // Look for type decls in dependent base classes that have known primary
167       // templates.
168       if (!TST || !TST->isDependentType())
169         continue;
170       auto *TD = TST->getTemplateName().getAsTemplateDecl();
171       if (!TD)
172         continue;
173       if (auto *BasePrimaryTemplate =
174           dyn_cast_or_null<CXXRecordDecl>(TD->getTemplatedDecl())) {
175         if (BasePrimaryTemplate->getCanonicalDecl() != RD->getCanonicalDecl())
176           BaseRD = BasePrimaryTemplate;
177         else if (auto *CTD = dyn_cast<ClassTemplateDecl>(TD)) {
178           if (const ClassTemplatePartialSpecializationDecl *PS =
179                   CTD->findPartialSpecialization(Base.getType()))
180             if (PS->getCanonicalDecl() != RD->getCanonicalDecl())
181               BaseRD = PS;
182         }
183       }
184     }
185     if (BaseRD) {
186       for (NamedDecl *ND : BaseRD->lookup(&II)) {
187         if (!isa<TypeDecl>(ND))
188           return UnqualifiedTypeNameLookupResult::FoundNonType;
189         FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
190       }
191       if (FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound) {
192         switch (lookupUnqualifiedTypeNameInBase(S, II, NameLoc, BaseRD)) {
193         case UnqualifiedTypeNameLookupResult::FoundNonType:
194           return UnqualifiedTypeNameLookupResult::FoundNonType;
195         case UnqualifiedTypeNameLookupResult::FoundType:
196           FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
197           break;
198         case UnqualifiedTypeNameLookupResult::NotFound:
199           break;
200         }
201       }
202     }
203   }
204 
205   return FoundTypeDecl;
206 }
207 
208 static ParsedType recoverFromTypeInKnownDependentBase(Sema &S,
209                                                       const IdentifierInfo &II,
210                                                       SourceLocation NameLoc) {
211   // Lookup in the parent class template context, if any.
212   const CXXRecordDecl *RD = nullptr;
213   UnqualifiedTypeNameLookupResult FoundTypeDecl =
214       UnqualifiedTypeNameLookupResult::NotFound;
215   for (DeclContext *DC = S.CurContext;
216        DC && FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound;
217        DC = DC->getParent()) {
218     // Look for type decls in dependent base classes that have known primary
219     // templates.
220     RD = dyn_cast<CXXRecordDecl>(DC);
221     if (RD && RD->getDescribedClassTemplate())
222       FoundTypeDecl = lookupUnqualifiedTypeNameInBase(S, II, NameLoc, RD);
223   }
224   if (FoundTypeDecl != UnqualifiedTypeNameLookupResult::FoundType)
225     return nullptr;
226 
227   // We found some types in dependent base classes.  Recover as if the user
228   // wrote 'typename MyClass::II' instead of 'II'.  We'll fully resolve the
229   // lookup during template instantiation.
230   S.Diag(NameLoc, diag::ext_found_in_dependent_base) << &II;
231 
232   ASTContext &Context = S.Context;
233   auto *NNS = NestedNameSpecifier::Create(Context, nullptr, false,
234                                           cast<Type>(Context.getRecordType(RD)));
235   QualType T =
236       Context.getDependentNameType(ElaboratedTypeKeyword::Typename, NNS, &II);
237 
238   CXXScopeSpec SS;
239   SS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
240 
241   TypeLocBuilder Builder;
242   DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
243   DepTL.setNameLoc(NameLoc);
244   DepTL.setElaboratedKeywordLoc(SourceLocation());
245   DepTL.setQualifierLoc(SS.getWithLocInContext(Context));
246   return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
247 }
248 
249 /// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
250 static ParsedType buildNamedType(Sema &S, const CXXScopeSpec *SS, QualType T,
251                                  SourceLocation NameLoc,
252                                  bool WantNontrivialTypeSourceInfo = true) {
253   switch (T->getTypeClass()) {
254   case Type::DeducedTemplateSpecialization:
255   case Type::Enum:
256   case Type::InjectedClassName:
257   case Type::Record:
258   case Type::Typedef:
259   case Type::UnresolvedUsing:
260   case Type::Using:
261     break;
262   // These can never be qualified so an ElaboratedType node
263   // would carry no additional meaning.
264   case Type::ObjCInterface:
265   case Type::ObjCTypeParam:
266   case Type::TemplateTypeParm:
267     return ParsedType::make(T);
268   default:
269     llvm_unreachable("Unexpected Type Class");
270   }
271 
272   if (!SS || SS->isEmpty())
273     return ParsedType::make(S.Context.getElaboratedType(
274         ElaboratedTypeKeyword::None, nullptr, T, nullptr));
275 
276   QualType ElTy = S.getElaboratedType(ElaboratedTypeKeyword::None, *SS, T);
277   if (!WantNontrivialTypeSourceInfo)
278     return ParsedType::make(ElTy);
279 
280   TypeLocBuilder Builder;
281   Builder.pushTypeSpec(T).setNameLoc(NameLoc);
282   ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(ElTy);
283   ElabTL.setElaboratedKeywordLoc(SourceLocation());
284   ElabTL.setQualifierLoc(SS->getWithLocInContext(S.Context));
285   return S.CreateParsedType(ElTy, Builder.getTypeSourceInfo(S.Context, ElTy));
286 }
287 
288 ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
289                              Scope *S, CXXScopeSpec *SS, bool isClassName,
290                              bool HasTrailingDot, ParsedType ObjectTypePtr,
291                              bool IsCtorOrDtorName,
292                              bool WantNontrivialTypeSourceInfo,
293                              bool IsClassTemplateDeductionContext,
294                              ImplicitTypenameContext AllowImplicitTypename,
295                              IdentifierInfo **CorrectedII) {
296   // FIXME: Consider allowing this outside C++1z mode as an extension.
297   bool AllowDeducedTemplate = IsClassTemplateDeductionContext &&
298                               getLangOpts().CPlusPlus17 && !IsCtorOrDtorName &&
299                               !isClassName && !HasTrailingDot;
300 
301   // Determine where we will perform name lookup.
302   DeclContext *LookupCtx = nullptr;
303   if (ObjectTypePtr) {
304     QualType ObjectType = ObjectTypePtr.get();
305     if (ObjectType->isRecordType())
306       LookupCtx = computeDeclContext(ObjectType);
307   } else if (SS && SS->isNotEmpty()) {
308     LookupCtx = computeDeclContext(*SS, false);
309 
310     if (!LookupCtx) {
311       if (isDependentScopeSpecifier(*SS)) {
312         // C++ [temp.res]p3:
313         //   A qualified-id that refers to a type and in which the
314         //   nested-name-specifier depends on a template-parameter (14.6.2)
315         //   shall be prefixed by the keyword typename to indicate that the
316         //   qualified-id denotes a type, forming an
317         //   elaborated-type-specifier (7.1.5.3).
318         //
319         // We therefore do not perform any name lookup if the result would
320         // refer to a member of an unknown specialization.
321         // In C++2a, in several contexts a 'typename' is not required. Also
322         // allow this as an extension.
323         if (AllowImplicitTypename == ImplicitTypenameContext::No &&
324             !isClassName && !IsCtorOrDtorName)
325           return nullptr;
326         bool IsImplicitTypename = !isClassName && !IsCtorOrDtorName;
327         if (IsImplicitTypename) {
328           SourceLocation QualifiedLoc = SS->getRange().getBegin();
329           if (getLangOpts().CPlusPlus20)
330             Diag(QualifiedLoc, diag::warn_cxx17_compat_implicit_typename);
331           else
332             Diag(QualifiedLoc, diag::ext_implicit_typename)
333                 << SS->getScopeRep() << II.getName()
334                 << FixItHint::CreateInsertion(QualifiedLoc, "typename ");
335         }
336 
337         // We know from the grammar that this name refers to a type,
338         // so build a dependent node to describe the type.
339         if (WantNontrivialTypeSourceInfo)
340           return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc,
341                                    (ImplicitTypenameContext)IsImplicitTypename)
342               .get();
343 
344         NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
345         QualType T = CheckTypenameType(
346             IsImplicitTypename ? ElaboratedTypeKeyword::Typename
347                                : ElaboratedTypeKeyword::None,
348             SourceLocation(), QualifierLoc, II, NameLoc);
349         return ParsedType::make(T);
350       }
351 
352       return nullptr;
353     }
354 
355     if (!LookupCtx->isDependentContext() &&
356         RequireCompleteDeclContext(*SS, LookupCtx))
357       return nullptr;
358   }
359 
360   // In the case where we know that the identifier is a class name, we know that
361   // it is a type declaration (struct, class, union or enum) so we can use tag
362   // name lookup.
363   //
364   // C++ [class.derived]p2 (wrt lookup in a base-specifier): The lookup for
365   // the component name of the type-name or simple-template-id is type-only.
366   LookupNameKind Kind = isClassName ? LookupTagName : LookupOrdinaryName;
367   LookupResult Result(*this, &II, NameLoc, Kind);
368   if (LookupCtx) {
369     // Perform "qualified" name lookup into the declaration context we
370     // computed, which is either the type of the base of a member access
371     // expression or the declaration context associated with a prior
372     // nested-name-specifier.
373     LookupQualifiedName(Result, LookupCtx);
374 
375     if (ObjectTypePtr && Result.empty()) {
376       // C++ [basic.lookup.classref]p3:
377       //   If the unqualified-id is ~type-name, the type-name is looked up
378       //   in the context of the entire postfix-expression. If the type T of
379       //   the object expression is of a class type C, the type-name is also
380       //   looked up in the scope of class C. At least one of the lookups shall
381       //   find a name that refers to (possibly cv-qualified) T.
382       LookupName(Result, S);
383     }
384   } else {
385     // Perform unqualified name lookup.
386     LookupName(Result, S);
387 
388     // For unqualified lookup in a class template in MSVC mode, look into
389     // dependent base classes where the primary class template is known.
390     if (Result.empty() && getLangOpts().MSVCCompat && (!SS || SS->isEmpty())) {
391       if (ParsedType TypeInBase =
392               recoverFromTypeInKnownDependentBase(*this, II, NameLoc))
393         return TypeInBase;
394     }
395   }
396 
397   NamedDecl *IIDecl = nullptr;
398   UsingShadowDecl *FoundUsingShadow = nullptr;
399   switch (Result.getResultKind()) {
400   case LookupResult::NotFound:
401     if (CorrectedII) {
402       TypeNameValidatorCCC CCC(/*AllowInvalid=*/true, isClassName,
403                                AllowDeducedTemplate);
404       TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(), Kind,
405                                               S, SS, CCC, CTK_ErrorRecovery);
406       IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
407       TemplateTy Template;
408       bool MemberOfUnknownSpecialization;
409       UnqualifiedId TemplateName;
410       TemplateName.setIdentifier(NewII, NameLoc);
411       NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
412       CXXScopeSpec NewSS, *NewSSPtr = SS;
413       if (SS && NNS) {
414         NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
415         NewSSPtr = &NewSS;
416       }
417       if (Correction && (NNS || NewII != &II) &&
418           // Ignore a correction to a template type as the to-be-corrected
419           // identifier is not a template (typo correction for template names
420           // is handled elsewhere).
421           !(getLangOpts().CPlusPlus && NewSSPtr &&
422             isTemplateName(S, *NewSSPtr, false, TemplateName, nullptr, false,
423                            Template, MemberOfUnknownSpecialization))) {
424         ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
425                                     isClassName, HasTrailingDot, ObjectTypePtr,
426                                     IsCtorOrDtorName,
427                                     WantNontrivialTypeSourceInfo,
428                                     IsClassTemplateDeductionContext);
429         if (Ty) {
430           diagnoseTypo(Correction,
431                        PDiag(diag::err_unknown_type_or_class_name_suggest)
432                          << Result.getLookupName() << isClassName);
433           if (SS && NNS)
434             SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
435           *CorrectedII = NewII;
436           return Ty;
437         }
438       }
439     }
440     Result.suppressDiagnostics();
441     return nullptr;
442   case LookupResult::NotFoundInCurrentInstantiation:
443     if (AllowImplicitTypename == ImplicitTypenameContext::Yes) {
444       QualType T = Context.getDependentNameType(ElaboratedTypeKeyword::None,
445                                                 SS->getScopeRep(), &II);
446       TypeLocBuilder TLB;
447       DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(T);
448       TL.setElaboratedKeywordLoc(SourceLocation());
449       TL.setQualifierLoc(SS->getWithLocInContext(Context));
450       TL.setNameLoc(NameLoc);
451       return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
452     }
453     [[fallthrough]];
454   case LookupResult::FoundOverloaded:
455   case LookupResult::FoundUnresolvedValue:
456     Result.suppressDiagnostics();
457     return nullptr;
458 
459   case LookupResult::Ambiguous:
460     // Recover from type-hiding ambiguities by hiding the type.  We'll
461     // do the lookup again when looking for an object, and we can
462     // diagnose the error then.  If we don't do this, then the error
463     // about hiding the type will be immediately followed by an error
464     // that only makes sense if the identifier was treated like a type.
465     if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
466       Result.suppressDiagnostics();
467       return nullptr;
468     }
469 
470     // Look to see if we have a type anywhere in the list of results.
471     for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
472          Res != ResEnd; ++Res) {
473       NamedDecl *RealRes = (*Res)->getUnderlyingDecl();
474       if (isa<TypeDecl, ObjCInterfaceDecl, UnresolvedUsingIfExistsDecl>(
475               RealRes) ||
476           (AllowDeducedTemplate && getAsTypeTemplateDecl(RealRes))) {
477         if (!IIDecl ||
478             // Make the selection of the recovery decl deterministic.
479             RealRes->getLocation() < IIDecl->getLocation()) {
480           IIDecl = RealRes;
481           FoundUsingShadow = dyn_cast<UsingShadowDecl>(*Res);
482         }
483       }
484     }
485 
486     if (!IIDecl) {
487       // None of the entities we found is a type, so there is no way
488       // to even assume that the result is a type. In this case, don't
489       // complain about the ambiguity. The parser will either try to
490       // perform this lookup again (e.g., as an object name), which
491       // will produce the ambiguity, or will complain that it expected
492       // a type name.
493       Result.suppressDiagnostics();
494       return nullptr;
495     }
496 
497     // We found a type within the ambiguous lookup; diagnose the
498     // ambiguity and then return that type. This might be the right
499     // answer, or it might not be, but it suppresses any attempt to
500     // perform the name lookup again.
501     break;
502 
503   case LookupResult::Found:
504     IIDecl = Result.getFoundDecl();
505     FoundUsingShadow = dyn_cast<UsingShadowDecl>(*Result.begin());
506     break;
507   }
508 
509   assert(IIDecl && "Didn't find decl");
510 
511   QualType T;
512   if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
513     // C++ [class.qual]p2: A lookup that would find the injected-class-name
514     // instead names the constructors of the class, except when naming a class.
515     // This is ill-formed when we're not actually forming a ctor or dtor name.
516     auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
517     auto *FoundRD = dyn_cast<CXXRecordDecl>(TD);
518     if (!isClassName && !IsCtorOrDtorName && LookupRD && FoundRD &&
519         FoundRD->isInjectedClassName() &&
520         declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent())))
521       Diag(NameLoc, diag::err_out_of_line_qualified_id_type_names_constructor)
522           << &II << /*Type*/1;
523 
524     DiagnoseUseOfDecl(IIDecl, NameLoc);
525 
526     T = Context.getTypeDeclType(TD);
527     MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
528   } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
529     (void)DiagnoseUseOfDecl(IDecl, NameLoc);
530     if (!HasTrailingDot)
531       T = Context.getObjCInterfaceType(IDecl);
532     FoundUsingShadow = nullptr; // FIXME: Target must be a TypeDecl.
533   } else if (auto *UD = dyn_cast<UnresolvedUsingIfExistsDecl>(IIDecl)) {
534     (void)DiagnoseUseOfDecl(UD, NameLoc);
535     // Recover with 'int'
536     return ParsedType::make(Context.IntTy);
537   } else if (AllowDeducedTemplate) {
538     if (auto *TD = getAsTypeTemplateDecl(IIDecl)) {
539       assert(!FoundUsingShadow || FoundUsingShadow->getTargetDecl() == TD);
540       TemplateName Template = Context.getQualifiedTemplateName(
541           SS ? SS->getScopeRep() : nullptr, /*TemplateKeyword=*/false,
542           FoundUsingShadow ? TemplateName(FoundUsingShadow) : TemplateName(TD));
543       T = Context.getDeducedTemplateSpecializationType(Template, QualType(),
544                                                        false);
545       // Don't wrap in a further UsingType.
546       FoundUsingShadow = nullptr;
547     }
548   }
549 
550   if (T.isNull()) {
551     // If it's not plausibly a type, suppress diagnostics.
552     Result.suppressDiagnostics();
553     return nullptr;
554   }
555 
556   if (FoundUsingShadow)
557     T = Context.getUsingType(FoundUsingShadow, T);
558 
559   return buildNamedType(*this, SS, T, NameLoc, WantNontrivialTypeSourceInfo);
560 }
561 
562 // Builds a fake NNS for the given decl context.
563 static NestedNameSpecifier *
564 synthesizeCurrentNestedNameSpecifier(ASTContext &Context, DeclContext *DC) {
565   for (;; DC = DC->getLookupParent()) {
566     DC = DC->getPrimaryContext();
567     auto *ND = dyn_cast<NamespaceDecl>(DC);
568     if (ND && !ND->isInline() && !ND->isAnonymousNamespace())
569       return NestedNameSpecifier::Create(Context, nullptr, ND);
570     else if (auto *RD = dyn_cast<CXXRecordDecl>(DC))
571       return NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
572                                          RD->getTypeForDecl());
573     else if (isa<TranslationUnitDecl>(DC))
574       return NestedNameSpecifier::GlobalSpecifier(Context);
575   }
576   llvm_unreachable("something isn't in TU scope?");
577 }
578 
579 /// Find the parent class with dependent bases of the innermost enclosing method
580 /// context. Do not look for enclosing CXXRecordDecls directly, or we will end
581 /// up allowing unqualified dependent type names at class-level, which MSVC
582 /// correctly rejects.
583 static const CXXRecordDecl *
584 findRecordWithDependentBasesOfEnclosingMethod(const DeclContext *DC) {
585   for (; DC && DC->isDependentContext(); DC = DC->getLookupParent()) {
586     DC = DC->getPrimaryContext();
587     if (const auto *MD = dyn_cast<CXXMethodDecl>(DC))
588       if (MD->getParent()->hasAnyDependentBases())
589         return MD->getParent();
590   }
591   return nullptr;
592 }
593 
594 ParsedType Sema::ActOnMSVCUnknownTypeName(const IdentifierInfo &II,
595                                           SourceLocation NameLoc,
596                                           bool IsTemplateTypeArg) {
597   assert(getLangOpts().MSVCCompat && "shouldn't be called in non-MSVC mode");
598 
599   NestedNameSpecifier *NNS = nullptr;
600   if (IsTemplateTypeArg && getCurScope()->isTemplateParamScope()) {
601     // If we weren't able to parse a default template argument, delay lookup
602     // until instantiation time by making a non-dependent DependentTypeName. We
603     // pretend we saw a NestedNameSpecifier referring to the current scope, and
604     // lookup is retried.
605     // FIXME: This hurts our diagnostic quality, since we get errors like "no
606     // type named 'Foo' in 'current_namespace'" when the user didn't write any
607     // name specifiers.
608     NNS = synthesizeCurrentNestedNameSpecifier(Context, CurContext);
609     Diag(NameLoc, diag::ext_ms_delayed_template_argument) << &II;
610   } else if (const CXXRecordDecl *RD =
611                  findRecordWithDependentBasesOfEnclosingMethod(CurContext)) {
612     // Build a DependentNameType that will perform lookup into RD at
613     // instantiation time.
614     NNS = NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
615                                       RD->getTypeForDecl());
616 
617     // Diagnose that this identifier was undeclared, and retry the lookup during
618     // template instantiation.
619     Diag(NameLoc, diag::ext_undeclared_unqual_id_with_dependent_base) << &II
620                                                                       << RD;
621   } else {
622     // This is not a situation that we should recover from.
623     return ParsedType();
624   }
625 
626   QualType T =
627       Context.getDependentNameType(ElaboratedTypeKeyword::None, NNS, &II);
628 
629   // Build type location information.  We synthesized the qualifier, so we have
630   // to build a fake NestedNameSpecifierLoc.
631   NestedNameSpecifierLocBuilder NNSLocBuilder;
632   NNSLocBuilder.MakeTrivial(Context, NNS, SourceRange(NameLoc));
633   NestedNameSpecifierLoc QualifierLoc = NNSLocBuilder.getWithLocInContext(Context);
634 
635   TypeLocBuilder Builder;
636   DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
637   DepTL.setNameLoc(NameLoc);
638   DepTL.setElaboratedKeywordLoc(SourceLocation());
639   DepTL.setQualifierLoc(QualifierLoc);
640   return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
641 }
642 
643 DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
644   // Do a tag name lookup in this scope.
645   LookupResult R(*this, &II, SourceLocation(), LookupTagName);
646   LookupName(R, S, false);
647   R.suppressDiagnostics();
648   if (R.getResultKind() == LookupResult::Found)
649     if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
650       switch (TD->getTagKind()) {
651       case TagTypeKind::Struct:
652         return DeclSpec::TST_struct;
653       case TagTypeKind::Interface:
654         return DeclSpec::TST_interface;
655       case TagTypeKind::Union:
656         return DeclSpec::TST_union;
657       case TagTypeKind::Class:
658         return DeclSpec::TST_class;
659       case TagTypeKind::Enum:
660         return DeclSpec::TST_enum;
661       }
662     }
663 
664   return DeclSpec::TST_unspecified;
665 }
666 
667 bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
668   if (CurContext->isRecord()) {
669     if (SS->getScopeRep()->getKind() == NestedNameSpecifier::Super)
670       return true;
671 
672     const Type *Ty = SS->getScopeRep()->getAsType();
673 
674     CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
675     for (const auto &Base : RD->bases())
676       if (Ty && Context.hasSameUnqualifiedType(QualType(Ty, 1), Base.getType()))
677         return true;
678     return S->isFunctionPrototypeScope();
679   }
680   return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
681 }
682 
683 void Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
684                                    SourceLocation IILoc,
685                                    Scope *S,
686                                    CXXScopeSpec *SS,
687                                    ParsedType &SuggestedType,
688                                    bool IsTemplateName) {
689   // Don't report typename errors for editor placeholders.
690   if (II->isEditorPlaceholder())
691     return;
692   // We don't have anything to suggest (yet).
693   SuggestedType = nullptr;
694 
695   // There may have been a typo in the name of the type. Look up typo
696   // results, in case we have something that we can suggest.
697   TypeNameValidatorCCC CCC(/*AllowInvalid=*/false, /*WantClass=*/false,
698                            /*AllowTemplates=*/IsTemplateName,
699                            /*AllowNonTemplates=*/!IsTemplateName);
700   if (TypoCorrection Corrected =
701           CorrectTypo(DeclarationNameInfo(II, IILoc), LookupOrdinaryName, S, SS,
702                       CCC, CTK_ErrorRecovery)) {
703     // FIXME: Support error recovery for the template-name case.
704     bool CanRecover = !IsTemplateName;
705     if (Corrected.isKeyword()) {
706       // We corrected to a keyword.
707       diagnoseTypo(Corrected,
708                    PDiag(IsTemplateName ? diag::err_no_template_suggest
709                                         : diag::err_unknown_typename_suggest)
710                        << II);
711       II = Corrected.getCorrectionAsIdentifierInfo();
712     } else {
713       // We found a similarly-named type or interface; suggest that.
714       if (!SS || !SS->isSet()) {
715         diagnoseTypo(Corrected,
716                      PDiag(IsTemplateName ? diag::err_no_template_suggest
717                                           : diag::err_unknown_typename_suggest)
718                          << II, CanRecover);
719       } else if (DeclContext *DC = computeDeclContext(*SS, false)) {
720         std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
721         bool DroppedSpecifier =
722             Corrected.WillReplaceSpecifier() && II->getName() == CorrectedStr;
723         diagnoseTypo(Corrected,
724                      PDiag(IsTemplateName
725                                ? diag::err_no_member_template_suggest
726                                : diag::err_unknown_nested_typename_suggest)
727                          << II << DC << DroppedSpecifier << SS->getRange(),
728                      CanRecover);
729       } else {
730         llvm_unreachable("could not have corrected a typo here");
731       }
732 
733       if (!CanRecover)
734         return;
735 
736       CXXScopeSpec tmpSS;
737       if (Corrected.getCorrectionSpecifier())
738         tmpSS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
739                           SourceRange(IILoc));
740       // FIXME: Support class template argument deduction here.
741       SuggestedType =
742           getTypeName(*Corrected.getCorrectionAsIdentifierInfo(), IILoc, S,
743                       tmpSS.isSet() ? &tmpSS : SS, false, false, nullptr,
744                       /*IsCtorOrDtorName=*/false,
745                       /*WantNontrivialTypeSourceInfo=*/true);
746     }
747     return;
748   }
749 
750   if (getLangOpts().CPlusPlus && !IsTemplateName) {
751     // See if II is a class template that the user forgot to pass arguments to.
752     UnqualifiedId Name;
753     Name.setIdentifier(II, IILoc);
754     CXXScopeSpec EmptySS;
755     TemplateTy TemplateResult;
756     bool MemberOfUnknownSpecialization;
757     if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
758                        Name, nullptr, true, TemplateResult,
759                        MemberOfUnknownSpecialization) == TNK_Type_template) {
760       diagnoseMissingTemplateArguments(TemplateResult.get(), IILoc);
761       return;
762     }
763   }
764 
765   // FIXME: Should we move the logic that tries to recover from a missing tag
766   // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
767 
768   if (!SS || (!SS->isSet() && !SS->isInvalid()))
769     Diag(IILoc, IsTemplateName ? diag::err_no_template
770                                : diag::err_unknown_typename)
771         << II;
772   else if (DeclContext *DC = computeDeclContext(*SS, false))
773     Diag(IILoc, IsTemplateName ? diag::err_no_member_template
774                                : diag::err_typename_nested_not_found)
775         << II << DC << SS->getRange();
776   else if (SS->isValid() && SS->getScopeRep()->containsErrors()) {
777     SuggestedType =
778         ActOnTypenameType(S, SourceLocation(), *SS, *II, IILoc).get();
779   } else if (isDependentScopeSpecifier(*SS)) {
780     unsigned DiagID = diag::err_typename_missing;
781     if (getLangOpts().MSVCCompat && isMicrosoftMissingTypename(SS, S))
782       DiagID = diag::ext_typename_missing;
783 
784     Diag(SS->getRange().getBegin(), DiagID)
785       << SS->getScopeRep() << II->getName()
786       << SourceRange(SS->getRange().getBegin(), IILoc)
787       << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
788     SuggestedType = ActOnTypenameType(S, SourceLocation(),
789                                       *SS, *II, IILoc).get();
790   } else {
791     assert(SS && SS->isInvalid() &&
792            "Invalid scope specifier has already been diagnosed");
793   }
794 }
795 
796 /// Determine whether the given result set contains either a type name
797 /// or
798 static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
799   bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
800                        NextToken.is(tok::less);
801 
802   for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
803     if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
804       return true;
805 
806     if (CheckTemplate && isa<TemplateDecl>(*I))
807       return true;
808   }
809 
810   return false;
811 }
812 
813 static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
814                                     Scope *S, CXXScopeSpec &SS,
815                                     IdentifierInfo *&Name,
816                                     SourceLocation NameLoc) {
817   LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
818   SemaRef.LookupParsedName(R, S, &SS, /*ObjectType=*/QualType());
819   if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
820     StringRef FixItTagName;
821     switch (Tag->getTagKind()) {
822     case TagTypeKind::Class:
823       FixItTagName = "class ";
824       break;
825 
826     case TagTypeKind::Enum:
827       FixItTagName = "enum ";
828       break;
829 
830     case TagTypeKind::Struct:
831       FixItTagName = "struct ";
832       break;
833 
834     case TagTypeKind::Interface:
835       FixItTagName = "__interface ";
836       break;
837 
838     case TagTypeKind::Union:
839       FixItTagName = "union ";
840       break;
841     }
842 
843     StringRef TagName = FixItTagName.drop_back();
844     SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
845       << Name << TagName << SemaRef.getLangOpts().CPlusPlus
846       << FixItHint::CreateInsertion(NameLoc, FixItTagName);
847 
848     for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
849          I != IEnd; ++I)
850       SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
851         << Name << TagName;
852 
853     // Replace lookup results with just the tag decl.
854     Result.clear(Sema::LookupTagName);
855     SemaRef.LookupParsedName(Result, S, &SS, /*ObjectType=*/QualType());
856     return true;
857   }
858 
859   return false;
860 }
861 
862 Sema::NameClassification Sema::ClassifyName(Scope *S, CXXScopeSpec &SS,
863                                             IdentifierInfo *&Name,
864                                             SourceLocation NameLoc,
865                                             const Token &NextToken,
866                                             CorrectionCandidateCallback *CCC) {
867   DeclarationNameInfo NameInfo(Name, NameLoc);
868   ObjCMethodDecl *CurMethod = getCurMethodDecl();
869 
870   assert(NextToken.isNot(tok::coloncolon) &&
871          "parse nested name specifiers before calling ClassifyName");
872   if (getLangOpts().CPlusPlus && SS.isSet() &&
873       isCurrentClassName(*Name, S, &SS)) {
874     // Per [class.qual]p2, this names the constructors of SS, not the
875     // injected-class-name. We don't have a classification for that.
876     // There's not much point caching this result, since the parser
877     // will reject it later.
878     return NameClassification::Unknown();
879   }
880 
881   LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
882   LookupParsedName(Result, S, &SS, /*ObjectType=*/QualType(),
883                    /*AllowBuiltinCreation=*/!CurMethod);
884 
885   if (SS.isInvalid())
886     return NameClassification::Error();
887 
888   // For unqualified lookup in a class template in MSVC mode, look into
889   // dependent base classes where the primary class template is known.
890   if (Result.empty() && SS.isEmpty() && getLangOpts().MSVCCompat) {
891     if (ParsedType TypeInBase =
892             recoverFromTypeInKnownDependentBase(*this, *Name, NameLoc))
893       return TypeInBase;
894   }
895 
896   // Perform lookup for Objective-C instance variables (including automatically
897   // synthesized instance variables), if we're in an Objective-C method.
898   // FIXME: This lookup really, really needs to be folded in to the normal
899   // unqualified lookup mechanism.
900   if (SS.isEmpty() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
901     DeclResult Ivar = ObjC().LookupIvarInObjCMethod(Result, S, Name);
902     if (Ivar.isInvalid())
903       return NameClassification::Error();
904     if (Ivar.isUsable())
905       return NameClassification::NonType(cast<NamedDecl>(Ivar.get()));
906 
907     // We defer builtin creation until after ivar lookup inside ObjC methods.
908     if (Result.empty())
909       LookupBuiltin(Result);
910   }
911 
912   bool SecondTry = false;
913   bool IsFilteredTemplateName = false;
914 
915 Corrected:
916   switch (Result.getResultKind()) {
917   case LookupResult::NotFound:
918     // If an unqualified-id is followed by a '(', then we have a function
919     // call.
920     if (SS.isEmpty() && NextToken.is(tok::l_paren)) {
921       // In C++, this is an ADL-only call.
922       // FIXME: Reference?
923       if (getLangOpts().CPlusPlus)
924         return NameClassification::UndeclaredNonType();
925 
926       // C90 6.3.2.2:
927       //   If the expression that precedes the parenthesized argument list in a
928       //   function call consists solely of an identifier, and if no
929       //   declaration is visible for this identifier, the identifier is
930       //   implicitly declared exactly as if, in the innermost block containing
931       //   the function call, the declaration
932       //
933       //     extern int identifier ();
934       //
935       //   appeared.
936       //
937       // We also allow this in C99 as an extension. However, this is not
938       // allowed in all language modes as functions without prototypes may not
939       // be supported.
940       if (getLangOpts().implicitFunctionsAllowed()) {
941         if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S))
942           return NameClassification::NonType(D);
943       }
944     }
945 
946     if (getLangOpts().CPlusPlus20 && SS.isEmpty() && NextToken.is(tok::less)) {
947       // In C++20 onwards, this could be an ADL-only call to a function
948       // template, and we're required to assume that this is a template name.
949       //
950       // FIXME: Find a way to still do typo correction in this case.
951       TemplateName Template =
952           Context.getAssumedTemplateName(NameInfo.getName());
953       return NameClassification::UndeclaredTemplate(Template);
954     }
955 
956     // In C, we first see whether there is a tag type by the same name, in
957     // which case it's likely that the user just forgot to write "enum",
958     // "struct", or "union".
959     if (!getLangOpts().CPlusPlus && !SecondTry &&
960         isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
961       break;
962     }
963 
964     // Perform typo correction to determine if there is another name that is
965     // close to this name.
966     if (!SecondTry && CCC) {
967       SecondTry = true;
968       if (TypoCorrection Corrected =
969               CorrectTypo(Result.getLookupNameInfo(), Result.getLookupKind(), S,
970                           &SS, *CCC, CTK_ErrorRecovery)) {
971         unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
972         unsigned QualifiedDiag = diag::err_no_member_suggest;
973 
974         NamedDecl *FirstDecl = Corrected.getFoundDecl();
975         NamedDecl *UnderlyingFirstDecl = Corrected.getCorrectionDecl();
976         if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
977             UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
978           UnqualifiedDiag = diag::err_no_template_suggest;
979           QualifiedDiag = diag::err_no_member_template_suggest;
980         } else if (UnderlyingFirstDecl &&
981                    (isa<TypeDecl>(UnderlyingFirstDecl) ||
982                     isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
983                     isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
984           UnqualifiedDiag = diag::err_unknown_typename_suggest;
985           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
986         }
987 
988         if (SS.isEmpty()) {
989           diagnoseTypo(Corrected, PDiag(UnqualifiedDiag) << Name);
990         } else {// FIXME: is this even reachable? Test it.
991           std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
992           bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
993                                   Name->getName() == CorrectedStr;
994           diagnoseTypo(Corrected, PDiag(QualifiedDiag)
995                                     << Name << computeDeclContext(SS, false)
996                                     << DroppedSpecifier << SS.getRange());
997         }
998 
999         // Update the name, so that the caller has the new name.
1000         Name = Corrected.getCorrectionAsIdentifierInfo();
1001 
1002         // Typo correction corrected to a keyword.
1003         if (Corrected.isKeyword())
1004           return Name;
1005 
1006         // Also update the LookupResult...
1007         // FIXME: This should probably go away at some point
1008         Result.clear();
1009         Result.setLookupName(Corrected.getCorrection());
1010         if (FirstDecl)
1011           Result.addDecl(FirstDecl);
1012 
1013         // If we found an Objective-C instance variable, let
1014         // LookupInObjCMethod build the appropriate expression to
1015         // reference the ivar.
1016         // FIXME: This is a gross hack.
1017         if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
1018           DeclResult R =
1019               ObjC().LookupIvarInObjCMethod(Result, S, Ivar->getIdentifier());
1020           if (R.isInvalid())
1021             return NameClassification::Error();
1022           if (R.isUsable())
1023             return NameClassification::NonType(Ivar);
1024         }
1025 
1026         goto Corrected;
1027       }
1028     }
1029 
1030     // We failed to correct; just fall through and let the parser deal with it.
1031     Result.suppressDiagnostics();
1032     return NameClassification::Unknown();
1033 
1034   case LookupResult::NotFoundInCurrentInstantiation: {
1035     // We performed name lookup into the current instantiation, and there were
1036     // dependent bases, so we treat this result the same way as any other
1037     // dependent nested-name-specifier.
1038 
1039     // C++ [temp.res]p2:
1040     //   A name used in a template declaration or definition and that is
1041     //   dependent on a template-parameter is assumed not to name a type
1042     //   unless the applicable name lookup finds a type name or the name is
1043     //   qualified by the keyword typename.
1044     //
1045     // FIXME: If the next token is '<', we might want to ask the parser to
1046     // perform some heroics to see if we actually have a
1047     // template-argument-list, which would indicate a missing 'template'
1048     // keyword here.
1049     return NameClassification::DependentNonType();
1050   }
1051 
1052   case LookupResult::Found:
1053   case LookupResult::FoundOverloaded:
1054   case LookupResult::FoundUnresolvedValue:
1055     break;
1056 
1057   case LookupResult::Ambiguous:
1058     if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
1059         hasAnyAcceptableTemplateNames(Result, /*AllowFunctionTemplates=*/true,
1060                                       /*AllowDependent=*/false)) {
1061       // C++ [temp.local]p3:
1062       //   A lookup that finds an injected-class-name (10.2) can result in an
1063       //   ambiguity in certain cases (for example, if it is found in more than
1064       //   one base class). If all of the injected-class-names that are found
1065       //   refer to specializations of the same class template, and if the name
1066       //   is followed by a template-argument-list, the reference refers to the
1067       //   class template itself and not a specialization thereof, and is not
1068       //   ambiguous.
1069       //
1070       // This filtering can make an ambiguous result into an unambiguous one,
1071       // so try again after filtering out template names.
1072       FilterAcceptableTemplateNames(Result);
1073       if (!Result.isAmbiguous()) {
1074         IsFilteredTemplateName = true;
1075         break;
1076       }
1077     }
1078 
1079     // Diagnose the ambiguity and return an error.
1080     return NameClassification::Error();
1081   }
1082 
1083   if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
1084       (IsFilteredTemplateName ||
1085        hasAnyAcceptableTemplateNames(
1086            Result, /*AllowFunctionTemplates=*/true,
1087            /*AllowDependent=*/false,
1088            /*AllowNonTemplateFunctions*/ SS.isEmpty() &&
1089                getLangOpts().CPlusPlus20))) {
1090     // C++ [temp.names]p3:
1091     //   After name lookup (3.4) finds that a name is a template-name or that
1092     //   an operator-function-id or a literal- operator-id refers to a set of
1093     //   overloaded functions any member of which is a function template if
1094     //   this is followed by a <, the < is always taken as the delimiter of a
1095     //   template-argument-list and never as the less-than operator.
1096     // C++2a [temp.names]p2:
1097     //   A name is also considered to refer to a template if it is an
1098     //   unqualified-id followed by a < and name lookup finds either one
1099     //   or more functions or finds nothing.
1100     if (!IsFilteredTemplateName)
1101       FilterAcceptableTemplateNames(Result);
1102 
1103     bool IsFunctionTemplate;
1104     bool IsVarTemplate;
1105     TemplateName Template;
1106     if (Result.end() - Result.begin() > 1) {
1107       IsFunctionTemplate = true;
1108       Template = Context.getOverloadedTemplateName(Result.begin(),
1109                                                    Result.end());
1110     } else if (!Result.empty()) {
1111       auto *TD = cast<TemplateDecl>(getAsTemplateNameDecl(
1112           *Result.begin(), /*AllowFunctionTemplates=*/true,
1113           /*AllowDependent=*/false));
1114       IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
1115       IsVarTemplate = isa<VarTemplateDecl>(TD);
1116 
1117       UsingShadowDecl *FoundUsingShadow =
1118           dyn_cast<UsingShadowDecl>(*Result.begin());
1119       assert(!FoundUsingShadow ||
1120              TD == cast<TemplateDecl>(FoundUsingShadow->getTargetDecl()));
1121       Template = Context.getQualifiedTemplateName(
1122           SS.getScopeRep(),
1123           /*TemplateKeyword=*/false,
1124           FoundUsingShadow ? TemplateName(FoundUsingShadow) : TemplateName(TD));
1125     } else {
1126       // All results were non-template functions. This is a function template
1127       // name.
1128       IsFunctionTemplate = true;
1129       Template = Context.getAssumedTemplateName(NameInfo.getName());
1130     }
1131 
1132     if (IsFunctionTemplate) {
1133       // Function templates always go through overload resolution, at which
1134       // point we'll perform the various checks (e.g., accessibility) we need
1135       // to based on which function we selected.
1136       Result.suppressDiagnostics();
1137 
1138       return NameClassification::FunctionTemplate(Template);
1139     }
1140 
1141     return IsVarTemplate ? NameClassification::VarTemplate(Template)
1142                          : NameClassification::TypeTemplate(Template);
1143   }
1144 
1145   auto BuildTypeFor = [&](TypeDecl *Type, NamedDecl *Found) {
1146     QualType T = Context.getTypeDeclType(Type);
1147     if (const auto *USD = dyn_cast<UsingShadowDecl>(Found))
1148       T = Context.getUsingType(USD, T);
1149     return buildNamedType(*this, &SS, T, NameLoc);
1150   };
1151 
1152   NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
1153   if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
1154     DiagnoseUseOfDecl(Type, NameLoc);
1155     MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
1156     return BuildTypeFor(Type, *Result.begin());
1157   }
1158 
1159   ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
1160   if (!Class) {
1161     // FIXME: It's unfortunate that we don't have a Type node for handling this.
1162     if (ObjCCompatibleAliasDecl *Alias =
1163             dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
1164       Class = Alias->getClassInterface();
1165   }
1166 
1167   if (Class) {
1168     DiagnoseUseOfDecl(Class, NameLoc);
1169 
1170     if (NextToken.is(tok::period)) {
1171       // Interface. <something> is parsed as a property reference expression.
1172       // Just return "unknown" as a fall-through for now.
1173       Result.suppressDiagnostics();
1174       return NameClassification::Unknown();
1175     }
1176 
1177     QualType T = Context.getObjCInterfaceType(Class);
1178     return ParsedType::make(T);
1179   }
1180 
1181   if (isa<ConceptDecl>(FirstDecl)) {
1182     // We want to preserve the UsingShadowDecl for concepts.
1183     if (auto *USD = dyn_cast<UsingShadowDecl>(Result.getRepresentativeDecl()))
1184       return NameClassification::Concept(TemplateName(USD));
1185     return NameClassification::Concept(
1186         TemplateName(cast<TemplateDecl>(FirstDecl)));
1187   }
1188 
1189   if (auto *EmptyD = dyn_cast<UnresolvedUsingIfExistsDecl>(FirstDecl)) {
1190     (void)DiagnoseUseOfDecl(EmptyD, NameLoc);
1191     return NameClassification::Error();
1192   }
1193 
1194   // We can have a type template here if we're classifying a template argument.
1195   if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl) &&
1196       !isa<VarTemplateDecl>(FirstDecl))
1197     return NameClassification::TypeTemplate(
1198         TemplateName(cast<TemplateDecl>(FirstDecl)));
1199 
1200   // Check for a tag type hidden by a non-type decl in a few cases where it
1201   // seems likely a type is wanted instead of the non-type that was found.
1202   bool NextIsOp = NextToken.isOneOf(tok::amp, tok::star);
1203   if ((NextToken.is(tok::identifier) ||
1204        (NextIsOp &&
1205         FirstDecl->getUnderlyingDecl()->isFunctionOrFunctionTemplate())) &&
1206       isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
1207     TypeDecl *Type = Result.getAsSingle<TypeDecl>();
1208     DiagnoseUseOfDecl(Type, NameLoc);
1209     return BuildTypeFor(Type, *Result.begin());
1210   }
1211 
1212   // If we already know which single declaration is referenced, just annotate
1213   // that declaration directly. Defer resolving even non-overloaded class
1214   // member accesses, as we need to defer certain access checks until we know
1215   // the context.
1216   bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
1217   if (Result.isSingleResult() && !ADL &&
1218       (!FirstDecl->isCXXClassMember() || isa<EnumConstantDecl>(FirstDecl)))
1219     return NameClassification::NonType(Result.getRepresentativeDecl());
1220 
1221   // Otherwise, this is an overload set that we will need to resolve later.
1222   Result.suppressDiagnostics();
1223   return NameClassification::OverloadSet(UnresolvedLookupExpr::Create(
1224       Context, Result.getNamingClass(), SS.getWithLocInContext(Context),
1225       Result.getLookupNameInfo(), ADL, Result.begin(), Result.end(),
1226       /*KnownDependent=*/false, /*KnownInstantiationDependent=*/false));
1227 }
1228 
1229 ExprResult
1230 Sema::ActOnNameClassifiedAsUndeclaredNonType(IdentifierInfo *Name,
1231                                              SourceLocation NameLoc) {
1232   assert(getLangOpts().CPlusPlus && "ADL-only call in C?");
1233   CXXScopeSpec SS;
1234   LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
1235   return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
1236 }
1237 
1238 ExprResult
1239 Sema::ActOnNameClassifiedAsDependentNonType(const CXXScopeSpec &SS,
1240                                             IdentifierInfo *Name,
1241                                             SourceLocation NameLoc,
1242                                             bool IsAddressOfOperand) {
1243   DeclarationNameInfo NameInfo(Name, NameLoc);
1244   return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
1245                                     NameInfo, IsAddressOfOperand,
1246                                     /*TemplateArgs=*/nullptr);
1247 }
1248 
1249 ExprResult Sema::ActOnNameClassifiedAsNonType(Scope *S, const CXXScopeSpec &SS,
1250                                               NamedDecl *Found,
1251                                               SourceLocation NameLoc,
1252                                               const Token &NextToken) {
1253   if (getCurMethodDecl() && SS.isEmpty())
1254     if (auto *Ivar = dyn_cast<ObjCIvarDecl>(Found->getUnderlyingDecl()))
1255       return ObjC().BuildIvarRefExpr(S, NameLoc, Ivar);
1256 
1257   // Reconstruct the lookup result.
1258   LookupResult Result(*this, Found->getDeclName(), NameLoc, LookupOrdinaryName);
1259   Result.addDecl(Found);
1260   Result.resolveKind();
1261 
1262   bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
1263   return BuildDeclarationNameExpr(SS, Result, ADL, /*AcceptInvalidDecl=*/true);
1264 }
1265 
1266 ExprResult Sema::ActOnNameClassifiedAsOverloadSet(Scope *S, Expr *E) {
1267   // For an implicit class member access, transform the result into a member
1268   // access expression if necessary.
1269   auto *ULE = cast<UnresolvedLookupExpr>(E);
1270   if ((*ULE->decls_begin())->isCXXClassMember()) {
1271     CXXScopeSpec SS;
1272     SS.Adopt(ULE->getQualifierLoc());
1273 
1274     // Reconstruct the lookup result.
1275     LookupResult Result(*this, ULE->getName(), ULE->getNameLoc(),
1276                         LookupOrdinaryName);
1277     Result.setNamingClass(ULE->getNamingClass());
1278     for (auto I = ULE->decls_begin(), E = ULE->decls_end(); I != E; ++I)
1279       Result.addDecl(*I, I.getAccess());
1280     Result.resolveKind();
1281     return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result,
1282                                            nullptr, S);
1283   }
1284 
1285   // Otherwise, this is already in the form we needed, and no further checks
1286   // are necessary.
1287   return ULE;
1288 }
1289 
1290 Sema::TemplateNameKindForDiagnostics
1291 Sema::getTemplateNameKindForDiagnostics(TemplateName Name) {
1292   auto *TD = Name.getAsTemplateDecl();
1293   if (!TD)
1294     return TemplateNameKindForDiagnostics::DependentTemplate;
1295   if (isa<ClassTemplateDecl>(TD))
1296     return TemplateNameKindForDiagnostics::ClassTemplate;
1297   if (isa<FunctionTemplateDecl>(TD))
1298     return TemplateNameKindForDiagnostics::FunctionTemplate;
1299   if (isa<VarTemplateDecl>(TD))
1300     return TemplateNameKindForDiagnostics::VarTemplate;
1301   if (isa<TypeAliasTemplateDecl>(TD))
1302     return TemplateNameKindForDiagnostics::AliasTemplate;
1303   if (isa<TemplateTemplateParmDecl>(TD))
1304     return TemplateNameKindForDiagnostics::TemplateTemplateParam;
1305   if (isa<ConceptDecl>(TD))
1306     return TemplateNameKindForDiagnostics::Concept;
1307   return TemplateNameKindForDiagnostics::DependentTemplate;
1308 }
1309 
1310 void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
1311   assert(DC->getLexicalParent() == CurContext &&
1312       "The next DeclContext should be lexically contained in the current one.");
1313   CurContext = DC;
1314   S->setEntity(DC);
1315 }
1316 
1317 void Sema::PopDeclContext() {
1318   assert(CurContext && "DeclContext imbalance!");
1319 
1320   CurContext = CurContext->getLexicalParent();
1321   assert(CurContext && "Popped translation unit!");
1322 }
1323 
1324 Sema::SkippedDefinitionContext Sema::ActOnTagStartSkippedDefinition(Scope *S,
1325                                                                     Decl *D) {
1326   // Unlike PushDeclContext, the context to which we return is not necessarily
1327   // the containing DC of TD, because the new context will be some pre-existing
1328   // TagDecl definition instead of a fresh one.
1329   auto Result = static_cast<SkippedDefinitionContext>(CurContext);
1330   CurContext = cast<TagDecl>(D)->getDefinition();
1331   assert(CurContext && "skipping definition of undefined tag");
1332   // Start lookups from the parent of the current context; we don't want to look
1333   // into the pre-existing complete definition.
1334   S->setEntity(CurContext->getLookupParent());
1335   return Result;
1336 }
1337 
1338 void Sema::ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context) {
1339   CurContext = static_cast<decltype(CurContext)>(Context);
1340 }
1341 
1342 void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
1343   // C++0x [basic.lookup.unqual]p13:
1344   //   A name used in the definition of a static data member of class
1345   //   X (after the qualified-id of the static member) is looked up as
1346   //   if the name was used in a member function of X.
1347   // C++0x [basic.lookup.unqual]p14:
1348   //   If a variable member of a namespace is defined outside of the
1349   //   scope of its namespace then any name used in the definition of
1350   //   the variable member (after the declarator-id) is looked up as
1351   //   if the definition of the variable member occurred in its
1352   //   namespace.
1353   // Both of these imply that we should push a scope whose context
1354   // is the semantic context of the declaration.  We can't use
1355   // PushDeclContext here because that context is not necessarily
1356   // lexically contained in the current context.  Fortunately,
1357   // the containing scope should have the appropriate information.
1358 
1359   assert(!S->getEntity() && "scope already has entity");
1360 
1361 #ifndef NDEBUG
1362   Scope *Ancestor = S->getParent();
1363   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1364   assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
1365 #endif
1366 
1367   CurContext = DC;
1368   S->setEntity(DC);
1369 
1370   if (S->getParent()->isTemplateParamScope()) {
1371     // Also set the corresponding entities for all immediately-enclosing
1372     // template parameter scopes.
1373     EnterTemplatedContext(S->getParent(), DC);
1374   }
1375 }
1376 
1377 void Sema::ExitDeclaratorContext(Scope *S) {
1378   assert(S->getEntity() == CurContext && "Context imbalance!");
1379 
1380   // Switch back to the lexical context.  The safety of this is
1381   // enforced by an assert in EnterDeclaratorContext.
1382   Scope *Ancestor = S->getParent();
1383   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1384   CurContext = Ancestor->getEntity();
1385 
1386   // We don't need to do anything with the scope, which is going to
1387   // disappear.
1388 }
1389 
1390 void Sema::EnterTemplatedContext(Scope *S, DeclContext *DC) {
1391   assert(S->isTemplateParamScope() &&
1392          "expected to be initializing a template parameter scope");
1393 
1394   // C++20 [temp.local]p7:
1395   //   In the definition of a member of a class template that appears outside
1396   //   of the class template definition, the name of a member of the class
1397   //   template hides the name of a template-parameter of any enclosing class
1398   //   templates (but not a template-parameter of the member if the member is a
1399   //   class or function template).
1400   // C++20 [temp.local]p9:
1401   //   In the definition of a class template or in the definition of a member
1402   //   of such a template that appears outside of the template definition, for
1403   //   each non-dependent base class (13.8.2.1), if the name of the base class
1404   //   or the name of a member of the base class is the same as the name of a
1405   //   template-parameter, the base class name or member name hides the
1406   //   template-parameter name (6.4.10).
1407   //
1408   // This means that a template parameter scope should be searched immediately
1409   // after searching the DeclContext for which it is a template parameter
1410   // scope. For example, for
1411   //   template<typename T> template<typename U> template<typename V>
1412   //     void N::A<T>::B<U>::f(...)
1413   // we search V then B<U> (and base classes) then U then A<T> (and base
1414   // classes) then T then N then ::.
1415   unsigned ScopeDepth = getTemplateDepth(S);
1416   for (; S && S->isTemplateParamScope(); S = S->getParent(), --ScopeDepth) {
1417     DeclContext *SearchDCAfterScope = DC;
1418     for (; DC; DC = DC->getLookupParent()) {
1419       if (const TemplateParameterList *TPL =
1420               cast<Decl>(DC)->getDescribedTemplateParams()) {
1421         unsigned DCDepth = TPL->getDepth() + 1;
1422         if (DCDepth > ScopeDepth)
1423           continue;
1424         if (ScopeDepth == DCDepth)
1425           SearchDCAfterScope = DC = DC->getLookupParent();
1426         break;
1427       }
1428     }
1429     S->setLookupEntity(SearchDCAfterScope);
1430   }
1431 }
1432 
1433 void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
1434   // We assume that the caller has already called
1435   // ActOnReenterTemplateScope so getTemplatedDecl() works.
1436   FunctionDecl *FD = D->getAsFunction();
1437   if (!FD)
1438     return;
1439 
1440   // Same implementation as PushDeclContext, but enters the context
1441   // from the lexical parent, rather than the top-level class.
1442   assert(CurContext == FD->getLexicalParent() &&
1443     "The next DeclContext should be lexically contained in the current one.");
1444   CurContext = FD;
1445   S->setEntity(CurContext);
1446 
1447   for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
1448     ParmVarDecl *Param = FD->getParamDecl(P);
1449     // If the parameter has an identifier, then add it to the scope
1450     if (Param->getIdentifier()) {
1451       S->AddDecl(Param);
1452       IdResolver.AddDecl(Param);
1453     }
1454   }
1455 }
1456 
1457 void Sema::ActOnExitFunctionContext() {
1458   // Same implementation as PopDeclContext, but returns to the lexical parent,
1459   // rather than the top-level class.
1460   assert(CurContext && "DeclContext imbalance!");
1461   CurContext = CurContext->getLexicalParent();
1462   assert(CurContext && "Popped translation unit!");
1463 }
1464 
1465 /// Determine whether overloading is allowed for a new function
1466 /// declaration considering prior declarations of the same name.
1467 ///
1468 /// This routine determines whether overloading is possible, not
1469 /// whether a new declaration actually overloads a previous one.
1470 /// It will return true in C++ (where overloads are always permitted)
1471 /// or, as a C extension, when either the new declaration or a
1472 /// previous one is declared with the 'overloadable' attribute.
1473 static bool AllowOverloadingOfFunction(const LookupResult &Previous,
1474                                        ASTContext &Context,
1475                                        const FunctionDecl *New) {
1476   if (Context.getLangOpts().CPlusPlus || New->hasAttr<OverloadableAttr>())
1477     return true;
1478 
1479   // Multiversion function declarations are not overloads in the
1480   // usual sense of that term, but lookup will report that an
1481   // overload set was found if more than one multiversion function
1482   // declaration is present for the same name. It is therefore
1483   // inadequate to assume that some prior declaration(s) had
1484   // the overloadable attribute; checking is required. Since one
1485   // declaration is permitted to omit the attribute, it is necessary
1486   // to check at least two; hence the 'any_of' check below. Note that
1487   // the overloadable attribute is implicitly added to declarations
1488   // that were required to have it but did not.
1489   if (Previous.getResultKind() == LookupResult::FoundOverloaded) {
1490     return llvm::any_of(Previous, [](const NamedDecl *ND) {
1491       return ND->hasAttr<OverloadableAttr>();
1492     });
1493   } else if (Previous.getResultKind() == LookupResult::Found)
1494     return Previous.getFoundDecl()->hasAttr<OverloadableAttr>();
1495 
1496   return false;
1497 }
1498 
1499 void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1500   // Move up the scope chain until we find the nearest enclosing
1501   // non-transparent context. The declaration will be introduced into this
1502   // scope.
1503   while (S->getEntity() && S->getEntity()->isTransparentContext())
1504     S = S->getParent();
1505 
1506   // Add scoped declarations into their context, so that they can be
1507   // found later. Declarations without a context won't be inserted
1508   // into any context.
1509   if (AddToContext)
1510     CurContext->addDecl(D);
1511 
1512   // Out-of-line definitions shouldn't be pushed into scope in C++, unless they
1513   // are function-local declarations.
1514   if (getLangOpts().CPlusPlus && D->isOutOfLine() && !S->getFnParent())
1515     return;
1516 
1517   // Template instantiations should also not be pushed into scope.
1518   if (isa<FunctionDecl>(D) &&
1519       cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1520     return;
1521 
1522   if (isa<UsingEnumDecl>(D) && D->getDeclName().isEmpty()) {
1523     S->AddDecl(D);
1524     return;
1525   }
1526   // If this replaces anything in the current scope,
1527   IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1528                                IEnd = IdResolver.end();
1529   for (; I != IEnd; ++I) {
1530     if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1531       S->RemoveDecl(*I);
1532       IdResolver.RemoveDecl(*I);
1533 
1534       // Should only need to replace one decl.
1535       break;
1536     }
1537   }
1538 
1539   S->AddDecl(D);
1540 
1541   if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1542     // Implicitly-generated labels may end up getting generated in an order that
1543     // isn't strictly lexical, which breaks name lookup. Be careful to insert
1544     // the label at the appropriate place in the identifier chain.
1545     for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1546       DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1547       if (IDC == CurContext) {
1548         if (!S->isDeclScope(*I))
1549           continue;
1550       } else if (IDC->Encloses(CurContext))
1551         break;
1552     }
1553 
1554     IdResolver.InsertDeclAfter(I, D);
1555   } else {
1556     IdResolver.AddDecl(D);
1557   }
1558   warnOnReservedIdentifier(D);
1559 }
1560 
1561 bool Sema::isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S,
1562                          bool AllowInlineNamespace) const {
1563   return IdResolver.isDeclInScope(D, Ctx, S, AllowInlineNamespace);
1564 }
1565 
1566 Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1567   DeclContext *TargetDC = DC->getPrimaryContext();
1568   do {
1569     if (DeclContext *ScopeDC = S->getEntity())
1570       if (ScopeDC->getPrimaryContext() == TargetDC)
1571         return S;
1572   } while ((S = S->getParent()));
1573 
1574   return nullptr;
1575 }
1576 
1577 static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1578                                             DeclContext*,
1579                                             ASTContext&);
1580 
1581 void Sema::FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S,
1582                                 bool ConsiderLinkage,
1583                                 bool AllowInlineNamespace) {
1584   LookupResult::Filter F = R.makeFilter();
1585   while (F.hasNext()) {
1586     NamedDecl *D = F.next();
1587 
1588     if (isDeclInScope(D, Ctx, S, AllowInlineNamespace))
1589       continue;
1590 
1591     if (ConsiderLinkage && isOutOfScopePreviousDeclaration(D, Ctx, Context))
1592       continue;
1593 
1594     F.erase();
1595   }
1596 
1597   F.done();
1598 }
1599 
1600 bool Sema::CheckRedeclarationModuleOwnership(NamedDecl *New, NamedDecl *Old) {
1601   // [module.interface]p7:
1602   // A declaration is attached to a module as follows:
1603   // - If the declaration is a non-dependent friend declaration that nominates a
1604   // function with a declarator-id that is a qualified-id or template-id or that
1605   // nominates a class other than with an elaborated-type-specifier with neither
1606   // a nested-name-specifier nor a simple-template-id, it is attached to the
1607   // module to which the friend is attached ([basic.link]).
1608   if (New->getFriendObjectKind() &&
1609       Old->getOwningModuleForLinkage() != New->getOwningModuleForLinkage()) {
1610     New->setLocalOwningModule(Old->getOwningModule());
1611     makeMergedDefinitionVisible(New);
1612     return false;
1613   }
1614 
1615   Module *NewM = New->getOwningModule();
1616   Module *OldM = Old->getOwningModule();
1617 
1618   if (NewM && NewM->isPrivateModule())
1619     NewM = NewM->Parent;
1620   if (OldM && OldM->isPrivateModule())
1621     OldM = OldM->Parent;
1622 
1623   if (NewM == OldM)
1624     return false;
1625 
1626   if (NewM && OldM) {
1627     // A module implementation unit has visibility of the decls in its
1628     // implicitly imported interface.
1629     if (NewM->isModuleImplementation() && OldM == ThePrimaryInterface)
1630       return false;
1631 
1632     // Partitions are part of the module, but a partition could import another
1633     // module, so verify that the PMIs agree.
1634     if ((NewM->isModulePartition() || OldM->isModulePartition()) &&
1635         getASTContext().isInSameModule(NewM, OldM))
1636       return false;
1637   }
1638 
1639   bool NewIsModuleInterface = NewM && NewM->isNamedModule();
1640   bool OldIsModuleInterface = OldM && OldM->isNamedModule();
1641   if (NewIsModuleInterface || OldIsModuleInterface) {
1642     // C++ Modules TS [basic.def.odr] 6.2/6.7 [sic]:
1643     //   if a declaration of D [...] appears in the purview of a module, all
1644     //   other such declarations shall appear in the purview of the same module
1645     Diag(New->getLocation(), diag::err_mismatched_owning_module)
1646       << New
1647       << NewIsModuleInterface
1648       << (NewIsModuleInterface ? NewM->getFullModuleName() : "")
1649       << OldIsModuleInterface
1650       << (OldIsModuleInterface ? OldM->getFullModuleName() : "");
1651     Diag(Old->getLocation(), diag::note_previous_declaration);
1652     New->setInvalidDecl();
1653     return true;
1654   }
1655 
1656   return false;
1657 }
1658 
1659 bool Sema::CheckRedeclarationExported(NamedDecl *New, NamedDecl *Old) {
1660   // [module.interface]p1:
1661   // An export-declaration shall inhabit a namespace scope.
1662   //
1663   // So it is meaningless to talk about redeclaration which is not at namespace
1664   // scope.
1665   if (!New->getLexicalDeclContext()
1666            ->getNonTransparentContext()
1667            ->isFileContext() ||
1668       !Old->getLexicalDeclContext()
1669            ->getNonTransparentContext()
1670            ->isFileContext())
1671     return false;
1672 
1673   bool IsNewExported = New->isInExportDeclContext();
1674   bool IsOldExported = Old->isInExportDeclContext();
1675 
1676   // It should be irrevelant if both of them are not exported.
1677   if (!IsNewExported && !IsOldExported)
1678     return false;
1679 
1680   if (IsOldExported)
1681     return false;
1682 
1683   // If the Old declaration are not attached to named modules
1684   // and the New declaration are attached to global module.
1685   // It should be fine to allow the export since it doesn't change
1686   // the linkage of declarations. See
1687   // https://github.com/llvm/llvm-project/issues/98583 for details.
1688   if (!Old->isInNamedModule() && New->getOwningModule() &&
1689       New->getOwningModule()->isImplicitGlobalModule())
1690     return false;
1691 
1692   assert(IsNewExported);
1693 
1694   auto Lk = Old->getFormalLinkage();
1695   int S = 0;
1696   if (Lk == Linkage::Internal)
1697     S = 1;
1698   else if (Lk == Linkage::Module)
1699     S = 2;
1700   Diag(New->getLocation(), diag::err_redeclaration_non_exported) << New << S;
1701   Diag(Old->getLocation(), diag::note_previous_declaration);
1702   return true;
1703 }
1704 
1705 bool Sema::CheckRedeclarationInModule(NamedDecl *New, NamedDecl *Old) {
1706   if (CheckRedeclarationModuleOwnership(New, Old))
1707     return true;
1708 
1709   if (CheckRedeclarationExported(New, Old))
1710     return true;
1711 
1712   return false;
1713 }
1714 
1715 bool Sema::IsRedefinitionInModule(const NamedDecl *New,
1716                                      const NamedDecl *Old) const {
1717   assert(getASTContext().isSameEntity(New, Old) &&
1718          "New and Old are not the same definition, we should diagnostic it "
1719          "immediately instead of checking it.");
1720   assert(const_cast<Sema *>(this)->isReachable(New) &&
1721          const_cast<Sema *>(this)->isReachable(Old) &&
1722          "We shouldn't see unreachable definitions here.");
1723 
1724   Module *NewM = New->getOwningModule();
1725   Module *OldM = Old->getOwningModule();
1726 
1727   // We only checks for named modules here. The header like modules is skipped.
1728   // FIXME: This is not right if we import the header like modules in the module
1729   // purview.
1730   //
1731   // For example, assuming "header.h" provides definition for `D`.
1732   // ```C++
1733   // //--- M.cppm
1734   // export module M;
1735   // import "header.h"; // or #include "header.h" but import it by clang modules
1736   // actually.
1737   //
1738   // //--- Use.cpp
1739   // import M;
1740   // import "header.h"; // or uses clang modules.
1741   // ```
1742   //
1743   // In this case, `D` has multiple definitions in multiple TU (M.cppm and
1744   // Use.cpp) and `D` is attached to a named module `M`. The compiler should
1745   // reject it. But the current implementation couldn't detect the case since we
1746   // don't record the information about the importee modules.
1747   //
1748   // But this might not be painful in practice. Since the design of C++20 Named
1749   // Modules suggests us to use headers in global module fragment instead of
1750   // module purview.
1751   if (NewM && NewM->isHeaderLikeModule())
1752     NewM = nullptr;
1753   if (OldM && OldM->isHeaderLikeModule())
1754     OldM = nullptr;
1755 
1756   if (!NewM && !OldM)
1757     return true;
1758 
1759   // [basic.def.odr]p14.3
1760   // Each such definition shall not be attached to a named module
1761   // ([module.unit]).
1762   if ((NewM && NewM->isNamedModule()) || (OldM && OldM->isNamedModule()))
1763     return true;
1764 
1765   // Then New and Old lives in the same TU if their share one same module unit.
1766   if (NewM)
1767     NewM = NewM->getTopLevelModule();
1768   if (OldM)
1769     OldM = OldM->getTopLevelModule();
1770   return OldM == NewM;
1771 }
1772 
1773 static bool isUsingDeclNotAtClassScope(NamedDecl *D) {
1774   if (D->getDeclContext()->isFileContext())
1775     return false;
1776 
1777   return isa<UsingShadowDecl>(D) ||
1778          isa<UnresolvedUsingTypenameDecl>(D) ||
1779          isa<UnresolvedUsingValueDecl>(D);
1780 }
1781 
1782 /// Removes using shadow declarations not at class scope from the lookup
1783 /// results.
1784 static void RemoveUsingDecls(LookupResult &R) {
1785   LookupResult::Filter F = R.makeFilter();
1786   while (F.hasNext())
1787     if (isUsingDeclNotAtClassScope(F.next()))
1788       F.erase();
1789 
1790   F.done();
1791 }
1792 
1793 /// Check for this common pattern:
1794 /// @code
1795 /// class S {
1796 ///   S(const S&); // DO NOT IMPLEMENT
1797 ///   void operator=(const S&); // DO NOT IMPLEMENT
1798 /// };
1799 /// @endcode
1800 static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1801   // FIXME: Should check for private access too but access is set after we get
1802   // the decl here.
1803   if (D->doesThisDeclarationHaveABody())
1804     return false;
1805 
1806   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1807     return CD->isCopyConstructor();
1808   return D->isCopyAssignmentOperator();
1809 }
1810 
1811 bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) {
1812   const DeclContext *DC = D->getDeclContext();
1813   while (!DC->isTranslationUnit()) {
1814     if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){
1815       if (!RD->hasNameForLinkage())
1816         return true;
1817     }
1818     DC = DC->getParent();
1819   }
1820 
1821   return !D->isExternallyVisible();
1822 }
1823 
1824 // FIXME: This needs to be refactored; some other isInMainFile users want
1825 // these semantics.
1826 static bool isMainFileLoc(const Sema &S, SourceLocation Loc) {
1827   if (S.TUKind != TU_Complete || S.getLangOpts().IsHeaderFile)
1828     return false;
1829   return S.SourceMgr.isInMainFile(Loc);
1830 }
1831 
1832 bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1833   assert(D);
1834 
1835   if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1836     return false;
1837 
1838   // Ignore all entities declared within templates, and out-of-line definitions
1839   // of members of class templates.
1840   if (D->getDeclContext()->isDependentContext() ||
1841       D->getLexicalDeclContext()->isDependentContext())
1842     return false;
1843 
1844   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1845     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1846       return false;
1847     // A non-out-of-line declaration of a member specialization was implicitly
1848     // instantiated; it's the out-of-line declaration that we're interested in.
1849     if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
1850         FD->getMemberSpecializationInfo() && !FD->isOutOfLine())
1851       return false;
1852 
1853     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1854       if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1855         return false;
1856     } else {
1857       // 'static inline' functions are defined in headers; don't warn.
1858       if (FD->isInlined() && !isMainFileLoc(*this, FD->getLocation()))
1859         return false;
1860     }
1861 
1862     if (FD->doesThisDeclarationHaveABody() &&
1863         Context.DeclMustBeEmitted(FD))
1864       return false;
1865   } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1866     // Constants and utility variables are defined in headers with internal
1867     // linkage; don't warn.  (Unlike functions, there isn't a convenient marker
1868     // like "inline".)
1869     if (!isMainFileLoc(*this, VD->getLocation()))
1870       return false;
1871 
1872     if (Context.DeclMustBeEmitted(VD))
1873       return false;
1874 
1875     if (VD->isStaticDataMember() &&
1876         VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1877       return false;
1878     if (VD->isStaticDataMember() &&
1879         VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
1880         VD->getMemberSpecializationInfo() && !VD->isOutOfLine())
1881       return false;
1882 
1883     if (VD->isInline() && !isMainFileLoc(*this, VD->getLocation()))
1884       return false;
1885   } else {
1886     return false;
1887   }
1888 
1889   // Only warn for unused decls internal to the translation unit.
1890   // FIXME: This seems like a bogus check; it suppresses -Wunused-function
1891   // for inline functions defined in the main source file, for instance.
1892   return mightHaveNonExternalLinkage(D);
1893 }
1894 
1895 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1896   if (!D)
1897     return;
1898 
1899   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1900     const FunctionDecl *First = FD->getFirstDecl();
1901     if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1902       return; // First should already be in the vector.
1903   }
1904 
1905   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1906     const VarDecl *First = VD->getFirstDecl();
1907     if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1908       return; // First should already be in the vector.
1909   }
1910 
1911   if (ShouldWarnIfUnusedFileScopedDecl(D))
1912     UnusedFileScopedDecls.push_back(D);
1913 }
1914 
1915 static bool ShouldDiagnoseUnusedDecl(const LangOptions &LangOpts,
1916                                      const NamedDecl *D) {
1917   if (D->isInvalidDecl())
1918     return false;
1919 
1920   if (const auto *DD = dyn_cast<DecompositionDecl>(D)) {
1921     // For a decomposition declaration, warn if none of the bindings are
1922     // referenced, instead of if the variable itself is referenced (which
1923     // it is, by the bindings' expressions).
1924     bool IsAllPlaceholders = true;
1925     for (const auto *BD : DD->bindings()) {
1926       if (BD->isReferenced() || BD->hasAttr<UnusedAttr>())
1927         return false;
1928       IsAllPlaceholders = IsAllPlaceholders && BD->isPlaceholderVar(LangOpts);
1929     }
1930     if (IsAllPlaceholders)
1931       return false;
1932   } else if (!D->getDeclName()) {
1933     return false;
1934   } else if (D->isReferenced() || D->isUsed()) {
1935     return false;
1936   }
1937 
1938   if (D->isPlaceholderVar(LangOpts))
1939     return false;
1940 
1941   if (D->hasAttr<UnusedAttr>() || D->hasAttr<ObjCPreciseLifetimeAttr>() ||
1942       D->hasAttr<CleanupAttr>())
1943     return false;
1944 
1945   if (isa<LabelDecl>(D))
1946     return true;
1947 
1948   // Except for labels, we only care about unused decls that are local to
1949   // functions.
1950   bool WithinFunction = D->getDeclContext()->isFunctionOrMethod();
1951   if (const auto *R = dyn_cast<CXXRecordDecl>(D->getDeclContext()))
1952     // For dependent types, the diagnostic is deferred.
1953     WithinFunction =
1954         WithinFunction || (R->isLocalClass() && !R->isDependentType());
1955   if (!WithinFunction)
1956     return false;
1957 
1958   if (isa<TypedefNameDecl>(D))
1959     return true;
1960 
1961   // White-list anything that isn't a local variable.
1962   if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D))
1963     return false;
1964 
1965   // Types of valid local variables should be complete, so this should succeed.
1966   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1967 
1968     const Expr *Init = VD->getInit();
1969     if (const auto *Cleanups = dyn_cast_if_present<ExprWithCleanups>(Init))
1970       Init = Cleanups->getSubExpr();
1971 
1972     const auto *Ty = VD->getType().getTypePtr();
1973 
1974     // Only look at the outermost level of typedef.
1975     if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
1976       // Allow anything marked with __attribute__((unused)).
1977       if (TT->getDecl()->hasAttr<UnusedAttr>())
1978         return false;
1979     }
1980 
1981     // Warn for reference variables whose initializtion performs lifetime
1982     // extension.
1983     if (const auto *MTE = dyn_cast_if_present<MaterializeTemporaryExpr>(Init);
1984         MTE && MTE->getExtendingDecl()) {
1985       Ty = VD->getType().getNonReferenceType().getTypePtr();
1986       Init = MTE->getSubExpr()->IgnoreImplicitAsWritten();
1987     }
1988 
1989     // If we failed to complete the type for some reason, or if the type is
1990     // dependent, don't diagnose the variable.
1991     if (Ty->isIncompleteType() || Ty->isDependentType())
1992       return false;
1993 
1994     // Look at the element type to ensure that the warning behaviour is
1995     // consistent for both scalars and arrays.
1996     Ty = Ty->getBaseElementTypeUnsafe();
1997 
1998     if (const TagType *TT = Ty->getAs<TagType>()) {
1999       const TagDecl *Tag = TT->getDecl();
2000       if (Tag->hasAttr<UnusedAttr>())
2001         return false;
2002 
2003       if (const auto *RD = dyn_cast<CXXRecordDecl>(Tag)) {
2004         if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>())
2005           return false;
2006 
2007         if (Init) {
2008           const auto *Construct =
2009               dyn_cast<CXXConstructExpr>(Init->IgnoreImpCasts());
2010           if (Construct && !Construct->isElidable()) {
2011             const CXXConstructorDecl *CD = Construct->getConstructor();
2012             if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>() &&
2013                 (VD->getInit()->isValueDependent() || !VD->evaluateValue()))
2014               return false;
2015           }
2016 
2017           // Suppress the warning if we don't know how this is constructed, and
2018           // it could possibly be non-trivial constructor.
2019           if (Init->isTypeDependent()) {
2020             for (const CXXConstructorDecl *Ctor : RD->ctors())
2021               if (!Ctor->isTrivial())
2022                 return false;
2023           }
2024 
2025           // Suppress the warning if the constructor is unresolved because
2026           // its arguments are dependent.
2027           if (isa<CXXUnresolvedConstructExpr>(Init))
2028             return false;
2029         }
2030       }
2031     }
2032 
2033     // TODO: __attribute__((unused)) templates?
2034   }
2035 
2036   return true;
2037 }
2038 
2039 static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
2040                                      FixItHint &Hint) {
2041   if (isa<LabelDecl>(D)) {
2042     SourceLocation AfterColon = Lexer::findLocationAfterToken(
2043         D->getEndLoc(), tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(),
2044         /*SkipTrailingWhitespaceAndNewline=*/false);
2045     if (AfterColon.isInvalid())
2046       return;
2047     Hint = FixItHint::CreateRemoval(
2048         CharSourceRange::getCharRange(D->getBeginLoc(), AfterColon));
2049   }
2050 }
2051 
2052 void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl *D) {
2053   DiagnoseUnusedNestedTypedefs(
2054       D, [this](SourceLocation Loc, PartialDiagnostic PD) { Diag(Loc, PD); });
2055 }
2056 
2057 void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl *D,
2058                                         DiagReceiverTy DiagReceiver) {
2059   if (D->getTypeForDecl()->isDependentType())
2060     return;
2061 
2062   for (auto *TmpD : D->decls()) {
2063     if (const auto *T = dyn_cast<TypedefNameDecl>(TmpD))
2064       DiagnoseUnusedDecl(T, DiagReceiver);
2065     else if(const auto *R = dyn_cast<RecordDecl>(TmpD))
2066       DiagnoseUnusedNestedTypedefs(R, DiagReceiver);
2067   }
2068 }
2069 
2070 void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
2071   DiagnoseUnusedDecl(
2072       D, [this](SourceLocation Loc, PartialDiagnostic PD) { Diag(Loc, PD); });
2073 }
2074 
2075 void Sema::DiagnoseUnusedDecl(const NamedDecl *D, DiagReceiverTy DiagReceiver) {
2076   if (!ShouldDiagnoseUnusedDecl(getLangOpts(), D))
2077     return;
2078 
2079   if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
2080     // typedefs can be referenced later on, so the diagnostics are emitted
2081     // at end-of-translation-unit.
2082     UnusedLocalTypedefNameCandidates.insert(TD);
2083     return;
2084   }
2085 
2086   FixItHint Hint;
2087   GenerateFixForUnusedDecl(D, Context, Hint);
2088 
2089   unsigned DiagID;
2090   if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
2091     DiagID = diag::warn_unused_exception_param;
2092   else if (isa<LabelDecl>(D))
2093     DiagID = diag::warn_unused_label;
2094   else
2095     DiagID = diag::warn_unused_variable;
2096 
2097   SourceLocation DiagLoc = D->getLocation();
2098   DiagReceiver(DiagLoc, PDiag(DiagID) << D << Hint << SourceRange(DiagLoc));
2099 }
2100 
2101 void Sema::DiagnoseUnusedButSetDecl(const VarDecl *VD,
2102                                     DiagReceiverTy DiagReceiver) {
2103   // If it's not referenced, it can't be set. If it has the Cleanup attribute,
2104   // it's not really unused.
2105   if (!VD->isReferenced() || !VD->getDeclName() || VD->hasAttr<CleanupAttr>())
2106     return;
2107 
2108   //  In C++, `_` variables behave as if they were maybe_unused
2109   if (VD->hasAttr<UnusedAttr>() || VD->isPlaceholderVar(getLangOpts()))
2110     return;
2111 
2112   const auto *Ty = VD->getType().getTypePtr()->getBaseElementTypeUnsafe();
2113 
2114   if (Ty->isReferenceType() || Ty->isDependentType())
2115     return;
2116 
2117   if (const TagType *TT = Ty->getAs<TagType>()) {
2118     const TagDecl *Tag = TT->getDecl();
2119     if (Tag->hasAttr<UnusedAttr>())
2120       return;
2121     // In C++, don't warn for record types that don't have WarnUnusedAttr, to
2122     // mimic gcc's behavior.
2123     if (const auto *RD = dyn_cast<CXXRecordDecl>(Tag);
2124         RD && !RD->hasAttr<WarnUnusedAttr>())
2125       return;
2126   }
2127 
2128   // Don't warn about __block Objective-C pointer variables, as they might
2129   // be assigned in the block but not used elsewhere for the purpose of lifetime
2130   // extension.
2131   if (VD->hasAttr<BlocksAttr>() && Ty->isObjCObjectPointerType())
2132     return;
2133 
2134   // Don't warn about Objective-C pointer variables with precise lifetime
2135   // semantics; they can be used to ensure ARC releases the object at a known
2136   // time, which may mean assignment but no other references.
2137   if (VD->hasAttr<ObjCPreciseLifetimeAttr>() && Ty->isObjCObjectPointerType())
2138     return;
2139 
2140   auto iter = RefsMinusAssignments.find(VD);
2141   if (iter == RefsMinusAssignments.end())
2142     return;
2143 
2144   assert(iter->getSecond() >= 0 &&
2145          "Found a negative number of references to a VarDecl");
2146   if (int RefCnt = iter->getSecond(); RefCnt > 0) {
2147     // Assume the given VarDecl is "used" if its ref count stored in
2148     // `RefMinusAssignments` is positive, with one exception.
2149     //
2150     // For a C++ variable whose decl (with initializer) entirely consist the
2151     // condition expression of a if/while/for construct,
2152     // Clang creates a DeclRefExpr for the condition expression rather than a
2153     // BinaryOperator of AssignmentOp. Thus, the C++ variable's ref
2154     // count stored in `RefMinusAssignment` equals 1 when the variable is never
2155     // used in the body of the if/while/for construct.
2156     bool UnusedCXXCondDecl = VD->isCXXCondDecl() && (RefCnt == 1);
2157     if (!UnusedCXXCondDecl)
2158       return;
2159   }
2160 
2161   unsigned DiagID = isa<ParmVarDecl>(VD) ? diag::warn_unused_but_set_parameter
2162                                          : diag::warn_unused_but_set_variable;
2163   DiagReceiver(VD->getLocation(), PDiag(DiagID) << VD);
2164 }
2165 
2166 static void CheckPoppedLabel(LabelDecl *L, Sema &S,
2167                              Sema::DiagReceiverTy DiagReceiver) {
2168   // Verify that we have no forward references left.  If so, there was a goto
2169   // or address of a label taken, but no definition of it.  Label fwd
2170   // definitions are indicated with a null substmt which is also not a resolved
2171   // MS inline assembly label name.
2172   bool Diagnose = false;
2173   if (L->isMSAsmLabel())
2174     Diagnose = !L->isResolvedMSAsmLabel();
2175   else
2176     Diagnose = L->getStmt() == nullptr;
2177   if (Diagnose)
2178     DiagReceiver(L->getLocation(), S.PDiag(diag::err_undeclared_label_use)
2179                                        << L);
2180 }
2181 
2182 void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
2183   S->applyNRVO();
2184 
2185   if (S->decl_empty()) return;
2186   assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
2187          "Scope shouldn't contain decls!");
2188 
2189   /// We visit the decls in non-deterministic order, but we want diagnostics
2190   /// emitted in deterministic order. Collect any diagnostic that may be emitted
2191   /// and sort the diagnostics before emitting them, after we visited all decls.
2192   struct LocAndDiag {
2193     SourceLocation Loc;
2194     std::optional<SourceLocation> PreviousDeclLoc;
2195     PartialDiagnostic PD;
2196   };
2197   SmallVector<LocAndDiag, 16> DeclDiags;
2198   auto addDiag = [&DeclDiags](SourceLocation Loc, PartialDiagnostic PD) {
2199     DeclDiags.push_back(LocAndDiag{Loc, std::nullopt, std::move(PD)});
2200   };
2201   auto addDiagWithPrev = [&DeclDiags](SourceLocation Loc,
2202                                       SourceLocation PreviousDeclLoc,
2203                                       PartialDiagnostic PD) {
2204     DeclDiags.push_back(LocAndDiag{Loc, PreviousDeclLoc, std::move(PD)});
2205   };
2206 
2207   for (auto *TmpD : S->decls()) {
2208     assert(TmpD && "This decl didn't get pushed??");
2209 
2210     assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
2211     NamedDecl *D = cast<NamedDecl>(TmpD);
2212 
2213     // Diagnose unused variables in this scope.
2214     if (!S->hasUnrecoverableErrorOccurred()) {
2215       DiagnoseUnusedDecl(D, addDiag);
2216       if (const auto *RD = dyn_cast<RecordDecl>(D))
2217         DiagnoseUnusedNestedTypedefs(RD, addDiag);
2218       if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
2219         DiagnoseUnusedButSetDecl(VD, addDiag);
2220         RefsMinusAssignments.erase(VD);
2221       }
2222     }
2223 
2224     if (!D->getDeclName()) continue;
2225 
2226     // If this was a forward reference to a label, verify it was defined.
2227     if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
2228       CheckPoppedLabel(LD, *this, addDiag);
2229 
2230     // Partial translation units that are created in incremental processing must
2231     // not clean up the IdResolver because PTUs should take into account the
2232     // declarations that came from previous PTUs.
2233     if (!PP.isIncrementalProcessingEnabled() || getLangOpts().ObjC ||
2234         getLangOpts().CPlusPlus)
2235       IdResolver.RemoveDecl(D);
2236 
2237     // Warn on it if we are shadowing a declaration.
2238     auto ShadowI = ShadowingDecls.find(D);
2239     if (ShadowI != ShadowingDecls.end()) {
2240       if (const auto *FD = dyn_cast<FieldDecl>(ShadowI->second)) {
2241         addDiagWithPrev(D->getLocation(), FD->getLocation(),
2242                         PDiag(diag::warn_ctor_parm_shadows_field)
2243                             << D << FD << FD->getParent());
2244       }
2245       ShadowingDecls.erase(ShadowI);
2246     }
2247   }
2248 
2249   llvm::sort(DeclDiags,
2250              [](const LocAndDiag &LHS, const LocAndDiag &RHS) -> bool {
2251                // The particular order for diagnostics is not important, as long
2252                // as the order is deterministic. Using the raw location is going
2253                // to generally be in source order unless there are macro
2254                // expansions involved.
2255                return LHS.Loc.getRawEncoding() < RHS.Loc.getRawEncoding();
2256              });
2257   for (const LocAndDiag &D : DeclDiags) {
2258     Diag(D.Loc, D.PD);
2259     if (D.PreviousDeclLoc)
2260       Diag(*D.PreviousDeclLoc, diag::note_previous_declaration);
2261   }
2262 }
2263 
2264 Scope *Sema::getNonFieldDeclScope(Scope *S) {
2265   while (((S->getFlags() & Scope::DeclScope) == 0) ||
2266          (S->getEntity() && S->getEntity()->isTransparentContext()) ||
2267          (S->isClassScope() && !getLangOpts().CPlusPlus))
2268     S = S->getParent();
2269   return S;
2270 }
2271 
2272 static StringRef getHeaderName(Builtin::Context &BuiltinInfo, unsigned ID,
2273                                ASTContext::GetBuiltinTypeError Error) {
2274   switch (Error) {
2275   case ASTContext::GE_None:
2276     return "";
2277   case ASTContext::GE_Missing_type:
2278     return BuiltinInfo.getHeaderName(ID);
2279   case ASTContext::GE_Missing_stdio:
2280     return "stdio.h";
2281   case ASTContext::GE_Missing_setjmp:
2282     return "setjmp.h";
2283   case ASTContext::GE_Missing_ucontext:
2284     return "ucontext.h";
2285   }
2286   llvm_unreachable("unhandled error kind");
2287 }
2288 
2289 FunctionDecl *Sema::CreateBuiltin(IdentifierInfo *II, QualType Type,
2290                                   unsigned ID, SourceLocation Loc) {
2291   DeclContext *Parent = Context.getTranslationUnitDecl();
2292 
2293   if (getLangOpts().CPlusPlus) {
2294     LinkageSpecDecl *CLinkageDecl = LinkageSpecDecl::Create(
2295         Context, Parent, Loc, Loc, LinkageSpecLanguageIDs::C, false);
2296     CLinkageDecl->setImplicit();
2297     Parent->addDecl(CLinkageDecl);
2298     Parent = CLinkageDecl;
2299   }
2300 
2301   ConstexprSpecKind ConstexprKind = ConstexprSpecKind::Unspecified;
2302   if (Context.BuiltinInfo.isImmediate(ID)) {
2303     assert(getLangOpts().CPlusPlus20 &&
2304            "consteval builtins should only be available in C++20 mode");
2305     ConstexprKind = ConstexprSpecKind::Consteval;
2306   }
2307 
2308   FunctionDecl *New = FunctionDecl::Create(
2309       Context, Parent, Loc, Loc, II, Type, /*TInfo=*/nullptr, SC_Extern,
2310       getCurFPFeatures().isFPConstrained(), /*isInlineSpecified=*/false,
2311       Type->isFunctionProtoType(), ConstexprKind);
2312   New->setImplicit();
2313   New->addAttr(BuiltinAttr::CreateImplicit(Context, ID));
2314 
2315   // Create Decl objects for each parameter, adding them to the
2316   // FunctionDecl.
2317   if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(Type)) {
2318     SmallVector<ParmVarDecl *, 16> Params;
2319     for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
2320       ParmVarDecl *parm = ParmVarDecl::Create(
2321           Context, New, SourceLocation(), SourceLocation(), nullptr,
2322           FT->getParamType(i), /*TInfo=*/nullptr, SC_None, nullptr);
2323       parm->setScopeInfo(0, i);
2324       Params.push_back(parm);
2325     }
2326     New->setParams(Params);
2327   }
2328 
2329   AddKnownFunctionAttributes(New);
2330   return New;
2331 }
2332 
2333 NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID,
2334                                      Scope *S, bool ForRedeclaration,
2335                                      SourceLocation Loc) {
2336   LookupNecessaryTypesForBuiltin(S, ID);
2337 
2338   ASTContext::GetBuiltinTypeError Error;
2339   QualType R = Context.GetBuiltinType(ID, Error);
2340   if (Error) {
2341     if (!ForRedeclaration)
2342       return nullptr;
2343 
2344     // If we have a builtin without an associated type we should not emit a
2345     // warning when we were not able to find a type for it.
2346     if (Error == ASTContext::GE_Missing_type ||
2347         Context.BuiltinInfo.allowTypeMismatch(ID))
2348       return nullptr;
2349 
2350     // If we could not find a type for setjmp it is because the jmp_buf type was
2351     // not defined prior to the setjmp declaration.
2352     if (Error == ASTContext::GE_Missing_setjmp) {
2353       Diag(Loc, diag::warn_implicit_decl_no_jmp_buf)
2354           << Context.BuiltinInfo.getName(ID);
2355       return nullptr;
2356     }
2357 
2358     // Generally, we emit a warning that the declaration requires the
2359     // appropriate header.
2360     Diag(Loc, diag::warn_implicit_decl_requires_sysheader)
2361         << getHeaderName(Context.BuiltinInfo, ID, Error)
2362         << Context.BuiltinInfo.getName(ID);
2363     return nullptr;
2364   }
2365 
2366   if (!ForRedeclaration &&
2367       (Context.BuiltinInfo.isPredefinedLibFunction(ID) ||
2368        Context.BuiltinInfo.isHeaderDependentFunction(ID))) {
2369     Diag(Loc, LangOpts.C99 ? diag::ext_implicit_lib_function_decl_c99
2370                            : diag::ext_implicit_lib_function_decl)
2371         << Context.BuiltinInfo.getName(ID) << R;
2372     if (const char *Header = Context.BuiltinInfo.getHeaderName(ID))
2373       Diag(Loc, diag::note_include_header_or_declare)
2374           << Header << Context.BuiltinInfo.getName(ID);
2375   }
2376 
2377   if (R.isNull())
2378     return nullptr;
2379 
2380   FunctionDecl *New = CreateBuiltin(II, R, ID, Loc);
2381   RegisterLocallyScopedExternCDecl(New, S);
2382 
2383   // TUScope is the translation-unit scope to insert this function into.
2384   // FIXME: This is hideous. We need to teach PushOnScopeChains to
2385   // relate Scopes to DeclContexts, and probably eliminate CurContext
2386   // entirely, but we're not there yet.
2387   DeclContext *SavedContext = CurContext;
2388   CurContext = New->getDeclContext();
2389   PushOnScopeChains(New, TUScope);
2390   CurContext = SavedContext;
2391   return New;
2392 }
2393 
2394 /// Typedef declarations don't have linkage, but they still denote the same
2395 /// entity if their types are the same.
2396 /// FIXME: This is notionally doing the same thing as ASTReaderDecl's
2397 /// isSameEntity.
2398 static void
2399 filterNonConflictingPreviousTypedefDecls(Sema &S, const TypedefNameDecl *Decl,
2400                                          LookupResult &Previous) {
2401   // This is only interesting when modules are enabled.
2402   if (!S.getLangOpts().Modules && !S.getLangOpts().ModulesLocalVisibility)
2403     return;
2404 
2405   // Empty sets are uninteresting.
2406   if (Previous.empty())
2407     return;
2408 
2409   LookupResult::Filter Filter = Previous.makeFilter();
2410   while (Filter.hasNext()) {
2411     NamedDecl *Old = Filter.next();
2412 
2413     // Non-hidden declarations are never ignored.
2414     if (S.isVisible(Old))
2415       continue;
2416 
2417     // Declarations of the same entity are not ignored, even if they have
2418     // different linkages.
2419     if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
2420       if (S.Context.hasSameType(OldTD->getUnderlyingType(),
2421                                 Decl->getUnderlyingType()))
2422         continue;
2423 
2424       // If both declarations give a tag declaration a typedef name for linkage
2425       // purposes, then they declare the same entity.
2426       if (OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true) &&
2427           Decl->getAnonDeclWithTypedefName())
2428         continue;
2429     }
2430 
2431     Filter.erase();
2432   }
2433 
2434   Filter.done();
2435 }
2436 
2437 bool Sema::isIncompatibleTypedef(const TypeDecl *Old, TypedefNameDecl *New) {
2438   QualType OldType;
2439   if (const TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
2440     OldType = OldTypedef->getUnderlyingType();
2441   else
2442     OldType = Context.getTypeDeclType(Old);
2443   QualType NewType = New->getUnderlyingType();
2444 
2445   if (NewType->isVariablyModifiedType()) {
2446     // Must not redefine a typedef with a variably-modified type.
2447     int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
2448     Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
2449       << Kind << NewType;
2450     if (Old->getLocation().isValid())
2451       notePreviousDefinition(Old, New->getLocation());
2452     New->setInvalidDecl();
2453     return true;
2454   }
2455 
2456   if (OldType != NewType &&
2457       !OldType->isDependentType() &&
2458       !NewType->isDependentType() &&
2459       !Context.hasSameType(OldType, NewType)) {
2460     int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
2461     Diag(New->getLocation(), diag::err_redefinition_different_typedef)
2462       << Kind << NewType << OldType;
2463     if (Old->getLocation().isValid())
2464       notePreviousDefinition(Old, New->getLocation());
2465     New->setInvalidDecl();
2466     return true;
2467   }
2468   return false;
2469 }
2470 
2471 void Sema::MergeTypedefNameDecl(Scope *S, TypedefNameDecl *New,
2472                                 LookupResult &OldDecls) {
2473   // If the new decl is known invalid already, don't bother doing any
2474   // merging checks.
2475   if (New->isInvalidDecl()) return;
2476 
2477   // Allow multiple definitions for ObjC built-in typedefs.
2478   // FIXME: Verify the underlying types are equivalent!
2479   if (getLangOpts().ObjC) {
2480     const IdentifierInfo *TypeID = New->getIdentifier();
2481     switch (TypeID->getLength()) {
2482     default: break;
2483     case 2:
2484       {
2485         if (!TypeID->isStr("id"))
2486           break;
2487         QualType T = New->getUnderlyingType();
2488         if (!T->isPointerType())
2489           break;
2490         if (!T->isVoidPointerType()) {
2491           QualType PT = T->castAs<PointerType>()->getPointeeType();
2492           if (!PT->isStructureType())
2493             break;
2494         }
2495         Context.setObjCIdRedefinitionType(T);
2496         // Install the built-in type for 'id', ignoring the current definition.
2497         New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
2498         return;
2499       }
2500     case 5:
2501       if (!TypeID->isStr("Class"))
2502         break;
2503       Context.setObjCClassRedefinitionType(New->getUnderlyingType());
2504       // Install the built-in type for 'Class', ignoring the current definition.
2505       New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
2506       return;
2507     case 3:
2508       if (!TypeID->isStr("SEL"))
2509         break;
2510       Context.setObjCSelRedefinitionType(New->getUnderlyingType());
2511       // Install the built-in type for 'SEL', ignoring the current definition.
2512       New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
2513       return;
2514     }
2515     // Fall through - the typedef name was not a builtin type.
2516   }
2517 
2518   // Verify the old decl was also a type.
2519   TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
2520   if (!Old) {
2521     Diag(New->getLocation(), diag::err_redefinition_different_kind)
2522       << New->getDeclName();
2523 
2524     NamedDecl *OldD = OldDecls.getRepresentativeDecl();
2525     if (OldD->getLocation().isValid())
2526       notePreviousDefinition(OldD, New->getLocation());
2527 
2528     return New->setInvalidDecl();
2529   }
2530 
2531   // If the old declaration is invalid, just give up here.
2532   if (Old->isInvalidDecl())
2533     return New->setInvalidDecl();
2534 
2535   if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
2536     auto *OldTag = OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true);
2537     auto *NewTag = New->getAnonDeclWithTypedefName();
2538     NamedDecl *Hidden = nullptr;
2539     if (OldTag && NewTag &&
2540         OldTag->getCanonicalDecl() != NewTag->getCanonicalDecl() &&
2541         !hasVisibleDefinition(OldTag, &Hidden)) {
2542       // There is a definition of this tag, but it is not visible. Use it
2543       // instead of our tag.
2544       New->setTypeForDecl(OldTD->getTypeForDecl());
2545       if (OldTD->isModed())
2546         New->setModedTypeSourceInfo(OldTD->getTypeSourceInfo(),
2547                                     OldTD->getUnderlyingType());
2548       else
2549         New->setTypeSourceInfo(OldTD->getTypeSourceInfo());
2550 
2551       // Make the old tag definition visible.
2552       makeMergedDefinitionVisible(Hidden);
2553 
2554       // If this was an unscoped enumeration, yank all of its enumerators
2555       // out of the scope.
2556       if (isa<EnumDecl>(NewTag)) {
2557         Scope *EnumScope = getNonFieldDeclScope(S);
2558         for (auto *D : NewTag->decls()) {
2559           auto *ED = cast<EnumConstantDecl>(D);
2560           assert(EnumScope->isDeclScope(ED));
2561           EnumScope->RemoveDecl(ED);
2562           IdResolver.RemoveDecl(ED);
2563           ED->getLexicalDeclContext()->removeDecl(ED);
2564         }
2565       }
2566     }
2567   }
2568 
2569   // If the typedef types are not identical, reject them in all languages and
2570   // with any extensions enabled.
2571   if (isIncompatibleTypedef(Old, New))
2572     return;
2573 
2574   // The types match.  Link up the redeclaration chain and merge attributes if
2575   // the old declaration was a typedef.
2576   if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old)) {
2577     New->setPreviousDecl(Typedef);
2578     mergeDeclAttributes(New, Old);
2579   }
2580 
2581   if (getLangOpts().MicrosoftExt)
2582     return;
2583 
2584   if (getLangOpts().CPlusPlus) {
2585     // C++ [dcl.typedef]p2:
2586     //   In a given non-class scope, a typedef specifier can be used to
2587     //   redefine the name of any type declared in that scope to refer
2588     //   to the type to which it already refers.
2589     if (!isa<CXXRecordDecl>(CurContext))
2590       return;
2591 
2592     // C++0x [dcl.typedef]p4:
2593     //   In a given class scope, a typedef specifier can be used to redefine
2594     //   any class-name declared in that scope that is not also a typedef-name
2595     //   to refer to the type to which it already refers.
2596     //
2597     // This wording came in via DR424, which was a correction to the
2598     // wording in DR56, which accidentally banned code like:
2599     //
2600     //   struct S {
2601     //     typedef struct A { } A;
2602     //   };
2603     //
2604     // in the C++03 standard. We implement the C++0x semantics, which
2605     // allow the above but disallow
2606     //
2607     //   struct S {
2608     //     typedef int I;
2609     //     typedef int I;
2610     //   };
2611     //
2612     // since that was the intent of DR56.
2613     if (!isa<TypedefNameDecl>(Old))
2614       return;
2615 
2616     Diag(New->getLocation(), diag::err_redefinition)
2617       << New->getDeclName();
2618     notePreviousDefinition(Old, New->getLocation());
2619     return New->setInvalidDecl();
2620   }
2621 
2622   // Modules always permit redefinition of typedefs, as does C11.
2623   if (getLangOpts().Modules || getLangOpts().C11)
2624     return;
2625 
2626   // If we have a redefinition of a typedef in C, emit a warning.  This warning
2627   // is normally mapped to an error, but can be controlled with
2628   // -Wtypedef-redefinition.  If either the original or the redefinition is
2629   // in a system header, don't emit this for compatibility with GCC.
2630   if (getDiagnostics().getSuppressSystemWarnings() &&
2631       // Some standard types are defined implicitly in Clang (e.g. OpenCL).
2632       (Old->isImplicit() ||
2633        Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
2634        Context.getSourceManager().isInSystemHeader(New->getLocation())))
2635     return;
2636 
2637   Diag(New->getLocation(), diag::ext_redefinition_of_typedef)
2638     << New->getDeclName();
2639   notePreviousDefinition(Old, New->getLocation());
2640 }
2641 
2642 /// DeclhasAttr - returns true if decl Declaration already has the target
2643 /// attribute.
2644 static bool DeclHasAttr(const Decl *D, const Attr *A) {
2645   const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
2646   const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
2647   for (const auto *i : D->attrs())
2648     if (i->getKind() == A->getKind()) {
2649       if (Ann) {
2650         if (Ann->getAnnotation() == cast<AnnotateAttr>(i)->getAnnotation())
2651           return true;
2652         continue;
2653       }
2654       // FIXME: Don't hardcode this check
2655       if (OA && isa<OwnershipAttr>(i))
2656         return OA->getOwnKind() == cast<OwnershipAttr>(i)->getOwnKind();
2657       return true;
2658     }
2659 
2660   return false;
2661 }
2662 
2663 static bool isAttributeTargetADefinition(Decl *D) {
2664   if (VarDecl *VD = dyn_cast<VarDecl>(D))
2665     return VD->isThisDeclarationADefinition();
2666   if (TagDecl *TD = dyn_cast<TagDecl>(D))
2667     return TD->isCompleteDefinition() || TD->isBeingDefined();
2668   return true;
2669 }
2670 
2671 /// Merge alignment attributes from \p Old to \p New, taking into account the
2672 /// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
2673 ///
2674 /// \return \c true if any attributes were added to \p New.
2675 static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
2676   // Look for alignas attributes on Old, and pick out whichever attribute
2677   // specifies the strictest alignment requirement.
2678   AlignedAttr *OldAlignasAttr = nullptr;
2679   AlignedAttr *OldStrictestAlignAttr = nullptr;
2680   unsigned OldAlign = 0;
2681   for (auto *I : Old->specific_attrs<AlignedAttr>()) {
2682     // FIXME: We have no way of representing inherited dependent alignments
2683     // in a case like:
2684     //   template<int A, int B> struct alignas(A) X;
2685     //   template<int A, int B> struct alignas(B) X {};
2686     // For now, we just ignore any alignas attributes which are not on the
2687     // definition in such a case.
2688     if (I->isAlignmentDependent())
2689       return false;
2690 
2691     if (I->isAlignas())
2692       OldAlignasAttr = I;
2693 
2694     unsigned Align = I->getAlignment(S.Context);
2695     if (Align > OldAlign) {
2696       OldAlign = Align;
2697       OldStrictestAlignAttr = I;
2698     }
2699   }
2700 
2701   // Look for alignas attributes on New.
2702   AlignedAttr *NewAlignasAttr = nullptr;
2703   unsigned NewAlign = 0;
2704   for (auto *I : New->specific_attrs<AlignedAttr>()) {
2705     if (I->isAlignmentDependent())
2706       return false;
2707 
2708     if (I->isAlignas())
2709       NewAlignasAttr = I;
2710 
2711     unsigned Align = I->getAlignment(S.Context);
2712     if (Align > NewAlign)
2713       NewAlign = Align;
2714   }
2715 
2716   if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
2717     // Both declarations have 'alignas' attributes. We require them to match.
2718     // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
2719     // fall short. (If two declarations both have alignas, they must both match
2720     // every definition, and so must match each other if there is a definition.)
2721 
2722     // If either declaration only contains 'alignas(0)' specifiers, then it
2723     // specifies the natural alignment for the type.
2724     if (OldAlign == 0 || NewAlign == 0) {
2725       QualType Ty;
2726       if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
2727         Ty = VD->getType();
2728       else
2729         Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
2730 
2731       if (OldAlign == 0)
2732         OldAlign = S.Context.getTypeAlign(Ty);
2733       if (NewAlign == 0)
2734         NewAlign = S.Context.getTypeAlign(Ty);
2735     }
2736 
2737     if (OldAlign != NewAlign) {
2738       S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
2739         << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
2740         << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
2741       S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
2742     }
2743   }
2744 
2745   if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
2746     // C++11 [dcl.align]p6:
2747     //   if any declaration of an entity has an alignment-specifier,
2748     //   every defining declaration of that entity shall specify an
2749     //   equivalent alignment.
2750     // C11 6.7.5/7:
2751     //   If the definition of an object does not have an alignment
2752     //   specifier, any other declaration of that object shall also
2753     //   have no alignment specifier.
2754     S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
2755       << OldAlignasAttr;
2756     S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
2757       << OldAlignasAttr;
2758   }
2759 
2760   bool AnyAdded = false;
2761 
2762   // Ensure we have an attribute representing the strictest alignment.
2763   if (OldAlign > NewAlign) {
2764     AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
2765     Clone->setInherited(true);
2766     New->addAttr(Clone);
2767     AnyAdded = true;
2768   }
2769 
2770   // Ensure we have an alignas attribute if the old declaration had one.
2771   if (OldAlignasAttr && !NewAlignasAttr &&
2772       !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
2773     AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
2774     Clone->setInherited(true);
2775     New->addAttr(Clone);
2776     AnyAdded = true;
2777   }
2778 
2779   return AnyAdded;
2780 }
2781 
2782 #define WANT_DECL_MERGE_LOGIC
2783 #include "clang/Sema/AttrParsedAttrImpl.inc"
2784 #undef WANT_DECL_MERGE_LOGIC
2785 
2786 static bool mergeDeclAttribute(Sema &S, NamedDecl *D,
2787                                const InheritableAttr *Attr,
2788                                Sema::AvailabilityMergeKind AMK) {
2789   // Diagnose any mutual exclusions between the attribute that we want to add
2790   // and attributes that already exist on the declaration.
2791   if (!DiagnoseMutualExclusions(S, D, Attr))
2792     return false;
2793 
2794   // This function copies an attribute Attr from a previous declaration to the
2795   // new declaration D if the new declaration doesn't itself have that attribute
2796   // yet or if that attribute allows duplicates.
2797   // If you're adding a new attribute that requires logic different from
2798   // "use explicit attribute on decl if present, else use attribute from
2799   // previous decl", for example if the attribute needs to be consistent
2800   // between redeclarations, you need to call a custom merge function here.
2801   InheritableAttr *NewAttr = nullptr;
2802   if (const auto *AA = dyn_cast<AvailabilityAttr>(Attr))
2803     NewAttr = S.mergeAvailabilityAttr(
2804         D, *AA, AA->getPlatform(), AA->isImplicit(), AA->getIntroduced(),
2805         AA->getDeprecated(), AA->getObsoleted(), AA->getUnavailable(),
2806         AA->getMessage(), AA->getStrict(), AA->getReplacement(), AMK,
2807         AA->getPriority(), AA->getEnvironment());
2808   else if (const auto *VA = dyn_cast<VisibilityAttr>(Attr))
2809     NewAttr = S.mergeVisibilityAttr(D, *VA, VA->getVisibility());
2810   else if (const auto *VA = dyn_cast<TypeVisibilityAttr>(Attr))
2811     NewAttr = S.mergeTypeVisibilityAttr(D, *VA, VA->getVisibility());
2812   else if (const auto *ImportA = dyn_cast<DLLImportAttr>(Attr))
2813     NewAttr = S.mergeDLLImportAttr(D, *ImportA);
2814   else if (const auto *ExportA = dyn_cast<DLLExportAttr>(Attr))
2815     NewAttr = S.mergeDLLExportAttr(D, *ExportA);
2816   else if (const auto *EA = dyn_cast<ErrorAttr>(Attr))
2817     NewAttr = S.mergeErrorAttr(D, *EA, EA->getUserDiagnostic());
2818   else if (const auto *FA = dyn_cast<FormatAttr>(Attr))
2819     NewAttr = S.mergeFormatAttr(D, *FA, FA->getType(), FA->getFormatIdx(),
2820                                 FA->getFirstArg());
2821   else if (const auto *SA = dyn_cast<SectionAttr>(Attr))
2822     NewAttr = S.mergeSectionAttr(D, *SA, SA->getName());
2823   else if (const auto *CSA = dyn_cast<CodeSegAttr>(Attr))
2824     NewAttr = S.mergeCodeSegAttr(D, *CSA, CSA->getName());
2825   else if (const auto *IA = dyn_cast<MSInheritanceAttr>(Attr))
2826     NewAttr = S.mergeMSInheritanceAttr(D, *IA, IA->getBestCase(),
2827                                        IA->getInheritanceModel());
2828   else if (const auto *AA = dyn_cast<AlwaysInlineAttr>(Attr))
2829     NewAttr = S.mergeAlwaysInlineAttr(D, *AA,
2830                                       &S.Context.Idents.get(AA->getSpelling()));
2831   else if (S.getLangOpts().CUDA && isa<FunctionDecl>(D) &&
2832            (isa<CUDAHostAttr>(Attr) || isa<CUDADeviceAttr>(Attr) ||
2833             isa<CUDAGlobalAttr>(Attr))) {
2834     // CUDA target attributes are part of function signature for
2835     // overloading purposes and must not be merged.
2836     return false;
2837   } else if (const auto *MA = dyn_cast<MinSizeAttr>(Attr))
2838     NewAttr = S.mergeMinSizeAttr(D, *MA);
2839   else if (const auto *SNA = dyn_cast<SwiftNameAttr>(Attr))
2840     NewAttr = S.Swift().mergeNameAttr(D, *SNA, SNA->getName());
2841   else if (const auto *OA = dyn_cast<OptimizeNoneAttr>(Attr))
2842     NewAttr = S.mergeOptimizeNoneAttr(D, *OA);
2843   else if (const auto *InternalLinkageA = dyn_cast<InternalLinkageAttr>(Attr))
2844     NewAttr = S.mergeInternalLinkageAttr(D, *InternalLinkageA);
2845   else if (isa<AlignedAttr>(Attr))
2846     // AlignedAttrs are handled separately, because we need to handle all
2847     // such attributes on a declaration at the same time.
2848     NewAttr = nullptr;
2849   else if ((isa<DeprecatedAttr>(Attr) || isa<UnavailableAttr>(Attr)) &&
2850            (AMK == Sema::AMK_Override ||
2851             AMK == Sema::AMK_ProtocolImplementation ||
2852             AMK == Sema::AMK_OptionalProtocolImplementation))
2853     NewAttr = nullptr;
2854   else if (const auto *UA = dyn_cast<UuidAttr>(Attr))
2855     NewAttr = S.mergeUuidAttr(D, *UA, UA->getGuid(), UA->getGuidDecl());
2856   else if (const auto *IMA = dyn_cast<WebAssemblyImportModuleAttr>(Attr))
2857     NewAttr = S.Wasm().mergeImportModuleAttr(D, *IMA);
2858   else if (const auto *INA = dyn_cast<WebAssemblyImportNameAttr>(Attr))
2859     NewAttr = S.Wasm().mergeImportNameAttr(D, *INA);
2860   else if (const auto *TCBA = dyn_cast<EnforceTCBAttr>(Attr))
2861     NewAttr = S.mergeEnforceTCBAttr(D, *TCBA);
2862   else if (const auto *TCBLA = dyn_cast<EnforceTCBLeafAttr>(Attr))
2863     NewAttr = S.mergeEnforceTCBLeafAttr(D, *TCBLA);
2864   else if (const auto *BTFA = dyn_cast<BTFDeclTagAttr>(Attr))
2865     NewAttr = S.mergeBTFDeclTagAttr(D, *BTFA);
2866   else if (const auto *NT = dyn_cast<HLSLNumThreadsAttr>(Attr))
2867     NewAttr = S.HLSL().mergeNumThreadsAttr(D, *NT, NT->getX(), NT->getY(),
2868                                            NT->getZ());
2869   else if (const auto *WS = dyn_cast<HLSLWaveSizeAttr>(Attr))
2870     NewAttr = S.HLSL().mergeWaveSizeAttr(D, *WS, WS->getMin(), WS->getMax(),
2871                                          WS->getPreferred(),
2872                                          WS->getSpelledArgsCount());
2873   else if (const auto *SA = dyn_cast<HLSLShaderAttr>(Attr))
2874     NewAttr = S.HLSL().mergeShaderAttr(D, *SA, SA->getType());
2875   else if (isa<SuppressAttr>(Attr))
2876     // Do nothing. Each redeclaration should be suppressed separately.
2877     NewAttr = nullptr;
2878   else if (Attr->shouldInheritEvenIfAlreadyPresent() || !DeclHasAttr(D, Attr))
2879     NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
2880 
2881   if (NewAttr) {
2882     NewAttr->setInherited(true);
2883     D->addAttr(NewAttr);
2884     if (isa<MSInheritanceAttr>(NewAttr))
2885       S.Consumer.AssignInheritanceModel(cast<CXXRecordDecl>(D));
2886     return true;
2887   }
2888 
2889   return false;
2890 }
2891 
2892 static const NamedDecl *getDefinition(const Decl *D) {
2893   if (const TagDecl *TD = dyn_cast<TagDecl>(D))
2894     return TD->getDefinition();
2895   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2896     const VarDecl *Def = VD->getDefinition();
2897     if (Def)
2898       return Def;
2899     return VD->getActingDefinition();
2900   }
2901   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2902     const FunctionDecl *Def = nullptr;
2903     if (FD->isDefined(Def, true))
2904       return Def;
2905   }
2906   return nullptr;
2907 }
2908 
2909 static bool hasAttribute(const Decl *D, attr::Kind Kind) {
2910   for (const auto *Attribute : D->attrs())
2911     if (Attribute->getKind() == Kind)
2912       return true;
2913   return false;
2914 }
2915 
2916 /// checkNewAttributesAfterDef - If we already have a definition, check that
2917 /// there are no new attributes in this declaration.
2918 static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
2919   if (!New->hasAttrs())
2920     return;
2921 
2922   const NamedDecl *Def = getDefinition(Old);
2923   if (!Def || Def == New)
2924     return;
2925 
2926   AttrVec &NewAttributes = New->getAttrs();
2927   for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
2928     Attr *NewAttribute = NewAttributes[I];
2929 
2930     if (isa<AliasAttr>(NewAttribute) || isa<IFuncAttr>(NewAttribute)) {
2931       if (FunctionDecl *FD = dyn_cast<FunctionDecl>(New)) {
2932         SkipBodyInfo SkipBody;
2933         S.CheckForFunctionRedefinition(FD, cast<FunctionDecl>(Def), &SkipBody);
2934 
2935         // If we're skipping this definition, drop the "alias" attribute.
2936         if (SkipBody.ShouldSkip) {
2937           NewAttributes.erase(NewAttributes.begin() + I);
2938           --E;
2939           continue;
2940         }
2941       } else {
2942         VarDecl *VD = cast<VarDecl>(New);
2943         unsigned Diag = cast<VarDecl>(Def)->isThisDeclarationADefinition() ==
2944                                 VarDecl::TentativeDefinition
2945                             ? diag::err_alias_after_tentative
2946                             : diag::err_redefinition;
2947         S.Diag(VD->getLocation(), Diag) << VD->getDeclName();
2948         if (Diag == diag::err_redefinition)
2949           S.notePreviousDefinition(Def, VD->getLocation());
2950         else
2951           S.Diag(Def->getLocation(), diag::note_previous_definition);
2952         VD->setInvalidDecl();
2953       }
2954       ++I;
2955       continue;
2956     }
2957 
2958     if (const VarDecl *VD = dyn_cast<VarDecl>(Def)) {
2959       // Tentative definitions are only interesting for the alias check above.
2960       if (VD->isThisDeclarationADefinition() != VarDecl::Definition) {
2961         ++I;
2962         continue;
2963       }
2964     }
2965 
2966     if (hasAttribute(Def, NewAttribute->getKind())) {
2967       ++I;
2968       continue; // regular attr merging will take care of validating this.
2969     }
2970 
2971     if (isa<C11NoReturnAttr>(NewAttribute)) {
2972       // C's _Noreturn is allowed to be added to a function after it is defined.
2973       ++I;
2974       continue;
2975     } else if (isa<UuidAttr>(NewAttribute)) {
2976       // msvc will allow a subsequent definition to add an uuid to a class
2977       ++I;
2978       continue;
2979     } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
2980       if (AA->isAlignas()) {
2981         // C++11 [dcl.align]p6:
2982         //   if any declaration of an entity has an alignment-specifier,
2983         //   every defining declaration of that entity shall specify an
2984         //   equivalent alignment.
2985         // C11 6.7.5/7:
2986         //   If the definition of an object does not have an alignment
2987         //   specifier, any other declaration of that object shall also
2988         //   have no alignment specifier.
2989         S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
2990           << AA;
2991         S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
2992           << AA;
2993         NewAttributes.erase(NewAttributes.begin() + I);
2994         --E;
2995         continue;
2996       }
2997     } else if (isa<LoaderUninitializedAttr>(NewAttribute)) {
2998       // If there is a C definition followed by a redeclaration with this
2999       // attribute then there are two different definitions. In C++, prefer the
3000       // standard diagnostics.
3001       if (!S.getLangOpts().CPlusPlus) {
3002         S.Diag(NewAttribute->getLocation(),
3003                diag::err_loader_uninitialized_redeclaration);
3004         S.Diag(Def->getLocation(), diag::note_previous_definition);
3005         NewAttributes.erase(NewAttributes.begin() + I);
3006         --E;
3007         continue;
3008       }
3009     } else if (isa<SelectAnyAttr>(NewAttribute) &&
3010                cast<VarDecl>(New)->isInline() &&
3011                !cast<VarDecl>(New)->isInlineSpecified()) {
3012       // Don't warn about applying selectany to implicitly inline variables.
3013       // Older compilers and language modes would require the use of selectany
3014       // to make such variables inline, and it would have no effect if we
3015       // honored it.
3016       ++I;
3017       continue;
3018     } else if (isa<OMPDeclareVariantAttr>(NewAttribute)) {
3019       // We allow to add OMP[Begin]DeclareVariantAttr to be added to
3020       // declarations after definitions.
3021       ++I;
3022       continue;
3023     } else if (isa<SYCLKernelEntryPointAttr>(NewAttribute)) {
3024       // Elevate latent uses of the sycl_kernel_entry_point attribute to an
3025       // error since the definition will have already been created without
3026       // the semantic effects of the attribute having been applied.
3027       S.Diag(NewAttribute->getLocation(),
3028              diag::err_sycl_entry_point_after_definition);
3029       S.Diag(Def->getLocation(), diag::note_previous_definition);
3030       cast<SYCLKernelEntryPointAttr>(NewAttribute)->setInvalidAttr();
3031       ++I;
3032       continue;
3033     }
3034 
3035     S.Diag(NewAttribute->getLocation(),
3036            diag::warn_attribute_precede_definition);
3037     S.Diag(Def->getLocation(), diag::note_previous_definition);
3038     NewAttributes.erase(NewAttributes.begin() + I);
3039     --E;
3040   }
3041 }
3042 
3043 static void diagnoseMissingConstinit(Sema &S, const VarDecl *InitDecl,
3044                                      const ConstInitAttr *CIAttr,
3045                                      bool AttrBeforeInit) {
3046   SourceLocation InsertLoc = InitDecl->getInnerLocStart();
3047 
3048   // Figure out a good way to write this specifier on the old declaration.
3049   // FIXME: We should just use the spelling of CIAttr, but we don't preserve
3050   // enough of the attribute list spelling information to extract that without
3051   // heroics.
3052   std::string SuitableSpelling;
3053   if (S.getLangOpts().CPlusPlus20)
3054     SuitableSpelling = std::string(
3055         S.PP.getLastMacroWithSpelling(InsertLoc, {tok::kw_constinit}));
3056   if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus11)
3057     SuitableSpelling = std::string(S.PP.getLastMacroWithSpelling(
3058         InsertLoc, {tok::l_square, tok::l_square,
3059                     S.PP.getIdentifierInfo("clang"), tok::coloncolon,
3060                     S.PP.getIdentifierInfo("require_constant_initialization"),
3061                     tok::r_square, tok::r_square}));
3062   if (SuitableSpelling.empty())
3063     SuitableSpelling = std::string(S.PP.getLastMacroWithSpelling(
3064         InsertLoc, {tok::kw___attribute, tok::l_paren, tok::r_paren,
3065                     S.PP.getIdentifierInfo("require_constant_initialization"),
3066                     tok::r_paren, tok::r_paren}));
3067   if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus20)
3068     SuitableSpelling = "constinit";
3069   if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus11)
3070     SuitableSpelling = "[[clang::require_constant_initialization]]";
3071   if (SuitableSpelling.empty())
3072     SuitableSpelling = "__attribute__((require_constant_initialization))";
3073   SuitableSpelling += " ";
3074 
3075   if (AttrBeforeInit) {
3076     // extern constinit int a;
3077     // int a = 0; // error (missing 'constinit'), accepted as extension
3078     assert(CIAttr->isConstinit() && "should not diagnose this for attribute");
3079     S.Diag(InitDecl->getLocation(), diag::ext_constinit_missing)
3080         << InitDecl << FixItHint::CreateInsertion(InsertLoc, SuitableSpelling);
3081     S.Diag(CIAttr->getLocation(), diag::note_constinit_specified_here);
3082   } else {
3083     // int a = 0;
3084     // constinit extern int a; // error (missing 'constinit')
3085     S.Diag(CIAttr->getLocation(),
3086            CIAttr->isConstinit() ? diag::err_constinit_added_too_late
3087                                  : diag::warn_require_const_init_added_too_late)
3088         << FixItHint::CreateRemoval(SourceRange(CIAttr->getLocation()));
3089     S.Diag(InitDecl->getLocation(), diag::note_constinit_missing_here)
3090         << CIAttr->isConstinit()
3091         << FixItHint::CreateInsertion(InsertLoc, SuitableSpelling);
3092   }
3093 }
3094 
3095 void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
3096                                AvailabilityMergeKind AMK) {
3097   if (UsedAttr *OldAttr = Old->getMostRecentDecl()->getAttr<UsedAttr>()) {
3098     UsedAttr *NewAttr = OldAttr->clone(Context);
3099     NewAttr->setInherited(true);
3100     New->addAttr(NewAttr);
3101   }
3102   if (RetainAttr *OldAttr = Old->getMostRecentDecl()->getAttr<RetainAttr>()) {
3103     RetainAttr *NewAttr = OldAttr->clone(Context);
3104     NewAttr->setInherited(true);
3105     New->addAttr(NewAttr);
3106   }
3107 
3108   if (!Old->hasAttrs() && !New->hasAttrs())
3109     return;
3110 
3111   // [dcl.constinit]p1:
3112   //   If the [constinit] specifier is applied to any declaration of a
3113   //   variable, it shall be applied to the initializing declaration.
3114   const auto *OldConstInit = Old->getAttr<ConstInitAttr>();
3115   const auto *NewConstInit = New->getAttr<ConstInitAttr>();
3116   if (bool(OldConstInit) != bool(NewConstInit)) {
3117     const auto *OldVD = cast<VarDecl>(Old);
3118     auto *NewVD = cast<VarDecl>(New);
3119 
3120     // Find the initializing declaration. Note that we might not have linked
3121     // the new declaration into the redeclaration chain yet.
3122     const VarDecl *InitDecl = OldVD->getInitializingDeclaration();
3123     if (!InitDecl &&
3124         (NewVD->hasInit() || NewVD->isThisDeclarationADefinition()))
3125       InitDecl = NewVD;
3126 
3127     if (InitDecl == NewVD) {
3128       // This is the initializing declaration. If it would inherit 'constinit',
3129       // that's ill-formed. (Note that we do not apply this to the attribute
3130       // form).
3131       if (OldConstInit && OldConstInit->isConstinit())
3132         diagnoseMissingConstinit(*this, NewVD, OldConstInit,
3133                                  /*AttrBeforeInit=*/true);
3134     } else if (NewConstInit) {
3135       // This is the first time we've been told that this declaration should
3136       // have a constant initializer. If we already saw the initializing
3137       // declaration, this is too late.
3138       if (InitDecl && InitDecl != NewVD) {
3139         diagnoseMissingConstinit(*this, InitDecl, NewConstInit,
3140                                  /*AttrBeforeInit=*/false);
3141         NewVD->dropAttr<ConstInitAttr>();
3142       }
3143     }
3144   }
3145 
3146   // Attributes declared post-definition are currently ignored.
3147   checkNewAttributesAfterDef(*this, New, Old);
3148 
3149   if (AsmLabelAttr *NewA = New->getAttr<AsmLabelAttr>()) {
3150     if (AsmLabelAttr *OldA = Old->getAttr<AsmLabelAttr>()) {
3151       if (!OldA->isEquivalent(NewA)) {
3152         // This redeclaration changes __asm__ label.
3153         Diag(New->getLocation(), diag::err_different_asm_label);
3154         Diag(OldA->getLocation(), diag::note_previous_declaration);
3155       }
3156     } else if (Old->isUsed()) {
3157       // This redeclaration adds an __asm__ label to a declaration that has
3158       // already been ODR-used.
3159       Diag(New->getLocation(), diag::err_late_asm_label_name)
3160         << isa<FunctionDecl>(Old) << New->getAttr<AsmLabelAttr>()->getRange();
3161     }
3162   }
3163 
3164   // Re-declaration cannot add abi_tag's.
3165   if (const auto *NewAbiTagAttr = New->getAttr<AbiTagAttr>()) {
3166     if (const auto *OldAbiTagAttr = Old->getAttr<AbiTagAttr>()) {
3167       for (const auto &NewTag : NewAbiTagAttr->tags()) {
3168         if (!llvm::is_contained(OldAbiTagAttr->tags(), NewTag)) {
3169           Diag(NewAbiTagAttr->getLocation(),
3170                diag::err_new_abi_tag_on_redeclaration)
3171               << NewTag;
3172           Diag(OldAbiTagAttr->getLocation(), diag::note_previous_declaration);
3173         }
3174       }
3175     } else {
3176       Diag(NewAbiTagAttr->getLocation(), diag::err_abi_tag_on_redeclaration);
3177       Diag(Old->getLocation(), diag::note_previous_declaration);
3178     }
3179   }
3180 
3181   // This redeclaration adds a section attribute.
3182   if (New->hasAttr<SectionAttr>() && !Old->hasAttr<SectionAttr>()) {
3183     if (auto *VD = dyn_cast<VarDecl>(New)) {
3184       if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly) {
3185         Diag(New->getLocation(), diag::warn_attribute_section_on_redeclaration);
3186         Diag(Old->getLocation(), diag::note_previous_declaration);
3187       }
3188     }
3189   }
3190 
3191   // Redeclaration adds code-seg attribute.
3192   const auto *NewCSA = New->getAttr<CodeSegAttr>();
3193   if (NewCSA && !Old->hasAttr<CodeSegAttr>() &&
3194       !NewCSA->isImplicit() && isa<CXXMethodDecl>(New)) {
3195     Diag(New->getLocation(), diag::warn_mismatched_section)
3196          << 0 /*codeseg*/;
3197     Diag(Old->getLocation(), diag::note_previous_declaration);
3198   }
3199 
3200   if (!Old->hasAttrs())
3201     return;
3202 
3203   bool foundAny = New->hasAttrs();
3204 
3205   // Ensure that any moving of objects within the allocated map is done before
3206   // we process them.
3207   if (!foundAny) New->setAttrs(AttrVec());
3208 
3209   for (auto *I : Old->specific_attrs<InheritableAttr>()) {
3210     // Ignore deprecated/unavailable/availability attributes if requested.
3211     AvailabilityMergeKind LocalAMK = AMK_None;
3212     if (isa<DeprecatedAttr>(I) ||
3213         isa<UnavailableAttr>(I) ||
3214         isa<AvailabilityAttr>(I)) {
3215       switch (AMK) {
3216       case AMK_None:
3217         continue;
3218 
3219       case AMK_Redeclaration:
3220       case AMK_Override:
3221       case AMK_ProtocolImplementation:
3222       case AMK_OptionalProtocolImplementation:
3223         LocalAMK = AMK;
3224         break;
3225       }
3226     }
3227 
3228     // Already handled.
3229     if (isa<UsedAttr>(I) || isa<RetainAttr>(I))
3230       continue;
3231 
3232     if (mergeDeclAttribute(*this, New, I, LocalAMK))
3233       foundAny = true;
3234   }
3235 
3236   if (mergeAlignedAttrs(*this, New, Old))
3237     foundAny = true;
3238 
3239   if (!foundAny) New->dropAttrs();
3240 }
3241 
3242 // Returns the number of added attributes.
3243 template <class T>
3244 static unsigned propagateAttribute(ParmVarDecl *To, const ParmVarDecl *From,
3245                                    Sema &S) {
3246   unsigned found = 0;
3247   for (const auto *I : From->specific_attrs<T>()) {
3248     if (!DeclHasAttr(To, I)) {
3249       T *newAttr = cast<T>(I->clone(S.Context));
3250       newAttr->setInherited(true);
3251       To->addAttr(newAttr);
3252       ++found;
3253     }
3254   }
3255   return found;
3256 }
3257 
3258 template <class F>
3259 static void propagateAttributes(ParmVarDecl *To, const ParmVarDecl *From,
3260                                 F &&propagator) {
3261   if (!From->hasAttrs()) {
3262     return;
3263   }
3264 
3265   bool foundAny = To->hasAttrs();
3266 
3267   // Ensure that any moving of objects within the allocated map is
3268   // done before we process them.
3269   if (!foundAny)
3270     To->setAttrs(AttrVec());
3271 
3272   foundAny |= std::forward<F>(propagator)(To, From) != 0;
3273 
3274   if (!foundAny)
3275     To->dropAttrs();
3276 }
3277 
3278 /// mergeParamDeclAttributes - Copy attributes from the old parameter
3279 /// to the new one.
3280 static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
3281                                      const ParmVarDecl *oldDecl,
3282                                      Sema &S) {
3283   // C++11 [dcl.attr.depend]p2:
3284   //   The first declaration of a function shall specify the
3285   //   carries_dependency attribute for its declarator-id if any declaration
3286   //   of the function specifies the carries_dependency attribute.
3287   const CarriesDependencyAttr *CDA = newDecl->getAttr<CarriesDependencyAttr>();
3288   if (CDA && !oldDecl->hasAttr<CarriesDependencyAttr>()) {
3289     S.Diag(CDA->getLocation(),
3290            diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
3291     // Find the first declaration of the parameter.
3292     // FIXME: Should we build redeclaration chains for function parameters?
3293     const FunctionDecl *FirstFD =
3294       cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDecl();
3295     const ParmVarDecl *FirstVD =
3296       FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
3297     S.Diag(FirstVD->getLocation(),
3298            diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
3299   }
3300 
3301   propagateAttributes(
3302       newDecl, oldDecl, [&S](ParmVarDecl *To, const ParmVarDecl *From) {
3303         unsigned found = 0;
3304         found += propagateAttribute<InheritableParamAttr>(To, From, S);
3305         // Propagate the lifetimebound attribute from parameters to the
3306         // most recent declaration. Note that this doesn't include the implicit
3307         // 'this' parameter, as the attribute is applied to the function type in
3308         // that case.
3309         found += propagateAttribute<LifetimeBoundAttr>(To, From, S);
3310         return found;
3311       });
3312 }
3313 
3314 static bool EquivalentArrayTypes(QualType Old, QualType New,
3315                                  const ASTContext &Ctx) {
3316 
3317   auto NoSizeInfo = [&Ctx](QualType Ty) {
3318     if (Ty->isIncompleteArrayType() || Ty->isPointerType())
3319       return true;
3320     if (const auto *VAT = Ctx.getAsVariableArrayType(Ty))
3321       return VAT->getSizeModifier() == ArraySizeModifier::Star;
3322     return false;
3323   };
3324 
3325   // `type[]` is equivalent to `type *` and `type[*]`.
3326   if (NoSizeInfo(Old) && NoSizeInfo(New))
3327     return true;
3328 
3329   // Don't try to compare VLA sizes, unless one of them has the star modifier.
3330   if (Old->isVariableArrayType() && New->isVariableArrayType()) {
3331     const auto *OldVAT = Ctx.getAsVariableArrayType(Old);
3332     const auto *NewVAT = Ctx.getAsVariableArrayType(New);
3333     if ((OldVAT->getSizeModifier() == ArraySizeModifier::Star) ^
3334         (NewVAT->getSizeModifier() == ArraySizeModifier::Star))
3335       return false;
3336     return true;
3337   }
3338 
3339   // Only compare size, ignore Size modifiers and CVR.
3340   if (Old->isConstantArrayType() && New->isConstantArrayType()) {
3341     return Ctx.getAsConstantArrayType(Old)->getSize() ==
3342            Ctx.getAsConstantArrayType(New)->getSize();
3343   }
3344 
3345   // Don't try to compare dependent sized array
3346   if (Old->isDependentSizedArrayType() && New->isDependentSizedArrayType()) {
3347     return true;
3348   }
3349 
3350   return Old == New;
3351 }
3352 
3353 static void mergeParamDeclTypes(ParmVarDecl *NewParam,
3354                                 const ParmVarDecl *OldParam,
3355                                 Sema &S) {
3356   if (auto Oldnullability = OldParam->getType()->getNullability()) {
3357     if (auto Newnullability = NewParam->getType()->getNullability()) {
3358       if (*Oldnullability != *Newnullability) {
3359         S.Diag(NewParam->getLocation(), diag::warn_mismatched_nullability_attr)
3360           << DiagNullabilityKind(
3361                *Newnullability,
3362                ((NewParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
3363                 != 0))
3364           << DiagNullabilityKind(
3365                *Oldnullability,
3366                ((OldParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
3367                 != 0));
3368         S.Diag(OldParam->getLocation(), diag::note_previous_declaration);
3369       }
3370     } else {
3371       QualType NewT = NewParam->getType();
3372       NewT = S.Context.getAttributedType(*Oldnullability, NewT, NewT);
3373       NewParam->setType(NewT);
3374     }
3375   }
3376   const auto *OldParamDT = dyn_cast<DecayedType>(OldParam->getType());
3377   const auto *NewParamDT = dyn_cast<DecayedType>(NewParam->getType());
3378   if (OldParamDT && NewParamDT &&
3379       OldParamDT->getPointeeType() == NewParamDT->getPointeeType()) {
3380     QualType OldParamOT = OldParamDT->getOriginalType();
3381     QualType NewParamOT = NewParamDT->getOriginalType();
3382     if (!EquivalentArrayTypes(OldParamOT, NewParamOT, S.getASTContext())) {
3383       S.Diag(NewParam->getLocation(), diag::warn_inconsistent_array_form)
3384           << NewParam << NewParamOT;
3385       S.Diag(OldParam->getLocation(), diag::note_previous_declaration_as)
3386           << OldParamOT;
3387     }
3388   }
3389 }
3390 
3391 namespace {
3392 
3393 /// Used in MergeFunctionDecl to keep track of function parameters in
3394 /// C.
3395 struct GNUCompatibleParamWarning {
3396   ParmVarDecl *OldParm;
3397   ParmVarDecl *NewParm;
3398   QualType PromotedType;
3399 };
3400 
3401 } // end anonymous namespace
3402 
3403 // Determine whether the previous declaration was a definition, implicit
3404 // declaration, or a declaration.
3405 template <typename T>
3406 static std::pair<diag::kind, SourceLocation>
3407 getNoteDiagForInvalidRedeclaration(const T *Old, const T *New) {
3408   diag::kind PrevDiag;
3409   SourceLocation OldLocation = Old->getLocation();
3410   if (Old->isThisDeclarationADefinition())
3411     PrevDiag = diag::note_previous_definition;
3412   else if (Old->isImplicit()) {
3413     PrevDiag = diag::note_previous_implicit_declaration;
3414     if (const auto *FD = dyn_cast<FunctionDecl>(Old)) {
3415       if (FD->getBuiltinID())
3416         PrevDiag = diag::note_previous_builtin_declaration;
3417     }
3418     if (OldLocation.isInvalid())
3419       OldLocation = New->getLocation();
3420   } else
3421     PrevDiag = diag::note_previous_declaration;
3422   return std::make_pair(PrevDiag, OldLocation);
3423 }
3424 
3425 /// canRedefineFunction - checks if a function can be redefined. Currently,
3426 /// only extern inline functions can be redefined, and even then only in
3427 /// GNU89 mode.
3428 static bool canRedefineFunction(const FunctionDecl *FD,
3429                                 const LangOptions& LangOpts) {
3430   return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
3431           !LangOpts.CPlusPlus &&
3432           FD->isInlineSpecified() &&
3433           FD->getStorageClass() == SC_Extern);
3434 }
3435 
3436 const AttributedType *Sema::getCallingConvAttributedType(QualType T) const {
3437   const AttributedType *AT = T->getAs<AttributedType>();
3438   while (AT && !AT->isCallingConv())
3439     AT = AT->getModifiedType()->getAs<AttributedType>();
3440   return AT;
3441 }
3442 
3443 template <typename T>
3444 static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
3445   const DeclContext *DC = Old->getDeclContext();
3446   if (DC->isRecord())
3447     return false;
3448 
3449   LanguageLinkage OldLinkage = Old->getLanguageLinkage();
3450   if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext())
3451     return true;
3452   if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext())
3453     return true;
3454   return false;
3455 }
3456 
3457 template<typename T> static bool isExternC(T *D) { return D->isExternC(); }
3458 static bool isExternC(VarTemplateDecl *) { return false; }
3459 static bool isExternC(FunctionTemplateDecl *) { return false; }
3460 
3461 /// Check whether a redeclaration of an entity introduced by a
3462 /// using-declaration is valid, given that we know it's not an overload
3463 /// (nor a hidden tag declaration).
3464 template<typename ExpectedDecl>
3465 static bool checkUsingShadowRedecl(Sema &S, UsingShadowDecl *OldS,
3466                                    ExpectedDecl *New) {
3467   // C++11 [basic.scope.declarative]p4:
3468   //   Given a set of declarations in a single declarative region, each of
3469   //   which specifies the same unqualified name,
3470   //   -- they shall all refer to the same entity, or all refer to functions
3471   //      and function templates; or
3472   //   -- exactly one declaration shall declare a class name or enumeration
3473   //      name that is not a typedef name and the other declarations shall all
3474   //      refer to the same variable or enumerator, or all refer to functions
3475   //      and function templates; in this case the class name or enumeration
3476   //      name is hidden (3.3.10).
3477 
3478   // C++11 [namespace.udecl]p14:
3479   //   If a function declaration in namespace scope or block scope has the
3480   //   same name and the same parameter-type-list as a function introduced
3481   //   by a using-declaration, and the declarations do not declare the same
3482   //   function, the program is ill-formed.
3483 
3484   auto *Old = dyn_cast<ExpectedDecl>(OldS->getTargetDecl());
3485   if (Old &&
3486       !Old->getDeclContext()->getRedeclContext()->Equals(
3487           New->getDeclContext()->getRedeclContext()) &&
3488       !(isExternC(Old) && isExternC(New)))
3489     Old = nullptr;
3490 
3491   if (!Old) {
3492     S.Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
3493     S.Diag(OldS->getTargetDecl()->getLocation(), diag::note_using_decl_target);
3494     S.Diag(OldS->getIntroducer()->getLocation(), diag::note_using_decl) << 0;
3495     return true;
3496   }
3497   return false;
3498 }
3499 
3500 static bool hasIdenticalPassObjectSizeAttrs(const FunctionDecl *A,
3501                                             const FunctionDecl *B) {
3502   assert(A->getNumParams() == B->getNumParams());
3503 
3504   auto AttrEq = [](const ParmVarDecl *A, const ParmVarDecl *B) {
3505     const auto *AttrA = A->getAttr<PassObjectSizeAttr>();
3506     const auto *AttrB = B->getAttr<PassObjectSizeAttr>();
3507     if (AttrA == AttrB)
3508       return true;
3509     return AttrA && AttrB && AttrA->getType() == AttrB->getType() &&
3510            AttrA->isDynamic() == AttrB->isDynamic();
3511   };
3512 
3513   return std::equal(A->param_begin(), A->param_end(), B->param_begin(), AttrEq);
3514 }
3515 
3516 /// If necessary, adjust the semantic declaration context for a qualified
3517 /// declaration to name the correct inline namespace within the qualifier.
3518 static void adjustDeclContextForDeclaratorDecl(DeclaratorDecl *NewD,
3519                                                DeclaratorDecl *OldD) {
3520   // The only case where we need to update the DeclContext is when
3521   // redeclaration lookup for a qualified name finds a declaration
3522   // in an inline namespace within the context named by the qualifier:
3523   //
3524   //   inline namespace N { int f(); }
3525   //   int ::f(); // Sema DC needs adjusting from :: to N::.
3526   //
3527   // For unqualified declarations, the semantic context *can* change
3528   // along the redeclaration chain (for local extern declarations,
3529   // extern "C" declarations, and friend declarations in particular).
3530   if (!NewD->getQualifier())
3531     return;
3532 
3533   // NewD is probably already in the right context.
3534   auto *NamedDC = NewD->getDeclContext()->getRedeclContext();
3535   auto *SemaDC = OldD->getDeclContext()->getRedeclContext();
3536   if (NamedDC->Equals(SemaDC))
3537     return;
3538 
3539   assert((NamedDC->InEnclosingNamespaceSetOf(SemaDC) ||
3540           NewD->isInvalidDecl() || OldD->isInvalidDecl()) &&
3541          "unexpected context for redeclaration");
3542 
3543   auto *LexDC = NewD->getLexicalDeclContext();
3544   auto FixSemaDC = [=](NamedDecl *D) {
3545     if (!D)
3546       return;
3547     D->setDeclContext(SemaDC);
3548     D->setLexicalDeclContext(LexDC);
3549   };
3550 
3551   FixSemaDC(NewD);
3552   if (auto *FD = dyn_cast<FunctionDecl>(NewD))
3553     FixSemaDC(FD->getDescribedFunctionTemplate());
3554   else if (auto *VD = dyn_cast<VarDecl>(NewD))
3555     FixSemaDC(VD->getDescribedVarTemplate());
3556 }
3557 
3558 bool Sema::MergeFunctionDecl(FunctionDecl *New, NamedDecl *&OldD, Scope *S,
3559                              bool MergeTypeWithOld, bool NewDeclIsDefn) {
3560   // Verify the old decl was also a function.
3561   FunctionDecl *Old = OldD->getAsFunction();
3562   if (!Old) {
3563     if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
3564       if (New->getFriendObjectKind()) {
3565         Diag(New->getLocation(), diag::err_using_decl_friend);
3566         Diag(Shadow->getTargetDecl()->getLocation(),
3567              diag::note_using_decl_target);
3568         Diag(Shadow->getIntroducer()->getLocation(), diag::note_using_decl)
3569             << 0;
3570         return true;
3571       }
3572 
3573       // Check whether the two declarations might declare the same function or
3574       // function template.
3575       if (FunctionTemplateDecl *NewTemplate =
3576               New->getDescribedFunctionTemplate()) {
3577         if (checkUsingShadowRedecl<FunctionTemplateDecl>(*this, Shadow,
3578                                                          NewTemplate))
3579           return true;
3580         OldD = Old = cast<FunctionTemplateDecl>(Shadow->getTargetDecl())
3581                          ->getAsFunction();
3582       } else {
3583         if (checkUsingShadowRedecl<FunctionDecl>(*this, Shadow, New))
3584           return true;
3585         OldD = Old = cast<FunctionDecl>(Shadow->getTargetDecl());
3586       }
3587     } else {
3588       Diag(New->getLocation(), diag::err_redefinition_different_kind)
3589         << New->getDeclName();
3590       notePreviousDefinition(OldD, New->getLocation());
3591       return true;
3592     }
3593   }
3594 
3595   // If the old declaration was found in an inline namespace and the new
3596   // declaration was qualified, update the DeclContext to match.
3597   adjustDeclContextForDeclaratorDecl(New, Old);
3598 
3599   // If the old declaration is invalid, just give up here.
3600   if (Old->isInvalidDecl())
3601     return true;
3602 
3603   // Disallow redeclaration of some builtins.
3604   if (!getASTContext().canBuiltinBeRedeclared(Old)) {
3605     Diag(New->getLocation(), diag::err_builtin_redeclare) << Old->getDeclName();
3606     Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
3607         << Old << Old->getType();
3608     return true;
3609   }
3610 
3611   diag::kind PrevDiag;
3612   SourceLocation OldLocation;
3613   std::tie(PrevDiag, OldLocation) =
3614       getNoteDiagForInvalidRedeclaration(Old, New);
3615 
3616   // Don't complain about this if we're in GNU89 mode and the old function
3617   // is an extern inline function.
3618   // Don't complain about specializations. They are not supposed to have
3619   // storage classes.
3620   if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
3621       New->getStorageClass() == SC_Static &&
3622       Old->hasExternalFormalLinkage() &&
3623       !New->getTemplateSpecializationInfo() &&
3624       !canRedefineFunction(Old, getLangOpts())) {
3625     if (getLangOpts().MicrosoftExt) {
3626       Diag(New->getLocation(), diag::ext_static_non_static) << New;
3627       Diag(OldLocation, PrevDiag) << Old << Old->getType();
3628     } else {
3629       Diag(New->getLocation(), diag::err_static_non_static) << New;
3630       Diag(OldLocation, PrevDiag) << Old << Old->getType();
3631       return true;
3632     }
3633   }
3634 
3635   if (const auto *ILA = New->getAttr<InternalLinkageAttr>())
3636     if (!Old->hasAttr<InternalLinkageAttr>()) {
3637       Diag(New->getLocation(), diag::err_attribute_missing_on_first_decl)
3638           << ILA;
3639       Diag(Old->getLocation(), diag::note_previous_declaration);
3640       New->dropAttr<InternalLinkageAttr>();
3641     }
3642 
3643   if (auto *EA = New->getAttr<ErrorAttr>()) {
3644     if (!Old->hasAttr<ErrorAttr>()) {
3645       Diag(EA->getLocation(), diag::err_attribute_missing_on_first_decl) << EA;
3646       Diag(Old->getLocation(), diag::note_previous_declaration);
3647       New->dropAttr<ErrorAttr>();
3648     }
3649   }
3650 
3651   if (CheckRedeclarationInModule(New, Old))
3652     return true;
3653 
3654   if (!getLangOpts().CPlusPlus) {
3655     bool OldOvl = Old->hasAttr<OverloadableAttr>();
3656     if (OldOvl != New->hasAttr<OverloadableAttr>() && !Old->isImplicit()) {
3657       Diag(New->getLocation(), diag::err_attribute_overloadable_mismatch)
3658         << New << OldOvl;
3659 
3660       // Try our best to find a decl that actually has the overloadable
3661       // attribute for the note. In most cases (e.g. programs with only one
3662       // broken declaration/definition), this won't matter.
3663       //
3664       // FIXME: We could do this if we juggled some extra state in
3665       // OverloadableAttr, rather than just removing it.
3666       const Decl *DiagOld = Old;
3667       if (OldOvl) {
3668         auto OldIter = llvm::find_if(Old->redecls(), [](const Decl *D) {
3669           const auto *A = D->getAttr<OverloadableAttr>();
3670           return A && !A->isImplicit();
3671         });
3672         // If we've implicitly added *all* of the overloadable attrs to this
3673         // chain, emitting a "previous redecl" note is pointless.
3674         DiagOld = OldIter == Old->redecls_end() ? nullptr : *OldIter;
3675       }
3676 
3677       if (DiagOld)
3678         Diag(DiagOld->getLocation(),
3679              diag::note_attribute_overloadable_prev_overload)
3680           << OldOvl;
3681 
3682       if (OldOvl)
3683         New->addAttr(OverloadableAttr::CreateImplicit(Context));
3684       else
3685         New->dropAttr<OverloadableAttr>();
3686     }
3687   }
3688 
3689   // It is not permitted to redeclare an SME function with different SME
3690   // attributes.
3691   if (IsInvalidSMECallConversion(Old->getType(), New->getType())) {
3692     Diag(New->getLocation(), diag::err_sme_attr_mismatch)
3693         << New->getType() << Old->getType();
3694     Diag(OldLocation, diag::note_previous_declaration);
3695     return true;
3696   }
3697 
3698   // If a function is first declared with a calling convention, but is later
3699   // declared or defined without one, all following decls assume the calling
3700   // convention of the first.
3701   //
3702   // It's OK if a function is first declared without a calling convention,
3703   // but is later declared or defined with the default calling convention.
3704   //
3705   // To test if either decl has an explicit calling convention, we look for
3706   // AttributedType sugar nodes on the type as written.  If they are missing or
3707   // were canonicalized away, we assume the calling convention was implicit.
3708   //
3709   // Note also that we DO NOT return at this point, because we still have
3710   // other tests to run.
3711   QualType OldQType = Context.getCanonicalType(Old->getType());
3712   QualType NewQType = Context.getCanonicalType(New->getType());
3713   const FunctionType *OldType = cast<FunctionType>(OldQType);
3714   const FunctionType *NewType = cast<FunctionType>(NewQType);
3715   FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
3716   FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
3717   bool RequiresAdjustment = false;
3718 
3719   if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) {
3720     FunctionDecl *First = Old->getFirstDecl();
3721     const FunctionType *FT =
3722         First->getType().getCanonicalType()->castAs<FunctionType>();
3723     FunctionType::ExtInfo FI = FT->getExtInfo();
3724     bool NewCCExplicit = getCallingConvAttributedType(New->getType());
3725     if (!NewCCExplicit) {
3726       // Inherit the CC from the previous declaration if it was specified
3727       // there but not here.
3728       NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
3729       RequiresAdjustment = true;
3730     } else if (Old->getBuiltinID()) {
3731       // Builtin attribute isn't propagated to the new one yet at this point,
3732       // so we check if the old one is a builtin.
3733 
3734       // Calling Conventions on a Builtin aren't really useful and setting a
3735       // default calling convention and cdecl'ing some builtin redeclarations is
3736       // common, so warn and ignore the calling convention on the redeclaration.
3737       Diag(New->getLocation(), diag::warn_cconv_unsupported)
3738           << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
3739           << (int)CallingConventionIgnoredReason::BuiltinFunction;
3740       NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
3741       RequiresAdjustment = true;
3742     } else {
3743       // Calling conventions aren't compatible, so complain.
3744       bool FirstCCExplicit = getCallingConvAttributedType(First->getType());
3745       Diag(New->getLocation(), diag::err_cconv_change)
3746         << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
3747         << !FirstCCExplicit
3748         << (!FirstCCExplicit ? "" :
3749             FunctionType::getNameForCallConv(FI.getCC()));
3750 
3751       // Put the note on the first decl, since it is the one that matters.
3752       Diag(First->getLocation(), diag::note_previous_declaration);
3753       return true;
3754     }
3755   }
3756 
3757   // FIXME: diagnose the other way around?
3758   if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
3759     NewTypeInfo = NewTypeInfo.withNoReturn(true);
3760     RequiresAdjustment = true;
3761   }
3762 
3763   // Merge regparm attribute.
3764   if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
3765       OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
3766     if (NewTypeInfo.getHasRegParm()) {
3767       Diag(New->getLocation(), diag::err_regparm_mismatch)
3768         << NewType->getRegParmType()
3769         << OldType->getRegParmType();
3770       Diag(OldLocation, diag::note_previous_declaration);
3771       return true;
3772     }
3773 
3774     NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
3775     RequiresAdjustment = true;
3776   }
3777 
3778   // Merge ns_returns_retained attribute.
3779   if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
3780     if (NewTypeInfo.getProducesResult()) {
3781       Diag(New->getLocation(), diag::err_function_attribute_mismatch)
3782           << "'ns_returns_retained'";
3783       Diag(OldLocation, diag::note_previous_declaration);
3784       return true;
3785     }
3786 
3787     NewTypeInfo = NewTypeInfo.withProducesResult(true);
3788     RequiresAdjustment = true;
3789   }
3790 
3791   if (OldTypeInfo.getNoCallerSavedRegs() !=
3792       NewTypeInfo.getNoCallerSavedRegs()) {
3793     if (NewTypeInfo.getNoCallerSavedRegs()) {
3794       AnyX86NoCallerSavedRegistersAttr *Attr =
3795         New->getAttr<AnyX86NoCallerSavedRegistersAttr>();
3796       Diag(New->getLocation(), diag::err_function_attribute_mismatch) << Attr;
3797       Diag(OldLocation, diag::note_previous_declaration);
3798       return true;
3799     }
3800 
3801     NewTypeInfo = NewTypeInfo.withNoCallerSavedRegs(true);
3802     RequiresAdjustment = true;
3803   }
3804 
3805   if (RequiresAdjustment) {
3806     const FunctionType *AdjustedType = New->getType()->getAs<FunctionType>();
3807     AdjustedType = Context.adjustFunctionType(AdjustedType, NewTypeInfo);
3808     New->setType(QualType(AdjustedType, 0));
3809     NewQType = Context.getCanonicalType(New->getType());
3810   }
3811 
3812   // If this redeclaration makes the function inline, we may need to add it to
3813   // UndefinedButUsed.
3814   if (!Old->isInlined() && New->isInlined() &&
3815       !New->hasAttr<GNUInlineAttr>() &&
3816       !getLangOpts().GNUInline &&
3817       Old->isUsed(false) &&
3818       !Old->isDefined() && !New->isThisDeclarationADefinition())
3819     UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
3820                                            SourceLocation()));
3821 
3822   // If this redeclaration makes it newly gnu_inline, we don't want to warn
3823   // about it.
3824   if (New->hasAttr<GNUInlineAttr>() &&
3825       Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
3826     UndefinedButUsed.erase(Old->getCanonicalDecl());
3827   }
3828 
3829   // If pass_object_size params don't match up perfectly, this isn't a valid
3830   // redeclaration.
3831   if (Old->getNumParams() > 0 && Old->getNumParams() == New->getNumParams() &&
3832       !hasIdenticalPassObjectSizeAttrs(Old, New)) {
3833     Diag(New->getLocation(), diag::err_different_pass_object_size_params)
3834         << New->getDeclName();
3835     Diag(OldLocation, PrevDiag) << Old << Old->getType();
3836     return true;
3837   }
3838 
3839   QualType OldQTypeForComparison = OldQType;
3840   if (Context.hasAnyFunctionEffects()) {
3841     const auto OldFX = Old->getFunctionEffects();
3842     const auto NewFX = New->getFunctionEffects();
3843     if (OldFX != NewFX) {
3844       const auto Diffs = FunctionEffectDiffVector(OldFX, NewFX);
3845       for (const auto &Diff : Diffs) {
3846         if (Diff.shouldDiagnoseRedeclaration(*Old, OldFX, *New, NewFX)) {
3847           Diag(New->getLocation(),
3848                diag::warn_mismatched_func_effect_redeclaration)
3849               << Diff.effectName();
3850           Diag(Old->getLocation(), diag::note_previous_declaration);
3851         }
3852       }
3853       // Following a warning, we could skip merging effects from the previous
3854       // declaration, but that would trigger an additional "conflicting types"
3855       // error.
3856       if (const auto *NewFPT = NewQType->getAs<FunctionProtoType>()) {
3857         FunctionEffectSet::Conflicts MergeErrs;
3858         FunctionEffectSet MergedFX =
3859             FunctionEffectSet::getUnion(OldFX, NewFX, MergeErrs);
3860         if (!MergeErrs.empty())
3861           diagnoseFunctionEffectMergeConflicts(MergeErrs, New->getLocation(),
3862                                                Old->getLocation());
3863 
3864         FunctionProtoType::ExtProtoInfo EPI = NewFPT->getExtProtoInfo();
3865         EPI.FunctionEffects = FunctionEffectsRef(MergedFX);
3866         QualType ModQT = Context.getFunctionType(NewFPT->getReturnType(),
3867                                                  NewFPT->getParamTypes(), EPI);
3868 
3869         New->setType(ModQT);
3870         NewQType = New->getType();
3871 
3872         // Revise OldQTForComparison to include the merged effects,
3873         // so as not to fail due to differences later.
3874         if (const auto *OldFPT = OldQType->getAs<FunctionProtoType>()) {
3875           EPI = OldFPT->getExtProtoInfo();
3876           EPI.FunctionEffects = FunctionEffectsRef(MergedFX);
3877           OldQTypeForComparison = Context.getFunctionType(
3878               OldFPT->getReturnType(), OldFPT->getParamTypes(), EPI);
3879         }
3880         if (OldFX.empty()) {
3881           // A redeclaration may add the attribute to a previously seen function
3882           // body which needs to be verified.
3883           maybeAddDeclWithEffects(Old, MergedFX);
3884         }
3885       }
3886     }
3887   }
3888 
3889   if (getLangOpts().CPlusPlus) {
3890     OldQType = Context.getCanonicalType(Old->getType());
3891     NewQType = Context.getCanonicalType(New->getType());
3892 
3893     // Go back to the type source info to compare the declared return types,
3894     // per C++1y [dcl.type.auto]p13:
3895     //   Redeclarations or specializations of a function or function template
3896     //   with a declared return type that uses a placeholder type shall also
3897     //   use that placeholder, not a deduced type.
3898     QualType OldDeclaredReturnType = Old->getDeclaredReturnType();
3899     QualType NewDeclaredReturnType = New->getDeclaredReturnType();
3900     if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType) &&
3901         canFullyTypeCheckRedeclaration(New, Old, NewDeclaredReturnType,
3902                                        OldDeclaredReturnType)) {
3903       QualType ResQT;
3904       if (NewDeclaredReturnType->isObjCObjectPointerType() &&
3905           OldDeclaredReturnType->isObjCObjectPointerType())
3906         // FIXME: This does the wrong thing for a deduced return type.
3907         ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
3908       if (ResQT.isNull()) {
3909         if (New->isCXXClassMember() && New->isOutOfLine())
3910           Diag(New->getLocation(), diag::err_member_def_does_not_match_ret_type)
3911               << New << New->getReturnTypeSourceRange();
3912         else if (Old->isExternC() && New->isExternC() &&
3913                  !Old->hasAttr<OverloadableAttr>() &&
3914                  !New->hasAttr<OverloadableAttr>())
3915           Diag(New->getLocation(), diag::err_conflicting_types) << New;
3916         else
3917           Diag(New->getLocation(), diag::err_ovl_diff_return_type)
3918               << New->getReturnTypeSourceRange();
3919         Diag(OldLocation, PrevDiag) << Old << Old->getType()
3920                                     << Old->getReturnTypeSourceRange();
3921         return true;
3922       }
3923       else
3924         NewQType = ResQT;
3925     }
3926 
3927     QualType OldReturnType = OldType->getReturnType();
3928     QualType NewReturnType = cast<FunctionType>(NewQType)->getReturnType();
3929     if (OldReturnType != NewReturnType) {
3930       // If this function has a deduced return type and has already been
3931       // defined, copy the deduced value from the old declaration.
3932       AutoType *OldAT = Old->getReturnType()->getContainedAutoType();
3933       if (OldAT && OldAT->isDeduced()) {
3934         QualType DT = OldAT->getDeducedType();
3935         if (DT.isNull()) {
3936           New->setType(SubstAutoTypeDependent(New->getType()));
3937           NewQType = Context.getCanonicalType(SubstAutoTypeDependent(NewQType));
3938         } else {
3939           New->setType(SubstAutoType(New->getType(), DT));
3940           NewQType = Context.getCanonicalType(SubstAutoType(NewQType, DT));
3941         }
3942       }
3943     }
3944 
3945     const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
3946     CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
3947     if (OldMethod && NewMethod) {
3948       // Preserve triviality.
3949       NewMethod->setTrivial(OldMethod->isTrivial());
3950 
3951       // MSVC allows explicit template specialization at class scope:
3952       // 2 CXXMethodDecls referring to the same function will be injected.
3953       // We don't want a redeclaration error.
3954       bool IsClassScopeExplicitSpecialization =
3955                               OldMethod->isFunctionTemplateSpecialization() &&
3956                               NewMethod->isFunctionTemplateSpecialization();
3957       bool isFriend = NewMethod->getFriendObjectKind();
3958 
3959       if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
3960           !IsClassScopeExplicitSpecialization) {
3961         //    -- Member function declarations with the same name and the
3962         //       same parameter types cannot be overloaded if any of them
3963         //       is a static member function declaration.
3964         if (OldMethod->isStatic() != NewMethod->isStatic()) {
3965           Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
3966           Diag(OldLocation, PrevDiag) << Old << Old->getType();
3967           return true;
3968         }
3969 
3970         // C++ [class.mem]p1:
3971         //   [...] A member shall not be declared twice in the
3972         //   member-specification, except that a nested class or member
3973         //   class template can be declared and then later defined.
3974         if (!inTemplateInstantiation()) {
3975           unsigned NewDiag;
3976           if (isa<CXXConstructorDecl>(OldMethod))
3977             NewDiag = diag::err_constructor_redeclared;
3978           else if (isa<CXXDestructorDecl>(NewMethod))
3979             NewDiag = diag::err_destructor_redeclared;
3980           else if (isa<CXXConversionDecl>(NewMethod))
3981             NewDiag = diag::err_conv_function_redeclared;
3982           else
3983             NewDiag = diag::err_member_redeclared;
3984 
3985           Diag(New->getLocation(), NewDiag);
3986         } else {
3987           Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
3988             << New << New->getType();
3989         }
3990         Diag(OldLocation, PrevDiag) << Old << Old->getType();
3991         return true;
3992 
3993       // Complain if this is an explicit declaration of a special
3994       // member that was initially declared implicitly.
3995       //
3996       // As an exception, it's okay to befriend such methods in order
3997       // to permit the implicit constructor/destructor/operator calls.
3998       } else if (OldMethod->isImplicit()) {
3999         if (isFriend) {
4000           NewMethod->setImplicit();
4001         } else {
4002           Diag(NewMethod->getLocation(),
4003                diag::err_definition_of_implicitly_declared_member)
4004               << New << llvm::to_underlying(getSpecialMember(OldMethod));
4005           return true;
4006         }
4007       } else if (OldMethod->getFirstDecl()->isExplicitlyDefaulted() && !isFriend) {
4008         Diag(NewMethod->getLocation(),
4009              diag::err_definition_of_explicitly_defaulted_member)
4010             << llvm::to_underlying(getSpecialMember(OldMethod));
4011         return true;
4012       }
4013     }
4014 
4015     // C++1z [over.load]p2
4016     //   Certain function declarations cannot be overloaded:
4017     //     -- Function declarations that differ only in the return type,
4018     //        the exception specification, or both cannot be overloaded.
4019 
4020     // Check the exception specifications match. This may recompute the type of
4021     // both Old and New if it resolved exception specifications, so grab the
4022     // types again after this. Because this updates the type, we do this before
4023     // any of the other checks below, which may update the "de facto" NewQType
4024     // but do not necessarily update the type of New.
4025     if (CheckEquivalentExceptionSpec(Old, New))
4026       return true;
4027 
4028     // C++11 [dcl.attr.noreturn]p1:
4029     //   The first declaration of a function shall specify the noreturn
4030     //   attribute if any declaration of that function specifies the noreturn
4031     //   attribute.
4032     if (const auto *NRA = New->getAttr<CXX11NoReturnAttr>())
4033       if (!Old->hasAttr<CXX11NoReturnAttr>()) {
4034         Diag(NRA->getLocation(), diag::err_attribute_missing_on_first_decl)
4035             << NRA;
4036         Diag(Old->getLocation(), diag::note_previous_declaration);
4037       }
4038 
4039     // C++11 [dcl.attr.depend]p2:
4040     //   The first declaration of a function shall specify the
4041     //   carries_dependency attribute for its declarator-id if any declaration
4042     //   of the function specifies the carries_dependency attribute.
4043     const CarriesDependencyAttr *CDA = New->getAttr<CarriesDependencyAttr>();
4044     if (CDA && !Old->hasAttr<CarriesDependencyAttr>()) {
4045       Diag(CDA->getLocation(),
4046            diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
4047       Diag(Old->getFirstDecl()->getLocation(),
4048            diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
4049     }
4050 
4051     // (C++98 8.3.5p3):
4052     //   All declarations for a function shall agree exactly in both the
4053     //   return type and the parameter-type-list.
4054     // We also want to respect all the extended bits except noreturn.
4055 
4056     // noreturn should now match unless the old type info didn't have it.
4057     if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
4058       auto *OldType = OldQTypeForComparison->castAs<FunctionProtoType>();
4059       const FunctionType *OldTypeForComparison
4060         = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
4061       OldQTypeForComparison = QualType(OldTypeForComparison, 0);
4062       assert(OldQTypeForComparison.isCanonical());
4063     }
4064 
4065     if (haveIncompatibleLanguageLinkages(Old, New)) {
4066       // As a special case, retain the language linkage from previous
4067       // declarations of a friend function as an extension.
4068       //
4069       // This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC
4070       // and is useful because there's otherwise no way to specify language
4071       // linkage within class scope.
4072       //
4073       // Check cautiously as the friend object kind isn't yet complete.
4074       if (New->getFriendObjectKind() != Decl::FOK_None) {
4075         Diag(New->getLocation(), diag::ext_retained_language_linkage) << New;
4076         Diag(OldLocation, PrevDiag);
4077       } else {
4078         Diag(New->getLocation(), diag::err_different_language_linkage) << New;
4079         Diag(OldLocation, PrevDiag);
4080         return true;
4081       }
4082     }
4083 
4084     // HLSL check parameters for matching ABI specifications.
4085     if (getLangOpts().HLSL) {
4086       if (HLSL().CheckCompatibleParameterABI(New, Old))
4087         return true;
4088 
4089       // If no errors are generated when checking parameter ABIs we can check if
4090       // the two declarations have the same type ignoring the ABIs and if so,
4091       // the declarations can be merged. This case for merging is only valid in
4092       // HLSL because there are no valid cases of merging mismatched parameter
4093       // ABIs except the HLSL implicit in and explicit in.
4094       if (Context.hasSameFunctionTypeIgnoringParamABI(OldQTypeForComparison,
4095                                                       NewQType))
4096         return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
4097       // Fall through for conflicting redeclarations and redefinitions.
4098     }
4099 
4100     // If the function types are compatible, merge the declarations. Ignore the
4101     // exception specifier because it was already checked above in
4102     // CheckEquivalentExceptionSpec, and we don't want follow-on diagnostics
4103     // about incompatible types under -fms-compatibility.
4104     if (Context.hasSameFunctionTypeIgnoringExceptionSpec(OldQTypeForComparison,
4105                                                          NewQType))
4106       return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
4107 
4108     // If the types are imprecise (due to dependent constructs in friends or
4109     // local extern declarations), it's OK if they differ. We'll check again
4110     // during instantiation.
4111     if (!canFullyTypeCheckRedeclaration(New, Old, NewQType, OldQType))
4112       return false;
4113 
4114     // Fall through for conflicting redeclarations and redefinitions.
4115   }
4116 
4117   // C: Function types need to be compatible, not identical. This handles
4118   // duplicate function decls like "void f(int); void f(enum X);" properly.
4119   if (!getLangOpts().CPlusPlus) {
4120     // C99 6.7.5.3p15: ...If one type has a parameter type list and the other
4121     // type is specified by a function definition that contains a (possibly
4122     // empty) identifier list, both shall agree in the number of parameters
4123     // and the type of each parameter shall be compatible with the type that
4124     // results from the application of default argument promotions to the
4125     // type of the corresponding identifier. ...
4126     // This cannot be handled by ASTContext::typesAreCompatible() because that
4127     // doesn't know whether the function type is for a definition or not when
4128     // eventually calling ASTContext::mergeFunctionTypes(). The only situation
4129     // we need to cover here is that the number of arguments agree as the
4130     // default argument promotion rules were already checked by
4131     // ASTContext::typesAreCompatible().
4132     if (Old->hasPrototype() && !New->hasWrittenPrototype() && NewDeclIsDefn &&
4133         Old->getNumParams() != New->getNumParams() && !Old->isImplicit()) {
4134       if (Old->hasInheritedPrototype())
4135         Old = Old->getCanonicalDecl();
4136       Diag(New->getLocation(), diag::err_conflicting_types) << New;
4137       Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
4138       return true;
4139     }
4140 
4141     // If we are merging two functions where only one of them has a prototype,
4142     // we may have enough information to decide to issue a diagnostic that the
4143     // function without a prototype will change behavior in C23. This handles
4144     // cases like:
4145     //   void i(); void i(int j);
4146     //   void i(int j); void i();
4147     //   void i(); void i(int j) {}
4148     // See ActOnFinishFunctionBody() for other cases of the behavior change
4149     // diagnostic. See GetFullTypeForDeclarator() for handling of a function
4150     // type without a prototype.
4151     if (New->hasWrittenPrototype() != Old->hasWrittenPrototype() &&
4152         !New->isImplicit() && !Old->isImplicit()) {
4153       const FunctionDecl *WithProto, *WithoutProto;
4154       if (New->hasWrittenPrototype()) {
4155         WithProto = New;
4156         WithoutProto = Old;
4157       } else {
4158         WithProto = Old;
4159         WithoutProto = New;
4160       }
4161 
4162       if (WithProto->getNumParams() != 0) {
4163         if (WithoutProto->getBuiltinID() == 0 && !WithoutProto->isImplicit()) {
4164           // The one without the prototype will be changing behavior in C23, so
4165           // warn about that one so long as it's a user-visible declaration.
4166           bool IsWithoutProtoADef = false, IsWithProtoADef = false;
4167           if (WithoutProto == New)
4168             IsWithoutProtoADef = NewDeclIsDefn;
4169           else
4170             IsWithProtoADef = NewDeclIsDefn;
4171           Diag(WithoutProto->getLocation(),
4172                diag::warn_non_prototype_changes_behavior)
4173               << IsWithoutProtoADef << (WithoutProto->getNumParams() ? 0 : 1)
4174               << (WithoutProto == Old) << IsWithProtoADef;
4175 
4176           // The reason the one without the prototype will be changing behavior
4177           // is because of the one with the prototype, so note that so long as
4178           // it's a user-visible declaration. There is one exception to this:
4179           // when the new declaration is a definition without a prototype, the
4180           // old declaration with a prototype is not the cause of the issue,
4181           // and that does not need to be noted because the one with a
4182           // prototype will not change behavior in C23.
4183           if (WithProto->getBuiltinID() == 0 && !WithProto->isImplicit() &&
4184               !IsWithoutProtoADef)
4185             Diag(WithProto->getLocation(), diag::note_conflicting_prototype);
4186         }
4187       }
4188     }
4189 
4190     if (Context.typesAreCompatible(OldQType, NewQType)) {
4191       const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
4192       const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
4193       const FunctionProtoType *OldProto = nullptr;
4194       if (MergeTypeWithOld && isa<FunctionNoProtoType>(NewFuncType) &&
4195           (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
4196         // The old declaration provided a function prototype, but the
4197         // new declaration does not. Merge in the prototype.
4198         assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
4199         NewQType = Context.getFunctionType(NewFuncType->getReturnType(),
4200                                            OldProto->getParamTypes(),
4201                                            OldProto->getExtProtoInfo());
4202         New->setType(NewQType);
4203         New->setHasInheritedPrototype();
4204 
4205         // Synthesize parameters with the same types.
4206         SmallVector<ParmVarDecl *, 16> Params;
4207         for (const auto &ParamType : OldProto->param_types()) {
4208           ParmVarDecl *Param = ParmVarDecl::Create(
4209               Context, New, SourceLocation(), SourceLocation(), nullptr,
4210               ParamType, /*TInfo=*/nullptr, SC_None, nullptr);
4211           Param->setScopeInfo(0, Params.size());
4212           Param->setImplicit();
4213           Params.push_back(Param);
4214         }
4215 
4216         New->setParams(Params);
4217       }
4218 
4219       return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
4220     }
4221   }
4222 
4223   // Check if the function types are compatible when pointer size address
4224   // spaces are ignored.
4225   if (Context.hasSameFunctionTypeIgnoringPtrSizes(OldQType, NewQType))
4226     return false;
4227 
4228   // GNU C permits a K&R definition to follow a prototype declaration
4229   // if the declared types of the parameters in the K&R definition
4230   // match the types in the prototype declaration, even when the
4231   // promoted types of the parameters from the K&R definition differ
4232   // from the types in the prototype. GCC then keeps the types from
4233   // the prototype.
4234   //
4235   // If a variadic prototype is followed by a non-variadic K&R definition,
4236   // the K&R definition becomes variadic.  This is sort of an edge case, but
4237   // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
4238   // C99 6.9.1p8.
4239   if (!getLangOpts().CPlusPlus &&
4240       Old->hasPrototype() && !New->hasPrototype() &&
4241       New->getType()->getAs<FunctionProtoType>() &&
4242       Old->getNumParams() == New->getNumParams()) {
4243     SmallVector<QualType, 16> ArgTypes;
4244     SmallVector<GNUCompatibleParamWarning, 16> Warnings;
4245     const FunctionProtoType *OldProto
4246       = Old->getType()->getAs<FunctionProtoType>();
4247     const FunctionProtoType *NewProto
4248       = New->getType()->getAs<FunctionProtoType>();
4249 
4250     // Determine whether this is the GNU C extension.
4251     QualType MergedReturn = Context.mergeTypes(OldProto->getReturnType(),
4252                                                NewProto->getReturnType());
4253     bool LooseCompatible = !MergedReturn.isNull();
4254     for (unsigned Idx = 0, End = Old->getNumParams();
4255          LooseCompatible && Idx != End; ++Idx) {
4256       ParmVarDecl *OldParm = Old->getParamDecl(Idx);
4257       ParmVarDecl *NewParm = New->getParamDecl(Idx);
4258       if (Context.typesAreCompatible(OldParm->getType(),
4259                                      NewProto->getParamType(Idx))) {
4260         ArgTypes.push_back(NewParm->getType());
4261       } else if (Context.typesAreCompatible(OldParm->getType(),
4262                                             NewParm->getType(),
4263                                             /*CompareUnqualified=*/true)) {
4264         GNUCompatibleParamWarning Warn = { OldParm, NewParm,
4265                                            NewProto->getParamType(Idx) };
4266         Warnings.push_back(Warn);
4267         ArgTypes.push_back(NewParm->getType());
4268       } else
4269         LooseCompatible = false;
4270     }
4271 
4272     if (LooseCompatible) {
4273       for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
4274         Diag(Warnings[Warn].NewParm->getLocation(),
4275              diag::ext_param_promoted_not_compatible_with_prototype)
4276           << Warnings[Warn].PromotedType
4277           << Warnings[Warn].OldParm->getType();
4278         if (Warnings[Warn].OldParm->getLocation().isValid())
4279           Diag(Warnings[Warn].OldParm->getLocation(),
4280                diag::note_previous_declaration);
4281       }
4282 
4283       if (MergeTypeWithOld)
4284         New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
4285                                              OldProto->getExtProtoInfo()));
4286       return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
4287     }
4288 
4289     // Fall through to diagnose conflicting types.
4290   }
4291 
4292   // A function that has already been declared has been redeclared or
4293   // defined with a different type; show an appropriate diagnostic.
4294 
4295   // If the previous declaration was an implicitly-generated builtin
4296   // declaration, then at the very least we should use a specialized note.
4297   unsigned BuiltinID;
4298   if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) {
4299     // If it's actually a library-defined builtin function like 'malloc'
4300     // or 'printf', just warn about the incompatible redeclaration.
4301     if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
4302       Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
4303       Diag(OldLocation, diag::note_previous_builtin_declaration)
4304         << Old << Old->getType();
4305       return false;
4306     }
4307 
4308     PrevDiag = diag::note_previous_builtin_declaration;
4309   }
4310 
4311   Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
4312   Diag(OldLocation, PrevDiag) << Old << Old->getType();
4313   return true;
4314 }
4315 
4316 bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
4317                                         Scope *S, bool MergeTypeWithOld) {
4318   // Merge the attributes
4319   mergeDeclAttributes(New, Old);
4320 
4321   // Merge "pure" flag.
4322   if (Old->isPureVirtual())
4323     New->setIsPureVirtual();
4324 
4325   // Merge "used" flag.
4326   if (Old->getMostRecentDecl()->isUsed(false))
4327     New->setIsUsed();
4328 
4329   // Merge attributes from the parameters.  These can mismatch with K&R
4330   // declarations.
4331   if (New->getNumParams() == Old->getNumParams())
4332       for (unsigned i = 0, e = New->getNumParams(); i != e; ++i) {
4333         ParmVarDecl *NewParam = New->getParamDecl(i);
4334         ParmVarDecl *OldParam = Old->getParamDecl(i);
4335         mergeParamDeclAttributes(NewParam, OldParam, *this);
4336         mergeParamDeclTypes(NewParam, OldParam, *this);
4337       }
4338 
4339   if (getLangOpts().CPlusPlus)
4340     return MergeCXXFunctionDecl(New, Old, S);
4341 
4342   // Merge the function types so the we get the composite types for the return
4343   // and argument types. Per C11 6.2.7/4, only update the type if the old decl
4344   // was visible.
4345   QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
4346   if (!Merged.isNull() && MergeTypeWithOld)
4347     New->setType(Merged);
4348 
4349   return false;
4350 }
4351 
4352 void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
4353                                 ObjCMethodDecl *oldMethod) {
4354   // Merge the attributes, including deprecated/unavailable
4355   AvailabilityMergeKind MergeKind =
4356       isa<ObjCProtocolDecl>(oldMethod->getDeclContext())
4357           ? (oldMethod->isOptional() ? AMK_OptionalProtocolImplementation
4358                                      : AMK_ProtocolImplementation)
4359           : isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration
4360                                                            : AMK_Override;
4361 
4362   mergeDeclAttributes(newMethod, oldMethod, MergeKind);
4363 
4364   // Merge attributes from the parameters.
4365   ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
4366                                        oe = oldMethod->param_end();
4367   for (ObjCMethodDecl::param_iterator
4368          ni = newMethod->param_begin(), ne = newMethod->param_end();
4369        ni != ne && oi != oe; ++ni, ++oi)
4370     mergeParamDeclAttributes(*ni, *oi, *this);
4371 
4372   ObjC().CheckObjCMethodOverride(newMethod, oldMethod);
4373 }
4374 
4375 static void diagnoseVarDeclTypeMismatch(Sema &S, VarDecl *New, VarDecl* Old) {
4376   assert(!S.Context.hasSameType(New->getType(), Old->getType()));
4377 
4378   S.Diag(New->getLocation(), New->isThisDeclarationADefinition()
4379          ? diag::err_redefinition_different_type
4380          : diag::err_redeclaration_different_type)
4381     << New->getDeclName() << New->getType() << Old->getType();
4382 
4383   diag::kind PrevDiag;
4384   SourceLocation OldLocation;
4385   std::tie(PrevDiag, OldLocation)
4386     = getNoteDiagForInvalidRedeclaration(Old, New);
4387   S.Diag(OldLocation, PrevDiag) << Old << Old->getType();
4388   New->setInvalidDecl();
4389 }
4390 
4391 void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old,
4392                              bool MergeTypeWithOld) {
4393   if (New->isInvalidDecl() || Old->isInvalidDecl() || New->getType()->containsErrors() || Old->getType()->containsErrors())
4394     return;
4395 
4396   QualType MergedT;
4397   if (getLangOpts().CPlusPlus) {
4398     if (New->getType()->isUndeducedType()) {
4399       // We don't know what the new type is until the initializer is attached.
4400       return;
4401     } else if (Context.hasSameType(New->getType(), Old->getType())) {
4402       // These could still be something that needs exception specs checked.
4403       return MergeVarDeclExceptionSpecs(New, Old);
4404     }
4405     // C++ [basic.link]p10:
4406     //   [...] the types specified by all declarations referring to a given
4407     //   object or function shall be identical, except that declarations for an
4408     //   array object can specify array types that differ by the presence or
4409     //   absence of a major array bound (8.3.4).
4410     else if (Old->getType()->isArrayType() && New->getType()->isArrayType()) {
4411       const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
4412       const ArrayType *NewArray = Context.getAsArrayType(New->getType());
4413 
4414       // We are merging a variable declaration New into Old. If it has an array
4415       // bound, and that bound differs from Old's bound, we should diagnose the
4416       // mismatch.
4417       if (!NewArray->isIncompleteArrayType() && !NewArray->isDependentType()) {
4418         for (VarDecl *PrevVD = Old->getMostRecentDecl(); PrevVD;
4419              PrevVD = PrevVD->getPreviousDecl()) {
4420           QualType PrevVDTy = PrevVD->getType();
4421           if (PrevVDTy->isIncompleteArrayType() || PrevVDTy->isDependentType())
4422             continue;
4423 
4424           if (!Context.hasSameType(New->getType(), PrevVDTy))
4425             return diagnoseVarDeclTypeMismatch(*this, New, PrevVD);
4426         }
4427       }
4428 
4429       if (OldArray->isIncompleteArrayType() && NewArray->isArrayType()) {
4430         if (Context.hasSameType(OldArray->getElementType(),
4431                                 NewArray->getElementType()))
4432           MergedT = New->getType();
4433       }
4434       // FIXME: Check visibility. New is hidden but has a complete type. If New
4435       // has no array bound, it should not inherit one from Old, if Old is not
4436       // visible.
4437       else if (OldArray->isArrayType() && NewArray->isIncompleteArrayType()) {
4438         if (Context.hasSameType(OldArray->getElementType(),
4439                                 NewArray->getElementType()))
4440           MergedT = Old->getType();
4441       }
4442     }
4443     else if (New->getType()->isObjCObjectPointerType() &&
4444                Old->getType()->isObjCObjectPointerType()) {
4445       MergedT = Context.mergeObjCGCQualifiers(New->getType(),
4446                                               Old->getType());
4447     }
4448   } else {
4449     // C 6.2.7p2:
4450     //   All declarations that refer to the same object or function shall have
4451     //   compatible type.
4452     MergedT = Context.mergeTypes(New->getType(), Old->getType());
4453   }
4454   if (MergedT.isNull()) {
4455     // It's OK if we couldn't merge types if either type is dependent, for a
4456     // block-scope variable. In other cases (static data members of class
4457     // templates, variable templates, ...), we require the types to be
4458     // equivalent.
4459     // FIXME: The C++ standard doesn't say anything about this.
4460     if ((New->getType()->isDependentType() ||
4461          Old->getType()->isDependentType()) && New->isLocalVarDecl()) {
4462       // If the old type was dependent, we can't merge with it, so the new type
4463       // becomes dependent for now. We'll reproduce the original type when we
4464       // instantiate the TypeSourceInfo for the variable.
4465       if (!New->getType()->isDependentType() && MergeTypeWithOld)
4466         New->setType(Context.DependentTy);
4467       return;
4468     }
4469     return diagnoseVarDeclTypeMismatch(*this, New, Old);
4470   }
4471 
4472   // Don't actually update the type on the new declaration if the old
4473   // declaration was an extern declaration in a different scope.
4474   if (MergeTypeWithOld)
4475     New->setType(MergedT);
4476 }
4477 
4478 static bool mergeTypeWithPrevious(Sema &S, VarDecl *NewVD, VarDecl *OldVD,
4479                                   LookupResult &Previous) {
4480   // C11 6.2.7p4:
4481   //   For an identifier with internal or external linkage declared
4482   //   in a scope in which a prior declaration of that identifier is
4483   //   visible, if the prior declaration specifies internal or
4484   //   external linkage, the type of the identifier at the later
4485   //   declaration becomes the composite type.
4486   //
4487   // If the variable isn't visible, we do not merge with its type.
4488   if (Previous.isShadowed())
4489     return false;
4490 
4491   if (S.getLangOpts().CPlusPlus) {
4492     // C++11 [dcl.array]p3:
4493     //   If there is a preceding declaration of the entity in the same
4494     //   scope in which the bound was specified, an omitted array bound
4495     //   is taken to be the same as in that earlier declaration.
4496     return NewVD->isPreviousDeclInSameBlockScope() ||
4497            (!OldVD->getLexicalDeclContext()->isFunctionOrMethod() &&
4498             !NewVD->getLexicalDeclContext()->isFunctionOrMethod());
4499   } else {
4500     // If the old declaration was function-local, don't merge with its
4501     // type unless we're in the same function.
4502     return !OldVD->getLexicalDeclContext()->isFunctionOrMethod() ||
4503            OldVD->getLexicalDeclContext() == NewVD->getLexicalDeclContext();
4504   }
4505 }
4506 
4507 void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
4508   // If the new decl is already invalid, don't do any other checking.
4509   if (New->isInvalidDecl())
4510     return;
4511 
4512   if (!shouldLinkPossiblyHiddenDecl(Previous, New))
4513     return;
4514 
4515   VarTemplateDecl *NewTemplate = New->getDescribedVarTemplate();
4516 
4517   // Verify the old decl was also a variable or variable template.
4518   VarDecl *Old = nullptr;
4519   VarTemplateDecl *OldTemplate = nullptr;
4520   if (Previous.isSingleResult()) {
4521     if (NewTemplate) {
4522       OldTemplate = dyn_cast<VarTemplateDecl>(Previous.getFoundDecl());
4523       Old = OldTemplate ? OldTemplate->getTemplatedDecl() : nullptr;
4524 
4525       if (auto *Shadow =
4526               dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
4527         if (checkUsingShadowRedecl<VarTemplateDecl>(*this, Shadow, NewTemplate))
4528           return New->setInvalidDecl();
4529     } else {
4530       Old = dyn_cast<VarDecl>(Previous.getFoundDecl());
4531 
4532       if (auto *Shadow =
4533               dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
4534         if (checkUsingShadowRedecl<VarDecl>(*this, Shadow, New))
4535           return New->setInvalidDecl();
4536     }
4537   }
4538   if (!Old) {
4539     Diag(New->getLocation(), diag::err_redefinition_different_kind)
4540         << New->getDeclName();
4541     notePreviousDefinition(Previous.getRepresentativeDecl(),
4542                            New->getLocation());
4543     return New->setInvalidDecl();
4544   }
4545 
4546   // If the old declaration was found in an inline namespace and the new
4547   // declaration was qualified, update the DeclContext to match.
4548   adjustDeclContextForDeclaratorDecl(New, Old);
4549 
4550   // Ensure the template parameters are compatible.
4551   if (NewTemplate &&
4552       !TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
4553                                       OldTemplate->getTemplateParameters(),
4554                                       /*Complain=*/true, TPL_TemplateMatch))
4555     return New->setInvalidDecl();
4556 
4557   // C++ [class.mem]p1:
4558   //   A member shall not be declared twice in the member-specification [...]
4559   //
4560   // Here, we need only consider static data members.
4561   if (Old->isStaticDataMember() && !New->isOutOfLine()) {
4562     Diag(New->getLocation(), diag::err_duplicate_member)
4563       << New->getIdentifier();
4564     Diag(Old->getLocation(), diag::note_previous_declaration);
4565     New->setInvalidDecl();
4566   }
4567 
4568   mergeDeclAttributes(New, Old);
4569   // Warn if an already-defined variable is made a weak_import in a subsequent
4570   // declaration
4571   if (New->hasAttr<WeakImportAttr>())
4572     for (auto *D = Old; D; D = D->getPreviousDecl()) {
4573       if (D->isThisDeclarationADefinition() != VarDecl::DeclarationOnly) {
4574         Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
4575         Diag(D->getLocation(), diag::note_previous_definition);
4576         // Remove weak_import attribute on new declaration.
4577         New->dropAttr<WeakImportAttr>();
4578         break;
4579       }
4580     }
4581 
4582   if (const auto *ILA = New->getAttr<InternalLinkageAttr>())
4583     if (!Old->hasAttr<InternalLinkageAttr>()) {
4584       Diag(New->getLocation(), diag::err_attribute_missing_on_first_decl)
4585           << ILA;
4586       Diag(Old->getLocation(), diag::note_previous_declaration);
4587       New->dropAttr<InternalLinkageAttr>();
4588     }
4589 
4590   // Merge the types.
4591   VarDecl *MostRecent = Old->getMostRecentDecl();
4592   if (MostRecent != Old) {
4593     MergeVarDeclTypes(New, MostRecent,
4594                       mergeTypeWithPrevious(*this, New, MostRecent, Previous));
4595     if (New->isInvalidDecl())
4596       return;
4597   }
4598 
4599   MergeVarDeclTypes(New, Old, mergeTypeWithPrevious(*this, New, Old, Previous));
4600   if (New->isInvalidDecl())
4601     return;
4602 
4603   diag::kind PrevDiag;
4604   SourceLocation OldLocation;
4605   std::tie(PrevDiag, OldLocation) =
4606       getNoteDiagForInvalidRedeclaration(Old, New);
4607 
4608   // [dcl.stc]p8: Check if we have a non-static decl followed by a static.
4609   if (New->getStorageClass() == SC_Static &&
4610       !New->isStaticDataMember() &&
4611       Old->hasExternalFormalLinkage()) {
4612     if (getLangOpts().MicrosoftExt) {
4613       Diag(New->getLocation(), diag::ext_static_non_static)
4614           << New->getDeclName();
4615       Diag(OldLocation, PrevDiag);
4616     } else {
4617       Diag(New->getLocation(), diag::err_static_non_static)
4618           << New->getDeclName();
4619       Diag(OldLocation, PrevDiag);
4620       return New->setInvalidDecl();
4621     }
4622   }
4623   // C99 6.2.2p4:
4624   //   For an identifier declared with the storage-class specifier
4625   //   extern in a scope in which a prior declaration of that
4626   //   identifier is visible,23) if the prior declaration specifies
4627   //   internal or external linkage, the linkage of the identifier at
4628   //   the later declaration is the same as the linkage specified at
4629   //   the prior declaration. If no prior declaration is visible, or
4630   //   if the prior declaration specifies no linkage, then the
4631   //   identifier has external linkage.
4632   if (New->hasExternalStorage() && Old->hasLinkage())
4633     /* Okay */;
4634   else if (New->getCanonicalDecl()->getStorageClass() != SC_Static &&
4635            !New->isStaticDataMember() &&
4636            Old->getCanonicalDecl()->getStorageClass() == SC_Static) {
4637     Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
4638     Diag(OldLocation, PrevDiag);
4639     return New->setInvalidDecl();
4640   }
4641 
4642   // Check if extern is followed by non-extern and vice-versa.
4643   if (New->hasExternalStorage() &&
4644       !Old->hasLinkage() && Old->isLocalVarDeclOrParm()) {
4645     Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
4646     Diag(OldLocation, PrevDiag);
4647     return New->setInvalidDecl();
4648   }
4649   if (Old->hasLinkage() && New->isLocalVarDeclOrParm() &&
4650       !New->hasExternalStorage()) {
4651     Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
4652     Diag(OldLocation, PrevDiag);
4653     return New->setInvalidDecl();
4654   }
4655 
4656   if (CheckRedeclarationInModule(New, Old))
4657     return;
4658 
4659   // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
4660 
4661   // FIXME: The test for external storage here seems wrong? We still
4662   // need to check for mismatches.
4663   if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
4664       // Don't complain about out-of-line definitions of static members.
4665       !(Old->getLexicalDeclContext()->isRecord() &&
4666         !New->getLexicalDeclContext()->isRecord())) {
4667     Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
4668     Diag(OldLocation, PrevDiag);
4669     return New->setInvalidDecl();
4670   }
4671 
4672   if (New->isInline() && !Old->getMostRecentDecl()->isInline()) {
4673     if (VarDecl *Def = Old->getDefinition()) {
4674       // C++1z [dcl.fcn.spec]p4:
4675       //   If the definition of a variable appears in a translation unit before
4676       //   its first declaration as inline, the program is ill-formed.
4677       Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New;
4678       Diag(Def->getLocation(), diag::note_previous_definition);
4679     }
4680   }
4681 
4682   // If this redeclaration makes the variable inline, we may need to add it to
4683   // UndefinedButUsed.
4684   if (!Old->isInline() && New->isInline() && Old->isUsed(false) &&
4685       !Old->getDefinition() && !New->isThisDeclarationADefinition())
4686     UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
4687                                            SourceLocation()));
4688 
4689   if (New->getTLSKind() != Old->getTLSKind()) {
4690     if (!Old->getTLSKind()) {
4691       Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
4692       Diag(OldLocation, PrevDiag);
4693     } else if (!New->getTLSKind()) {
4694       Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
4695       Diag(OldLocation, PrevDiag);
4696     } else {
4697       // Do not allow redeclaration to change the variable between requiring
4698       // static and dynamic initialization.
4699       // FIXME: GCC allows this, but uses the TLS keyword on the first
4700       // declaration to determine the kind. Do we need to be compatible here?
4701       Diag(New->getLocation(), diag::err_thread_thread_different_kind)
4702         << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic);
4703       Diag(OldLocation, PrevDiag);
4704     }
4705   }
4706 
4707   // C++ doesn't have tentative definitions, so go right ahead and check here.
4708   if (getLangOpts().CPlusPlus) {
4709     if (Old->isStaticDataMember() && Old->getCanonicalDecl()->isInline() &&
4710         Old->getCanonicalDecl()->isConstexpr()) {
4711       // This definition won't be a definition any more once it's been merged.
4712       Diag(New->getLocation(),
4713            diag::warn_deprecated_redundant_constexpr_static_def);
4714     } else if (New->isThisDeclarationADefinition() == VarDecl::Definition) {
4715       VarDecl *Def = Old->getDefinition();
4716       if (Def && checkVarDeclRedefinition(Def, New))
4717         return;
4718     }
4719   }
4720 
4721   if (haveIncompatibleLanguageLinkages(Old, New)) {
4722     Diag(New->getLocation(), diag::err_different_language_linkage) << New;
4723     Diag(OldLocation, PrevDiag);
4724     New->setInvalidDecl();
4725     return;
4726   }
4727 
4728   // Merge "used" flag.
4729   if (Old->getMostRecentDecl()->isUsed(false))
4730     New->setIsUsed();
4731 
4732   // Keep a chain of previous declarations.
4733   New->setPreviousDecl(Old);
4734   if (NewTemplate)
4735     NewTemplate->setPreviousDecl(OldTemplate);
4736 
4737   // Inherit access appropriately.
4738   New->setAccess(Old->getAccess());
4739   if (NewTemplate)
4740     NewTemplate->setAccess(New->getAccess());
4741 
4742   if (Old->isInline())
4743     New->setImplicitlyInline();
4744 }
4745 
4746 void Sema::notePreviousDefinition(const NamedDecl *Old, SourceLocation New) {
4747   SourceManager &SrcMgr = getSourceManager();
4748   auto FNewDecLoc = SrcMgr.getDecomposedLoc(New);
4749   auto FOldDecLoc = SrcMgr.getDecomposedLoc(Old->getLocation());
4750   auto *FNew = SrcMgr.getFileEntryForID(FNewDecLoc.first);
4751   auto FOld = SrcMgr.getFileEntryRefForID(FOldDecLoc.first);
4752   auto &HSI = PP.getHeaderSearchInfo();
4753   StringRef HdrFilename =
4754       SrcMgr.getFilename(SrcMgr.getSpellingLoc(Old->getLocation()));
4755 
4756   auto noteFromModuleOrInclude = [&](Module *Mod,
4757                                      SourceLocation IncLoc) -> bool {
4758     // Redefinition errors with modules are common with non modular mapped
4759     // headers, example: a non-modular header H in module A that also gets
4760     // included directly in a TU. Pointing twice to the same header/definition
4761     // is confusing, try to get better diagnostics when modules is on.
4762     if (IncLoc.isValid()) {
4763       if (Mod) {
4764         Diag(IncLoc, diag::note_redefinition_modules_same_file)
4765             << HdrFilename.str() << Mod->getFullModuleName();
4766         if (!Mod->DefinitionLoc.isInvalid())
4767           Diag(Mod->DefinitionLoc, diag::note_defined_here)
4768               << Mod->getFullModuleName();
4769       } else {
4770         Diag(IncLoc, diag::note_redefinition_include_same_file)
4771             << HdrFilename.str();
4772       }
4773       return true;
4774     }
4775 
4776     return false;
4777   };
4778 
4779   // Is it the same file and same offset? Provide more information on why
4780   // this leads to a redefinition error.
4781   if (FNew == FOld && FNewDecLoc.second == FOldDecLoc.second) {
4782     SourceLocation OldIncLoc = SrcMgr.getIncludeLoc(FOldDecLoc.first);
4783     SourceLocation NewIncLoc = SrcMgr.getIncludeLoc(FNewDecLoc.first);
4784     bool EmittedDiag =
4785         noteFromModuleOrInclude(Old->getOwningModule(), OldIncLoc);
4786     EmittedDiag |= noteFromModuleOrInclude(getCurrentModule(), NewIncLoc);
4787 
4788     // If the header has no guards, emit a note suggesting one.
4789     if (FOld && !HSI.isFileMultipleIncludeGuarded(*FOld))
4790       Diag(Old->getLocation(), diag::note_use_ifdef_guards);
4791 
4792     if (EmittedDiag)
4793       return;
4794   }
4795 
4796   // Redefinition coming from different files or couldn't do better above.
4797   if (Old->getLocation().isValid())
4798     Diag(Old->getLocation(), diag::note_previous_definition);
4799 }
4800 
4801 bool Sema::checkVarDeclRedefinition(VarDecl *Old, VarDecl *New) {
4802   if (!hasVisibleDefinition(Old) &&
4803       (New->getFormalLinkage() == Linkage::Internal || New->isInline() ||
4804        isa<VarTemplateSpecializationDecl>(New) ||
4805        New->getDescribedVarTemplate() || New->getNumTemplateParameterLists() ||
4806        New->getDeclContext()->isDependentContext())) {
4807     // The previous definition is hidden, and multiple definitions are
4808     // permitted (in separate TUs). Demote this to a declaration.
4809     New->demoteThisDefinitionToDeclaration();
4810 
4811     // Make the canonical definition visible.
4812     if (auto *OldTD = Old->getDescribedVarTemplate())
4813       makeMergedDefinitionVisible(OldTD);
4814     makeMergedDefinitionVisible(Old);
4815     return false;
4816   } else {
4817     Diag(New->getLocation(), diag::err_redefinition) << New;
4818     notePreviousDefinition(Old, New->getLocation());
4819     New->setInvalidDecl();
4820     return true;
4821   }
4822 }
4823 
4824 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
4825                                        DeclSpec &DS,
4826                                        const ParsedAttributesView &DeclAttrs,
4827                                        RecordDecl *&AnonRecord) {
4828   return ParsedFreeStandingDeclSpec(
4829       S, AS, DS, DeclAttrs, MultiTemplateParamsArg(), false, AnonRecord);
4830 }
4831 
4832 // The MS ABI changed between VS2013 and VS2015 with regard to numbers used to
4833 // disambiguate entities defined in different scopes.
4834 // While the VS2015 ABI fixes potential miscompiles, it is also breaks
4835 // compatibility.
4836 // We will pick our mangling number depending on which version of MSVC is being
4837 // targeted.
4838 static unsigned getMSManglingNumber(const LangOptions &LO, Scope *S) {
4839   return LO.isCompatibleWithMSVC(LangOptions::MSVC2015)
4840              ? S->getMSCurManglingNumber()
4841              : S->getMSLastManglingNumber();
4842 }
4843 
4844 void Sema::handleTagNumbering(const TagDecl *Tag, Scope *TagScope) {
4845   if (!Context.getLangOpts().CPlusPlus)
4846     return;
4847 
4848   if (isa<CXXRecordDecl>(Tag->getParent())) {
4849     // If this tag is the direct child of a class, number it if
4850     // it is anonymous.
4851     if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl())
4852       return;
4853     MangleNumberingContext &MCtx =
4854         Context.getManglingNumberContext(Tag->getParent());
4855     Context.setManglingNumber(
4856         Tag, MCtx.getManglingNumber(
4857                  Tag, getMSManglingNumber(getLangOpts(), TagScope)));
4858     return;
4859   }
4860 
4861   // If this tag isn't a direct child of a class, number it if it is local.
4862   MangleNumberingContext *MCtx;
4863   Decl *ManglingContextDecl;
4864   std::tie(MCtx, ManglingContextDecl) =
4865       getCurrentMangleNumberContext(Tag->getDeclContext());
4866   if (MCtx) {
4867     Context.setManglingNumber(
4868         Tag, MCtx->getManglingNumber(
4869                  Tag, getMSManglingNumber(getLangOpts(), TagScope)));
4870   }
4871 }
4872 
4873 namespace {
4874 struct NonCLikeKind {
4875   enum {
4876     None,
4877     BaseClass,
4878     DefaultMemberInit,
4879     Lambda,
4880     Friend,
4881     OtherMember,
4882     Invalid,
4883   } Kind = None;
4884   SourceRange Range;
4885 
4886   explicit operator bool() { return Kind != None; }
4887 };
4888 }
4889 
4890 /// Determine whether a class is C-like, according to the rules of C++
4891 /// [dcl.typedef] for anonymous classes with typedef names for linkage.
4892 static NonCLikeKind getNonCLikeKindForAnonymousStruct(const CXXRecordDecl *RD) {
4893   if (RD->isInvalidDecl())
4894     return {NonCLikeKind::Invalid, {}};
4895 
4896   // C++ [dcl.typedef]p9: [P1766R1]
4897   //   An unnamed class with a typedef name for linkage purposes shall not
4898   //
4899   //    -- have any base classes
4900   if (RD->getNumBases())
4901     return {NonCLikeKind::BaseClass,
4902             SourceRange(RD->bases_begin()->getBeginLoc(),
4903                         RD->bases_end()[-1].getEndLoc())};
4904   bool Invalid = false;
4905   for (Decl *D : RD->decls()) {
4906     // Don't complain about things we already diagnosed.
4907     if (D->isInvalidDecl()) {
4908       Invalid = true;
4909       continue;
4910     }
4911 
4912     //  -- have any [...] default member initializers
4913     if (auto *FD = dyn_cast<FieldDecl>(D)) {
4914       if (FD->hasInClassInitializer()) {
4915         auto *Init = FD->getInClassInitializer();
4916         return {NonCLikeKind::DefaultMemberInit,
4917                 Init ? Init->getSourceRange() : D->getSourceRange()};
4918       }
4919       continue;
4920     }
4921 
4922     // FIXME: We don't allow friend declarations. This violates the wording of
4923     // P1766, but not the intent.
4924     if (isa<FriendDecl>(D))
4925       return {NonCLikeKind::Friend, D->getSourceRange()};
4926 
4927     //  -- declare any members other than non-static data members, member
4928     //     enumerations, or member classes,
4929     if (isa<StaticAssertDecl>(D) || isa<IndirectFieldDecl>(D) ||
4930         isa<EnumDecl>(D))
4931       continue;
4932     auto *MemberRD = dyn_cast<CXXRecordDecl>(D);
4933     if (!MemberRD) {
4934       if (D->isImplicit())
4935         continue;
4936       return {NonCLikeKind::OtherMember, D->getSourceRange()};
4937     }
4938 
4939     //  -- contain a lambda-expression,
4940     if (MemberRD->isLambda())
4941       return {NonCLikeKind::Lambda, MemberRD->getSourceRange()};
4942 
4943     //  and all member classes shall also satisfy these requirements
4944     //  (recursively).
4945     if (MemberRD->isThisDeclarationADefinition()) {
4946       if (auto Kind = getNonCLikeKindForAnonymousStruct(MemberRD))
4947         return Kind;
4948     }
4949   }
4950 
4951   return {Invalid ? NonCLikeKind::Invalid : NonCLikeKind::None, {}};
4952 }
4953 
4954 void Sema::setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec,
4955                                         TypedefNameDecl *NewTD) {
4956   if (TagFromDeclSpec->isInvalidDecl())
4957     return;
4958 
4959   // Do nothing if the tag already has a name for linkage purposes.
4960   if (TagFromDeclSpec->hasNameForLinkage())
4961     return;
4962 
4963   // A well-formed anonymous tag must always be a TagUseKind::Definition.
4964   assert(TagFromDeclSpec->isThisDeclarationADefinition());
4965 
4966   // The type must match the tag exactly;  no qualifiers allowed.
4967   if (!Context.hasSameType(NewTD->getUnderlyingType(),
4968                            Context.getTagDeclType(TagFromDeclSpec))) {
4969     if (getLangOpts().CPlusPlus)
4970       Context.addTypedefNameForUnnamedTagDecl(TagFromDeclSpec, NewTD);
4971     return;
4972   }
4973 
4974   // C++ [dcl.typedef]p9: [P1766R1, applied as DR]
4975   //   An unnamed class with a typedef name for linkage purposes shall [be
4976   //   C-like].
4977   //
4978   // FIXME: Also diagnose if we've already computed the linkage. That ideally
4979   // shouldn't happen, but there are constructs that the language rule doesn't
4980   // disallow for which we can't reasonably avoid computing linkage early.
4981   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TagFromDeclSpec);
4982   NonCLikeKind NonCLike = RD ? getNonCLikeKindForAnonymousStruct(RD)
4983                              : NonCLikeKind();
4984   bool ChangesLinkage = TagFromDeclSpec->hasLinkageBeenComputed();
4985   if (NonCLike || ChangesLinkage) {
4986     if (NonCLike.Kind == NonCLikeKind::Invalid)
4987       return;
4988 
4989     unsigned DiagID = diag::ext_non_c_like_anon_struct_in_typedef;
4990     if (ChangesLinkage) {
4991       // If the linkage changes, we can't accept this as an extension.
4992       if (NonCLike.Kind == NonCLikeKind::None)
4993         DiagID = diag::err_typedef_changes_linkage;
4994       else
4995         DiagID = diag::err_non_c_like_anon_struct_in_typedef;
4996     }
4997 
4998     SourceLocation FixitLoc =
4999         getLocForEndOfToken(TagFromDeclSpec->getInnerLocStart());
5000     llvm::SmallString<40> TextToInsert;
5001     TextToInsert += ' ';
5002     TextToInsert += NewTD->getIdentifier()->getName();
5003 
5004     Diag(FixitLoc, DiagID)
5005       << isa<TypeAliasDecl>(NewTD)
5006       << FixItHint::CreateInsertion(FixitLoc, TextToInsert);
5007     if (NonCLike.Kind != NonCLikeKind::None) {
5008       Diag(NonCLike.Range.getBegin(), diag::note_non_c_like_anon_struct)
5009         << NonCLike.Kind - 1 << NonCLike.Range;
5010     }
5011     Diag(NewTD->getLocation(), diag::note_typedef_for_linkage_here)
5012       << NewTD << isa<TypeAliasDecl>(NewTD);
5013 
5014     if (ChangesLinkage)
5015       return;
5016   }
5017 
5018   // Otherwise, set this as the anon-decl typedef for the tag.
5019   TagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
5020 
5021   // Now that we have a name for the tag, process API notes again.
5022   ProcessAPINotes(TagFromDeclSpec);
5023 }
5024 
5025 static unsigned GetDiagnosticTypeSpecifierID(const DeclSpec &DS) {
5026   DeclSpec::TST T = DS.getTypeSpecType();
5027   switch (T) {
5028   case DeclSpec::TST_class:
5029     return 0;
5030   case DeclSpec::TST_struct:
5031     return 1;
5032   case DeclSpec::TST_interface:
5033     return 2;
5034   case DeclSpec::TST_union:
5035     return 3;
5036   case DeclSpec::TST_enum:
5037     if (const auto *ED = dyn_cast<EnumDecl>(DS.getRepAsDecl())) {
5038       if (ED->isScopedUsingClassTag())
5039         return 5;
5040       if (ED->isScoped())
5041         return 6;
5042     }
5043     return 4;
5044   default:
5045     llvm_unreachable("unexpected type specifier");
5046   }
5047 }
5048 
5049 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
5050                                        DeclSpec &DS,
5051                                        const ParsedAttributesView &DeclAttrs,
5052                                        MultiTemplateParamsArg TemplateParams,
5053                                        bool IsExplicitInstantiation,
5054                                        RecordDecl *&AnonRecord,
5055                                        SourceLocation EllipsisLoc) {
5056   Decl *TagD = nullptr;
5057   TagDecl *Tag = nullptr;
5058   if (DS.getTypeSpecType() == DeclSpec::TST_class ||
5059       DS.getTypeSpecType() == DeclSpec::TST_struct ||
5060       DS.getTypeSpecType() == DeclSpec::TST_interface ||
5061       DS.getTypeSpecType() == DeclSpec::TST_union ||
5062       DS.getTypeSpecType() == DeclSpec::TST_enum) {
5063     TagD = DS.getRepAsDecl();
5064 
5065     if (!TagD) // We probably had an error
5066       return nullptr;
5067 
5068     // Note that the above type specs guarantee that the
5069     // type rep is a Decl, whereas in many of the others
5070     // it's a Type.
5071     if (isa<TagDecl>(TagD))
5072       Tag = cast<TagDecl>(TagD);
5073     else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
5074       Tag = CTD->getTemplatedDecl();
5075   }
5076 
5077   if (Tag) {
5078     handleTagNumbering(Tag, S);
5079     Tag->setFreeStanding();
5080     if (Tag->isInvalidDecl())
5081       return Tag;
5082   }
5083 
5084   if (unsigned TypeQuals = DS.getTypeQualifiers()) {
5085     // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
5086     // or incomplete types shall not be restrict-qualified."
5087     if (TypeQuals & DeclSpec::TQ_restrict)
5088       Diag(DS.getRestrictSpecLoc(),
5089            diag::err_typecheck_invalid_restrict_not_pointer_noarg)
5090            << DS.getSourceRange();
5091   }
5092 
5093   if (DS.isInlineSpecified())
5094     Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
5095         << getLangOpts().CPlusPlus17;
5096 
5097   if (DS.hasConstexprSpecifier()) {
5098     // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
5099     // and definitions of functions and variables.
5100     // C++2a [dcl.constexpr]p1: The consteval specifier shall be applied only to
5101     // the declaration of a function or function template
5102     if (Tag)
5103       Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
5104           << GetDiagnosticTypeSpecifierID(DS)
5105           << static_cast<int>(DS.getConstexprSpecifier());
5106     else if (getLangOpts().C23)
5107       Diag(DS.getConstexprSpecLoc(), diag::err_c23_constexpr_not_variable);
5108     else
5109       Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_wrong_decl_kind)
5110           << static_cast<int>(DS.getConstexprSpecifier());
5111     // Don't emit warnings after this error.
5112     return TagD;
5113   }
5114 
5115   DiagnoseFunctionSpecifiers(DS);
5116 
5117   if (DS.isFriendSpecified()) {
5118     // If we're dealing with a decl but not a TagDecl, assume that
5119     // whatever routines created it handled the friendship aspect.
5120     if (TagD && !Tag)
5121       return nullptr;
5122     return ActOnFriendTypeDecl(S, DS, TemplateParams, EllipsisLoc);
5123   }
5124 
5125   assert(EllipsisLoc.isInvalid() &&
5126          "Friend ellipsis but not friend-specified?");
5127 
5128   // Track whether this decl-specifier declares anything.
5129   bool DeclaresAnything = true;
5130 
5131   // Handle anonymous struct definitions.
5132   if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
5133     if (!Record->getDeclName() && Record->isCompleteDefinition() &&
5134         DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
5135       if (getLangOpts().CPlusPlus ||
5136           Record->getDeclContext()->isRecord()) {
5137         // If CurContext is a DeclContext that can contain statements,
5138         // RecursiveASTVisitor won't visit the decls that
5139         // BuildAnonymousStructOrUnion() will put into CurContext.
5140         // Also store them here so that they can be part of the
5141         // DeclStmt that gets created in this case.
5142         // FIXME: Also return the IndirectFieldDecls created by
5143         // BuildAnonymousStructOr union, for the same reason?
5144         if (CurContext->isFunctionOrMethod())
5145           AnonRecord = Record;
5146         return BuildAnonymousStructOrUnion(S, DS, AS, Record,
5147                                            Context.getPrintingPolicy());
5148       }
5149 
5150       DeclaresAnything = false;
5151     }
5152   }
5153 
5154   // C11 6.7.2.1p2:
5155   //   A struct-declaration that does not declare an anonymous structure or
5156   //   anonymous union shall contain a struct-declarator-list.
5157   //
5158   // This rule also existed in C89 and C99; the grammar for struct-declaration
5159   // did not permit a struct-declaration without a struct-declarator-list.
5160   if (!getLangOpts().CPlusPlus && CurContext->isRecord() &&
5161       DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
5162     // Check for Microsoft C extension: anonymous struct/union member.
5163     // Handle 2 kinds of anonymous struct/union:
5164     //   struct STRUCT;
5165     //   union UNION;
5166     // and
5167     //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
5168     //   UNION_TYPE;   <- where UNION_TYPE is a typedef union.
5169     if ((Tag && Tag->getDeclName()) ||
5170         DS.getTypeSpecType() == DeclSpec::TST_typename) {
5171       RecordDecl *Record = nullptr;
5172       if (Tag)
5173         Record = dyn_cast<RecordDecl>(Tag);
5174       else if (const RecordType *RT =
5175                    DS.getRepAsType().get()->getAsStructureType())
5176         Record = RT->getDecl();
5177       else if (const RecordType *UT = DS.getRepAsType().get()->getAsUnionType())
5178         Record = UT->getDecl();
5179 
5180       if (Record && getLangOpts().MicrosoftExt) {
5181         Diag(DS.getBeginLoc(), diag::ext_ms_anonymous_record)
5182             << Record->isUnion() << DS.getSourceRange();
5183         return BuildMicrosoftCAnonymousStruct(S, DS, Record);
5184       }
5185 
5186       DeclaresAnything = false;
5187     }
5188   }
5189 
5190   // Skip all the checks below if we have a type error.
5191   if (DS.getTypeSpecType() == DeclSpec::TST_error ||
5192       (TagD && TagD->isInvalidDecl()))
5193     return TagD;
5194 
5195   if (getLangOpts().CPlusPlus &&
5196       DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
5197     if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
5198       if (Enum->enumerator_begin() == Enum->enumerator_end() &&
5199           !Enum->getIdentifier() && !Enum->isInvalidDecl())
5200         DeclaresAnything = false;
5201 
5202   if (!DS.isMissingDeclaratorOk()) {
5203     // Customize diagnostic for a typedef missing a name.
5204     if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
5205       Diag(DS.getBeginLoc(), diag::ext_typedef_without_a_name)
5206           << DS.getSourceRange();
5207     else
5208       DeclaresAnything = false;
5209   }
5210 
5211   if (DS.isModulePrivateSpecified() &&
5212       Tag && Tag->getDeclContext()->isFunctionOrMethod())
5213     Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
5214         << llvm::to_underlying(Tag->getTagKind())
5215         << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
5216 
5217   ActOnDocumentableDecl(TagD);
5218 
5219   // C 6.7/2:
5220   //   A declaration [...] shall declare at least a declarator [...], a tag,
5221   //   or the members of an enumeration.
5222   // C++ [dcl.dcl]p3:
5223   //   [If there are no declarators], and except for the declaration of an
5224   //   unnamed bit-field, the decl-specifier-seq shall introduce one or more
5225   //   names into the program, or shall redeclare a name introduced by a
5226   //   previous declaration.
5227   if (!DeclaresAnything) {
5228     // In C, we allow this as a (popular) extension / bug. Don't bother
5229     // producing further diagnostics for redundant qualifiers after this.
5230     Diag(DS.getBeginLoc(), (IsExplicitInstantiation || !TemplateParams.empty())
5231                                ? diag::err_no_declarators
5232                                : diag::ext_no_declarators)
5233         << DS.getSourceRange();
5234     return TagD;
5235   }
5236 
5237   // C++ [dcl.stc]p1:
5238   //   If a storage-class-specifier appears in a decl-specifier-seq, [...] the
5239   //   init-declarator-list of the declaration shall not be empty.
5240   // C++ [dcl.fct.spec]p1:
5241   //   If a cv-qualifier appears in a decl-specifier-seq, the
5242   //   init-declarator-list of the declaration shall not be empty.
5243   //
5244   // Spurious qualifiers here appear to be valid in C.
5245   unsigned DiagID = diag::warn_standalone_specifier;
5246   if (getLangOpts().CPlusPlus)
5247     DiagID = diag::ext_standalone_specifier;
5248 
5249   // Note that a linkage-specification sets a storage class, but
5250   // 'extern "C" struct foo;' is actually valid and not theoretically
5251   // useless.
5252   if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
5253     if (SCS == DeclSpec::SCS_mutable)
5254       // Since mutable is not a viable storage class specifier in C, there is
5255       // no reason to treat it as an extension. Instead, diagnose as an error.
5256       Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_nonmember);
5257     else if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef)
5258       Diag(DS.getStorageClassSpecLoc(), DiagID)
5259         << DeclSpec::getSpecifierName(SCS);
5260   }
5261 
5262   if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
5263     Diag(DS.getThreadStorageClassSpecLoc(), DiagID)
5264       << DeclSpec::getSpecifierName(TSCS);
5265   if (DS.getTypeQualifiers()) {
5266     if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
5267       Diag(DS.getConstSpecLoc(), DiagID) << "const";
5268     if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
5269       Diag(DS.getConstSpecLoc(), DiagID) << "volatile";
5270     // Restrict is covered above.
5271     if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
5272       Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic";
5273     if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
5274       Diag(DS.getUnalignedSpecLoc(), DiagID) << "__unaligned";
5275   }
5276 
5277   // Warn about ignored type attributes, for example:
5278   // __attribute__((aligned)) struct A;
5279   // Attributes should be placed after tag to apply to type declaration.
5280   if (!DS.getAttributes().empty() || !DeclAttrs.empty()) {
5281     DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
5282     if (TypeSpecType == DeclSpec::TST_class ||
5283         TypeSpecType == DeclSpec::TST_struct ||
5284         TypeSpecType == DeclSpec::TST_interface ||
5285         TypeSpecType == DeclSpec::TST_union ||
5286         TypeSpecType == DeclSpec::TST_enum) {
5287 
5288       auto EmitAttributeDiagnostic = [this, &DS](const ParsedAttr &AL) {
5289         unsigned DiagnosticId = diag::warn_declspec_attribute_ignored;
5290         if (AL.isAlignas() && !getLangOpts().CPlusPlus)
5291           DiagnosticId = diag::warn_attribute_ignored;
5292         else if (AL.isRegularKeywordAttribute())
5293           DiagnosticId = diag::err_declspec_keyword_has_no_effect;
5294         else
5295           DiagnosticId = diag::warn_declspec_attribute_ignored;
5296         Diag(AL.getLoc(), DiagnosticId)
5297             << AL << GetDiagnosticTypeSpecifierID(DS);
5298       };
5299 
5300       llvm::for_each(DS.getAttributes(), EmitAttributeDiagnostic);
5301       llvm::for_each(DeclAttrs, EmitAttributeDiagnostic);
5302     }
5303   }
5304 
5305   return TagD;
5306 }
5307 
5308 /// We are trying to inject an anonymous member into the given scope;
5309 /// check if there's an existing declaration that can't be overloaded.
5310 ///
5311 /// \return true if this is a forbidden redeclaration
5312 static bool CheckAnonMemberRedeclaration(Sema &SemaRef, Scope *S,
5313                                          DeclContext *Owner,
5314                                          DeclarationName Name,
5315                                          SourceLocation NameLoc, bool IsUnion,
5316                                          StorageClass SC) {
5317   LookupResult R(SemaRef, Name, NameLoc,
5318                  Owner->isRecord() ? Sema::LookupMemberName
5319                                    : Sema::LookupOrdinaryName,
5320                  RedeclarationKind::ForVisibleRedeclaration);
5321   if (!SemaRef.LookupName(R, S)) return false;
5322 
5323   // Pick a representative declaration.
5324   NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
5325   assert(PrevDecl && "Expected a non-null Decl");
5326 
5327   if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
5328     return false;
5329 
5330   if (SC == StorageClass::SC_None &&
5331       PrevDecl->isPlaceholderVar(SemaRef.getLangOpts()) &&
5332       (Owner->isFunctionOrMethod() || Owner->isRecord())) {
5333     if (!Owner->isRecord())
5334       SemaRef.DiagPlaceholderVariableDefinition(NameLoc);
5335     return false;
5336   }
5337 
5338   SemaRef.Diag(NameLoc, diag::err_anonymous_record_member_redecl)
5339     << IsUnion << Name;
5340   SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5341 
5342   return true;
5343 }
5344 
5345 void Sema::ActOnDefinedDeclarationSpecifier(Decl *D) {
5346   if (auto *RD = dyn_cast_if_present<RecordDecl>(D))
5347     DiagPlaceholderFieldDeclDefinitions(RD);
5348 }
5349 
5350 void Sema::DiagPlaceholderFieldDeclDefinitions(RecordDecl *Record) {
5351   if (!getLangOpts().CPlusPlus)
5352     return;
5353 
5354   // This function can be parsed before we have validated the
5355   // structure as an anonymous struct
5356   if (Record->isAnonymousStructOrUnion())
5357     return;
5358 
5359   const NamedDecl *First = 0;
5360   for (const Decl *D : Record->decls()) {
5361     const NamedDecl *ND = dyn_cast<NamedDecl>(D);
5362     if (!ND || !ND->isPlaceholderVar(getLangOpts()))
5363       continue;
5364     if (!First)
5365       First = ND;
5366     else
5367       DiagPlaceholderVariableDefinition(ND->getLocation());
5368   }
5369 }
5370 
5371 /// InjectAnonymousStructOrUnionMembers - Inject the members of the
5372 /// anonymous struct or union AnonRecord into the owning context Owner
5373 /// and scope S. This routine will be invoked just after we realize
5374 /// that an unnamed union or struct is actually an anonymous union or
5375 /// struct, e.g.,
5376 ///
5377 /// @code
5378 /// union {
5379 ///   int i;
5380 ///   float f;
5381 /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
5382 ///    // f into the surrounding scope.x
5383 /// @endcode
5384 ///
5385 /// This routine is recursive, injecting the names of nested anonymous
5386 /// structs/unions into the owning context and scope as well.
5387 static bool
5388 InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S, DeclContext *Owner,
5389                                     RecordDecl *AnonRecord, AccessSpecifier AS,
5390                                     StorageClass SC,
5391                                     SmallVectorImpl<NamedDecl *> &Chaining) {
5392   bool Invalid = false;
5393 
5394   // Look every FieldDecl and IndirectFieldDecl with a name.
5395   for (auto *D : AnonRecord->decls()) {
5396     if ((isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) &&
5397         cast<NamedDecl>(D)->getDeclName()) {
5398       ValueDecl *VD = cast<ValueDecl>(D);
5399       if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
5400                                        VD->getLocation(), AnonRecord->isUnion(),
5401                                        SC)) {
5402         // C++ [class.union]p2:
5403         //   The names of the members of an anonymous union shall be
5404         //   distinct from the names of any other entity in the
5405         //   scope in which the anonymous union is declared.
5406         Invalid = true;
5407       } else {
5408         // C++ [class.union]p2:
5409         //   For the purpose of name lookup, after the anonymous union
5410         //   definition, the members of the anonymous union are
5411         //   considered to have been defined in the scope in which the
5412         //   anonymous union is declared.
5413         unsigned OldChainingSize = Chaining.size();
5414         if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
5415           Chaining.append(IF->chain_begin(), IF->chain_end());
5416         else
5417           Chaining.push_back(VD);
5418 
5419         assert(Chaining.size() >= 2);
5420         NamedDecl **NamedChain =
5421           new (SemaRef.Context)NamedDecl*[Chaining.size()];
5422         for (unsigned i = 0; i < Chaining.size(); i++)
5423           NamedChain[i] = Chaining[i];
5424 
5425         IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create(
5426             SemaRef.Context, Owner, VD->getLocation(), VD->getIdentifier(),
5427             VD->getType(), {NamedChain, Chaining.size()});
5428 
5429         for (const auto *Attr : VD->attrs())
5430           IndirectField->addAttr(Attr->clone(SemaRef.Context));
5431 
5432         IndirectField->setAccess(AS);
5433         IndirectField->setImplicit();
5434         SemaRef.PushOnScopeChains(IndirectField, S);
5435 
5436         // That includes picking up the appropriate access specifier.
5437         if (AS != AS_none) IndirectField->setAccess(AS);
5438 
5439         Chaining.resize(OldChainingSize);
5440       }
5441     }
5442   }
5443 
5444   return Invalid;
5445 }
5446 
5447 /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
5448 /// a VarDecl::StorageClass. Any error reporting is up to the caller:
5449 /// illegal input values are mapped to SC_None.
5450 static StorageClass
5451 StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) {
5452   DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec();
5453   assert(StorageClassSpec != DeclSpec::SCS_typedef &&
5454          "Parser allowed 'typedef' as storage class VarDecl.");
5455   switch (StorageClassSpec) {
5456   case DeclSpec::SCS_unspecified:    return SC_None;
5457   case DeclSpec::SCS_extern:
5458     if (DS.isExternInLinkageSpec())
5459       return SC_None;
5460     return SC_Extern;
5461   case DeclSpec::SCS_static:         return SC_Static;
5462   case DeclSpec::SCS_auto:           return SC_Auto;
5463   case DeclSpec::SCS_register:       return SC_Register;
5464   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
5465     // Illegal SCSs map to None: error reporting is up to the caller.
5466   case DeclSpec::SCS_mutable:        // Fall through.
5467   case DeclSpec::SCS_typedef:        return SC_None;
5468   }
5469   llvm_unreachable("unknown storage class specifier");
5470 }
5471 
5472 static SourceLocation findDefaultInitializer(const CXXRecordDecl *Record) {
5473   assert(Record->hasInClassInitializer());
5474 
5475   for (const auto *I : Record->decls()) {
5476     const auto *FD = dyn_cast<FieldDecl>(I);
5477     if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
5478       FD = IFD->getAnonField();
5479     if (FD && FD->hasInClassInitializer())
5480       return FD->getLocation();
5481   }
5482 
5483   llvm_unreachable("couldn't find in-class initializer");
5484 }
5485 
5486 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
5487                                       SourceLocation DefaultInitLoc) {
5488   if (!Parent->isUnion() || !Parent->hasInClassInitializer())
5489     return;
5490 
5491   S.Diag(DefaultInitLoc, diag::err_multiple_mem_union_initialization);
5492   S.Diag(findDefaultInitializer(Parent), diag::note_previous_initializer) << 0;
5493 }
5494 
5495 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
5496                                       CXXRecordDecl *AnonUnion) {
5497   if (!Parent->isUnion() || !Parent->hasInClassInitializer())
5498     return;
5499 
5500   checkDuplicateDefaultInit(S, Parent, findDefaultInitializer(AnonUnion));
5501 }
5502 
5503 Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
5504                                         AccessSpecifier AS,
5505                                         RecordDecl *Record,
5506                                         const PrintingPolicy &Policy) {
5507   DeclContext *Owner = Record->getDeclContext();
5508 
5509   // Diagnose whether this anonymous struct/union is an extension.
5510   if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
5511     Diag(Record->getLocation(), diag::ext_anonymous_union);
5512   else if (!Record->isUnion() && getLangOpts().CPlusPlus)
5513     Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
5514   else if (!Record->isUnion() && !getLangOpts().C11)
5515     Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
5516 
5517   // C and C++ require different kinds of checks for anonymous
5518   // structs/unions.
5519   bool Invalid = false;
5520   if (getLangOpts().CPlusPlus) {
5521     const char *PrevSpec = nullptr;
5522     if (Record->isUnion()) {
5523       // C++ [class.union]p6:
5524       // C++17 [class.union.anon]p2:
5525       //   Anonymous unions declared in a named namespace or in the
5526       //   global namespace shall be declared static.
5527       unsigned DiagID;
5528       DeclContext *OwnerScope = Owner->getRedeclContext();
5529       if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
5530           (OwnerScope->isTranslationUnit() ||
5531            (OwnerScope->isNamespace() &&
5532             !cast<NamespaceDecl>(OwnerScope)->isAnonymousNamespace()))) {
5533         Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
5534           << FixItHint::CreateInsertion(Record->getLocation(), "static ");
5535 
5536         // Recover by adding 'static'.
5537         DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
5538                                PrevSpec, DiagID, Policy);
5539       }
5540       // C++ [class.union]p6:
5541       //   A storage class is not allowed in a declaration of an
5542       //   anonymous union in a class scope.
5543       else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
5544                isa<RecordDecl>(Owner)) {
5545         Diag(DS.getStorageClassSpecLoc(),
5546              diag::err_anonymous_union_with_storage_spec)
5547           << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
5548 
5549         // Recover by removing the storage specifier.
5550         DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
5551                                SourceLocation(),
5552                                PrevSpec, DiagID, Context.getPrintingPolicy());
5553       }
5554     }
5555 
5556     // Ignore const/volatile/restrict qualifiers.
5557     if (DS.getTypeQualifiers()) {
5558       if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
5559         Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
5560           << Record->isUnion() << "const"
5561           << FixItHint::CreateRemoval(DS.getConstSpecLoc());
5562       if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
5563         Diag(DS.getVolatileSpecLoc(),
5564              diag::ext_anonymous_struct_union_qualified)
5565           << Record->isUnion() << "volatile"
5566           << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
5567       if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
5568         Diag(DS.getRestrictSpecLoc(),
5569              diag::ext_anonymous_struct_union_qualified)
5570           << Record->isUnion() << "restrict"
5571           << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
5572       if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
5573         Diag(DS.getAtomicSpecLoc(),
5574              diag::ext_anonymous_struct_union_qualified)
5575           << Record->isUnion() << "_Atomic"
5576           << FixItHint::CreateRemoval(DS.getAtomicSpecLoc());
5577       if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
5578         Diag(DS.getUnalignedSpecLoc(),
5579              diag::ext_anonymous_struct_union_qualified)
5580           << Record->isUnion() << "__unaligned"
5581           << FixItHint::CreateRemoval(DS.getUnalignedSpecLoc());
5582 
5583       DS.ClearTypeQualifiers();
5584     }
5585 
5586     // C++ [class.union]p2:
5587     //   The member-specification of an anonymous union shall only
5588     //   define non-static data members. [Note: nested types and
5589     //   functions cannot be declared within an anonymous union. ]
5590     for (auto *Mem : Record->decls()) {
5591       // Ignore invalid declarations; we already diagnosed them.
5592       if (Mem->isInvalidDecl())
5593         continue;
5594 
5595       if (auto *FD = dyn_cast<FieldDecl>(Mem)) {
5596         // C++ [class.union]p3:
5597         //   An anonymous union shall not have private or protected
5598         //   members (clause 11).
5599         assert(FD->getAccess() != AS_none);
5600         if (FD->getAccess() != AS_public) {
5601           Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
5602             << Record->isUnion() << (FD->getAccess() == AS_protected);
5603           Invalid = true;
5604         }
5605 
5606         // C++ [class.union]p1
5607         //   An object of a class with a non-trivial constructor, a non-trivial
5608         //   copy constructor, a non-trivial destructor, or a non-trivial copy
5609         //   assignment operator cannot be a member of a union, nor can an
5610         //   array of such objects.
5611         if (CheckNontrivialField(FD))
5612           Invalid = true;
5613       } else if (Mem->isImplicit()) {
5614         // Any implicit members are fine.
5615       } else if (isa<TagDecl>(Mem) && Mem->getDeclContext() != Record) {
5616         // This is a type that showed up in an
5617         // elaborated-type-specifier inside the anonymous struct or
5618         // union, but which actually declares a type outside of the
5619         // anonymous struct or union. It's okay.
5620       } else if (auto *MemRecord = dyn_cast<RecordDecl>(Mem)) {
5621         if (!MemRecord->isAnonymousStructOrUnion() &&
5622             MemRecord->getDeclName()) {
5623           // Visual C++ allows type definition in anonymous struct or union.
5624           if (getLangOpts().MicrosoftExt)
5625             Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
5626               << Record->isUnion();
5627           else {
5628             // This is a nested type declaration.
5629             Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
5630               << Record->isUnion();
5631             Invalid = true;
5632           }
5633         } else {
5634           // This is an anonymous type definition within another anonymous type.
5635           // This is a popular extension, provided by Plan9, MSVC and GCC, but
5636           // not part of standard C++.
5637           Diag(MemRecord->getLocation(),
5638                diag::ext_anonymous_record_with_anonymous_type)
5639             << Record->isUnion();
5640         }
5641       } else if (isa<AccessSpecDecl>(Mem)) {
5642         // Any access specifier is fine.
5643       } else if (isa<StaticAssertDecl>(Mem)) {
5644         // In C++1z, static_assert declarations are also fine.
5645       } else {
5646         // We have something that isn't a non-static data
5647         // member. Complain about it.
5648         unsigned DK = diag::err_anonymous_record_bad_member;
5649         if (isa<TypeDecl>(Mem))
5650           DK = diag::err_anonymous_record_with_type;
5651         else if (isa<FunctionDecl>(Mem))
5652           DK = diag::err_anonymous_record_with_function;
5653         else if (isa<VarDecl>(Mem))
5654           DK = diag::err_anonymous_record_with_static;
5655 
5656         // Visual C++ allows type definition in anonymous struct or union.
5657         if (getLangOpts().MicrosoftExt &&
5658             DK == diag::err_anonymous_record_with_type)
5659           Diag(Mem->getLocation(), diag::ext_anonymous_record_with_type)
5660             << Record->isUnion();
5661         else {
5662           Diag(Mem->getLocation(), DK) << Record->isUnion();
5663           Invalid = true;
5664         }
5665       }
5666     }
5667 
5668     // C++11 [class.union]p8 (DR1460):
5669     //   At most one variant member of a union may have a
5670     //   brace-or-equal-initializer.
5671     if (cast<CXXRecordDecl>(Record)->hasInClassInitializer() &&
5672         Owner->isRecord())
5673       checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Owner),
5674                                 cast<CXXRecordDecl>(Record));
5675   }
5676 
5677   if (!Record->isUnion() && !Owner->isRecord()) {
5678     Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
5679       << getLangOpts().CPlusPlus;
5680     Invalid = true;
5681   }
5682 
5683   // C++ [dcl.dcl]p3:
5684   //   [If there are no declarators], and except for the declaration of an
5685   //   unnamed bit-field, the decl-specifier-seq shall introduce one or more
5686   //   names into the program
5687   // C++ [class.mem]p2:
5688   //   each such member-declaration shall either declare at least one member
5689   //   name of the class or declare at least one unnamed bit-field
5690   //
5691   // For C this is an error even for a named struct, and is diagnosed elsewhere.
5692   if (getLangOpts().CPlusPlus && Record->field_empty())
5693     Diag(DS.getBeginLoc(), diag::ext_no_declarators) << DS.getSourceRange();
5694 
5695   // Mock up a declarator.
5696   Declarator Dc(DS, ParsedAttributesView::none(), DeclaratorContext::Member);
5697   StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS);
5698   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc);
5699   assert(TInfo && "couldn't build declarator info for anonymous struct/union");
5700 
5701   // Create a declaration for this anonymous struct/union.
5702   NamedDecl *Anon = nullptr;
5703   if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
5704     Anon = FieldDecl::Create(
5705         Context, OwningClass, DS.getBeginLoc(), Record->getLocation(),
5706         /*IdentifierInfo=*/nullptr, Context.getTypeDeclType(Record), TInfo,
5707         /*BitWidth=*/nullptr, /*Mutable=*/false,
5708         /*InitStyle=*/ICIS_NoInit);
5709     Anon->setAccess(AS);
5710     ProcessDeclAttributes(S, Anon, Dc);
5711 
5712     if (getLangOpts().CPlusPlus)
5713       FieldCollector->Add(cast<FieldDecl>(Anon));
5714   } else {
5715     DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
5716     if (SCSpec == DeclSpec::SCS_mutable) {
5717       // mutable can only appear on non-static class members, so it's always
5718       // an error here
5719       Diag(Record->getLocation(), diag::err_mutable_nonmember);
5720       Invalid = true;
5721       SC = SC_None;
5722     }
5723 
5724     Anon = VarDecl::Create(Context, Owner, DS.getBeginLoc(),
5725                            Record->getLocation(), /*IdentifierInfo=*/nullptr,
5726                            Context.getTypeDeclType(Record), TInfo, SC);
5727     if (Invalid)
5728       Anon->setInvalidDecl();
5729 
5730     ProcessDeclAttributes(S, Anon, Dc);
5731 
5732     // Default-initialize the implicit variable. This initialization will be
5733     // trivial in almost all cases, except if a union member has an in-class
5734     // initializer:
5735     //   union { int n = 0; };
5736     ActOnUninitializedDecl(Anon);
5737   }
5738   Anon->setImplicit();
5739 
5740   // Mark this as an anonymous struct/union type.
5741   Record->setAnonymousStructOrUnion(true);
5742 
5743   // Add the anonymous struct/union object to the current
5744   // context. We'll be referencing this object when we refer to one of
5745   // its members.
5746   Owner->addDecl(Anon);
5747 
5748   // Inject the members of the anonymous struct/union into the owning
5749   // context and into the identifier resolver chain for name lookup
5750   // purposes.
5751   SmallVector<NamedDecl*, 2> Chain;
5752   Chain.push_back(Anon);
5753 
5754   if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS, SC,
5755                                           Chain))
5756     Invalid = true;
5757 
5758   if (VarDecl *NewVD = dyn_cast<VarDecl>(Anon)) {
5759     if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
5760       MangleNumberingContext *MCtx;
5761       Decl *ManglingContextDecl;
5762       std::tie(MCtx, ManglingContextDecl) =
5763           getCurrentMangleNumberContext(NewVD->getDeclContext());
5764       if (MCtx) {
5765         Context.setManglingNumber(
5766             NewVD, MCtx->getManglingNumber(
5767                        NewVD, getMSManglingNumber(getLangOpts(), S)));
5768         Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
5769       }
5770     }
5771   }
5772 
5773   if (Invalid)
5774     Anon->setInvalidDecl();
5775 
5776   return Anon;
5777 }
5778 
5779 Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
5780                                            RecordDecl *Record) {
5781   assert(Record && "expected a record!");
5782 
5783   // Mock up a declarator.
5784   Declarator Dc(DS, ParsedAttributesView::none(), DeclaratorContext::TypeName);
5785   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc);
5786   assert(TInfo && "couldn't build declarator info for anonymous struct");
5787 
5788   auto *ParentDecl = cast<RecordDecl>(CurContext);
5789   QualType RecTy = Context.getTypeDeclType(Record);
5790 
5791   // Create a declaration for this anonymous struct.
5792   NamedDecl *Anon =
5793       FieldDecl::Create(Context, ParentDecl, DS.getBeginLoc(), DS.getBeginLoc(),
5794                         /*IdentifierInfo=*/nullptr, RecTy, TInfo,
5795                         /*BitWidth=*/nullptr, /*Mutable=*/false,
5796                         /*InitStyle=*/ICIS_NoInit);
5797   Anon->setImplicit();
5798 
5799   // Add the anonymous struct object to the current context.
5800   CurContext->addDecl(Anon);
5801 
5802   // Inject the members of the anonymous struct into the current
5803   // context and into the identifier resolver chain for name lookup
5804   // purposes.
5805   SmallVector<NamedDecl*, 2> Chain;
5806   Chain.push_back(Anon);
5807 
5808   RecordDecl *RecordDef = Record->getDefinition();
5809   if (RequireCompleteSizedType(Anon->getLocation(), RecTy,
5810                                diag::err_field_incomplete_or_sizeless) ||
5811       InjectAnonymousStructOrUnionMembers(
5812           *this, S, CurContext, RecordDef, AS_none,
5813           StorageClassSpecToVarDeclStorageClass(DS), Chain)) {
5814     Anon->setInvalidDecl();
5815     ParentDecl->setInvalidDecl();
5816   }
5817 
5818   return Anon;
5819 }
5820 
5821 DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
5822   return GetNameFromUnqualifiedId(D.getName());
5823 }
5824 
5825 DeclarationNameInfo
5826 Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
5827   DeclarationNameInfo NameInfo;
5828   NameInfo.setLoc(Name.StartLocation);
5829 
5830   switch (Name.getKind()) {
5831 
5832   case UnqualifiedIdKind::IK_ImplicitSelfParam:
5833   case UnqualifiedIdKind::IK_Identifier:
5834     NameInfo.setName(Name.Identifier);
5835     return NameInfo;
5836 
5837   case UnqualifiedIdKind::IK_DeductionGuideName: {
5838     // C++ [temp.deduct.guide]p3:
5839     //   The simple-template-id shall name a class template specialization.
5840     //   The template-name shall be the same identifier as the template-name
5841     //   of the simple-template-id.
5842     // These together intend to imply that the template-name shall name a
5843     // class template.
5844     // FIXME: template<typename T> struct X {};
5845     //        template<typename T> using Y = X<T>;
5846     //        Y(int) -> Y<int>;
5847     //   satisfies these rules but does not name a class template.
5848     TemplateName TN = Name.TemplateName.get().get();
5849     auto *Template = TN.getAsTemplateDecl();
5850     if (!Template || !isa<ClassTemplateDecl>(Template)) {
5851       Diag(Name.StartLocation,
5852            diag::err_deduction_guide_name_not_class_template)
5853         << (int)getTemplateNameKindForDiagnostics(TN) << TN;
5854       if (Template)
5855         NoteTemplateLocation(*Template);
5856       return DeclarationNameInfo();
5857     }
5858 
5859     NameInfo.setName(
5860         Context.DeclarationNames.getCXXDeductionGuideName(Template));
5861     return NameInfo;
5862   }
5863 
5864   case UnqualifiedIdKind::IK_OperatorFunctionId:
5865     NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
5866                                            Name.OperatorFunctionId.Operator));
5867     NameInfo.setCXXOperatorNameRange(SourceRange(
5868         Name.OperatorFunctionId.SymbolLocations[0], Name.EndLocation));
5869     return NameInfo;
5870 
5871   case UnqualifiedIdKind::IK_LiteralOperatorId:
5872     NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
5873                                                            Name.Identifier));
5874     NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
5875     return NameInfo;
5876 
5877   case UnqualifiedIdKind::IK_ConversionFunctionId: {
5878     TypeSourceInfo *TInfo;
5879     QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
5880     if (Ty.isNull())
5881       return DeclarationNameInfo();
5882     NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
5883                                                Context.getCanonicalType(Ty)));
5884     NameInfo.setNamedTypeInfo(TInfo);
5885     return NameInfo;
5886   }
5887 
5888   case UnqualifiedIdKind::IK_ConstructorName: {
5889     TypeSourceInfo *TInfo;
5890     QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
5891     if (Ty.isNull())
5892       return DeclarationNameInfo();
5893     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
5894                                               Context.getCanonicalType(Ty)));
5895     NameInfo.setNamedTypeInfo(TInfo);
5896     return NameInfo;
5897   }
5898 
5899   case UnqualifiedIdKind::IK_ConstructorTemplateId: {
5900     // In well-formed code, we can only have a constructor
5901     // template-id that refers to the current context, so go there
5902     // to find the actual type being constructed.
5903     CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
5904     if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
5905       return DeclarationNameInfo();
5906 
5907     // Determine the type of the class being constructed.
5908     QualType CurClassType = Context.getTypeDeclType(CurClass);
5909 
5910     // FIXME: Check two things: that the template-id names the same type as
5911     // CurClassType, and that the template-id does not occur when the name
5912     // was qualified.
5913 
5914     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
5915                                     Context.getCanonicalType(CurClassType)));
5916     // FIXME: should we retrieve TypeSourceInfo?
5917     NameInfo.setNamedTypeInfo(nullptr);
5918     return NameInfo;
5919   }
5920 
5921   case UnqualifiedIdKind::IK_DestructorName: {
5922     TypeSourceInfo *TInfo;
5923     QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
5924     if (Ty.isNull())
5925       return DeclarationNameInfo();
5926     NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
5927                                               Context.getCanonicalType(Ty)));
5928     NameInfo.setNamedTypeInfo(TInfo);
5929     return NameInfo;
5930   }
5931 
5932   case UnqualifiedIdKind::IK_TemplateId: {
5933     TemplateName TName = Name.TemplateId->Template.get();
5934     SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
5935     return Context.getNameForTemplate(TName, TNameLoc);
5936   }
5937 
5938   } // switch (Name.getKind())
5939 
5940   llvm_unreachable("Unknown name kind");
5941 }
5942 
5943 static QualType getCoreType(QualType Ty) {
5944   do {
5945     if (Ty->isPointerOrReferenceType())
5946       Ty = Ty->getPointeeType();
5947     else if (Ty->isArrayType())
5948       Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
5949     else
5950       return Ty.withoutLocalFastQualifiers();
5951   } while (true);
5952 }
5953 
5954 /// hasSimilarParameters - Determine whether the C++ functions Declaration
5955 /// and Definition have "nearly" matching parameters. This heuristic is
5956 /// used to improve diagnostics in the case where an out-of-line function
5957 /// definition doesn't match any declaration within the class or namespace.
5958 /// Also sets Params to the list of indices to the parameters that differ
5959 /// between the declaration and the definition. If hasSimilarParameters
5960 /// returns true and Params is empty, then all of the parameters match.
5961 static bool hasSimilarParameters(ASTContext &Context,
5962                                      FunctionDecl *Declaration,
5963                                      FunctionDecl *Definition,
5964                                      SmallVectorImpl<unsigned> &Params) {
5965   Params.clear();
5966   if (Declaration->param_size() != Definition->param_size())
5967     return false;
5968   for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
5969     QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
5970     QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
5971 
5972     // The parameter types are identical
5973     if (Context.hasSameUnqualifiedType(DefParamTy, DeclParamTy))
5974       continue;
5975 
5976     QualType DeclParamBaseTy = getCoreType(DeclParamTy);
5977     QualType DefParamBaseTy = getCoreType(DefParamTy);
5978     const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
5979     const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
5980 
5981     if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
5982         (DeclTyName && DeclTyName == DefTyName))
5983       Params.push_back(Idx);
5984     else  // The two parameters aren't even close
5985       return false;
5986   }
5987 
5988   return true;
5989 }
5990 
5991 /// RebuildDeclaratorInCurrentInstantiation - Checks whether the given
5992 /// declarator needs to be rebuilt in the current instantiation.
5993 /// Any bits of declarator which appear before the name are valid for
5994 /// consideration here.  That's specifically the type in the decl spec
5995 /// and the base type in any member-pointer chunks.
5996 static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
5997                                                     DeclarationName Name) {
5998   // The types we specifically need to rebuild are:
5999   //   - typenames, typeofs, and decltypes
6000   //   - types which will become injected class names
6001   // Of course, we also need to rebuild any type referencing such a
6002   // type.  It's safest to just say "dependent", but we call out a
6003   // few cases here.
6004 
6005   DeclSpec &DS = D.getMutableDeclSpec();
6006   switch (DS.getTypeSpecType()) {
6007   case DeclSpec::TST_typename:
6008   case DeclSpec::TST_typeofType:
6009   case DeclSpec::TST_typeof_unqualType:
6010 #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case DeclSpec::TST_##Trait:
6011 #include "clang/Basic/TransformTypeTraits.def"
6012   case DeclSpec::TST_atomic: {
6013     // Grab the type from the parser.
6014     TypeSourceInfo *TSI = nullptr;
6015     QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
6016     if (T.isNull() || !T->isInstantiationDependentType()) break;
6017 
6018     // Make sure there's a type source info.  This isn't really much
6019     // of a waste; most dependent types should have type source info
6020     // attached already.
6021     if (!TSI)
6022       TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
6023 
6024     // Rebuild the type in the current instantiation.
6025     TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
6026     if (!TSI) return true;
6027 
6028     // Store the new type back in the decl spec.
6029     ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
6030     DS.UpdateTypeRep(LocType);
6031     break;
6032   }
6033 
6034   case DeclSpec::TST_decltype:
6035   case DeclSpec::TST_typeof_unqualExpr:
6036   case DeclSpec::TST_typeofExpr: {
6037     Expr *E = DS.getRepAsExpr();
6038     ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
6039     if (Result.isInvalid()) return true;
6040     DS.UpdateExprRep(Result.get());
6041     break;
6042   }
6043 
6044   default:
6045     // Nothing to do for these decl specs.
6046     break;
6047   }
6048 
6049   // It doesn't matter what order we do this in.
6050   for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
6051     DeclaratorChunk &Chunk = D.getTypeObject(I);
6052 
6053     // The only type information in the declarator which can come
6054     // before the declaration name is the base type of a member
6055     // pointer.
6056     if (Chunk.Kind != DeclaratorChunk::MemberPointer)
6057       continue;
6058 
6059     // Rebuild the scope specifier in-place.
6060     CXXScopeSpec &SS = Chunk.Mem.Scope();
6061     if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
6062       return true;
6063   }
6064 
6065   return false;
6066 }
6067 
6068 /// Returns true if the declaration is declared in a system header or from a
6069 /// system macro.
6070 static bool isFromSystemHeader(SourceManager &SM, const Decl *D) {
6071   return SM.isInSystemHeader(D->getLocation()) ||
6072          SM.isInSystemMacro(D->getLocation());
6073 }
6074 
6075 void Sema::warnOnReservedIdentifier(const NamedDecl *D) {
6076   // Avoid warning twice on the same identifier, and don't warn on redeclaration
6077   // of system decl.
6078   if (D->getPreviousDecl() || D->isImplicit())
6079     return;
6080   ReservedIdentifierStatus Status = D->isReserved(getLangOpts());
6081   if (Status != ReservedIdentifierStatus::NotReserved &&
6082       !isFromSystemHeader(Context.getSourceManager(), D)) {
6083     Diag(D->getLocation(), diag::warn_reserved_extern_symbol)
6084         << D << static_cast<int>(Status);
6085   }
6086 }
6087 
6088 Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
6089   D.setFunctionDefinitionKind(FunctionDefinitionKind::Declaration);
6090 
6091   // Check if we are in an `omp begin/end declare variant` scope. Handle this
6092   // declaration only if the `bind_to_declaration` extension is set.
6093   SmallVector<FunctionDecl *, 4> Bases;
6094   if (LangOpts.OpenMP && OpenMP().isInOpenMPDeclareVariantScope())
6095     if (OpenMP().getOMPTraitInfoForSurroundingScope()->isExtensionActive(
6096             llvm::omp::TraitProperty::
6097                 implementation_extension_bind_to_declaration))
6098       OpenMP().ActOnStartOfFunctionDefinitionInOpenMPDeclareVariantScope(
6099           S, D, MultiTemplateParamsArg(), Bases);
6100 
6101   Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
6102 
6103   if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
6104       Dcl && Dcl->getDeclContext()->isFileContext())
6105     Dcl->setTopLevelDeclInObjCContainer();
6106 
6107   if (!Bases.empty())
6108     OpenMP().ActOnFinishedFunctionDefinitionInOpenMPDeclareVariantScope(Dcl,
6109                                                                         Bases);
6110 
6111   return Dcl;
6112 }
6113 
6114 bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
6115                                    DeclarationNameInfo NameInfo) {
6116   DeclarationName Name = NameInfo.getName();
6117 
6118   CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC);
6119   while (Record && Record->isAnonymousStructOrUnion())
6120     Record = dyn_cast<CXXRecordDecl>(Record->getParent());
6121   if (Record && Record->getIdentifier() && Record->getDeclName() == Name) {
6122     Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
6123     return true;
6124   }
6125 
6126   return false;
6127 }
6128 
6129 bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
6130                                         DeclarationName Name,
6131                                         SourceLocation Loc,
6132                                         TemplateIdAnnotation *TemplateId,
6133                                         bool IsMemberSpecialization) {
6134   assert(SS.isValid() && "diagnoseQualifiedDeclaration called for declaration "
6135                          "without nested-name-specifier");
6136   DeclContext *Cur = CurContext;
6137   while (isa<LinkageSpecDecl>(Cur) || isa<CapturedDecl>(Cur))
6138     Cur = Cur->getParent();
6139 
6140   // If the user provided a superfluous scope specifier that refers back to the
6141   // class in which the entity is already declared, diagnose and ignore it.
6142   //
6143   // class X {
6144   //   void X::f();
6145   // };
6146   //
6147   // Note, it was once ill-formed to give redundant qualification in all
6148   // contexts, but that rule was removed by DR482.
6149   if (Cur->Equals(DC)) {
6150     if (Cur->isRecord()) {
6151       Diag(Loc, LangOpts.MicrosoftExt ? diag::warn_member_extra_qualification
6152                                       : diag::err_member_extra_qualification)
6153         << Name << FixItHint::CreateRemoval(SS.getRange());
6154       SS.clear();
6155     } else {
6156       Diag(Loc, diag::warn_namespace_member_extra_qualification) << Name;
6157     }
6158     return false;
6159   }
6160 
6161   // Check whether the qualifying scope encloses the scope of the original
6162   // declaration. For a template-id, we perform the checks in
6163   // CheckTemplateSpecializationScope.
6164   if (!Cur->Encloses(DC) && !(TemplateId || IsMemberSpecialization)) {
6165     if (Cur->isRecord())
6166       Diag(Loc, diag::err_member_qualification)
6167         << Name << SS.getRange();
6168     else if (isa<TranslationUnitDecl>(DC))
6169       Diag(Loc, diag::err_invalid_declarator_global_scope)
6170         << Name << SS.getRange();
6171     else if (isa<FunctionDecl>(Cur))
6172       Diag(Loc, diag::err_invalid_declarator_in_function)
6173         << Name << SS.getRange();
6174     else if (isa<BlockDecl>(Cur))
6175       Diag(Loc, diag::err_invalid_declarator_in_block)
6176         << Name << SS.getRange();
6177     else if (isa<ExportDecl>(Cur)) {
6178       if (!isa<NamespaceDecl>(DC))
6179         Diag(Loc, diag::err_export_non_namespace_scope_name)
6180             << Name << SS.getRange();
6181       else
6182         // The cases that DC is not NamespaceDecl should be handled in
6183         // CheckRedeclarationExported.
6184         return false;
6185     } else
6186       Diag(Loc, diag::err_invalid_declarator_scope)
6187       << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
6188 
6189     return true;
6190   }
6191 
6192   if (Cur->isRecord()) {
6193     // Cannot qualify members within a class.
6194     Diag(Loc, diag::err_member_qualification)
6195       << Name << SS.getRange();
6196     SS.clear();
6197 
6198     // C++ constructors and destructors with incorrect scopes can break
6199     // our AST invariants by having the wrong underlying types. If
6200     // that's the case, then drop this declaration entirely.
6201     if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
6202          Name.getNameKind() == DeclarationName::CXXDestructorName) &&
6203         !Context.hasSameType(Name.getCXXNameType(),
6204                              Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
6205       return true;
6206 
6207     return false;
6208   }
6209 
6210   // C++23 [temp.names]p5:
6211   //   The keyword template shall not appear immediately after a declarative
6212   //   nested-name-specifier.
6213   //
6214   // First check the template-id (if any), and then check each component of the
6215   // nested-name-specifier in reverse order.
6216   //
6217   // FIXME: nested-name-specifiers in friend declarations are declarative,
6218   // but we don't call diagnoseQualifiedDeclaration for them. We should.
6219   if (TemplateId && TemplateId->TemplateKWLoc.isValid())
6220     Diag(Loc, diag::ext_template_after_declarative_nns)
6221         << FixItHint::CreateRemoval(TemplateId->TemplateKWLoc);
6222 
6223   NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
6224   do {
6225     if (SpecLoc.getNestedNameSpecifier()->getKind() ==
6226         NestedNameSpecifier::TypeSpecWithTemplate)
6227       Diag(Loc, diag::ext_template_after_declarative_nns)
6228           << FixItHint::CreateRemoval(
6229                  SpecLoc.getTypeLoc().getTemplateKeywordLoc());
6230 
6231     if (const Type *T = SpecLoc.getNestedNameSpecifier()->getAsType()) {
6232       if (const auto *TST = T->getAsAdjusted<TemplateSpecializationType>()) {
6233         // C++23 [expr.prim.id.qual]p3:
6234         //   [...] If a nested-name-specifier N is declarative and has a
6235         //   simple-template-id with a template argument list A that involves a
6236         //   template parameter, let T be the template nominated by N without A.
6237         //   T shall be a class template.
6238         if (TST->isDependentType() && TST->isTypeAlias())
6239           Diag(Loc, diag::ext_alias_template_in_declarative_nns)
6240               << SpecLoc.getLocalSourceRange();
6241       } else if (T->isDecltypeType() || T->getAsAdjusted<PackIndexingType>()) {
6242         // C++23 [expr.prim.id.qual]p2:
6243         //   [...] A declarative nested-name-specifier shall not have a
6244         //   computed-type-specifier.
6245         //
6246         // CWG2858 changed this from 'decltype-specifier' to
6247         // 'computed-type-specifier'.
6248         Diag(Loc, diag::err_computed_type_in_declarative_nns)
6249             << T->isDecltypeType() << SpecLoc.getTypeLoc().getSourceRange();
6250       }
6251     }
6252   } while ((SpecLoc = SpecLoc.getPrefix()));
6253 
6254   return false;
6255 }
6256 
6257 NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
6258                                   MultiTemplateParamsArg TemplateParamLists) {
6259   // TODO: consider using NameInfo for diagnostic.
6260   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
6261   DeclarationName Name = NameInfo.getName();
6262 
6263   // All of these full declarators require an identifier.  If it doesn't have
6264   // one, the ParsedFreeStandingDeclSpec action should be used.
6265   if (D.isDecompositionDeclarator()) {
6266     return ActOnDecompositionDeclarator(S, D, TemplateParamLists);
6267   } else if (!Name) {
6268     if (!D.isInvalidType())  // Reject this if we think it is valid.
6269       Diag(D.getDeclSpec().getBeginLoc(), diag::err_declarator_need_ident)
6270           << D.getDeclSpec().getSourceRange() << D.getSourceRange();
6271     return nullptr;
6272   } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
6273     return nullptr;
6274 
6275   DeclContext *DC = CurContext;
6276   if (D.getCXXScopeSpec().isInvalid())
6277     D.setInvalidType();
6278   else if (D.getCXXScopeSpec().isSet()) {
6279     if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
6280                                         UPPC_DeclarationQualifier))
6281       return nullptr;
6282 
6283     bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
6284     DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
6285     if (!DC || isa<EnumDecl>(DC)) {
6286       // If we could not compute the declaration context, it's because the
6287       // declaration context is dependent but does not refer to a class,
6288       // class template, or class template partial specialization. Complain
6289       // and return early, to avoid the coming semantic disaster.
6290       Diag(D.getIdentifierLoc(),
6291            diag::err_template_qualified_declarator_no_match)
6292         << D.getCXXScopeSpec().getScopeRep()
6293         << D.getCXXScopeSpec().getRange();
6294       return nullptr;
6295     }
6296     bool IsDependentContext = DC->isDependentContext();
6297 
6298     if (!IsDependentContext &&
6299         RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
6300       return nullptr;
6301 
6302     // If a class is incomplete, do not parse entities inside it.
6303     if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
6304       Diag(D.getIdentifierLoc(),
6305            diag::err_member_def_undefined_record)
6306         << Name << DC << D.getCXXScopeSpec().getRange();
6307       return nullptr;
6308     }
6309     if (!D.getDeclSpec().isFriendSpecified()) {
6310       TemplateIdAnnotation *TemplateId =
6311           D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
6312               ? D.getName().TemplateId
6313               : nullptr;
6314       if (diagnoseQualifiedDeclaration(D.getCXXScopeSpec(), DC, Name,
6315                                        D.getIdentifierLoc(), TemplateId,
6316                                        /*IsMemberSpecialization=*/false)) {
6317         if (DC->isRecord())
6318           return nullptr;
6319 
6320         D.setInvalidType();
6321       }
6322     }
6323 
6324     // Check whether we need to rebuild the type of the given
6325     // declaration in the current instantiation.
6326     if (EnteringContext && IsDependentContext &&
6327         TemplateParamLists.size() != 0) {
6328       ContextRAII SavedContext(*this, DC);
6329       if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
6330         D.setInvalidType();
6331     }
6332   }
6333 
6334   TypeSourceInfo *TInfo = GetTypeForDeclarator(D);
6335   QualType R = TInfo->getType();
6336 
6337   if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
6338                                       UPPC_DeclarationType))
6339     D.setInvalidType();
6340 
6341   LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
6342                         forRedeclarationInCurContext());
6343 
6344   // See if this is a redefinition of a variable in the same scope.
6345   if (!D.getCXXScopeSpec().isSet()) {
6346     bool IsLinkageLookup = false;
6347     bool CreateBuiltins = false;
6348 
6349     // If the declaration we're planning to build will be a function
6350     // or object with linkage, then look for another declaration with
6351     // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
6352     //
6353     // If the declaration we're planning to build will be declared with
6354     // external linkage in the translation unit, create any builtin with
6355     // the same name.
6356     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
6357       /* Do nothing*/;
6358     else if (CurContext->isFunctionOrMethod() &&
6359              (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern ||
6360               R->isFunctionType())) {
6361       IsLinkageLookup = true;
6362       CreateBuiltins =
6363           CurContext->getEnclosingNamespaceContext()->isTranslationUnit();
6364     } else if (CurContext->getRedeclContext()->isTranslationUnit() &&
6365                D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
6366       CreateBuiltins = true;
6367 
6368     if (IsLinkageLookup) {
6369       Previous.clear(LookupRedeclarationWithLinkage);
6370       Previous.setRedeclarationKind(
6371           RedeclarationKind::ForExternalRedeclaration);
6372     }
6373 
6374     LookupName(Previous, S, CreateBuiltins);
6375   } else { // Something like "int foo::x;"
6376     LookupQualifiedName(Previous, DC);
6377 
6378     // C++ [dcl.meaning]p1:
6379     //   When the declarator-id is qualified, the declaration shall refer to a
6380     //  previously declared member of the class or namespace to which the
6381     //  qualifier refers (or, in the case of a namespace, of an element of the
6382     //  inline namespace set of that namespace (7.3.1)) or to a specialization
6383     //  thereof; [...]
6384     //
6385     // Note that we already checked the context above, and that we do not have
6386     // enough information to make sure that Previous contains the declaration
6387     // we want to match. For example, given:
6388     //
6389     //   class X {
6390     //     void f();
6391     //     void f(float);
6392     //   };
6393     //
6394     //   void X::f(int) { } // ill-formed
6395     //
6396     // In this case, Previous will point to the overload set
6397     // containing the two f's declared in X, but neither of them
6398     // matches.
6399 
6400     RemoveUsingDecls(Previous);
6401   }
6402 
6403   if (auto *TPD = Previous.getAsSingle<NamedDecl>();
6404       TPD && TPD->isTemplateParameter()) {
6405     // Older versions of clang allowed the names of function/variable templates
6406     // to shadow the names of their template parameters. For the compatibility
6407     // purposes we detect such cases and issue a default-to-error warning that
6408     // can be disabled with -Wno-strict-primary-template-shadow.
6409     if (!D.isInvalidType()) {
6410       bool AllowForCompatibility = false;
6411       if (Scope *DeclParent = S->getDeclParent();
6412           Scope *TemplateParamParent = S->getTemplateParamParent()) {
6413         AllowForCompatibility = DeclParent->Contains(*TemplateParamParent) &&
6414                                 TemplateParamParent->isDeclScope(TPD);
6415       }
6416       DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), TPD,
6417                                       AllowForCompatibility);
6418     }
6419 
6420     // Just pretend that we didn't see the previous declaration.
6421     Previous.clear();
6422   }
6423 
6424   if (!R->isFunctionType() && DiagnoseClassNameShadow(DC, NameInfo))
6425     // Forget that the previous declaration is the injected-class-name.
6426     Previous.clear();
6427 
6428   // In C++, the previous declaration we find might be a tag type
6429   // (class or enum). In this case, the new declaration will hide the
6430   // tag type. Note that this applies to functions, function templates, and
6431   // variables, but not to typedefs (C++ [dcl.typedef]p4) or variable templates.
6432   if (Previous.isSingleTagDecl() &&
6433       D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
6434       (TemplateParamLists.size() == 0 || R->isFunctionType()))
6435     Previous.clear();
6436 
6437   // Check that there are no default arguments other than in the parameters
6438   // of a function declaration (C++ only).
6439   if (getLangOpts().CPlusPlus)
6440     CheckExtraCXXDefaultArguments(D);
6441 
6442   /// Get the innermost enclosing declaration scope.
6443   S = S->getDeclParent();
6444 
6445   NamedDecl *New;
6446 
6447   bool AddToScope = true;
6448   if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
6449     if (TemplateParamLists.size()) {
6450       Diag(D.getIdentifierLoc(), diag::err_template_typedef);
6451       return nullptr;
6452     }
6453 
6454     New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
6455   } else if (R->isFunctionType()) {
6456     New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
6457                                   TemplateParamLists,
6458                                   AddToScope);
6459   } else {
6460     New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists,
6461                                   AddToScope);
6462   }
6463 
6464   if (!New)
6465     return nullptr;
6466 
6467   // If this has an identifier and is not a function template specialization,
6468   // add it to the scope stack.
6469   if (New->getDeclName() && AddToScope)
6470     PushOnScopeChains(New, S);
6471 
6472   if (OpenMP().isInOpenMPDeclareTargetContext())
6473     OpenMP().checkDeclIsAllowedInOpenMPTarget(nullptr, New);
6474 
6475   return New;
6476 }
6477 
6478 /// Helper method to turn variable array types into constant array
6479 /// types in certain situations which would otherwise be errors (for
6480 /// GCC compatibility).
6481 static QualType TryToFixInvalidVariablyModifiedType(QualType T,
6482                                                     ASTContext &Context,
6483                                                     bool &SizeIsNegative,
6484                                                     llvm::APSInt &Oversized) {
6485   // This method tries to turn a variable array into a constant
6486   // array even when the size isn't an ICE.  This is necessary
6487   // for compatibility with code that depends on gcc's buggy
6488   // constant expression folding, like struct {char x[(int)(char*)2];}
6489   SizeIsNegative = false;
6490   Oversized = 0;
6491 
6492   if (T->isDependentType())
6493     return QualType();
6494 
6495   QualifierCollector Qs;
6496   const Type *Ty = Qs.strip(T);
6497 
6498   if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
6499     QualType Pointee = PTy->getPointeeType();
6500     QualType FixedType =
6501         TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
6502                                             Oversized);
6503     if (FixedType.isNull()) return FixedType;
6504     FixedType = Context.getPointerType(FixedType);
6505     return Qs.apply(Context, FixedType);
6506   }
6507   if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
6508     QualType Inner = PTy->getInnerType();
6509     QualType FixedType =
6510         TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
6511                                             Oversized);
6512     if (FixedType.isNull()) return FixedType;
6513     FixedType = Context.getParenType(FixedType);
6514     return Qs.apply(Context, FixedType);
6515   }
6516 
6517   const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
6518   if (!VLATy)
6519     return QualType();
6520 
6521   QualType ElemTy = VLATy->getElementType();
6522   if (ElemTy->isVariablyModifiedType()) {
6523     ElemTy = TryToFixInvalidVariablyModifiedType(ElemTy, Context,
6524                                                  SizeIsNegative, Oversized);
6525     if (ElemTy.isNull())
6526       return QualType();
6527   }
6528 
6529   Expr::EvalResult Result;
6530   if (!VLATy->getSizeExpr() ||
6531       !VLATy->getSizeExpr()->EvaluateAsInt(Result, Context))
6532     return QualType();
6533 
6534   llvm::APSInt Res = Result.Val.getInt();
6535 
6536   // Check whether the array size is negative.
6537   if (Res.isSigned() && Res.isNegative()) {
6538     SizeIsNegative = true;
6539     return QualType();
6540   }
6541 
6542   // Check whether the array is too large to be addressed.
6543   unsigned ActiveSizeBits =
6544       (!ElemTy->isDependentType() && !ElemTy->isVariablyModifiedType() &&
6545        !ElemTy->isIncompleteType() && !ElemTy->isUndeducedType())
6546           ? ConstantArrayType::getNumAddressingBits(Context, ElemTy, Res)
6547           : Res.getActiveBits();
6548   if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
6549     Oversized = Res;
6550     return QualType();
6551   }
6552 
6553   QualType FoldedArrayType = Context.getConstantArrayType(
6554       ElemTy, Res, VLATy->getSizeExpr(), ArraySizeModifier::Normal, 0);
6555   return Qs.apply(Context, FoldedArrayType);
6556 }
6557 
6558 static void
6559 FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
6560   SrcTL = SrcTL.getUnqualifiedLoc();
6561   DstTL = DstTL.getUnqualifiedLoc();
6562   if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
6563     PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
6564     FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
6565                                       DstPTL.getPointeeLoc());
6566     DstPTL.setStarLoc(SrcPTL.getStarLoc());
6567     return;
6568   }
6569   if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
6570     ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
6571     FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
6572                                       DstPTL.getInnerLoc());
6573     DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
6574     DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
6575     return;
6576   }
6577   ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
6578   ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
6579   TypeLoc SrcElemTL = SrcATL.getElementLoc();
6580   TypeLoc DstElemTL = DstATL.getElementLoc();
6581   if (VariableArrayTypeLoc SrcElemATL =
6582           SrcElemTL.getAs<VariableArrayTypeLoc>()) {
6583     ConstantArrayTypeLoc DstElemATL = DstElemTL.castAs<ConstantArrayTypeLoc>();
6584     FixInvalidVariablyModifiedTypeLoc(SrcElemATL, DstElemATL);
6585   } else {
6586     DstElemTL.initializeFullCopy(SrcElemTL);
6587   }
6588   DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
6589   DstATL.setSizeExpr(SrcATL.getSizeExpr());
6590   DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
6591 }
6592 
6593 /// Helper method to turn variable array types into constant array
6594 /// types in certain situations which would otherwise be errors (for
6595 /// GCC compatibility).
6596 static TypeSourceInfo*
6597 TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
6598                                               ASTContext &Context,
6599                                               bool &SizeIsNegative,
6600                                               llvm::APSInt &Oversized) {
6601   QualType FixedTy
6602     = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
6603                                           SizeIsNegative, Oversized);
6604   if (FixedTy.isNull())
6605     return nullptr;
6606   TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
6607   FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
6608                                     FixedTInfo->getTypeLoc());
6609   return FixedTInfo;
6610 }
6611 
6612 bool Sema::tryToFixVariablyModifiedVarType(TypeSourceInfo *&TInfo,
6613                                            QualType &T, SourceLocation Loc,
6614                                            unsigned FailedFoldDiagID) {
6615   bool SizeIsNegative;
6616   llvm::APSInt Oversized;
6617   TypeSourceInfo *FixedTInfo = TryToFixInvalidVariablyModifiedTypeSourceInfo(
6618       TInfo, Context, SizeIsNegative, Oversized);
6619   if (FixedTInfo) {
6620     Diag(Loc, diag::ext_vla_folded_to_constant);
6621     TInfo = FixedTInfo;
6622     T = FixedTInfo->getType();
6623     return true;
6624   }
6625 
6626   if (SizeIsNegative)
6627     Diag(Loc, diag::err_typecheck_negative_array_size);
6628   else if (Oversized.getBoolValue())
6629     Diag(Loc, diag::err_array_too_large) << toString(Oversized, 10);
6630   else if (FailedFoldDiagID)
6631     Diag(Loc, FailedFoldDiagID);
6632   return false;
6633 }
6634 
6635 void
6636 Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) {
6637   if (!getLangOpts().CPlusPlus &&
6638       ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit())
6639     // Don't need to track declarations in the TU in C.
6640     return;
6641 
6642   // Note that we have a locally-scoped external with this name.
6643   Context.getExternCContextDecl()->makeDeclVisibleInContext(ND);
6644 }
6645 
6646 NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
6647   // FIXME: We can have multiple results via __attribute__((overloadable)).
6648   auto Result = Context.getExternCContextDecl()->lookup(Name);
6649   return Result.empty() ? nullptr : *Result.begin();
6650 }
6651 
6652 void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) {
6653   // FIXME: We should probably indicate the identifier in question to avoid
6654   // confusion for constructs like "virtual int a(), b;"
6655   if (DS.isVirtualSpecified())
6656     Diag(DS.getVirtualSpecLoc(),
6657          diag::err_virtual_non_function);
6658 
6659   if (DS.hasExplicitSpecifier())
6660     Diag(DS.getExplicitSpecLoc(),
6661          diag::err_explicit_non_function);
6662 
6663   if (DS.isNoreturnSpecified())
6664     Diag(DS.getNoreturnSpecLoc(),
6665          diag::err_noreturn_non_function);
6666 }
6667 
6668 NamedDecl*
6669 Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
6670                              TypeSourceInfo *TInfo, LookupResult &Previous) {
6671   // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
6672   if (D.getCXXScopeSpec().isSet()) {
6673     Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
6674       << D.getCXXScopeSpec().getRange();
6675     D.setInvalidType();
6676     // Pretend we didn't see the scope specifier.
6677     DC = CurContext;
6678     Previous.clear();
6679   }
6680 
6681   DiagnoseFunctionSpecifiers(D.getDeclSpec());
6682 
6683   if (D.getDeclSpec().isInlineSpecified())
6684     Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
6685         << getLangOpts().CPlusPlus17;
6686   if (D.getDeclSpec().hasConstexprSpecifier())
6687     Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
6688         << 1 << static_cast<int>(D.getDeclSpec().getConstexprSpecifier());
6689 
6690   if (D.getName().getKind() != UnqualifiedIdKind::IK_Identifier) {
6691     if (D.getName().getKind() == UnqualifiedIdKind::IK_DeductionGuideName)
6692       Diag(D.getName().StartLocation,
6693            diag::err_deduction_guide_invalid_specifier)
6694           << "typedef";
6695     else
6696       Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
6697           << D.getName().getSourceRange();
6698     return nullptr;
6699   }
6700 
6701   TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
6702   if (!NewTD) return nullptr;
6703 
6704   // Handle attributes prior to checking for duplicates in MergeVarDecl
6705   ProcessDeclAttributes(S, NewTD, D);
6706 
6707   CheckTypedefForVariablyModifiedType(S, NewTD);
6708 
6709   bool Redeclaration = D.isRedeclaration();
6710   NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
6711   D.setRedeclaration(Redeclaration);
6712   return ND;
6713 }
6714 
6715 void
6716 Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
6717   // C99 6.7.7p2: If a typedef name specifies a variably modified type
6718   // then it shall have block scope.
6719   // Note that variably modified types must be fixed before merging the decl so
6720   // that redeclarations will match.
6721   TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
6722   QualType T = TInfo->getType();
6723   if (T->isVariablyModifiedType()) {
6724     setFunctionHasBranchProtectedScope();
6725 
6726     if (S->getFnParent() == nullptr) {
6727       bool SizeIsNegative;
6728       llvm::APSInt Oversized;
6729       TypeSourceInfo *FixedTInfo =
6730         TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
6731                                                       SizeIsNegative,
6732                                                       Oversized);
6733       if (FixedTInfo) {
6734         Diag(NewTD->getLocation(), diag::ext_vla_folded_to_constant);
6735         NewTD->setTypeSourceInfo(FixedTInfo);
6736       } else {
6737         if (SizeIsNegative)
6738           Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
6739         else if (T->isVariableArrayType())
6740           Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
6741         else if (Oversized.getBoolValue())
6742           Diag(NewTD->getLocation(), diag::err_array_too_large)
6743             << toString(Oversized, 10);
6744         else
6745           Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
6746         NewTD->setInvalidDecl();
6747       }
6748     }
6749   }
6750 }
6751 
6752 NamedDecl*
6753 Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
6754                            LookupResult &Previous, bool &Redeclaration) {
6755 
6756   // Find the shadowed declaration before filtering for scope.
6757   NamedDecl *ShadowedDecl = getShadowedDeclaration(NewTD, Previous);
6758 
6759   // Merge the decl with the existing one if appropriate. If the decl is
6760   // in an outer scope, it isn't the same thing.
6761   FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/false,
6762                        /*AllowInlineNamespace*/false);
6763   filterNonConflictingPreviousTypedefDecls(*this, NewTD, Previous);
6764   if (!Previous.empty()) {
6765     Redeclaration = true;
6766     MergeTypedefNameDecl(S, NewTD, Previous);
6767   } else {
6768     inferGslPointerAttribute(NewTD);
6769   }
6770 
6771   if (ShadowedDecl && !Redeclaration)
6772     CheckShadow(NewTD, ShadowedDecl, Previous);
6773 
6774   // If this is the C FILE type, notify the AST context.
6775   if (IdentifierInfo *II = NewTD->getIdentifier())
6776     if (!NewTD->isInvalidDecl() &&
6777         NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
6778       switch (II->getNotableIdentifierID()) {
6779       case tok::NotableIdentifierKind::FILE:
6780         Context.setFILEDecl(NewTD);
6781         break;
6782       case tok::NotableIdentifierKind::jmp_buf:
6783         Context.setjmp_bufDecl(NewTD);
6784         break;
6785       case tok::NotableIdentifierKind::sigjmp_buf:
6786         Context.setsigjmp_bufDecl(NewTD);
6787         break;
6788       case tok::NotableIdentifierKind::ucontext_t:
6789         Context.setucontext_tDecl(NewTD);
6790         break;
6791       case tok::NotableIdentifierKind::float_t:
6792       case tok::NotableIdentifierKind::double_t:
6793         NewTD->addAttr(AvailableOnlyInDefaultEvalMethodAttr::Create(Context));
6794         break;
6795       default:
6796         break;
6797       }
6798     }
6799 
6800   return NewTD;
6801 }
6802 
6803 /// Determines whether the given declaration is an out-of-scope
6804 /// previous declaration.
6805 ///
6806 /// This routine should be invoked when name lookup has found a
6807 /// previous declaration (PrevDecl) that is not in the scope where a
6808 /// new declaration by the same name is being introduced. If the new
6809 /// declaration occurs in a local scope, previous declarations with
6810 /// linkage may still be considered previous declarations (C99
6811 /// 6.2.2p4-5, C++ [basic.link]p6).
6812 ///
6813 /// \param PrevDecl the previous declaration found by name
6814 /// lookup
6815 ///
6816 /// \param DC the context in which the new declaration is being
6817 /// declared.
6818 ///
6819 /// \returns true if PrevDecl is an out-of-scope previous declaration
6820 /// for a new delcaration with the same name.
6821 static bool
6822 isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
6823                                 ASTContext &Context) {
6824   if (!PrevDecl)
6825     return false;
6826 
6827   if (!PrevDecl->hasLinkage())
6828     return false;
6829 
6830   if (Context.getLangOpts().CPlusPlus) {
6831     // C++ [basic.link]p6:
6832     //   If there is a visible declaration of an entity with linkage
6833     //   having the same name and type, ignoring entities declared
6834     //   outside the innermost enclosing namespace scope, the block
6835     //   scope declaration declares that same entity and receives the
6836     //   linkage of the previous declaration.
6837     DeclContext *OuterContext = DC->getRedeclContext();
6838     if (!OuterContext->isFunctionOrMethod())
6839       // This rule only applies to block-scope declarations.
6840       return false;
6841 
6842     DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
6843     if (PrevOuterContext->isRecord())
6844       // We found a member function: ignore it.
6845       return false;
6846 
6847     // Find the innermost enclosing namespace for the new and
6848     // previous declarations.
6849     OuterContext = OuterContext->getEnclosingNamespaceContext();
6850     PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
6851 
6852     // The previous declaration is in a different namespace, so it
6853     // isn't the same function.
6854     if (!OuterContext->Equals(PrevOuterContext))
6855       return false;
6856   }
6857 
6858   return true;
6859 }
6860 
6861 static void SetNestedNameSpecifier(Sema &S, DeclaratorDecl *DD, Declarator &D) {
6862   CXXScopeSpec &SS = D.getCXXScopeSpec();
6863   if (!SS.isSet()) return;
6864   DD->setQualifierInfo(SS.getWithLocInContext(S.Context));
6865 }
6866 
6867 void Sema::deduceOpenCLAddressSpace(ValueDecl *Decl) {
6868   if (Decl->getType().hasAddressSpace())
6869     return;
6870   if (Decl->getType()->isDependentType())
6871     return;
6872   if (VarDecl *Var = dyn_cast<VarDecl>(Decl)) {
6873     QualType Type = Var->getType();
6874     if (Type->isSamplerT() || Type->isVoidType())
6875       return;
6876     LangAS ImplAS = LangAS::opencl_private;
6877     // OpenCL C v3.0 s6.7.8 - For OpenCL C 2.0 or with the
6878     // __opencl_c_program_scope_global_variables feature, the address space
6879     // for a variable at program scope or a static or extern variable inside
6880     // a function are inferred to be __global.
6881     if (getOpenCLOptions().areProgramScopeVariablesSupported(getLangOpts()) &&
6882         Var->hasGlobalStorage())
6883       ImplAS = LangAS::opencl_global;
6884     // If the original type from a decayed type is an array type and that array
6885     // type has no address space yet, deduce it now.
6886     if (auto DT = dyn_cast<DecayedType>(Type)) {
6887       auto OrigTy = DT->getOriginalType();
6888       if (!OrigTy.hasAddressSpace() && OrigTy->isArrayType()) {
6889         // Add the address space to the original array type and then propagate
6890         // that to the element type through `getAsArrayType`.
6891         OrigTy = Context.getAddrSpaceQualType(OrigTy, ImplAS);
6892         OrigTy = QualType(Context.getAsArrayType(OrigTy), 0);
6893         // Re-generate the decayed type.
6894         Type = Context.getDecayedType(OrigTy);
6895       }
6896     }
6897     Type = Context.getAddrSpaceQualType(Type, ImplAS);
6898     // Apply any qualifiers (including address space) from the array type to
6899     // the element type. This implements C99 6.7.3p8: "If the specification of
6900     // an array type includes any type qualifiers, the element type is so
6901     // qualified, not the array type."
6902     if (Type->isArrayType())
6903       Type = QualType(Context.getAsArrayType(Type), 0);
6904     Decl->setType(Type);
6905   }
6906 }
6907 
6908 static void checkWeakAttr(Sema &S, NamedDecl &ND) {
6909   // 'weak' only applies to declarations with external linkage.
6910   if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
6911     if (!ND.isExternallyVisible()) {
6912       S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
6913       ND.dropAttr<WeakAttr>();
6914     }
6915   }
6916 }
6917 
6918 static void checkWeakRefAttr(Sema &S, NamedDecl &ND) {
6919   if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
6920     if (ND.isExternallyVisible()) {
6921       S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
6922       ND.dropAttrs<WeakRefAttr, AliasAttr>();
6923     }
6924   }
6925 }
6926 
6927 static void checkAliasAttr(Sema &S, NamedDecl &ND) {
6928   if (auto *VD = dyn_cast<VarDecl>(&ND)) {
6929     if (VD->hasInit()) {
6930       if (const auto *Attr = VD->getAttr<AliasAttr>()) {
6931         assert(VD->isThisDeclarationADefinition() &&
6932                !VD->isExternallyVisible() && "Broken AliasAttr handled late!");
6933         S.Diag(Attr->getLocation(), diag::err_alias_is_definition) << VD << 0;
6934         VD->dropAttr<AliasAttr>();
6935       }
6936     }
6937   }
6938 }
6939 
6940 static void checkSelectAnyAttr(Sema &S, NamedDecl &ND) {
6941   // 'selectany' only applies to externally visible variable declarations.
6942   // It does not apply to functions.
6943   if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) {
6944     if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) {
6945       S.Diag(Attr->getLocation(),
6946              diag::err_attribute_selectany_non_extern_data);
6947       ND.dropAttr<SelectAnyAttr>();
6948     }
6949   }
6950 }
6951 
6952 static void checkHybridPatchableAttr(Sema &S, NamedDecl &ND) {
6953   if (HybridPatchableAttr *Attr = ND.getAttr<HybridPatchableAttr>()) {
6954     if (!ND.isExternallyVisible())
6955       S.Diag(Attr->getLocation(),
6956              diag::warn_attribute_hybrid_patchable_non_extern);
6957   }
6958 }
6959 
6960 static void checkInheritableAttr(Sema &S, NamedDecl &ND) {
6961   if (const InheritableAttr *Attr = getDLLAttr(&ND)) {
6962     auto *VD = dyn_cast<VarDecl>(&ND);
6963     bool IsAnonymousNS = false;
6964     bool IsMicrosoft = S.Context.getTargetInfo().getCXXABI().isMicrosoft();
6965     if (VD) {
6966       const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(VD->getDeclContext());
6967       while (NS && !IsAnonymousNS) {
6968         IsAnonymousNS = NS->isAnonymousNamespace();
6969         NS = dyn_cast<NamespaceDecl>(NS->getParent());
6970       }
6971     }
6972     // dll attributes require external linkage. Static locals may have external
6973     // linkage but still cannot be explicitly imported or exported.
6974     // In Microsoft mode, a variable defined in anonymous namespace must have
6975     // external linkage in order to be exported.
6976     bool AnonNSInMicrosoftMode = IsAnonymousNS && IsMicrosoft;
6977     if ((ND.isExternallyVisible() && AnonNSInMicrosoftMode) ||
6978         (!AnonNSInMicrosoftMode &&
6979          (!ND.isExternallyVisible() || (VD && VD->isStaticLocal())))) {
6980       S.Diag(ND.getLocation(), diag::err_attribute_dll_not_extern)
6981         << &ND << Attr;
6982       ND.setInvalidDecl();
6983     }
6984   }
6985 }
6986 
6987 static void checkLifetimeBoundAttr(Sema &S, NamedDecl &ND) {
6988   // Check the attributes on the function type and function params, if any.
6989   if (const auto *FD = dyn_cast<FunctionDecl>(&ND)) {
6990     FD = FD->getMostRecentDecl();
6991     // Don't declare this variable in the second operand of the for-statement;
6992     // GCC miscompiles that by ending its lifetime before evaluating the
6993     // third operand. See gcc.gnu.org/PR86769.
6994     AttributedTypeLoc ATL;
6995     for (TypeLoc TL = FD->getTypeSourceInfo()->getTypeLoc();
6996          (ATL = TL.getAsAdjusted<AttributedTypeLoc>());
6997          TL = ATL.getModifiedLoc()) {
6998       // The [[lifetimebound]] attribute can be applied to the implicit object
6999       // parameter of a non-static member function (other than a ctor or dtor)
7000       // by applying it to the function type.
7001       if (const auto *A = ATL.getAttrAs<LifetimeBoundAttr>()) {
7002         const auto *MD = dyn_cast<CXXMethodDecl>(FD);
7003         int NoImplicitObjectError = -1;
7004         if (!MD)
7005           NoImplicitObjectError = 0;
7006         else if (MD->isStatic())
7007           NoImplicitObjectError = 1;
7008         else if (MD->isExplicitObjectMemberFunction())
7009           NoImplicitObjectError = 2;
7010         if (NoImplicitObjectError != -1) {
7011           S.Diag(A->getLocation(), diag::err_lifetimebound_no_object_param)
7012               << NoImplicitObjectError << A->getRange();
7013         } else if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)) {
7014           S.Diag(A->getLocation(), diag::err_lifetimebound_ctor_dtor)
7015               << isa<CXXDestructorDecl>(MD) << A->getRange();
7016         } else if (MD->getReturnType()->isVoidType()) {
7017           S.Diag(
7018               MD->getLocation(),
7019               diag::
7020                   err_lifetimebound_implicit_object_parameter_void_return_type);
7021         }
7022       }
7023     }
7024 
7025     for (unsigned int I = 0; I < FD->getNumParams(); ++I) {
7026       const ParmVarDecl *P = FD->getParamDecl(I);
7027 
7028       // The [[lifetimebound]] attribute can be applied to a function parameter
7029       // only if the function returns a value.
7030       if (auto *A = P->getAttr<LifetimeBoundAttr>()) {
7031         if (!isa<CXXConstructorDecl>(FD) && FD->getReturnType()->isVoidType()) {
7032           S.Diag(A->getLocation(),
7033                  diag::err_lifetimebound_parameter_void_return_type);
7034         }
7035       }
7036     }
7037   }
7038 }
7039 
7040 static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
7041   // Ensure that an auto decl is deduced otherwise the checks below might cache
7042   // the wrong linkage.
7043   assert(S.ParsingInitForAutoVars.count(&ND) == 0);
7044 
7045   checkWeakAttr(S, ND);
7046   checkWeakRefAttr(S, ND);
7047   checkAliasAttr(S, ND);
7048   checkSelectAnyAttr(S, ND);
7049   checkHybridPatchableAttr(S, ND);
7050   checkInheritableAttr(S, ND);
7051   checkLifetimeBoundAttr(S, ND);
7052 }
7053 
7054 static void checkDLLAttributeRedeclaration(Sema &S, NamedDecl *OldDecl,
7055                                            NamedDecl *NewDecl,
7056                                            bool IsSpecialization,
7057                                            bool IsDefinition) {
7058   if (OldDecl->isInvalidDecl() || NewDecl->isInvalidDecl())
7059     return;
7060 
7061   bool IsTemplate = false;
7062   if (TemplateDecl *OldTD = dyn_cast<TemplateDecl>(OldDecl)) {
7063     OldDecl = OldTD->getTemplatedDecl();
7064     IsTemplate = true;
7065     if (!IsSpecialization)
7066       IsDefinition = false;
7067   }
7068   if (TemplateDecl *NewTD = dyn_cast<TemplateDecl>(NewDecl)) {
7069     NewDecl = NewTD->getTemplatedDecl();
7070     IsTemplate = true;
7071   }
7072 
7073   if (!OldDecl || !NewDecl)
7074     return;
7075 
7076   const DLLImportAttr *OldImportAttr = OldDecl->getAttr<DLLImportAttr>();
7077   const DLLExportAttr *OldExportAttr = OldDecl->getAttr<DLLExportAttr>();
7078   const DLLImportAttr *NewImportAttr = NewDecl->getAttr<DLLImportAttr>();
7079   const DLLExportAttr *NewExportAttr = NewDecl->getAttr<DLLExportAttr>();
7080 
7081   // dllimport and dllexport are inheritable attributes so we have to exclude
7082   // inherited attribute instances.
7083   bool HasNewAttr = (NewImportAttr && !NewImportAttr->isInherited()) ||
7084                     (NewExportAttr && !NewExportAttr->isInherited());
7085 
7086   // A redeclaration is not allowed to add a dllimport or dllexport attribute,
7087   // the only exception being explicit specializations.
7088   // Implicitly generated declarations are also excluded for now because there
7089   // is no other way to switch these to use dllimport or dllexport.
7090   bool AddsAttr = !(OldImportAttr || OldExportAttr) && HasNewAttr;
7091 
7092   if (AddsAttr && !IsSpecialization && !OldDecl->isImplicit()) {
7093     // Allow with a warning for free functions and global variables.
7094     bool JustWarn = false;
7095     if (!OldDecl->isCXXClassMember()) {
7096       auto *VD = dyn_cast<VarDecl>(OldDecl);
7097       if (VD && !VD->getDescribedVarTemplate())
7098         JustWarn = true;
7099       auto *FD = dyn_cast<FunctionDecl>(OldDecl);
7100       if (FD && FD->getTemplatedKind() == FunctionDecl::TK_NonTemplate)
7101         JustWarn = true;
7102     }
7103 
7104     // We cannot change a declaration that's been used because IR has already
7105     // been emitted. Dllimported functions will still work though (modulo
7106     // address equality) as they can use the thunk.
7107     if (OldDecl->isUsed())
7108       if (!isa<FunctionDecl>(OldDecl) || !NewImportAttr)
7109         JustWarn = false;
7110 
7111     unsigned DiagID = JustWarn ? diag::warn_attribute_dll_redeclaration
7112                                : diag::err_attribute_dll_redeclaration;
7113     S.Diag(NewDecl->getLocation(), DiagID)
7114         << NewDecl
7115         << (NewImportAttr ? (const Attr *)NewImportAttr : NewExportAttr);
7116     S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
7117     if (!JustWarn) {
7118       NewDecl->setInvalidDecl();
7119       return;
7120     }
7121   }
7122 
7123   // A redeclaration is not allowed to drop a dllimport attribute, the only
7124   // exceptions being inline function definitions (except for function
7125   // templates), local extern declarations, qualified friend declarations or
7126   // special MSVC extension: in the last case, the declaration is treated as if
7127   // it were marked dllexport.
7128   bool IsInline = false, IsStaticDataMember = false, IsQualifiedFriend = false;
7129   bool IsMicrosoftABI  = S.Context.getTargetInfo().shouldDLLImportComdatSymbols();
7130   if (const auto *VD = dyn_cast<VarDecl>(NewDecl)) {
7131     // Ignore static data because out-of-line definitions are diagnosed
7132     // separately.
7133     IsStaticDataMember = VD->isStaticDataMember();
7134     IsDefinition = VD->isThisDeclarationADefinition(S.Context) !=
7135                    VarDecl::DeclarationOnly;
7136   } else if (const auto *FD = dyn_cast<FunctionDecl>(NewDecl)) {
7137     IsInline = FD->isInlined();
7138     IsQualifiedFriend = FD->getQualifier() &&
7139                         FD->getFriendObjectKind() == Decl::FOK_Declared;
7140   }
7141 
7142   if (OldImportAttr && !HasNewAttr &&
7143       (!IsInline || (IsMicrosoftABI && IsTemplate)) && !IsStaticDataMember &&
7144       !NewDecl->isLocalExternDecl() && !IsQualifiedFriend) {
7145     if (IsMicrosoftABI && IsDefinition) {
7146       if (IsSpecialization) {
7147         S.Diag(
7148             NewDecl->getLocation(),
7149             diag::err_attribute_dllimport_function_specialization_definition);
7150         S.Diag(OldImportAttr->getLocation(), diag::note_attribute);
7151         NewDecl->dropAttr<DLLImportAttr>();
7152       } else {
7153         S.Diag(NewDecl->getLocation(),
7154                diag::warn_redeclaration_without_import_attribute)
7155             << NewDecl;
7156         S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
7157         NewDecl->dropAttr<DLLImportAttr>();
7158         NewDecl->addAttr(DLLExportAttr::CreateImplicit(
7159             S.Context, NewImportAttr->getRange()));
7160       }
7161     } else if (IsMicrosoftABI && IsSpecialization) {
7162       assert(!IsDefinition);
7163       // MSVC allows this. Keep the inherited attribute.
7164     } else {
7165       S.Diag(NewDecl->getLocation(),
7166              diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
7167           << NewDecl << OldImportAttr;
7168       S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
7169       S.Diag(OldImportAttr->getLocation(), diag::note_previous_attribute);
7170       OldDecl->dropAttr<DLLImportAttr>();
7171       NewDecl->dropAttr<DLLImportAttr>();
7172     }
7173   } else if (IsInline && OldImportAttr && !IsMicrosoftABI) {
7174     // In MinGW, seeing a function declared inline drops the dllimport
7175     // attribute.
7176     OldDecl->dropAttr<DLLImportAttr>();
7177     NewDecl->dropAttr<DLLImportAttr>();
7178     S.Diag(NewDecl->getLocation(),
7179            diag::warn_dllimport_dropped_from_inline_function)
7180         << NewDecl << OldImportAttr;
7181   }
7182 
7183   // A specialization of a class template member function is processed here
7184   // since it's a redeclaration. If the parent class is dllexport, the
7185   // specialization inherits that attribute. This doesn't happen automatically
7186   // since the parent class isn't instantiated until later.
7187   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDecl)) {
7188     if (MD->getTemplatedKind() == FunctionDecl::TK_MemberSpecialization &&
7189         !NewImportAttr && !NewExportAttr) {
7190       if (const DLLExportAttr *ParentExportAttr =
7191               MD->getParent()->getAttr<DLLExportAttr>()) {
7192         DLLExportAttr *NewAttr = ParentExportAttr->clone(S.Context);
7193         NewAttr->setInherited(true);
7194         NewDecl->addAttr(NewAttr);
7195       }
7196     }
7197   }
7198 }
7199 
7200 /// Given that we are within the definition of the given function,
7201 /// will that definition behave like C99's 'inline', where the
7202 /// definition is discarded except for optimization purposes?
7203 static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) {
7204   // Try to avoid calling GetGVALinkageForFunction.
7205 
7206   // All cases of this require the 'inline' keyword.
7207   if (!FD->isInlined()) return false;
7208 
7209   // This is only possible in C++ with the gnu_inline attribute.
7210   if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>())
7211     return false;
7212 
7213   // Okay, go ahead and call the relatively-more-expensive function.
7214   return S.Context.GetGVALinkageForFunction(FD) == GVA_AvailableExternally;
7215 }
7216 
7217 /// Determine whether a variable is extern "C" prior to attaching
7218 /// an initializer. We can't just call isExternC() here, because that
7219 /// will also compute and cache whether the declaration is externally
7220 /// visible, which might change when we attach the initializer.
7221 ///
7222 /// This can only be used if the declaration is known to not be a
7223 /// redeclaration of an internal linkage declaration.
7224 ///
7225 /// For instance:
7226 ///
7227 ///   auto x = []{};
7228 ///
7229 /// Attaching the initializer here makes this declaration not externally
7230 /// visible, because its type has internal linkage.
7231 ///
7232 /// FIXME: This is a hack.
7233 template<typename T>
7234 static bool isIncompleteDeclExternC(Sema &S, const T *D) {
7235   if (S.getLangOpts().CPlusPlus) {
7236     // In C++, the overloadable attribute negates the effects of extern "C".
7237     if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>())
7238       return false;
7239 
7240     // So do CUDA's host/device attributes.
7241     if (S.getLangOpts().CUDA && (D->template hasAttr<CUDADeviceAttr>() ||
7242                                  D->template hasAttr<CUDAHostAttr>()))
7243       return false;
7244   }
7245   return D->isExternC();
7246 }
7247 
7248 static bool shouldConsiderLinkage(const VarDecl *VD) {
7249   const DeclContext *DC = VD->getDeclContext()->getRedeclContext();
7250   if (DC->isFunctionOrMethod() || isa<OMPDeclareReductionDecl>(DC) ||
7251       isa<OMPDeclareMapperDecl>(DC))
7252     return VD->hasExternalStorage();
7253   if (DC->isFileContext())
7254     return true;
7255   if (DC->isRecord())
7256     return false;
7257   if (DC->getDeclKind() == Decl::HLSLBuffer)
7258     return false;
7259 
7260   if (isa<RequiresExprBodyDecl>(DC))
7261     return false;
7262   llvm_unreachable("Unexpected context");
7263 }
7264 
7265 static bool shouldConsiderLinkage(const FunctionDecl *FD) {
7266   const DeclContext *DC = FD->getDeclContext()->getRedeclContext();
7267   if (DC->isFileContext() || DC->isFunctionOrMethod() ||
7268       isa<OMPDeclareReductionDecl>(DC) || isa<OMPDeclareMapperDecl>(DC))
7269     return true;
7270   if (DC->isRecord())
7271     return false;
7272   llvm_unreachable("Unexpected context");
7273 }
7274 
7275 static bool hasParsedAttr(Scope *S, const Declarator &PD,
7276                           ParsedAttr::Kind Kind) {
7277   // Check decl attributes on the DeclSpec.
7278   if (PD.getDeclSpec().getAttributes().hasAttribute(Kind))
7279     return true;
7280 
7281   // Walk the declarator structure, checking decl attributes that were in a type
7282   // position to the decl itself.
7283   for (unsigned I = 0, E = PD.getNumTypeObjects(); I != E; ++I) {
7284     if (PD.getTypeObject(I).getAttrs().hasAttribute(Kind))
7285       return true;
7286   }
7287 
7288   // Finally, check attributes on the decl itself.
7289   return PD.getAttributes().hasAttribute(Kind) ||
7290          PD.getDeclarationAttributes().hasAttribute(Kind);
7291 }
7292 
7293 bool Sema::adjustContextForLocalExternDecl(DeclContext *&DC) {
7294   if (!DC->isFunctionOrMethod())
7295     return false;
7296 
7297   // If this is a local extern function or variable declared within a function
7298   // template, don't add it into the enclosing namespace scope until it is
7299   // instantiated; it might have a dependent type right now.
7300   if (DC->isDependentContext())
7301     return true;
7302 
7303   // C++11 [basic.link]p7:
7304   //   When a block scope declaration of an entity with linkage is not found to
7305   //   refer to some other declaration, then that entity is a member of the
7306   //   innermost enclosing namespace.
7307   //
7308   // Per C++11 [namespace.def]p6, the innermost enclosing namespace is a
7309   // semantically-enclosing namespace, not a lexically-enclosing one.
7310   while (!DC->isFileContext() && !isa<LinkageSpecDecl>(DC))
7311     DC = DC->getParent();
7312   return true;
7313 }
7314 
7315 /// Returns true if given declaration has external C language linkage.
7316 static bool isDeclExternC(const Decl *D) {
7317   if (const auto *FD = dyn_cast<FunctionDecl>(D))
7318     return FD->isExternC();
7319   if (const auto *VD = dyn_cast<VarDecl>(D))
7320     return VD->isExternC();
7321 
7322   llvm_unreachable("Unknown type of decl!");
7323 }
7324 
7325 /// Returns true if there hasn't been any invalid type diagnosed.
7326 static bool diagnoseOpenCLTypes(Sema &Se, VarDecl *NewVD) {
7327   DeclContext *DC = NewVD->getDeclContext();
7328   QualType R = NewVD->getType();
7329 
7330   // OpenCL v2.0 s6.9.b - Image type can only be used as a function argument.
7331   // OpenCL v2.0 s6.13.16.1 - Pipe type can only be used as a function
7332   // argument.
7333   if (R->isImageType() || R->isPipeType()) {
7334     Se.Diag(NewVD->getLocation(),
7335             diag::err_opencl_type_can_only_be_used_as_function_parameter)
7336         << R;
7337     NewVD->setInvalidDecl();
7338     return false;
7339   }
7340 
7341   // OpenCL v1.2 s6.9.r:
7342   // The event type cannot be used to declare a program scope variable.
7343   // OpenCL v2.0 s6.9.q:
7344   // The clk_event_t and reserve_id_t types cannot be declared in program
7345   // scope.
7346   if (NewVD->hasGlobalStorage() && !NewVD->isStaticLocal()) {
7347     if (R->isReserveIDT() || R->isClkEventT() || R->isEventT()) {
7348       Se.Diag(NewVD->getLocation(),
7349               diag::err_invalid_type_for_program_scope_var)
7350           << R;
7351       NewVD->setInvalidDecl();
7352       return false;
7353     }
7354   }
7355 
7356   // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed.
7357   if (!Se.getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers",
7358                                                Se.getLangOpts())) {
7359     QualType NR = R.getCanonicalType();
7360     while (NR->isPointerType() || NR->isMemberFunctionPointerType() ||
7361            NR->isReferenceType()) {
7362       if (NR->isFunctionPointerType() || NR->isMemberFunctionPointerType() ||
7363           NR->isFunctionReferenceType()) {
7364         Se.Diag(NewVD->getLocation(), diag::err_opencl_function_pointer)
7365             << NR->isReferenceType();
7366         NewVD->setInvalidDecl();
7367         return false;
7368       }
7369       NR = NR->getPointeeType();
7370     }
7371   }
7372 
7373   if (!Se.getOpenCLOptions().isAvailableOption("cl_khr_fp16",
7374                                                Se.getLangOpts())) {
7375     // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
7376     // half array type (unless the cl_khr_fp16 extension is enabled).
7377     if (Se.Context.getBaseElementType(R)->isHalfType()) {
7378       Se.Diag(NewVD->getLocation(), diag::err_opencl_half_declaration) << R;
7379       NewVD->setInvalidDecl();
7380       return false;
7381     }
7382   }
7383 
7384   // OpenCL v1.2 s6.9.r:
7385   // The event type cannot be used with the __local, __constant and __global
7386   // address space qualifiers.
7387   if (R->isEventT()) {
7388     if (R.getAddressSpace() != LangAS::opencl_private) {
7389       Se.Diag(NewVD->getBeginLoc(), diag::err_event_t_addr_space_qual);
7390       NewVD->setInvalidDecl();
7391       return false;
7392     }
7393   }
7394 
7395   if (R->isSamplerT()) {
7396     // OpenCL v1.2 s6.9.b p4:
7397     // The sampler type cannot be used with the __local and __global address
7398     // space qualifiers.
7399     if (R.getAddressSpace() == LangAS::opencl_local ||
7400         R.getAddressSpace() == LangAS::opencl_global) {
7401       Se.Diag(NewVD->getLocation(), diag::err_wrong_sampler_addressspace);
7402       NewVD->setInvalidDecl();
7403     }
7404 
7405     // OpenCL v1.2 s6.12.14.1:
7406     // A global sampler must be declared with either the constant address
7407     // space qualifier or with the const qualifier.
7408     if (DC->isTranslationUnit() &&
7409         !(R.getAddressSpace() == LangAS::opencl_constant ||
7410           R.isConstQualified())) {
7411       Se.Diag(NewVD->getLocation(), diag::err_opencl_nonconst_global_sampler);
7412       NewVD->setInvalidDecl();
7413     }
7414     if (NewVD->isInvalidDecl())
7415       return false;
7416   }
7417 
7418   return true;
7419 }
7420 
7421 template <typename AttrTy>
7422 static void copyAttrFromTypedefToDecl(Sema &S, Decl *D, const TypedefType *TT) {
7423   const TypedefNameDecl *TND = TT->getDecl();
7424   if (const auto *Attribute = TND->getAttr<AttrTy>()) {
7425     AttrTy *Clone = Attribute->clone(S.Context);
7426     Clone->setInherited(true);
7427     D->addAttr(Clone);
7428   }
7429 }
7430 
7431 // This function emits warning and a corresponding note based on the
7432 // ReadOnlyPlacementAttr attribute. The warning checks that all global variable
7433 // declarations of an annotated type must be const qualified.
7434 static void emitReadOnlyPlacementAttrWarning(Sema &S, const VarDecl *VD) {
7435   QualType VarType = VD->getType().getCanonicalType();
7436 
7437   // Ignore local declarations (for now) and those with const qualification.
7438   // TODO: Local variables should not be allowed if their type declaration has
7439   // ReadOnlyPlacementAttr attribute. To be handled in follow-up patch.
7440   if (!VD || VD->hasLocalStorage() || VD->getType().isConstQualified())
7441     return;
7442 
7443   if (VarType->isArrayType()) {
7444     // Retrieve element type for array declarations.
7445     VarType = S.getASTContext().getBaseElementType(VarType);
7446   }
7447 
7448   const RecordDecl *RD = VarType->getAsRecordDecl();
7449 
7450   // Check if the record declaration is present and if it has any attributes.
7451   if (RD == nullptr)
7452     return;
7453 
7454   if (const auto *ConstDecl = RD->getAttr<ReadOnlyPlacementAttr>()) {
7455     S.Diag(VD->getLocation(), diag::warn_var_decl_not_read_only) << RD;
7456     S.Diag(ConstDecl->getLocation(), diag::note_enforce_read_only_placement);
7457     return;
7458   }
7459 }
7460 
7461 // Checks if VD is declared at global scope or with C language linkage.
7462 static bool isMainVar(DeclarationName Name, VarDecl *VD) {
7463   return Name.getAsIdentifierInfo() &&
7464          Name.getAsIdentifierInfo()->isStr("main") &&
7465          !VD->getDescribedVarTemplate() &&
7466          (VD->getDeclContext()->getRedeclContext()->isTranslationUnit() ||
7467           VD->isExternC());
7468 }
7469 
7470 NamedDecl *Sema::ActOnVariableDeclarator(
7471     Scope *S, Declarator &D, DeclContext *DC, TypeSourceInfo *TInfo,
7472     LookupResult &Previous, MultiTemplateParamsArg TemplateParamLists,
7473     bool &AddToScope, ArrayRef<BindingDecl *> Bindings) {
7474   QualType R = TInfo->getType();
7475   DeclarationName Name = GetNameForDeclarator(D).getName();
7476 
7477   IdentifierInfo *II = Name.getAsIdentifierInfo();
7478   bool IsPlaceholderVariable = false;
7479 
7480   if (D.isDecompositionDeclarator()) {
7481     // Take the name of the first declarator as our name for diagnostic
7482     // purposes.
7483     auto &Decomp = D.getDecompositionDeclarator();
7484     if (!Decomp.bindings().empty()) {
7485       II = Decomp.bindings()[0].Name;
7486       Name = II;
7487     }
7488   } else if (!II) {
7489     Diag(D.getIdentifierLoc(), diag::err_bad_variable_name) << Name;
7490     return nullptr;
7491   }
7492 
7493 
7494   DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
7495   StorageClass SC = StorageClassSpecToVarDeclStorageClass(D.getDeclSpec());
7496 
7497   if (LangOpts.CPlusPlus && (DC->isClosure() || DC->isFunctionOrMethod()) &&
7498       SC != SC_Static && SC != SC_Extern && II && II->isPlaceholder()) {
7499     IsPlaceholderVariable = true;
7500     if (!Previous.empty()) {
7501       NamedDecl *PrevDecl = *Previous.begin();
7502       bool SameDC = PrevDecl->getDeclContext()->getRedeclContext()->Equals(
7503           DC->getRedeclContext());
7504       if (SameDC && isDeclInScope(PrevDecl, CurContext, S, false))
7505         DiagPlaceholderVariableDefinition(D.getIdentifierLoc());
7506     }
7507   }
7508 
7509   // dllimport globals without explicit storage class are treated as extern. We
7510   // have to change the storage class this early to get the right DeclContext.
7511   if (SC == SC_None && !DC->isRecord() &&
7512       hasParsedAttr(S, D, ParsedAttr::AT_DLLImport) &&
7513       !hasParsedAttr(S, D, ParsedAttr::AT_DLLExport))
7514     SC = SC_Extern;
7515 
7516   DeclContext *OriginalDC = DC;
7517   bool IsLocalExternDecl = SC == SC_Extern &&
7518                            adjustContextForLocalExternDecl(DC);
7519 
7520   if (SCSpec == DeclSpec::SCS_mutable) {
7521     // mutable can only appear on non-static class members, so it's always
7522     // an error here
7523     Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
7524     D.setInvalidType();
7525     SC = SC_None;
7526   }
7527 
7528   if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register &&
7529       !D.getAsmLabel() && !getSourceManager().isInSystemMacro(
7530                               D.getDeclSpec().getStorageClassSpecLoc())) {
7531     // In C++11, the 'register' storage class specifier is deprecated.
7532     // Suppress the warning in system macros, it's used in macros in some
7533     // popular C system headers, such as in glibc's htonl() macro.
7534     Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7535          getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class
7536                                    : diag::warn_deprecated_register)
7537       << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
7538   }
7539 
7540   DiagnoseFunctionSpecifiers(D.getDeclSpec());
7541 
7542   if (!DC->isRecord() && S->getFnParent() == nullptr) {
7543     // C99 6.9p2: The storage-class specifiers auto and register shall not
7544     // appear in the declaration specifiers in an external declaration.
7545     // Global Register+Asm is a GNU extension we support.
7546     if (SC == SC_Auto || (SC == SC_Register && !D.getAsmLabel())) {
7547       Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
7548       D.setInvalidType();
7549     }
7550   }
7551 
7552   // If this variable has a VLA type and an initializer, try to
7553   // fold to a constant-sized type. This is otherwise invalid.
7554   if (D.hasInitializer() && R->isVariableArrayType())
7555     tryToFixVariablyModifiedVarType(TInfo, R, D.getIdentifierLoc(),
7556                                     /*DiagID=*/0);
7557 
7558   if (AutoTypeLoc TL = TInfo->getTypeLoc().getContainedAutoTypeLoc()) {
7559     const AutoType *AT = TL.getTypePtr();
7560     CheckConstrainedAuto(AT, TL.getConceptNameLoc());
7561   }
7562 
7563   bool IsMemberSpecialization = false;
7564   bool IsVariableTemplateSpecialization = false;
7565   bool IsPartialSpecialization = false;
7566   bool IsVariableTemplate = false;
7567   VarDecl *NewVD = nullptr;
7568   VarTemplateDecl *NewTemplate = nullptr;
7569   TemplateParameterList *TemplateParams = nullptr;
7570   if (!getLangOpts().CPlusPlus) {
7571     NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(), D.getIdentifierLoc(),
7572                             II, R, TInfo, SC);
7573 
7574     if (R->getContainedDeducedType())
7575       ParsingInitForAutoVars.insert(NewVD);
7576 
7577     if (D.isInvalidType())
7578       NewVD->setInvalidDecl();
7579 
7580     if (NewVD->getType().hasNonTrivialToPrimitiveDestructCUnion() &&
7581         NewVD->hasLocalStorage())
7582       checkNonTrivialCUnion(NewVD->getType(), NewVD->getLocation(),
7583                             NTCUC_AutoVar, NTCUK_Destruct);
7584   } else {
7585     bool Invalid = false;
7586     // Match up the template parameter lists with the scope specifier, then
7587     // determine whether we have a template or a template specialization.
7588     TemplateParams = MatchTemplateParametersToScopeSpecifier(
7589         D.getDeclSpec().getBeginLoc(), D.getIdentifierLoc(),
7590         D.getCXXScopeSpec(),
7591         D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
7592             ? D.getName().TemplateId
7593             : nullptr,
7594         TemplateParamLists,
7595         /*never a friend*/ false, IsMemberSpecialization, Invalid);
7596 
7597     if (TemplateParams) {
7598       if (DC->isDependentContext()) {
7599         ContextRAII SavedContext(*this, DC);
7600         if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
7601           Invalid = true;
7602       }
7603 
7604       if (!TemplateParams->size() &&
7605           D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
7606         // There is an extraneous 'template<>' for this variable. Complain
7607         // about it, but allow the declaration of the variable.
7608         Diag(TemplateParams->getTemplateLoc(),
7609              diag::err_template_variable_noparams)
7610           << II
7611           << SourceRange(TemplateParams->getTemplateLoc(),
7612                          TemplateParams->getRAngleLoc());
7613         TemplateParams = nullptr;
7614       } else {
7615         // Check that we can declare a template here.
7616         if (CheckTemplateDeclScope(S, TemplateParams))
7617           return nullptr;
7618 
7619         if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
7620           // This is an explicit specialization or a partial specialization.
7621           IsVariableTemplateSpecialization = true;
7622           IsPartialSpecialization = TemplateParams->size() > 0;
7623         } else { // if (TemplateParams->size() > 0)
7624           // This is a template declaration.
7625           IsVariableTemplate = true;
7626 
7627           // Only C++1y supports variable templates (N3651).
7628           Diag(D.getIdentifierLoc(),
7629                getLangOpts().CPlusPlus14
7630                    ? diag::warn_cxx11_compat_variable_template
7631                    : diag::ext_variable_template);
7632         }
7633       }
7634     } else {
7635       // Check that we can declare a member specialization here.
7636       if (!TemplateParamLists.empty() && IsMemberSpecialization &&
7637           CheckTemplateDeclScope(S, TemplateParamLists.back()))
7638         return nullptr;
7639       assert((Invalid ||
7640               D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) &&
7641              "should have a 'template<>' for this decl");
7642     }
7643 
7644     bool IsExplicitSpecialization =
7645         IsVariableTemplateSpecialization && !IsPartialSpecialization;
7646 
7647     // C++ [temp.expl.spec]p2:
7648     //   The declaration in an explicit-specialization shall not be an
7649     //   export-declaration. An explicit specialization shall not use a
7650     //   storage-class-specifier other than thread_local.
7651     //
7652     // We use the storage-class-specifier from DeclSpec because we may have
7653     // added implicit 'extern' for declarations with __declspec(dllimport)!
7654     if (SCSpec != DeclSpec::SCS_unspecified &&
7655         (IsExplicitSpecialization || IsMemberSpecialization)) {
7656       Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7657            diag::ext_explicit_specialization_storage_class)
7658           << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
7659     }
7660 
7661     if (CurContext->isRecord()) {
7662       if (SC == SC_Static) {
7663         if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
7664           // Walk up the enclosing DeclContexts to check for any that are
7665           // incompatible with static data members.
7666           const DeclContext *FunctionOrMethod = nullptr;
7667           const CXXRecordDecl *AnonStruct = nullptr;
7668           for (DeclContext *Ctxt = DC; Ctxt; Ctxt = Ctxt->getParent()) {
7669             if (Ctxt->isFunctionOrMethod()) {
7670               FunctionOrMethod = Ctxt;
7671               break;
7672             }
7673             const CXXRecordDecl *ParentDecl = dyn_cast<CXXRecordDecl>(Ctxt);
7674             if (ParentDecl && !ParentDecl->getDeclName()) {
7675               AnonStruct = ParentDecl;
7676               break;
7677             }
7678           }
7679           if (FunctionOrMethod) {
7680             // C++ [class.static.data]p5: A local class shall not have static
7681             // data members.
7682             Diag(D.getIdentifierLoc(),
7683                  diag::err_static_data_member_not_allowed_in_local_class)
7684                 << Name << RD->getDeclName()
7685                 << llvm::to_underlying(RD->getTagKind());
7686           } else if (AnonStruct) {
7687             // C++ [class.static.data]p4: Unnamed classes and classes contained
7688             // directly or indirectly within unnamed classes shall not contain
7689             // static data members.
7690             Diag(D.getIdentifierLoc(),
7691                  diag::err_static_data_member_not_allowed_in_anon_struct)
7692                 << Name << llvm::to_underlying(AnonStruct->getTagKind());
7693             Invalid = true;
7694           } else if (RD->isUnion()) {
7695             // C++98 [class.union]p1: If a union contains a static data member,
7696             // the program is ill-formed. C++11 drops this restriction.
7697             Diag(D.getIdentifierLoc(),
7698                  getLangOpts().CPlusPlus11
7699                      ? diag::warn_cxx98_compat_static_data_member_in_union
7700                      : diag::ext_static_data_member_in_union)
7701                 << Name;
7702           }
7703         }
7704       } else if (IsVariableTemplate || IsPartialSpecialization) {
7705         // There is no such thing as a member field template.
7706         Diag(D.getIdentifierLoc(), diag::err_template_member)
7707             << II << TemplateParams->getSourceRange();
7708         // Recover by pretending this is a static data member template.
7709         SC = SC_Static;
7710       }
7711     } else if (DC->isRecord()) {
7712       // This is an out-of-line definition of a static data member.
7713       switch (SC) {
7714       case SC_None:
7715         break;
7716       case SC_Static:
7717         Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7718              diag::err_static_out_of_line)
7719             << FixItHint::CreateRemoval(
7720                    D.getDeclSpec().getStorageClassSpecLoc());
7721         break;
7722       case SC_Auto:
7723       case SC_Register:
7724       case SC_Extern:
7725         // [dcl.stc] p2: The auto or register specifiers shall be applied only
7726         // to names of variables declared in a block or to function parameters.
7727         // [dcl.stc] p6: The extern specifier cannot be used in the declaration
7728         // of class members
7729 
7730         Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7731              diag::err_storage_class_for_static_member)
7732             << FixItHint::CreateRemoval(
7733                    D.getDeclSpec().getStorageClassSpecLoc());
7734         break;
7735       case SC_PrivateExtern:
7736         llvm_unreachable("C storage class in c++!");
7737       }
7738     }
7739 
7740     if (IsVariableTemplateSpecialization) {
7741       SourceLocation TemplateKWLoc =
7742           TemplateParamLists.size() > 0
7743               ? TemplateParamLists[0]->getTemplateLoc()
7744               : SourceLocation();
7745       DeclResult Res = ActOnVarTemplateSpecialization(
7746           S, D, TInfo, Previous, TemplateKWLoc, TemplateParams, SC,
7747           IsPartialSpecialization);
7748       if (Res.isInvalid())
7749         return nullptr;
7750       NewVD = cast<VarDecl>(Res.get());
7751       AddToScope = false;
7752     } else if (D.isDecompositionDeclarator()) {
7753       NewVD = DecompositionDecl::Create(Context, DC, D.getBeginLoc(),
7754                                         D.getIdentifierLoc(), R, TInfo, SC,
7755                                         Bindings);
7756     } else
7757       NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(),
7758                               D.getIdentifierLoc(), II, R, TInfo, SC);
7759 
7760     // If this is supposed to be a variable template, create it as such.
7761     if (IsVariableTemplate) {
7762       NewTemplate =
7763           VarTemplateDecl::Create(Context, DC, D.getIdentifierLoc(), Name,
7764                                   TemplateParams, NewVD);
7765       NewVD->setDescribedVarTemplate(NewTemplate);
7766     }
7767 
7768     // If this decl has an auto type in need of deduction, make a note of the
7769     // Decl so we can diagnose uses of it in its own initializer.
7770     if (R->getContainedDeducedType())
7771       ParsingInitForAutoVars.insert(NewVD);
7772 
7773     if (D.isInvalidType() || Invalid) {
7774       NewVD->setInvalidDecl();
7775       if (NewTemplate)
7776         NewTemplate->setInvalidDecl();
7777     }
7778 
7779     SetNestedNameSpecifier(*this, NewVD, D);
7780 
7781     // If we have any template parameter lists that don't directly belong to
7782     // the variable (matching the scope specifier), store them.
7783     // An explicit variable template specialization does not own any template
7784     // parameter lists.
7785     unsigned VDTemplateParamLists =
7786         (TemplateParams && !IsExplicitSpecialization) ? 1 : 0;
7787     if (TemplateParamLists.size() > VDTemplateParamLists)
7788       NewVD->setTemplateParameterListsInfo(
7789           Context, TemplateParamLists.drop_back(VDTemplateParamLists));
7790   }
7791 
7792   if (D.getDeclSpec().isInlineSpecified()) {
7793     if (!getLangOpts().CPlusPlus) {
7794       Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
7795           << 0;
7796     } else if (CurContext->isFunctionOrMethod()) {
7797       // 'inline' is not allowed on block scope variable declaration.
7798       Diag(D.getDeclSpec().getInlineSpecLoc(),
7799            diag::err_inline_declaration_block_scope) << Name
7800         << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
7801     } else {
7802       Diag(D.getDeclSpec().getInlineSpecLoc(),
7803            getLangOpts().CPlusPlus17 ? diag::warn_cxx14_compat_inline_variable
7804                                      : diag::ext_inline_variable);
7805       NewVD->setInlineSpecified();
7806     }
7807   }
7808 
7809   // Set the lexical context. If the declarator has a C++ scope specifier, the
7810   // lexical context will be different from the semantic context.
7811   NewVD->setLexicalDeclContext(CurContext);
7812   if (NewTemplate)
7813     NewTemplate->setLexicalDeclContext(CurContext);
7814 
7815   if (IsLocalExternDecl) {
7816     if (D.isDecompositionDeclarator())
7817       for (auto *B : Bindings)
7818         B->setLocalExternDecl();
7819     else
7820       NewVD->setLocalExternDecl();
7821   }
7822 
7823   bool EmitTLSUnsupportedError = false;
7824   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) {
7825     // C++11 [dcl.stc]p4:
7826     //   When thread_local is applied to a variable of block scope the
7827     //   storage-class-specifier static is implied if it does not appear
7828     //   explicitly.
7829     // Core issue: 'static' is not implied if the variable is declared
7830     //   'extern'.
7831     if (NewVD->hasLocalStorage() &&
7832         (SCSpec != DeclSpec::SCS_unspecified ||
7833          TSCS != DeclSpec::TSCS_thread_local ||
7834          !DC->isFunctionOrMethod()))
7835       Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
7836            diag::err_thread_non_global)
7837         << DeclSpec::getSpecifierName(TSCS);
7838     else if (!Context.getTargetInfo().isTLSSupported()) {
7839       if (getLangOpts().CUDA || getLangOpts().OpenMPIsTargetDevice ||
7840           getLangOpts().SYCLIsDevice) {
7841         // Postpone error emission until we've collected attributes required to
7842         // figure out whether it's a host or device variable and whether the
7843         // error should be ignored.
7844         EmitTLSUnsupportedError = true;
7845         // We still need to mark the variable as TLS so it shows up in AST with
7846         // proper storage class for other tools to use even if we're not going
7847         // to emit any code for it.
7848         NewVD->setTSCSpec(TSCS);
7849       } else
7850         Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
7851              diag::err_thread_unsupported);
7852     } else
7853       NewVD->setTSCSpec(TSCS);
7854   }
7855 
7856   switch (D.getDeclSpec().getConstexprSpecifier()) {
7857   case ConstexprSpecKind::Unspecified:
7858     break;
7859 
7860   case ConstexprSpecKind::Consteval:
7861     Diag(D.getDeclSpec().getConstexprSpecLoc(),
7862          diag::err_constexpr_wrong_decl_kind)
7863         << static_cast<int>(D.getDeclSpec().getConstexprSpecifier());
7864     [[fallthrough]];
7865 
7866   case ConstexprSpecKind::Constexpr:
7867     NewVD->setConstexpr(true);
7868     // C++1z [dcl.spec.constexpr]p1:
7869     //   A static data member declared with the constexpr specifier is
7870     //   implicitly an inline variable.
7871     if (NewVD->isStaticDataMember() &&
7872         (getLangOpts().CPlusPlus17 ||
7873          Context.getTargetInfo().getCXXABI().isMicrosoft()))
7874       NewVD->setImplicitlyInline();
7875     break;
7876 
7877   case ConstexprSpecKind::Constinit:
7878     if (!NewVD->hasGlobalStorage())
7879       Diag(D.getDeclSpec().getConstexprSpecLoc(),
7880            diag::err_constinit_local_variable);
7881     else
7882       NewVD->addAttr(
7883           ConstInitAttr::Create(Context, D.getDeclSpec().getConstexprSpecLoc(),
7884                                 ConstInitAttr::Keyword_constinit));
7885     break;
7886   }
7887 
7888   // C99 6.7.4p3
7889   //   An inline definition of a function with external linkage shall
7890   //   not contain a definition of a modifiable object with static or
7891   //   thread storage duration...
7892   // We only apply this when the function is required to be defined
7893   // elsewhere, i.e. when the function is not 'extern inline'.  Note
7894   // that a local variable with thread storage duration still has to
7895   // be marked 'static'.  Also note that it's possible to get these
7896   // semantics in C++ using __attribute__((gnu_inline)).
7897   if (SC == SC_Static && S->getFnParent() != nullptr &&
7898       !NewVD->getType().isConstQualified()) {
7899     FunctionDecl *CurFD = getCurFunctionDecl();
7900     if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) {
7901       Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7902            diag::warn_static_local_in_extern_inline);
7903       MaybeSuggestAddingStaticToDecl(CurFD);
7904     }
7905   }
7906 
7907   if (D.getDeclSpec().isModulePrivateSpecified()) {
7908     if (IsVariableTemplateSpecialization)
7909       Diag(NewVD->getLocation(), diag::err_module_private_specialization)
7910           << (IsPartialSpecialization ? 1 : 0)
7911           << FixItHint::CreateRemoval(
7912                  D.getDeclSpec().getModulePrivateSpecLoc());
7913     else if (IsMemberSpecialization)
7914       Diag(NewVD->getLocation(), diag::err_module_private_specialization)
7915         << 2
7916         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7917     else if (NewVD->hasLocalStorage())
7918       Diag(NewVD->getLocation(), diag::err_module_private_local)
7919           << 0 << NewVD
7920           << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7921           << FixItHint::CreateRemoval(
7922                  D.getDeclSpec().getModulePrivateSpecLoc());
7923     else {
7924       NewVD->setModulePrivate();
7925       if (NewTemplate)
7926         NewTemplate->setModulePrivate();
7927       for (auto *B : Bindings)
7928         B->setModulePrivate();
7929     }
7930   }
7931 
7932   if (getLangOpts().OpenCL) {
7933     deduceOpenCLAddressSpace(NewVD);
7934 
7935     DeclSpec::TSCS TSC = D.getDeclSpec().getThreadStorageClassSpec();
7936     if (TSC != TSCS_unspecified) {
7937       Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
7938            diag::err_opencl_unknown_type_specifier)
7939           << getLangOpts().getOpenCLVersionString()
7940           << DeclSpec::getSpecifierName(TSC) << 1;
7941       NewVD->setInvalidDecl();
7942     }
7943   }
7944 
7945   // WebAssembly tables are always in address space 1 (wasm_var). Don't apply
7946   // address space if the table has local storage (semantic checks elsewhere
7947   // will produce an error anyway).
7948   if (const auto *ATy = dyn_cast<ArrayType>(NewVD->getType())) {
7949     if (ATy && ATy->getElementType().isWebAssemblyReferenceType() &&
7950         !NewVD->hasLocalStorage()) {
7951       QualType Type = Context.getAddrSpaceQualType(
7952           NewVD->getType(), Context.getLangASForBuiltinAddressSpace(1));
7953       NewVD->setType(Type);
7954     }
7955   }
7956 
7957   // Handle attributes prior to checking for duplicates in MergeVarDecl
7958   ProcessDeclAttributes(S, NewVD, D);
7959 
7960   if (getLangOpts().HLSL)
7961     HLSL().ActOnVariableDeclarator(NewVD);
7962 
7963   // FIXME: This is probably the wrong location to be doing this and we should
7964   // probably be doing this for more attributes (especially for function
7965   // pointer attributes such as format, warn_unused_result, etc.). Ideally
7966   // the code to copy attributes would be generated by TableGen.
7967   if (R->isFunctionPointerType())
7968     if (const auto *TT = R->getAs<TypedefType>())
7969       copyAttrFromTypedefToDecl<AllocSizeAttr>(*this, NewVD, TT);
7970 
7971   if (getLangOpts().CUDA || getLangOpts().OpenMPIsTargetDevice ||
7972       getLangOpts().SYCLIsDevice) {
7973     if (EmitTLSUnsupportedError &&
7974         ((getLangOpts().CUDA && DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) ||
7975          (getLangOpts().OpenMPIsTargetDevice &&
7976           OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(NewVD))))
7977       Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
7978            diag::err_thread_unsupported);
7979 
7980     if (EmitTLSUnsupportedError &&
7981         (LangOpts.SYCLIsDevice ||
7982          (LangOpts.OpenMP && LangOpts.OpenMPIsTargetDevice)))
7983       targetDiag(D.getIdentifierLoc(), diag::err_thread_unsupported);
7984     // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
7985     // storage [duration]."
7986     if (SC == SC_None && S->getFnParent() != nullptr &&
7987         (NewVD->hasAttr<CUDASharedAttr>() ||
7988          NewVD->hasAttr<CUDAConstantAttr>())) {
7989       NewVD->setStorageClass(SC_Static);
7990     }
7991   }
7992 
7993   // Ensure that dllimport globals without explicit storage class are treated as
7994   // extern. The storage class is set above using parsed attributes. Now we can
7995   // check the VarDecl itself.
7996   assert(!NewVD->hasAttr<DLLImportAttr>() ||
7997          NewVD->getAttr<DLLImportAttr>()->isInherited() ||
7998          NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None);
7999 
8000   // In auto-retain/release, infer strong retension for variables of
8001   // retainable type.
8002   if (getLangOpts().ObjCAutoRefCount && ObjC().inferObjCARCLifetime(NewVD))
8003     NewVD->setInvalidDecl();
8004 
8005   // Handle GNU asm-label extension (encoded as an attribute).
8006   if (Expr *E = (Expr*)D.getAsmLabel()) {
8007     // The parser guarantees this is a string.
8008     StringLiteral *SE = cast<StringLiteral>(E);
8009     StringRef Label = SE->getString();
8010     if (S->getFnParent() != nullptr) {
8011       switch (SC) {
8012       case SC_None:
8013       case SC_Auto:
8014         Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
8015         break;
8016       case SC_Register:
8017         // Local Named register
8018         if (!Context.getTargetInfo().isValidGCCRegisterName(Label) &&
8019             DeclAttrsMatchCUDAMode(getLangOpts(), getCurFunctionDecl()))
8020           Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
8021         break;
8022       case SC_Static:
8023       case SC_Extern:
8024       case SC_PrivateExtern:
8025         break;
8026       }
8027     } else if (SC == SC_Register) {
8028       // Global Named register
8029       if (DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) {
8030         const auto &TI = Context.getTargetInfo();
8031         bool HasSizeMismatch;
8032 
8033         if (!TI.isValidGCCRegisterName(Label))
8034           Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
8035         else if (!TI.validateGlobalRegisterVariable(Label,
8036                                                     Context.getTypeSize(R),
8037                                                     HasSizeMismatch))
8038           Diag(E->getExprLoc(), diag::err_asm_invalid_global_var_reg) << Label;
8039         else if (HasSizeMismatch)
8040           Diag(E->getExprLoc(), diag::err_asm_register_size_mismatch) << Label;
8041       }
8042 
8043       if (!R->isIntegralType(Context) && !R->isPointerType()) {
8044         Diag(TInfo->getTypeLoc().getBeginLoc(),
8045              diag::err_asm_unsupported_register_type)
8046             << TInfo->getTypeLoc().getSourceRange();
8047         NewVD->setInvalidDecl(true);
8048       }
8049     }
8050 
8051     NewVD->addAttr(AsmLabelAttr::Create(Context, Label,
8052                                         /*IsLiteralLabel=*/true,
8053                                         SE->getStrTokenLoc(0)));
8054   } else if (!ExtnameUndeclaredIdentifiers.empty()) {
8055     llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
8056       ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
8057     if (I != ExtnameUndeclaredIdentifiers.end()) {
8058       if (isDeclExternC(NewVD)) {
8059         NewVD->addAttr(I->second);
8060         ExtnameUndeclaredIdentifiers.erase(I);
8061       } else
8062         Diag(NewVD->getLocation(), diag::warn_redefine_extname_not_applied)
8063             << /*Variable*/1 << NewVD;
8064     }
8065   }
8066 
8067   // Find the shadowed declaration before filtering for scope.
8068   NamedDecl *ShadowedDecl = D.getCXXScopeSpec().isEmpty()
8069                                 ? getShadowedDeclaration(NewVD, Previous)
8070                                 : nullptr;
8071 
8072   // Don't consider existing declarations that are in a different
8073   // scope and are out-of-semantic-context declarations (if the new
8074   // declaration has linkage).
8075   FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewVD),
8076                        D.getCXXScopeSpec().isNotEmpty() ||
8077                        IsMemberSpecialization ||
8078                        IsVariableTemplateSpecialization);
8079 
8080   // Check whether the previous declaration is in the same block scope. This
8081   // affects whether we merge types with it, per C++11 [dcl.array]p3.
8082   if (getLangOpts().CPlusPlus &&
8083       NewVD->isLocalVarDecl() && NewVD->hasExternalStorage())
8084     NewVD->setPreviousDeclInSameBlockScope(
8085         Previous.isSingleResult() && !Previous.isShadowed() &&
8086         isDeclInScope(Previous.getFoundDecl(), OriginalDC, S, false));
8087 
8088   if (!getLangOpts().CPlusPlus) {
8089     D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
8090   } else {
8091     // If this is an explicit specialization of a static data member, check it.
8092     if (IsMemberSpecialization && !IsVariableTemplate &&
8093         !IsVariableTemplateSpecialization && !NewVD->isInvalidDecl() &&
8094         CheckMemberSpecialization(NewVD, Previous))
8095       NewVD->setInvalidDecl();
8096 
8097     // Merge the decl with the existing one if appropriate.
8098     if (!Previous.empty()) {
8099       if (Previous.isSingleResult() &&
8100           isa<FieldDecl>(Previous.getFoundDecl()) &&
8101           D.getCXXScopeSpec().isSet()) {
8102         // The user tried to define a non-static data member
8103         // out-of-line (C++ [dcl.meaning]p1).
8104         Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
8105           << D.getCXXScopeSpec().getRange();
8106         Previous.clear();
8107         NewVD->setInvalidDecl();
8108       }
8109     } else if (D.getCXXScopeSpec().isSet() &&
8110                !IsVariableTemplateSpecialization) {
8111       // No previous declaration in the qualifying scope.
8112       Diag(D.getIdentifierLoc(), diag::err_no_member)
8113         << Name << computeDeclContext(D.getCXXScopeSpec(), true)
8114         << D.getCXXScopeSpec().getRange();
8115       NewVD->setInvalidDecl();
8116     }
8117 
8118     if (!IsPlaceholderVariable)
8119       D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
8120 
8121     // CheckVariableDeclaration will set NewVD as invalid if something is in
8122     // error like WebAssembly tables being declared as arrays with a non-zero
8123     // size, but then parsing continues and emits further errors on that line.
8124     // To avoid that we check here if it happened and return nullptr.
8125     if (NewVD->getType()->isWebAssemblyTableType() && NewVD->isInvalidDecl())
8126       return nullptr;
8127 
8128     if (NewTemplate) {
8129       VarTemplateDecl *PrevVarTemplate =
8130           NewVD->getPreviousDecl()
8131               ? NewVD->getPreviousDecl()->getDescribedVarTemplate()
8132               : nullptr;
8133 
8134       // Check the template parameter list of this declaration, possibly
8135       // merging in the template parameter list from the previous variable
8136       // template declaration.
8137       if (CheckTemplateParameterList(
8138               TemplateParams,
8139               PrevVarTemplate ? PrevVarTemplate->getTemplateParameters()
8140                               : nullptr,
8141               (D.getCXXScopeSpec().isSet() && DC && DC->isRecord() &&
8142                DC->isDependentContext())
8143                   ? TPC_ClassTemplateMember
8144                   : TPC_VarTemplate))
8145         NewVD->setInvalidDecl();
8146 
8147       // If we are providing an explicit specialization of a static variable
8148       // template, make a note of that.
8149       if (PrevVarTemplate &&
8150           PrevVarTemplate->getInstantiatedFromMemberTemplate())
8151         PrevVarTemplate->setMemberSpecialization();
8152     }
8153   }
8154 
8155   // Diagnose shadowed variables iff this isn't a redeclaration.
8156   if (!IsPlaceholderVariable && ShadowedDecl && !D.isRedeclaration())
8157     CheckShadow(NewVD, ShadowedDecl, Previous);
8158 
8159   ProcessPragmaWeak(S, NewVD);
8160 
8161   // If this is the first declaration of an extern C variable, update
8162   // the map of such variables.
8163   if (NewVD->isFirstDecl() && !NewVD->isInvalidDecl() &&
8164       isIncompleteDeclExternC(*this, NewVD))
8165     RegisterLocallyScopedExternCDecl(NewVD, S);
8166 
8167   if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
8168     MangleNumberingContext *MCtx;
8169     Decl *ManglingContextDecl;
8170     std::tie(MCtx, ManglingContextDecl) =
8171         getCurrentMangleNumberContext(NewVD->getDeclContext());
8172     if (MCtx) {
8173       Context.setManglingNumber(
8174           NewVD, MCtx->getManglingNumber(
8175                      NewVD, getMSManglingNumber(getLangOpts(), S)));
8176       Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
8177     }
8178   }
8179 
8180   // Special handling of variable named 'main'.
8181   if (!getLangOpts().Freestanding && isMainVar(Name, NewVD)) {
8182     // C++ [basic.start.main]p3:
8183     //   A program that declares
8184     //    - a variable main at global scope, or
8185     //    - an entity named main with C language linkage (in any namespace)
8186     //   is ill-formed
8187     if (getLangOpts().CPlusPlus)
8188       Diag(D.getBeginLoc(), diag::err_main_global_variable)
8189           << NewVD->isExternC();
8190 
8191     // In C, and external-linkage variable named main results in undefined
8192     // behavior.
8193     else if (NewVD->hasExternalFormalLinkage())
8194       Diag(D.getBeginLoc(), diag::warn_main_redefined);
8195   }
8196 
8197   if (D.isRedeclaration() && !Previous.empty()) {
8198     NamedDecl *Prev = Previous.getRepresentativeDecl();
8199     checkDLLAttributeRedeclaration(*this, Prev, NewVD, IsMemberSpecialization,
8200                                    D.isFunctionDefinition());
8201   }
8202 
8203   if (NewTemplate) {
8204     if (NewVD->isInvalidDecl())
8205       NewTemplate->setInvalidDecl();
8206     ActOnDocumentableDecl(NewTemplate);
8207     return NewTemplate;
8208   }
8209 
8210   if (IsMemberSpecialization && !NewVD->isInvalidDecl())
8211     CompleteMemberSpecialization(NewVD, Previous);
8212 
8213   emitReadOnlyPlacementAttrWarning(*this, NewVD);
8214 
8215   return NewVD;
8216 }
8217 
8218 /// Enum describing the %select options in diag::warn_decl_shadow.
8219 enum ShadowedDeclKind {
8220   SDK_Local,
8221   SDK_Global,
8222   SDK_StaticMember,
8223   SDK_Field,
8224   SDK_Typedef,
8225   SDK_Using,
8226   SDK_StructuredBinding
8227 };
8228 
8229 /// Determine what kind of declaration we're shadowing.
8230 static ShadowedDeclKind computeShadowedDeclKind(const NamedDecl *ShadowedDecl,
8231                                                 const DeclContext *OldDC) {
8232   if (isa<TypeAliasDecl>(ShadowedDecl))
8233     return SDK_Using;
8234   else if (isa<TypedefDecl>(ShadowedDecl))
8235     return SDK_Typedef;
8236   else if (isa<BindingDecl>(ShadowedDecl))
8237     return SDK_StructuredBinding;
8238   else if (isa<RecordDecl>(OldDC))
8239     return isa<FieldDecl>(ShadowedDecl) ? SDK_Field : SDK_StaticMember;
8240 
8241   return OldDC->isFileContext() ? SDK_Global : SDK_Local;
8242 }
8243 
8244 /// Return the location of the capture if the given lambda captures the given
8245 /// variable \p VD, or an invalid source location otherwise.
8246 static SourceLocation getCaptureLocation(const LambdaScopeInfo *LSI,
8247                                          const VarDecl *VD) {
8248   for (const Capture &Capture : LSI->Captures) {
8249     if (Capture.isVariableCapture() && Capture.getVariable() == VD)
8250       return Capture.getLocation();
8251   }
8252   return SourceLocation();
8253 }
8254 
8255 static bool shouldWarnIfShadowedDecl(const DiagnosticsEngine &Diags,
8256                                      const LookupResult &R) {
8257   // Only diagnose if we're shadowing an unambiguous field or variable.
8258   if (R.getResultKind() != LookupResult::Found)
8259     return false;
8260 
8261   // Return false if warning is ignored.
8262   return !Diags.isIgnored(diag::warn_decl_shadow, R.getNameLoc());
8263 }
8264 
8265 NamedDecl *Sema::getShadowedDeclaration(const VarDecl *D,
8266                                         const LookupResult &R) {
8267   if (!shouldWarnIfShadowedDecl(Diags, R))
8268     return nullptr;
8269 
8270   // Don't diagnose declarations at file scope.
8271   if (D->hasGlobalStorage() && !D->isStaticLocal())
8272     return nullptr;
8273 
8274   NamedDecl *ShadowedDecl = R.getFoundDecl();
8275   return isa<VarDecl, FieldDecl, BindingDecl>(ShadowedDecl) ? ShadowedDecl
8276                                                             : nullptr;
8277 }
8278 
8279 NamedDecl *Sema::getShadowedDeclaration(const TypedefNameDecl *D,
8280                                         const LookupResult &R) {
8281   // Don't warn if typedef declaration is part of a class
8282   if (D->getDeclContext()->isRecord())
8283     return nullptr;
8284 
8285   if (!shouldWarnIfShadowedDecl(Diags, R))
8286     return nullptr;
8287 
8288   NamedDecl *ShadowedDecl = R.getFoundDecl();
8289   return isa<TypedefNameDecl>(ShadowedDecl) ? ShadowedDecl : nullptr;
8290 }
8291 
8292 NamedDecl *Sema::getShadowedDeclaration(const BindingDecl *D,
8293                                         const LookupResult &R) {
8294   if (!shouldWarnIfShadowedDecl(Diags, R))
8295     return nullptr;
8296 
8297   NamedDecl *ShadowedDecl = R.getFoundDecl();
8298   return isa<VarDecl, FieldDecl, BindingDecl>(ShadowedDecl) ? ShadowedDecl
8299                                                             : nullptr;
8300 }
8301 
8302 void Sema::CheckShadow(NamedDecl *D, NamedDecl *ShadowedDecl,
8303                        const LookupResult &R) {
8304   DeclContext *NewDC = D->getDeclContext();
8305 
8306   if (FieldDecl *FD = dyn_cast<FieldDecl>(ShadowedDecl)) {
8307     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC)) {
8308       // Fields are not shadowed by variables in C++ static methods.
8309       if (MD->isStatic())
8310         return;
8311 
8312       if (!MD->getParent()->isLambda() && MD->isExplicitObjectMemberFunction())
8313         return;
8314     }
8315     // Fields shadowed by constructor parameters are a special case. Usually
8316     // the constructor initializes the field with the parameter.
8317     if (isa<CXXConstructorDecl>(NewDC))
8318       if (const auto PVD = dyn_cast<ParmVarDecl>(D)) {
8319         // Remember that this was shadowed so we can either warn about its
8320         // modification or its existence depending on warning settings.
8321         ShadowingDecls.insert({PVD->getCanonicalDecl(), FD});
8322         return;
8323       }
8324   }
8325 
8326   if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
8327     if (shadowedVar->isExternC()) {
8328       // For shadowing external vars, make sure that we point to the global
8329       // declaration, not a locally scoped extern declaration.
8330       for (auto *I : shadowedVar->redecls())
8331         if (I->isFileVarDecl()) {
8332           ShadowedDecl = I;
8333           break;
8334         }
8335     }
8336 
8337   DeclContext *OldDC = ShadowedDecl->getDeclContext()->getRedeclContext();
8338 
8339   unsigned WarningDiag = diag::warn_decl_shadow;
8340   SourceLocation CaptureLoc;
8341   if (isa<VarDecl>(D) && NewDC && isa<CXXMethodDecl>(NewDC)) {
8342     if (const auto *RD = dyn_cast<CXXRecordDecl>(NewDC->getParent())) {
8343       if (RD->isLambda() && OldDC->Encloses(NewDC->getLexicalParent())) {
8344         if (const auto *VD = dyn_cast<VarDecl>(ShadowedDecl)) {
8345           const auto *LSI = cast<LambdaScopeInfo>(getCurFunction());
8346           if (RD->getLambdaCaptureDefault() == LCD_None) {
8347             // Try to avoid warnings for lambdas with an explicit capture
8348             // list. Warn only when the lambda captures the shadowed decl
8349             // explicitly.
8350             CaptureLoc = getCaptureLocation(LSI, VD);
8351             if (CaptureLoc.isInvalid())
8352               WarningDiag = diag::warn_decl_shadow_uncaptured_local;
8353           } else {
8354             // Remember that this was shadowed so we can avoid the warning if
8355             // the shadowed decl isn't captured and the warning settings allow
8356             // it.
8357             cast<LambdaScopeInfo>(getCurFunction())
8358                 ->ShadowingDecls.push_back({D, VD});
8359             return;
8360           }
8361         }
8362         if (isa<FieldDecl>(ShadowedDecl)) {
8363           // If lambda can capture this, then emit default shadowing warning,
8364           // Otherwise it is not really a shadowing case since field is not
8365           // available in lambda's body.
8366           // At this point we don't know that lambda can capture this, so
8367           // remember that this was shadowed and delay until we know.
8368           cast<LambdaScopeInfo>(getCurFunction())
8369               ->ShadowingDecls.push_back({D, ShadowedDecl});
8370           return;
8371         }
8372       }
8373       if (const auto *VD = dyn_cast<VarDecl>(ShadowedDecl);
8374           VD && VD->hasLocalStorage()) {
8375         // A variable can't shadow a local variable in an enclosing scope, if
8376         // they are separated by a non-capturing declaration context.
8377         for (DeclContext *ParentDC = NewDC;
8378              ParentDC && !ParentDC->Equals(OldDC);
8379              ParentDC = getLambdaAwareParentOfDeclContext(ParentDC)) {
8380           // Only block literals, captured statements, and lambda expressions
8381           // can capture; other scopes don't.
8382           if (!isa<BlockDecl>(ParentDC) && !isa<CapturedDecl>(ParentDC) &&
8383               !isLambdaCallOperator(ParentDC)) {
8384             return;
8385           }
8386         }
8387       }
8388     }
8389   }
8390 
8391   // Never warn about shadowing a placeholder variable.
8392   if (ShadowedDecl->isPlaceholderVar(getLangOpts()))
8393     return;
8394 
8395   // Only warn about certain kinds of shadowing for class members.
8396   if (NewDC) {
8397     // In particular, don't warn about shadowing non-class members.
8398     if (NewDC->isRecord() && !OldDC->isRecord())
8399       return;
8400 
8401     // Skip shadowing check if we're in a class scope, dealing with an enum
8402     // constant in a different context.
8403     DeclContext *ReDC = NewDC->getRedeclContext();
8404     if (ReDC->isRecord() && isa<EnumConstantDecl>(D) && !OldDC->Equals(ReDC))
8405       return;
8406 
8407     // TODO: should we warn about static data members shadowing
8408     // static data members from base classes?
8409 
8410     // TODO: don't diagnose for inaccessible shadowed members.
8411     // This is hard to do perfectly because we might friend the
8412     // shadowing context, but that's just a false negative.
8413   }
8414 
8415   DeclarationName Name = R.getLookupName();
8416 
8417   // Emit warning and note.
8418   ShadowedDeclKind Kind = computeShadowedDeclKind(ShadowedDecl, OldDC);
8419   Diag(R.getNameLoc(), WarningDiag) << Name << Kind << OldDC;
8420   if (!CaptureLoc.isInvalid())
8421     Diag(CaptureLoc, diag::note_var_explicitly_captured_here)
8422         << Name << /*explicitly*/ 1;
8423   Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
8424 }
8425 
8426 void Sema::DiagnoseShadowingLambdaDecls(const LambdaScopeInfo *LSI) {
8427   for (const auto &Shadow : LSI->ShadowingDecls) {
8428     const NamedDecl *ShadowedDecl = Shadow.ShadowedDecl;
8429     // Try to avoid the warning when the shadowed decl isn't captured.
8430     const DeclContext *OldDC = ShadowedDecl->getDeclContext();
8431     if (const auto *VD = dyn_cast<VarDecl>(ShadowedDecl)) {
8432       SourceLocation CaptureLoc = getCaptureLocation(LSI, VD);
8433       Diag(Shadow.VD->getLocation(),
8434            CaptureLoc.isInvalid() ? diag::warn_decl_shadow_uncaptured_local
8435                                   : diag::warn_decl_shadow)
8436           << Shadow.VD->getDeclName()
8437           << computeShadowedDeclKind(ShadowedDecl, OldDC) << OldDC;
8438       if (CaptureLoc.isValid())
8439         Diag(CaptureLoc, diag::note_var_explicitly_captured_here)
8440             << Shadow.VD->getDeclName() << /*explicitly*/ 0;
8441       Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
8442     } else if (isa<FieldDecl>(ShadowedDecl)) {
8443       Diag(Shadow.VD->getLocation(),
8444            LSI->isCXXThisCaptured() ? diag::warn_decl_shadow
8445                                     : diag::warn_decl_shadow_uncaptured_local)
8446           << Shadow.VD->getDeclName()
8447           << computeShadowedDeclKind(ShadowedDecl, OldDC) << OldDC;
8448       Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
8449     }
8450   }
8451 }
8452 
8453 void Sema::CheckShadow(Scope *S, VarDecl *D) {
8454   if (Diags.isIgnored(diag::warn_decl_shadow, D->getLocation()))
8455     return;
8456 
8457   LookupResult R(*this, D->getDeclName(), D->getLocation(),
8458                  Sema::LookupOrdinaryName,
8459                  RedeclarationKind::ForVisibleRedeclaration);
8460   LookupName(R, S);
8461   if (NamedDecl *ShadowedDecl = getShadowedDeclaration(D, R))
8462     CheckShadow(D, ShadowedDecl, R);
8463 }
8464 
8465 /// Check if 'E', which is an expression that is about to be modified, refers
8466 /// to a constructor parameter that shadows a field.
8467 void Sema::CheckShadowingDeclModification(Expr *E, SourceLocation Loc) {
8468   // Quickly ignore expressions that can't be shadowing ctor parameters.
8469   if (!getLangOpts().CPlusPlus || ShadowingDecls.empty())
8470     return;
8471   E = E->IgnoreParenImpCasts();
8472   auto *DRE = dyn_cast<DeclRefExpr>(E);
8473   if (!DRE)
8474     return;
8475   const NamedDecl *D = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
8476   auto I = ShadowingDecls.find(D);
8477   if (I == ShadowingDecls.end())
8478     return;
8479   const NamedDecl *ShadowedDecl = I->second;
8480   const DeclContext *OldDC = ShadowedDecl->getDeclContext();
8481   Diag(Loc, diag::warn_modifying_shadowing_decl) << D << OldDC;
8482   Diag(D->getLocation(), diag::note_var_declared_here) << D;
8483   Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
8484 
8485   // Avoid issuing multiple warnings about the same decl.
8486   ShadowingDecls.erase(I);
8487 }
8488 
8489 /// Check for conflict between this global or extern "C" declaration and
8490 /// previous global or extern "C" declarations. This is only used in C++.
8491 template<typename T>
8492 static bool checkGlobalOrExternCConflict(
8493     Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) {
8494   assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\"");
8495   NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName());
8496 
8497   if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) {
8498     // The common case: this global doesn't conflict with any extern "C"
8499     // declaration.
8500     return false;
8501   }
8502 
8503   if (Prev) {
8504     if (!IsGlobal || isIncompleteDeclExternC(S, ND)) {
8505       // Both the old and new declarations have C language linkage. This is a
8506       // redeclaration.
8507       Previous.clear();
8508       Previous.addDecl(Prev);
8509       return true;
8510     }
8511 
8512     // This is a global, non-extern "C" declaration, and there is a previous
8513     // non-global extern "C" declaration. Diagnose if this is a variable
8514     // declaration.
8515     if (!isa<VarDecl>(ND))
8516       return false;
8517   } else {
8518     // The declaration is extern "C". Check for any declaration in the
8519     // translation unit which might conflict.
8520     if (IsGlobal) {
8521       // We have already performed the lookup into the translation unit.
8522       IsGlobal = false;
8523       for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
8524            I != E; ++I) {
8525         if (isa<VarDecl>(*I)) {
8526           Prev = *I;
8527           break;
8528         }
8529       }
8530     } else {
8531       DeclContext::lookup_result R =
8532           S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName());
8533       for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end();
8534            I != E; ++I) {
8535         if (isa<VarDecl>(*I)) {
8536           Prev = *I;
8537           break;
8538         }
8539         // FIXME: If we have any other entity with this name in global scope,
8540         // the declaration is ill-formed, but that is a defect: it breaks the
8541         // 'stat' hack, for instance. Only variables can have mangled name
8542         // clashes with extern "C" declarations, so only they deserve a
8543         // diagnostic.
8544       }
8545     }
8546 
8547     if (!Prev)
8548       return false;
8549   }
8550 
8551   // Use the first declaration's location to ensure we point at something which
8552   // is lexically inside an extern "C" linkage-spec.
8553   assert(Prev && "should have found a previous declaration to diagnose");
8554   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev))
8555     Prev = FD->getFirstDecl();
8556   else
8557     Prev = cast<VarDecl>(Prev)->getFirstDecl();
8558 
8559   S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict)
8560     << IsGlobal << ND;
8561   S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict)
8562     << IsGlobal;
8563   return false;
8564 }
8565 
8566 /// Apply special rules for handling extern "C" declarations. Returns \c true
8567 /// if we have found that this is a redeclaration of some prior entity.
8568 ///
8569 /// Per C++ [dcl.link]p6:
8570 ///   Two declarations [for a function or variable] with C language linkage
8571 ///   with the same name that appear in different scopes refer to the same
8572 ///   [entity]. An entity with C language linkage shall not be declared with
8573 ///   the same name as an entity in global scope.
8574 template<typename T>
8575 static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND,
8576                                                   LookupResult &Previous) {
8577   if (!S.getLangOpts().CPlusPlus) {
8578     // In C, when declaring a global variable, look for a corresponding 'extern'
8579     // variable declared in function scope. We don't need this in C++, because
8580     // we find local extern decls in the surrounding file-scope DeclContext.
8581     if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
8582       if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) {
8583         Previous.clear();
8584         Previous.addDecl(Prev);
8585         return true;
8586       }
8587     }
8588     return false;
8589   }
8590 
8591   // A declaration in the translation unit can conflict with an extern "C"
8592   // declaration.
8593   if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit())
8594     return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous);
8595 
8596   // An extern "C" declaration can conflict with a declaration in the
8597   // translation unit or can be a redeclaration of an extern "C" declaration
8598   // in another scope.
8599   if (isIncompleteDeclExternC(S,ND))
8600     return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous);
8601 
8602   // Neither global nor extern "C": nothing to do.
8603   return false;
8604 }
8605 
8606 static bool CheckC23ConstexprVarType(Sema &SemaRef, SourceLocation VarLoc,
8607                                      QualType T) {
8608   QualType CanonT = SemaRef.Context.getCanonicalType(T);
8609   // C23 6.7.1p5: An object declared with storage-class specifier constexpr or
8610   // any of its members, even recursively, shall not have an atomic type, or a
8611   // variably modified type, or a type that is volatile or restrict qualified.
8612   if (CanonT->isVariablyModifiedType()) {
8613     SemaRef.Diag(VarLoc, diag::err_c23_constexpr_invalid_type) << T;
8614     return true;
8615   }
8616 
8617   // Arrays are qualified by their element type, so get the base type (this
8618   // works on non-arrays as well).
8619   CanonT = SemaRef.Context.getBaseElementType(CanonT);
8620 
8621   if (CanonT->isAtomicType() || CanonT.isVolatileQualified() ||
8622       CanonT.isRestrictQualified()) {
8623     SemaRef.Diag(VarLoc, diag::err_c23_constexpr_invalid_type) << T;
8624     return true;
8625   }
8626 
8627   if (CanonT->isRecordType()) {
8628     const RecordDecl *RD = CanonT->getAsRecordDecl();
8629     if (llvm::any_of(RD->fields(), [&SemaRef, VarLoc](const FieldDecl *F) {
8630           return CheckC23ConstexprVarType(SemaRef, VarLoc, F->getType());
8631         }))
8632       return true;
8633   }
8634 
8635   return false;
8636 }
8637 
8638 void Sema::CheckVariableDeclarationType(VarDecl *NewVD) {
8639   // If the decl is already known invalid, don't check it.
8640   if (NewVD->isInvalidDecl())
8641     return;
8642 
8643   QualType T = NewVD->getType();
8644 
8645   // Defer checking an 'auto' type until its initializer is attached.
8646   if (T->isUndeducedType())
8647     return;
8648 
8649   if (NewVD->hasAttrs())
8650     CheckAlignasUnderalignment(NewVD);
8651 
8652   if (T->isObjCObjectType()) {
8653     Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
8654       << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
8655     T = Context.getObjCObjectPointerType(T);
8656     NewVD->setType(T);
8657   }
8658 
8659   // Emit an error if an address space was applied to decl with local storage.
8660   // This includes arrays of objects with address space qualifiers, but not
8661   // automatic variables that point to other address spaces.
8662   // ISO/IEC TR 18037 S5.1.2
8663   if (!getLangOpts().OpenCL && NewVD->hasLocalStorage() &&
8664       T.getAddressSpace() != LangAS::Default) {
8665     Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 0;
8666     NewVD->setInvalidDecl();
8667     return;
8668   }
8669 
8670   // OpenCL v1.2 s6.8 - The static qualifier is valid only in program
8671   // scope.
8672   if (getLangOpts().OpenCLVersion == 120 &&
8673       !getOpenCLOptions().isAvailableOption("cl_clang_storage_class_specifiers",
8674                                             getLangOpts()) &&
8675       NewVD->isStaticLocal()) {
8676     Diag(NewVD->getLocation(), diag::err_static_function_scope);
8677     NewVD->setInvalidDecl();
8678     return;
8679   }
8680 
8681   if (getLangOpts().OpenCL) {
8682     if (!diagnoseOpenCLTypes(*this, NewVD))
8683       return;
8684 
8685     // OpenCL v2.0 s6.12.5 - The __block storage type is not supported.
8686     if (NewVD->hasAttr<BlocksAttr>()) {
8687       Diag(NewVD->getLocation(), diag::err_opencl_block_storage_type);
8688       return;
8689     }
8690 
8691     if (T->isBlockPointerType()) {
8692       // OpenCL v2.0 s6.12.5 - Any block declaration must be const qualified and
8693       // can't use 'extern' storage class.
8694       if (!T.isConstQualified()) {
8695         Diag(NewVD->getLocation(), diag::err_opencl_invalid_block_declaration)
8696             << 0 /*const*/;
8697         NewVD->setInvalidDecl();
8698         return;
8699       }
8700       if (NewVD->hasExternalStorage()) {
8701         Diag(NewVD->getLocation(), diag::err_opencl_extern_block_declaration);
8702         NewVD->setInvalidDecl();
8703         return;
8704       }
8705     }
8706 
8707     // FIXME: Adding local AS in C++ for OpenCL might make sense.
8708     if (NewVD->isFileVarDecl() || NewVD->isStaticLocal() ||
8709         NewVD->hasExternalStorage()) {
8710       if (!T->isSamplerT() && !T->isDependentType() &&
8711           !(T.getAddressSpace() == LangAS::opencl_constant ||
8712             (T.getAddressSpace() == LangAS::opencl_global &&
8713              getOpenCLOptions().areProgramScopeVariablesSupported(
8714                  getLangOpts())))) {
8715         int Scope = NewVD->isStaticLocal() | NewVD->hasExternalStorage() << 1;
8716         if (getOpenCLOptions().areProgramScopeVariablesSupported(getLangOpts()))
8717           Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
8718               << Scope << "global or constant";
8719         else
8720           Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
8721               << Scope << "constant";
8722         NewVD->setInvalidDecl();
8723         return;
8724       }
8725     } else {
8726       if (T.getAddressSpace() == LangAS::opencl_global) {
8727         Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
8728             << 1 /*is any function*/ << "global";
8729         NewVD->setInvalidDecl();
8730         return;
8731       }
8732       if (T.getAddressSpace() == LangAS::opencl_constant ||
8733           T.getAddressSpace() == LangAS::opencl_local) {
8734         FunctionDecl *FD = getCurFunctionDecl();
8735         // OpenCL v1.1 s6.5.2 and s6.5.3: no local or constant variables
8736         // in functions.
8737         if (FD && !FD->hasAttr<OpenCLKernelAttr>()) {
8738           if (T.getAddressSpace() == LangAS::opencl_constant)
8739             Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
8740                 << 0 /*non-kernel only*/ << "constant";
8741           else
8742             Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
8743                 << 0 /*non-kernel only*/ << "local";
8744           NewVD->setInvalidDecl();
8745           return;
8746         }
8747         // OpenCL v2.0 s6.5.2 and s6.5.3: local and constant variables must be
8748         // in the outermost scope of a kernel function.
8749         if (FD && FD->hasAttr<OpenCLKernelAttr>()) {
8750           if (!getCurScope()->isFunctionScope()) {
8751             if (T.getAddressSpace() == LangAS::opencl_constant)
8752               Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope)
8753                   << "constant";
8754             else
8755               Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope)
8756                   << "local";
8757             NewVD->setInvalidDecl();
8758             return;
8759           }
8760         }
8761       } else if (T.getAddressSpace() != LangAS::opencl_private &&
8762                  // If we are parsing a template we didn't deduce an addr
8763                  // space yet.
8764                  T.getAddressSpace() != LangAS::Default) {
8765         // Do not allow other address spaces on automatic variable.
8766         Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 1;
8767         NewVD->setInvalidDecl();
8768         return;
8769       }
8770     }
8771   }
8772 
8773   if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
8774       && !NewVD->hasAttr<BlocksAttr>()) {
8775     if (getLangOpts().getGC() != LangOptions::NonGC)
8776       Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
8777     else {
8778       assert(!getLangOpts().ObjCAutoRefCount);
8779       Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
8780     }
8781   }
8782 
8783   // WebAssembly tables must be static with a zero length and can't be
8784   // declared within functions.
8785   if (T->isWebAssemblyTableType()) {
8786     if (getCurScope()->getParent()) { // Parent is null at top-level
8787       Diag(NewVD->getLocation(), diag::err_wasm_table_in_function);
8788       NewVD->setInvalidDecl();
8789       return;
8790     }
8791     if (NewVD->getStorageClass() != SC_Static) {
8792       Diag(NewVD->getLocation(), diag::err_wasm_table_must_be_static);
8793       NewVD->setInvalidDecl();
8794       return;
8795     }
8796     const auto *ATy = dyn_cast<ConstantArrayType>(T.getTypePtr());
8797     if (!ATy || ATy->getZExtSize() != 0) {
8798       Diag(NewVD->getLocation(),
8799            diag::err_typecheck_wasm_table_must_have_zero_length);
8800       NewVD->setInvalidDecl();
8801       return;
8802     }
8803   }
8804 
8805   // zero sized static arrays are not allowed in HIP device functions
8806   if (getLangOpts().HIP && LangOpts.CUDAIsDevice) {
8807     if (FunctionDecl *FD = getCurFunctionDecl();
8808         FD &&
8809         (FD->hasAttr<CUDADeviceAttr>() || FD->hasAttr<CUDAGlobalAttr>())) {
8810       if (const ConstantArrayType *ArrayT =
8811               getASTContext().getAsConstantArrayType(T);
8812           ArrayT && ArrayT->isZeroSize()) {
8813         Diag(NewVD->getLocation(), diag::err_typecheck_zero_array_size) << 2;
8814       }
8815     }
8816   }
8817 
8818   bool isVM = T->isVariablyModifiedType();
8819   if (isVM || NewVD->hasAttr<CleanupAttr>() ||
8820       NewVD->hasAttr<BlocksAttr>())
8821     setFunctionHasBranchProtectedScope();
8822 
8823   if ((isVM && NewVD->hasLinkage()) ||
8824       (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
8825     bool SizeIsNegative;
8826     llvm::APSInt Oversized;
8827     TypeSourceInfo *FixedTInfo = TryToFixInvalidVariablyModifiedTypeSourceInfo(
8828         NewVD->getTypeSourceInfo(), Context, SizeIsNegative, Oversized);
8829     QualType FixedT;
8830     if (FixedTInfo &&  T == NewVD->getTypeSourceInfo()->getType())
8831       FixedT = FixedTInfo->getType();
8832     else if (FixedTInfo) {
8833       // Type and type-as-written are canonically different. We need to fix up
8834       // both types separately.
8835       FixedT = TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
8836                                                    Oversized);
8837     }
8838     if ((!FixedTInfo || FixedT.isNull()) && T->isVariableArrayType()) {
8839       const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
8840       // FIXME: This won't give the correct result for
8841       // int a[10][n];
8842       SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
8843 
8844       if (NewVD->isFileVarDecl())
8845         Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
8846         << SizeRange;
8847       else if (NewVD->isStaticLocal())
8848         Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
8849         << SizeRange;
8850       else
8851         Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
8852         << SizeRange;
8853       NewVD->setInvalidDecl();
8854       return;
8855     }
8856 
8857     if (!FixedTInfo) {
8858       if (NewVD->isFileVarDecl())
8859         Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
8860       else
8861         Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
8862       NewVD->setInvalidDecl();
8863       return;
8864     }
8865 
8866     Diag(NewVD->getLocation(), diag::ext_vla_folded_to_constant);
8867     NewVD->setType(FixedT);
8868     NewVD->setTypeSourceInfo(FixedTInfo);
8869   }
8870 
8871   if (T->isVoidType()) {
8872     // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names
8873     //                    of objects and functions.
8874     if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) {
8875       Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
8876         << T;
8877       NewVD->setInvalidDecl();
8878       return;
8879     }
8880   }
8881 
8882   if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
8883     Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
8884     NewVD->setInvalidDecl();
8885     return;
8886   }
8887 
8888   if (!NewVD->hasLocalStorage() && T->isSizelessType() &&
8889       !T.isWebAssemblyReferenceType() && !T->isHLSLSpecificType()) {
8890     Diag(NewVD->getLocation(), diag::err_sizeless_nonlocal) << T;
8891     NewVD->setInvalidDecl();
8892     return;
8893   }
8894 
8895   if (isVM && NewVD->hasAttr<BlocksAttr>()) {
8896     Diag(NewVD->getLocation(), diag::err_block_on_vm);
8897     NewVD->setInvalidDecl();
8898     return;
8899   }
8900 
8901   if (getLangOpts().C23 && NewVD->isConstexpr() &&
8902       CheckC23ConstexprVarType(*this, NewVD->getLocation(), T)) {
8903     NewVD->setInvalidDecl();
8904     return;
8905   }
8906 
8907   if (getLangOpts().CPlusPlus && NewVD->isConstexpr() &&
8908       !T->isDependentType() &&
8909       RequireLiteralType(NewVD->getLocation(), T,
8910                          diag::err_constexpr_var_non_literal)) {
8911     NewVD->setInvalidDecl();
8912     return;
8913   }
8914 
8915   // PPC MMA non-pointer types are not allowed as non-local variable types.
8916   if (Context.getTargetInfo().getTriple().isPPC64() &&
8917       !NewVD->isLocalVarDecl() &&
8918       PPC().CheckPPCMMAType(T, NewVD->getLocation())) {
8919     NewVD->setInvalidDecl();
8920     return;
8921   }
8922 
8923   // Check that SVE types are only used in functions with SVE available.
8924   if (T->isSVESizelessBuiltinType() && isa<FunctionDecl>(CurContext)) {
8925     const FunctionDecl *FD = cast<FunctionDecl>(CurContext);
8926     llvm::StringMap<bool> CallerFeatureMap;
8927     Context.getFunctionFeatureMap(CallerFeatureMap, FD);
8928 
8929     if (!Builtin::evaluateRequiredTargetFeatures("sve", CallerFeatureMap)) {
8930       if (!Builtin::evaluateRequiredTargetFeatures("sme", CallerFeatureMap)) {
8931         Diag(NewVD->getLocation(), diag::err_sve_vector_in_non_sve_target) << T;
8932         NewVD->setInvalidDecl();
8933         return;
8934       } else if (!IsArmStreamingFunction(FD,
8935                                          /*IncludeLocallyStreaming=*/true)) {
8936         Diag(NewVD->getLocation(),
8937              diag::err_sve_vector_in_non_streaming_function)
8938             << T;
8939         NewVD->setInvalidDecl();
8940         return;
8941       }
8942     }
8943   }
8944 
8945   if (T->isRVVSizelessBuiltinType() && isa<FunctionDecl>(CurContext)) {
8946     const FunctionDecl *FD = cast<FunctionDecl>(CurContext);
8947     llvm::StringMap<bool> CallerFeatureMap;
8948     Context.getFunctionFeatureMap(CallerFeatureMap, FD);
8949     RISCV().checkRVVTypeSupport(T, NewVD->getLocation(), cast<Decl>(CurContext),
8950                                 CallerFeatureMap);
8951   }
8952 }
8953 
8954 bool Sema::CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous) {
8955   CheckVariableDeclarationType(NewVD);
8956 
8957   // If the decl is already known invalid, don't check it.
8958   if (NewVD->isInvalidDecl())
8959     return false;
8960 
8961   // If we did not find anything by this name, look for a non-visible
8962   // extern "C" declaration with the same name.
8963   if (Previous.empty() &&
8964       checkForConflictWithNonVisibleExternC(*this, NewVD, Previous))
8965     Previous.setShadowed();
8966 
8967   if (!Previous.empty()) {
8968     MergeVarDecl(NewVD, Previous);
8969     return true;
8970   }
8971   return false;
8972 }
8973 
8974 bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
8975   llvm::SmallPtrSet<const CXXMethodDecl*, 4> Overridden;
8976 
8977   // Look for methods in base classes that this method might override.
8978   CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
8979                      /*DetectVirtual=*/false);
8980   auto VisitBase = [&] (const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
8981     CXXRecordDecl *BaseRecord = Specifier->getType()->getAsCXXRecordDecl();
8982     DeclarationName Name = MD->getDeclName();
8983 
8984     if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
8985       // We really want to find the base class destructor here.
8986       QualType T = Context.getTypeDeclType(BaseRecord);
8987       CanQualType CT = Context.getCanonicalType(T);
8988       Name = Context.DeclarationNames.getCXXDestructorName(CT);
8989     }
8990 
8991     for (NamedDecl *BaseND : BaseRecord->lookup(Name)) {
8992       CXXMethodDecl *BaseMD =
8993           dyn_cast<CXXMethodDecl>(BaseND->getCanonicalDecl());
8994       if (!BaseMD || !BaseMD->isVirtual() ||
8995           IsOverride(MD, BaseMD, /*UseMemberUsingDeclRules=*/false,
8996                      /*ConsiderCudaAttrs=*/true))
8997         continue;
8998       if (!CheckExplicitObjectOverride(MD, BaseMD))
8999         continue;
9000       if (Overridden.insert(BaseMD).second) {
9001         MD->addOverriddenMethod(BaseMD);
9002         CheckOverridingFunctionReturnType(MD, BaseMD);
9003         CheckOverridingFunctionAttributes(MD, BaseMD);
9004         CheckOverridingFunctionExceptionSpec(MD, BaseMD);
9005         CheckIfOverriddenFunctionIsMarkedFinal(MD, BaseMD);
9006       }
9007 
9008       // A method can only override one function from each base class. We
9009       // don't track indirectly overridden methods from bases of bases.
9010       return true;
9011     }
9012 
9013     return false;
9014   };
9015 
9016   DC->lookupInBases(VisitBase, Paths);
9017   return !Overridden.empty();
9018 }
9019 
9020 namespace {
9021   // Struct for holding all of the extra arguments needed by
9022   // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
9023   struct ActOnFDArgs {
9024     Scope *S;
9025     Declarator &D;
9026     MultiTemplateParamsArg TemplateParamLists;
9027     bool AddToScope;
9028   };
9029 } // end anonymous namespace
9030 
9031 namespace {
9032 
9033 // Callback to only accept typo corrections that have a non-zero edit distance.
9034 // Also only accept corrections that have the same parent decl.
9035 class DifferentNameValidatorCCC final : public CorrectionCandidateCallback {
9036  public:
9037   DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
9038                             CXXRecordDecl *Parent)
9039       : Context(Context), OriginalFD(TypoFD),
9040         ExpectedParent(Parent ? Parent->getCanonicalDecl() : nullptr) {}
9041 
9042   bool ValidateCandidate(const TypoCorrection &candidate) override {
9043     if (candidate.getEditDistance() == 0)
9044       return false;
9045 
9046     SmallVector<unsigned, 1> MismatchedParams;
9047     for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
9048                                           CDeclEnd = candidate.end();
9049          CDecl != CDeclEnd; ++CDecl) {
9050       FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
9051 
9052       if (FD && !FD->hasBody() &&
9053           hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
9054         if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
9055           CXXRecordDecl *Parent = MD->getParent();
9056           if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
9057             return true;
9058         } else if (!ExpectedParent) {
9059           return true;
9060         }
9061       }
9062     }
9063 
9064     return false;
9065   }
9066 
9067   std::unique_ptr<CorrectionCandidateCallback> clone() override {
9068     return std::make_unique<DifferentNameValidatorCCC>(*this);
9069   }
9070 
9071  private:
9072   ASTContext &Context;
9073   FunctionDecl *OriginalFD;
9074   CXXRecordDecl *ExpectedParent;
9075 };
9076 
9077 } // end anonymous namespace
9078 
9079 void Sema::MarkTypoCorrectedFunctionDefinition(const NamedDecl *F) {
9080   TypoCorrectedFunctionDefinitions.insert(F);
9081 }
9082 
9083 /// Generate diagnostics for an invalid function redeclaration.
9084 ///
9085 /// This routine handles generating the diagnostic messages for an invalid
9086 /// function redeclaration, including finding possible similar declarations
9087 /// or performing typo correction if there are no previous declarations with
9088 /// the same name.
9089 ///
9090 /// Returns a NamedDecl iff typo correction was performed and substituting in
9091 /// the new declaration name does not cause new errors.
9092 static NamedDecl *DiagnoseInvalidRedeclaration(
9093     Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
9094     ActOnFDArgs &ExtraArgs, bool IsLocalFriend, Scope *S) {
9095   DeclarationName Name = NewFD->getDeclName();
9096   DeclContext *NewDC = NewFD->getDeclContext();
9097   SmallVector<unsigned, 1> MismatchedParams;
9098   SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
9099   TypoCorrection Correction;
9100   bool IsDefinition = ExtraArgs.D.isFunctionDefinition();
9101   unsigned DiagMsg =
9102     IsLocalFriend ? diag::err_no_matching_local_friend :
9103     NewFD->getFriendObjectKind() ? diag::err_qualified_friend_no_match :
9104     diag::err_member_decl_does_not_match;
9105   LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
9106                     IsLocalFriend ? Sema::LookupLocalFriendName
9107                                   : Sema::LookupOrdinaryName,
9108                     RedeclarationKind::ForVisibleRedeclaration);
9109 
9110   NewFD->setInvalidDecl();
9111   if (IsLocalFriend)
9112     SemaRef.LookupName(Prev, S);
9113   else
9114     SemaRef.LookupQualifiedName(Prev, NewDC);
9115   assert(!Prev.isAmbiguous() &&
9116          "Cannot have an ambiguity in previous-declaration lookup");
9117   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
9118   DifferentNameValidatorCCC CCC(SemaRef.Context, NewFD,
9119                                 MD ? MD->getParent() : nullptr);
9120   if (!Prev.empty()) {
9121     for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
9122          Func != FuncEnd; ++Func) {
9123       FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
9124       if (FD &&
9125           hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
9126         // Add 1 to the index so that 0 can mean the mismatch didn't
9127         // involve a parameter
9128         unsigned ParamNum =
9129             MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
9130         NearMatches.push_back(std::make_pair(FD, ParamNum));
9131       }
9132     }
9133   // If the qualified name lookup yielded nothing, try typo correction
9134   } else if ((Correction = SemaRef.CorrectTypo(
9135                   Prev.getLookupNameInfo(), Prev.getLookupKind(), S,
9136                   &ExtraArgs.D.getCXXScopeSpec(), CCC, Sema::CTK_ErrorRecovery,
9137                   IsLocalFriend ? nullptr : NewDC))) {
9138     // Set up everything for the call to ActOnFunctionDeclarator
9139     ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
9140                               ExtraArgs.D.getIdentifierLoc());
9141     Previous.clear();
9142     Previous.setLookupName(Correction.getCorrection());
9143     for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
9144                                     CDeclEnd = Correction.end();
9145          CDecl != CDeclEnd; ++CDecl) {
9146       FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
9147       if (FD && !FD->hasBody() &&
9148           hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
9149         Previous.addDecl(FD);
9150       }
9151     }
9152     bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
9153 
9154     NamedDecl *Result;
9155     // Retry building the function declaration with the new previous
9156     // declarations, and with errors suppressed.
9157     {
9158       // Trap errors.
9159       Sema::SFINAETrap Trap(SemaRef);
9160 
9161       // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
9162       // pieces need to verify the typo-corrected C++ declaration and hopefully
9163       // eliminate the need for the parameter pack ExtraArgs.
9164       Result = SemaRef.ActOnFunctionDeclarator(
9165           ExtraArgs.S, ExtraArgs.D,
9166           Correction.getCorrectionDecl()->getDeclContext(),
9167           NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
9168           ExtraArgs.AddToScope);
9169 
9170       if (Trap.hasErrorOccurred())
9171         Result = nullptr;
9172     }
9173 
9174     if (Result) {
9175       // Determine which correction we picked.
9176       Decl *Canonical = Result->getCanonicalDecl();
9177       for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
9178            I != E; ++I)
9179         if ((*I)->getCanonicalDecl() == Canonical)
9180           Correction.setCorrectionDecl(*I);
9181 
9182       // Let Sema know about the correction.
9183       SemaRef.MarkTypoCorrectedFunctionDefinition(Result);
9184       SemaRef.diagnoseTypo(
9185           Correction,
9186           SemaRef.PDiag(IsLocalFriend
9187                           ? diag::err_no_matching_local_friend_suggest
9188                           : diag::err_member_decl_does_not_match_suggest)
9189             << Name << NewDC << IsDefinition);
9190       return Result;
9191     }
9192 
9193     // Pretend the typo correction never occurred
9194     ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
9195                               ExtraArgs.D.getIdentifierLoc());
9196     ExtraArgs.D.setRedeclaration(wasRedeclaration);
9197     Previous.clear();
9198     Previous.setLookupName(Name);
9199   }
9200 
9201   SemaRef.Diag(NewFD->getLocation(), DiagMsg)
9202       << Name << NewDC << IsDefinition << NewFD->getLocation();
9203 
9204   CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD);
9205   if (NewMD && DiagMsg == diag::err_member_decl_does_not_match) {
9206     CXXRecordDecl *RD = NewMD->getParent();
9207     SemaRef.Diag(RD->getLocation(), diag::note_defined_here)
9208         << RD->getName() << RD->getLocation();
9209   }
9210 
9211   bool NewFDisConst = NewMD && NewMD->isConst();
9212 
9213   for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator
9214        NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
9215        NearMatch != NearMatchEnd; ++NearMatch) {
9216     FunctionDecl *FD = NearMatch->first;
9217     CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
9218     bool FDisConst = MD && MD->isConst();
9219     bool IsMember = MD || !IsLocalFriend;
9220 
9221     // FIXME: These notes are poorly worded for the local friend case.
9222     if (unsigned Idx = NearMatch->second) {
9223       ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
9224       SourceLocation Loc = FDParam->getTypeSpecStartLoc();
9225       if (Loc.isInvalid()) Loc = FD->getLocation();
9226       SemaRef.Diag(Loc, IsMember ? diag::note_member_def_close_param_match
9227                                  : diag::note_local_decl_close_param_match)
9228         << Idx << FDParam->getType()
9229         << NewFD->getParamDecl(Idx - 1)->getType();
9230     } else if (FDisConst != NewFDisConst) {
9231       auto DB = SemaRef.Diag(FD->getLocation(),
9232                              diag::note_member_def_close_const_match)
9233                 << NewFDisConst << FD->getSourceRange().getEnd();
9234       if (const auto &FTI = ExtraArgs.D.getFunctionTypeInfo(); !NewFDisConst)
9235         DB << FixItHint::CreateInsertion(FTI.getRParenLoc().getLocWithOffset(1),
9236                                          " const");
9237       else if (FTI.hasMethodTypeQualifiers() &&
9238                FTI.getConstQualifierLoc().isValid())
9239         DB << FixItHint::CreateRemoval(FTI.getConstQualifierLoc());
9240     } else {
9241       SemaRef.Diag(FD->getLocation(),
9242                    IsMember ? diag::note_member_def_close_match
9243                             : diag::note_local_decl_close_match);
9244     }
9245   }
9246   return nullptr;
9247 }
9248 
9249 static StorageClass getFunctionStorageClass(Sema &SemaRef, Declarator &D) {
9250   switch (D.getDeclSpec().getStorageClassSpec()) {
9251   default: llvm_unreachable("Unknown storage class!");
9252   case DeclSpec::SCS_auto:
9253   case DeclSpec::SCS_register:
9254   case DeclSpec::SCS_mutable:
9255     SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
9256                  diag::err_typecheck_sclass_func);
9257     D.getMutableDeclSpec().ClearStorageClassSpecs();
9258     D.setInvalidType();
9259     break;
9260   case DeclSpec::SCS_unspecified: break;
9261   case DeclSpec::SCS_extern:
9262     if (D.getDeclSpec().isExternInLinkageSpec())
9263       return SC_None;
9264     return SC_Extern;
9265   case DeclSpec::SCS_static: {
9266     if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
9267       // C99 6.7.1p5:
9268       //   The declaration of an identifier for a function that has
9269       //   block scope shall have no explicit storage-class specifier
9270       //   other than extern
9271       // See also (C++ [dcl.stc]p4).
9272       SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
9273                    diag::err_static_block_func);
9274       break;
9275     } else
9276       return SC_Static;
9277   }
9278   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
9279   }
9280 
9281   // No explicit storage class has already been returned
9282   return SC_None;
9283 }
9284 
9285 static FunctionDecl *CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
9286                                            DeclContext *DC, QualType &R,
9287                                            TypeSourceInfo *TInfo,
9288                                            StorageClass SC,
9289                                            bool &IsVirtualOkay) {
9290   DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
9291   DeclarationName Name = NameInfo.getName();
9292 
9293   FunctionDecl *NewFD = nullptr;
9294   bool isInline = D.getDeclSpec().isInlineSpecified();
9295 
9296   ConstexprSpecKind ConstexprKind = D.getDeclSpec().getConstexprSpecifier();
9297   if (ConstexprKind == ConstexprSpecKind::Constinit ||
9298       (SemaRef.getLangOpts().C23 &&
9299        ConstexprKind == ConstexprSpecKind::Constexpr)) {
9300 
9301     if (SemaRef.getLangOpts().C23)
9302       SemaRef.Diag(D.getDeclSpec().getConstexprSpecLoc(),
9303                    diag::err_c23_constexpr_not_variable);
9304     else
9305       SemaRef.Diag(D.getDeclSpec().getConstexprSpecLoc(),
9306                    diag::err_constexpr_wrong_decl_kind)
9307           << static_cast<int>(ConstexprKind);
9308     ConstexprKind = ConstexprSpecKind::Unspecified;
9309     D.getMutableDeclSpec().ClearConstexprSpec();
9310   }
9311 
9312   if (!SemaRef.getLangOpts().CPlusPlus) {
9313     // Determine whether the function was written with a prototype. This is
9314     // true when:
9315     //   - there is a prototype in the declarator, or
9316     //   - the type R of the function is some kind of typedef or other non-
9317     //     attributed reference to a type name (which eventually refers to a
9318     //     function type). Note, we can't always look at the adjusted type to
9319     //     check this case because attributes may cause a non-function
9320     //     declarator to still have a function type. e.g.,
9321     //       typedef void func(int a);
9322     //       __attribute__((noreturn)) func other_func; // This has a prototype
9323     bool HasPrototype =
9324         (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
9325         (D.getDeclSpec().isTypeRep() &&
9326          SemaRef.GetTypeFromParser(D.getDeclSpec().getRepAsType(), nullptr)
9327              ->isFunctionProtoType()) ||
9328         (!R->getAsAdjusted<FunctionType>() && R->isFunctionProtoType());
9329     assert(
9330         (HasPrototype || !SemaRef.getLangOpts().requiresStrictPrototypes()) &&
9331         "Strict prototypes are required");
9332 
9333     NewFD = FunctionDecl::Create(
9334         SemaRef.Context, DC, D.getBeginLoc(), NameInfo, R, TInfo, SC,
9335         SemaRef.getCurFPFeatures().isFPConstrained(), isInline, HasPrototype,
9336         ConstexprSpecKind::Unspecified,
9337         /*TrailingRequiresClause=*/nullptr);
9338     if (D.isInvalidType())
9339       NewFD->setInvalidDecl();
9340 
9341     return NewFD;
9342   }
9343 
9344   ExplicitSpecifier ExplicitSpecifier = D.getDeclSpec().getExplicitSpecifier();
9345   Expr *TrailingRequiresClause = D.getTrailingRequiresClause();
9346 
9347   SemaRef.CheckExplicitObjectMemberFunction(DC, D, Name, R);
9348 
9349   if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
9350     // This is a C++ constructor declaration.
9351     assert(DC->isRecord() &&
9352            "Constructors can only be declared in a member context");
9353 
9354     R = SemaRef.CheckConstructorDeclarator(D, R, SC);
9355     return CXXConstructorDecl::Create(
9356         SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
9357         TInfo, ExplicitSpecifier, SemaRef.getCurFPFeatures().isFPConstrained(),
9358         isInline, /*isImplicitlyDeclared=*/false, ConstexprKind,
9359         InheritedConstructor(), TrailingRequiresClause);
9360 
9361   } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
9362     // This is a C++ destructor declaration.
9363     if (DC->isRecord()) {
9364       R = SemaRef.CheckDestructorDeclarator(D, R, SC);
9365       CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
9366       CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
9367           SemaRef.Context, Record, D.getBeginLoc(), NameInfo, R, TInfo,
9368           SemaRef.getCurFPFeatures().isFPConstrained(), isInline,
9369           /*isImplicitlyDeclared=*/false, ConstexprKind,
9370           TrailingRequiresClause);
9371       // User defined destructors start as not selected if the class definition is still
9372       // not done.
9373       if (Record->isBeingDefined())
9374         NewDD->setIneligibleOrNotSelected(true);
9375 
9376       // If the destructor needs an implicit exception specification, set it
9377       // now. FIXME: It'd be nice to be able to create the right type to start
9378       // with, but the type needs to reference the destructor declaration.
9379       if (SemaRef.getLangOpts().CPlusPlus11)
9380         SemaRef.AdjustDestructorExceptionSpec(NewDD);
9381 
9382       IsVirtualOkay = true;
9383       return NewDD;
9384 
9385     } else {
9386       SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
9387       D.setInvalidType();
9388 
9389       // Create a FunctionDecl to satisfy the function definition parsing
9390       // code path.
9391       return FunctionDecl::Create(
9392           SemaRef.Context, DC, D.getBeginLoc(), D.getIdentifierLoc(), Name, R,
9393           TInfo, SC, SemaRef.getCurFPFeatures().isFPConstrained(), isInline,
9394           /*hasPrototype=*/true, ConstexprKind, TrailingRequiresClause);
9395     }
9396 
9397   } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
9398     if (!DC->isRecord()) {
9399       SemaRef.Diag(D.getIdentifierLoc(),
9400            diag::err_conv_function_not_member);
9401       return nullptr;
9402     }
9403 
9404     SemaRef.CheckConversionDeclarator(D, R, SC);
9405     if (D.isInvalidType())
9406       return nullptr;
9407 
9408     IsVirtualOkay = true;
9409     return CXXConversionDecl::Create(
9410         SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
9411         TInfo, SemaRef.getCurFPFeatures().isFPConstrained(), isInline,
9412         ExplicitSpecifier, ConstexprKind, SourceLocation(),
9413         TrailingRequiresClause);
9414 
9415   } else if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) {
9416     if (SemaRef.CheckDeductionGuideDeclarator(D, R, SC))
9417       return nullptr;
9418     return CXXDeductionGuideDecl::Create(
9419         SemaRef.Context, DC, D.getBeginLoc(), ExplicitSpecifier, NameInfo, R,
9420         TInfo, D.getEndLoc(), /*Ctor=*/nullptr,
9421         /*Kind=*/DeductionCandidate::Normal, TrailingRequiresClause);
9422   } else if (DC->isRecord()) {
9423     // If the name of the function is the same as the name of the record,
9424     // then this must be an invalid constructor that has a return type.
9425     // (The parser checks for a return type and makes the declarator a
9426     // constructor if it has no return type).
9427     if (Name.getAsIdentifierInfo() &&
9428         Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
9429       SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
9430         << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
9431         << SourceRange(D.getIdentifierLoc());
9432       return nullptr;
9433     }
9434 
9435     // This is a C++ method declaration.
9436     CXXMethodDecl *Ret = CXXMethodDecl::Create(
9437         SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
9438         TInfo, SC, SemaRef.getCurFPFeatures().isFPConstrained(), isInline,
9439         ConstexprKind, SourceLocation(), TrailingRequiresClause);
9440     IsVirtualOkay = !Ret->isStatic();
9441     return Ret;
9442   } else {
9443     bool isFriend =
9444         SemaRef.getLangOpts().CPlusPlus && D.getDeclSpec().isFriendSpecified();
9445     if (!isFriend && SemaRef.CurContext->isRecord())
9446       return nullptr;
9447 
9448     // Determine whether the function was written with a
9449     // prototype. This true when:
9450     //   - we're in C++ (where every function has a prototype),
9451     return FunctionDecl::Create(
9452         SemaRef.Context, DC, D.getBeginLoc(), NameInfo, R, TInfo, SC,
9453         SemaRef.getCurFPFeatures().isFPConstrained(), isInline,
9454         true /*HasPrototype*/, ConstexprKind, TrailingRequiresClause);
9455   }
9456 }
9457 
9458 enum OpenCLParamType {
9459   ValidKernelParam,
9460   PtrPtrKernelParam,
9461   PtrKernelParam,
9462   InvalidAddrSpacePtrKernelParam,
9463   InvalidKernelParam,
9464   RecordKernelParam
9465 };
9466 
9467 static bool isOpenCLSizeDependentType(ASTContext &C, QualType Ty) {
9468   // Size dependent types are just typedefs to normal integer types
9469   // (e.g. unsigned long), so we cannot distinguish them from other typedefs to
9470   // integers other than by their names.
9471   StringRef SizeTypeNames[] = {"size_t", "intptr_t", "uintptr_t", "ptrdiff_t"};
9472 
9473   // Remove typedefs one by one until we reach a typedef
9474   // for a size dependent type.
9475   QualType DesugaredTy = Ty;
9476   do {
9477     ArrayRef<StringRef> Names(SizeTypeNames);
9478     auto Match = llvm::find(Names, DesugaredTy.getUnqualifiedType().getAsString());
9479     if (Names.end() != Match)
9480       return true;
9481 
9482     Ty = DesugaredTy;
9483     DesugaredTy = Ty.getSingleStepDesugaredType(C);
9484   } while (DesugaredTy != Ty);
9485 
9486   return false;
9487 }
9488 
9489 static OpenCLParamType getOpenCLKernelParameterType(Sema &S, QualType PT) {
9490   if (PT->isDependentType())
9491     return InvalidKernelParam;
9492 
9493   if (PT->isPointerOrReferenceType()) {
9494     QualType PointeeType = PT->getPointeeType();
9495     if (PointeeType.getAddressSpace() == LangAS::opencl_generic ||
9496         PointeeType.getAddressSpace() == LangAS::opencl_private ||
9497         PointeeType.getAddressSpace() == LangAS::Default)
9498       return InvalidAddrSpacePtrKernelParam;
9499 
9500     if (PointeeType->isPointerType()) {
9501       // This is a pointer to pointer parameter.
9502       // Recursively check inner type.
9503       OpenCLParamType ParamKind = getOpenCLKernelParameterType(S, PointeeType);
9504       if (ParamKind == InvalidAddrSpacePtrKernelParam ||
9505           ParamKind == InvalidKernelParam)
9506         return ParamKind;
9507 
9508       // OpenCL v3.0 s6.11.a:
9509       // A restriction to pass pointers to pointers only applies to OpenCL C
9510       // v1.2 or below.
9511       if (S.getLangOpts().getOpenCLCompatibleVersion() > 120)
9512         return ValidKernelParam;
9513 
9514       return PtrPtrKernelParam;
9515     }
9516 
9517     // C++ for OpenCL v1.0 s2.4:
9518     // Moreover the types used in parameters of the kernel functions must be:
9519     // Standard layout types for pointer parameters. The same applies to
9520     // reference if an implementation supports them in kernel parameters.
9521     if (S.getLangOpts().OpenCLCPlusPlus &&
9522         !S.getOpenCLOptions().isAvailableOption(
9523             "__cl_clang_non_portable_kernel_param_types", S.getLangOpts())) {
9524      auto CXXRec = PointeeType.getCanonicalType()->getAsCXXRecordDecl();
9525      bool IsStandardLayoutType = true;
9526      if (CXXRec) {
9527        // If template type is not ODR-used its definition is only available
9528        // in the template definition not its instantiation.
9529        // FIXME: This logic doesn't work for types that depend on template
9530        // parameter (PR58590).
9531        if (!CXXRec->hasDefinition())
9532          CXXRec = CXXRec->getTemplateInstantiationPattern();
9533        if (!CXXRec || !CXXRec->hasDefinition() || !CXXRec->isStandardLayout())
9534          IsStandardLayoutType = false;
9535      }
9536      if (!PointeeType->isAtomicType() && !PointeeType->isVoidType() &&
9537         !IsStandardLayoutType)
9538       return InvalidKernelParam;
9539     }
9540 
9541     // OpenCL v1.2 s6.9.p:
9542     // A restriction to pass pointers only applies to OpenCL C v1.2 or below.
9543     if (S.getLangOpts().getOpenCLCompatibleVersion() > 120)
9544       return ValidKernelParam;
9545 
9546     return PtrKernelParam;
9547   }
9548 
9549   // OpenCL v1.2 s6.9.k:
9550   // Arguments to kernel functions in a program cannot be declared with the
9551   // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
9552   // uintptr_t or a struct and/or union that contain fields declared to be one
9553   // of these built-in scalar types.
9554   if (isOpenCLSizeDependentType(S.getASTContext(), PT))
9555     return InvalidKernelParam;
9556 
9557   if (PT->isImageType())
9558     return PtrKernelParam;
9559 
9560   if (PT->isBooleanType() || PT->isEventT() || PT->isReserveIDT())
9561     return InvalidKernelParam;
9562 
9563   // OpenCL extension spec v1.2 s9.5:
9564   // This extension adds support for half scalar and vector types as built-in
9565   // types that can be used for arithmetic operations, conversions etc.
9566   if (!S.getOpenCLOptions().isAvailableOption("cl_khr_fp16", S.getLangOpts()) &&
9567       PT->isHalfType())
9568     return InvalidKernelParam;
9569 
9570   // Look into an array argument to check if it has a forbidden type.
9571   if (PT->isArrayType()) {
9572     const Type *UnderlyingTy = PT->getPointeeOrArrayElementType();
9573     // Call ourself to check an underlying type of an array. Since the
9574     // getPointeeOrArrayElementType returns an innermost type which is not an
9575     // array, this recursive call only happens once.
9576     return getOpenCLKernelParameterType(S, QualType(UnderlyingTy, 0));
9577   }
9578 
9579   // C++ for OpenCL v1.0 s2.4:
9580   // Moreover the types used in parameters of the kernel functions must be:
9581   // Trivial and standard-layout types C++17 [basic.types] (plain old data
9582   // types) for parameters passed by value;
9583   if (S.getLangOpts().OpenCLCPlusPlus &&
9584       !S.getOpenCLOptions().isAvailableOption(
9585           "__cl_clang_non_portable_kernel_param_types", S.getLangOpts()) &&
9586       !PT->isOpenCLSpecificType() && !PT.isPODType(S.Context))
9587     return InvalidKernelParam;
9588 
9589   if (PT->isRecordType())
9590     return RecordKernelParam;
9591 
9592   return ValidKernelParam;
9593 }
9594 
9595 static void checkIsValidOpenCLKernelParameter(
9596   Sema &S,
9597   Declarator &D,
9598   ParmVarDecl *Param,
9599   llvm::SmallPtrSetImpl<const Type *> &ValidTypes) {
9600   QualType PT = Param->getType();
9601 
9602   // Cache the valid types we encounter to avoid rechecking structs that are
9603   // used again
9604   if (ValidTypes.count(PT.getTypePtr()))
9605     return;
9606 
9607   switch (getOpenCLKernelParameterType(S, PT)) {
9608   case PtrPtrKernelParam:
9609     // OpenCL v3.0 s6.11.a:
9610     // A kernel function argument cannot be declared as a pointer to a pointer
9611     // type. [...] This restriction only applies to OpenCL C 1.2 or below.
9612     S.Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_param);
9613     D.setInvalidType();
9614     return;
9615 
9616   case InvalidAddrSpacePtrKernelParam:
9617     // OpenCL v1.0 s6.5:
9618     // __kernel function arguments declared to be a pointer of a type can point
9619     // to one of the following address spaces only : __global, __local or
9620     // __constant.
9621     S.Diag(Param->getLocation(), diag::err_kernel_arg_address_space);
9622     D.setInvalidType();
9623     return;
9624 
9625     // OpenCL v1.2 s6.9.k:
9626     // Arguments to kernel functions in a program cannot be declared with the
9627     // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
9628     // uintptr_t or a struct and/or union that contain fields declared to be
9629     // one of these built-in scalar types.
9630 
9631   case InvalidKernelParam:
9632     // OpenCL v1.2 s6.8 n:
9633     // A kernel function argument cannot be declared
9634     // of event_t type.
9635     // Do not diagnose half type since it is diagnosed as invalid argument
9636     // type for any function elsewhere.
9637     if (!PT->isHalfType()) {
9638       S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
9639 
9640       // Explain what typedefs are involved.
9641       const TypedefType *Typedef = nullptr;
9642       while ((Typedef = PT->getAs<TypedefType>())) {
9643         SourceLocation Loc = Typedef->getDecl()->getLocation();
9644         // SourceLocation may be invalid for a built-in type.
9645         if (Loc.isValid())
9646           S.Diag(Loc, diag::note_entity_declared_at) << PT;
9647         PT = Typedef->desugar();
9648       }
9649     }
9650 
9651     D.setInvalidType();
9652     return;
9653 
9654   case PtrKernelParam:
9655   case ValidKernelParam:
9656     ValidTypes.insert(PT.getTypePtr());
9657     return;
9658 
9659   case RecordKernelParam:
9660     break;
9661   }
9662 
9663   // Track nested structs we will inspect
9664   SmallVector<const Decl *, 4> VisitStack;
9665 
9666   // Track where we are in the nested structs. Items will migrate from
9667   // VisitStack to HistoryStack as we do the DFS for bad field.
9668   SmallVector<const FieldDecl *, 4> HistoryStack;
9669   HistoryStack.push_back(nullptr);
9670 
9671   // At this point we already handled everything except of a RecordType or
9672   // an ArrayType of a RecordType.
9673   assert((PT->isArrayType() || PT->isRecordType()) && "Unexpected type.");
9674   const RecordType *RecTy =
9675       PT->getPointeeOrArrayElementType()->getAs<RecordType>();
9676   const RecordDecl *OrigRecDecl = RecTy->getDecl();
9677 
9678   VisitStack.push_back(RecTy->getDecl());
9679   assert(VisitStack.back() && "First decl null?");
9680 
9681   do {
9682     const Decl *Next = VisitStack.pop_back_val();
9683     if (!Next) {
9684       assert(!HistoryStack.empty());
9685       // Found a marker, we have gone up a level
9686       if (const FieldDecl *Hist = HistoryStack.pop_back_val())
9687         ValidTypes.insert(Hist->getType().getTypePtr());
9688 
9689       continue;
9690     }
9691 
9692     // Adds everything except the original parameter declaration (which is not a
9693     // field itself) to the history stack.
9694     const RecordDecl *RD;
9695     if (const FieldDecl *Field = dyn_cast<FieldDecl>(Next)) {
9696       HistoryStack.push_back(Field);
9697 
9698       QualType FieldTy = Field->getType();
9699       // Other field types (known to be valid or invalid) are handled while we
9700       // walk around RecordDecl::fields().
9701       assert((FieldTy->isArrayType() || FieldTy->isRecordType()) &&
9702              "Unexpected type.");
9703       const Type *FieldRecTy = FieldTy->getPointeeOrArrayElementType();
9704 
9705       RD = FieldRecTy->castAs<RecordType>()->getDecl();
9706     } else {
9707       RD = cast<RecordDecl>(Next);
9708     }
9709 
9710     // Add a null marker so we know when we've gone back up a level
9711     VisitStack.push_back(nullptr);
9712 
9713     for (const auto *FD : RD->fields()) {
9714       QualType QT = FD->getType();
9715 
9716       if (ValidTypes.count(QT.getTypePtr()))
9717         continue;
9718 
9719       OpenCLParamType ParamType = getOpenCLKernelParameterType(S, QT);
9720       if (ParamType == ValidKernelParam)
9721         continue;
9722 
9723       if (ParamType == RecordKernelParam) {
9724         VisitStack.push_back(FD);
9725         continue;
9726       }
9727 
9728       // OpenCL v1.2 s6.9.p:
9729       // Arguments to kernel functions that are declared to be a struct or union
9730       // do not allow OpenCL objects to be passed as elements of the struct or
9731       // union. This restriction was lifted in OpenCL v2.0 with the introduction
9732       // of SVM.
9733       if (ParamType == PtrKernelParam || ParamType == PtrPtrKernelParam ||
9734           ParamType == InvalidAddrSpacePtrKernelParam) {
9735         S.Diag(Param->getLocation(),
9736                diag::err_record_with_pointers_kernel_param)
9737           << PT->isUnionType()
9738           << PT;
9739       } else {
9740         S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
9741       }
9742 
9743       S.Diag(OrigRecDecl->getLocation(), diag::note_within_field_of_type)
9744           << OrigRecDecl->getDeclName();
9745 
9746       // We have an error, now let's go back up through history and show where
9747       // the offending field came from
9748       for (ArrayRef<const FieldDecl *>::const_iterator
9749                I = HistoryStack.begin() + 1,
9750                E = HistoryStack.end();
9751            I != E; ++I) {
9752         const FieldDecl *OuterField = *I;
9753         S.Diag(OuterField->getLocation(), diag::note_within_field_of_type)
9754           << OuterField->getType();
9755       }
9756 
9757       S.Diag(FD->getLocation(), diag::note_illegal_field_declared_here)
9758         << QT->isPointerType()
9759         << QT;
9760       D.setInvalidType();
9761       return;
9762     }
9763   } while (!VisitStack.empty());
9764 }
9765 
9766 /// Find the DeclContext in which a tag is implicitly declared if we see an
9767 /// elaborated type specifier in the specified context, and lookup finds
9768 /// nothing.
9769 static DeclContext *getTagInjectionContext(DeclContext *DC) {
9770   while (!DC->isFileContext() && !DC->isFunctionOrMethod())
9771     DC = DC->getParent();
9772   return DC;
9773 }
9774 
9775 /// Find the Scope in which a tag is implicitly declared if we see an
9776 /// elaborated type specifier in the specified context, and lookup finds
9777 /// nothing.
9778 static Scope *getTagInjectionScope(Scope *S, const LangOptions &LangOpts) {
9779   while (S->isClassScope() ||
9780          (LangOpts.CPlusPlus &&
9781           S->isFunctionPrototypeScope()) ||
9782          ((S->getFlags() & Scope::DeclScope) == 0) ||
9783          (S->getEntity() && S->getEntity()->isTransparentContext()))
9784     S = S->getParent();
9785   return S;
9786 }
9787 
9788 /// Determine whether a declaration matches a known function in namespace std.
9789 static bool isStdBuiltin(ASTContext &Ctx, FunctionDecl *FD,
9790                          unsigned BuiltinID) {
9791   switch (BuiltinID) {
9792   case Builtin::BI__GetExceptionInfo:
9793     // No type checking whatsoever.
9794     return Ctx.getTargetInfo().getCXXABI().isMicrosoft();
9795 
9796   case Builtin::BIaddressof:
9797   case Builtin::BI__addressof:
9798   case Builtin::BIforward:
9799   case Builtin::BIforward_like:
9800   case Builtin::BImove:
9801   case Builtin::BImove_if_noexcept:
9802   case Builtin::BIas_const: {
9803     // Ensure that we don't treat the algorithm
9804     //   OutputIt std::move(InputIt, InputIt, OutputIt)
9805     // as the builtin std::move.
9806     const auto *FPT = FD->getType()->castAs<FunctionProtoType>();
9807     return FPT->getNumParams() == 1 && !FPT->isVariadic();
9808   }
9809 
9810   default:
9811     return false;
9812   }
9813 }
9814 
9815 NamedDecl*
9816 Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
9817                               TypeSourceInfo *TInfo, LookupResult &Previous,
9818                               MultiTemplateParamsArg TemplateParamListsRef,
9819                               bool &AddToScope) {
9820   QualType R = TInfo->getType();
9821 
9822   assert(R->isFunctionType());
9823   if (R.getCanonicalType()->castAs<FunctionType>()->getCmseNSCallAttr())
9824     Diag(D.getIdentifierLoc(), diag::err_function_decl_cmse_ns_call);
9825 
9826   SmallVector<TemplateParameterList *, 4> TemplateParamLists;
9827   llvm::append_range(TemplateParamLists, TemplateParamListsRef);
9828   if (TemplateParameterList *Invented = D.getInventedTemplateParameterList()) {
9829     if (!TemplateParamLists.empty() && !TemplateParamLists.back()->empty() &&
9830         Invented->getDepth() == TemplateParamLists.back()->getDepth())
9831       TemplateParamLists.back() = Invented;
9832     else
9833       TemplateParamLists.push_back(Invented);
9834   }
9835 
9836   // TODO: consider using NameInfo for diagnostic.
9837   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
9838   DeclarationName Name = NameInfo.getName();
9839   StorageClass SC = getFunctionStorageClass(*this, D);
9840 
9841   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
9842     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
9843          diag::err_invalid_thread)
9844       << DeclSpec::getSpecifierName(TSCS);
9845 
9846   if (D.isFirstDeclarationOfMember())
9847     adjustMemberFunctionCC(
9848         R, !(D.isStaticMember() || D.isExplicitObjectMemberFunction()),
9849         D.isCtorOrDtor(), D.getIdentifierLoc());
9850 
9851   bool isFriend = false;
9852   FunctionTemplateDecl *FunctionTemplate = nullptr;
9853   bool isMemberSpecialization = false;
9854   bool isFunctionTemplateSpecialization = false;
9855 
9856   bool HasExplicitTemplateArgs = false;
9857   TemplateArgumentListInfo TemplateArgs;
9858 
9859   bool isVirtualOkay = false;
9860 
9861   DeclContext *OriginalDC = DC;
9862   bool IsLocalExternDecl = adjustContextForLocalExternDecl(DC);
9863 
9864   FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
9865                                               isVirtualOkay);
9866   if (!NewFD) return nullptr;
9867 
9868   if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
9869     NewFD->setTopLevelDeclInObjCContainer();
9870 
9871   // Set the lexical context. If this is a function-scope declaration, or has a
9872   // C++ scope specifier, or is the object of a friend declaration, the lexical
9873   // context will be different from the semantic context.
9874   NewFD->setLexicalDeclContext(CurContext);
9875 
9876   if (IsLocalExternDecl)
9877     NewFD->setLocalExternDecl();
9878 
9879   if (getLangOpts().CPlusPlus) {
9880     // The rules for implicit inlines changed in C++20 for methods and friends
9881     // with an in-class definition (when such a definition is not attached to
9882     // the global module). This does not affect declarations that are already
9883     // inline (whether explicitly or implicitly by being declared constexpr,
9884     // consteval, etc).
9885     // FIXME: We need a better way to separate C++ standard and clang modules.
9886     bool ImplicitInlineCXX20 = !getLangOpts().CPlusPlusModules ||
9887                                !NewFD->getOwningModule() ||
9888                                NewFD->isFromGlobalModule() ||
9889                                NewFD->getOwningModule()->isHeaderLikeModule();
9890     bool isInline = D.getDeclSpec().isInlineSpecified();
9891     bool isVirtual = D.getDeclSpec().isVirtualSpecified();
9892     bool hasExplicit = D.getDeclSpec().hasExplicitSpecifier();
9893     isFriend = D.getDeclSpec().isFriendSpecified();
9894     if (ImplicitInlineCXX20 && isFriend && D.isFunctionDefinition()) {
9895       // Pre-C++20 [class.friend]p5
9896       //   A function can be defined in a friend declaration of a
9897       //   class . . . . Such a function is implicitly inline.
9898       // Post C++20 [class.friend]p7
9899       //   Such a function is implicitly an inline function if it is attached
9900       //   to the global module.
9901       NewFD->setImplicitlyInline();
9902     }
9903 
9904     // If this is a method defined in an __interface, and is not a constructor
9905     // or an overloaded operator, then set the pure flag (isVirtual will already
9906     // return true).
9907     if (const CXXRecordDecl *Parent =
9908           dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
9909       if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
9910         NewFD->setIsPureVirtual(true);
9911 
9912       // C++ [class.union]p2
9913       //   A union can have member functions, but not virtual functions.
9914       if (isVirtual && Parent->isUnion()) {
9915         Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_in_union);
9916         NewFD->setInvalidDecl();
9917       }
9918       if ((Parent->isClass() || Parent->isStruct()) &&
9919           Parent->hasAttr<SYCLSpecialClassAttr>() &&
9920           NewFD->getKind() == Decl::Kind::CXXMethod && NewFD->getIdentifier() &&
9921           NewFD->getName() == "__init" && D.isFunctionDefinition()) {
9922         if (auto *Def = Parent->getDefinition())
9923           Def->setInitMethod(true);
9924       }
9925     }
9926 
9927     SetNestedNameSpecifier(*this, NewFD, D);
9928     isMemberSpecialization = false;
9929     isFunctionTemplateSpecialization = false;
9930     if (D.isInvalidType())
9931       NewFD->setInvalidDecl();
9932 
9933     // Match up the template parameter lists with the scope specifier, then
9934     // determine whether we have a template or a template specialization.
9935     bool Invalid = false;
9936     TemplateIdAnnotation *TemplateId =
9937         D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
9938             ? D.getName().TemplateId
9939             : nullptr;
9940     TemplateParameterList *TemplateParams =
9941         MatchTemplateParametersToScopeSpecifier(
9942             D.getDeclSpec().getBeginLoc(), D.getIdentifierLoc(),
9943             D.getCXXScopeSpec(), TemplateId, TemplateParamLists, isFriend,
9944             isMemberSpecialization, Invalid);
9945     if (TemplateParams) {
9946       // Check that we can declare a template here.
9947       if (CheckTemplateDeclScope(S, TemplateParams))
9948         NewFD->setInvalidDecl();
9949 
9950       if (TemplateParams->size() > 0) {
9951         // This is a function template
9952 
9953         // A destructor cannot be a template.
9954         if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
9955           Diag(NewFD->getLocation(), diag::err_destructor_template);
9956           NewFD->setInvalidDecl();
9957           // Function template with explicit template arguments.
9958         } else if (TemplateId) {
9959           Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
9960               << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
9961           NewFD->setInvalidDecl();
9962         }
9963 
9964         // If we're adding a template to a dependent context, we may need to
9965         // rebuilding some of the types used within the template parameter list,
9966         // now that we know what the current instantiation is.
9967         if (DC->isDependentContext()) {
9968           ContextRAII SavedContext(*this, DC);
9969           if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
9970             Invalid = true;
9971         }
9972 
9973         FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
9974                                                         NewFD->getLocation(),
9975                                                         Name, TemplateParams,
9976                                                         NewFD);
9977         FunctionTemplate->setLexicalDeclContext(CurContext);
9978         NewFD->setDescribedFunctionTemplate(FunctionTemplate);
9979 
9980         // For source fidelity, store the other template param lists.
9981         if (TemplateParamLists.size() > 1) {
9982           NewFD->setTemplateParameterListsInfo(Context,
9983               ArrayRef<TemplateParameterList *>(TemplateParamLists)
9984                   .drop_back(1));
9985         }
9986       } else {
9987         // This is a function template specialization.
9988         isFunctionTemplateSpecialization = true;
9989         // For source fidelity, store all the template param lists.
9990         if (TemplateParamLists.size() > 0)
9991           NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists);
9992 
9993         // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
9994         if (isFriend) {
9995           // We want to remove the "template<>", found here.
9996           SourceRange RemoveRange = TemplateParams->getSourceRange();
9997 
9998           // If we remove the template<> and the name is not a
9999           // template-id, we're actually silently creating a problem:
10000           // the friend declaration will refer to an untemplated decl,
10001           // and clearly the user wants a template specialization.  So
10002           // we need to insert '<>' after the name.
10003           SourceLocation InsertLoc;
10004           if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
10005             InsertLoc = D.getName().getSourceRange().getEnd();
10006             InsertLoc = getLocForEndOfToken(InsertLoc);
10007           }
10008 
10009           Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
10010             << Name << RemoveRange
10011             << FixItHint::CreateRemoval(RemoveRange)
10012             << FixItHint::CreateInsertion(InsertLoc, "<>");
10013           Invalid = true;
10014 
10015           // Recover by faking up an empty template argument list.
10016           HasExplicitTemplateArgs = true;
10017           TemplateArgs.setLAngleLoc(InsertLoc);
10018           TemplateArgs.setRAngleLoc(InsertLoc);
10019         }
10020       }
10021     } else {
10022       // Check that we can declare a template here.
10023       if (!TemplateParamLists.empty() && isMemberSpecialization &&
10024           CheckTemplateDeclScope(S, TemplateParamLists.back()))
10025         NewFD->setInvalidDecl();
10026 
10027       // All template param lists were matched against the scope specifier:
10028       // this is NOT (an explicit specialization of) a template.
10029       if (TemplateParamLists.size() > 0)
10030         // For source fidelity, store all the template param lists.
10031         NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists);
10032 
10033       // "friend void foo<>(int);" is an implicit specialization decl.
10034       if (isFriend && TemplateId)
10035         isFunctionTemplateSpecialization = true;
10036     }
10037 
10038     // If this is a function template specialization and the unqualified-id of
10039     // the declarator-id is a template-id, convert the template argument list
10040     // into our AST format and check for unexpanded packs.
10041     if (isFunctionTemplateSpecialization && TemplateId) {
10042       HasExplicitTemplateArgs = true;
10043 
10044       TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
10045       TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
10046       ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
10047                                          TemplateId->NumArgs);
10048       translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
10049 
10050       // FIXME: Should we check for unexpanded packs if this was an (invalid)
10051       // declaration of a function template partial specialization? Should we
10052       // consider the unexpanded pack context to be a partial specialization?
10053       for (const TemplateArgumentLoc &ArgLoc : TemplateArgs.arguments()) {
10054         if (DiagnoseUnexpandedParameterPack(
10055                 ArgLoc, isFriend ? UPPC_FriendDeclaration
10056                                  : UPPC_ExplicitSpecialization))
10057           NewFD->setInvalidDecl();
10058       }
10059     }
10060 
10061     if (Invalid) {
10062       NewFD->setInvalidDecl();
10063       if (FunctionTemplate)
10064         FunctionTemplate->setInvalidDecl();
10065     }
10066 
10067     // C++ [dcl.fct.spec]p5:
10068     //   The virtual specifier shall only be used in declarations of
10069     //   nonstatic class member functions that appear within a
10070     //   member-specification of a class declaration; see 10.3.
10071     //
10072     if (isVirtual && !NewFD->isInvalidDecl()) {
10073       if (!isVirtualOkay) {
10074         Diag(D.getDeclSpec().getVirtualSpecLoc(),
10075              diag::err_virtual_non_function);
10076       } else if (!CurContext->isRecord()) {
10077         // 'virtual' was specified outside of the class.
10078         Diag(D.getDeclSpec().getVirtualSpecLoc(),
10079              diag::err_virtual_out_of_class)
10080           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
10081       } else if (NewFD->getDescribedFunctionTemplate()) {
10082         // C++ [temp.mem]p3:
10083         //  A member function template shall not be virtual.
10084         Diag(D.getDeclSpec().getVirtualSpecLoc(),
10085              diag::err_virtual_member_function_template)
10086           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
10087       } else {
10088         // Okay: Add virtual to the method.
10089         NewFD->setVirtualAsWritten(true);
10090       }
10091 
10092       if (getLangOpts().CPlusPlus14 &&
10093           NewFD->getReturnType()->isUndeducedType())
10094         Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual);
10095     }
10096 
10097     // C++ [dcl.fct.spec]p3:
10098     //  The inline specifier shall not appear on a block scope function
10099     //  declaration.
10100     if (isInline && !NewFD->isInvalidDecl()) {
10101       if (CurContext->isFunctionOrMethod()) {
10102         // 'inline' is not allowed on block scope function declaration.
10103         Diag(D.getDeclSpec().getInlineSpecLoc(),
10104              diag::err_inline_declaration_block_scope) << Name
10105           << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
10106       }
10107     }
10108 
10109     // C++ [dcl.fct.spec]p6:
10110     //  The explicit specifier shall be used only in the declaration of a
10111     //  constructor or conversion function within its class definition;
10112     //  see 12.3.1 and 12.3.2.
10113     if (hasExplicit && !NewFD->isInvalidDecl() &&
10114         !isa<CXXDeductionGuideDecl>(NewFD)) {
10115       if (!CurContext->isRecord()) {
10116         // 'explicit' was specified outside of the class.
10117         Diag(D.getDeclSpec().getExplicitSpecLoc(),
10118              diag::err_explicit_out_of_class)
10119             << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecRange());
10120       } else if (!isa<CXXConstructorDecl>(NewFD) &&
10121                  !isa<CXXConversionDecl>(NewFD)) {
10122         // 'explicit' was specified on a function that wasn't a constructor
10123         // or conversion function.
10124         Diag(D.getDeclSpec().getExplicitSpecLoc(),
10125              diag::err_explicit_non_ctor_or_conv_function)
10126             << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecRange());
10127       }
10128     }
10129 
10130     ConstexprSpecKind ConstexprKind = D.getDeclSpec().getConstexprSpecifier();
10131     if (ConstexprKind != ConstexprSpecKind::Unspecified) {
10132       // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
10133       // are implicitly inline.
10134       NewFD->setImplicitlyInline();
10135 
10136       // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
10137       // be either constructors or to return a literal type. Therefore,
10138       // destructors cannot be declared constexpr.
10139       if (isa<CXXDestructorDecl>(NewFD) &&
10140           (!getLangOpts().CPlusPlus20 ||
10141            ConstexprKind == ConstexprSpecKind::Consteval)) {
10142         Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor)
10143             << static_cast<int>(ConstexprKind);
10144         NewFD->setConstexprKind(getLangOpts().CPlusPlus20
10145                                     ? ConstexprSpecKind::Unspecified
10146                                     : ConstexprSpecKind::Constexpr);
10147       }
10148       // C++20 [dcl.constexpr]p2: An allocation function, or a
10149       // deallocation function shall not be declared with the consteval
10150       // specifier.
10151       if (ConstexprKind == ConstexprSpecKind::Consteval &&
10152           (NewFD->getOverloadedOperator() == OO_New ||
10153            NewFD->getOverloadedOperator() == OO_Array_New ||
10154            NewFD->getOverloadedOperator() == OO_Delete ||
10155            NewFD->getOverloadedOperator() == OO_Array_Delete)) {
10156         Diag(D.getDeclSpec().getConstexprSpecLoc(),
10157              diag::err_invalid_consteval_decl_kind)
10158             << NewFD;
10159         NewFD->setConstexprKind(ConstexprSpecKind::Constexpr);
10160       }
10161     }
10162 
10163     // If __module_private__ was specified, mark the function accordingly.
10164     if (D.getDeclSpec().isModulePrivateSpecified()) {
10165       if (isFunctionTemplateSpecialization) {
10166         SourceLocation ModulePrivateLoc
10167           = D.getDeclSpec().getModulePrivateSpecLoc();
10168         Diag(ModulePrivateLoc, diag::err_module_private_specialization)
10169           << 0
10170           << FixItHint::CreateRemoval(ModulePrivateLoc);
10171       } else {
10172         NewFD->setModulePrivate();
10173         if (FunctionTemplate)
10174           FunctionTemplate->setModulePrivate();
10175       }
10176     }
10177 
10178     if (isFriend) {
10179       if (FunctionTemplate) {
10180         FunctionTemplate->setObjectOfFriendDecl();
10181         FunctionTemplate->setAccess(AS_public);
10182       }
10183       NewFD->setObjectOfFriendDecl();
10184       NewFD->setAccess(AS_public);
10185     }
10186 
10187     // If a function is defined as defaulted or deleted, mark it as such now.
10188     // We'll do the relevant checks on defaulted / deleted functions later.
10189     switch (D.getFunctionDefinitionKind()) {
10190     case FunctionDefinitionKind::Declaration:
10191     case FunctionDefinitionKind::Definition:
10192       break;
10193 
10194     case FunctionDefinitionKind::Defaulted:
10195       NewFD->setDefaulted();
10196       break;
10197 
10198     case FunctionDefinitionKind::Deleted:
10199       NewFD->setDeletedAsWritten();
10200       break;
10201     }
10202 
10203     if (ImplicitInlineCXX20 && isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
10204         D.isFunctionDefinition()) {
10205       // Pre C++20 [class.mfct]p2:
10206       //   A member function may be defined (8.4) in its class definition, in
10207       //   which case it is an inline member function (7.1.2)
10208       // Post C++20 [class.mfct]p1:
10209       //   If a member function is attached to the global module and is defined
10210       //   in its class definition, it is inline.
10211       NewFD->setImplicitlyInline();
10212     }
10213 
10214     if (!isFriend && SC != SC_None) {
10215       // C++ [temp.expl.spec]p2:
10216       //   The declaration in an explicit-specialization shall not be an
10217       //   export-declaration. An explicit specialization shall not use a
10218       //   storage-class-specifier other than thread_local.
10219       //
10220       // We diagnose friend declarations with storage-class-specifiers
10221       // elsewhere.
10222       if (isFunctionTemplateSpecialization || isMemberSpecialization) {
10223         Diag(D.getDeclSpec().getStorageClassSpecLoc(),
10224              diag::ext_explicit_specialization_storage_class)
10225             << FixItHint::CreateRemoval(
10226                    D.getDeclSpec().getStorageClassSpecLoc());
10227       }
10228 
10229       if (SC == SC_Static && !CurContext->isRecord() && DC->isRecord()) {
10230         assert(isa<CXXMethodDecl>(NewFD) &&
10231                "Out-of-line member function should be a CXXMethodDecl");
10232         // C++ [class.static]p1:
10233         //   A data or function member of a class may be declared static
10234         //   in a class definition, in which case it is a static member of
10235         //   the class.
10236 
10237         // Complain about the 'static' specifier if it's on an out-of-line
10238         // member function definition.
10239 
10240         // MSVC permits the use of a 'static' storage specifier on an
10241         // out-of-line member function template declaration and class member
10242         // template declaration (MSVC versions before 2015), warn about this.
10243         Diag(D.getDeclSpec().getStorageClassSpecLoc(),
10244              ((!getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) &&
10245                cast<CXXRecordDecl>(DC)->getDescribedClassTemplate()) ||
10246               (getLangOpts().MSVCCompat &&
10247                NewFD->getDescribedFunctionTemplate()))
10248                  ? diag::ext_static_out_of_line
10249                  : diag::err_static_out_of_line)
10250             << FixItHint::CreateRemoval(
10251                    D.getDeclSpec().getStorageClassSpecLoc());
10252       }
10253     }
10254 
10255     // C++11 [except.spec]p15:
10256     //   A deallocation function with no exception-specification is treated
10257     //   as if it were specified with noexcept(true).
10258     const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
10259     if ((Name.getCXXOverloadedOperator() == OO_Delete ||
10260          Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
10261         getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec())
10262       NewFD->setType(Context.getFunctionType(
10263           FPT->getReturnType(), FPT->getParamTypes(),
10264           FPT->getExtProtoInfo().withExceptionSpec(EST_BasicNoexcept)));
10265 
10266     // C++20 [dcl.inline]/7
10267     // If an inline function or variable that is attached to a named module
10268     // is declared in a definition domain, it shall be defined in that
10269     // domain.
10270     // So, if the current declaration does not have a definition, we must
10271     // check at the end of the TU (or when the PMF starts) to see that we
10272     // have a definition at that point.
10273     if (isInline && !D.isFunctionDefinition() && getLangOpts().CPlusPlus20 &&
10274         NewFD->isInNamedModule()) {
10275       PendingInlineFuncDecls.insert(NewFD);
10276     }
10277   }
10278 
10279   // Filter out previous declarations that don't match the scope.
10280   FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewFD),
10281                        D.getCXXScopeSpec().isNotEmpty() ||
10282                        isMemberSpecialization ||
10283                        isFunctionTemplateSpecialization);
10284 
10285   // Handle GNU asm-label extension (encoded as an attribute).
10286   if (Expr *E = (Expr*) D.getAsmLabel()) {
10287     // The parser guarantees this is a string.
10288     StringLiteral *SE = cast<StringLiteral>(E);
10289     NewFD->addAttr(AsmLabelAttr::Create(Context, SE->getString(),
10290                                         /*IsLiteralLabel=*/true,
10291                                         SE->getStrTokenLoc(0)));
10292   } else if (!ExtnameUndeclaredIdentifiers.empty()) {
10293     llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
10294       ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
10295     if (I != ExtnameUndeclaredIdentifiers.end()) {
10296       if (isDeclExternC(NewFD)) {
10297         NewFD->addAttr(I->second);
10298         ExtnameUndeclaredIdentifiers.erase(I);
10299       } else
10300         Diag(NewFD->getLocation(), diag::warn_redefine_extname_not_applied)
10301             << /*Variable*/0 << NewFD;
10302     }
10303   }
10304 
10305   // Copy the parameter declarations from the declarator D to the function
10306   // declaration NewFD, if they are available.  First scavenge them into Params.
10307   SmallVector<ParmVarDecl*, 16> Params;
10308   unsigned FTIIdx;
10309   if (D.isFunctionDeclarator(FTIIdx)) {
10310     DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(FTIIdx).Fun;
10311 
10312     // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
10313     // function that takes no arguments, not a function that takes a
10314     // single void argument.
10315     // We let through "const void" here because Sema::GetTypeForDeclarator
10316     // already checks for that case.
10317     if (FTIHasNonVoidParameters(FTI) && FTI.Params[0].Param) {
10318       for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
10319         ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
10320         assert(Param->getDeclContext() != NewFD && "Was set before ?");
10321         Param->setDeclContext(NewFD);
10322         Params.push_back(Param);
10323 
10324         if (Param->isInvalidDecl())
10325           NewFD->setInvalidDecl();
10326       }
10327     }
10328 
10329     if (!getLangOpts().CPlusPlus) {
10330       // In C, find all the tag declarations from the prototype and move them
10331       // into the function DeclContext. Remove them from the surrounding tag
10332       // injection context of the function, which is typically but not always
10333       // the TU.
10334       DeclContext *PrototypeTagContext =
10335           getTagInjectionContext(NewFD->getLexicalDeclContext());
10336       for (NamedDecl *NonParmDecl : FTI.getDeclsInPrototype()) {
10337         auto *TD = dyn_cast<TagDecl>(NonParmDecl);
10338 
10339         // We don't want to reparent enumerators. Look at their parent enum
10340         // instead.
10341         if (!TD) {
10342           if (auto *ECD = dyn_cast<EnumConstantDecl>(NonParmDecl))
10343             TD = cast<EnumDecl>(ECD->getDeclContext());
10344         }
10345         if (!TD)
10346           continue;
10347         DeclContext *TagDC = TD->getLexicalDeclContext();
10348         if (!TagDC->containsDecl(TD))
10349           continue;
10350         TagDC->removeDecl(TD);
10351         TD->setDeclContext(NewFD);
10352         NewFD->addDecl(TD);
10353 
10354         // Preserve the lexical DeclContext if it is not the surrounding tag
10355         // injection context of the FD. In this example, the semantic context of
10356         // E will be f and the lexical context will be S, while both the
10357         // semantic and lexical contexts of S will be f:
10358         //   void f(struct S { enum E { a } f; } s);
10359         if (TagDC != PrototypeTagContext)
10360           TD->setLexicalDeclContext(TagDC);
10361       }
10362     }
10363   } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
10364     // When we're declaring a function with a typedef, typeof, etc as in the
10365     // following example, we'll need to synthesize (unnamed)
10366     // parameters for use in the declaration.
10367     //
10368     // @code
10369     // typedef void fn(int);
10370     // fn f;
10371     // @endcode
10372 
10373     // Synthesize a parameter for each argument type.
10374     for (const auto &AI : FT->param_types()) {
10375       ParmVarDecl *Param =
10376           BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), AI);
10377       Param->setScopeInfo(0, Params.size());
10378       Params.push_back(Param);
10379     }
10380   } else {
10381     assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
10382            "Should not need args for typedef of non-prototype fn");
10383   }
10384 
10385   // Finally, we know we have the right number of parameters, install them.
10386   NewFD->setParams(Params);
10387 
10388   if (D.getDeclSpec().isNoreturnSpecified())
10389     NewFD->addAttr(
10390         C11NoReturnAttr::Create(Context, D.getDeclSpec().getNoreturnSpecLoc()));
10391 
10392   // Functions returning a variably modified type violate C99 6.7.5.2p2
10393   // because all functions have linkage.
10394   if (!NewFD->isInvalidDecl() &&
10395       NewFD->getReturnType()->isVariablyModifiedType()) {
10396     Diag(NewFD->getLocation(), diag::err_vm_func_decl);
10397     NewFD->setInvalidDecl();
10398   }
10399 
10400   // Apply an implicit SectionAttr if '#pragma clang section text' is active
10401   if (PragmaClangTextSection.Valid && D.isFunctionDefinition() &&
10402       !NewFD->hasAttr<SectionAttr>())
10403     NewFD->addAttr(PragmaClangTextSectionAttr::CreateImplicit(
10404         Context, PragmaClangTextSection.SectionName,
10405         PragmaClangTextSection.PragmaLocation));
10406 
10407   // Apply an implicit SectionAttr if #pragma code_seg is active.
10408   if (CodeSegStack.CurrentValue && D.isFunctionDefinition() &&
10409       !NewFD->hasAttr<SectionAttr>()) {
10410     NewFD->addAttr(SectionAttr::CreateImplicit(
10411         Context, CodeSegStack.CurrentValue->getString(),
10412         CodeSegStack.CurrentPragmaLocation, SectionAttr::Declspec_allocate));
10413     if (UnifySection(CodeSegStack.CurrentValue->getString(),
10414                      ASTContext::PSF_Implicit | ASTContext::PSF_Execute |
10415                          ASTContext::PSF_Read,
10416                      NewFD))
10417       NewFD->dropAttr<SectionAttr>();
10418   }
10419 
10420   // Apply an implicit StrictGuardStackCheckAttr if #pragma strict_gs_check is
10421   // active.
10422   if (StrictGuardStackCheckStack.CurrentValue && D.isFunctionDefinition() &&
10423       !NewFD->hasAttr<StrictGuardStackCheckAttr>())
10424     NewFD->addAttr(StrictGuardStackCheckAttr::CreateImplicit(
10425         Context, PragmaClangTextSection.PragmaLocation));
10426 
10427   // Apply an implicit CodeSegAttr from class declspec or
10428   // apply an implicit SectionAttr from #pragma code_seg if active.
10429   if (!NewFD->hasAttr<CodeSegAttr>()) {
10430     if (Attr *SAttr = getImplicitCodeSegOrSectionAttrForFunction(NewFD,
10431                                                                  D.isFunctionDefinition())) {
10432       NewFD->addAttr(SAttr);
10433     }
10434   }
10435 
10436   // Handle attributes.
10437   ProcessDeclAttributes(S, NewFD, D);
10438   const auto *NewTVA = NewFD->getAttr<TargetVersionAttr>();
10439   if (Context.getTargetInfo().getTriple().isAArch64() && NewTVA &&
10440       !NewTVA->isDefaultVersion() &&
10441       !Context.getTargetInfo().hasFeature("fmv")) {
10442     // Don't add to scope fmv functions declarations if fmv disabled
10443     AddToScope = false;
10444     return NewFD;
10445   }
10446 
10447   if (getLangOpts().OpenCL || getLangOpts().HLSL) {
10448     // Neither OpenCL nor HLSL allow an address space qualifyer on a return
10449     // type.
10450     //
10451     // OpenCL v1.1 s6.5: Using an address space qualifier in a function return
10452     // type declaration will generate a compilation error.
10453     LangAS AddressSpace = NewFD->getReturnType().getAddressSpace();
10454     if (AddressSpace != LangAS::Default) {
10455       Diag(NewFD->getLocation(), diag::err_return_value_with_address_space);
10456       NewFD->setInvalidDecl();
10457     }
10458   }
10459 
10460   if (!getLangOpts().CPlusPlus) {
10461     // Perform semantic checking on the function declaration.
10462     if (!NewFD->isInvalidDecl() && NewFD->isMain())
10463       CheckMain(NewFD, D.getDeclSpec());
10464 
10465     if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
10466       CheckMSVCRTEntryPoint(NewFD);
10467 
10468     if (!NewFD->isInvalidDecl())
10469       D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
10470                                                   isMemberSpecialization,
10471                                                   D.isFunctionDefinition()));
10472     else if (!Previous.empty())
10473       // Recover gracefully from an invalid redeclaration.
10474       D.setRedeclaration(true);
10475     assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
10476             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
10477            "previous declaration set still overloaded");
10478 
10479     // Diagnose no-prototype function declarations with calling conventions that
10480     // don't support variadic calls. Only do this in C and do it after merging
10481     // possibly prototyped redeclarations.
10482     const FunctionType *FT = NewFD->getType()->castAs<FunctionType>();
10483     if (isa<FunctionNoProtoType>(FT) && !D.isFunctionDefinition()) {
10484       CallingConv CC = FT->getExtInfo().getCC();
10485       if (!supportsVariadicCall(CC)) {
10486         // Windows system headers sometimes accidentally use stdcall without
10487         // (void) parameters, so we relax this to a warning.
10488         int DiagID =
10489             CC == CC_X86StdCall ? diag::warn_cconv_knr : diag::err_cconv_knr;
10490         Diag(NewFD->getLocation(), DiagID)
10491             << FunctionType::getNameForCallConv(CC);
10492       }
10493     }
10494 
10495    if (NewFD->getReturnType().hasNonTrivialToPrimitiveDestructCUnion() ||
10496        NewFD->getReturnType().hasNonTrivialToPrimitiveCopyCUnion())
10497      checkNonTrivialCUnion(NewFD->getReturnType(),
10498                            NewFD->getReturnTypeSourceRange().getBegin(),
10499                            NTCUC_FunctionReturn, NTCUK_Destruct|NTCUK_Copy);
10500   } else {
10501     // C++11 [replacement.functions]p3:
10502     //  The program's definitions shall not be specified as inline.
10503     //
10504     // N.B. We diagnose declarations instead of definitions per LWG issue 2340.
10505     //
10506     // Suppress the diagnostic if the function is __attribute__((used)), since
10507     // that forces an external definition to be emitted.
10508     if (D.getDeclSpec().isInlineSpecified() &&
10509         NewFD->isReplaceableGlobalAllocationFunction() &&
10510         !NewFD->hasAttr<UsedAttr>())
10511       Diag(D.getDeclSpec().getInlineSpecLoc(),
10512            diag::ext_operator_new_delete_declared_inline)
10513         << NewFD->getDeclName();
10514 
10515     if (Expr *TRC = NewFD->getTrailingRequiresClause()) {
10516       // C++20 [dcl.decl.general]p4:
10517       //   The optional requires-clause in an init-declarator or
10518       //   member-declarator shall be present only if the declarator declares a
10519       //   templated function.
10520       //
10521       // C++20 [temp.pre]p8:
10522       //   An entity is templated if it is
10523       //     - a template,
10524       //     - an entity defined or created in a templated entity,
10525       //     - a member of a templated entity,
10526       //     - an enumerator for an enumeration that is a templated entity, or
10527       //     - the closure type of a lambda-expression appearing in the
10528       //       declaration of a templated entity.
10529       //
10530       //   [Note 6: A local class, a local or block variable, or a friend
10531       //   function defined in a templated entity is a templated entity.
10532       //   — end note]
10533       //
10534       //   A templated function is a function template or a function that is
10535       //   templated. A templated class is a class template or a class that is
10536       //   templated. A templated variable is a variable template or a variable
10537       //   that is templated.
10538       if (!FunctionTemplate) {
10539         if (isFunctionTemplateSpecialization || isMemberSpecialization) {
10540           // C++ [temp.expl.spec]p8 (proposed resolution for CWG2847):
10541           //   An explicit specialization shall not have a trailing
10542           //   requires-clause unless it declares a function template.
10543           //
10544           // Since a friend function template specialization cannot be
10545           // definition, and since a non-template friend declaration with a
10546           // trailing requires-clause must be a definition, we diagnose
10547           // friend function template specializations with trailing
10548           // requires-clauses on the same path as explicit specializations
10549           // even though they aren't necessarily prohibited by the same
10550           // language rule.
10551           Diag(TRC->getBeginLoc(), diag::err_non_temp_spec_requires_clause)
10552               << isFriend;
10553         } else if (isFriend && NewFD->isTemplated() &&
10554                    !D.isFunctionDefinition()) {
10555           // C++ [temp.friend]p9:
10556           //   A non-template friend declaration with a requires-clause shall be
10557           //   a definition.
10558           Diag(NewFD->getBeginLoc(),
10559                diag::err_non_temp_friend_decl_with_requires_clause_must_be_def);
10560           NewFD->setInvalidDecl();
10561         } else if (!NewFD->isTemplated() ||
10562                    !(isa<CXXMethodDecl>(NewFD) || D.isFunctionDefinition())) {
10563           Diag(TRC->getBeginLoc(),
10564                diag::err_constrained_non_templated_function);
10565         }
10566       }
10567     }
10568 
10569     // We do not add HD attributes to specializations here because
10570     // they may have different constexpr-ness compared to their
10571     // templates and, after maybeAddHostDeviceAttrs() is applied,
10572     // may end up with different effective targets. Instead, a
10573     // specialization inherits its target attributes from its template
10574     // in the CheckFunctionTemplateSpecialization() call below.
10575     if (getLangOpts().CUDA && !isFunctionTemplateSpecialization)
10576       CUDA().maybeAddHostDeviceAttrs(NewFD, Previous);
10577 
10578     // Handle explicit specializations of function templates
10579     // and friend function declarations with an explicit
10580     // template argument list.
10581     if (isFunctionTemplateSpecialization) {
10582       bool isDependentSpecialization = false;
10583       if (isFriend) {
10584         // For friend function specializations, this is a dependent
10585         // specialization if its semantic context is dependent, its
10586         // type is dependent, or if its template-id is dependent.
10587         isDependentSpecialization =
10588             DC->isDependentContext() || NewFD->getType()->isDependentType() ||
10589             (HasExplicitTemplateArgs &&
10590              TemplateSpecializationType::
10591                  anyInstantiationDependentTemplateArguments(
10592                      TemplateArgs.arguments()));
10593         assert((!isDependentSpecialization ||
10594                 (HasExplicitTemplateArgs == isDependentSpecialization)) &&
10595                "dependent friend function specialization without template "
10596                "args");
10597       } else {
10598         // For class-scope explicit specializations of function templates,
10599         // if the lexical context is dependent, then the specialization
10600         // is dependent.
10601         isDependentSpecialization =
10602             CurContext->isRecord() && CurContext->isDependentContext();
10603       }
10604 
10605       TemplateArgumentListInfo *ExplicitTemplateArgs =
10606           HasExplicitTemplateArgs ? &TemplateArgs : nullptr;
10607       if (isDependentSpecialization) {
10608         // If it's a dependent specialization, it may not be possible
10609         // to determine the primary template (for explicit specializations)
10610         // or befriended declaration (for friends) until the enclosing
10611         // template is instantiated. In such cases, we store the declarations
10612         // found by name lookup and defer resolution until instantiation.
10613         if (CheckDependentFunctionTemplateSpecialization(
10614                 NewFD, ExplicitTemplateArgs, Previous))
10615           NewFD->setInvalidDecl();
10616       } else if (!NewFD->isInvalidDecl()) {
10617         if (CheckFunctionTemplateSpecialization(NewFD, ExplicitTemplateArgs,
10618                                                 Previous))
10619           NewFD->setInvalidDecl();
10620       }
10621     } else if (isMemberSpecialization && !FunctionTemplate) {
10622       if (CheckMemberSpecialization(NewFD, Previous))
10623           NewFD->setInvalidDecl();
10624     }
10625 
10626     // Perform semantic checking on the function declaration.
10627     if (!NewFD->isInvalidDecl() && NewFD->isMain())
10628       CheckMain(NewFD, D.getDeclSpec());
10629 
10630     if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
10631       CheckMSVCRTEntryPoint(NewFD);
10632 
10633     if (!NewFD->isInvalidDecl())
10634       D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
10635                                                   isMemberSpecialization,
10636                                                   D.isFunctionDefinition()));
10637     else if (!Previous.empty())
10638       // Recover gracefully from an invalid redeclaration.
10639       D.setRedeclaration(true);
10640 
10641     assert((NewFD->isInvalidDecl() || NewFD->isMultiVersion() ||
10642             !D.isRedeclaration() ||
10643             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
10644            "previous declaration set still overloaded");
10645 
10646     NamedDecl *PrincipalDecl = (FunctionTemplate
10647                                 ? cast<NamedDecl>(FunctionTemplate)
10648                                 : NewFD);
10649 
10650     if (isFriend && NewFD->getPreviousDecl()) {
10651       AccessSpecifier Access = AS_public;
10652       if (!NewFD->isInvalidDecl())
10653         Access = NewFD->getPreviousDecl()->getAccess();
10654 
10655       NewFD->setAccess(Access);
10656       if (FunctionTemplate) FunctionTemplate->setAccess(Access);
10657     }
10658 
10659     if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
10660         PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
10661       PrincipalDecl->setNonMemberOperator();
10662 
10663     // If we have a function template, check the template parameter
10664     // list. This will check and merge default template arguments.
10665     if (FunctionTemplate) {
10666       FunctionTemplateDecl *PrevTemplate =
10667                                      FunctionTemplate->getPreviousDecl();
10668       CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
10669                        PrevTemplate ? PrevTemplate->getTemplateParameters()
10670                                     : nullptr,
10671                             D.getDeclSpec().isFriendSpecified()
10672                               ? (D.isFunctionDefinition()
10673                                    ? TPC_FriendFunctionTemplateDefinition
10674                                    : TPC_FriendFunctionTemplate)
10675                               : (D.getCXXScopeSpec().isSet() &&
10676                                  DC && DC->isRecord() &&
10677                                  DC->isDependentContext())
10678                                   ? TPC_ClassTemplateMember
10679                                   : TPC_FunctionTemplate);
10680     }
10681 
10682     if (NewFD->isInvalidDecl()) {
10683       // Ignore all the rest of this.
10684     } else if (!D.isRedeclaration()) {
10685       struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
10686                                        AddToScope };
10687       // Fake up an access specifier if it's supposed to be a class member.
10688       if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
10689         NewFD->setAccess(AS_public);
10690 
10691       // Qualified decls generally require a previous declaration.
10692       if (D.getCXXScopeSpec().isSet()) {
10693         // ...with the major exception of templated-scope or
10694         // dependent-scope friend declarations.
10695 
10696         // TODO: we currently also suppress this check in dependent
10697         // contexts because (1) the parameter depth will be off when
10698         // matching friend templates and (2) we might actually be
10699         // selecting a friend based on a dependent factor.  But there
10700         // are situations where these conditions don't apply and we
10701         // can actually do this check immediately.
10702         //
10703         // Unless the scope is dependent, it's always an error if qualified
10704         // redeclaration lookup found nothing at all. Diagnose that now;
10705         // nothing will diagnose that error later.
10706         if (isFriend &&
10707             (D.getCXXScopeSpec().getScopeRep()->isDependent() ||
10708              (!Previous.empty() && CurContext->isDependentContext()))) {
10709           // ignore these
10710         } else if (NewFD->isCPUDispatchMultiVersion() ||
10711                    NewFD->isCPUSpecificMultiVersion()) {
10712           // ignore this, we allow the redeclaration behavior here to create new
10713           // versions of the function.
10714         } else {
10715           // The user tried to provide an out-of-line definition for a
10716           // function that is a member of a class or namespace, but there
10717           // was no such member function declared (C++ [class.mfct]p2,
10718           // C++ [namespace.memdef]p2). For example:
10719           //
10720           // class X {
10721           //   void f() const;
10722           // };
10723           //
10724           // void X::f() { } // ill-formed
10725           //
10726           // Complain about this problem, and attempt to suggest close
10727           // matches (e.g., those that differ only in cv-qualifiers and
10728           // whether the parameter types are references).
10729 
10730           if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
10731                   *this, Previous, NewFD, ExtraArgs, false, nullptr)) {
10732             AddToScope = ExtraArgs.AddToScope;
10733             return Result;
10734           }
10735         }
10736 
10737         // Unqualified local friend declarations are required to resolve
10738         // to something.
10739       } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
10740         if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
10741                 *this, Previous, NewFD, ExtraArgs, true, S)) {
10742           AddToScope = ExtraArgs.AddToScope;
10743           return Result;
10744         }
10745       }
10746     } else if (!D.isFunctionDefinition() &&
10747                isa<CXXMethodDecl>(NewFD) && NewFD->isOutOfLine() &&
10748                !isFriend && !isFunctionTemplateSpecialization &&
10749                !isMemberSpecialization) {
10750       // An out-of-line member function declaration must also be a
10751       // definition (C++ [class.mfct]p2).
10752       // Note that this is not the case for explicit specializations of
10753       // function templates or member functions of class templates, per
10754       // C++ [temp.expl.spec]p2. We also allow these declarations as an
10755       // extension for compatibility with old SWIG code which likes to
10756       // generate them.
10757       Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
10758         << D.getCXXScopeSpec().getRange();
10759     }
10760   }
10761 
10762   if (getLangOpts().HLSL && D.isFunctionDefinition()) {
10763     // Any top level function could potentially be specified as an entry.
10764     if (!NewFD->isInvalidDecl() && S->getDepth() == 0 && Name.isIdentifier())
10765       HLSL().ActOnTopLevelFunction(NewFD);
10766 
10767     if (NewFD->hasAttr<HLSLShaderAttr>())
10768       HLSL().CheckEntryPoint(NewFD);
10769   }
10770 
10771   // If this is the first declaration of a library builtin function, add
10772   // attributes as appropriate.
10773   if (!D.isRedeclaration()) {
10774     if (IdentifierInfo *II = Previous.getLookupName().getAsIdentifierInfo()) {
10775       if (unsigned BuiltinID = II->getBuiltinID()) {
10776         bool InStdNamespace = Context.BuiltinInfo.isInStdNamespace(BuiltinID);
10777         if (!InStdNamespace &&
10778             NewFD->getDeclContext()->getRedeclContext()->isFileContext()) {
10779           if (NewFD->getLanguageLinkage() == CLanguageLinkage) {
10780             // Validate the type matches unless this builtin is specified as
10781             // matching regardless of its declared type.
10782             if (Context.BuiltinInfo.allowTypeMismatch(BuiltinID)) {
10783               NewFD->addAttr(BuiltinAttr::CreateImplicit(Context, BuiltinID));
10784             } else {
10785               ASTContext::GetBuiltinTypeError Error;
10786               LookupNecessaryTypesForBuiltin(S, BuiltinID);
10787               QualType BuiltinType = Context.GetBuiltinType(BuiltinID, Error);
10788 
10789               if (!Error && !BuiltinType.isNull() &&
10790                   Context.hasSameFunctionTypeIgnoringExceptionSpec(
10791                       NewFD->getType(), BuiltinType))
10792                 NewFD->addAttr(BuiltinAttr::CreateImplicit(Context, BuiltinID));
10793             }
10794           }
10795         } else if (InStdNamespace && NewFD->isInStdNamespace() &&
10796                    isStdBuiltin(Context, NewFD, BuiltinID)) {
10797           NewFD->addAttr(BuiltinAttr::CreateImplicit(Context, BuiltinID));
10798         }
10799       }
10800     }
10801   }
10802 
10803   ProcessPragmaWeak(S, NewFD);
10804   checkAttributesAfterMerging(*this, *NewFD);
10805 
10806   AddKnownFunctionAttributes(NewFD);
10807 
10808   if (NewFD->hasAttr<OverloadableAttr>() &&
10809       !NewFD->getType()->getAs<FunctionProtoType>()) {
10810     Diag(NewFD->getLocation(),
10811          diag::err_attribute_overloadable_no_prototype)
10812       << NewFD;
10813     NewFD->dropAttr<OverloadableAttr>();
10814   }
10815 
10816   // If there's a #pragma GCC visibility in scope, and this isn't a class
10817   // member, set the visibility of this function.
10818   if (!DC->isRecord() && NewFD->isExternallyVisible())
10819     AddPushedVisibilityAttribute(NewFD);
10820 
10821   // If there's a #pragma clang arc_cf_code_audited in scope, consider
10822   // marking the function.
10823   ObjC().AddCFAuditedAttribute(NewFD);
10824 
10825   // If this is a function definition, check if we have to apply any
10826   // attributes (i.e. optnone and no_builtin) due to a pragma.
10827   if (D.isFunctionDefinition()) {
10828     AddRangeBasedOptnone(NewFD);
10829     AddImplicitMSFunctionNoBuiltinAttr(NewFD);
10830     AddSectionMSAllocText(NewFD);
10831     ModifyFnAttributesMSPragmaOptimize(NewFD);
10832   }
10833 
10834   // If this is the first declaration of an extern C variable, update
10835   // the map of such variables.
10836   if (NewFD->isFirstDecl() && !NewFD->isInvalidDecl() &&
10837       isIncompleteDeclExternC(*this, NewFD))
10838     RegisterLocallyScopedExternCDecl(NewFD, S);
10839 
10840   // Set this FunctionDecl's range up to the right paren.
10841   NewFD->setRangeEnd(D.getSourceRange().getEnd());
10842 
10843   if (D.isRedeclaration() && !Previous.empty()) {
10844     NamedDecl *Prev = Previous.getRepresentativeDecl();
10845     checkDLLAttributeRedeclaration(*this, Prev, NewFD,
10846                                    isMemberSpecialization ||
10847                                        isFunctionTemplateSpecialization,
10848                                    D.isFunctionDefinition());
10849   }
10850 
10851   if (getLangOpts().CUDA) {
10852     IdentifierInfo *II = NewFD->getIdentifier();
10853     if (II && II->isStr(CUDA().getConfigureFuncName()) &&
10854         !NewFD->isInvalidDecl() &&
10855         NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
10856       if (!R->castAs<FunctionType>()->getReturnType()->isScalarType())
10857         Diag(NewFD->getLocation(), diag::err_config_scalar_return)
10858             << CUDA().getConfigureFuncName();
10859       Context.setcudaConfigureCallDecl(NewFD);
10860     }
10861 
10862     // Variadic functions, other than a *declaration* of printf, are not allowed
10863     // in device-side CUDA code, unless someone passed
10864     // -fcuda-allow-variadic-functions.
10865     if (!getLangOpts().CUDAAllowVariadicFunctions && NewFD->isVariadic() &&
10866         (NewFD->hasAttr<CUDADeviceAttr>() ||
10867          NewFD->hasAttr<CUDAGlobalAttr>()) &&
10868         !(II && II->isStr("printf") && NewFD->isExternC() &&
10869           !D.isFunctionDefinition())) {
10870       Diag(NewFD->getLocation(), diag::err_variadic_device_fn);
10871     }
10872   }
10873 
10874   MarkUnusedFileScopedDecl(NewFD);
10875 
10876 
10877 
10878   if (getLangOpts().OpenCL && NewFD->hasAttr<OpenCLKernelAttr>()) {
10879     // OpenCL v1.2 s6.8 static is invalid for kernel functions.
10880     if (SC == SC_Static) {
10881       Diag(D.getIdentifierLoc(), diag::err_static_kernel);
10882       D.setInvalidType();
10883     }
10884 
10885     // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
10886     if (!NewFD->getReturnType()->isVoidType()) {
10887       SourceRange RTRange = NewFD->getReturnTypeSourceRange();
10888       Diag(D.getIdentifierLoc(), diag::err_expected_kernel_void_return_type)
10889           << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void")
10890                                 : FixItHint());
10891       D.setInvalidType();
10892     }
10893 
10894     llvm::SmallPtrSet<const Type *, 16> ValidTypes;
10895     for (auto *Param : NewFD->parameters())
10896       checkIsValidOpenCLKernelParameter(*this, D, Param, ValidTypes);
10897 
10898     if (getLangOpts().OpenCLCPlusPlus) {
10899       if (DC->isRecord()) {
10900         Diag(D.getIdentifierLoc(), diag::err_method_kernel);
10901         D.setInvalidType();
10902       }
10903       if (FunctionTemplate) {
10904         Diag(D.getIdentifierLoc(), diag::err_template_kernel);
10905         D.setInvalidType();
10906       }
10907     }
10908   }
10909 
10910   if (getLangOpts().CPlusPlus) {
10911     // Precalculate whether this is a friend function template with a constraint
10912     // that depends on an enclosing template, per [temp.friend]p9.
10913     if (isFriend && FunctionTemplate &&
10914         FriendConstraintsDependOnEnclosingTemplate(NewFD)) {
10915       NewFD->setFriendConstraintRefersToEnclosingTemplate(true);
10916 
10917       // C++ [temp.friend]p9:
10918       //    A friend function template with a constraint that depends on a
10919       //    template parameter from an enclosing template shall be a definition.
10920       if (!D.isFunctionDefinition()) {
10921         Diag(NewFD->getBeginLoc(),
10922              diag::err_friend_decl_with_enclosing_temp_constraint_must_be_def);
10923         NewFD->setInvalidDecl();
10924       }
10925     }
10926 
10927     if (FunctionTemplate) {
10928       if (NewFD->isInvalidDecl())
10929         FunctionTemplate->setInvalidDecl();
10930       return FunctionTemplate;
10931     }
10932 
10933     if (isMemberSpecialization && !NewFD->isInvalidDecl())
10934       CompleteMemberSpecialization(NewFD, Previous);
10935   }
10936 
10937   for (const ParmVarDecl *Param : NewFD->parameters()) {
10938     QualType PT = Param->getType();
10939 
10940     // OpenCL 2.0 pipe restrictions forbids pipe packet types to be non-value
10941     // types.
10942     if (getLangOpts().getOpenCLCompatibleVersion() >= 200) {
10943       if(const PipeType *PipeTy = PT->getAs<PipeType>()) {
10944         QualType ElemTy = PipeTy->getElementType();
10945         if (ElemTy->isPointerOrReferenceType()) {
10946           Diag(Param->getTypeSpecStartLoc(), diag::err_reference_pipe_type);
10947           D.setInvalidType();
10948         }
10949       }
10950     }
10951     // WebAssembly tables can't be used as function parameters.
10952     if (Context.getTargetInfo().getTriple().isWasm()) {
10953       if (PT->getUnqualifiedDesugaredType()->isWebAssemblyTableType()) {
10954         Diag(Param->getTypeSpecStartLoc(),
10955              diag::err_wasm_table_as_function_parameter);
10956         D.setInvalidType();
10957       }
10958     }
10959   }
10960 
10961   // Diagnose availability attributes. Availability cannot be used on functions
10962   // that are run during load/unload.
10963   if (const auto *attr = NewFD->getAttr<AvailabilityAttr>()) {
10964     if (NewFD->hasAttr<ConstructorAttr>()) {
10965       Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
10966           << 1;
10967       NewFD->dropAttr<AvailabilityAttr>();
10968     }
10969     if (NewFD->hasAttr<DestructorAttr>()) {
10970       Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
10971           << 2;
10972       NewFD->dropAttr<AvailabilityAttr>();
10973     }
10974   }
10975 
10976   // Diagnose no_builtin attribute on function declaration that are not a
10977   // definition.
10978   // FIXME: We should really be doing this in
10979   // SemaDeclAttr.cpp::handleNoBuiltinAttr, unfortunately we only have access to
10980   // the FunctionDecl and at this point of the code
10981   // FunctionDecl::isThisDeclarationADefinition() which always returns `false`
10982   // because Sema::ActOnStartOfFunctionDef has not been called yet.
10983   if (const auto *NBA = NewFD->getAttr<NoBuiltinAttr>())
10984     switch (D.getFunctionDefinitionKind()) {
10985     case FunctionDefinitionKind::Defaulted:
10986     case FunctionDefinitionKind::Deleted:
10987       Diag(NBA->getLocation(),
10988            diag::err_attribute_no_builtin_on_defaulted_deleted_function)
10989           << NBA->getSpelling();
10990       break;
10991     case FunctionDefinitionKind::Declaration:
10992       Diag(NBA->getLocation(), diag::err_attribute_no_builtin_on_non_definition)
10993           << NBA->getSpelling();
10994       break;
10995     case FunctionDefinitionKind::Definition:
10996       break;
10997     }
10998 
10999   // Similar to no_builtin logic above, at this point of the code
11000   // FunctionDecl::isThisDeclarationADefinition() always returns `false`
11001   // because Sema::ActOnStartOfFunctionDef has not been called yet.
11002   if (Context.getTargetInfo().allowDebugInfoForExternalRef() &&
11003       !NewFD->isInvalidDecl() &&
11004       D.getFunctionDefinitionKind() == FunctionDefinitionKind::Declaration)
11005     ExternalDeclarations.push_back(NewFD);
11006 
11007   return NewFD;
11008 }
11009 
11010 /// Return a CodeSegAttr from a containing class.  The Microsoft docs say
11011 /// when __declspec(code_seg) "is applied to a class, all member functions of
11012 /// the class and nested classes -- this includes compiler-generated special
11013 /// member functions -- are put in the specified segment."
11014 /// The actual behavior is a little more complicated. The Microsoft compiler
11015 /// won't check outer classes if there is an active value from #pragma code_seg.
11016 /// The CodeSeg is always applied from the direct parent but only from outer
11017 /// classes when the #pragma code_seg stack is empty. See:
11018 /// https://reviews.llvm.org/D22931, the Microsoft feedback page is no longer
11019 /// available since MS has removed the page.
11020 static Attr *getImplicitCodeSegAttrFromClass(Sema &S, const FunctionDecl *FD) {
11021   const auto *Method = dyn_cast<CXXMethodDecl>(FD);
11022   if (!Method)
11023     return nullptr;
11024   const CXXRecordDecl *Parent = Method->getParent();
11025   if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) {
11026     Attr *NewAttr = SAttr->clone(S.getASTContext());
11027     NewAttr->setImplicit(true);
11028     return NewAttr;
11029   }
11030 
11031   // The Microsoft compiler won't check outer classes for the CodeSeg
11032   // when the #pragma code_seg stack is active.
11033   if (S.CodeSegStack.CurrentValue)
11034    return nullptr;
11035 
11036   while ((Parent = dyn_cast<CXXRecordDecl>(Parent->getParent()))) {
11037     if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) {
11038       Attr *NewAttr = SAttr->clone(S.getASTContext());
11039       NewAttr->setImplicit(true);
11040       return NewAttr;
11041     }
11042   }
11043   return nullptr;
11044 }
11045 
11046 Attr *Sema::getImplicitCodeSegOrSectionAttrForFunction(const FunctionDecl *FD,
11047                                                        bool IsDefinition) {
11048   if (Attr *A = getImplicitCodeSegAttrFromClass(*this, FD))
11049     return A;
11050   if (!FD->hasAttr<SectionAttr>() && IsDefinition &&
11051       CodeSegStack.CurrentValue)
11052     return SectionAttr::CreateImplicit(
11053         getASTContext(), CodeSegStack.CurrentValue->getString(),
11054         CodeSegStack.CurrentPragmaLocation, SectionAttr::Declspec_allocate);
11055   return nullptr;
11056 }
11057 
11058 bool Sema::canFullyTypeCheckRedeclaration(ValueDecl *NewD, ValueDecl *OldD,
11059                                           QualType NewT, QualType OldT) {
11060   if (!NewD->getLexicalDeclContext()->isDependentContext())
11061     return true;
11062 
11063   // For dependently-typed local extern declarations and friends, we can't
11064   // perform a correct type check in general until instantiation:
11065   //
11066   //   int f();
11067   //   template<typename T> void g() { T f(); }
11068   //
11069   // (valid if g() is only instantiated with T = int).
11070   if (NewT->isDependentType() &&
11071       (NewD->isLocalExternDecl() || NewD->getFriendObjectKind()))
11072     return false;
11073 
11074   // Similarly, if the previous declaration was a dependent local extern
11075   // declaration, we don't really know its type yet.
11076   if (OldT->isDependentType() && OldD->isLocalExternDecl())
11077     return false;
11078 
11079   return true;
11080 }
11081 
11082 bool Sema::shouldLinkDependentDeclWithPrevious(Decl *D, Decl *PrevDecl) {
11083   if (!D->getLexicalDeclContext()->isDependentContext())
11084     return true;
11085 
11086   // Don't chain dependent friend function definitions until instantiation, to
11087   // permit cases like
11088   //
11089   //   void func();
11090   //   template<typename T> class C1 { friend void func() {} };
11091   //   template<typename T> class C2 { friend void func() {} };
11092   //
11093   // ... which is valid if only one of C1 and C2 is ever instantiated.
11094   //
11095   // FIXME: This need only apply to function definitions. For now, we proxy
11096   // this by checking for a file-scope function. We do not want this to apply
11097   // to friend declarations nominating member functions, because that gets in
11098   // the way of access checks.
11099   if (D->getFriendObjectKind() && D->getDeclContext()->isFileContext())
11100     return false;
11101 
11102   auto *VD = dyn_cast<ValueDecl>(D);
11103   auto *PrevVD = dyn_cast<ValueDecl>(PrevDecl);
11104   return !VD || !PrevVD ||
11105          canFullyTypeCheckRedeclaration(VD, PrevVD, VD->getType(),
11106                                         PrevVD->getType());
11107 }
11108 
11109 /// Check the target or target_version attribute of the function for
11110 /// MultiVersion validity.
11111 ///
11112 /// Returns true if there was an error, false otherwise.
11113 static bool CheckMultiVersionValue(Sema &S, const FunctionDecl *FD) {
11114   const auto *TA = FD->getAttr<TargetAttr>();
11115   const auto *TVA = FD->getAttr<TargetVersionAttr>();
11116 
11117   assert((TA || TVA) && "Expecting target or target_version attribute");
11118 
11119   const TargetInfo &TargetInfo = S.Context.getTargetInfo();
11120   enum ErrType { Feature = 0, Architecture = 1 };
11121 
11122   if (TA) {
11123     ParsedTargetAttr ParseInfo =
11124         S.getASTContext().getTargetInfo().parseTargetAttr(TA->getFeaturesStr());
11125     if (!ParseInfo.CPU.empty() && !TargetInfo.validateCpuIs(ParseInfo.CPU)) {
11126       S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
11127           << Architecture << ParseInfo.CPU;
11128       return true;
11129     }
11130     for (const auto &Feat : ParseInfo.Features) {
11131       auto BareFeat = StringRef{Feat}.substr(1);
11132       if (Feat[0] == '-') {
11133         S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
11134             << Feature << ("no-" + BareFeat).str();
11135         return true;
11136       }
11137 
11138       if (!TargetInfo.validateCpuSupports(BareFeat) ||
11139           !TargetInfo.isValidFeatureName(BareFeat) ||
11140           (BareFeat != "default" && TargetInfo.getFMVPriority(BareFeat) == 0)) {
11141         S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
11142             << Feature << BareFeat;
11143         return true;
11144       }
11145     }
11146   }
11147 
11148   if (TVA) {
11149     llvm::SmallVector<StringRef, 8> Feats;
11150     ParsedTargetAttr ParseInfo;
11151     if (S.getASTContext().getTargetInfo().getTriple().isRISCV()) {
11152       ParseInfo =
11153           S.getASTContext().getTargetInfo().parseTargetAttr(TVA->getName());
11154       for (auto &Feat : ParseInfo.Features)
11155         Feats.push_back(StringRef{Feat}.substr(1));
11156     } else {
11157       assert(S.getASTContext().getTargetInfo().getTriple().isAArch64());
11158       TVA->getFeatures(Feats);
11159     }
11160     for (const auto &Feat : Feats) {
11161       if (!TargetInfo.validateCpuSupports(Feat)) {
11162         S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
11163             << Feature << Feat;
11164         return true;
11165       }
11166     }
11167   }
11168   return false;
11169 }
11170 
11171 // Provide a white-list of attributes that are allowed to be combined with
11172 // multiversion functions.
11173 static bool AttrCompatibleWithMultiVersion(attr::Kind Kind,
11174                                            MultiVersionKind MVKind) {
11175   // Note: this list/diagnosis must match the list in
11176   // checkMultiversionAttributesAllSame.
11177   switch (Kind) {
11178   default:
11179     return false;
11180   case attr::ArmLocallyStreaming:
11181     return MVKind == MultiVersionKind::TargetVersion ||
11182            MVKind == MultiVersionKind::TargetClones;
11183   case attr::Used:
11184     return MVKind == MultiVersionKind::Target;
11185   case attr::NonNull:
11186   case attr::NoThrow:
11187     return true;
11188   }
11189 }
11190 
11191 static bool checkNonMultiVersionCompatAttributes(Sema &S,
11192                                                  const FunctionDecl *FD,
11193                                                  const FunctionDecl *CausedFD,
11194                                                  MultiVersionKind MVKind) {
11195   const auto Diagnose = [FD, CausedFD, MVKind](Sema &S, const Attr *A) {
11196     S.Diag(FD->getLocation(), diag::err_multiversion_disallowed_other_attr)
11197         << static_cast<unsigned>(MVKind) << A;
11198     if (CausedFD)
11199       S.Diag(CausedFD->getLocation(), diag::note_multiversioning_caused_here);
11200     return true;
11201   };
11202 
11203   for (const Attr *A : FD->attrs()) {
11204     switch (A->getKind()) {
11205     case attr::CPUDispatch:
11206     case attr::CPUSpecific:
11207       if (MVKind != MultiVersionKind::CPUDispatch &&
11208           MVKind != MultiVersionKind::CPUSpecific)
11209         return Diagnose(S, A);
11210       break;
11211     case attr::Target:
11212       if (MVKind != MultiVersionKind::Target)
11213         return Diagnose(S, A);
11214       break;
11215     case attr::TargetVersion:
11216       if (MVKind != MultiVersionKind::TargetVersion &&
11217           MVKind != MultiVersionKind::TargetClones)
11218         return Diagnose(S, A);
11219       break;
11220     case attr::TargetClones:
11221       if (MVKind != MultiVersionKind::TargetClones &&
11222           MVKind != MultiVersionKind::TargetVersion)
11223         return Diagnose(S, A);
11224       break;
11225     default:
11226       if (!AttrCompatibleWithMultiVersion(A->getKind(), MVKind))
11227         return Diagnose(S, A);
11228       break;
11229     }
11230   }
11231   return false;
11232 }
11233 
11234 bool Sema::areMultiversionVariantFunctionsCompatible(
11235     const FunctionDecl *OldFD, const FunctionDecl *NewFD,
11236     const PartialDiagnostic &NoProtoDiagID,
11237     const PartialDiagnosticAt &NoteCausedDiagIDAt,
11238     const PartialDiagnosticAt &NoSupportDiagIDAt,
11239     const PartialDiagnosticAt &DiffDiagIDAt, bool TemplatesSupported,
11240     bool ConstexprSupported, bool CLinkageMayDiffer) {
11241   enum DoesntSupport {
11242     FuncTemplates = 0,
11243     VirtFuncs = 1,
11244     DeducedReturn = 2,
11245     Constructors = 3,
11246     Destructors = 4,
11247     DeletedFuncs = 5,
11248     DefaultedFuncs = 6,
11249     ConstexprFuncs = 7,
11250     ConstevalFuncs = 8,
11251     Lambda = 9,
11252   };
11253   enum Different {
11254     CallingConv = 0,
11255     ReturnType = 1,
11256     ConstexprSpec = 2,
11257     InlineSpec = 3,
11258     Linkage = 4,
11259     LanguageLinkage = 5,
11260   };
11261 
11262   if (NoProtoDiagID.getDiagID() != 0 && OldFD &&
11263       !OldFD->getType()->getAs<FunctionProtoType>()) {
11264     Diag(OldFD->getLocation(), NoProtoDiagID);
11265     Diag(NoteCausedDiagIDAt.first, NoteCausedDiagIDAt.second);
11266     return true;
11267   }
11268 
11269   if (NoProtoDiagID.getDiagID() != 0 &&
11270       !NewFD->getType()->getAs<FunctionProtoType>())
11271     return Diag(NewFD->getLocation(), NoProtoDiagID);
11272 
11273   if (!TemplatesSupported &&
11274       NewFD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
11275     return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
11276            << FuncTemplates;
11277 
11278   if (const auto *NewCXXFD = dyn_cast<CXXMethodDecl>(NewFD)) {
11279     if (NewCXXFD->isVirtual())
11280       return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
11281              << VirtFuncs;
11282 
11283     if (isa<CXXConstructorDecl>(NewCXXFD))
11284       return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
11285              << Constructors;
11286 
11287     if (isa<CXXDestructorDecl>(NewCXXFD))
11288       return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
11289              << Destructors;
11290   }
11291 
11292   if (NewFD->isDeleted())
11293     return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
11294            << DeletedFuncs;
11295 
11296   if (NewFD->isDefaulted())
11297     return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
11298            << DefaultedFuncs;
11299 
11300   if (!ConstexprSupported && NewFD->isConstexpr())
11301     return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
11302            << (NewFD->isConsteval() ? ConstevalFuncs : ConstexprFuncs);
11303 
11304   QualType NewQType = Context.getCanonicalType(NewFD->getType());
11305   const auto *NewType = cast<FunctionType>(NewQType);
11306   QualType NewReturnType = NewType->getReturnType();
11307 
11308   if (NewReturnType->isUndeducedType())
11309     return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
11310            << DeducedReturn;
11311 
11312   // Ensure the return type is identical.
11313   if (OldFD) {
11314     QualType OldQType = Context.getCanonicalType(OldFD->getType());
11315     const auto *OldType = cast<FunctionType>(OldQType);
11316     FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
11317     FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
11318 
11319     const auto *OldFPT = OldFD->getType()->getAs<FunctionProtoType>();
11320     const auto *NewFPT = NewFD->getType()->getAs<FunctionProtoType>();
11321 
11322     bool ArmStreamingCCMismatched = false;
11323     if (OldFPT && NewFPT) {
11324       unsigned Diff =
11325           OldFPT->getAArch64SMEAttributes() ^ NewFPT->getAArch64SMEAttributes();
11326       // Arm-streaming, arm-streaming-compatible and non-streaming versions
11327       // cannot be mixed.
11328       if (Diff & (FunctionType::SME_PStateSMEnabledMask |
11329                   FunctionType::SME_PStateSMCompatibleMask))
11330         ArmStreamingCCMismatched = true;
11331     }
11332 
11333     if (OldTypeInfo.getCC() != NewTypeInfo.getCC() || ArmStreamingCCMismatched)
11334       return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << CallingConv;
11335 
11336     QualType OldReturnType = OldType->getReturnType();
11337 
11338     if (OldReturnType != NewReturnType)
11339       return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << ReturnType;
11340 
11341     if (OldFD->getConstexprKind() != NewFD->getConstexprKind())
11342       return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << ConstexprSpec;
11343 
11344     if (OldFD->isInlineSpecified() != NewFD->isInlineSpecified())
11345       return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << InlineSpec;
11346 
11347     if (OldFD->getFormalLinkage() != NewFD->getFormalLinkage())
11348       return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << Linkage;
11349 
11350     if (!CLinkageMayDiffer && OldFD->isExternC() != NewFD->isExternC())
11351       return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << LanguageLinkage;
11352 
11353     if (CheckEquivalentExceptionSpec(OldFPT, OldFD->getLocation(), NewFPT,
11354                                      NewFD->getLocation()))
11355       return true;
11356   }
11357   return false;
11358 }
11359 
11360 static bool CheckMultiVersionAdditionalRules(Sema &S, const FunctionDecl *OldFD,
11361                                              const FunctionDecl *NewFD,
11362                                              bool CausesMV,
11363                                              MultiVersionKind MVKind) {
11364   if (!S.getASTContext().getTargetInfo().supportsMultiVersioning()) {
11365     S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported);
11366     if (OldFD)
11367       S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
11368     return true;
11369   }
11370 
11371   bool IsCPUSpecificCPUDispatchMVKind =
11372       MVKind == MultiVersionKind::CPUDispatch ||
11373       MVKind == MultiVersionKind::CPUSpecific;
11374 
11375   if (CausesMV && OldFD &&
11376       checkNonMultiVersionCompatAttributes(S, OldFD, NewFD, MVKind))
11377     return true;
11378 
11379   if (checkNonMultiVersionCompatAttributes(S, NewFD, nullptr, MVKind))
11380     return true;
11381 
11382   // Only allow transition to MultiVersion if it hasn't been used.
11383   if (OldFD && CausesMV && OldFD->isUsed(false)) {
11384     S.Diag(NewFD->getLocation(), diag::err_multiversion_after_used);
11385     S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
11386     return true;
11387   }
11388 
11389   return S.areMultiversionVariantFunctionsCompatible(
11390       OldFD, NewFD, S.PDiag(diag::err_multiversion_noproto),
11391       PartialDiagnosticAt(NewFD->getLocation(),
11392                           S.PDiag(diag::note_multiversioning_caused_here)),
11393       PartialDiagnosticAt(NewFD->getLocation(),
11394                           S.PDiag(diag::err_multiversion_doesnt_support)
11395                               << static_cast<unsigned>(MVKind)),
11396       PartialDiagnosticAt(NewFD->getLocation(),
11397                           S.PDiag(diag::err_multiversion_diff)),
11398       /*TemplatesSupported=*/false,
11399       /*ConstexprSupported=*/!IsCPUSpecificCPUDispatchMVKind,
11400       /*CLinkageMayDiffer=*/false);
11401 }
11402 
11403 /// Check the validity of a multiversion function declaration that is the
11404 /// first of its kind. Also sets the multiversion'ness' of the function itself.
11405 ///
11406 /// This sets NewFD->isInvalidDecl() to true if there was an error.
11407 ///
11408 /// Returns true if there was an error, false otherwise.
11409 static bool CheckMultiVersionFirstFunction(Sema &S, FunctionDecl *FD) {
11410   MultiVersionKind MVKind = FD->getMultiVersionKind();
11411   assert(MVKind != MultiVersionKind::None &&
11412          "Function lacks multiversion attribute");
11413   const auto *TA = FD->getAttr<TargetAttr>();
11414   const auto *TVA = FD->getAttr<TargetVersionAttr>();
11415   // The target attribute only causes MV if this declaration is the default,
11416   // otherwise it is treated as a normal function.
11417   if (TA && !TA->isDefaultVersion())
11418     return false;
11419 
11420   if ((TA || TVA) && CheckMultiVersionValue(S, FD)) {
11421     FD->setInvalidDecl();
11422     return true;
11423   }
11424 
11425   if (CheckMultiVersionAdditionalRules(S, nullptr, FD, true, MVKind)) {
11426     FD->setInvalidDecl();
11427     return true;
11428   }
11429 
11430   FD->setIsMultiVersion();
11431   return false;
11432 }
11433 
11434 static bool PreviousDeclsHaveMultiVersionAttribute(const FunctionDecl *FD) {
11435   for (const Decl *D = FD->getPreviousDecl(); D; D = D->getPreviousDecl()) {
11436     if (D->getAsFunction()->getMultiVersionKind() != MultiVersionKind::None)
11437       return true;
11438   }
11439 
11440   return false;
11441 }
11442 
11443 static void patchDefaultTargetVersion(FunctionDecl *From, FunctionDecl *To) {
11444   if (!From->getASTContext().getTargetInfo().getTriple().isAArch64() &&
11445       !From->getASTContext().getTargetInfo().getTriple().isRISCV())
11446     return;
11447 
11448   MultiVersionKind MVKindFrom = From->getMultiVersionKind();
11449   MultiVersionKind MVKindTo = To->getMultiVersionKind();
11450 
11451   if (MVKindTo == MultiVersionKind::None &&
11452       (MVKindFrom == MultiVersionKind::TargetVersion ||
11453        MVKindFrom == MultiVersionKind::TargetClones))
11454     To->addAttr(TargetVersionAttr::CreateImplicit(
11455         To->getASTContext(), "default", To->getSourceRange()));
11456 }
11457 
11458 static bool CheckDeclarationCausesMultiVersioning(Sema &S, FunctionDecl *OldFD,
11459                                                   FunctionDecl *NewFD,
11460                                                   bool &Redeclaration,
11461                                                   NamedDecl *&OldDecl,
11462                                                   LookupResult &Previous) {
11463   assert(!OldFD->isMultiVersion() && "Unexpected MultiVersion");
11464 
11465   const auto *NewTA = NewFD->getAttr<TargetAttr>();
11466   const auto *OldTA = OldFD->getAttr<TargetAttr>();
11467   const auto *NewTVA = NewFD->getAttr<TargetVersionAttr>();
11468   const auto *OldTVA = OldFD->getAttr<TargetVersionAttr>();
11469 
11470   assert((NewTA || NewTVA) && "Excpecting target or target_version attribute");
11471 
11472   // The definitions should be allowed in any order. If we have discovered
11473   // a new target version and the preceeding was the default, then add the
11474   // corresponding attribute to it.
11475   patchDefaultTargetVersion(NewFD, OldFD);
11476 
11477   // If the old decl is NOT MultiVersioned yet, and we don't cause that
11478   // to change, this is a simple redeclaration.
11479   if (NewTA && !NewTA->isDefaultVersion() &&
11480       (!OldTA || OldTA->getFeaturesStr() == NewTA->getFeaturesStr()))
11481     return false;
11482 
11483   // Otherwise, this decl causes MultiVersioning.
11484   if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD, true,
11485                                        NewTVA ? MultiVersionKind::TargetVersion
11486                                               : MultiVersionKind::Target)) {
11487     NewFD->setInvalidDecl();
11488     return true;
11489   }
11490 
11491   if (CheckMultiVersionValue(S, NewFD)) {
11492     NewFD->setInvalidDecl();
11493     return true;
11494   }
11495 
11496   // If this is 'default', permit the forward declaration.
11497   if ((NewTA && NewTA->isDefaultVersion() && !OldTA) ||
11498       (NewTVA && NewTVA->isDefaultVersion() && !OldTVA)) {
11499     Redeclaration = true;
11500     OldDecl = OldFD;
11501     OldFD->setIsMultiVersion();
11502     NewFD->setIsMultiVersion();
11503     return false;
11504   }
11505 
11506   if ((OldTA || OldTVA) && CheckMultiVersionValue(S, OldFD)) {
11507     S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
11508     NewFD->setInvalidDecl();
11509     return true;
11510   }
11511 
11512   if (NewTA) {
11513     ParsedTargetAttr OldParsed =
11514         S.getASTContext().getTargetInfo().parseTargetAttr(
11515             OldTA->getFeaturesStr());
11516     llvm::sort(OldParsed.Features);
11517     ParsedTargetAttr NewParsed =
11518         S.getASTContext().getTargetInfo().parseTargetAttr(
11519             NewTA->getFeaturesStr());
11520     // Sort order doesn't matter, it just needs to be consistent.
11521     llvm::sort(NewParsed.Features);
11522     if (OldParsed == NewParsed) {
11523       S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
11524       S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
11525       NewFD->setInvalidDecl();
11526       return true;
11527     }
11528   }
11529 
11530   for (const auto *FD : OldFD->redecls()) {
11531     const auto *CurTA = FD->getAttr<TargetAttr>();
11532     const auto *CurTVA = FD->getAttr<TargetVersionAttr>();
11533     // We allow forward declarations before ANY multiversioning attributes, but
11534     // nothing after the fact.
11535     if (PreviousDeclsHaveMultiVersionAttribute(FD) &&
11536         ((NewTA && (!CurTA || CurTA->isInherited())) ||
11537          (NewTVA && (!CurTVA || CurTVA->isInherited())))) {
11538       S.Diag(FD->getLocation(), diag::err_multiversion_required_in_redecl)
11539           << (NewTA ? 0 : 2);
11540       S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
11541       NewFD->setInvalidDecl();
11542       return true;
11543     }
11544   }
11545 
11546   OldFD->setIsMultiVersion();
11547   NewFD->setIsMultiVersion();
11548   Redeclaration = false;
11549   OldDecl = nullptr;
11550   Previous.clear();
11551   return false;
11552 }
11553 
11554 static bool MultiVersionTypesCompatible(FunctionDecl *Old, FunctionDecl *New) {
11555   MultiVersionKind OldKind = Old->getMultiVersionKind();
11556   MultiVersionKind NewKind = New->getMultiVersionKind();
11557 
11558   if (OldKind == NewKind || OldKind == MultiVersionKind::None ||
11559       NewKind == MultiVersionKind::None)
11560     return true;
11561 
11562   if (Old->getASTContext().getTargetInfo().getTriple().isAArch64()) {
11563     switch (OldKind) {
11564     case MultiVersionKind::TargetVersion:
11565       return NewKind == MultiVersionKind::TargetClones;
11566     case MultiVersionKind::TargetClones:
11567       return NewKind == MultiVersionKind::TargetVersion;
11568     default:
11569       return false;
11570     }
11571   } else {
11572     switch (OldKind) {
11573     case MultiVersionKind::CPUDispatch:
11574       return NewKind == MultiVersionKind::CPUSpecific;
11575     case MultiVersionKind::CPUSpecific:
11576       return NewKind == MultiVersionKind::CPUDispatch;
11577     default:
11578       return false;
11579     }
11580   }
11581 }
11582 
11583 /// Check the validity of a new function declaration being added to an existing
11584 /// multiversioned declaration collection.
11585 static bool CheckMultiVersionAdditionalDecl(
11586     Sema &S, FunctionDecl *OldFD, FunctionDecl *NewFD,
11587     const CPUDispatchAttr *NewCPUDisp, const CPUSpecificAttr *NewCPUSpec,
11588     const TargetClonesAttr *NewClones, bool &Redeclaration, NamedDecl *&OldDecl,
11589     LookupResult &Previous) {
11590 
11591   // Disallow mixing of multiversioning types.
11592   if (!MultiVersionTypesCompatible(OldFD, NewFD)) {
11593     S.Diag(NewFD->getLocation(), diag::err_multiversion_types_mixed);
11594     S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
11595     NewFD->setInvalidDecl();
11596     return true;
11597   }
11598 
11599   // Add the default target_version attribute if it's missing.
11600   patchDefaultTargetVersion(OldFD, NewFD);
11601   patchDefaultTargetVersion(NewFD, OldFD);
11602 
11603   const auto *NewTA = NewFD->getAttr<TargetAttr>();
11604   const auto *NewTVA = NewFD->getAttr<TargetVersionAttr>();
11605   MultiVersionKind NewMVKind = NewFD->getMultiVersionKind();
11606   [[maybe_unused]] MultiVersionKind OldMVKind = OldFD->getMultiVersionKind();
11607 
11608   ParsedTargetAttr NewParsed;
11609   if (NewTA) {
11610     NewParsed = S.getASTContext().getTargetInfo().parseTargetAttr(
11611         NewTA->getFeaturesStr());
11612     llvm::sort(NewParsed.Features);
11613   }
11614   llvm::SmallVector<StringRef, 8> NewFeats;
11615   if (NewTVA) {
11616     NewTVA->getFeatures(NewFeats);
11617     llvm::sort(NewFeats);
11618   }
11619 
11620   bool UseMemberUsingDeclRules =
11621       S.CurContext->isRecord() && !NewFD->getFriendObjectKind();
11622 
11623   bool MayNeedOverloadableChecks =
11624       AllowOverloadingOfFunction(Previous, S.Context, NewFD);
11625 
11626   // Next, check ALL non-invalid non-overloads to see if this is a redeclaration
11627   // of a previous member of the MultiVersion set.
11628   for (NamedDecl *ND : Previous) {
11629     FunctionDecl *CurFD = ND->getAsFunction();
11630     if (!CurFD || CurFD->isInvalidDecl())
11631       continue;
11632     if (MayNeedOverloadableChecks &&
11633         S.IsOverload(NewFD, CurFD, UseMemberUsingDeclRules))
11634       continue;
11635 
11636     switch (NewMVKind) {
11637     case MultiVersionKind::None:
11638       assert(OldMVKind == MultiVersionKind::TargetClones &&
11639              "Only target_clones can be omitted in subsequent declarations");
11640       break;
11641     case MultiVersionKind::Target: {
11642       const auto *CurTA = CurFD->getAttr<TargetAttr>();
11643       if (CurTA->getFeaturesStr() == NewTA->getFeaturesStr()) {
11644         NewFD->setIsMultiVersion();
11645         Redeclaration = true;
11646         OldDecl = ND;
11647         return false;
11648       }
11649 
11650       ParsedTargetAttr CurParsed =
11651           S.getASTContext().getTargetInfo().parseTargetAttr(
11652               CurTA->getFeaturesStr());
11653       llvm::sort(CurParsed.Features);
11654       if (CurParsed == NewParsed) {
11655         S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
11656         S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
11657         NewFD->setInvalidDecl();
11658         return true;
11659       }
11660       break;
11661     }
11662     case MultiVersionKind::TargetVersion: {
11663       if (const auto *CurTVA = CurFD->getAttr<TargetVersionAttr>()) {
11664         if (CurTVA->getName() == NewTVA->getName()) {
11665           NewFD->setIsMultiVersion();
11666           Redeclaration = true;
11667           OldDecl = ND;
11668           return false;
11669         }
11670         llvm::SmallVector<StringRef, 8> CurFeats;
11671         CurTVA->getFeatures(CurFeats);
11672         llvm::sort(CurFeats);
11673 
11674         if (CurFeats == NewFeats) {
11675           S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
11676           S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
11677           NewFD->setInvalidDecl();
11678           return true;
11679         }
11680       } else if (const auto *CurClones = CurFD->getAttr<TargetClonesAttr>()) {
11681         // Default
11682         if (NewFeats.empty())
11683           break;
11684 
11685         for (unsigned I = 0; I < CurClones->featuresStrs_size(); ++I) {
11686           llvm::SmallVector<StringRef, 8> CurFeats;
11687           CurClones->getFeatures(CurFeats, I);
11688           llvm::sort(CurFeats);
11689 
11690           if (CurFeats == NewFeats) {
11691             S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
11692             S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
11693             NewFD->setInvalidDecl();
11694             return true;
11695           }
11696         }
11697       }
11698       break;
11699     }
11700     case MultiVersionKind::TargetClones: {
11701       assert(NewClones && "MultiVersionKind does not match attribute type");
11702       if (const auto *CurClones = CurFD->getAttr<TargetClonesAttr>()) {
11703         if (CurClones->featuresStrs_size() != NewClones->featuresStrs_size() ||
11704             !std::equal(CurClones->featuresStrs_begin(),
11705                         CurClones->featuresStrs_end(),
11706                         NewClones->featuresStrs_begin())) {
11707           S.Diag(NewFD->getLocation(), diag::err_target_clone_doesnt_match);
11708           S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
11709           NewFD->setInvalidDecl();
11710           return true;
11711         }
11712       } else if (const auto *CurTVA = CurFD->getAttr<TargetVersionAttr>()) {
11713         llvm::SmallVector<StringRef, 8> CurFeats;
11714         CurTVA->getFeatures(CurFeats);
11715         llvm::sort(CurFeats);
11716 
11717         // Default
11718         if (CurFeats.empty())
11719           break;
11720 
11721         for (unsigned I = 0; I < NewClones->featuresStrs_size(); ++I) {
11722           NewFeats.clear();
11723           NewClones->getFeatures(NewFeats, I);
11724           llvm::sort(NewFeats);
11725 
11726           if (CurFeats == NewFeats) {
11727             S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
11728             S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
11729             NewFD->setInvalidDecl();
11730             return true;
11731           }
11732         }
11733         break;
11734       }
11735       Redeclaration = true;
11736       OldDecl = CurFD;
11737       NewFD->setIsMultiVersion();
11738       return false;
11739     }
11740     case MultiVersionKind::CPUSpecific:
11741     case MultiVersionKind::CPUDispatch: {
11742       const auto *CurCPUSpec = CurFD->getAttr<CPUSpecificAttr>();
11743       const auto *CurCPUDisp = CurFD->getAttr<CPUDispatchAttr>();
11744       // Handle CPUDispatch/CPUSpecific versions.
11745       // Only 1 CPUDispatch function is allowed, this will make it go through
11746       // the redeclaration errors.
11747       if (NewMVKind == MultiVersionKind::CPUDispatch &&
11748           CurFD->hasAttr<CPUDispatchAttr>()) {
11749         if (CurCPUDisp->cpus_size() == NewCPUDisp->cpus_size() &&
11750             std::equal(
11751                 CurCPUDisp->cpus_begin(), CurCPUDisp->cpus_end(),
11752                 NewCPUDisp->cpus_begin(),
11753                 [](const IdentifierInfo *Cur, const IdentifierInfo *New) {
11754                   return Cur->getName() == New->getName();
11755                 })) {
11756           NewFD->setIsMultiVersion();
11757           Redeclaration = true;
11758           OldDecl = ND;
11759           return false;
11760         }
11761 
11762         // If the declarations don't match, this is an error condition.
11763         S.Diag(NewFD->getLocation(), diag::err_cpu_dispatch_mismatch);
11764         S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
11765         NewFD->setInvalidDecl();
11766         return true;
11767       }
11768       if (NewMVKind == MultiVersionKind::CPUSpecific && CurCPUSpec) {
11769         if (CurCPUSpec->cpus_size() == NewCPUSpec->cpus_size() &&
11770             std::equal(
11771                 CurCPUSpec->cpus_begin(), CurCPUSpec->cpus_end(),
11772                 NewCPUSpec->cpus_begin(),
11773                 [](const IdentifierInfo *Cur, const IdentifierInfo *New) {
11774                   return Cur->getName() == New->getName();
11775                 })) {
11776           NewFD->setIsMultiVersion();
11777           Redeclaration = true;
11778           OldDecl = ND;
11779           return false;
11780         }
11781 
11782         // Only 1 version of CPUSpecific is allowed for each CPU.
11783         for (const IdentifierInfo *CurII : CurCPUSpec->cpus()) {
11784           for (const IdentifierInfo *NewII : NewCPUSpec->cpus()) {
11785             if (CurII == NewII) {
11786               S.Diag(NewFD->getLocation(), diag::err_cpu_specific_multiple_defs)
11787                   << NewII;
11788               S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
11789               NewFD->setInvalidDecl();
11790               return true;
11791             }
11792           }
11793         }
11794       }
11795       break;
11796     }
11797     }
11798   }
11799 
11800   // Else, this is simply a non-redecl case.  Checking the 'value' is only
11801   // necessary in the Target case, since The CPUSpecific/Dispatch cases are
11802   // handled in the attribute adding step.
11803   if ((NewTA || NewTVA) && CheckMultiVersionValue(S, NewFD)) {
11804     NewFD->setInvalidDecl();
11805     return true;
11806   }
11807 
11808   if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD,
11809                                        !OldFD->isMultiVersion(), NewMVKind)) {
11810     NewFD->setInvalidDecl();
11811     return true;
11812   }
11813 
11814   // Permit forward declarations in the case where these two are compatible.
11815   if (!OldFD->isMultiVersion()) {
11816     OldFD->setIsMultiVersion();
11817     NewFD->setIsMultiVersion();
11818     Redeclaration = true;
11819     OldDecl = OldFD;
11820     return false;
11821   }
11822 
11823   NewFD->setIsMultiVersion();
11824   Redeclaration = false;
11825   OldDecl = nullptr;
11826   Previous.clear();
11827   return false;
11828 }
11829 
11830 /// Check the validity of a mulitversion function declaration.
11831 /// Also sets the multiversion'ness' of the function itself.
11832 ///
11833 /// This sets NewFD->isInvalidDecl() to true if there was an error.
11834 ///
11835 /// Returns true if there was an error, false otherwise.
11836 static bool CheckMultiVersionFunction(Sema &S, FunctionDecl *NewFD,
11837                                       bool &Redeclaration, NamedDecl *&OldDecl,
11838                                       LookupResult &Previous) {
11839   const TargetInfo &TI = S.getASTContext().getTargetInfo();
11840 
11841   // Check if FMV is disabled.
11842   if (TI.getTriple().isAArch64() && !TI.hasFeature("fmv"))
11843     return false;
11844 
11845   const auto *NewTA = NewFD->getAttr<TargetAttr>();
11846   const auto *NewTVA = NewFD->getAttr<TargetVersionAttr>();
11847   const auto *NewCPUDisp = NewFD->getAttr<CPUDispatchAttr>();
11848   const auto *NewCPUSpec = NewFD->getAttr<CPUSpecificAttr>();
11849   const auto *NewClones = NewFD->getAttr<TargetClonesAttr>();
11850   MultiVersionKind MVKind = NewFD->getMultiVersionKind();
11851 
11852   // Main isn't allowed to become a multiversion function, however it IS
11853   // permitted to have 'main' be marked with the 'target' optimization hint,
11854   // for 'target_version' only default is allowed.
11855   if (NewFD->isMain()) {
11856     if (MVKind != MultiVersionKind::None &&
11857         !(MVKind == MultiVersionKind::Target && !NewTA->isDefaultVersion()) &&
11858         !(MVKind == MultiVersionKind::TargetVersion &&
11859           NewTVA->isDefaultVersion())) {
11860       S.Diag(NewFD->getLocation(), diag::err_multiversion_not_allowed_on_main);
11861       NewFD->setInvalidDecl();
11862       return true;
11863     }
11864     return false;
11865   }
11866 
11867   // Target attribute on AArch64 is not used for multiversioning
11868   if (NewTA && TI.getTriple().isAArch64())
11869     return false;
11870 
11871   // Target attribute on RISCV is not used for multiversioning
11872   if (NewTA && TI.getTriple().isRISCV())
11873     return false;
11874 
11875   if (!OldDecl || !OldDecl->getAsFunction() ||
11876       !OldDecl->getDeclContext()->getRedeclContext()->Equals(
11877           NewFD->getDeclContext()->getRedeclContext())) {
11878     // If there's no previous declaration, AND this isn't attempting to cause
11879     // multiversioning, this isn't an error condition.
11880     if (MVKind == MultiVersionKind::None)
11881       return false;
11882     return CheckMultiVersionFirstFunction(S, NewFD);
11883   }
11884 
11885   FunctionDecl *OldFD = OldDecl->getAsFunction();
11886 
11887   if (!OldFD->isMultiVersion() && MVKind == MultiVersionKind::None)
11888     return false;
11889 
11890   // Multiversioned redeclarations aren't allowed to omit the attribute, except
11891   // for target_clones and target_version.
11892   if (OldFD->isMultiVersion() && MVKind == MultiVersionKind::None &&
11893       OldFD->getMultiVersionKind() != MultiVersionKind::TargetClones &&
11894       OldFD->getMultiVersionKind() != MultiVersionKind::TargetVersion) {
11895     S.Diag(NewFD->getLocation(), diag::err_multiversion_required_in_redecl)
11896         << (OldFD->getMultiVersionKind() != MultiVersionKind::Target);
11897     NewFD->setInvalidDecl();
11898     return true;
11899   }
11900 
11901   if (!OldFD->isMultiVersion()) {
11902     switch (MVKind) {
11903     case MultiVersionKind::Target:
11904     case MultiVersionKind::TargetVersion:
11905       return CheckDeclarationCausesMultiVersioning(
11906           S, OldFD, NewFD, Redeclaration, OldDecl, Previous);
11907     case MultiVersionKind::TargetClones:
11908       if (OldFD->isUsed(false)) {
11909         NewFD->setInvalidDecl();
11910         return S.Diag(NewFD->getLocation(), diag::err_multiversion_after_used);
11911       }
11912       OldFD->setIsMultiVersion();
11913       break;
11914 
11915     case MultiVersionKind::CPUDispatch:
11916     case MultiVersionKind::CPUSpecific:
11917     case MultiVersionKind::None:
11918       break;
11919     }
11920   }
11921 
11922   // At this point, we have a multiversion function decl (in OldFD) AND an
11923   // appropriate attribute in the current function decl.  Resolve that these are
11924   // still compatible with previous declarations.
11925   return CheckMultiVersionAdditionalDecl(S, OldFD, NewFD, NewCPUDisp,
11926                                          NewCPUSpec, NewClones, Redeclaration,
11927                                          OldDecl, Previous);
11928 }
11929 
11930 static void CheckConstPureAttributesUsage(Sema &S, FunctionDecl *NewFD) {
11931   bool IsPure = NewFD->hasAttr<PureAttr>();
11932   bool IsConst = NewFD->hasAttr<ConstAttr>();
11933 
11934   // If there are no pure or const attributes, there's nothing to check.
11935   if (!IsPure && !IsConst)
11936     return;
11937 
11938   // If the function is marked both pure and const, we retain the const
11939   // attribute because it makes stronger guarantees than the pure attribute, and
11940   // we drop the pure attribute explicitly to prevent later confusion about
11941   // semantics.
11942   if (IsPure && IsConst) {
11943     S.Diag(NewFD->getLocation(), diag::warn_const_attr_with_pure_attr);
11944     NewFD->dropAttrs<PureAttr>();
11945   }
11946 
11947   // Constructors and destructors are functions which return void, so are
11948   // handled here as well.
11949   if (NewFD->getReturnType()->isVoidType()) {
11950     S.Diag(NewFD->getLocation(), diag::warn_pure_function_returns_void)
11951         << IsConst;
11952     NewFD->dropAttrs<PureAttr, ConstAttr>();
11953   }
11954 }
11955 
11956 bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
11957                                     LookupResult &Previous,
11958                                     bool IsMemberSpecialization,
11959                                     bool DeclIsDefn) {
11960   assert(!NewFD->getReturnType()->isVariablyModifiedType() &&
11961          "Variably modified return types are not handled here");
11962 
11963   // Determine whether the type of this function should be merged with
11964   // a previous visible declaration. This never happens for functions in C++,
11965   // and always happens in C if the previous declaration was visible.
11966   bool MergeTypeWithPrevious = !getLangOpts().CPlusPlus &&
11967                                !Previous.isShadowed();
11968 
11969   bool Redeclaration = false;
11970   NamedDecl *OldDecl = nullptr;
11971   bool MayNeedOverloadableChecks = false;
11972 
11973   inferLifetimeCaptureByAttribute(NewFD);
11974   // Merge or overload the declaration with an existing declaration of
11975   // the same name, if appropriate.
11976   if (!Previous.empty()) {
11977     // Determine whether NewFD is an overload of PrevDecl or
11978     // a declaration that requires merging. If it's an overload,
11979     // there's no more work to do here; we'll just add the new
11980     // function to the scope.
11981     if (!AllowOverloadingOfFunction(Previous, Context, NewFD)) {
11982       NamedDecl *Candidate = Previous.getRepresentativeDecl();
11983       if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) {
11984         Redeclaration = true;
11985         OldDecl = Candidate;
11986       }
11987     } else {
11988       MayNeedOverloadableChecks = true;
11989       switch (CheckOverload(S, NewFD, Previous, OldDecl,
11990                             /*NewIsUsingDecl*/ false)) {
11991       case Ovl_Match:
11992         Redeclaration = true;
11993         break;
11994 
11995       case Ovl_NonFunction:
11996         Redeclaration = true;
11997         break;
11998 
11999       case Ovl_Overload:
12000         Redeclaration = false;
12001         break;
12002       }
12003     }
12004   }
12005 
12006   // Check for a previous extern "C" declaration with this name.
12007   if (!Redeclaration &&
12008       checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) {
12009     if (!Previous.empty()) {
12010       // This is an extern "C" declaration with the same name as a previous
12011       // declaration, and thus redeclares that entity...
12012       Redeclaration = true;
12013       OldDecl = Previous.getFoundDecl();
12014       MergeTypeWithPrevious = false;
12015 
12016       // ... except in the presence of __attribute__((overloadable)).
12017       if (OldDecl->hasAttr<OverloadableAttr>() ||
12018           NewFD->hasAttr<OverloadableAttr>()) {
12019         if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) {
12020           MayNeedOverloadableChecks = true;
12021           Redeclaration = false;
12022           OldDecl = nullptr;
12023         }
12024       }
12025     }
12026   }
12027 
12028   if (CheckMultiVersionFunction(*this, NewFD, Redeclaration, OldDecl, Previous))
12029     return Redeclaration;
12030 
12031   // PPC MMA non-pointer types are not allowed as function return types.
12032   if (Context.getTargetInfo().getTriple().isPPC64() &&
12033       PPC().CheckPPCMMAType(NewFD->getReturnType(), NewFD->getLocation())) {
12034     NewFD->setInvalidDecl();
12035   }
12036 
12037   CheckConstPureAttributesUsage(*this, NewFD);
12038 
12039   // C++ [dcl.spec.auto.general]p12:
12040   //   Return type deduction for a templated function with a placeholder in its
12041   //   declared type occurs when the definition is instantiated even if the
12042   //   function body contains a return statement with a non-type-dependent
12043   //   operand.
12044   //
12045   // C++ [temp.dep.expr]p3:
12046   //   An id-expression is type-dependent if it is a template-id that is not a
12047   //   concept-id and is dependent; or if its terminal name is:
12048   //   - [...]
12049   //   - associated by name lookup with one or more declarations of member
12050   //     functions of a class that is the current instantiation declared with a
12051   //     return type that contains a placeholder type,
12052   //   - [...]
12053   //
12054   // If this is a templated function with a placeholder in its return type,
12055   // make the placeholder type dependent since it won't be deduced until the
12056   // definition is instantiated. We do this here because it needs to happen
12057   // for implicitly instantiated member functions/member function templates.
12058   if (getLangOpts().CPlusPlus14 &&
12059       (NewFD->isDependentContext() &&
12060        NewFD->getReturnType()->isUndeducedType())) {
12061     const FunctionProtoType *FPT =
12062         NewFD->getType()->castAs<FunctionProtoType>();
12063     QualType NewReturnType = SubstAutoTypeDependent(FPT->getReturnType());
12064     NewFD->setType(Context.getFunctionType(NewReturnType, FPT->getParamTypes(),
12065                                            FPT->getExtProtoInfo()));
12066   }
12067 
12068   // C++11 [dcl.constexpr]p8:
12069   //   A constexpr specifier for a non-static member function that is not
12070   //   a constructor declares that member function to be const.
12071   //
12072   // This needs to be delayed until we know whether this is an out-of-line
12073   // definition of a static member function.
12074   //
12075   // This rule is not present in C++1y, so we produce a backwards
12076   // compatibility warning whenever it happens in C++11.
12077   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
12078   if (!getLangOpts().CPlusPlus14 && MD && MD->isConstexpr() &&
12079       !MD->isStatic() && !isa<CXXConstructorDecl>(MD) &&
12080       !isa<CXXDestructorDecl>(MD) && !MD->getMethodQualifiers().hasConst()) {
12081     CXXMethodDecl *OldMD = nullptr;
12082     if (OldDecl)
12083       OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl->getAsFunction());
12084     if (!OldMD || !OldMD->isStatic()) {
12085       const FunctionProtoType *FPT =
12086         MD->getType()->castAs<FunctionProtoType>();
12087       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
12088       EPI.TypeQuals.addConst();
12089       MD->setType(Context.getFunctionType(FPT->getReturnType(),
12090                                           FPT->getParamTypes(), EPI));
12091 
12092       // Warn that we did this, if we're not performing template instantiation.
12093       // In that case, we'll have warned already when the template was defined.
12094       if (!inTemplateInstantiation()) {
12095         SourceLocation AddConstLoc;
12096         if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc()
12097                 .IgnoreParens().getAs<FunctionTypeLoc>())
12098           AddConstLoc = getLocForEndOfToken(FTL.getRParenLoc());
12099 
12100         Diag(MD->getLocation(), diag::warn_cxx14_compat_constexpr_not_const)
12101           << FixItHint::CreateInsertion(AddConstLoc, " const");
12102       }
12103     }
12104   }
12105 
12106   if (Redeclaration) {
12107     // NewFD and OldDecl represent declarations that need to be
12108     // merged.
12109     if (MergeFunctionDecl(NewFD, OldDecl, S, MergeTypeWithPrevious,
12110                           DeclIsDefn)) {
12111       NewFD->setInvalidDecl();
12112       return Redeclaration;
12113     }
12114 
12115     Previous.clear();
12116     Previous.addDecl(OldDecl);
12117 
12118     if (FunctionTemplateDecl *OldTemplateDecl =
12119             dyn_cast<FunctionTemplateDecl>(OldDecl)) {
12120       auto *OldFD = OldTemplateDecl->getTemplatedDecl();
12121       FunctionTemplateDecl *NewTemplateDecl
12122         = NewFD->getDescribedFunctionTemplate();
12123       assert(NewTemplateDecl && "Template/non-template mismatch");
12124 
12125       // The call to MergeFunctionDecl above may have created some state in
12126       // NewTemplateDecl that needs to be merged with OldTemplateDecl before we
12127       // can add it as a redeclaration.
12128       NewTemplateDecl->mergePrevDecl(OldTemplateDecl);
12129 
12130       NewFD->setPreviousDeclaration(OldFD);
12131       if (NewFD->isCXXClassMember()) {
12132         NewFD->setAccess(OldTemplateDecl->getAccess());
12133         NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
12134       }
12135 
12136       // If this is an explicit specialization of a member that is a function
12137       // template, mark it as a member specialization.
12138       if (IsMemberSpecialization &&
12139           NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
12140         NewTemplateDecl->setMemberSpecialization();
12141         assert(OldTemplateDecl->isMemberSpecialization());
12142         // Explicit specializations of a member template do not inherit deleted
12143         // status from the parent member template that they are specializing.
12144         if (OldFD->isDeleted()) {
12145           // FIXME: This assert will not hold in the presence of modules.
12146           assert(OldFD->getCanonicalDecl() == OldFD);
12147           // FIXME: We need an update record for this AST mutation.
12148           OldFD->setDeletedAsWritten(false);
12149         }
12150       }
12151 
12152     } else {
12153       if (shouldLinkDependentDeclWithPrevious(NewFD, OldDecl)) {
12154         auto *OldFD = cast<FunctionDecl>(OldDecl);
12155         // This needs to happen first so that 'inline' propagates.
12156         NewFD->setPreviousDeclaration(OldFD);
12157         if (NewFD->isCXXClassMember())
12158           NewFD->setAccess(OldFD->getAccess());
12159       }
12160     }
12161   } else if (!getLangOpts().CPlusPlus && MayNeedOverloadableChecks &&
12162              !NewFD->getAttr<OverloadableAttr>()) {
12163     assert((Previous.empty() ||
12164             llvm::any_of(Previous,
12165                          [](const NamedDecl *ND) {
12166                            return ND->hasAttr<OverloadableAttr>();
12167                          })) &&
12168            "Non-redecls shouldn't happen without overloadable present");
12169 
12170     auto OtherUnmarkedIter = llvm::find_if(Previous, [](const NamedDecl *ND) {
12171       const auto *FD = dyn_cast<FunctionDecl>(ND);
12172       return FD && !FD->hasAttr<OverloadableAttr>();
12173     });
12174 
12175     if (OtherUnmarkedIter != Previous.end()) {
12176       Diag(NewFD->getLocation(),
12177            diag::err_attribute_overloadable_multiple_unmarked_overloads);
12178       Diag((*OtherUnmarkedIter)->getLocation(),
12179            diag::note_attribute_overloadable_prev_overload)
12180           << false;
12181 
12182       NewFD->addAttr(OverloadableAttr::CreateImplicit(Context));
12183     }
12184   }
12185 
12186   if (LangOpts.OpenMP)
12187     OpenMP().ActOnFinishedFunctionDefinitionInOpenMPAssumeScope(NewFD);
12188 
12189   if (NewFD->hasAttr<SYCLKernelEntryPointAttr>())
12190     SYCL().CheckSYCLEntryPointFunctionDecl(NewFD);
12191 
12192   // Semantic checking for this function declaration (in isolation).
12193 
12194   if (getLangOpts().CPlusPlus) {
12195     // C++-specific checks.
12196     if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
12197       CheckConstructor(Constructor);
12198     } else if (CXXDestructorDecl *Destructor =
12199                    dyn_cast<CXXDestructorDecl>(NewFD)) {
12200       // We check here for invalid destructor names.
12201       // If we have a friend destructor declaration that is dependent, we can't
12202       // diagnose right away because cases like this are still valid:
12203       // template <class T> struct A { friend T::X::~Y(); };
12204       // struct B { struct Y { ~Y(); }; using X = Y; };
12205       // template struct A<B>;
12206       if (NewFD->getFriendObjectKind() == Decl::FriendObjectKind::FOK_None ||
12207           !Destructor->getFunctionObjectParameterType()->isDependentType()) {
12208         CXXRecordDecl *Record = Destructor->getParent();
12209         QualType ClassType = Context.getTypeDeclType(Record);
12210 
12211         DeclarationName Name = Context.DeclarationNames.getCXXDestructorName(
12212             Context.getCanonicalType(ClassType));
12213         if (NewFD->getDeclName() != Name) {
12214           Diag(NewFD->getLocation(), diag::err_destructor_name);
12215           NewFD->setInvalidDecl();
12216           return Redeclaration;
12217         }
12218       }
12219     } else if (auto *Guide = dyn_cast<CXXDeductionGuideDecl>(NewFD)) {
12220       if (auto *TD = Guide->getDescribedFunctionTemplate())
12221         CheckDeductionGuideTemplate(TD);
12222 
12223       // A deduction guide is not on the list of entities that can be
12224       // explicitly specialized.
12225       if (Guide->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
12226         Diag(Guide->getBeginLoc(), diag::err_deduction_guide_specialized)
12227             << /*explicit specialization*/ 1;
12228     }
12229 
12230     // Find any virtual functions that this function overrides.
12231     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
12232       if (!Method->isFunctionTemplateSpecialization() &&
12233           !Method->getDescribedFunctionTemplate() &&
12234           Method->isCanonicalDecl()) {
12235         AddOverriddenMethods(Method->getParent(), Method);
12236       }
12237       if (Method->isVirtual() && NewFD->getTrailingRequiresClause())
12238         // C++2a [class.virtual]p6
12239         // A virtual method shall not have a requires-clause.
12240         Diag(NewFD->getTrailingRequiresClause()->getBeginLoc(),
12241              diag::err_constrained_virtual_method);
12242 
12243       if (Method->isStatic())
12244         checkThisInStaticMemberFunctionType(Method);
12245     }
12246 
12247     if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(NewFD))
12248       ActOnConversionDeclarator(Conversion);
12249 
12250     // Extra checking for C++ overloaded operators (C++ [over.oper]).
12251     if (NewFD->isOverloadedOperator() &&
12252         CheckOverloadedOperatorDeclaration(NewFD)) {
12253       NewFD->setInvalidDecl();
12254       return Redeclaration;
12255     }
12256 
12257     // Extra checking for C++0x literal operators (C++0x [over.literal]).
12258     if (NewFD->getLiteralIdentifier() &&
12259         CheckLiteralOperatorDeclaration(NewFD)) {
12260       NewFD->setInvalidDecl();
12261       return Redeclaration;
12262     }
12263 
12264     // In C++, check default arguments now that we have merged decls. Unless
12265     // the lexical context is the class, because in this case this is done
12266     // during delayed parsing anyway.
12267     if (!CurContext->isRecord())
12268       CheckCXXDefaultArguments(NewFD);
12269 
12270     // If this function is declared as being extern "C", then check to see if
12271     // the function returns a UDT (class, struct, or union type) that is not C
12272     // compatible, and if it does, warn the user.
12273     // But, issue any diagnostic on the first declaration only.
12274     if (Previous.empty() && NewFD->isExternC()) {
12275       QualType R = NewFD->getReturnType();
12276       if (R->isIncompleteType() && !R->isVoidType())
12277         Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
12278             << NewFD << R;
12279       else if (!R.isPODType(Context) && !R->isVoidType() &&
12280                !R->isObjCObjectPointerType())
12281         Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
12282     }
12283 
12284     // C++1z [dcl.fct]p6:
12285     //   [...] whether the function has a non-throwing exception-specification
12286     //   [is] part of the function type
12287     //
12288     // This results in an ABI break between C++14 and C++17 for functions whose
12289     // declared type includes an exception-specification in a parameter or
12290     // return type. (Exception specifications on the function itself are OK in
12291     // most cases, and exception specifications are not permitted in most other
12292     // contexts where they could make it into a mangling.)
12293     if (!getLangOpts().CPlusPlus17 && !NewFD->getPrimaryTemplate()) {
12294       auto HasNoexcept = [&](QualType T) -> bool {
12295         // Strip off declarator chunks that could be between us and a function
12296         // type. We don't need to look far, exception specifications are very
12297         // restricted prior to C++17.
12298         if (auto *RT = T->getAs<ReferenceType>())
12299           T = RT->getPointeeType();
12300         else if (T->isAnyPointerType())
12301           T = T->getPointeeType();
12302         else if (auto *MPT = T->getAs<MemberPointerType>())
12303           T = MPT->getPointeeType();
12304         if (auto *FPT = T->getAs<FunctionProtoType>())
12305           if (FPT->isNothrow())
12306             return true;
12307         return false;
12308       };
12309 
12310       auto *FPT = NewFD->getType()->castAs<FunctionProtoType>();
12311       bool AnyNoexcept = HasNoexcept(FPT->getReturnType());
12312       for (QualType T : FPT->param_types())
12313         AnyNoexcept |= HasNoexcept(T);
12314       if (AnyNoexcept)
12315         Diag(NewFD->getLocation(),
12316              diag::warn_cxx17_compat_exception_spec_in_signature)
12317             << NewFD;
12318     }
12319 
12320     if (!Redeclaration && LangOpts.CUDA) {
12321       bool IsKernel = NewFD->hasAttr<CUDAGlobalAttr>();
12322       for (auto *Parm : NewFD->parameters()) {
12323         if (!Parm->getType()->isDependentType() &&
12324             Parm->hasAttr<CUDAGridConstantAttr>() &&
12325             !(IsKernel && Parm->getType().isConstQualified()))
12326           Diag(Parm->getAttr<CUDAGridConstantAttr>()->getLocation(),
12327                diag::err_cuda_grid_constant_not_allowed);
12328       }
12329       CUDA().checkTargetOverload(NewFD, Previous);
12330     }
12331   }
12332 
12333   if (DeclIsDefn && Context.getTargetInfo().getTriple().isAArch64())
12334     ARM().CheckSMEFunctionDefAttributes(NewFD);
12335 
12336   return Redeclaration;
12337 }
12338 
12339 void Sema::CheckMain(FunctionDecl *FD, const DeclSpec &DS) {
12340   // [basic.start.main]p3
12341   //    The main function shall not be declared with a linkage-specification.
12342   if (FD->isExternCContext() ||
12343       (FD->isExternCXXContext() &&
12344        FD->getDeclContext()->getRedeclContext()->isTranslationUnit()))
12345     Diag(FD->getLocation(), diag::ext_main_invalid_linkage_specification)
12346         << FD->getLanguageLinkage();
12347 
12348   // C++11 [basic.start.main]p3:
12349   //   A program that [...] declares main to be inline, static or
12350   //   constexpr is ill-formed.
12351   // C11 6.7.4p4:  In a hosted environment, no function specifier(s) shall
12352   //   appear in a declaration of main.
12353   // static main is not an error under C99, but we should warn about it.
12354   // We accept _Noreturn main as an extension.
12355   if (FD->getStorageClass() == SC_Static)
12356     Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
12357          ? diag::err_static_main : diag::warn_static_main)
12358       << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
12359   if (FD->isInlineSpecified())
12360     Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
12361       << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
12362   if (DS.isNoreturnSpecified()) {
12363     SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
12364     SourceRange NoreturnRange(NoreturnLoc, getLocForEndOfToken(NoreturnLoc));
12365     Diag(NoreturnLoc, diag::ext_noreturn_main);
12366     Diag(NoreturnLoc, diag::note_main_remove_noreturn)
12367       << FixItHint::CreateRemoval(NoreturnRange);
12368   }
12369   if (FD->isConstexpr()) {
12370     Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
12371         << FD->isConsteval()
12372         << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
12373     FD->setConstexprKind(ConstexprSpecKind::Unspecified);
12374   }
12375 
12376   if (getLangOpts().OpenCL) {
12377     Diag(FD->getLocation(), diag::err_opencl_no_main)
12378         << FD->hasAttr<OpenCLKernelAttr>();
12379     FD->setInvalidDecl();
12380     return;
12381   }
12382 
12383   // Functions named main in hlsl are default entries, but don't have specific
12384   // signatures they are required to conform to.
12385   if (getLangOpts().HLSL)
12386     return;
12387 
12388   QualType T = FD->getType();
12389   assert(T->isFunctionType() && "function decl is not of function type");
12390   const FunctionType* FT = T->castAs<FunctionType>();
12391 
12392   // Set default calling convention for main()
12393   if (FT->getCallConv() != CC_C) {
12394     FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(CC_C));
12395     FD->setType(QualType(FT, 0));
12396     T = Context.getCanonicalType(FD->getType());
12397   }
12398 
12399   if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
12400     // In C with GNU extensions we allow main() to have non-integer return
12401     // type, but we should warn about the extension, and we disable the
12402     // implicit-return-zero rule.
12403 
12404     // GCC in C mode accepts qualified 'int'.
12405     if (Context.hasSameUnqualifiedType(FT->getReturnType(), Context.IntTy))
12406       FD->setHasImplicitReturnZero(true);
12407     else {
12408       Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
12409       SourceRange RTRange = FD->getReturnTypeSourceRange();
12410       if (RTRange.isValid())
12411         Diag(RTRange.getBegin(), diag::note_main_change_return_type)
12412             << FixItHint::CreateReplacement(RTRange, "int");
12413     }
12414   } else {
12415     // In C and C++, main magically returns 0 if you fall off the end;
12416     // set the flag which tells us that.
12417     // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
12418 
12419     // All the standards say that main() should return 'int'.
12420     if (Context.hasSameType(FT->getReturnType(), Context.IntTy))
12421       FD->setHasImplicitReturnZero(true);
12422     else {
12423       // Otherwise, this is just a flat-out error.
12424       SourceRange RTRange = FD->getReturnTypeSourceRange();
12425       Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
12426           << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "int")
12427                                 : FixItHint());
12428       FD->setInvalidDecl(true);
12429     }
12430   }
12431 
12432   // Treat protoless main() as nullary.
12433   if (isa<FunctionNoProtoType>(FT)) return;
12434 
12435   const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
12436   unsigned nparams = FTP->getNumParams();
12437   assert(FD->getNumParams() == nparams);
12438 
12439   bool HasExtraParameters = (nparams > 3);
12440 
12441   if (FTP->isVariadic()) {
12442     Diag(FD->getLocation(), diag::ext_variadic_main);
12443     // FIXME: if we had information about the location of the ellipsis, we
12444     // could add a FixIt hint to remove it as a parameter.
12445   }
12446 
12447   // Darwin passes an undocumented fourth argument of type char**.  If
12448   // other platforms start sprouting these, the logic below will start
12449   // getting shifty.
12450   if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
12451     HasExtraParameters = false;
12452 
12453   if (HasExtraParameters) {
12454     Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
12455     FD->setInvalidDecl(true);
12456     nparams = 3;
12457   }
12458 
12459   // FIXME: a lot of the following diagnostics would be improved
12460   // if we had some location information about types.
12461 
12462   QualType CharPP =
12463     Context.getPointerType(Context.getPointerType(Context.CharTy));
12464   QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
12465 
12466   for (unsigned i = 0; i < nparams; ++i) {
12467     QualType AT = FTP->getParamType(i);
12468 
12469     bool mismatch = true;
12470 
12471     if (Context.hasSameUnqualifiedType(AT, Expected[i]))
12472       mismatch = false;
12473     else if (Expected[i] == CharPP) {
12474       // As an extension, the following forms are okay:
12475       //   char const **
12476       //   char const * const *
12477       //   char * const *
12478 
12479       QualifierCollector qs;
12480       const PointerType* PT;
12481       if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
12482           (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
12483           Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
12484                               Context.CharTy)) {
12485         qs.removeConst();
12486         mismatch = !qs.empty();
12487       }
12488     }
12489 
12490     if (mismatch) {
12491       Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
12492       // TODO: suggest replacing given type with expected type
12493       FD->setInvalidDecl(true);
12494     }
12495   }
12496 
12497   if (nparams == 1 && !FD->isInvalidDecl()) {
12498     Diag(FD->getLocation(), diag::warn_main_one_arg);
12499   }
12500 
12501   if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
12502     Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
12503     FD->setInvalidDecl();
12504   }
12505 }
12506 
12507 static bool isDefaultStdCall(FunctionDecl *FD, Sema &S) {
12508 
12509   // Default calling convention for main and wmain is __cdecl
12510   if (FD->getName() == "main" || FD->getName() == "wmain")
12511     return false;
12512 
12513   // Default calling convention for MinGW is __cdecl
12514   const llvm::Triple &T = S.Context.getTargetInfo().getTriple();
12515   if (T.isWindowsGNUEnvironment())
12516     return false;
12517 
12518   // Default calling convention for WinMain, wWinMain and DllMain
12519   // is __stdcall on 32 bit Windows
12520   if (T.isOSWindows() && T.getArch() == llvm::Triple::x86)
12521     return true;
12522 
12523   return false;
12524 }
12525 
12526 void Sema::CheckMSVCRTEntryPoint(FunctionDecl *FD) {
12527   QualType T = FD->getType();
12528   assert(T->isFunctionType() && "function decl is not of function type");
12529   const FunctionType *FT = T->castAs<FunctionType>();
12530 
12531   // Set an implicit return of 'zero' if the function can return some integral,
12532   // enumeration, pointer or nullptr type.
12533   if (FT->getReturnType()->isIntegralOrEnumerationType() ||
12534       FT->getReturnType()->isAnyPointerType() ||
12535       FT->getReturnType()->isNullPtrType())
12536     // DllMain is exempt because a return value of zero means it failed.
12537     if (FD->getName() != "DllMain")
12538       FD->setHasImplicitReturnZero(true);
12539 
12540   // Explicitly specified calling conventions are applied to MSVC entry points
12541   if (!hasExplicitCallingConv(T)) {
12542     if (isDefaultStdCall(FD, *this)) {
12543       if (FT->getCallConv() != CC_X86StdCall) {
12544         FT = Context.adjustFunctionType(
12545             FT, FT->getExtInfo().withCallingConv(CC_X86StdCall));
12546         FD->setType(QualType(FT, 0));
12547       }
12548     } else if (FT->getCallConv() != CC_C) {
12549       FT = Context.adjustFunctionType(FT,
12550                                       FT->getExtInfo().withCallingConv(CC_C));
12551       FD->setType(QualType(FT, 0));
12552     }
12553   }
12554 
12555   if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
12556     Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
12557     FD->setInvalidDecl();
12558   }
12559 }
12560 
12561 bool Sema::CheckForConstantInitializer(Expr *Init, unsigned DiagID) {
12562   // FIXME: Need strict checking.  In C89, we need to check for
12563   // any assignment, increment, decrement, function-calls, or
12564   // commas outside of a sizeof.  In C99, it's the same list,
12565   // except that the aforementioned are allowed in unevaluated
12566   // expressions.  Everything else falls under the
12567   // "may accept other forms of constant expressions" exception.
12568   //
12569   // Regular C++ code will not end up here (exceptions: language extensions,
12570   // OpenCL C++ etc), so the constant expression rules there don't matter.
12571   if (Init->isValueDependent()) {
12572     assert(Init->containsErrors() &&
12573            "Dependent code should only occur in error-recovery path.");
12574     return true;
12575   }
12576   const Expr *Culprit;
12577   if (Init->isConstantInitializer(Context, false, &Culprit))
12578     return false;
12579   Diag(Culprit->getExprLoc(), DiagID) << Culprit->getSourceRange();
12580   return true;
12581 }
12582 
12583 namespace {
12584   // Visits an initialization expression to see if OrigDecl is evaluated in
12585   // its own initialization and throws a warning if it does.
12586   class SelfReferenceChecker
12587       : public EvaluatedExprVisitor<SelfReferenceChecker> {
12588     Sema &S;
12589     Decl *OrigDecl;
12590     bool isRecordType;
12591     bool isPODType;
12592     bool isReferenceType;
12593 
12594     bool isInitList;
12595     llvm::SmallVector<unsigned, 4> InitFieldIndex;
12596 
12597   public:
12598     typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
12599 
12600     SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
12601                                                     S(S), OrigDecl(OrigDecl) {
12602       isPODType = false;
12603       isRecordType = false;
12604       isReferenceType = false;
12605       isInitList = false;
12606       if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
12607         isPODType = VD->getType().isPODType(S.Context);
12608         isRecordType = VD->getType()->isRecordType();
12609         isReferenceType = VD->getType()->isReferenceType();
12610       }
12611     }
12612 
12613     // For most expressions, just call the visitor.  For initializer lists,
12614     // track the index of the field being initialized since fields are
12615     // initialized in order allowing use of previously initialized fields.
12616     void CheckExpr(Expr *E) {
12617       InitListExpr *InitList = dyn_cast<InitListExpr>(E);
12618       if (!InitList) {
12619         Visit(E);
12620         return;
12621       }
12622 
12623       // Track and increment the index here.
12624       isInitList = true;
12625       InitFieldIndex.push_back(0);
12626       for (auto *Child : InitList->children()) {
12627         CheckExpr(cast<Expr>(Child));
12628         ++InitFieldIndex.back();
12629       }
12630       InitFieldIndex.pop_back();
12631     }
12632 
12633     // Returns true if MemberExpr is checked and no further checking is needed.
12634     // Returns false if additional checking is required.
12635     bool CheckInitListMemberExpr(MemberExpr *E, bool CheckReference) {
12636       llvm::SmallVector<FieldDecl*, 4> Fields;
12637       Expr *Base = E;
12638       bool ReferenceField = false;
12639 
12640       // Get the field members used.
12641       while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
12642         FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
12643         if (!FD)
12644           return false;
12645         Fields.push_back(FD);
12646         if (FD->getType()->isReferenceType())
12647           ReferenceField = true;
12648         Base = ME->getBase()->IgnoreParenImpCasts();
12649       }
12650 
12651       // Keep checking only if the base Decl is the same.
12652       DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base);
12653       if (!DRE || DRE->getDecl() != OrigDecl)
12654         return false;
12655 
12656       // A reference field can be bound to an unininitialized field.
12657       if (CheckReference && !ReferenceField)
12658         return true;
12659 
12660       // Convert FieldDecls to their index number.
12661       llvm::SmallVector<unsigned, 4> UsedFieldIndex;
12662       for (const FieldDecl *I : llvm::reverse(Fields))
12663         UsedFieldIndex.push_back(I->getFieldIndex());
12664 
12665       // See if a warning is needed by checking the first difference in index
12666       // numbers.  If field being used has index less than the field being
12667       // initialized, then the use is safe.
12668       for (auto UsedIter = UsedFieldIndex.begin(),
12669                 UsedEnd = UsedFieldIndex.end(),
12670                 OrigIter = InitFieldIndex.begin(),
12671                 OrigEnd = InitFieldIndex.end();
12672            UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
12673         if (*UsedIter < *OrigIter)
12674           return true;
12675         if (*UsedIter > *OrigIter)
12676           break;
12677       }
12678 
12679       // TODO: Add a different warning which will print the field names.
12680       HandleDeclRefExpr(DRE);
12681       return true;
12682     }
12683 
12684     // For most expressions, the cast is directly above the DeclRefExpr.
12685     // For conditional operators, the cast can be outside the conditional
12686     // operator if both expressions are DeclRefExpr's.
12687     void HandleValue(Expr *E) {
12688       E = E->IgnoreParens();
12689       if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
12690         HandleDeclRefExpr(DRE);
12691         return;
12692       }
12693 
12694       if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
12695         Visit(CO->getCond());
12696         HandleValue(CO->getTrueExpr());
12697         HandleValue(CO->getFalseExpr());
12698         return;
12699       }
12700 
12701       if (BinaryConditionalOperator *BCO =
12702               dyn_cast<BinaryConditionalOperator>(E)) {
12703         Visit(BCO->getCond());
12704         HandleValue(BCO->getFalseExpr());
12705         return;
12706       }
12707 
12708       if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
12709         if (Expr *SE = OVE->getSourceExpr())
12710           HandleValue(SE);
12711         return;
12712       }
12713 
12714       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
12715         if (BO->getOpcode() == BO_Comma) {
12716           Visit(BO->getLHS());
12717           HandleValue(BO->getRHS());
12718           return;
12719         }
12720       }
12721 
12722       if (isa<MemberExpr>(E)) {
12723         if (isInitList) {
12724           if (CheckInitListMemberExpr(cast<MemberExpr>(E),
12725                                       false /*CheckReference*/))
12726             return;
12727         }
12728 
12729         Expr *Base = E->IgnoreParenImpCasts();
12730         while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
12731           // Check for static member variables and don't warn on them.
12732           if (!isa<FieldDecl>(ME->getMemberDecl()))
12733             return;
12734           Base = ME->getBase()->IgnoreParenImpCasts();
12735         }
12736         if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
12737           HandleDeclRefExpr(DRE);
12738         return;
12739       }
12740 
12741       Visit(E);
12742     }
12743 
12744     // Reference types not handled in HandleValue are handled here since all
12745     // uses of references are bad, not just r-value uses.
12746     void VisitDeclRefExpr(DeclRefExpr *E) {
12747       if (isReferenceType)
12748         HandleDeclRefExpr(E);
12749     }
12750 
12751     void VisitImplicitCastExpr(ImplicitCastExpr *E) {
12752       if (E->getCastKind() == CK_LValueToRValue) {
12753         HandleValue(E->getSubExpr());
12754         return;
12755       }
12756 
12757       Inherited::VisitImplicitCastExpr(E);
12758     }
12759 
12760     void VisitMemberExpr(MemberExpr *E) {
12761       if (isInitList) {
12762         if (CheckInitListMemberExpr(E, true /*CheckReference*/))
12763           return;
12764       }
12765 
12766       // Don't warn on arrays since they can be treated as pointers.
12767       if (E->getType()->canDecayToPointerType()) return;
12768 
12769       // Warn when a non-static method call is followed by non-static member
12770       // field accesses, which is followed by a DeclRefExpr.
12771       CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
12772       bool Warn = (MD && !MD->isStatic());
12773       Expr *Base = E->getBase()->IgnoreParenImpCasts();
12774       while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
12775         if (!isa<FieldDecl>(ME->getMemberDecl()))
12776           Warn = false;
12777         Base = ME->getBase()->IgnoreParenImpCasts();
12778       }
12779 
12780       if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
12781         if (Warn)
12782           HandleDeclRefExpr(DRE);
12783         return;
12784       }
12785 
12786       // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
12787       // Visit that expression.
12788       Visit(Base);
12789     }
12790 
12791     void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
12792       Expr *Callee = E->getCallee();
12793 
12794       if (isa<UnresolvedLookupExpr>(Callee))
12795         return Inherited::VisitCXXOperatorCallExpr(E);
12796 
12797       Visit(Callee);
12798       for (auto Arg: E->arguments())
12799         HandleValue(Arg->IgnoreParenImpCasts());
12800     }
12801 
12802     void VisitUnaryOperator(UnaryOperator *E) {
12803       // For POD record types, addresses of its own members are well-defined.
12804       if (E->getOpcode() == UO_AddrOf && isRecordType &&
12805           isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
12806         if (!isPODType)
12807           HandleValue(E->getSubExpr());
12808         return;
12809       }
12810 
12811       if (E->isIncrementDecrementOp()) {
12812         HandleValue(E->getSubExpr());
12813         return;
12814       }
12815 
12816       Inherited::VisitUnaryOperator(E);
12817     }
12818 
12819     void VisitObjCMessageExpr(ObjCMessageExpr *E) {}
12820 
12821     void VisitCXXConstructExpr(CXXConstructExpr *E) {
12822       if (E->getConstructor()->isCopyConstructor()) {
12823         Expr *ArgExpr = E->getArg(0);
12824         if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr))
12825           if (ILE->getNumInits() == 1)
12826             ArgExpr = ILE->getInit(0);
12827         if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
12828           if (ICE->getCastKind() == CK_NoOp)
12829             ArgExpr = ICE->getSubExpr();
12830         HandleValue(ArgExpr);
12831         return;
12832       }
12833       Inherited::VisitCXXConstructExpr(E);
12834     }
12835 
12836     void VisitCallExpr(CallExpr *E) {
12837       // Treat std::move as a use.
12838       if (E->isCallToStdMove()) {
12839         HandleValue(E->getArg(0));
12840         return;
12841       }
12842 
12843       Inherited::VisitCallExpr(E);
12844     }
12845 
12846     void VisitBinaryOperator(BinaryOperator *E) {
12847       if (E->isCompoundAssignmentOp()) {
12848         HandleValue(E->getLHS());
12849         Visit(E->getRHS());
12850         return;
12851       }
12852 
12853       Inherited::VisitBinaryOperator(E);
12854     }
12855 
12856     // A custom visitor for BinaryConditionalOperator is needed because the
12857     // regular visitor would check the condition and true expression separately
12858     // but both point to the same place giving duplicate diagnostics.
12859     void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
12860       Visit(E->getCond());
12861       Visit(E->getFalseExpr());
12862     }
12863 
12864     void HandleDeclRefExpr(DeclRefExpr *DRE) {
12865       Decl* ReferenceDecl = DRE->getDecl();
12866       if (OrigDecl != ReferenceDecl) return;
12867       unsigned diag;
12868       if (isReferenceType) {
12869         diag = diag::warn_uninit_self_reference_in_reference_init;
12870       } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
12871         diag = diag::warn_static_self_reference_in_init;
12872       } else if (isa<TranslationUnitDecl>(OrigDecl->getDeclContext()) ||
12873                  isa<NamespaceDecl>(OrigDecl->getDeclContext()) ||
12874                  DRE->getDecl()->getType()->isRecordType()) {
12875         diag = diag::warn_uninit_self_reference_in_init;
12876       } else {
12877         // Local variables will be handled by the CFG analysis.
12878         return;
12879       }
12880 
12881       S.DiagRuntimeBehavior(DRE->getBeginLoc(), DRE,
12882                             S.PDiag(diag)
12883                                 << DRE->getDecl() << OrigDecl->getLocation()
12884                                 << DRE->getSourceRange());
12885     }
12886   };
12887 
12888   /// CheckSelfReference - Warns if OrigDecl is used in expression E.
12889   static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
12890                                  bool DirectInit) {
12891     // Parameters arguments are occassionially constructed with itself,
12892     // for instance, in recursive functions.  Skip them.
12893     if (isa<ParmVarDecl>(OrigDecl))
12894       return;
12895 
12896     E = E->IgnoreParens();
12897 
12898     // Skip checking T a = a where T is not a record or reference type.
12899     // Doing so is a way to silence uninitialized warnings.
12900     if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
12901       if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
12902         if (ICE->getCastKind() == CK_LValueToRValue)
12903           if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
12904             if (DRE->getDecl() == OrigDecl)
12905               return;
12906 
12907     SelfReferenceChecker(S, OrigDecl).CheckExpr(E);
12908   }
12909 } // end anonymous namespace
12910 
12911 namespace {
12912   // Simple wrapper to add the name of a variable or (if no variable is
12913   // available) a DeclarationName into a diagnostic.
12914   struct VarDeclOrName {
12915     VarDecl *VDecl;
12916     DeclarationName Name;
12917 
12918     friend const Sema::SemaDiagnosticBuilder &
12919     operator<<(const Sema::SemaDiagnosticBuilder &Diag, VarDeclOrName VN) {
12920       return VN.VDecl ? Diag << VN.VDecl : Diag << VN.Name;
12921     }
12922   };
12923 } // end anonymous namespace
12924 
12925 QualType Sema::deduceVarTypeFromInitializer(VarDecl *VDecl,
12926                                             DeclarationName Name, QualType Type,
12927                                             TypeSourceInfo *TSI,
12928                                             SourceRange Range, bool DirectInit,
12929                                             Expr *Init) {
12930   bool IsInitCapture = !VDecl;
12931   assert((!VDecl || !VDecl->isInitCapture()) &&
12932          "init captures are expected to be deduced prior to initialization");
12933 
12934   VarDeclOrName VN{VDecl, Name};
12935 
12936   DeducedType *Deduced = Type->getContainedDeducedType();
12937   assert(Deduced && "deduceVarTypeFromInitializer for non-deduced type");
12938 
12939   // Diagnose auto array declarations in C23, unless it's a supported extension.
12940   if (getLangOpts().C23 && Type->isArrayType() &&
12941       !isa_and_present<StringLiteral, InitListExpr>(Init)) {
12942       Diag(Range.getBegin(), diag::err_auto_not_allowed)
12943           << (int)Deduced->getContainedAutoType()->getKeyword()
12944           << /*in array decl*/ 23 << Range;
12945     return QualType();
12946   }
12947 
12948   // C++11 [dcl.spec.auto]p3
12949   if (!Init) {
12950     assert(VDecl && "no init for init capture deduction?");
12951 
12952     // Except for class argument deduction, and then for an initializing
12953     // declaration only, i.e. no static at class scope or extern.
12954     if (!isa<DeducedTemplateSpecializationType>(Deduced) ||
12955         VDecl->hasExternalStorage() ||
12956         VDecl->isStaticDataMember()) {
12957       Diag(VDecl->getLocation(), diag::err_auto_var_requires_init)
12958         << VDecl->getDeclName() << Type;
12959       return QualType();
12960     }
12961   }
12962 
12963   ArrayRef<Expr*> DeduceInits;
12964   if (Init)
12965     DeduceInits = Init;
12966 
12967   auto *PL = dyn_cast_if_present<ParenListExpr>(Init);
12968   if (DirectInit && PL)
12969     DeduceInits = PL->exprs();
12970 
12971   if (isa<DeducedTemplateSpecializationType>(Deduced)) {
12972     assert(VDecl && "non-auto type for init capture deduction?");
12973     InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
12974     InitializationKind Kind = InitializationKind::CreateForInit(
12975         VDecl->getLocation(), DirectInit, Init);
12976     // FIXME: Initialization should not be taking a mutable list of inits.
12977     SmallVector<Expr *, 8> InitsCopy(DeduceInits);
12978     return DeduceTemplateSpecializationFromInitializer(TSI, Entity, Kind,
12979                                                        InitsCopy);
12980   }
12981 
12982   if (DirectInit) {
12983     if (auto *IL = dyn_cast<InitListExpr>(Init))
12984       DeduceInits = IL->inits();
12985   }
12986 
12987   // Deduction only works if we have exactly one source expression.
12988   if (DeduceInits.empty()) {
12989     // It isn't possible to write this directly, but it is possible to
12990     // end up in this situation with "auto x(some_pack...);"
12991     Diag(Init->getBeginLoc(), IsInitCapture
12992                                   ? diag::err_init_capture_no_expression
12993                                   : diag::err_auto_var_init_no_expression)
12994         << VN << Type << Range;
12995     return QualType();
12996   }
12997 
12998   if (DeduceInits.size() > 1) {
12999     Diag(DeduceInits[1]->getBeginLoc(),
13000          IsInitCapture ? diag::err_init_capture_multiple_expressions
13001                        : diag::err_auto_var_init_multiple_expressions)
13002         << VN << Type << Range;
13003     return QualType();
13004   }
13005 
13006   Expr *DeduceInit = DeduceInits[0];
13007   if (DirectInit && isa<InitListExpr>(DeduceInit)) {
13008     Diag(Init->getBeginLoc(), IsInitCapture
13009                                   ? diag::err_init_capture_paren_braces
13010                                   : diag::err_auto_var_init_paren_braces)
13011         << isa<InitListExpr>(Init) << VN << Type << Range;
13012     return QualType();
13013   }
13014 
13015   // Expressions default to 'id' when we're in a debugger.
13016   bool DefaultedAnyToId = false;
13017   if (getLangOpts().DebuggerCastResultToId &&
13018       Init->getType() == Context.UnknownAnyTy && !IsInitCapture) {
13019     ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
13020     if (Result.isInvalid()) {
13021       return QualType();
13022     }
13023     Init = Result.get();
13024     DefaultedAnyToId = true;
13025   }
13026 
13027   // C++ [dcl.decomp]p1:
13028   //   If the assignment-expression [...] has array type A and no ref-qualifier
13029   //   is present, e has type cv A
13030   if (VDecl && isa<DecompositionDecl>(VDecl) &&
13031       Context.hasSameUnqualifiedType(Type, Context.getAutoDeductType()) &&
13032       DeduceInit->getType()->isConstantArrayType())
13033     return Context.getQualifiedType(DeduceInit->getType(),
13034                                     Type.getQualifiers());
13035 
13036   QualType DeducedType;
13037   TemplateDeductionInfo Info(DeduceInit->getExprLoc());
13038   TemplateDeductionResult Result =
13039       DeduceAutoType(TSI->getTypeLoc(), DeduceInit, DeducedType, Info);
13040   if (Result != TemplateDeductionResult::Success &&
13041       Result != TemplateDeductionResult::AlreadyDiagnosed) {
13042     if (!IsInitCapture)
13043       DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
13044     else if (isa<InitListExpr>(Init))
13045       Diag(Range.getBegin(),
13046            diag::err_init_capture_deduction_failure_from_init_list)
13047           << VN
13048           << (DeduceInit->getType().isNull() ? TSI->getType()
13049                                              : DeduceInit->getType())
13050           << DeduceInit->getSourceRange();
13051     else
13052       Diag(Range.getBegin(), diag::err_init_capture_deduction_failure)
13053           << VN << TSI->getType()
13054           << (DeduceInit->getType().isNull() ? TSI->getType()
13055                                              : DeduceInit->getType())
13056           << DeduceInit->getSourceRange();
13057   }
13058 
13059   // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
13060   // 'id' instead of a specific object type prevents most of our usual
13061   // checks.
13062   // We only want to warn outside of template instantiations, though:
13063   // inside a template, the 'id' could have come from a parameter.
13064   if (!inTemplateInstantiation() && !DefaultedAnyToId && !IsInitCapture &&
13065       !DeducedType.isNull() && DeducedType->isObjCIdType()) {
13066     SourceLocation Loc = TSI->getTypeLoc().getBeginLoc();
13067     Diag(Loc, diag::warn_auto_var_is_id) << VN << Range;
13068   }
13069 
13070   return DeducedType;
13071 }
13072 
13073 bool Sema::DeduceVariableDeclarationType(VarDecl *VDecl, bool DirectInit,
13074                                          Expr *Init) {
13075   assert(!Init || !Init->containsErrors());
13076   QualType DeducedType = deduceVarTypeFromInitializer(
13077       VDecl, VDecl->getDeclName(), VDecl->getType(), VDecl->getTypeSourceInfo(),
13078       VDecl->getSourceRange(), DirectInit, Init);
13079   if (DeducedType.isNull()) {
13080     VDecl->setInvalidDecl();
13081     return true;
13082   }
13083 
13084   VDecl->setType(DeducedType);
13085   assert(VDecl->isLinkageValid());
13086 
13087   // In ARC, infer lifetime.
13088   if (getLangOpts().ObjCAutoRefCount && ObjC().inferObjCARCLifetime(VDecl))
13089     VDecl->setInvalidDecl();
13090 
13091   if (getLangOpts().OpenCL)
13092     deduceOpenCLAddressSpace(VDecl);
13093 
13094   // If this is a redeclaration, check that the type we just deduced matches
13095   // the previously declared type.
13096   if (VarDecl *Old = VDecl->getPreviousDecl()) {
13097     // We never need to merge the type, because we cannot form an incomplete
13098     // array of auto, nor deduce such a type.
13099     MergeVarDeclTypes(VDecl, Old, /*MergeTypeWithPrevious*/ false);
13100   }
13101 
13102   // Check the deduced type is valid for a variable declaration.
13103   CheckVariableDeclarationType(VDecl);
13104   return VDecl->isInvalidDecl();
13105 }
13106 
13107 void Sema::checkNonTrivialCUnionInInitializer(const Expr *Init,
13108                                               SourceLocation Loc) {
13109   if (auto *EWC = dyn_cast<ExprWithCleanups>(Init))
13110     Init = EWC->getSubExpr();
13111 
13112   if (auto *CE = dyn_cast<ConstantExpr>(Init))
13113     Init = CE->getSubExpr();
13114 
13115   QualType InitType = Init->getType();
13116   assert((InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
13117           InitType.hasNonTrivialToPrimitiveCopyCUnion()) &&
13118          "shouldn't be called if type doesn't have a non-trivial C struct");
13119   if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
13120     for (auto *I : ILE->inits()) {
13121       if (!I->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() &&
13122           !I->getType().hasNonTrivialToPrimitiveCopyCUnion())
13123         continue;
13124       SourceLocation SL = I->getExprLoc();
13125       checkNonTrivialCUnionInInitializer(I, SL.isValid() ? SL : Loc);
13126     }
13127     return;
13128   }
13129 
13130   if (isa<ImplicitValueInitExpr>(Init)) {
13131     if (InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion())
13132       checkNonTrivialCUnion(InitType, Loc, NTCUC_DefaultInitializedObject,
13133                             NTCUK_Init);
13134   } else {
13135     // Assume all other explicit initializers involving copying some existing
13136     // object.
13137     // TODO: ignore any explicit initializers where we can guarantee
13138     // copy-elision.
13139     if (InitType.hasNonTrivialToPrimitiveCopyCUnion())
13140       checkNonTrivialCUnion(InitType, Loc, NTCUC_CopyInit, NTCUK_Copy);
13141   }
13142 }
13143 
13144 namespace {
13145 
13146 bool shouldIgnoreForRecordTriviality(const FieldDecl *FD) {
13147   // Ignore unavailable fields. A field can be marked as unavailable explicitly
13148   // in the source code or implicitly by the compiler if it is in a union
13149   // defined in a system header and has non-trivial ObjC ownership
13150   // qualifications. We don't want those fields to participate in determining
13151   // whether the containing union is non-trivial.
13152   return FD->hasAttr<UnavailableAttr>();
13153 }
13154 
13155 struct DiagNonTrivalCUnionDefaultInitializeVisitor
13156     : DefaultInitializedTypeVisitor<DiagNonTrivalCUnionDefaultInitializeVisitor,
13157                                     void> {
13158   using Super =
13159       DefaultInitializedTypeVisitor<DiagNonTrivalCUnionDefaultInitializeVisitor,
13160                                     void>;
13161 
13162   DiagNonTrivalCUnionDefaultInitializeVisitor(
13163       QualType OrigTy, SourceLocation OrigLoc,
13164       Sema::NonTrivialCUnionContext UseContext, Sema &S)
13165       : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {}
13166 
13167   void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType QT,
13168                      const FieldDecl *FD, bool InNonTrivialUnion) {
13169     if (const auto *AT = S.Context.getAsArrayType(QT))
13170       return this->asDerived().visit(S.Context.getBaseElementType(AT), FD,
13171                                      InNonTrivialUnion);
13172     return Super::visitWithKind(PDIK, QT, FD, InNonTrivialUnion);
13173   }
13174 
13175   void visitARCStrong(QualType QT, const FieldDecl *FD,
13176                       bool InNonTrivialUnion) {
13177     if (InNonTrivialUnion)
13178       S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
13179           << 1 << 0 << QT << FD->getName();
13180   }
13181 
13182   void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
13183     if (InNonTrivialUnion)
13184       S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
13185           << 1 << 0 << QT << FD->getName();
13186   }
13187 
13188   void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
13189     const RecordDecl *RD = QT->castAs<RecordType>()->getDecl();
13190     if (RD->isUnion()) {
13191       if (OrigLoc.isValid()) {
13192         bool IsUnion = false;
13193         if (auto *OrigRD = OrigTy->getAsRecordDecl())
13194           IsUnion = OrigRD->isUnion();
13195         S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context)
13196             << 0 << OrigTy << IsUnion << UseContext;
13197         // Reset OrigLoc so that this diagnostic is emitted only once.
13198         OrigLoc = SourceLocation();
13199       }
13200       InNonTrivialUnion = true;
13201     }
13202 
13203     if (InNonTrivialUnion)
13204       S.Diag(RD->getLocation(), diag::note_non_trivial_c_union)
13205           << 0 << 0 << QT.getUnqualifiedType() << "";
13206 
13207     for (const FieldDecl *FD : RD->fields())
13208       if (!shouldIgnoreForRecordTriviality(FD))
13209         asDerived().visit(FD->getType(), FD, InNonTrivialUnion);
13210   }
13211 
13212   void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {}
13213 
13214   // The non-trivial C union type or the struct/union type that contains a
13215   // non-trivial C union.
13216   QualType OrigTy;
13217   SourceLocation OrigLoc;
13218   Sema::NonTrivialCUnionContext UseContext;
13219   Sema &S;
13220 };
13221 
13222 struct DiagNonTrivalCUnionDestructedTypeVisitor
13223     : DestructedTypeVisitor<DiagNonTrivalCUnionDestructedTypeVisitor, void> {
13224   using Super =
13225       DestructedTypeVisitor<DiagNonTrivalCUnionDestructedTypeVisitor, void>;
13226 
13227   DiagNonTrivalCUnionDestructedTypeVisitor(
13228       QualType OrigTy, SourceLocation OrigLoc,
13229       Sema::NonTrivialCUnionContext UseContext, Sema &S)
13230       : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {}
13231 
13232   void visitWithKind(QualType::DestructionKind DK, QualType QT,
13233                      const FieldDecl *FD, bool InNonTrivialUnion) {
13234     if (const auto *AT = S.Context.getAsArrayType(QT))
13235       return this->asDerived().visit(S.Context.getBaseElementType(AT), FD,
13236                                      InNonTrivialUnion);
13237     return Super::visitWithKind(DK, QT, FD, InNonTrivialUnion);
13238   }
13239 
13240   void visitARCStrong(QualType QT, const FieldDecl *FD,
13241                       bool InNonTrivialUnion) {
13242     if (InNonTrivialUnion)
13243       S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
13244           << 1 << 1 << QT << FD->getName();
13245   }
13246 
13247   void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
13248     if (InNonTrivialUnion)
13249       S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
13250           << 1 << 1 << QT << FD->getName();
13251   }
13252 
13253   void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
13254     const RecordDecl *RD = QT->castAs<RecordType>()->getDecl();
13255     if (RD->isUnion()) {
13256       if (OrigLoc.isValid()) {
13257         bool IsUnion = false;
13258         if (auto *OrigRD = OrigTy->getAsRecordDecl())
13259           IsUnion = OrigRD->isUnion();
13260         S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context)
13261             << 1 << OrigTy << IsUnion << UseContext;
13262         // Reset OrigLoc so that this diagnostic is emitted only once.
13263         OrigLoc = SourceLocation();
13264       }
13265       InNonTrivialUnion = true;
13266     }
13267 
13268     if (InNonTrivialUnion)
13269       S.Diag(RD->getLocation(), diag::note_non_trivial_c_union)
13270           << 0 << 1 << QT.getUnqualifiedType() << "";
13271 
13272     for (const FieldDecl *FD : RD->fields())
13273       if (!shouldIgnoreForRecordTriviality(FD))
13274         asDerived().visit(FD->getType(), FD, InNonTrivialUnion);
13275   }
13276 
13277   void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {}
13278   void visitCXXDestructor(QualType QT, const FieldDecl *FD,
13279                           bool InNonTrivialUnion) {}
13280 
13281   // The non-trivial C union type or the struct/union type that contains a
13282   // non-trivial C union.
13283   QualType OrigTy;
13284   SourceLocation OrigLoc;
13285   Sema::NonTrivialCUnionContext UseContext;
13286   Sema &S;
13287 };
13288 
13289 struct DiagNonTrivalCUnionCopyVisitor
13290     : CopiedTypeVisitor<DiagNonTrivalCUnionCopyVisitor, false, void> {
13291   using Super = CopiedTypeVisitor<DiagNonTrivalCUnionCopyVisitor, false, void>;
13292 
13293   DiagNonTrivalCUnionCopyVisitor(QualType OrigTy, SourceLocation OrigLoc,
13294                                  Sema::NonTrivialCUnionContext UseContext,
13295                                  Sema &S)
13296       : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {}
13297 
13298   void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType QT,
13299                      const FieldDecl *FD, bool InNonTrivialUnion) {
13300     if (const auto *AT = S.Context.getAsArrayType(QT))
13301       return this->asDerived().visit(S.Context.getBaseElementType(AT), FD,
13302                                      InNonTrivialUnion);
13303     return Super::visitWithKind(PCK, QT, FD, InNonTrivialUnion);
13304   }
13305 
13306   void visitARCStrong(QualType QT, const FieldDecl *FD,
13307                       bool InNonTrivialUnion) {
13308     if (InNonTrivialUnion)
13309       S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
13310           << 1 << 2 << QT << FD->getName();
13311   }
13312 
13313   void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
13314     if (InNonTrivialUnion)
13315       S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
13316           << 1 << 2 << QT << FD->getName();
13317   }
13318 
13319   void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
13320     const RecordDecl *RD = QT->castAs<RecordType>()->getDecl();
13321     if (RD->isUnion()) {
13322       if (OrigLoc.isValid()) {
13323         bool IsUnion = false;
13324         if (auto *OrigRD = OrigTy->getAsRecordDecl())
13325           IsUnion = OrigRD->isUnion();
13326         S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context)
13327             << 2 << OrigTy << IsUnion << UseContext;
13328         // Reset OrigLoc so that this diagnostic is emitted only once.
13329         OrigLoc = SourceLocation();
13330       }
13331       InNonTrivialUnion = true;
13332     }
13333 
13334     if (InNonTrivialUnion)
13335       S.Diag(RD->getLocation(), diag::note_non_trivial_c_union)
13336           << 0 << 2 << QT.getUnqualifiedType() << "";
13337 
13338     for (const FieldDecl *FD : RD->fields())
13339       if (!shouldIgnoreForRecordTriviality(FD))
13340         asDerived().visit(FD->getType(), FD, InNonTrivialUnion);
13341   }
13342 
13343   void preVisit(QualType::PrimitiveCopyKind PCK, QualType QT,
13344                 const FieldDecl *FD, bool InNonTrivialUnion) {}
13345   void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {}
13346   void visitVolatileTrivial(QualType QT, const FieldDecl *FD,
13347                             bool InNonTrivialUnion) {}
13348 
13349   // The non-trivial C union type or the struct/union type that contains a
13350   // non-trivial C union.
13351   QualType OrigTy;
13352   SourceLocation OrigLoc;
13353   Sema::NonTrivialCUnionContext UseContext;
13354   Sema &S;
13355 };
13356 
13357 } // namespace
13358 
13359 void Sema::checkNonTrivialCUnion(QualType QT, SourceLocation Loc,
13360                                  NonTrivialCUnionContext UseContext,
13361                                  unsigned NonTrivialKind) {
13362   assert((QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
13363           QT.hasNonTrivialToPrimitiveDestructCUnion() ||
13364           QT.hasNonTrivialToPrimitiveCopyCUnion()) &&
13365          "shouldn't be called if type doesn't have a non-trivial C union");
13366 
13367   if ((NonTrivialKind & NTCUK_Init) &&
13368       QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion())
13369     DiagNonTrivalCUnionDefaultInitializeVisitor(QT, Loc, UseContext, *this)
13370         .visit(QT, nullptr, false);
13371   if ((NonTrivialKind & NTCUK_Destruct) &&
13372       QT.hasNonTrivialToPrimitiveDestructCUnion())
13373     DiagNonTrivalCUnionDestructedTypeVisitor(QT, Loc, UseContext, *this)
13374         .visit(QT, nullptr, false);
13375   if ((NonTrivialKind & NTCUK_Copy) && QT.hasNonTrivialToPrimitiveCopyCUnion())
13376     DiagNonTrivalCUnionCopyVisitor(QT, Loc, UseContext, *this)
13377         .visit(QT, nullptr, false);
13378 }
13379 
13380 void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) {
13381   // If there is no declaration, there was an error parsing it.  Just ignore
13382   // the initializer.
13383   if (!RealDecl) {
13384     CorrectDelayedTyposInExpr(Init, dyn_cast_or_null<VarDecl>(RealDecl));
13385     return;
13386   }
13387 
13388   if (auto *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
13389     if (!Method->isInvalidDecl()) {
13390       // Pure-specifiers are handled in ActOnPureSpecifier.
13391       Diag(Method->getLocation(), diag::err_member_function_initialization)
13392           << Method->getDeclName() << Init->getSourceRange();
13393       Method->setInvalidDecl();
13394     }
13395     return;
13396   }
13397 
13398   VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
13399   if (!VDecl) {
13400     assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
13401     Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
13402     RealDecl->setInvalidDecl();
13403     return;
13404   }
13405 
13406   if (VDecl->isInvalidDecl()) {
13407     ExprResult Res = CorrectDelayedTyposInExpr(Init, VDecl);
13408     SmallVector<Expr *> SubExprs;
13409     if (Res.isUsable())
13410       SubExprs.push_back(Res.get());
13411     ExprResult Recovery =
13412         CreateRecoveryExpr(Init->getBeginLoc(), Init->getEndLoc(), SubExprs);
13413     if (Expr *E = Recovery.get())
13414       VDecl->setInit(E);
13415     return;
13416   }
13417 
13418   // WebAssembly tables can't be used to initialise a variable.
13419   if (!Init->getType().isNull() && Init->getType()->isWebAssemblyTableType()) {
13420     Diag(Init->getExprLoc(), diag::err_wasm_table_art) << 0;
13421     VDecl->setInvalidDecl();
13422     return;
13423   }
13424 
13425   // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
13426   if (VDecl->getType()->isUndeducedType()) {
13427     // Attempt typo correction early so that the type of the init expression can
13428     // be deduced based on the chosen correction if the original init contains a
13429     // TypoExpr.
13430     ExprResult Res = CorrectDelayedTyposInExpr(Init, VDecl);
13431     if (!Res.isUsable()) {
13432       // There are unresolved typos in Init, just drop them.
13433       // FIXME: improve the recovery strategy to preserve the Init.
13434       RealDecl->setInvalidDecl();
13435       return;
13436     }
13437     if (Res.get()->containsErrors()) {
13438       // Invalidate the decl as we don't know the type for recovery-expr yet.
13439       RealDecl->setInvalidDecl();
13440       VDecl->setInit(Res.get());
13441       return;
13442     }
13443     Init = Res.get();
13444 
13445     if (DeduceVariableDeclarationType(VDecl, DirectInit, Init))
13446       return;
13447   }
13448 
13449   // dllimport cannot be used on variable definitions.
13450   if (VDecl->hasAttr<DLLImportAttr>() && !VDecl->isStaticDataMember()) {
13451     Diag(VDecl->getLocation(), diag::err_attribute_dllimport_data_definition);
13452     VDecl->setInvalidDecl();
13453     return;
13454   }
13455 
13456   // C99 6.7.8p5. If the declaration of an identifier has block scope, and
13457   // the identifier has external or internal linkage, the declaration shall
13458   // have no initializer for the identifier.
13459   // C++14 [dcl.init]p5 is the same restriction for C++.
13460   if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
13461     Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
13462     VDecl->setInvalidDecl();
13463     return;
13464   }
13465 
13466   if (!VDecl->getType()->isDependentType()) {
13467     // A definition must end up with a complete type, which means it must be
13468     // complete with the restriction that an array type might be completed by
13469     // the initializer; note that later code assumes this restriction.
13470     QualType BaseDeclType = VDecl->getType();
13471     if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
13472       BaseDeclType = Array->getElementType();
13473     if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
13474                             diag::err_typecheck_decl_incomplete_type)) {
13475       RealDecl->setInvalidDecl();
13476       return;
13477     }
13478 
13479     // The variable can not have an abstract class type.
13480     if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
13481                                diag::err_abstract_type_in_decl,
13482                                AbstractVariableType))
13483       VDecl->setInvalidDecl();
13484   }
13485 
13486   // C++ [module.import/6] external definitions are not permitted in header
13487   // units.
13488   if (getLangOpts().CPlusPlusModules && currentModuleIsHeaderUnit() &&
13489       !VDecl->isInvalidDecl() && VDecl->isThisDeclarationADefinition() &&
13490       VDecl->getFormalLinkage() == Linkage::External && !VDecl->isInline() &&
13491       !VDecl->isTemplated() && !isa<VarTemplateSpecializationDecl>(VDecl) &&
13492       !VDecl->getInstantiatedFromStaticDataMember()) {
13493     Diag(VDecl->getLocation(), diag::err_extern_def_in_header_unit);
13494     VDecl->setInvalidDecl();
13495   }
13496 
13497   // If adding the initializer will turn this declaration into a definition,
13498   // and we already have a definition for this variable, diagnose or otherwise
13499   // handle the situation.
13500   if (VarDecl *Def = VDecl->getDefinition())
13501     if (Def != VDecl &&
13502         (!VDecl->isStaticDataMember() || VDecl->isOutOfLine()) &&
13503         !VDecl->isThisDeclarationADemotedDefinition() &&
13504         checkVarDeclRedefinition(Def, VDecl))
13505       return;
13506 
13507   if (getLangOpts().CPlusPlus) {
13508     // C++ [class.static.data]p4
13509     //   If a static data member is of const integral or const
13510     //   enumeration type, its declaration in the class definition can
13511     //   specify a constant-initializer which shall be an integral
13512     //   constant expression (5.19). In that case, the member can appear
13513     //   in integral constant expressions. The member shall still be
13514     //   defined in a namespace scope if it is used in the program and the
13515     //   namespace scope definition shall not contain an initializer.
13516     //
13517     // We already performed a redefinition check above, but for static
13518     // data members we also need to check whether there was an in-class
13519     // declaration with an initializer.
13520     if (VDecl->isStaticDataMember() && VDecl->getCanonicalDecl()->hasInit()) {
13521       Diag(Init->getExprLoc(), diag::err_static_data_member_reinitialization)
13522           << VDecl->getDeclName();
13523       Diag(VDecl->getCanonicalDecl()->getInit()->getExprLoc(),
13524            diag::note_previous_initializer)
13525           << 0;
13526       return;
13527     }
13528 
13529     if (VDecl->hasLocalStorage())
13530       setFunctionHasBranchProtectedScope();
13531 
13532     if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
13533       VDecl->setInvalidDecl();
13534       return;
13535     }
13536   }
13537 
13538   // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
13539   // a kernel function cannot be initialized."
13540   if (VDecl->getType().getAddressSpace() == LangAS::opencl_local) {
13541     Diag(VDecl->getLocation(), diag::err_local_cant_init);
13542     VDecl->setInvalidDecl();
13543     return;
13544   }
13545 
13546   // The LoaderUninitialized attribute acts as a definition (of undef).
13547   if (VDecl->hasAttr<LoaderUninitializedAttr>()) {
13548     Diag(VDecl->getLocation(), diag::err_loader_uninitialized_cant_init);
13549     VDecl->setInvalidDecl();
13550     return;
13551   }
13552 
13553   // Get the decls type and save a reference for later, since
13554   // CheckInitializerTypes may change it.
13555   QualType DclT = VDecl->getType(), SavT = DclT;
13556 
13557   // Expressions default to 'id' when we're in a debugger
13558   // and we are assigning it to a variable of Objective-C pointer type.
13559   if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() &&
13560       Init->getType() == Context.UnknownAnyTy) {
13561     ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
13562     if (!Result.isUsable()) {
13563       VDecl->setInvalidDecl();
13564       return;
13565     }
13566     Init = Result.get();
13567   }
13568 
13569   // Perform the initialization.
13570   ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
13571   bool IsParenListInit = false;
13572   if (!VDecl->isInvalidDecl()) {
13573     InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
13574     InitializationKind Kind = InitializationKind::CreateForInit(
13575         VDecl->getLocation(), DirectInit, Init);
13576 
13577     MultiExprArg Args = Init;
13578     if (CXXDirectInit)
13579       Args = MultiExprArg(CXXDirectInit->getExprs(),
13580                           CXXDirectInit->getNumExprs());
13581 
13582     // Try to correct any TypoExprs in the initialization arguments.
13583     for (size_t Idx = 0; Idx < Args.size(); ++Idx) {
13584       ExprResult Res = CorrectDelayedTyposInExpr(
13585           Args[Idx], VDecl, /*RecoverUncorrectedTypos=*/true,
13586           [this, Entity, Kind](Expr *E) {
13587             InitializationSequence Init(*this, Entity, Kind, MultiExprArg(E));
13588             return Init.Failed() ? ExprError() : E;
13589           });
13590       if (!Res.isUsable()) {
13591         VDecl->setInvalidDecl();
13592       } else if (Res.get() != Args[Idx]) {
13593         Args[Idx] = Res.get();
13594       }
13595     }
13596     if (VDecl->isInvalidDecl())
13597       return;
13598 
13599     InitializationSequence InitSeq(*this, Entity, Kind, Args,
13600                                    /*TopLevelOfInitList=*/false,
13601                                    /*TreatUnavailableAsInvalid=*/false);
13602     ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
13603     if (!Result.isUsable()) {
13604       // If the provided initializer fails to initialize the var decl,
13605       // we attach a recovery expr for better recovery.
13606       auto RecoveryExpr =
13607           CreateRecoveryExpr(Init->getBeginLoc(), Init->getEndLoc(), Args);
13608       if (RecoveryExpr.get())
13609         VDecl->setInit(RecoveryExpr.get());
13610       // In general, for error recovery purposes, the initializer doesn't play
13611       // part in the valid bit of the declaration. There are a few exceptions:
13612       //  1) if the var decl has a deduced auto type, and the type cannot be
13613       //     deduced by an invalid initializer;
13614       //  2) if the var decl is a decomposition decl with a non-deduced type,
13615       //      and the initialization fails (e.g. `int [a] = {1, 2};`);
13616       // Case 1) was already handled elsewhere.
13617       if (isa<DecompositionDecl>(VDecl)) // Case 2)
13618         VDecl->setInvalidDecl();
13619       return;
13620     }
13621 
13622     Init = Result.getAs<Expr>();
13623     IsParenListInit = !InitSeq.steps().empty() &&
13624                       InitSeq.step_begin()->Kind ==
13625                           InitializationSequence::SK_ParenthesizedListInit;
13626     QualType VDeclType = VDecl->getType();
13627     if (!Init->getType().isNull() && !Init->getType()->isDependentType() &&
13628         !VDeclType->isDependentType() &&
13629         Context.getAsIncompleteArrayType(VDeclType) &&
13630         Context.getAsIncompleteArrayType(Init->getType())) {
13631       // Bail out if it is not possible to deduce array size from the
13632       // initializer.
13633       Diag(VDecl->getLocation(), diag::err_typecheck_decl_incomplete_type)
13634           << VDeclType;
13635       VDecl->setInvalidDecl();
13636       return;
13637     }
13638   }
13639 
13640   // Check for self-references within variable initializers.
13641   // Variables declared within a function/method body (except for references)
13642   // are handled by a dataflow analysis.
13643   // This is undefined behavior in C++, but valid in C.
13644   if (getLangOpts().CPlusPlus)
13645     if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
13646         VDecl->getType()->isReferenceType())
13647       CheckSelfReference(*this, RealDecl, Init, DirectInit);
13648 
13649   // If the type changed, it means we had an incomplete type that was
13650   // completed by the initializer. For example:
13651   //   int ary[] = { 1, 3, 5 };
13652   // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
13653   if (!VDecl->isInvalidDecl() && (DclT != SavT))
13654     VDecl->setType(DclT);
13655 
13656   if (!VDecl->isInvalidDecl()) {
13657     checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
13658 
13659     if (VDecl->hasAttr<BlocksAttr>())
13660       ObjC().checkRetainCycles(VDecl, Init);
13661 
13662     // It is safe to assign a weak reference into a strong variable.
13663     // Although this code can still have problems:
13664     //   id x = self.weakProp;
13665     //   id y = self.weakProp;
13666     // we do not warn to warn spuriously when 'x' and 'y' are on separate
13667     // paths through the function. This should be revisited if
13668     // -Wrepeated-use-of-weak is made flow-sensitive.
13669     if (FunctionScopeInfo *FSI = getCurFunction())
13670       if ((VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong ||
13671            VDecl->getType().isNonWeakInMRRWithObjCWeak(Context)) &&
13672           !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
13673                            Init->getBeginLoc()))
13674         FSI->markSafeWeakUse(Init);
13675   }
13676 
13677   // The initialization is usually a full-expression.
13678   //
13679   // FIXME: If this is a braced initialization of an aggregate, it is not
13680   // an expression, and each individual field initializer is a separate
13681   // full-expression. For instance, in:
13682   //
13683   //   struct Temp { ~Temp(); };
13684   //   struct S { S(Temp); };
13685   //   struct T { S a, b; } t = { Temp(), Temp() }
13686   //
13687   // we should destroy the first Temp before constructing the second.
13688   ExprResult Result =
13689       ActOnFinishFullExpr(Init, VDecl->getLocation(),
13690                           /*DiscardedValue*/ false, VDecl->isConstexpr());
13691   if (!Result.isUsable()) {
13692     VDecl->setInvalidDecl();
13693     return;
13694   }
13695   Init = Result.get();
13696 
13697   // Attach the initializer to the decl.
13698   VDecl->setInit(Init);
13699 
13700   if (VDecl->isLocalVarDecl()) {
13701     // Don't check the initializer if the declaration is malformed.
13702     if (VDecl->isInvalidDecl()) {
13703       // do nothing
13704 
13705     // OpenCL v1.2 s6.5.3: __constant locals must be constant-initialized.
13706     // This is true even in C++ for OpenCL.
13707     } else if (VDecl->getType().getAddressSpace() == LangAS::opencl_constant) {
13708       CheckForConstantInitializer(Init);
13709 
13710       // Otherwise, C++ does not restrict the initializer.
13711     } else if (getLangOpts().CPlusPlus) {
13712       // do nothing
13713 
13714     // C99 6.7.8p4: All the expressions in an initializer for an object that has
13715     // static storage duration shall be constant expressions or string literals.
13716     } else if (VDecl->getStorageClass() == SC_Static) {
13717       CheckForConstantInitializer(Init);
13718 
13719       // C89 is stricter than C99 for aggregate initializers.
13720       // C89 6.5.7p3: All the expressions [...] in an initializer list
13721       // for an object that has aggregate or union type shall be
13722       // constant expressions.
13723     } else if (!getLangOpts().C99 && VDecl->getType()->isAggregateType() &&
13724                isa<InitListExpr>(Init)) {
13725       CheckForConstantInitializer(Init, diag::ext_aggregate_init_not_constant);
13726     }
13727 
13728     if (auto *E = dyn_cast<ExprWithCleanups>(Init))
13729       if (auto *BE = dyn_cast<BlockExpr>(E->getSubExpr()->IgnoreParens()))
13730         if (VDecl->hasLocalStorage())
13731           BE->getBlockDecl()->setCanAvoidCopyToHeap();
13732   } else if (VDecl->isStaticDataMember() && !VDecl->isInline() &&
13733              VDecl->getLexicalDeclContext()->isRecord()) {
13734     // This is an in-class initialization for a static data member, e.g.,
13735     //
13736     // struct S {
13737     //   static const int value = 17;
13738     // };
13739 
13740     // C++ [class.mem]p4:
13741     //   A member-declarator can contain a constant-initializer only
13742     //   if it declares a static member (9.4) of const integral or
13743     //   const enumeration type, see 9.4.2.
13744     //
13745     // C++11 [class.static.data]p3:
13746     //   If a non-volatile non-inline const static data member is of integral
13747     //   or enumeration type, its declaration in the class definition can
13748     //   specify a brace-or-equal-initializer in which every initializer-clause
13749     //   that is an assignment-expression is a constant expression. A static
13750     //   data member of literal type can be declared in the class definition
13751     //   with the constexpr specifier; if so, its declaration shall specify a
13752     //   brace-or-equal-initializer in which every initializer-clause that is
13753     //   an assignment-expression is a constant expression.
13754 
13755     // Do nothing on dependent types.
13756     if (DclT->isDependentType()) {
13757 
13758     // Allow any 'static constexpr' members, whether or not they are of literal
13759     // type. We separately check that every constexpr variable is of literal
13760     // type.
13761     } else if (VDecl->isConstexpr()) {
13762 
13763     // Require constness.
13764     } else if (!DclT.isConstQualified()) {
13765       Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
13766         << Init->getSourceRange();
13767       VDecl->setInvalidDecl();
13768 
13769     // We allow integer constant expressions in all cases.
13770     } else if (DclT->isIntegralOrEnumerationType()) {
13771       // Check whether the expression is a constant expression.
13772       SourceLocation Loc;
13773       if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
13774         // In C++11, a non-constexpr const static data member with an
13775         // in-class initializer cannot be volatile.
13776         Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
13777       else if (Init->isValueDependent())
13778         ; // Nothing to check.
13779       else if (Init->isIntegerConstantExpr(Context, &Loc))
13780         ; // Ok, it's an ICE!
13781       else if (Init->getType()->isScopedEnumeralType() &&
13782                Init->isCXX11ConstantExpr(Context))
13783         ; // Ok, it is a scoped-enum constant expression.
13784       else if (Init->isEvaluatable(Context)) {
13785         // If we can constant fold the initializer through heroics, accept it,
13786         // but report this as a use of an extension for -pedantic.
13787         Diag(Loc, diag::ext_in_class_initializer_non_constant)
13788           << Init->getSourceRange();
13789       } else {
13790         // Otherwise, this is some crazy unknown case.  Report the issue at the
13791         // location provided by the isIntegerConstantExpr failed check.
13792         Diag(Loc, diag::err_in_class_initializer_non_constant)
13793           << Init->getSourceRange();
13794         VDecl->setInvalidDecl();
13795       }
13796 
13797     // We allow foldable floating-point constants as an extension.
13798     } else if (DclT->isFloatingType()) { // also permits complex, which is ok
13799       // In C++98, this is a GNU extension. In C++11, it is not, but we support
13800       // it anyway and provide a fixit to add the 'constexpr'.
13801       if (getLangOpts().CPlusPlus11) {
13802         Diag(VDecl->getLocation(),
13803              diag::ext_in_class_initializer_float_type_cxx11)
13804             << DclT << Init->getSourceRange();
13805         Diag(VDecl->getBeginLoc(),
13806              diag::note_in_class_initializer_float_type_cxx11)
13807             << FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr ");
13808       } else {
13809         Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
13810           << DclT << Init->getSourceRange();
13811 
13812         if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
13813           Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
13814             << Init->getSourceRange();
13815           VDecl->setInvalidDecl();
13816         }
13817       }
13818 
13819     // Suggest adding 'constexpr' in C++11 for literal types.
13820     } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) {
13821       Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
13822           << DclT << Init->getSourceRange()
13823           << FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr ");
13824       VDecl->setConstexpr(true);
13825 
13826     } else {
13827       Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
13828         << DclT << Init->getSourceRange();
13829       VDecl->setInvalidDecl();
13830     }
13831   } else if (VDecl->isFileVarDecl()) {
13832     // In C, extern is typically used to avoid tentative definitions when
13833     // declaring variables in headers, but adding an initializer makes it a
13834     // definition. This is somewhat confusing, so GCC and Clang both warn on it.
13835     // In C++, extern is often used to give implicitly static const variables
13836     // external linkage, so don't warn in that case. If selectany is present,
13837     // this might be header code intended for C and C++ inclusion, so apply the
13838     // C++ rules.
13839     if (VDecl->getStorageClass() == SC_Extern &&
13840         ((!getLangOpts().CPlusPlus && !VDecl->hasAttr<SelectAnyAttr>()) ||
13841          !Context.getBaseElementType(VDecl->getType()).isConstQualified()) &&
13842         !(getLangOpts().CPlusPlus && VDecl->isExternC()) &&
13843         !isTemplateInstantiation(VDecl->getTemplateSpecializationKind()))
13844       Diag(VDecl->getLocation(), diag::warn_extern_init);
13845 
13846     // In Microsoft C++ mode, a const variable defined in namespace scope has
13847     // external linkage by default if the variable is declared with
13848     // __declspec(dllexport).
13849     if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
13850         getLangOpts().CPlusPlus && VDecl->getType().isConstQualified() &&
13851         VDecl->hasAttr<DLLExportAttr>() && VDecl->getDefinition())
13852       VDecl->setStorageClass(SC_Extern);
13853 
13854     // C99 6.7.8p4. All file scoped initializers need to be constant.
13855     // Avoid duplicate diagnostics for constexpr variables.
13856     if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl() &&
13857         !VDecl->isConstexpr())
13858       CheckForConstantInitializer(Init);
13859   }
13860 
13861   QualType InitType = Init->getType();
13862   if (!InitType.isNull() &&
13863       (InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
13864        InitType.hasNonTrivialToPrimitiveCopyCUnion()))
13865     checkNonTrivialCUnionInInitializer(Init, Init->getExprLoc());
13866 
13867   // We will represent direct-initialization similarly to copy-initialization:
13868   //    int x(1);  -as-> int x = 1;
13869   //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
13870   //
13871   // Clients that want to distinguish between the two forms, can check for
13872   // direct initializer using VarDecl::getInitStyle().
13873   // A major benefit is that clients that don't particularly care about which
13874   // exactly form was it (like the CodeGen) can handle both cases without
13875   // special case code.
13876 
13877   // C++ 8.5p11:
13878   // The form of initialization (using parentheses or '=') is generally
13879   // insignificant, but does matter when the entity being initialized has a
13880   // class type.
13881   if (CXXDirectInit) {
13882     assert(DirectInit && "Call-style initializer must be direct init.");
13883     VDecl->setInitStyle(IsParenListInit ? VarDecl::ParenListInit
13884                                         : VarDecl::CallInit);
13885   } else if (DirectInit) {
13886     // This must be list-initialization. No other way is direct-initialization.
13887     VDecl->setInitStyle(VarDecl::ListInit);
13888   }
13889 
13890   if (LangOpts.OpenMP &&
13891       (LangOpts.OpenMPIsTargetDevice || !LangOpts.OMPTargetTriples.empty()) &&
13892       VDecl->isFileVarDecl())
13893     DeclsToCheckForDeferredDiags.insert(VDecl);
13894   CheckCompleteVariableDeclaration(VDecl);
13895 }
13896 
13897 void Sema::ActOnInitializerError(Decl *D) {
13898   // Our main concern here is re-establishing invariants like "a
13899   // variable's type is either dependent or complete".
13900   if (!D || D->isInvalidDecl()) return;
13901 
13902   VarDecl *VD = dyn_cast<VarDecl>(D);
13903   if (!VD) return;
13904 
13905   // Bindings are not usable if we can't make sense of the initializer.
13906   if (auto *DD = dyn_cast<DecompositionDecl>(D))
13907     for (auto *BD : DD->bindings())
13908       BD->setInvalidDecl();
13909 
13910   // Auto types are meaningless if we can't make sense of the initializer.
13911   if (VD->getType()->isUndeducedType()) {
13912     D->setInvalidDecl();
13913     return;
13914   }
13915 
13916   QualType Ty = VD->getType();
13917   if (Ty->isDependentType()) return;
13918 
13919   // Require a complete type.
13920   if (RequireCompleteType(VD->getLocation(),
13921                           Context.getBaseElementType(Ty),
13922                           diag::err_typecheck_decl_incomplete_type)) {
13923     VD->setInvalidDecl();
13924     return;
13925   }
13926 
13927   // Require a non-abstract type.
13928   if (RequireNonAbstractType(VD->getLocation(), Ty,
13929                              diag::err_abstract_type_in_decl,
13930                              AbstractVariableType)) {
13931     VD->setInvalidDecl();
13932     return;
13933   }
13934 
13935   // Don't bother complaining about constructors or destructors,
13936   // though.
13937 }
13938 
13939 void Sema::ActOnUninitializedDecl(Decl *RealDecl) {
13940   // If there is no declaration, there was an error parsing it. Just ignore it.
13941   if (!RealDecl)
13942     return;
13943 
13944   if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
13945     QualType Type = Var->getType();
13946 
13947     // C++1z [dcl.dcl]p1 grammar implies that an initializer is mandatory.
13948     if (isa<DecompositionDecl>(RealDecl)) {
13949       Diag(Var->getLocation(), diag::err_decomp_decl_requires_init) << Var;
13950       Var->setInvalidDecl();
13951       return;
13952     }
13953 
13954     if (Type->isUndeducedType() &&
13955         DeduceVariableDeclarationType(Var, false, nullptr))
13956       return;
13957 
13958     // C++11 [class.static.data]p3: A static data member can be declared with
13959     // the constexpr specifier; if so, its declaration shall specify
13960     // a brace-or-equal-initializer.
13961     // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
13962     // the definition of a variable [...] or the declaration of a static data
13963     // member.
13964     if (Var->isConstexpr() && !Var->isThisDeclarationADefinition() &&
13965         !Var->isThisDeclarationADemotedDefinition()) {
13966       if (Var->isStaticDataMember()) {
13967         // C++1z removes the relevant rule; the in-class declaration is always
13968         // a definition there.
13969         if (!getLangOpts().CPlusPlus17 &&
13970             !Context.getTargetInfo().getCXXABI().isMicrosoft()) {
13971           Diag(Var->getLocation(),
13972                diag::err_constexpr_static_mem_var_requires_init)
13973               << Var;
13974           Var->setInvalidDecl();
13975           return;
13976         }
13977       } else {
13978         Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
13979         Var->setInvalidDecl();
13980         return;
13981       }
13982     }
13983 
13984     // OpenCL v1.1 s6.5.3: variables declared in the constant address space must
13985     // be initialized.
13986     if (!Var->isInvalidDecl() &&
13987         Var->getType().getAddressSpace() == LangAS::opencl_constant &&
13988         Var->getStorageClass() != SC_Extern && !Var->getInit()) {
13989       bool HasConstExprDefaultConstructor = false;
13990       if (CXXRecordDecl *RD = Var->getType()->getAsCXXRecordDecl()) {
13991         for (auto *Ctor : RD->ctors()) {
13992           if (Ctor->isConstexpr() && Ctor->getNumParams() == 0 &&
13993               Ctor->getMethodQualifiers().getAddressSpace() ==
13994                   LangAS::opencl_constant) {
13995             HasConstExprDefaultConstructor = true;
13996           }
13997         }
13998       }
13999       if (!HasConstExprDefaultConstructor) {
14000         Diag(Var->getLocation(), diag::err_opencl_constant_no_init);
14001         Var->setInvalidDecl();
14002         return;
14003       }
14004     }
14005 
14006     if (!Var->isInvalidDecl() && RealDecl->hasAttr<LoaderUninitializedAttr>()) {
14007       if (Var->getStorageClass() == SC_Extern) {
14008         Diag(Var->getLocation(), diag::err_loader_uninitialized_extern_decl)
14009             << Var;
14010         Var->setInvalidDecl();
14011         return;
14012       }
14013       if (RequireCompleteType(Var->getLocation(), Var->getType(),
14014                               diag::err_typecheck_decl_incomplete_type)) {
14015         Var->setInvalidDecl();
14016         return;
14017       }
14018       if (CXXRecordDecl *RD = Var->getType()->getAsCXXRecordDecl()) {
14019         if (!RD->hasTrivialDefaultConstructor()) {
14020           Diag(Var->getLocation(), diag::err_loader_uninitialized_trivial_ctor);
14021           Var->setInvalidDecl();
14022           return;
14023         }
14024       }
14025       // The declaration is uninitialized, no need for further checks.
14026       return;
14027     }
14028 
14029     VarDecl::DefinitionKind DefKind = Var->isThisDeclarationADefinition();
14030     if (!Var->isInvalidDecl() && DefKind != VarDecl::DeclarationOnly &&
14031         Var->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion())
14032       checkNonTrivialCUnion(Var->getType(), Var->getLocation(),
14033                             NTCUC_DefaultInitializedObject, NTCUK_Init);
14034 
14035 
14036     switch (DefKind) {
14037     case VarDecl::Definition:
14038       if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
14039         break;
14040 
14041       // We have an out-of-line definition of a static data member
14042       // that has an in-class initializer, so we type-check this like
14043       // a declaration.
14044       //
14045       [[fallthrough]];
14046 
14047     case VarDecl::DeclarationOnly:
14048       // It's only a declaration.
14049 
14050       // Block scope. C99 6.7p7: If an identifier for an object is
14051       // declared with no linkage (C99 6.2.2p6), the type for the
14052       // object shall be complete.
14053       if (!Type->isDependentType() && Var->isLocalVarDecl() &&
14054           !Var->hasLinkage() && !Var->isInvalidDecl() &&
14055           RequireCompleteType(Var->getLocation(), Type,
14056                               diag::err_typecheck_decl_incomplete_type))
14057         Var->setInvalidDecl();
14058 
14059       // Make sure that the type is not abstract.
14060       if (!Type->isDependentType() && !Var->isInvalidDecl() &&
14061           RequireNonAbstractType(Var->getLocation(), Type,
14062                                  diag::err_abstract_type_in_decl,
14063                                  AbstractVariableType))
14064         Var->setInvalidDecl();
14065       if (!Type->isDependentType() && !Var->isInvalidDecl() &&
14066           Var->getStorageClass() == SC_PrivateExtern) {
14067         Diag(Var->getLocation(), diag::warn_private_extern);
14068         Diag(Var->getLocation(), diag::note_private_extern);
14069       }
14070 
14071       if (Context.getTargetInfo().allowDebugInfoForExternalRef() &&
14072           !Var->isInvalidDecl())
14073         ExternalDeclarations.push_back(Var);
14074 
14075       return;
14076 
14077     case VarDecl::TentativeDefinition:
14078       // File scope. C99 6.9.2p2: A declaration of an identifier for an
14079       // object that has file scope without an initializer, and without a
14080       // storage-class specifier or with the storage-class specifier "static",
14081       // constitutes a tentative definition. Note: A tentative definition with
14082       // external linkage is valid (C99 6.2.2p5).
14083       if (!Var->isInvalidDecl()) {
14084         if (const IncompleteArrayType *ArrayT
14085                                     = Context.getAsIncompleteArrayType(Type)) {
14086           if (RequireCompleteSizedType(
14087                   Var->getLocation(), ArrayT->getElementType(),
14088                   diag::err_array_incomplete_or_sizeless_type))
14089             Var->setInvalidDecl();
14090         } else if (Var->getStorageClass() == SC_Static) {
14091           // C99 6.9.2p3: If the declaration of an identifier for an object is
14092           // a tentative definition and has internal linkage (C99 6.2.2p3), the
14093           // declared type shall not be an incomplete type.
14094           // NOTE: code such as the following
14095           //     static struct s;
14096           //     struct s { int a; };
14097           // is accepted by gcc. Hence here we issue a warning instead of
14098           // an error and we do not invalidate the static declaration.
14099           // NOTE: to avoid multiple warnings, only check the first declaration.
14100           if (Var->isFirstDecl())
14101             RequireCompleteType(Var->getLocation(), Type,
14102                                 diag::ext_typecheck_decl_incomplete_type);
14103         }
14104       }
14105 
14106       // Record the tentative definition; we're done.
14107       if (!Var->isInvalidDecl())
14108         TentativeDefinitions.push_back(Var);
14109       return;
14110     }
14111 
14112     // Provide a specific diagnostic for uninitialized variable
14113     // definitions with incomplete array type.
14114     if (Type->isIncompleteArrayType()) {
14115       if (Var->isConstexpr())
14116         Diag(Var->getLocation(), diag::err_constexpr_var_requires_const_init)
14117             << Var;
14118       else
14119         Diag(Var->getLocation(),
14120              diag::err_typecheck_incomplete_array_needs_initializer);
14121       Var->setInvalidDecl();
14122       return;
14123     }
14124 
14125     // Provide a specific diagnostic for uninitialized variable
14126     // definitions with reference type.
14127     if (Type->isReferenceType()) {
14128       Diag(Var->getLocation(), diag::err_reference_var_requires_init)
14129           << Var << SourceRange(Var->getLocation(), Var->getLocation());
14130       return;
14131     }
14132 
14133     // Do not attempt to type-check the default initializer for a
14134     // variable with dependent type.
14135     if (Type->isDependentType())
14136       return;
14137 
14138     if (Var->isInvalidDecl())
14139       return;
14140 
14141     if (!Var->hasAttr<AliasAttr>()) {
14142       if (RequireCompleteType(Var->getLocation(),
14143                               Context.getBaseElementType(Type),
14144                               diag::err_typecheck_decl_incomplete_type)) {
14145         Var->setInvalidDecl();
14146         return;
14147       }
14148     } else {
14149       return;
14150     }
14151 
14152     // The variable can not have an abstract class type.
14153     if (RequireNonAbstractType(Var->getLocation(), Type,
14154                                diag::err_abstract_type_in_decl,
14155                                AbstractVariableType)) {
14156       Var->setInvalidDecl();
14157       return;
14158     }
14159 
14160     // Check for jumps past the implicit initializer.  C++0x
14161     // clarifies that this applies to a "variable with automatic
14162     // storage duration", not a "local variable".
14163     // C++11 [stmt.dcl]p3
14164     //   A program that jumps from a point where a variable with automatic
14165     //   storage duration is not in scope to a point where it is in scope is
14166     //   ill-formed unless the variable has scalar type, class type with a
14167     //   trivial default constructor and a trivial destructor, a cv-qualified
14168     //   version of one of these types, or an array of one of the preceding
14169     //   types and is declared without an initializer.
14170     if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
14171       if (const RecordType *Record
14172             = Context.getBaseElementType(Type)->getAs<RecordType>()) {
14173         CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
14174         // Mark the function (if we're in one) for further checking even if the
14175         // looser rules of C++11 do not require such checks, so that we can
14176         // diagnose incompatibilities with C++98.
14177         if (!CXXRecord->isPOD())
14178           setFunctionHasBranchProtectedScope();
14179       }
14180     }
14181     // In OpenCL, we can't initialize objects in the __local address space,
14182     // even implicitly, so don't synthesize an implicit initializer.
14183     if (getLangOpts().OpenCL &&
14184         Var->getType().getAddressSpace() == LangAS::opencl_local)
14185       return;
14186     // C++03 [dcl.init]p9:
14187     //   If no initializer is specified for an object, and the
14188     //   object is of (possibly cv-qualified) non-POD class type (or
14189     //   array thereof), the object shall be default-initialized; if
14190     //   the object is of const-qualified type, the underlying class
14191     //   type shall have a user-declared default
14192     //   constructor. Otherwise, if no initializer is specified for
14193     //   a non- static object, the object and its subobjects, if
14194     //   any, have an indeterminate initial value); if the object
14195     //   or any of its subobjects are of const-qualified type, the
14196     //   program is ill-formed.
14197     // C++0x [dcl.init]p11:
14198     //   If no initializer is specified for an object, the object is
14199     //   default-initialized; [...].
14200     InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
14201     InitializationKind Kind
14202       = InitializationKind::CreateDefault(Var->getLocation());
14203 
14204     InitializationSequence InitSeq(*this, Entity, Kind, {});
14205     ExprResult Init = InitSeq.Perform(*this, Entity, Kind, {});
14206 
14207     if (Init.get()) {
14208       Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
14209       // This is important for template substitution.
14210       Var->setInitStyle(VarDecl::CallInit);
14211     } else if (Init.isInvalid()) {
14212       // If default-init fails, attach a recovery-expr initializer to track
14213       // that initialization was attempted and failed.
14214       auto RecoveryExpr =
14215           CreateRecoveryExpr(Var->getLocation(), Var->getLocation(), {});
14216       if (RecoveryExpr.get())
14217         Var->setInit(RecoveryExpr.get());
14218     }
14219 
14220     CheckCompleteVariableDeclaration(Var);
14221   }
14222 }
14223 
14224 void Sema::ActOnCXXForRangeDecl(Decl *D) {
14225   // If there is no declaration, there was an error parsing it. Ignore it.
14226   if (!D)
14227     return;
14228 
14229   VarDecl *VD = dyn_cast<VarDecl>(D);
14230   if (!VD) {
14231     Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
14232     D->setInvalidDecl();
14233     return;
14234   }
14235 
14236   VD->setCXXForRangeDecl(true);
14237 
14238   // for-range-declaration cannot be given a storage class specifier.
14239   int Error = -1;
14240   switch (VD->getStorageClass()) {
14241   case SC_None:
14242     break;
14243   case SC_Extern:
14244     Error = 0;
14245     break;
14246   case SC_Static:
14247     Error = 1;
14248     break;
14249   case SC_PrivateExtern:
14250     Error = 2;
14251     break;
14252   case SC_Auto:
14253     Error = 3;
14254     break;
14255   case SC_Register:
14256     Error = 4;
14257     break;
14258   }
14259 
14260   // for-range-declaration cannot be given a storage class specifier con't.
14261   switch (VD->getTSCSpec()) {
14262   case TSCS_thread_local:
14263     Error = 6;
14264     break;
14265   case TSCS___thread:
14266   case TSCS__Thread_local:
14267   case TSCS_unspecified:
14268     break;
14269   }
14270 
14271   if (Error != -1) {
14272     Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
14273         << VD << Error;
14274     D->setInvalidDecl();
14275   }
14276 }
14277 
14278 StmtResult Sema::ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc,
14279                                             IdentifierInfo *Ident,
14280                                             ParsedAttributes &Attrs) {
14281   // C++1y [stmt.iter]p1:
14282   //   A range-based for statement of the form
14283   //      for ( for-range-identifier : for-range-initializer ) statement
14284   //   is equivalent to
14285   //      for ( auto&& for-range-identifier : for-range-initializer ) statement
14286   DeclSpec DS(Attrs.getPool().getFactory());
14287 
14288   const char *PrevSpec;
14289   unsigned DiagID;
14290   DS.SetTypeSpecType(DeclSpec::TST_auto, IdentLoc, PrevSpec, DiagID,
14291                      getPrintingPolicy());
14292 
14293   Declarator D(DS, ParsedAttributesView::none(), DeclaratorContext::ForInit);
14294   D.SetIdentifier(Ident, IdentLoc);
14295   D.takeAttributes(Attrs);
14296 
14297   D.AddTypeInfo(DeclaratorChunk::getReference(0, IdentLoc, /*lvalue*/ false),
14298                 IdentLoc);
14299   Decl *Var = ActOnDeclarator(S, D);
14300   cast<VarDecl>(Var)->setCXXForRangeDecl(true);
14301   FinalizeDeclaration(Var);
14302   return ActOnDeclStmt(FinalizeDeclaratorGroup(S, DS, Var), IdentLoc,
14303                        Attrs.Range.getEnd().isValid() ? Attrs.Range.getEnd()
14304                                                       : IdentLoc);
14305 }
14306 
14307 void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
14308   if (var->isInvalidDecl()) return;
14309 
14310   CUDA().MaybeAddConstantAttr(var);
14311 
14312   if (getLangOpts().OpenCL) {
14313     // OpenCL v2.0 s6.12.5 - Every block variable declaration must have an
14314     // initialiser
14315     if (var->getTypeSourceInfo()->getType()->isBlockPointerType() &&
14316         !var->hasInit()) {
14317       Diag(var->getLocation(), diag::err_opencl_invalid_block_declaration)
14318           << 1 /*Init*/;
14319       var->setInvalidDecl();
14320       return;
14321     }
14322   }
14323 
14324   // In Objective-C, don't allow jumps past the implicit initialization of a
14325   // local retaining variable.
14326   if (getLangOpts().ObjC &&
14327       var->hasLocalStorage()) {
14328     switch (var->getType().getObjCLifetime()) {
14329     case Qualifiers::OCL_None:
14330     case Qualifiers::OCL_ExplicitNone:
14331     case Qualifiers::OCL_Autoreleasing:
14332       break;
14333 
14334     case Qualifiers::OCL_Weak:
14335     case Qualifiers::OCL_Strong:
14336       setFunctionHasBranchProtectedScope();
14337       break;
14338     }
14339   }
14340 
14341   if (var->hasLocalStorage() &&
14342       var->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
14343     setFunctionHasBranchProtectedScope();
14344 
14345   // Warn about externally-visible variables being defined without a
14346   // prior declaration.  We only want to do this for global
14347   // declarations, but we also specifically need to avoid doing it for
14348   // class members because the linkage of an anonymous class can
14349   // change if it's later given a typedef name.
14350   if (var->isThisDeclarationADefinition() &&
14351       var->getDeclContext()->getRedeclContext()->isFileContext() &&
14352       var->isExternallyVisible() && var->hasLinkage() &&
14353       !var->isInline() && !var->getDescribedVarTemplate() &&
14354       var->getStorageClass() != SC_Register &&
14355       !isa<VarTemplatePartialSpecializationDecl>(var) &&
14356       !isTemplateInstantiation(var->getTemplateSpecializationKind()) &&
14357       !getDiagnostics().isIgnored(diag::warn_missing_variable_declarations,
14358                                   var->getLocation())) {
14359     // Find a previous declaration that's not a definition.
14360     VarDecl *prev = var->getPreviousDecl();
14361     while (prev && prev->isThisDeclarationADefinition())
14362       prev = prev->getPreviousDecl();
14363 
14364     if (!prev) {
14365       Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
14366       Diag(var->getTypeSpecStartLoc(), diag::note_static_for_internal_linkage)
14367           << /* variable */ 0;
14368     }
14369   }
14370 
14371   // Cache the result of checking for constant initialization.
14372   std::optional<bool> CacheHasConstInit;
14373   const Expr *CacheCulprit = nullptr;
14374   auto checkConstInit = [&]() mutable {
14375     if (!CacheHasConstInit)
14376       CacheHasConstInit = var->getInit()->isConstantInitializer(
14377             Context, var->getType()->isReferenceType(), &CacheCulprit);
14378     return *CacheHasConstInit;
14379   };
14380 
14381   if (var->getTLSKind() == VarDecl::TLS_Static) {
14382     if (var->getType().isDestructedType()) {
14383       // GNU C++98 edits for __thread, [basic.start.term]p3:
14384       //   The type of an object with thread storage duration shall not
14385       //   have a non-trivial destructor.
14386       Diag(var->getLocation(), diag::err_thread_nontrivial_dtor);
14387       if (getLangOpts().CPlusPlus11)
14388         Diag(var->getLocation(), diag::note_use_thread_local);
14389     } else if (getLangOpts().CPlusPlus && var->hasInit()) {
14390       if (!checkConstInit()) {
14391         // GNU C++98 edits for __thread, [basic.start.init]p4:
14392         //   An object of thread storage duration shall not require dynamic
14393         //   initialization.
14394         // FIXME: Need strict checking here.
14395         Diag(CacheCulprit->getExprLoc(), diag::err_thread_dynamic_init)
14396           << CacheCulprit->getSourceRange();
14397         if (getLangOpts().CPlusPlus11)
14398           Diag(var->getLocation(), diag::note_use_thread_local);
14399       }
14400     }
14401   }
14402 
14403 
14404   if (!var->getType()->isStructureType() && var->hasInit() &&
14405       isa<InitListExpr>(var->getInit())) {
14406     const auto *ILE = cast<InitListExpr>(var->getInit());
14407     unsigned NumInits = ILE->getNumInits();
14408     if (NumInits > 2)
14409       for (unsigned I = 0; I < NumInits; ++I) {
14410         const auto *Init = ILE->getInit(I);
14411         if (!Init)
14412           break;
14413         const auto *SL = dyn_cast<StringLiteral>(Init->IgnoreImpCasts());
14414         if (!SL)
14415           break;
14416 
14417         unsigned NumConcat = SL->getNumConcatenated();
14418         // Diagnose missing comma in string array initialization.
14419         // Do not warn when all the elements in the initializer are concatenated
14420         // together. Do not warn for macros too.
14421         if (NumConcat == 2 && !SL->getBeginLoc().isMacroID()) {
14422           bool OnlyOneMissingComma = true;
14423           for (unsigned J = I + 1; J < NumInits; ++J) {
14424             const auto *Init = ILE->getInit(J);
14425             if (!Init)
14426               break;
14427             const auto *SLJ = dyn_cast<StringLiteral>(Init->IgnoreImpCasts());
14428             if (!SLJ || SLJ->getNumConcatenated() > 1) {
14429               OnlyOneMissingComma = false;
14430               break;
14431             }
14432           }
14433 
14434           if (OnlyOneMissingComma) {
14435             SmallVector<FixItHint, 1> Hints;
14436             for (unsigned i = 0; i < NumConcat - 1; ++i)
14437               Hints.push_back(FixItHint::CreateInsertion(
14438                   PP.getLocForEndOfToken(SL->getStrTokenLoc(i)), ","));
14439 
14440             Diag(SL->getStrTokenLoc(1),
14441                  diag::warn_concatenated_literal_array_init)
14442                 << Hints;
14443             Diag(SL->getBeginLoc(),
14444                  diag::note_concatenated_string_literal_silence);
14445           }
14446           // In any case, stop now.
14447           break;
14448         }
14449       }
14450   }
14451 
14452 
14453   QualType type = var->getType();
14454 
14455   if (var->hasAttr<BlocksAttr>())
14456     getCurFunction()->addByrefBlockVar(var);
14457 
14458   Expr *Init = var->getInit();
14459   bool GlobalStorage = var->hasGlobalStorage();
14460   bool IsGlobal = GlobalStorage && !var->isStaticLocal();
14461   QualType baseType = Context.getBaseElementType(type);
14462   bool HasConstInit = true;
14463 
14464   if (getLangOpts().C23 && var->isConstexpr() && !Init)
14465     Diag(var->getLocation(), diag::err_constexpr_var_requires_const_init)
14466         << var;
14467 
14468   // Check whether the initializer is sufficiently constant.
14469   if ((getLangOpts().CPlusPlus || (getLangOpts().C23 && var->isConstexpr())) &&
14470       !type->isDependentType() && Init && !Init->isValueDependent() &&
14471       (GlobalStorage || var->isConstexpr() ||
14472        var->mightBeUsableInConstantExpressions(Context))) {
14473     // If this variable might have a constant initializer or might be usable in
14474     // constant expressions, check whether or not it actually is now.  We can't
14475     // do this lazily, because the result might depend on things that change
14476     // later, such as which constexpr functions happen to be defined.
14477     SmallVector<PartialDiagnosticAt, 8> Notes;
14478     if (!getLangOpts().CPlusPlus11 && !getLangOpts().C23) {
14479       // Prior to C++11, in contexts where a constant initializer is required,
14480       // the set of valid constant initializers is described by syntactic rules
14481       // in [expr.const]p2-6.
14482       // FIXME: Stricter checking for these rules would be useful for constinit /
14483       // -Wglobal-constructors.
14484       HasConstInit = checkConstInit();
14485 
14486       // Compute and cache the constant value, and remember that we have a
14487       // constant initializer.
14488       if (HasConstInit) {
14489         (void)var->checkForConstantInitialization(Notes);
14490         Notes.clear();
14491       } else if (CacheCulprit) {
14492         Notes.emplace_back(CacheCulprit->getExprLoc(),
14493                            PDiag(diag::note_invalid_subexpr_in_const_expr));
14494         Notes.back().second << CacheCulprit->getSourceRange();
14495       }
14496     } else {
14497       // Evaluate the initializer to see if it's a constant initializer.
14498       HasConstInit = var->checkForConstantInitialization(Notes);
14499     }
14500 
14501     if (HasConstInit) {
14502       // FIXME: Consider replacing the initializer with a ConstantExpr.
14503     } else if (var->isConstexpr()) {
14504       SourceLocation DiagLoc = var->getLocation();
14505       // If the note doesn't add any useful information other than a source
14506       // location, fold it into the primary diagnostic.
14507       if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
14508                                    diag::note_invalid_subexpr_in_const_expr) {
14509         DiagLoc = Notes[0].first;
14510         Notes.clear();
14511       }
14512       Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
14513           << var << Init->getSourceRange();
14514       for (unsigned I = 0, N = Notes.size(); I != N; ++I)
14515         Diag(Notes[I].first, Notes[I].second);
14516     } else if (GlobalStorage && var->hasAttr<ConstInitAttr>()) {
14517       auto *Attr = var->getAttr<ConstInitAttr>();
14518       Diag(var->getLocation(), diag::err_require_constant_init_failed)
14519           << Init->getSourceRange();
14520       Diag(Attr->getLocation(), diag::note_declared_required_constant_init_here)
14521           << Attr->getRange() << Attr->isConstinit();
14522       for (auto &it : Notes)
14523         Diag(it.first, it.second);
14524     } else if (IsGlobal &&
14525                !getDiagnostics().isIgnored(diag::warn_global_constructor,
14526                                            var->getLocation())) {
14527       // Warn about globals which don't have a constant initializer.  Don't
14528       // warn about globals with a non-trivial destructor because we already
14529       // warned about them.
14530       CXXRecordDecl *RD = baseType->getAsCXXRecordDecl();
14531       if (!(RD && !RD->hasTrivialDestructor())) {
14532         // checkConstInit() here permits trivial default initialization even in
14533         // C++11 onwards, where such an initializer is not a constant initializer
14534         // but nonetheless doesn't require a global constructor.
14535         if (!checkConstInit())
14536           Diag(var->getLocation(), diag::warn_global_constructor)
14537               << Init->getSourceRange();
14538       }
14539     }
14540   }
14541 
14542   // Apply section attributes and pragmas to global variables.
14543   if (GlobalStorage && var->isThisDeclarationADefinition() &&
14544       !inTemplateInstantiation()) {
14545     PragmaStack<StringLiteral *> *Stack = nullptr;
14546     int SectionFlags = ASTContext::PSF_Read;
14547     bool MSVCEnv =
14548         Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment();
14549     std::optional<QualType::NonConstantStorageReason> Reason;
14550     if (HasConstInit &&
14551         !(Reason = var->getType().isNonConstantStorage(Context, true, false))) {
14552       Stack = &ConstSegStack;
14553     } else {
14554       SectionFlags |= ASTContext::PSF_Write;
14555       Stack = var->hasInit() && HasConstInit ? &DataSegStack : &BSSSegStack;
14556     }
14557     if (const SectionAttr *SA = var->getAttr<SectionAttr>()) {
14558       if (SA->getSyntax() == AttributeCommonInfo::AS_Declspec)
14559         SectionFlags |= ASTContext::PSF_Implicit;
14560       UnifySection(SA->getName(), SectionFlags, var);
14561     } else if (Stack->CurrentValue) {
14562       if (Stack != &ConstSegStack && MSVCEnv &&
14563           ConstSegStack.CurrentValue != ConstSegStack.DefaultValue &&
14564           var->getType().isConstQualified()) {
14565         assert((!Reason || Reason != QualType::NonConstantStorageReason::
14566                                          NonConstNonReferenceType) &&
14567                "This case should've already been handled elsewhere");
14568         Diag(var->getLocation(), diag::warn_section_msvc_compat)
14569                 << var << ConstSegStack.CurrentValue << (int)(!HasConstInit
14570             ? QualType::NonConstantStorageReason::NonTrivialCtor
14571             : *Reason);
14572       }
14573       SectionFlags |= ASTContext::PSF_Implicit;
14574       auto SectionName = Stack->CurrentValue->getString();
14575       var->addAttr(SectionAttr::CreateImplicit(Context, SectionName,
14576                                                Stack->CurrentPragmaLocation,
14577                                                SectionAttr::Declspec_allocate));
14578       if (UnifySection(SectionName, SectionFlags, var))
14579         var->dropAttr<SectionAttr>();
14580     }
14581 
14582     // Apply the init_seg attribute if this has an initializer.  If the
14583     // initializer turns out to not be dynamic, we'll end up ignoring this
14584     // attribute.
14585     if (CurInitSeg && var->getInit())
14586       var->addAttr(InitSegAttr::CreateImplicit(Context, CurInitSeg->getString(),
14587                                                CurInitSegLoc));
14588   }
14589 
14590   // All the following checks are C++ only.
14591   if (!getLangOpts().CPlusPlus) {
14592     // If this variable must be emitted, add it as an initializer for the
14593     // current module.
14594     if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty())
14595       Context.addModuleInitializer(ModuleScopes.back().Module, var);
14596     return;
14597   }
14598 
14599   // Require the destructor.
14600   if (!type->isDependentType())
14601     if (const RecordType *recordType = baseType->getAs<RecordType>())
14602       FinalizeVarWithDestructor(var, recordType);
14603 
14604   // If this variable must be emitted, add it as an initializer for the current
14605   // module.
14606   if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty())
14607     Context.addModuleInitializer(ModuleScopes.back().Module, var);
14608 
14609   // Build the bindings if this is a structured binding declaration.
14610   if (auto *DD = dyn_cast<DecompositionDecl>(var))
14611     CheckCompleteDecompositionDeclaration(DD);
14612 }
14613 
14614 void Sema::CheckStaticLocalForDllExport(VarDecl *VD) {
14615   assert(VD->isStaticLocal());
14616 
14617   auto *FD = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod());
14618 
14619   // Find outermost function when VD is in lambda function.
14620   while (FD && !getDLLAttr(FD) &&
14621          !FD->hasAttr<DLLExportStaticLocalAttr>() &&
14622          !FD->hasAttr<DLLImportStaticLocalAttr>()) {
14623     FD = dyn_cast_or_null<FunctionDecl>(FD->getParentFunctionOrMethod());
14624   }
14625 
14626   if (!FD)
14627     return;
14628 
14629   // Static locals inherit dll attributes from their function.
14630   if (Attr *A = getDLLAttr(FD)) {
14631     auto *NewAttr = cast<InheritableAttr>(A->clone(getASTContext()));
14632     NewAttr->setInherited(true);
14633     VD->addAttr(NewAttr);
14634   } else if (Attr *A = FD->getAttr<DLLExportStaticLocalAttr>()) {
14635     auto *NewAttr = DLLExportAttr::CreateImplicit(getASTContext(), *A);
14636     NewAttr->setInherited(true);
14637     VD->addAttr(NewAttr);
14638 
14639     // Export this function to enforce exporting this static variable even
14640     // if it is not used in this compilation unit.
14641     if (!FD->hasAttr<DLLExportAttr>())
14642       FD->addAttr(NewAttr);
14643 
14644   } else if (Attr *A = FD->getAttr<DLLImportStaticLocalAttr>()) {
14645     auto *NewAttr = DLLImportAttr::CreateImplicit(getASTContext(), *A);
14646     NewAttr->setInherited(true);
14647     VD->addAttr(NewAttr);
14648   }
14649 }
14650 
14651 void Sema::CheckThreadLocalForLargeAlignment(VarDecl *VD) {
14652   assert(VD->getTLSKind());
14653 
14654   // Perform TLS alignment check here after attributes attached to the variable
14655   // which may affect the alignment have been processed. Only perform the check
14656   // if the target has a maximum TLS alignment (zero means no constraints).
14657   if (unsigned MaxAlign = Context.getTargetInfo().getMaxTLSAlign()) {
14658     // Protect the check so that it's not performed on dependent types and
14659     // dependent alignments (we can't determine the alignment in that case).
14660     if (!VD->hasDependentAlignment()) {
14661       CharUnits MaxAlignChars = Context.toCharUnitsFromBits(MaxAlign);
14662       if (Context.getDeclAlign(VD) > MaxAlignChars) {
14663         Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum)
14664             << (unsigned)Context.getDeclAlign(VD).getQuantity() << VD
14665             << (unsigned)MaxAlignChars.getQuantity();
14666       }
14667     }
14668   }
14669 }
14670 
14671 void Sema::FinalizeDeclaration(Decl *ThisDecl) {
14672   // Note that we are no longer parsing the initializer for this declaration.
14673   ParsingInitForAutoVars.erase(ThisDecl);
14674 
14675   VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
14676   if (!VD)
14677     return;
14678 
14679   // Apply an implicit SectionAttr if '#pragma clang section bss|data|rodata' is active
14680   if (VD->hasGlobalStorage() && VD->isThisDeclarationADefinition() &&
14681       !inTemplateInstantiation() && !VD->hasAttr<SectionAttr>()) {
14682     if (PragmaClangBSSSection.Valid)
14683       VD->addAttr(PragmaClangBSSSectionAttr::CreateImplicit(
14684           Context, PragmaClangBSSSection.SectionName,
14685           PragmaClangBSSSection.PragmaLocation));
14686     if (PragmaClangDataSection.Valid)
14687       VD->addAttr(PragmaClangDataSectionAttr::CreateImplicit(
14688           Context, PragmaClangDataSection.SectionName,
14689           PragmaClangDataSection.PragmaLocation));
14690     if (PragmaClangRodataSection.Valid)
14691       VD->addAttr(PragmaClangRodataSectionAttr::CreateImplicit(
14692           Context, PragmaClangRodataSection.SectionName,
14693           PragmaClangRodataSection.PragmaLocation));
14694     if (PragmaClangRelroSection.Valid)
14695       VD->addAttr(PragmaClangRelroSectionAttr::CreateImplicit(
14696           Context, PragmaClangRelroSection.SectionName,
14697           PragmaClangRelroSection.PragmaLocation));
14698   }
14699 
14700   if (auto *DD = dyn_cast<DecompositionDecl>(ThisDecl)) {
14701     for (auto *BD : DD->bindings()) {
14702       FinalizeDeclaration(BD);
14703     }
14704   }
14705 
14706   CheckInvalidBuiltinCountedByRef(VD->getInit(), InitializerKind);
14707 
14708   checkAttributesAfterMerging(*this, *VD);
14709 
14710   if (VD->isStaticLocal())
14711     CheckStaticLocalForDllExport(VD);
14712 
14713   if (VD->getTLSKind())
14714     CheckThreadLocalForLargeAlignment(VD);
14715 
14716   // Perform check for initializers of device-side global variables.
14717   // CUDA allows empty constructors as initializers (see E.2.3.1, CUDA
14718   // 7.5). We must also apply the same checks to all __shared__
14719   // variables whether they are local or not. CUDA also allows
14720   // constant initializers for __constant__ and __device__ variables.
14721   if (getLangOpts().CUDA)
14722     CUDA().checkAllowedInitializer(VD);
14723 
14724   // Grab the dllimport or dllexport attribute off of the VarDecl.
14725   const InheritableAttr *DLLAttr = getDLLAttr(VD);
14726 
14727   // Imported static data members cannot be defined out-of-line.
14728   if (const auto *IA = dyn_cast_or_null<DLLImportAttr>(DLLAttr)) {
14729     if (VD->isStaticDataMember() && VD->isOutOfLine() &&
14730         VD->isThisDeclarationADefinition()) {
14731       // We allow definitions of dllimport class template static data members
14732       // with a warning.
14733       CXXRecordDecl *Context =
14734         cast<CXXRecordDecl>(VD->getFirstDecl()->getDeclContext());
14735       bool IsClassTemplateMember =
14736           isa<ClassTemplatePartialSpecializationDecl>(Context) ||
14737           Context->getDescribedClassTemplate();
14738 
14739       Diag(VD->getLocation(),
14740            IsClassTemplateMember
14741                ? diag::warn_attribute_dllimport_static_field_definition
14742                : diag::err_attribute_dllimport_static_field_definition);
14743       Diag(IA->getLocation(), diag::note_attribute);
14744       if (!IsClassTemplateMember)
14745         VD->setInvalidDecl();
14746     }
14747   }
14748 
14749   // dllimport/dllexport variables cannot be thread local, their TLS index
14750   // isn't exported with the variable.
14751   if (DLLAttr && VD->getTLSKind()) {
14752     auto *F = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod());
14753     if (F && getDLLAttr(F)) {
14754       assert(VD->isStaticLocal());
14755       // But if this is a static local in a dlimport/dllexport function, the
14756       // function will never be inlined, which means the var would never be
14757       // imported, so having it marked import/export is safe.
14758     } else {
14759       Diag(VD->getLocation(), diag::err_attribute_dll_thread_local) << VD
14760                                                                     << DLLAttr;
14761       VD->setInvalidDecl();
14762     }
14763   }
14764 
14765   if (UsedAttr *Attr = VD->getAttr<UsedAttr>()) {
14766     if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) {
14767       Diag(Attr->getLocation(), diag::warn_attribute_ignored_on_non_definition)
14768           << Attr;
14769       VD->dropAttr<UsedAttr>();
14770     }
14771   }
14772   if (RetainAttr *Attr = VD->getAttr<RetainAttr>()) {
14773     if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) {
14774       Diag(Attr->getLocation(), diag::warn_attribute_ignored_on_non_definition)
14775           << Attr;
14776       VD->dropAttr<RetainAttr>();
14777     }
14778   }
14779 
14780   const DeclContext *DC = VD->getDeclContext();
14781   // If there's a #pragma GCC visibility in scope, and this isn't a class
14782   // member, set the visibility of this variable.
14783   if (DC->getRedeclContext()->isFileContext() && VD->isExternallyVisible())
14784     AddPushedVisibilityAttribute(VD);
14785 
14786   // FIXME: Warn on unused var template partial specializations.
14787   if (VD->isFileVarDecl() && !isa<VarTemplatePartialSpecializationDecl>(VD))
14788     MarkUnusedFileScopedDecl(VD);
14789 
14790   // Now we have parsed the initializer and can update the table of magic
14791   // tag values.
14792   if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
14793       !VD->getType()->isIntegralOrEnumerationType())
14794     return;
14795 
14796   for (const auto *I : ThisDecl->specific_attrs<TypeTagForDatatypeAttr>()) {
14797     const Expr *MagicValueExpr = VD->getInit();
14798     if (!MagicValueExpr) {
14799       continue;
14800     }
14801     std::optional<llvm::APSInt> MagicValueInt;
14802     if (!(MagicValueInt = MagicValueExpr->getIntegerConstantExpr(Context))) {
14803       Diag(I->getRange().getBegin(),
14804            diag::err_type_tag_for_datatype_not_ice)
14805         << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
14806       continue;
14807     }
14808     if (MagicValueInt->getActiveBits() > 64) {
14809       Diag(I->getRange().getBegin(),
14810            diag::err_type_tag_for_datatype_too_large)
14811         << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
14812       continue;
14813     }
14814     uint64_t MagicValue = MagicValueInt->getZExtValue();
14815     RegisterTypeTagForDatatype(I->getArgumentKind(),
14816                                MagicValue,
14817                                I->getMatchingCType(),
14818                                I->getLayoutCompatible(),
14819                                I->getMustBeNull());
14820   }
14821 }
14822 
14823 static bool hasDeducedAuto(DeclaratorDecl *DD) {
14824   auto *VD = dyn_cast<VarDecl>(DD);
14825   return VD && !VD->getType()->hasAutoForTrailingReturnType();
14826 }
14827 
14828 Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
14829                                                    ArrayRef<Decl *> Group) {
14830   SmallVector<Decl*, 8> Decls;
14831 
14832   if (DS.isTypeSpecOwned())
14833     Decls.push_back(DS.getRepAsDecl());
14834 
14835   DeclaratorDecl *FirstDeclaratorInGroup = nullptr;
14836   DecompositionDecl *FirstDecompDeclaratorInGroup = nullptr;
14837   bool DiagnosedMultipleDecomps = false;
14838   DeclaratorDecl *FirstNonDeducedAutoInGroup = nullptr;
14839   bool DiagnosedNonDeducedAuto = false;
14840 
14841   for (Decl *D : Group) {
14842     if (!D)
14843       continue;
14844     // Check if the Decl has been declared in '#pragma omp declare target'
14845     // directive and has static storage duration.
14846     if (auto *VD = dyn_cast<VarDecl>(D);
14847         LangOpts.OpenMP && VD && VD->hasAttr<OMPDeclareTargetDeclAttr>() &&
14848         VD->hasGlobalStorage())
14849       OpenMP().ActOnOpenMPDeclareTargetInitializer(D);
14850     // For declarators, there are some additional syntactic-ish checks we need
14851     // to perform.
14852     if (auto *DD = dyn_cast<DeclaratorDecl>(D)) {
14853       if (!FirstDeclaratorInGroup)
14854         FirstDeclaratorInGroup = DD;
14855       if (!FirstDecompDeclaratorInGroup)
14856         FirstDecompDeclaratorInGroup = dyn_cast<DecompositionDecl>(D);
14857       if (!FirstNonDeducedAutoInGroup && DS.hasAutoTypeSpec() &&
14858           !hasDeducedAuto(DD))
14859         FirstNonDeducedAutoInGroup = DD;
14860 
14861       if (FirstDeclaratorInGroup != DD) {
14862         // A decomposition declaration cannot be combined with any other
14863         // declaration in the same group.
14864         if (FirstDecompDeclaratorInGroup && !DiagnosedMultipleDecomps) {
14865           Diag(FirstDecompDeclaratorInGroup->getLocation(),
14866                diag::err_decomp_decl_not_alone)
14867               << FirstDeclaratorInGroup->getSourceRange()
14868               << DD->getSourceRange();
14869           DiagnosedMultipleDecomps = true;
14870         }
14871 
14872         // A declarator that uses 'auto' in any way other than to declare a
14873         // variable with a deduced type cannot be combined with any other
14874         // declarator in the same group.
14875         if (FirstNonDeducedAutoInGroup && !DiagnosedNonDeducedAuto) {
14876           Diag(FirstNonDeducedAutoInGroup->getLocation(),
14877                diag::err_auto_non_deduced_not_alone)
14878               << FirstNonDeducedAutoInGroup->getType()
14879                      ->hasAutoForTrailingReturnType()
14880               << FirstDeclaratorInGroup->getSourceRange()
14881               << DD->getSourceRange();
14882           DiagnosedNonDeducedAuto = true;
14883         }
14884       }
14885     }
14886 
14887     Decls.push_back(D);
14888   }
14889 
14890   if (DeclSpec::isDeclRep(DS.getTypeSpecType())) {
14891     if (TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl())) {
14892       handleTagNumbering(Tag, S);
14893       if (FirstDeclaratorInGroup && !Tag->hasNameForLinkage() &&
14894           getLangOpts().CPlusPlus)
14895         Context.addDeclaratorForUnnamedTagDecl(Tag, FirstDeclaratorInGroup);
14896     }
14897   }
14898 
14899   return BuildDeclaratorGroup(Decls);
14900 }
14901 
14902 Sema::DeclGroupPtrTy
14903 Sema::BuildDeclaratorGroup(MutableArrayRef<Decl *> Group) {
14904   // C++14 [dcl.spec.auto]p7: (DR1347)
14905   //   If the type that replaces the placeholder type is not the same in each
14906   //   deduction, the program is ill-formed.
14907   if (Group.size() > 1) {
14908     QualType Deduced;
14909     VarDecl *DeducedDecl = nullptr;
14910     for (unsigned i = 0, e = Group.size(); i != e; ++i) {
14911       VarDecl *D = dyn_cast<VarDecl>(Group[i]);
14912       if (!D || D->isInvalidDecl())
14913         break;
14914       DeducedType *DT = D->getType()->getContainedDeducedType();
14915       if (!DT || DT->getDeducedType().isNull())
14916         continue;
14917       if (Deduced.isNull()) {
14918         Deduced = DT->getDeducedType();
14919         DeducedDecl = D;
14920       } else if (!Context.hasSameType(DT->getDeducedType(), Deduced)) {
14921         auto *AT = dyn_cast<AutoType>(DT);
14922         auto Dia = Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
14923                         diag::err_auto_different_deductions)
14924                    << (AT ? (unsigned)AT->getKeyword() : 3) << Deduced
14925                    << DeducedDecl->getDeclName() << DT->getDeducedType()
14926                    << D->getDeclName();
14927         if (DeducedDecl->hasInit())
14928           Dia << DeducedDecl->getInit()->getSourceRange();
14929         if (D->getInit())
14930           Dia << D->getInit()->getSourceRange();
14931         D->setInvalidDecl();
14932         break;
14933       }
14934     }
14935   }
14936 
14937   ActOnDocumentableDecls(Group);
14938 
14939   return DeclGroupPtrTy::make(
14940       DeclGroupRef::Create(Context, Group.data(), Group.size()));
14941 }
14942 
14943 void Sema::ActOnDocumentableDecl(Decl *D) {
14944   ActOnDocumentableDecls(D);
14945 }
14946 
14947 void Sema::ActOnDocumentableDecls(ArrayRef<Decl *> Group) {
14948   // Don't parse the comment if Doxygen diagnostics are ignored.
14949   if (Group.empty() || !Group[0])
14950     return;
14951 
14952   if (Diags.isIgnored(diag::warn_doc_param_not_found,
14953                       Group[0]->getLocation()) &&
14954       Diags.isIgnored(diag::warn_unknown_comment_command_name,
14955                       Group[0]->getLocation()))
14956     return;
14957 
14958   if (Group.size() >= 2) {
14959     // This is a decl group.  Normally it will contain only declarations
14960     // produced from declarator list.  But in case we have any definitions or
14961     // additional declaration references:
14962     //   'typedef struct S {} S;'
14963     //   'typedef struct S *S;'
14964     //   'struct S *pS;'
14965     // FinalizeDeclaratorGroup adds these as separate declarations.
14966     Decl *MaybeTagDecl = Group[0];
14967     if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
14968       Group = Group.slice(1);
14969     }
14970   }
14971 
14972   // FIMXE: We assume every Decl in the group is in the same file.
14973   // This is false when preprocessor constructs the group from decls in
14974   // different files (e. g. macros or #include).
14975   Context.attachCommentsToJustParsedDecls(Group, &getPreprocessor());
14976 }
14977 
14978 void Sema::CheckFunctionOrTemplateParamDeclarator(Scope *S, Declarator &D) {
14979   // Check that there are no default arguments inside the type of this
14980   // parameter.
14981   if (getLangOpts().CPlusPlus)
14982     CheckExtraCXXDefaultArguments(D);
14983 
14984   // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
14985   if (D.getCXXScopeSpec().isSet()) {
14986     Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
14987       << D.getCXXScopeSpec().getRange();
14988   }
14989 
14990   // [dcl.meaning]p1: An unqualified-id occurring in a declarator-id shall be a
14991   // simple identifier except [...irrelevant cases...].
14992   switch (D.getName().getKind()) {
14993   case UnqualifiedIdKind::IK_Identifier:
14994     break;
14995 
14996   case UnqualifiedIdKind::IK_OperatorFunctionId:
14997   case UnqualifiedIdKind::IK_ConversionFunctionId:
14998   case UnqualifiedIdKind::IK_LiteralOperatorId:
14999   case UnqualifiedIdKind::IK_ConstructorName:
15000   case UnqualifiedIdKind::IK_DestructorName:
15001   case UnqualifiedIdKind::IK_ImplicitSelfParam:
15002   case UnqualifiedIdKind::IK_DeductionGuideName:
15003     Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
15004       << GetNameForDeclarator(D).getName();
15005     break;
15006 
15007   case UnqualifiedIdKind::IK_TemplateId:
15008   case UnqualifiedIdKind::IK_ConstructorTemplateId:
15009     // GetNameForDeclarator would not produce a useful name in this case.
15010     Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name_template_id);
15011     break;
15012   }
15013 }
15014 
15015 static void CheckExplicitObjectParameter(Sema &S, ParmVarDecl *P,
15016                                          SourceLocation ExplicitThisLoc) {
15017   if (!ExplicitThisLoc.isValid())
15018     return;
15019   assert(S.getLangOpts().CPlusPlus &&
15020          "explicit parameter in non-cplusplus mode");
15021   if (!S.getLangOpts().CPlusPlus23)
15022     S.Diag(ExplicitThisLoc, diag::err_cxx20_deducing_this)
15023         << P->getSourceRange();
15024 
15025   // C++2b [dcl.fct/7] An explicit object parameter shall not be a function
15026   // parameter pack.
15027   if (P->isParameterPack()) {
15028     S.Diag(P->getBeginLoc(), diag::err_explicit_object_parameter_pack)
15029         << P->getSourceRange();
15030     return;
15031   }
15032   P->setExplicitObjectParameterLoc(ExplicitThisLoc);
15033   if (LambdaScopeInfo *LSI = S.getCurLambda())
15034     LSI->ExplicitObjectParameter = P;
15035 }
15036 
15037 Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D,
15038                                  SourceLocation ExplicitThisLoc) {
15039   const DeclSpec &DS = D.getDeclSpec();
15040 
15041   // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
15042   // C2y 6.7.7.4p4: A parameter declaration shall not specify a void type,
15043   // except for the special case of a single unnamed parameter of type void
15044   // with no storage class specifier, no type qualifier, and no following
15045   // ellipsis terminator.
15046   // Clang applies the C2y rules for 'register void' in all C language modes,
15047   // same as GCC, because it's questionable what that could possibly mean.
15048 
15049   // C++03 [dcl.stc]p2 also permits 'auto'.
15050   StorageClass SC = SC_None;
15051   if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
15052     SC = SC_Register;
15053     // In C++11, the 'register' storage class specifier is deprecated.
15054     // In C++17, it is not allowed, but we tolerate it as an extension.
15055     if (getLangOpts().CPlusPlus11) {
15056       Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus17
15057                                             ? diag::ext_register_storage_class
15058                                             : diag::warn_deprecated_register)
15059           << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
15060     } else if (!getLangOpts().CPlusPlus &&
15061                DS.getTypeSpecType() == DeclSpec::TST_void &&
15062                D.getNumTypeObjects() == 0) {
15063       Diag(DS.getStorageClassSpecLoc(),
15064            diag::err_invalid_storage_class_in_func_decl)
15065           << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
15066       D.getMutableDeclSpec().ClearStorageClassSpecs();
15067     }
15068   } else if (getLangOpts().CPlusPlus &&
15069              DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
15070     SC = SC_Auto;
15071   } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
15072     Diag(DS.getStorageClassSpecLoc(),
15073          diag::err_invalid_storage_class_in_func_decl);
15074     D.getMutableDeclSpec().ClearStorageClassSpecs();
15075   }
15076 
15077   if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
15078     Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread)
15079       << DeclSpec::getSpecifierName(TSCS);
15080   if (DS.isInlineSpecified())
15081     Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
15082         << getLangOpts().CPlusPlus17;
15083   if (DS.hasConstexprSpecifier())
15084     Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr)
15085         << 0 << static_cast<int>(D.getDeclSpec().getConstexprSpecifier());
15086 
15087   DiagnoseFunctionSpecifiers(DS);
15088 
15089   CheckFunctionOrTemplateParamDeclarator(S, D);
15090 
15091   TypeSourceInfo *TInfo = GetTypeForDeclarator(D);
15092   QualType parmDeclType = TInfo->getType();
15093 
15094   // Check for redeclaration of parameters, e.g. int foo(int x, int x);
15095   const IdentifierInfo *II = D.getIdentifier();
15096   if (II) {
15097     LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
15098                    RedeclarationKind::ForVisibleRedeclaration);
15099     LookupName(R, S);
15100     if (!R.empty()) {
15101       NamedDecl *PrevDecl = *R.begin();
15102       if (R.isSingleResult() && PrevDecl->isTemplateParameter()) {
15103         // Maybe we will complain about the shadowed template parameter.
15104         DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
15105         // Just pretend that we didn't see the previous declaration.
15106         PrevDecl = nullptr;
15107       }
15108       if (PrevDecl && S->isDeclScope(PrevDecl)) {
15109         Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
15110         Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
15111         // Recover by removing the name
15112         II = nullptr;
15113         D.SetIdentifier(nullptr, D.getIdentifierLoc());
15114         D.setInvalidType(true);
15115       }
15116     }
15117   }
15118 
15119   // Temporarily put parameter variables in the translation unit, not
15120   // the enclosing context.  This prevents them from accidentally
15121   // looking like class members in C++.
15122   ParmVarDecl *New =
15123       CheckParameter(Context.getTranslationUnitDecl(), D.getBeginLoc(),
15124                      D.getIdentifierLoc(), II, parmDeclType, TInfo, SC);
15125 
15126   if (D.isInvalidType())
15127     New->setInvalidDecl();
15128 
15129   CheckExplicitObjectParameter(*this, New, ExplicitThisLoc);
15130 
15131   assert(S->isFunctionPrototypeScope());
15132   assert(S->getFunctionPrototypeDepth() >= 1);
15133   New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
15134                     S->getNextFunctionPrototypeIndex());
15135 
15136   // Add the parameter declaration into this scope.
15137   S->AddDecl(New);
15138   if (II)
15139     IdResolver.AddDecl(New);
15140 
15141   ProcessDeclAttributes(S, New, D);
15142 
15143   if (D.getDeclSpec().isModulePrivateSpecified())
15144     Diag(New->getLocation(), diag::err_module_private_local)
15145         << 1 << New << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
15146         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
15147 
15148   if (New->hasAttr<BlocksAttr>()) {
15149     Diag(New->getLocation(), diag::err_block_on_nonlocal);
15150   }
15151 
15152   if (getLangOpts().OpenCL)
15153     deduceOpenCLAddressSpace(New);
15154 
15155   return New;
15156 }
15157 
15158 ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
15159                                               SourceLocation Loc,
15160                                               QualType T) {
15161   /* FIXME: setting StartLoc == Loc.
15162      Would it be worth to modify callers so as to provide proper source
15163      location for the unnamed parameters, embedding the parameter's type? */
15164   ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, nullptr,
15165                                 T, Context.getTrivialTypeSourceInfo(T, Loc),
15166                                            SC_None, nullptr);
15167   Param->setImplicit();
15168   return Param;
15169 }
15170 
15171 void Sema::DiagnoseUnusedParameters(ArrayRef<ParmVarDecl *> Parameters) {
15172   // Don't diagnose unused-parameter errors in template instantiations; we
15173   // will already have done so in the template itself.
15174   if (inTemplateInstantiation())
15175     return;
15176 
15177   for (const ParmVarDecl *Parameter : Parameters) {
15178     if (!Parameter->isReferenced() && Parameter->getDeclName() &&
15179         !Parameter->hasAttr<UnusedAttr>() &&
15180         !Parameter->getIdentifier()->isPlaceholder()) {
15181       Diag(Parameter->getLocation(), diag::warn_unused_parameter)
15182         << Parameter->getDeclName();
15183     }
15184   }
15185 }
15186 
15187 void Sema::DiagnoseSizeOfParametersAndReturnValue(
15188     ArrayRef<ParmVarDecl *> Parameters, QualType ReturnTy, NamedDecl *D) {
15189   if (LangOpts.NumLargeByValueCopy == 0) // No check.
15190     return;
15191 
15192   // Warn if the return value is pass-by-value and larger than the specified
15193   // threshold.
15194   if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
15195     unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
15196     if (Size > LangOpts.NumLargeByValueCopy)
15197       Diag(D->getLocation(), diag::warn_return_value_size) << D << Size;
15198   }
15199 
15200   // Warn if any parameter is pass-by-value and larger than the specified
15201   // threshold.
15202   for (const ParmVarDecl *Parameter : Parameters) {
15203     QualType T = Parameter->getType();
15204     if (T->isDependentType() || !T.isPODType(Context))
15205       continue;
15206     unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
15207     if (Size > LangOpts.NumLargeByValueCopy)
15208       Diag(Parameter->getLocation(), diag::warn_parameter_size)
15209           << Parameter << Size;
15210   }
15211 }
15212 
15213 ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
15214                                   SourceLocation NameLoc,
15215                                   const IdentifierInfo *Name, QualType T,
15216                                   TypeSourceInfo *TSInfo, StorageClass SC) {
15217   // In ARC, infer a lifetime qualifier for appropriate parameter types.
15218   if (getLangOpts().ObjCAutoRefCount &&
15219       T.getObjCLifetime() == Qualifiers::OCL_None &&
15220       T->isObjCLifetimeType()) {
15221 
15222     Qualifiers::ObjCLifetime lifetime;
15223 
15224     // Special cases for arrays:
15225     //   - if it's const, use __unsafe_unretained
15226     //   - otherwise, it's an error
15227     if (T->isArrayType()) {
15228       if (!T.isConstQualified()) {
15229         if (DelayedDiagnostics.shouldDelayDiagnostics())
15230           DelayedDiagnostics.add(
15231               sema::DelayedDiagnostic::makeForbiddenType(
15232               NameLoc, diag::err_arc_array_param_no_ownership, T, false));
15233         else
15234           Diag(NameLoc, diag::err_arc_array_param_no_ownership)
15235               << TSInfo->getTypeLoc().getSourceRange();
15236       }
15237       lifetime = Qualifiers::OCL_ExplicitNone;
15238     } else {
15239       lifetime = T->getObjCARCImplicitLifetime();
15240     }
15241     T = Context.getLifetimeQualifiedType(T, lifetime);
15242   }
15243 
15244   ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
15245                                          Context.getAdjustedParameterType(T),
15246                                          TSInfo, SC, nullptr);
15247 
15248   // Make a note if we created a new pack in the scope of a lambda, so that
15249   // we know that references to that pack must also be expanded within the
15250   // lambda scope.
15251   if (New->isParameterPack())
15252     if (auto *CSI = getEnclosingLambdaOrBlock())
15253       CSI->LocalPacks.push_back(New);
15254 
15255   if (New->getType().hasNonTrivialToPrimitiveDestructCUnion() ||
15256       New->getType().hasNonTrivialToPrimitiveCopyCUnion())
15257     checkNonTrivialCUnion(New->getType(), New->getLocation(),
15258                           NTCUC_FunctionParam, NTCUK_Destruct|NTCUK_Copy);
15259 
15260   // Parameter declarators cannot be interface types. All ObjC objects are
15261   // passed by reference.
15262   if (T->isObjCObjectType()) {
15263     SourceLocation TypeEndLoc =
15264         getLocForEndOfToken(TSInfo->getTypeLoc().getEndLoc());
15265     Diag(NameLoc,
15266          diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
15267       << FixItHint::CreateInsertion(TypeEndLoc, "*");
15268     T = Context.getObjCObjectPointerType(T);
15269     New->setType(T);
15270   }
15271 
15272   // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
15273   // duration shall not be qualified by an address-space qualifier."
15274   // Since all parameters have automatic store duration, they can not have
15275   // an address space.
15276   if (T.getAddressSpace() != LangAS::Default &&
15277       // OpenCL allows function arguments declared to be an array of a type
15278       // to be qualified with an address space.
15279       !(getLangOpts().OpenCL &&
15280         (T->isArrayType() || T.getAddressSpace() == LangAS::opencl_private)) &&
15281       // WebAssembly allows reference types as parameters. Funcref in particular
15282       // lives in a different address space.
15283       !(T->isFunctionPointerType() &&
15284         T.getAddressSpace() == LangAS::wasm_funcref)) {
15285     Diag(NameLoc, diag::err_arg_with_address_space);
15286     New->setInvalidDecl();
15287   }
15288 
15289   // PPC MMA non-pointer types are not allowed as function argument types.
15290   if (Context.getTargetInfo().getTriple().isPPC64() &&
15291       PPC().CheckPPCMMAType(New->getOriginalType(), New->getLocation())) {
15292     New->setInvalidDecl();
15293   }
15294 
15295   return New;
15296 }
15297 
15298 void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
15299                                            SourceLocation LocAfterDecls) {
15300   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
15301 
15302   // C99 6.9.1p6 "If a declarator includes an identifier list, each declaration
15303   // in the declaration list shall have at least one declarator, those
15304   // declarators shall only declare identifiers from the identifier list, and
15305   // every identifier in the identifier list shall be declared.
15306   //
15307   // C89 3.7.1p5 "If a declarator includes an identifier list, only the
15308   // identifiers it names shall be declared in the declaration list."
15309   //
15310   // This is why we only diagnose in C99 and later. Note, the other conditions
15311   // listed are checked elsewhere.
15312   if (!FTI.hasPrototype) {
15313     for (int i = FTI.NumParams; i != 0; /* decrement in loop */) {
15314       --i;
15315       if (FTI.Params[i].Param == nullptr) {
15316         if (getLangOpts().C99) {
15317           SmallString<256> Code;
15318           llvm::raw_svector_ostream(Code)
15319               << "  int " << FTI.Params[i].Ident->getName() << ";\n";
15320           Diag(FTI.Params[i].IdentLoc, diag::ext_param_not_declared)
15321               << FTI.Params[i].Ident
15322               << FixItHint::CreateInsertion(LocAfterDecls, Code);
15323         }
15324 
15325         // Implicitly declare the argument as type 'int' for lack of a better
15326         // type.
15327         AttributeFactory attrs;
15328         DeclSpec DS(attrs);
15329         const char* PrevSpec; // unused
15330         unsigned DiagID; // unused
15331         DS.SetTypeSpecType(DeclSpec::TST_int, FTI.Params[i].IdentLoc, PrevSpec,
15332                            DiagID, Context.getPrintingPolicy());
15333         // Use the identifier location for the type source range.
15334         DS.SetRangeStart(FTI.Params[i].IdentLoc);
15335         DS.SetRangeEnd(FTI.Params[i].IdentLoc);
15336         Declarator ParamD(DS, ParsedAttributesView::none(),
15337                           DeclaratorContext::KNRTypeList);
15338         ParamD.SetIdentifier(FTI.Params[i].Ident, FTI.Params[i].IdentLoc);
15339         FTI.Params[i].Param = ActOnParamDeclarator(S, ParamD);
15340       }
15341     }
15342   }
15343 }
15344 
15345 Decl *
15346 Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D,
15347                               MultiTemplateParamsArg TemplateParameterLists,
15348                               SkipBodyInfo *SkipBody, FnBodyKind BodyKind) {
15349   assert(getCurFunctionDecl() == nullptr && "Function parsing confused");
15350   assert(D.isFunctionDeclarator() && "Not a function declarator!");
15351   Scope *ParentScope = FnBodyScope->getParent();
15352 
15353   // Check if we are in an `omp begin/end declare variant` scope. If we are, and
15354   // we define a non-templated function definition, we will create a declaration
15355   // instead (=BaseFD), and emit the definition with a mangled name afterwards.
15356   // The base function declaration will have the equivalent of an `omp declare
15357   // variant` annotation which specifies the mangled definition as a
15358   // specialization function under the OpenMP context defined as part of the
15359   // `omp begin declare variant`.
15360   SmallVector<FunctionDecl *, 4> Bases;
15361   if (LangOpts.OpenMP && OpenMP().isInOpenMPDeclareVariantScope())
15362     OpenMP().ActOnStartOfFunctionDefinitionInOpenMPDeclareVariantScope(
15363         ParentScope, D, TemplateParameterLists, Bases);
15364 
15365   D.setFunctionDefinitionKind(FunctionDefinitionKind::Definition);
15366   Decl *DP = HandleDeclarator(ParentScope, D, TemplateParameterLists);
15367   Decl *Dcl = ActOnStartOfFunctionDef(FnBodyScope, DP, SkipBody, BodyKind);
15368 
15369   if (!Bases.empty())
15370     OpenMP().ActOnFinishedFunctionDefinitionInOpenMPDeclareVariantScope(Dcl,
15371                                                                         Bases);
15372 
15373   return Dcl;
15374 }
15375 
15376 void Sema::ActOnFinishInlineFunctionDef(FunctionDecl *D) {
15377   Consumer.HandleInlineFunctionDefinition(D);
15378 }
15379 
15380 static bool FindPossiblePrototype(const FunctionDecl *FD,
15381                                   const FunctionDecl *&PossiblePrototype) {
15382   for (const FunctionDecl *Prev = FD->getPreviousDecl(); Prev;
15383        Prev = Prev->getPreviousDecl()) {
15384     // Ignore any declarations that occur in function or method
15385     // scope, because they aren't visible from the header.
15386     if (Prev->getLexicalDeclContext()->isFunctionOrMethod())
15387       continue;
15388 
15389     PossiblePrototype = Prev;
15390     return Prev->getType()->isFunctionProtoType();
15391   }
15392   return false;
15393 }
15394 
15395 static bool
15396 ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
15397                                 const FunctionDecl *&PossiblePrototype) {
15398   // Don't warn about invalid declarations.
15399   if (FD->isInvalidDecl())
15400     return false;
15401 
15402   // Or declarations that aren't global.
15403   if (!FD->isGlobal())
15404     return false;
15405 
15406   // Don't warn about C++ member functions.
15407   if (isa<CXXMethodDecl>(FD))
15408     return false;
15409 
15410   // Don't warn about 'main'.
15411   if (isa<TranslationUnitDecl>(FD->getDeclContext()->getRedeclContext()))
15412     if (IdentifierInfo *II = FD->getIdentifier())
15413       if (II->isStr("main") || II->isStr("efi_main"))
15414         return false;
15415 
15416   if (FD->isMSVCRTEntryPoint())
15417     return false;
15418 
15419   // Don't warn about inline functions.
15420   if (FD->isInlined())
15421     return false;
15422 
15423   // Don't warn about function templates.
15424   if (FD->getDescribedFunctionTemplate())
15425     return false;
15426 
15427   // Don't warn about function template specializations.
15428   if (FD->isFunctionTemplateSpecialization())
15429     return false;
15430 
15431   // Don't warn for OpenCL kernels.
15432   if (FD->hasAttr<OpenCLKernelAttr>())
15433     return false;
15434 
15435   // Don't warn on explicitly deleted functions.
15436   if (FD->isDeleted())
15437     return false;
15438 
15439   // Don't warn on implicitly local functions (such as having local-typed
15440   // parameters).
15441   if (!FD->isExternallyVisible())
15442     return false;
15443 
15444   // If we were able to find a potential prototype, don't warn.
15445   if (FindPossiblePrototype(FD, PossiblePrototype))
15446     return false;
15447 
15448   return true;
15449 }
15450 
15451 void
15452 Sema::CheckForFunctionRedefinition(FunctionDecl *FD,
15453                                    const FunctionDecl *EffectiveDefinition,
15454                                    SkipBodyInfo *SkipBody) {
15455   const FunctionDecl *Definition = EffectiveDefinition;
15456   if (!Definition &&
15457       !FD->isDefined(Definition, /*CheckForPendingFriendDefinition*/ true))
15458     return;
15459 
15460   if (Definition->getFriendObjectKind() != Decl::FOK_None) {
15461     if (FunctionDecl *OrigDef = Definition->getInstantiatedFromMemberFunction()) {
15462       if (FunctionDecl *OrigFD = FD->getInstantiatedFromMemberFunction()) {
15463         // A merged copy of the same function, instantiated as a member of
15464         // the same class, is OK.
15465         if (declaresSameEntity(OrigFD, OrigDef) &&
15466             declaresSameEntity(cast<Decl>(Definition->getLexicalDeclContext()),
15467                                cast<Decl>(FD->getLexicalDeclContext())))
15468           return;
15469       }
15470     }
15471   }
15472 
15473   if (canRedefineFunction(Definition, getLangOpts()))
15474     return;
15475 
15476   // Don't emit an error when this is redefinition of a typo-corrected
15477   // definition.
15478   if (TypoCorrectedFunctionDefinitions.count(Definition))
15479     return;
15480 
15481   // If we don't have a visible definition of the function, and it's inline or
15482   // a template, skip the new definition.
15483   if (SkipBody && !hasVisibleDefinition(Definition) &&
15484       (Definition->getFormalLinkage() == Linkage::Internal ||
15485        Definition->isInlined() || Definition->getDescribedFunctionTemplate() ||
15486        Definition->getNumTemplateParameterLists())) {
15487     SkipBody->ShouldSkip = true;
15488     SkipBody->Previous = const_cast<FunctionDecl*>(Definition);
15489     if (auto *TD = Definition->getDescribedFunctionTemplate())
15490       makeMergedDefinitionVisible(TD);
15491     makeMergedDefinitionVisible(const_cast<FunctionDecl*>(Definition));
15492     return;
15493   }
15494 
15495   if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
15496       Definition->getStorageClass() == SC_Extern)
15497     Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
15498         << FD << getLangOpts().CPlusPlus;
15499   else
15500     Diag(FD->getLocation(), diag::err_redefinition) << FD;
15501 
15502   Diag(Definition->getLocation(), diag::note_previous_definition);
15503   FD->setInvalidDecl();
15504 }
15505 
15506 LambdaScopeInfo *Sema::RebuildLambdaScopeInfo(CXXMethodDecl *CallOperator) {
15507   CXXRecordDecl *LambdaClass = CallOperator->getParent();
15508 
15509   LambdaScopeInfo *LSI = PushLambdaScope();
15510   LSI->CallOperator = CallOperator;
15511   LSI->Lambda = LambdaClass;
15512   LSI->ReturnType = CallOperator->getReturnType();
15513   // When this function is called in situation where the context of the call
15514   // operator is not entered, we set AfterParameterList to false, so that
15515   // `tryCaptureVariable` finds explicit captures in the appropriate context.
15516   // There is also at least a situation as in FinishTemplateArgumentDeduction(),
15517   // where we would set the CurContext to the lambda operator before
15518   // substituting into it. In this case the flag needs to be true such that
15519   // tryCaptureVariable can correctly handle potential captures thereof.
15520   LSI->AfterParameterList = CurContext == CallOperator;
15521 
15522   // GLTemplateParameterList is necessary for getCurGenericLambda() which is
15523   // used at the point of dealing with potential captures.
15524   //
15525   // We don't use LambdaClass->isGenericLambda() because this value doesn't
15526   // flip for instantiated generic lambdas, where no FunctionTemplateDecls are
15527   // associated. (Technically, we could recover that list from their
15528   // instantiation patterns, but for now, the GLTemplateParameterList seems
15529   // unnecessary in these cases.)
15530   if (FunctionTemplateDecl *FTD = CallOperator->getDescribedFunctionTemplate())
15531     LSI->GLTemplateParameterList = FTD->getTemplateParameters();
15532   const LambdaCaptureDefault LCD = LambdaClass->getLambdaCaptureDefault();
15533 
15534   if (LCD == LCD_None)
15535     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_None;
15536   else if (LCD == LCD_ByCopy)
15537     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByval;
15538   else if (LCD == LCD_ByRef)
15539     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByref;
15540   DeclarationNameInfo DNI = CallOperator->getNameInfo();
15541 
15542   LSI->IntroducerRange = DNI.getCXXOperatorNameRange();
15543   LSI->Mutable = !CallOperator->isConst();
15544   if (CallOperator->isExplicitObjectMemberFunction())
15545     LSI->ExplicitObjectParameter = CallOperator->getParamDecl(0);
15546 
15547   // Add the captures to the LSI so they can be noted as already
15548   // captured within tryCaptureVar.
15549   auto I = LambdaClass->field_begin();
15550   for (const auto &C : LambdaClass->captures()) {
15551     if (C.capturesVariable()) {
15552       ValueDecl *VD = C.getCapturedVar();
15553       if (VD->isInitCapture())
15554         CurrentInstantiationScope->InstantiatedLocal(VD, VD);
15555       const bool ByRef = C.getCaptureKind() == LCK_ByRef;
15556       LSI->addCapture(VD, /*IsBlock*/false, ByRef,
15557           /*RefersToEnclosingVariableOrCapture*/true, C.getLocation(),
15558           /*EllipsisLoc*/C.isPackExpansion()
15559                          ? C.getEllipsisLoc() : SourceLocation(),
15560           I->getType(), /*Invalid*/false);
15561 
15562     } else if (C.capturesThis()) {
15563       LSI->addThisCapture(/*Nested*/ false, C.getLocation(), I->getType(),
15564                           C.getCaptureKind() == LCK_StarThis);
15565     } else {
15566       LSI->addVLATypeCapture(C.getLocation(), I->getCapturedVLAType(),
15567                              I->getType());
15568     }
15569     ++I;
15570   }
15571   return LSI;
15572 }
15573 
15574 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D,
15575                                     SkipBodyInfo *SkipBody,
15576                                     FnBodyKind BodyKind) {
15577   if (!D) {
15578     // Parsing the function declaration failed in some way. Push on a fake scope
15579     // anyway so we can try to parse the function body.
15580     PushFunctionScope();
15581     PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
15582     return D;
15583   }
15584 
15585   FunctionDecl *FD = nullptr;
15586 
15587   if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
15588     FD = FunTmpl->getTemplatedDecl();
15589   else
15590     FD = cast<FunctionDecl>(D);
15591 
15592   // Do not push if it is a lambda because one is already pushed when building
15593   // the lambda in ActOnStartOfLambdaDefinition().
15594   if (!isLambdaCallOperator(FD))
15595     // [expr.const]/p14.1
15596     // An expression or conversion is in an immediate function context if it is
15597     // potentially evaluated and either: its innermost enclosing non-block scope
15598     // is a function parameter scope of an immediate function.
15599     PushExpressionEvaluationContext(
15600         FD->isConsteval() ? ExpressionEvaluationContext::ImmediateFunctionContext
15601                           : ExprEvalContexts.back().Context);
15602 
15603   // Each ExpressionEvaluationContextRecord also keeps track of whether the
15604   // context is nested in an immediate function context, so smaller contexts
15605   // that appear inside immediate functions (like variable initializers) are
15606   // considered to be inside an immediate function context even though by
15607   // themselves they are not immediate function contexts. But when a new
15608   // function is entered, we need to reset this tracking, since the entered
15609   // function might be not an immediate function.
15610   ExprEvalContexts.back().InImmediateFunctionContext = FD->isConsteval();
15611   ExprEvalContexts.back().InImmediateEscalatingFunctionContext =
15612       getLangOpts().CPlusPlus20 && FD->isImmediateEscalating();
15613 
15614   // Check for defining attributes before the check for redefinition.
15615   if (const auto *Attr = FD->getAttr<AliasAttr>()) {
15616     Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 0;
15617     FD->dropAttr<AliasAttr>();
15618     FD->setInvalidDecl();
15619   }
15620   if (const auto *Attr = FD->getAttr<IFuncAttr>()) {
15621     Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 1;
15622     FD->dropAttr<IFuncAttr>();
15623     FD->setInvalidDecl();
15624   }
15625   if (const auto *Attr = FD->getAttr<TargetVersionAttr>()) {
15626     if (Context.getTargetInfo().getTriple().isAArch64() &&
15627         !Context.getTargetInfo().hasFeature("fmv") &&
15628         !Attr->isDefaultVersion()) {
15629       // If function multi versioning disabled skip parsing function body
15630       // defined with non-default target_version attribute
15631       if (SkipBody)
15632         SkipBody->ShouldSkip = true;
15633       return nullptr;
15634     }
15635   }
15636 
15637   if (auto *Ctor = dyn_cast<CXXConstructorDecl>(FD)) {
15638     if (Ctor->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
15639         Ctor->isDefaultConstructor() &&
15640         Context.getTargetInfo().getCXXABI().isMicrosoft()) {
15641       // If this is an MS ABI dllexport default constructor, instantiate any
15642       // default arguments.
15643       InstantiateDefaultCtorDefaultArgs(Ctor);
15644     }
15645   }
15646 
15647   // See if this is a redefinition. If 'will have body' (or similar) is already
15648   // set, then these checks were already performed when it was set.
15649   if (!FD->willHaveBody() && !FD->isLateTemplateParsed() &&
15650       !FD->isThisDeclarationInstantiatedFromAFriendDefinition()) {
15651     CheckForFunctionRedefinition(FD, nullptr, SkipBody);
15652 
15653     // If we're skipping the body, we're done. Don't enter the scope.
15654     if (SkipBody && SkipBody->ShouldSkip)
15655       return D;
15656   }
15657 
15658   // Mark this function as "will have a body eventually".  This lets users to
15659   // call e.g. isInlineDefinitionExternallyVisible while we're still parsing
15660   // this function.
15661   FD->setWillHaveBody();
15662 
15663   // If we are instantiating a generic lambda call operator, push
15664   // a LambdaScopeInfo onto the function stack.  But use the information
15665   // that's already been calculated (ActOnLambdaExpr) to prime the current
15666   // LambdaScopeInfo.
15667   // When the template operator is being specialized, the LambdaScopeInfo,
15668   // has to be properly restored so that tryCaptureVariable doesn't try
15669   // and capture any new variables. In addition when calculating potential
15670   // captures during transformation of nested lambdas, it is necessary to
15671   // have the LSI properly restored.
15672   if (isGenericLambdaCallOperatorSpecialization(FD)) {
15673     // C++2c 7.5.5.2p17 A member of a closure type shall not be explicitly
15674     // instantiated, explicitly specialized.
15675     if (FD->getTemplateSpecializationInfo()
15676             ->isExplicitInstantiationOrSpecialization()) {
15677       Diag(FD->getLocation(), diag::err_lambda_explicit_spec);
15678       FD->setInvalidDecl();
15679       PushFunctionScope();
15680     } else {
15681       assert(inTemplateInstantiation() &&
15682              "There should be an active template instantiation on the stack "
15683              "when instantiating a generic lambda!");
15684       RebuildLambdaScopeInfo(cast<CXXMethodDecl>(D));
15685     }
15686   } else {
15687     // Enter a new function scope
15688     PushFunctionScope();
15689   }
15690 
15691   // Builtin functions cannot be defined.
15692   if (unsigned BuiltinID = FD->getBuiltinID()) {
15693     if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
15694         !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) {
15695       Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
15696       FD->setInvalidDecl();
15697     }
15698   }
15699 
15700   // The return type of a function definition must be complete (C99 6.9.1p3).
15701   // C++23 [dcl.fct.def.general]/p2
15702   // The type of [...] the return for a function definition
15703   // shall not be a (possibly cv-qualified) class type that is incomplete
15704   // or abstract within the function body unless the function is deleted.
15705   QualType ResultType = FD->getReturnType();
15706   if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
15707       !FD->isInvalidDecl() && BodyKind != FnBodyKind::Delete &&
15708       (RequireCompleteType(FD->getLocation(), ResultType,
15709                            diag::err_func_def_incomplete_result) ||
15710        RequireNonAbstractType(FD->getLocation(), FD->getReturnType(),
15711                               diag::err_abstract_type_in_decl,
15712                               AbstractReturnType)))
15713     FD->setInvalidDecl();
15714 
15715   if (FnBodyScope)
15716     PushDeclContext(FnBodyScope, FD);
15717 
15718   // Check the validity of our function parameters
15719   if (BodyKind != FnBodyKind::Delete)
15720     CheckParmsForFunctionDef(FD->parameters(),
15721                              /*CheckParameterNames=*/true);
15722 
15723   // Add non-parameter declarations already in the function to the current
15724   // scope.
15725   if (FnBodyScope) {
15726     for (Decl *NPD : FD->decls()) {
15727       auto *NonParmDecl = dyn_cast<NamedDecl>(NPD);
15728       if (!NonParmDecl)
15729         continue;
15730       assert(!isa<ParmVarDecl>(NonParmDecl) &&
15731              "parameters should not be in newly created FD yet");
15732 
15733       // If the decl has a name, make it accessible in the current scope.
15734       if (NonParmDecl->getDeclName())
15735         PushOnScopeChains(NonParmDecl, FnBodyScope, /*AddToContext=*/false);
15736 
15737       // Similarly, dive into enums and fish their constants out, making them
15738       // accessible in this scope.
15739       if (auto *ED = dyn_cast<EnumDecl>(NonParmDecl)) {
15740         for (auto *EI : ED->enumerators())
15741           PushOnScopeChains(EI, FnBodyScope, /*AddToContext=*/false);
15742       }
15743     }
15744   }
15745 
15746   // Introduce our parameters into the function scope
15747   for (auto *Param : FD->parameters()) {
15748     Param->setOwningFunction(FD);
15749 
15750     // If this has an identifier, add it to the scope stack.
15751     if (Param->getIdentifier() && FnBodyScope) {
15752       CheckShadow(FnBodyScope, Param);
15753 
15754       PushOnScopeChains(Param, FnBodyScope);
15755     }
15756   }
15757 
15758   // C++ [module.import/6] external definitions are not permitted in header
15759   // units.  Deleted and Defaulted functions are implicitly inline (but the
15760   // inline state is not set at this point, so check the BodyKind explicitly).
15761   // FIXME: Consider an alternate location for the test where the inlined()
15762   // state is complete.
15763   if (getLangOpts().CPlusPlusModules && currentModuleIsHeaderUnit() &&
15764       !FD->isInvalidDecl() && !FD->isInlined() &&
15765       BodyKind != FnBodyKind::Delete && BodyKind != FnBodyKind::Default &&
15766       FD->getFormalLinkage() == Linkage::External && !FD->isTemplated() &&
15767       !FD->isTemplateInstantiation()) {
15768     assert(FD->isThisDeclarationADefinition());
15769     Diag(FD->getLocation(), diag::err_extern_def_in_header_unit);
15770     FD->setInvalidDecl();
15771   }
15772 
15773   // Ensure that the function's exception specification is instantiated.
15774   if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
15775     ResolveExceptionSpec(D->getLocation(), FPT);
15776 
15777   // dllimport cannot be applied to non-inline function definitions.
15778   if (FD->hasAttr<DLLImportAttr>() && !FD->isInlined() &&
15779       !FD->isTemplateInstantiation()) {
15780     assert(!FD->hasAttr<DLLExportAttr>());
15781     Diag(FD->getLocation(), diag::err_attribute_dllimport_function_definition);
15782     FD->setInvalidDecl();
15783     return D;
15784   }
15785 
15786   // Some function attributes (like OptimizeNoneAttr) need actions before
15787   // parsing body started.
15788   applyFunctionAttributesBeforeParsingBody(D);
15789 
15790   // We want to attach documentation to original Decl (which might be
15791   // a function template).
15792   ActOnDocumentableDecl(D);
15793   if (getCurLexicalContext()->isObjCContainer() &&
15794       getCurLexicalContext()->getDeclKind() != Decl::ObjCCategoryImpl &&
15795       getCurLexicalContext()->getDeclKind() != Decl::ObjCImplementation)
15796     Diag(FD->getLocation(), diag::warn_function_def_in_objc_container);
15797 
15798   maybeAddDeclWithEffects(FD);
15799 
15800   return D;
15801 }
15802 
15803 void Sema::applyFunctionAttributesBeforeParsingBody(Decl *FD) {
15804   if (!FD || FD->isInvalidDecl())
15805     return;
15806   if (auto *TD = dyn_cast<FunctionTemplateDecl>(FD))
15807     FD = TD->getTemplatedDecl();
15808   if (FD && FD->hasAttr<OptimizeNoneAttr>()) {
15809     FPOptionsOverride FPO;
15810     FPO.setDisallowOptimizations();
15811     CurFPFeatures.applyChanges(FPO);
15812     FpPragmaStack.CurrentValue =
15813         CurFPFeatures.getChangesFrom(FPOptions(LangOpts));
15814   }
15815 }
15816 
15817 void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
15818   ReturnStmt **Returns = Scope->Returns.data();
15819 
15820   for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
15821     if (const VarDecl *NRVOCandidate = Returns[I]->getNRVOCandidate()) {
15822       if (!NRVOCandidate->isNRVOVariable())
15823         Returns[I]->setNRVOCandidate(nullptr);
15824     }
15825   }
15826 }
15827 
15828 bool Sema::canDelayFunctionBody(const Declarator &D) {
15829   // We can't delay parsing the body of a constexpr function template (yet).
15830   if (D.getDeclSpec().hasConstexprSpecifier())
15831     return false;
15832 
15833   // We can't delay parsing the body of a function template with a deduced
15834   // return type (yet).
15835   if (D.getDeclSpec().hasAutoTypeSpec()) {
15836     // If the placeholder introduces a non-deduced trailing return type,
15837     // we can still delay parsing it.
15838     if (D.getNumTypeObjects()) {
15839       const auto &Outer = D.getTypeObject(D.getNumTypeObjects() - 1);
15840       if (Outer.Kind == DeclaratorChunk::Function &&
15841           Outer.Fun.hasTrailingReturnType()) {
15842         QualType Ty = GetTypeFromParser(Outer.Fun.getTrailingReturnType());
15843         return Ty.isNull() || !Ty->isUndeducedType();
15844       }
15845     }
15846     return false;
15847   }
15848 
15849   return true;
15850 }
15851 
15852 bool Sema::canSkipFunctionBody(Decl *D) {
15853   // We cannot skip the body of a function (or function template) which is
15854   // constexpr, since we may need to evaluate its body in order to parse the
15855   // rest of the file.
15856   // We cannot skip the body of a function with an undeduced return type,
15857   // because any callers of that function need to know the type.
15858   if (const FunctionDecl *FD = D->getAsFunction()) {
15859     if (FD->isConstexpr())
15860       return false;
15861     // We can't simply call Type::isUndeducedType here, because inside template
15862     // auto can be deduced to a dependent type, which is not considered
15863     // "undeduced".
15864     if (FD->getReturnType()->getContainedDeducedType())
15865       return false;
15866   }
15867   return Consumer.shouldSkipFunctionBody(D);
15868 }
15869 
15870 Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
15871   if (!Decl)
15872     return nullptr;
15873   if (FunctionDecl *FD = Decl->getAsFunction())
15874     FD->setHasSkippedBody();
15875   else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(Decl))
15876     MD->setHasSkippedBody();
15877   return Decl;
15878 }
15879 
15880 Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
15881   return ActOnFinishFunctionBody(D, BodyArg, /*IsInstantiation=*/false);
15882 }
15883 
15884 /// RAII object that pops an ExpressionEvaluationContext when exiting a function
15885 /// body.
15886 class ExitFunctionBodyRAII {
15887 public:
15888   ExitFunctionBodyRAII(Sema &S, bool IsLambda) : S(S), IsLambda(IsLambda) {}
15889   ~ExitFunctionBodyRAII() {
15890     if (!IsLambda)
15891       S.PopExpressionEvaluationContext();
15892   }
15893 
15894 private:
15895   Sema &S;
15896   bool IsLambda = false;
15897 };
15898 
15899 static void diagnoseImplicitlyRetainedSelf(Sema &S) {
15900   llvm::DenseMap<const BlockDecl *, bool> EscapeInfo;
15901 
15902   auto IsOrNestedInEscapingBlock = [&](const BlockDecl *BD) {
15903     if (auto It = EscapeInfo.find(BD); It != EscapeInfo.end())
15904       return It->second;
15905 
15906     bool R = false;
15907     const BlockDecl *CurBD = BD;
15908 
15909     do {
15910       R = !CurBD->doesNotEscape();
15911       if (R)
15912         break;
15913       CurBD = CurBD->getParent()->getInnermostBlockDecl();
15914     } while (CurBD);
15915 
15916     return EscapeInfo[BD] = R;
15917   };
15918 
15919   // If the location where 'self' is implicitly retained is inside a escaping
15920   // block, emit a diagnostic.
15921   for (const std::pair<SourceLocation, const BlockDecl *> &P :
15922        S.ImplicitlyRetainedSelfLocs)
15923     if (IsOrNestedInEscapingBlock(P.second))
15924       S.Diag(P.first, diag::warn_implicitly_retains_self)
15925           << FixItHint::CreateInsertion(P.first, "self->");
15926 }
15927 
15928 static bool methodHasName(const FunctionDecl *FD, StringRef Name) {
15929   return isa<CXXMethodDecl>(FD) && FD->param_empty() &&
15930          FD->getDeclName().isIdentifier() && FD->getName() == Name;
15931 }
15932 
15933 bool Sema::CanBeGetReturnObject(const FunctionDecl *FD) {
15934   return methodHasName(FD, "get_return_object");
15935 }
15936 
15937 bool Sema::CanBeGetReturnTypeOnAllocFailure(const FunctionDecl *FD) {
15938   return FD->isStatic() &&
15939          methodHasName(FD, "get_return_object_on_allocation_failure");
15940 }
15941 
15942 void Sema::CheckCoroutineWrapper(FunctionDecl *FD) {
15943   RecordDecl *RD = FD->getReturnType()->getAsRecordDecl();
15944   if (!RD || !RD->getUnderlyingDecl()->hasAttr<CoroReturnTypeAttr>())
15945     return;
15946   // Allow some_promise_type::get_return_object().
15947   if (CanBeGetReturnObject(FD) || CanBeGetReturnTypeOnAllocFailure(FD))
15948     return;
15949   if (!FD->hasAttr<CoroWrapperAttr>())
15950     Diag(FD->getLocation(), diag::err_coroutine_return_type) << RD;
15951 }
15952 
15953 Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
15954                                     bool IsInstantiation) {
15955   FunctionScopeInfo *FSI = getCurFunction();
15956   FunctionDecl *FD = dcl ? dcl->getAsFunction() : nullptr;
15957 
15958   if (FSI->UsesFPIntrin && FD && !FD->hasAttr<StrictFPAttr>())
15959     FD->addAttr(StrictFPAttr::CreateImplicit(Context));
15960 
15961   sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
15962   sema::AnalysisBasedWarnings::Policy *ActivePolicy = nullptr;
15963 
15964   // If we skip function body, we can't tell if a function is a coroutine.
15965   if (getLangOpts().Coroutines && FD && !FD->hasSkippedBody()) {
15966     if (FSI->isCoroutine())
15967       CheckCompletedCoroutineBody(FD, Body);
15968     else
15969       CheckCoroutineWrapper(FD);
15970   }
15971 
15972   // Diagnose invalid SYCL kernel entry point function declarations
15973   // and build SYCLKernelCallStmts for valid ones.
15974   if (FD && !FD->isInvalidDecl() && FD->hasAttr<SYCLKernelEntryPointAttr>()) {
15975     SYCLKernelEntryPointAttr *SKEPAttr =
15976         FD->getAttr<SYCLKernelEntryPointAttr>();
15977     if (FD->isDefaulted()) {
15978       Diag(SKEPAttr->getLocation(), diag::err_sycl_entry_point_invalid)
15979           << /*defaulted function*/ 3;
15980       SKEPAttr->setInvalidAttr();
15981     } else if (FD->isDeleted()) {
15982       Diag(SKEPAttr->getLocation(), diag::err_sycl_entry_point_invalid)
15983           << /*deleted function*/ 2;
15984       SKEPAttr->setInvalidAttr();
15985     } else if (FSI->isCoroutine()) {
15986       Diag(SKEPAttr->getLocation(), diag::err_sycl_entry_point_invalid)
15987           << /*coroutine*/ 7;
15988       SKEPAttr->setInvalidAttr();
15989     } else if (Body && isa<CXXTryStmt>(Body)) {
15990       Diag(SKEPAttr->getLocation(), diag::err_sycl_entry_point_invalid)
15991           << /*function defined with a function try block*/ 8;
15992       SKEPAttr->setInvalidAttr();
15993     }
15994 
15995     if (Body && !FD->isTemplated() && !SKEPAttr->isInvalidAttr()) {
15996       StmtResult SR =
15997           SYCL().BuildSYCLKernelCallStmt(FD, cast<CompoundStmt>(Body));
15998       if (SR.isInvalid())
15999         return nullptr;
16000       Body = SR.get();
16001     }
16002   }
16003 
16004   {
16005     // Do not call PopExpressionEvaluationContext() if it is a lambda because
16006     // one is already popped when finishing the lambda in BuildLambdaExpr().
16007     // This is meant to pop the context added in ActOnStartOfFunctionDef().
16008     ExitFunctionBodyRAII ExitRAII(*this, isLambdaCallOperator(FD));
16009     if (FD) {
16010       // If this is called by Parser::ParseFunctionDefinition() after marking
16011       // the declaration as deleted, and if the deleted-function-body contains
16012       // a message (C++26), then a DefaultedOrDeletedInfo will have already been
16013       // added to store that message; do not overwrite it in that case.
16014       //
16015       // Since this would always set the body to 'nullptr' in that case anyway,
16016       // which is already done when the function decl is initially created,
16017       // always skipping this irrespective of whether there is a delete message
16018       // should not be a problem.
16019       if (!FD->isDeletedAsWritten())
16020         FD->setBody(Body);
16021       FD->setWillHaveBody(false);
16022 
16023       if (getLangOpts().CPlusPlus14) {
16024         if (!FD->isInvalidDecl() && Body && !FD->isDependentContext() &&
16025             FD->getReturnType()->isUndeducedType()) {
16026           // For a function with a deduced result type to return void,
16027           // the result type as written must be 'auto' or 'decltype(auto)',
16028           // possibly cv-qualified or constrained, but not ref-qualified.
16029           if (!FD->getReturnType()->getAs<AutoType>()) {
16030             Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto)
16031                 << FD->getReturnType();
16032             FD->setInvalidDecl();
16033           } else {
16034             // Falling off the end of the function is the same as 'return;'.
16035             Expr *Dummy = nullptr;
16036             if (DeduceFunctionTypeFromReturnExpr(
16037                     FD, dcl->getLocation(), Dummy,
16038                     FD->getReturnType()->getAs<AutoType>()))
16039               FD->setInvalidDecl();
16040           }
16041         }
16042       } else if (getLangOpts().CPlusPlus && isLambdaCallOperator(FD)) {
16043         // In C++11, we don't use 'auto' deduction rules for lambda call
16044         // operators because we don't support return type deduction.
16045         auto *LSI = getCurLambda();
16046         if (LSI->HasImplicitReturnType) {
16047           deduceClosureReturnType(*LSI);
16048 
16049           // C++11 [expr.prim.lambda]p4:
16050           //   [...] if there are no return statements in the compound-statement
16051           //   [the deduced type is] the type void
16052           QualType RetType =
16053               LSI->ReturnType.isNull() ? Context.VoidTy : LSI->ReturnType;
16054 
16055           // Update the return type to the deduced type.
16056           const auto *Proto = FD->getType()->castAs<FunctionProtoType>();
16057           FD->setType(Context.getFunctionType(RetType, Proto->getParamTypes(),
16058                                               Proto->getExtProtoInfo()));
16059         }
16060       }
16061 
16062       // If the function implicitly returns zero (like 'main') or is naked,
16063       // don't complain about missing return statements.
16064       if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
16065         WP.disableCheckFallThrough();
16066 
16067       // MSVC permits the use of pure specifier (=0) on function definition,
16068       // defined at class scope, warn about this non-standard construct.
16069       if (getLangOpts().MicrosoftExt && FD->isPureVirtual() &&
16070           !FD->isOutOfLine())
16071         Diag(FD->getLocation(), diag::ext_pure_function_definition);
16072 
16073       if (!FD->isInvalidDecl()) {
16074         // Don't diagnose unused parameters of defaulted, deleted or naked
16075         // functions.
16076         if (!FD->isDeleted() && !FD->isDefaulted() && !FD->hasSkippedBody() &&
16077             !FD->hasAttr<NakedAttr>())
16078           DiagnoseUnusedParameters(FD->parameters());
16079         DiagnoseSizeOfParametersAndReturnValue(FD->parameters(),
16080                                                FD->getReturnType(), FD);
16081 
16082         // If this is a structor, we need a vtable.
16083         if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
16084           MarkVTableUsed(FD->getLocation(), Constructor->getParent());
16085         else if (CXXDestructorDecl *Destructor =
16086                      dyn_cast<CXXDestructorDecl>(FD))
16087           MarkVTableUsed(FD->getLocation(), Destructor->getParent());
16088 
16089         // Try to apply the named return value optimization. We have to check
16090         // if we can do this here because lambdas keep return statements around
16091         // to deduce an implicit return type.
16092         if (FD->getReturnType()->isRecordType() &&
16093             (!getLangOpts().CPlusPlus || !FD->isDependentContext()))
16094           computeNRVO(Body, FSI);
16095       }
16096 
16097       // GNU warning -Wmissing-prototypes:
16098       //   Warn if a global function is defined without a previous
16099       //   prototype declaration. This warning is issued even if the
16100       //   definition itself provides a prototype. The aim is to detect
16101       //   global functions that fail to be declared in header files.
16102       const FunctionDecl *PossiblePrototype = nullptr;
16103       if (ShouldWarnAboutMissingPrototype(FD, PossiblePrototype)) {
16104         Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
16105 
16106         if (PossiblePrototype) {
16107           // We found a declaration that is not a prototype,
16108           // but that could be a zero-parameter prototype
16109           if (TypeSourceInfo *TI = PossiblePrototype->getTypeSourceInfo()) {
16110             TypeLoc TL = TI->getTypeLoc();
16111             if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>())
16112               Diag(PossiblePrototype->getLocation(),
16113                    diag::note_declaration_not_a_prototype)
16114                   << (FD->getNumParams() != 0)
16115                   << (FD->getNumParams() == 0 ? FixItHint::CreateInsertion(
16116                                                     FTL.getRParenLoc(), "void")
16117                                               : FixItHint{});
16118           }
16119         } else {
16120           // Returns true if the token beginning at this Loc is `const`.
16121           auto isLocAtConst = [&](SourceLocation Loc, const SourceManager &SM,
16122                                   const LangOptions &LangOpts) {
16123             std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc);
16124             if (LocInfo.first.isInvalid())
16125               return false;
16126 
16127             bool Invalid = false;
16128             StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
16129             if (Invalid)
16130               return false;
16131 
16132             if (LocInfo.second > Buffer.size())
16133               return false;
16134 
16135             const char *LexStart = Buffer.data() + LocInfo.second;
16136             StringRef StartTok(LexStart, Buffer.size() - LocInfo.second);
16137 
16138             return StartTok.consume_front("const") &&
16139                    (StartTok.empty() || isWhitespace(StartTok[0]) ||
16140                     StartTok.starts_with("/*") || StartTok.starts_with("//"));
16141           };
16142 
16143           auto findBeginLoc = [&]() {
16144             // If the return type has `const` qualifier, we want to insert
16145             // `static` before `const` (and not before the typename).
16146             if ((FD->getReturnType()->isAnyPointerType() &&
16147                  FD->getReturnType()->getPointeeType().isConstQualified()) ||
16148                 FD->getReturnType().isConstQualified()) {
16149               // But only do this if we can determine where the `const` is.
16150 
16151               if (isLocAtConst(FD->getBeginLoc(), getSourceManager(),
16152                                getLangOpts()))
16153 
16154                 return FD->getBeginLoc();
16155             }
16156             return FD->getTypeSpecStartLoc();
16157           };
16158           Diag(FD->getTypeSpecStartLoc(),
16159                diag::note_static_for_internal_linkage)
16160               << /* function */ 1
16161               << (FD->getStorageClass() == SC_None
16162                       ? FixItHint::CreateInsertion(findBeginLoc(), "static ")
16163                       : FixItHint{});
16164         }
16165       }
16166 
16167       // We might not have found a prototype because we didn't wish to warn on
16168       // the lack of a missing prototype. Try again without the checks for
16169       // whether we want to warn on the missing prototype.
16170       if (!PossiblePrototype)
16171         (void)FindPossiblePrototype(FD, PossiblePrototype);
16172 
16173       // If the function being defined does not have a prototype, then we may
16174       // need to diagnose it as changing behavior in C23 because we now know
16175       // whether the function accepts arguments or not. This only handles the
16176       // case where the definition has no prototype but does have parameters
16177       // and either there is no previous potential prototype, or the previous
16178       // potential prototype also has no actual prototype. This handles cases
16179       // like:
16180       //   void f(); void f(a) int a; {}
16181       //   void g(a) int a; {}
16182       // See MergeFunctionDecl() for other cases of the behavior change
16183       // diagnostic. See GetFullTypeForDeclarator() for handling of a function
16184       // type without a prototype.
16185       if (!FD->hasWrittenPrototype() && FD->getNumParams() != 0 &&
16186           (!PossiblePrototype || (!PossiblePrototype->hasWrittenPrototype() &&
16187                                   !PossiblePrototype->isImplicit()))) {
16188         // The function definition has parameters, so this will change behavior
16189         // in C23. If there is a possible prototype, it comes before the
16190         // function definition.
16191         // FIXME: The declaration may have already been diagnosed as being
16192         // deprecated in GetFullTypeForDeclarator() if it had no arguments, but
16193         // there's no way to test for the "changes behavior" condition in
16194         // SemaType.cpp when forming the declaration's function type. So, we do
16195         // this awkward dance instead.
16196         //
16197         // If we have a possible prototype and it declares a function with a
16198         // prototype, we don't want to diagnose it; if we have a possible
16199         // prototype and it has no prototype, it may have already been
16200         // diagnosed in SemaType.cpp as deprecated depending on whether
16201         // -Wstrict-prototypes is enabled. If we already warned about it being
16202         // deprecated, add a note that it also changes behavior. If we didn't
16203         // warn about it being deprecated (because the diagnostic is not
16204         // enabled), warn now that it is deprecated and changes behavior.
16205 
16206         // This K&R C function definition definitely changes behavior in C23,
16207         // so diagnose it.
16208         Diag(FD->getLocation(), diag::warn_non_prototype_changes_behavior)
16209             << /*definition*/ 1 << /* not supported in C23 */ 0;
16210 
16211         // If we have a possible prototype for the function which is a user-
16212         // visible declaration, we already tested that it has no prototype.
16213         // This will change behavior in C23. This gets a warning rather than a
16214         // note because it's the same behavior-changing problem as with the
16215         // definition.
16216         if (PossiblePrototype)
16217           Diag(PossiblePrototype->getLocation(),
16218                diag::warn_non_prototype_changes_behavior)
16219               << /*declaration*/ 0 << /* conflicting */ 1 << /*subsequent*/ 1
16220               << /*definition*/ 1;
16221       }
16222 
16223       // Warn on CPUDispatch with an actual body.
16224       if (FD->isMultiVersion() && FD->hasAttr<CPUDispatchAttr>() && Body)
16225         if (const auto *CmpndBody = dyn_cast<CompoundStmt>(Body))
16226           if (!CmpndBody->body_empty())
16227             Diag(CmpndBody->body_front()->getBeginLoc(),
16228                  diag::warn_dispatch_body_ignored);
16229 
16230       if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
16231         const CXXMethodDecl *KeyFunction;
16232         if (MD->isOutOfLine() && (MD = MD->getCanonicalDecl()) &&
16233             MD->isVirtual() &&
16234             (KeyFunction = Context.getCurrentKeyFunction(MD->getParent())) &&
16235             MD == KeyFunction->getCanonicalDecl()) {
16236           // Update the key-function state if necessary for this ABI.
16237           if (FD->isInlined() &&
16238               !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
16239             Context.setNonKeyFunction(MD);
16240 
16241             // If the newly-chosen key function is already defined, then we
16242             // need to mark the vtable as used retroactively.
16243             KeyFunction = Context.getCurrentKeyFunction(MD->getParent());
16244             const FunctionDecl *Definition;
16245             if (KeyFunction && KeyFunction->isDefined(Definition))
16246               MarkVTableUsed(Definition->getLocation(), MD->getParent(), true);
16247           } else {
16248             // We just defined they key function; mark the vtable as used.
16249             MarkVTableUsed(FD->getLocation(), MD->getParent(), true);
16250           }
16251         }
16252       }
16253 
16254       assert((FD == getCurFunctionDecl(/*AllowLambdas=*/true)) &&
16255              "Function parsing confused");
16256     } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
16257       assert(MD == getCurMethodDecl() && "Method parsing confused");
16258       MD->setBody(Body);
16259       if (!MD->isInvalidDecl()) {
16260         DiagnoseSizeOfParametersAndReturnValue(MD->parameters(),
16261                                                MD->getReturnType(), MD);
16262 
16263         if (Body)
16264           computeNRVO(Body, FSI);
16265       }
16266       if (FSI->ObjCShouldCallSuper) {
16267         Diag(MD->getEndLoc(), diag::warn_objc_missing_super_call)
16268             << MD->getSelector().getAsString();
16269         FSI->ObjCShouldCallSuper = false;
16270       }
16271       if (FSI->ObjCWarnForNoDesignatedInitChain) {
16272         const ObjCMethodDecl *InitMethod = nullptr;
16273         bool isDesignated =
16274             MD->isDesignatedInitializerForTheInterface(&InitMethod);
16275         assert(isDesignated && InitMethod);
16276         (void)isDesignated;
16277 
16278         auto superIsNSObject = [&](const ObjCMethodDecl *MD) {
16279           auto IFace = MD->getClassInterface();
16280           if (!IFace)
16281             return false;
16282           auto SuperD = IFace->getSuperClass();
16283           if (!SuperD)
16284             return false;
16285           return SuperD->getIdentifier() ==
16286                  ObjC().NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject);
16287         };
16288         // Don't issue this warning for unavailable inits or direct subclasses
16289         // of NSObject.
16290         if (!MD->isUnavailable() && !superIsNSObject(MD)) {
16291           Diag(MD->getLocation(),
16292                diag::warn_objc_designated_init_missing_super_call);
16293           Diag(InitMethod->getLocation(),
16294                diag::note_objc_designated_init_marked_here);
16295         }
16296         FSI->ObjCWarnForNoDesignatedInitChain = false;
16297       }
16298       if (FSI->ObjCWarnForNoInitDelegation) {
16299         // Don't issue this warning for unavailable inits.
16300         if (!MD->isUnavailable())
16301           Diag(MD->getLocation(),
16302                diag::warn_objc_secondary_init_missing_init_call);
16303         FSI->ObjCWarnForNoInitDelegation = false;
16304       }
16305 
16306       diagnoseImplicitlyRetainedSelf(*this);
16307     } else {
16308       // Parsing the function declaration failed in some way. Pop the fake scope
16309       // we pushed on.
16310       PopFunctionScopeInfo(ActivePolicy, dcl);
16311       return nullptr;
16312     }
16313 
16314     if (Body && FSI->HasPotentialAvailabilityViolations)
16315       DiagnoseUnguardedAvailabilityViolations(dcl);
16316 
16317     assert(!FSI->ObjCShouldCallSuper &&
16318            "This should only be set for ObjC methods, which should have been "
16319            "handled in the block above.");
16320 
16321     // Verify and clean out per-function state.
16322     if (Body && (!FD || !FD->isDefaulted())) {
16323       // C++ constructors that have function-try-blocks can't have return
16324       // statements in the handlers of that block. (C++ [except.handle]p14)
16325       // Verify this.
16326       if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
16327         DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
16328 
16329       // Verify that gotos and switch cases don't jump into scopes illegally.
16330       if (FSI->NeedsScopeChecking() && !PP.isCodeCompletionEnabled())
16331         DiagnoseInvalidJumps(Body);
16332 
16333       if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
16334         if (!Destructor->getParent()->isDependentType())
16335           CheckDestructor(Destructor);
16336 
16337         MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
16338                                                Destructor->getParent());
16339       }
16340 
16341       // If any errors have occurred, clear out any temporaries that may have
16342       // been leftover. This ensures that these temporaries won't be picked up
16343       // for deletion in some later function.
16344       if (hasUncompilableErrorOccurred() ||
16345           hasAnyUnrecoverableErrorsInThisFunction() ||
16346           getDiagnostics().getSuppressAllDiagnostics()) {
16347         DiscardCleanupsInEvaluationContext();
16348       }
16349       if (!hasUncompilableErrorOccurred() && !isa<FunctionTemplateDecl>(dcl)) {
16350         // Since the body is valid, issue any analysis-based warnings that are
16351         // enabled.
16352         ActivePolicy = &WP;
16353       }
16354 
16355       if (!IsInstantiation && FD &&
16356           (FD->isConstexpr() || FD->hasAttr<MSConstexprAttr>()) &&
16357           !FD->isInvalidDecl() &&
16358           !CheckConstexprFunctionDefinition(FD, CheckConstexprKind::Diagnose))
16359         FD->setInvalidDecl();
16360 
16361       if (FD && FD->hasAttr<NakedAttr>()) {
16362         for (const Stmt *S : Body->children()) {
16363           // Allow local register variables without initializer as they don't
16364           // require prologue.
16365           bool RegisterVariables = false;
16366           if (auto *DS = dyn_cast<DeclStmt>(S)) {
16367             for (const auto *Decl : DS->decls()) {
16368               if (const auto *Var = dyn_cast<VarDecl>(Decl)) {
16369                 RegisterVariables =
16370                     Var->hasAttr<AsmLabelAttr>() && !Var->hasInit();
16371                 if (!RegisterVariables)
16372                   break;
16373               }
16374             }
16375           }
16376           if (RegisterVariables)
16377             continue;
16378           if (!isa<AsmStmt>(S) && !isa<NullStmt>(S)) {
16379             Diag(S->getBeginLoc(), diag::err_non_asm_stmt_in_naked_function);
16380             Diag(FD->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
16381             FD->setInvalidDecl();
16382             break;
16383           }
16384         }
16385       }
16386 
16387       assert(ExprCleanupObjects.size() ==
16388                  ExprEvalContexts.back().NumCleanupObjects &&
16389              "Leftover temporaries in function");
16390       assert(!Cleanup.exprNeedsCleanups() &&
16391              "Unaccounted cleanups in function");
16392       assert(MaybeODRUseExprs.empty() &&
16393              "Leftover expressions for odr-use checking");
16394     }
16395   } // Pops the ExitFunctionBodyRAII scope, which needs to happen before we pop
16396     // the declaration context below. Otherwise, we're unable to transform
16397     // 'this' expressions when transforming immediate context functions.
16398 
16399   if (FD)
16400     CheckImmediateEscalatingFunctionDefinition(FD, getCurFunction());
16401 
16402   if (!IsInstantiation)
16403     PopDeclContext();
16404 
16405   PopFunctionScopeInfo(ActivePolicy, dcl);
16406   // If any errors have occurred, clear out any temporaries that may have
16407   // been leftover. This ensures that these temporaries won't be picked up for
16408   // deletion in some later function.
16409   if (hasUncompilableErrorOccurred()) {
16410     DiscardCleanupsInEvaluationContext();
16411   }
16412 
16413   if (FD && ((LangOpts.OpenMP && (LangOpts.OpenMPIsTargetDevice ||
16414                                   !LangOpts.OMPTargetTriples.empty())) ||
16415              LangOpts.CUDA || LangOpts.SYCLIsDevice)) {
16416     auto ES = getEmissionStatus(FD);
16417     if (ES == Sema::FunctionEmissionStatus::Emitted ||
16418         ES == Sema::FunctionEmissionStatus::Unknown)
16419       DeclsToCheckForDeferredDiags.insert(FD);
16420   }
16421 
16422   if (FD && !FD->isDeleted())
16423     checkTypeSupport(FD->getType(), FD->getLocation(), FD);
16424 
16425   return dcl;
16426 }
16427 
16428 /// When we finish delayed parsing of an attribute, we must attach it to the
16429 /// relevant Decl.
16430 void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
16431                                        ParsedAttributes &Attrs) {
16432   // Always attach attributes to the underlying decl.
16433   if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
16434     D = TD->getTemplatedDecl();
16435   ProcessDeclAttributeList(S, D, Attrs);
16436   ProcessAPINotes(D);
16437 
16438   if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
16439     if (Method->isStatic())
16440       checkThisInStaticMemberFunctionAttributes(Method);
16441 }
16442 
16443 NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
16444                                           IdentifierInfo &II, Scope *S) {
16445   // It is not valid to implicitly define a function in C23.
16446   assert(LangOpts.implicitFunctionsAllowed() &&
16447          "Implicit function declarations aren't allowed in this language mode");
16448 
16449   // Find the scope in which the identifier is injected and the corresponding
16450   // DeclContext.
16451   // FIXME: C89 does not say what happens if there is no enclosing block scope.
16452   // In that case, we inject the declaration into the translation unit scope
16453   // instead.
16454   Scope *BlockScope = S;
16455   while (!BlockScope->isCompoundStmtScope() && BlockScope->getParent())
16456     BlockScope = BlockScope->getParent();
16457 
16458   // Loop until we find a DeclContext that is either a function/method or the
16459   // translation unit, which are the only two valid places to implicitly define
16460   // a function. This avoids accidentally defining the function within a tag
16461   // declaration, for example.
16462   Scope *ContextScope = BlockScope;
16463   while (!ContextScope->getEntity() ||
16464          (!ContextScope->getEntity()->isFunctionOrMethod() &&
16465           !ContextScope->getEntity()->isTranslationUnit()))
16466     ContextScope = ContextScope->getParent();
16467   ContextRAII SavedContext(*this, ContextScope->getEntity());
16468 
16469   // Before we produce a declaration for an implicitly defined
16470   // function, see whether there was a locally-scoped declaration of
16471   // this name as a function or variable. If so, use that
16472   // (non-visible) declaration, and complain about it.
16473   NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II);
16474   if (ExternCPrev) {
16475     // We still need to inject the function into the enclosing block scope so
16476     // that later (non-call) uses can see it.
16477     PushOnScopeChains(ExternCPrev, BlockScope, /*AddToContext*/false);
16478 
16479     // C89 footnote 38:
16480     //   If in fact it is not defined as having type "function returning int",
16481     //   the behavior is undefined.
16482     if (!isa<FunctionDecl>(ExternCPrev) ||
16483         !Context.typesAreCompatible(
16484             cast<FunctionDecl>(ExternCPrev)->getType(),
16485             Context.getFunctionNoProtoType(Context.IntTy))) {
16486       Diag(Loc, diag::ext_use_out_of_scope_declaration)
16487           << ExternCPrev << !getLangOpts().C99;
16488       Diag(ExternCPrev->getLocation(), diag::note_previous_declaration);
16489       return ExternCPrev;
16490     }
16491   }
16492 
16493   // Extension in C99 (defaults to error). Legal in C89, but warn about it.
16494   unsigned diag_id;
16495   if (II.getName().starts_with("__builtin_"))
16496     diag_id = diag::warn_builtin_unknown;
16497   // OpenCL v2.0 s6.9.u - Implicit function declaration is not supported.
16498   else if (getLangOpts().C99)
16499     diag_id = diag::ext_implicit_function_decl_c99;
16500   else
16501     diag_id = diag::warn_implicit_function_decl;
16502 
16503   TypoCorrection Corrected;
16504   // Because typo correction is expensive, only do it if the implicit
16505   // function declaration is going to be treated as an error.
16506   //
16507   // Perform the correction before issuing the main diagnostic, as some
16508   // consumers use typo-correction callbacks to enhance the main diagnostic.
16509   if (S && !ExternCPrev &&
16510       (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error)) {
16511     DeclFilterCCC<FunctionDecl> CCC{};
16512     Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc), LookupOrdinaryName,
16513                             S, nullptr, CCC, CTK_NonError);
16514   }
16515 
16516   Diag(Loc, diag_id) << &II;
16517   if (Corrected) {
16518     // If the correction is going to suggest an implicitly defined function,
16519     // skip the correction as not being a particularly good idea.
16520     bool Diagnose = true;
16521     if (const auto *D = Corrected.getCorrectionDecl())
16522       Diagnose = !D->isImplicit();
16523     if (Diagnose)
16524       diagnoseTypo(Corrected, PDiag(diag::note_function_suggestion),
16525                    /*ErrorRecovery*/ false);
16526   }
16527 
16528   // If we found a prior declaration of this function, don't bother building
16529   // another one. We've already pushed that one into scope, so there's nothing
16530   // more to do.
16531   if (ExternCPrev)
16532     return ExternCPrev;
16533 
16534   // Set a Declarator for the implicit definition: int foo();
16535   const char *Dummy;
16536   AttributeFactory attrFactory;
16537   DeclSpec DS(attrFactory);
16538   unsigned DiagID;
16539   bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID,
16540                                   Context.getPrintingPolicy());
16541   (void)Error; // Silence warning.
16542   assert(!Error && "Error setting up implicit decl!");
16543   SourceLocation NoLoc;
16544   Declarator D(DS, ParsedAttributesView::none(), DeclaratorContext::Block);
16545   D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
16546                                              /*IsAmbiguous=*/false,
16547                                              /*LParenLoc=*/NoLoc,
16548                                              /*Params=*/nullptr,
16549                                              /*NumParams=*/0,
16550                                              /*EllipsisLoc=*/NoLoc,
16551                                              /*RParenLoc=*/NoLoc,
16552                                              /*RefQualifierIsLvalueRef=*/true,
16553                                              /*RefQualifierLoc=*/NoLoc,
16554                                              /*MutableLoc=*/NoLoc, EST_None,
16555                                              /*ESpecRange=*/SourceRange(),
16556                                              /*Exceptions=*/nullptr,
16557                                              /*ExceptionRanges=*/nullptr,
16558                                              /*NumExceptions=*/0,
16559                                              /*NoexceptExpr=*/nullptr,
16560                                              /*ExceptionSpecTokens=*/nullptr,
16561                                              /*DeclsInPrototype=*/{}, Loc, Loc,
16562                                              D),
16563                 std::move(DS.getAttributes()), SourceLocation());
16564   D.SetIdentifier(&II, Loc);
16565 
16566   // Insert this function into the enclosing block scope.
16567   FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(BlockScope, D));
16568   FD->setImplicit();
16569 
16570   AddKnownFunctionAttributes(FD);
16571 
16572   return FD;
16573 }
16574 
16575 void Sema::AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(
16576     FunctionDecl *FD) {
16577   if (FD->isInvalidDecl())
16578     return;
16579 
16580   if (FD->getDeclName().getCXXOverloadedOperator() != OO_New &&
16581       FD->getDeclName().getCXXOverloadedOperator() != OO_Array_New)
16582     return;
16583 
16584   std::optional<unsigned> AlignmentParam;
16585   bool IsNothrow = false;
16586   if (!FD->isReplaceableGlobalAllocationFunction(&AlignmentParam, &IsNothrow))
16587     return;
16588 
16589   // C++2a [basic.stc.dynamic.allocation]p4:
16590   //   An allocation function that has a non-throwing exception specification
16591   //   indicates failure by returning a null pointer value. Any other allocation
16592   //   function never returns a null pointer value and indicates failure only by
16593   //   throwing an exception [...]
16594   //
16595   // However, -fcheck-new invalidates this possible assumption, so don't add
16596   // NonNull when that is enabled.
16597   if (!IsNothrow && !FD->hasAttr<ReturnsNonNullAttr>() &&
16598       !getLangOpts().CheckNew)
16599     FD->addAttr(ReturnsNonNullAttr::CreateImplicit(Context, FD->getLocation()));
16600 
16601   // C++2a [basic.stc.dynamic.allocation]p2:
16602   //   An allocation function attempts to allocate the requested amount of
16603   //   storage. [...] If the request succeeds, the value returned by a
16604   //   replaceable allocation function is a [...] pointer value p0 different
16605   //   from any previously returned value p1 [...]
16606   //
16607   // However, this particular information is being added in codegen,
16608   // because there is an opt-out switch for it (-fno-assume-sane-operator-new)
16609 
16610   // C++2a [basic.stc.dynamic.allocation]p2:
16611   //   An allocation function attempts to allocate the requested amount of
16612   //   storage. If it is successful, it returns the address of the start of a
16613   //   block of storage whose length in bytes is at least as large as the
16614   //   requested size.
16615   if (!FD->hasAttr<AllocSizeAttr>()) {
16616     FD->addAttr(AllocSizeAttr::CreateImplicit(
16617         Context, /*ElemSizeParam=*/ParamIdx(1, FD),
16618         /*NumElemsParam=*/ParamIdx(), FD->getLocation()));
16619   }
16620 
16621   // C++2a [basic.stc.dynamic.allocation]p3:
16622   //   For an allocation function [...], the pointer returned on a successful
16623   //   call shall represent the address of storage that is aligned as follows:
16624   //   (3.1) If the allocation function takes an argument of type
16625   //         std​::​align_­val_­t, the storage will have the alignment
16626   //         specified by the value of this argument.
16627   if (AlignmentParam && !FD->hasAttr<AllocAlignAttr>()) {
16628     FD->addAttr(AllocAlignAttr::CreateImplicit(
16629         Context, ParamIdx(*AlignmentParam, FD), FD->getLocation()));
16630   }
16631 
16632   // FIXME:
16633   // C++2a [basic.stc.dynamic.allocation]p3:
16634   //   For an allocation function [...], the pointer returned on a successful
16635   //   call shall represent the address of storage that is aligned as follows:
16636   //   (3.2) Otherwise, if the allocation function is named operator new[],
16637   //         the storage is aligned for any object that does not have
16638   //         new-extended alignment ([basic.align]) and is no larger than the
16639   //         requested size.
16640   //   (3.3) Otherwise, the storage is aligned for any object that does not
16641   //         have new-extended alignment and is of the requested size.
16642 }
16643 
16644 void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
16645   if (FD->isInvalidDecl())
16646     return;
16647 
16648   // If this is a built-in function, map its builtin attributes to
16649   // actual attributes.
16650   if (unsigned BuiltinID = FD->getBuiltinID()) {
16651     // Handle printf-formatting attributes.
16652     unsigned FormatIdx;
16653     bool HasVAListArg;
16654     if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
16655       if (!FD->hasAttr<FormatAttr>()) {
16656         const char *fmt = "printf";
16657         unsigned int NumParams = FD->getNumParams();
16658         if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
16659             FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
16660           fmt = "NSString";
16661         FD->addAttr(FormatAttr::CreateImplicit(Context,
16662                                                &Context.Idents.get(fmt),
16663                                                FormatIdx+1,
16664                                                HasVAListArg ? 0 : FormatIdx+2,
16665                                                FD->getLocation()));
16666       }
16667     }
16668     if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
16669                                              HasVAListArg)) {
16670      if (!FD->hasAttr<FormatAttr>())
16671        FD->addAttr(FormatAttr::CreateImplicit(Context,
16672                                               &Context.Idents.get("scanf"),
16673                                               FormatIdx+1,
16674                                               HasVAListArg ? 0 : FormatIdx+2,
16675                                               FD->getLocation()));
16676     }
16677 
16678     // Handle automatically recognized callbacks.
16679     SmallVector<int, 4> Encoding;
16680     if (!FD->hasAttr<CallbackAttr>() &&
16681         Context.BuiltinInfo.performsCallback(BuiltinID, Encoding))
16682       FD->addAttr(CallbackAttr::CreateImplicit(
16683           Context, Encoding.data(), Encoding.size(), FD->getLocation()));
16684 
16685     // Mark const if we don't care about errno and/or floating point exceptions
16686     // that are the only thing preventing the function from being const. This
16687     // allows IRgen to use LLVM intrinsics for such functions.
16688     bool NoExceptions =
16689         getLangOpts().getDefaultExceptionMode() == LangOptions::FPE_Ignore;
16690     bool ConstWithoutErrnoAndExceptions =
16691         Context.BuiltinInfo.isConstWithoutErrnoAndExceptions(BuiltinID);
16692     bool ConstWithoutExceptions =
16693         Context.BuiltinInfo.isConstWithoutExceptions(BuiltinID);
16694     if (!FD->hasAttr<ConstAttr>() &&
16695         (ConstWithoutErrnoAndExceptions || ConstWithoutExceptions) &&
16696         (!ConstWithoutErrnoAndExceptions ||
16697          (!getLangOpts().MathErrno && NoExceptions)) &&
16698         (!ConstWithoutExceptions || NoExceptions))
16699       FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
16700 
16701     // We make "fma" on GNU or Windows const because we know it does not set
16702     // errno in those environments even though it could set errno based on the
16703     // C standard.
16704     const llvm::Triple &Trip = Context.getTargetInfo().getTriple();
16705     if ((Trip.isGNUEnvironment() || Trip.isOSMSVCRT()) &&
16706         !FD->hasAttr<ConstAttr>()) {
16707       switch (BuiltinID) {
16708       case Builtin::BI__builtin_fma:
16709       case Builtin::BI__builtin_fmaf:
16710       case Builtin::BI__builtin_fmal:
16711       case Builtin::BIfma:
16712       case Builtin::BIfmaf:
16713       case Builtin::BIfmal:
16714         FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
16715         break;
16716       default:
16717         break;
16718       }
16719     }
16720 
16721     if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
16722         !FD->hasAttr<ReturnsTwiceAttr>())
16723       FD->addAttr(ReturnsTwiceAttr::CreateImplicit(Context,
16724                                          FD->getLocation()));
16725     if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->hasAttr<NoThrowAttr>())
16726       FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
16727     if (Context.BuiltinInfo.isPure(BuiltinID) && !FD->hasAttr<PureAttr>())
16728       FD->addAttr(PureAttr::CreateImplicit(Context, FD->getLocation()));
16729     if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->hasAttr<ConstAttr>())
16730       FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
16731     if (getLangOpts().CUDA && Context.BuiltinInfo.isTSBuiltin(BuiltinID) &&
16732         !FD->hasAttr<CUDADeviceAttr>() && !FD->hasAttr<CUDAHostAttr>()) {
16733       // Add the appropriate attribute, depending on the CUDA compilation mode
16734       // and which target the builtin belongs to. For example, during host
16735       // compilation, aux builtins are __device__, while the rest are __host__.
16736       if (getLangOpts().CUDAIsDevice !=
16737           Context.BuiltinInfo.isAuxBuiltinID(BuiltinID))
16738         FD->addAttr(CUDADeviceAttr::CreateImplicit(Context, FD->getLocation()));
16739       else
16740         FD->addAttr(CUDAHostAttr::CreateImplicit(Context, FD->getLocation()));
16741     }
16742 
16743     // Add known guaranteed alignment for allocation functions.
16744     switch (BuiltinID) {
16745     case Builtin::BImemalign:
16746     case Builtin::BIaligned_alloc:
16747       if (!FD->hasAttr<AllocAlignAttr>())
16748         FD->addAttr(AllocAlignAttr::CreateImplicit(Context, ParamIdx(1, FD),
16749                                                    FD->getLocation()));
16750       break;
16751     default:
16752       break;
16753     }
16754 
16755     // Add allocsize attribute for allocation functions.
16756     switch (BuiltinID) {
16757     case Builtin::BIcalloc:
16758       FD->addAttr(AllocSizeAttr::CreateImplicit(
16759           Context, ParamIdx(1, FD), ParamIdx(2, FD), FD->getLocation()));
16760       break;
16761     case Builtin::BImemalign:
16762     case Builtin::BIaligned_alloc:
16763     case Builtin::BIrealloc:
16764       FD->addAttr(AllocSizeAttr::CreateImplicit(Context, ParamIdx(2, FD),
16765                                                 ParamIdx(), FD->getLocation()));
16766       break;
16767     case Builtin::BImalloc:
16768       FD->addAttr(AllocSizeAttr::CreateImplicit(Context, ParamIdx(1, FD),
16769                                                 ParamIdx(), FD->getLocation()));
16770       break;
16771     default:
16772       break;
16773     }
16774   }
16775 
16776   LazyProcessLifetimeCaptureByParams(FD);
16777   inferLifetimeBoundAttribute(FD);
16778   inferLifetimeCaptureByAttribute(FD);
16779   AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(FD);
16780 
16781   // If C++ exceptions are enabled but we are told extern "C" functions cannot
16782   // throw, add an implicit nothrow attribute to any extern "C" function we come
16783   // across.
16784   if (getLangOpts().CXXExceptions && getLangOpts().ExternCNoUnwind &&
16785       FD->isExternC() && !FD->hasAttr<NoThrowAttr>()) {
16786     const auto *FPT = FD->getType()->getAs<FunctionProtoType>();
16787     if (!FPT || FPT->getExceptionSpecType() == EST_None)
16788       FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
16789   }
16790 
16791   IdentifierInfo *Name = FD->getIdentifier();
16792   if (!Name)
16793     return;
16794   if ((!getLangOpts().CPlusPlus && FD->getDeclContext()->isTranslationUnit()) ||
16795       (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
16796        cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
16797            LinkageSpecLanguageIDs::C)) {
16798     // Okay: this could be a libc/libm/Objective-C function we know
16799     // about.
16800   } else
16801     return;
16802 
16803   if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
16804     // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
16805     // target-specific builtins, perhaps?
16806     if (!FD->hasAttr<FormatAttr>())
16807       FD->addAttr(FormatAttr::CreateImplicit(Context,
16808                                              &Context.Idents.get("printf"), 2,
16809                                              Name->isStr("vasprintf") ? 0 : 3,
16810                                              FD->getLocation()));
16811   }
16812 
16813   if (Name->isStr("__CFStringMakeConstantString")) {
16814     // We already have a __builtin___CFStringMakeConstantString,
16815     // but builds that use -fno-constant-cfstrings don't go through that.
16816     if (!FD->hasAttr<FormatArgAttr>())
16817       FD->addAttr(FormatArgAttr::CreateImplicit(Context, ParamIdx(1, FD),
16818                                                 FD->getLocation()));
16819   }
16820 }
16821 
16822 TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
16823                                     TypeSourceInfo *TInfo) {
16824   assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
16825   assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
16826 
16827   if (!TInfo) {
16828     assert(D.isInvalidType() && "no declarator info for valid type");
16829     TInfo = Context.getTrivialTypeSourceInfo(T);
16830   }
16831 
16832   // Scope manipulation handled by caller.
16833   TypedefDecl *NewTD =
16834       TypedefDecl::Create(Context, CurContext, D.getBeginLoc(),
16835                           D.getIdentifierLoc(), D.getIdentifier(), TInfo);
16836 
16837   // Bail out immediately if we have an invalid declaration.
16838   if (D.isInvalidType()) {
16839     NewTD->setInvalidDecl();
16840     return NewTD;
16841   }
16842 
16843   if (D.getDeclSpec().isModulePrivateSpecified()) {
16844     if (CurContext->isFunctionOrMethod())
16845       Diag(NewTD->getLocation(), diag::err_module_private_local)
16846           << 2 << NewTD
16847           << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
16848           << FixItHint::CreateRemoval(
16849                  D.getDeclSpec().getModulePrivateSpecLoc());
16850     else
16851       NewTD->setModulePrivate();
16852   }
16853 
16854   // C++ [dcl.typedef]p8:
16855   //   If the typedef declaration defines an unnamed class (or
16856   //   enum), the first typedef-name declared by the declaration
16857   //   to be that class type (or enum type) is used to denote the
16858   //   class type (or enum type) for linkage purposes only.
16859   // We need to check whether the type was declared in the declaration.
16860   switch (D.getDeclSpec().getTypeSpecType()) {
16861   case TST_enum:
16862   case TST_struct:
16863   case TST_interface:
16864   case TST_union:
16865   case TST_class: {
16866     TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
16867     setTagNameForLinkagePurposes(tagFromDeclSpec, NewTD);
16868     break;
16869   }
16870 
16871   default:
16872     break;
16873   }
16874 
16875   return NewTD;
16876 }
16877 
16878 bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
16879   SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
16880   QualType T = TI->getType();
16881 
16882   if (T->isDependentType())
16883     return false;
16884 
16885   // This doesn't use 'isIntegralType' despite the error message mentioning
16886   // integral type because isIntegralType would also allow enum types in C.
16887   if (const BuiltinType *BT = T->getAs<BuiltinType>())
16888     if (BT->isInteger())
16889       return false;
16890 
16891   return Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
16892          << T << T->isBitIntType();
16893 }
16894 
16895 bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
16896                                   QualType EnumUnderlyingTy, bool IsFixed,
16897                                   const EnumDecl *Prev) {
16898   if (IsScoped != Prev->isScoped()) {
16899     Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
16900       << Prev->isScoped();
16901     Diag(Prev->getLocation(), diag::note_previous_declaration);
16902     return true;
16903   }
16904 
16905   if (IsFixed && Prev->isFixed()) {
16906     if (!EnumUnderlyingTy->isDependentType() &&
16907         !Prev->getIntegerType()->isDependentType() &&
16908         !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
16909                                         Prev->getIntegerType())) {
16910       // TODO: Highlight the underlying type of the redeclaration.
16911       Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
16912         << EnumUnderlyingTy << Prev->getIntegerType();
16913       Diag(Prev->getLocation(), diag::note_previous_declaration)
16914           << Prev->getIntegerTypeRange();
16915       return true;
16916     }
16917   } else if (IsFixed != Prev->isFixed()) {
16918     Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
16919       << Prev->isFixed();
16920     Diag(Prev->getLocation(), diag::note_previous_declaration);
16921     return true;
16922   }
16923 
16924   return false;
16925 }
16926 
16927 /// Get diagnostic %select index for tag kind for
16928 /// redeclaration diagnostic message.
16929 /// WARNING: Indexes apply to particular diagnostics only!
16930 ///
16931 /// \returns diagnostic %select index.
16932 static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
16933   switch (Tag) {
16934   case TagTypeKind::Struct:
16935     return 0;
16936   case TagTypeKind::Interface:
16937     return 1;
16938   case TagTypeKind::Class:
16939     return 2;
16940   default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
16941   }
16942 }
16943 
16944 /// Determine if tag kind is a class-key compatible with
16945 /// class for redeclaration (class, struct, or __interface).
16946 ///
16947 /// \returns true iff the tag kind is compatible.
16948 static bool isClassCompatTagKind(TagTypeKind Tag)
16949 {
16950   return Tag == TagTypeKind::Struct || Tag == TagTypeKind::Class ||
16951          Tag == TagTypeKind::Interface;
16952 }
16953 
16954 Sema::NonTagKind Sema::getNonTagTypeDeclKind(const Decl *PrevDecl,
16955                                              TagTypeKind TTK) {
16956   if (isa<TypedefDecl>(PrevDecl))
16957     return NTK_Typedef;
16958   else if (isa<TypeAliasDecl>(PrevDecl))
16959     return NTK_TypeAlias;
16960   else if (isa<ClassTemplateDecl>(PrevDecl))
16961     return NTK_Template;
16962   else if (isa<TypeAliasTemplateDecl>(PrevDecl))
16963     return NTK_TypeAliasTemplate;
16964   else if (isa<TemplateTemplateParmDecl>(PrevDecl))
16965     return NTK_TemplateTemplateArgument;
16966   switch (TTK) {
16967   case TagTypeKind::Struct:
16968   case TagTypeKind::Interface:
16969   case TagTypeKind::Class:
16970     return getLangOpts().CPlusPlus ? NTK_NonClass : NTK_NonStruct;
16971   case TagTypeKind::Union:
16972     return NTK_NonUnion;
16973   case TagTypeKind::Enum:
16974     return NTK_NonEnum;
16975   }
16976   llvm_unreachable("invalid TTK");
16977 }
16978 
16979 bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
16980                                         TagTypeKind NewTag, bool isDefinition,
16981                                         SourceLocation NewTagLoc,
16982                                         const IdentifierInfo *Name) {
16983   // C++ [dcl.type.elab]p3:
16984   //   The class-key or enum keyword present in the
16985   //   elaborated-type-specifier shall agree in kind with the
16986   //   declaration to which the name in the elaborated-type-specifier
16987   //   refers. This rule also applies to the form of
16988   //   elaborated-type-specifier that declares a class-name or
16989   //   friend class since it can be construed as referring to the
16990   //   definition of the class. Thus, in any
16991   //   elaborated-type-specifier, the enum keyword shall be used to
16992   //   refer to an enumeration (7.2), the union class-key shall be
16993   //   used to refer to a union (clause 9), and either the class or
16994   //   struct class-key shall be used to refer to a class (clause 9)
16995   //   declared using the class or struct class-key.
16996   TagTypeKind OldTag = Previous->getTagKind();
16997   if (OldTag != NewTag &&
16998       !(isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)))
16999     return false;
17000 
17001   // Tags are compatible, but we might still want to warn on mismatched tags.
17002   // Non-class tags can't be mismatched at this point.
17003   if (!isClassCompatTagKind(NewTag))
17004     return true;
17005 
17006   // Declarations for which -Wmismatched-tags is disabled are entirely ignored
17007   // by our warning analysis. We don't want to warn about mismatches with (eg)
17008   // declarations in system headers that are designed to be specialized, but if
17009   // a user asks us to warn, we should warn if their code contains mismatched
17010   // declarations.
17011   auto IsIgnoredLoc = [&](SourceLocation Loc) {
17012     return getDiagnostics().isIgnored(diag::warn_struct_class_tag_mismatch,
17013                                       Loc);
17014   };
17015   if (IsIgnoredLoc(NewTagLoc))
17016     return true;
17017 
17018   auto IsIgnored = [&](const TagDecl *Tag) {
17019     return IsIgnoredLoc(Tag->getLocation());
17020   };
17021   while (IsIgnored(Previous)) {
17022     Previous = Previous->getPreviousDecl();
17023     if (!Previous)
17024       return true;
17025     OldTag = Previous->getTagKind();
17026   }
17027 
17028   bool isTemplate = false;
17029   if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
17030     isTemplate = Record->getDescribedClassTemplate();
17031 
17032   if (inTemplateInstantiation()) {
17033     if (OldTag != NewTag) {
17034       // In a template instantiation, do not offer fix-its for tag mismatches
17035       // since they usually mess up the template instead of fixing the problem.
17036       Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
17037         << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
17038         << getRedeclDiagFromTagKind(OldTag);
17039       // FIXME: Note previous location?
17040     }
17041     return true;
17042   }
17043 
17044   if (isDefinition) {
17045     // On definitions, check all previous tags and issue a fix-it for each
17046     // one that doesn't match the current tag.
17047     if (Previous->getDefinition()) {
17048       // Don't suggest fix-its for redefinitions.
17049       return true;
17050     }
17051 
17052     bool previousMismatch = false;
17053     for (const TagDecl *I : Previous->redecls()) {
17054       if (I->getTagKind() != NewTag) {
17055         // Ignore previous declarations for which the warning was disabled.
17056         if (IsIgnored(I))
17057           continue;
17058 
17059         if (!previousMismatch) {
17060           previousMismatch = true;
17061           Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
17062             << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
17063             << getRedeclDiagFromTagKind(I->getTagKind());
17064         }
17065         Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
17066           << getRedeclDiagFromTagKind(NewTag)
17067           << FixItHint::CreateReplacement(I->getInnerLocStart(),
17068                TypeWithKeyword::getTagTypeKindName(NewTag));
17069       }
17070     }
17071     return true;
17072   }
17073 
17074   // Identify the prevailing tag kind: this is the kind of the definition (if
17075   // there is a non-ignored definition), or otherwise the kind of the prior
17076   // (non-ignored) declaration.
17077   const TagDecl *PrevDef = Previous->getDefinition();
17078   if (PrevDef && IsIgnored(PrevDef))
17079     PrevDef = nullptr;
17080   const TagDecl *Redecl = PrevDef ? PrevDef : Previous;
17081   if (Redecl->getTagKind() != NewTag) {
17082     Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
17083       << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
17084       << getRedeclDiagFromTagKind(OldTag);
17085     Diag(Redecl->getLocation(), diag::note_previous_use);
17086 
17087     // If there is a previous definition, suggest a fix-it.
17088     if (PrevDef) {
17089       Diag(NewTagLoc, diag::note_struct_class_suggestion)
17090         << getRedeclDiagFromTagKind(Redecl->getTagKind())
17091         << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
17092              TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
17093     }
17094   }
17095 
17096   return true;
17097 }
17098 
17099 /// Add a minimal nested name specifier fixit hint to allow lookup of a tag name
17100 /// from an outer enclosing namespace or file scope inside a friend declaration.
17101 /// This should provide the commented out code in the following snippet:
17102 ///   namespace N {
17103 ///     struct X;
17104 ///     namespace M {
17105 ///       struct Y { friend struct /*N::*/ X; };
17106 ///     }
17107 ///   }
17108 static FixItHint createFriendTagNNSFixIt(Sema &SemaRef, NamedDecl *ND, Scope *S,
17109                                          SourceLocation NameLoc) {
17110   // While the decl is in a namespace, do repeated lookup of that name and see
17111   // if we get the same namespace back.  If we do not, continue until
17112   // translation unit scope, at which point we have a fully qualified NNS.
17113   SmallVector<IdentifierInfo *, 4> Namespaces;
17114   DeclContext *DC = ND->getDeclContext()->getRedeclContext();
17115   for (; !DC->isTranslationUnit(); DC = DC->getParent()) {
17116     // This tag should be declared in a namespace, which can only be enclosed by
17117     // other namespaces.  Bail if there's an anonymous namespace in the chain.
17118     NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(DC);
17119     if (!Namespace || Namespace->isAnonymousNamespace())
17120       return FixItHint();
17121     IdentifierInfo *II = Namespace->getIdentifier();
17122     Namespaces.push_back(II);
17123     NamedDecl *Lookup = SemaRef.LookupSingleName(
17124         S, II, NameLoc, Sema::LookupNestedNameSpecifierName);
17125     if (Lookup == Namespace)
17126       break;
17127   }
17128 
17129   // Once we have all the namespaces, reverse them to go outermost first, and
17130   // build an NNS.
17131   SmallString<64> Insertion;
17132   llvm::raw_svector_ostream OS(Insertion);
17133   if (DC->isTranslationUnit())
17134     OS << "::";
17135   std::reverse(Namespaces.begin(), Namespaces.end());
17136   for (auto *II : Namespaces)
17137     OS << II->getName() << "::";
17138   return FixItHint::CreateInsertion(NameLoc, Insertion);
17139 }
17140 
17141 /// Determine whether a tag originally declared in context \p OldDC can
17142 /// be redeclared with an unqualified name in \p NewDC (assuming name lookup
17143 /// found a declaration in \p OldDC as a previous decl, perhaps through a
17144 /// using-declaration).
17145 static bool isAcceptableTagRedeclContext(Sema &S, DeclContext *OldDC,
17146                                          DeclContext *NewDC) {
17147   OldDC = OldDC->getRedeclContext();
17148   NewDC = NewDC->getRedeclContext();
17149 
17150   if (OldDC->Equals(NewDC))
17151     return true;
17152 
17153   // In MSVC mode, we allow a redeclaration if the contexts are related (either
17154   // encloses the other).
17155   if (S.getLangOpts().MSVCCompat &&
17156       (OldDC->Encloses(NewDC) || NewDC->Encloses(OldDC)))
17157     return true;
17158 
17159   return false;
17160 }
17161 
17162 DeclResult
17163 Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc,
17164                CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc,
17165                const ParsedAttributesView &Attrs, AccessSpecifier AS,
17166                SourceLocation ModulePrivateLoc,
17167                MultiTemplateParamsArg TemplateParameterLists, bool &OwnedDecl,
17168                bool &IsDependent, SourceLocation ScopedEnumKWLoc,
17169                bool ScopedEnumUsesClassTag, TypeResult UnderlyingType,
17170                bool IsTypeSpecifier, bool IsTemplateParamOrArg,
17171                OffsetOfKind OOK, SkipBodyInfo *SkipBody) {
17172   // If this is not a definition, it must have a name.
17173   IdentifierInfo *OrigName = Name;
17174   assert((Name != nullptr || TUK == TagUseKind::Definition) &&
17175          "Nameless record must be a definition!");
17176   assert(TemplateParameterLists.size() == 0 || TUK != TagUseKind::Reference);
17177 
17178   OwnedDecl = false;
17179   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
17180   bool ScopedEnum = ScopedEnumKWLoc.isValid();
17181 
17182   // FIXME: Check member specializations more carefully.
17183   bool isMemberSpecialization = false;
17184   bool Invalid = false;
17185 
17186   // We only need to do this matching if we have template parameters
17187   // or a scope specifier, which also conveniently avoids this work
17188   // for non-C++ cases.
17189   if (TemplateParameterLists.size() > 0 ||
17190       (SS.isNotEmpty() && TUK != TagUseKind::Reference)) {
17191     TemplateParameterList *TemplateParams =
17192         MatchTemplateParametersToScopeSpecifier(
17193             KWLoc, NameLoc, SS, nullptr, TemplateParameterLists,
17194             TUK == TagUseKind::Friend, isMemberSpecialization, Invalid);
17195 
17196     // C++23 [dcl.type.elab] p2:
17197     //   If an elaborated-type-specifier is the sole constituent of a
17198     //   declaration, the declaration is ill-formed unless it is an explicit
17199     //   specialization, an explicit instantiation or it has one of the
17200     //   following forms: [...]
17201     // C++23 [dcl.enum] p1:
17202     //   If the enum-head-name of an opaque-enum-declaration contains a
17203     //   nested-name-specifier, the declaration shall be an explicit
17204     //   specialization.
17205     //
17206     // FIXME: Class template partial specializations can be forward declared
17207     // per CWG2213, but the resolution failed to allow qualified forward
17208     // declarations. This is almost certainly unintentional, so we allow them.
17209     if (TUK == TagUseKind::Declaration && SS.isNotEmpty() &&
17210         !isMemberSpecialization)
17211       Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier)
17212           << TypeWithKeyword::getTagTypeKindName(Kind) << SS.getRange();
17213 
17214     if (TemplateParams) {
17215       if (Kind == TagTypeKind::Enum) {
17216         Diag(KWLoc, diag::err_enum_template);
17217         return true;
17218       }
17219 
17220       if (TemplateParams->size() > 0) {
17221         // This is a declaration or definition of a class template (which may
17222         // be a member of another template).
17223 
17224         if (Invalid)
17225           return true;
17226 
17227         OwnedDecl = false;
17228         DeclResult Result = CheckClassTemplate(
17229             S, TagSpec, TUK, KWLoc, SS, Name, NameLoc, Attrs, TemplateParams,
17230             AS, ModulePrivateLoc,
17231             /*FriendLoc*/ SourceLocation(), TemplateParameterLists.size() - 1,
17232             TemplateParameterLists.data(), SkipBody);
17233         return Result.get();
17234       } else {
17235         // The "template<>" header is extraneous.
17236         Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
17237           << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
17238         isMemberSpecialization = true;
17239       }
17240     }
17241 
17242     if (!TemplateParameterLists.empty() && isMemberSpecialization &&
17243         CheckTemplateDeclScope(S, TemplateParameterLists.back()))
17244       return true;
17245   }
17246 
17247   if (TUK == TagUseKind::Friend && Kind == TagTypeKind::Enum) {
17248     // C++23 [dcl.type.elab]p4:
17249     //   If an elaborated-type-specifier appears with the friend specifier as
17250     //   an entire member-declaration, the member-declaration shall have one
17251     //   of the following forms:
17252     //     friend class-key nested-name-specifier(opt) identifier ;
17253     //     friend class-key simple-template-id ;
17254     //     friend class-key nested-name-specifier template(opt)
17255     //       simple-template-id ;
17256     //
17257     // Since enum is not a class-key, so declarations like "friend enum E;"
17258     // are ill-formed. Although CWG2363 reaffirms that such declarations are
17259     // invalid, most implementations accept so we issue a pedantic warning.
17260     Diag(KWLoc, diag::ext_enum_friend) << FixItHint::CreateRemoval(
17261         ScopedEnum ? SourceRange(KWLoc, ScopedEnumKWLoc) : KWLoc);
17262     assert(ScopedEnum || !ScopedEnumUsesClassTag);
17263     Diag(KWLoc, diag::note_enum_friend)
17264         << (ScopedEnum + ScopedEnumUsesClassTag);
17265   }
17266 
17267   // Figure out the underlying type if this a enum declaration. We need to do
17268   // this early, because it's needed to detect if this is an incompatible
17269   // redeclaration.
17270   llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
17271   bool IsFixed = !UnderlyingType.isUnset() || ScopedEnum;
17272 
17273   if (Kind == TagTypeKind::Enum) {
17274     if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum)) {
17275       // No underlying type explicitly specified, or we failed to parse the
17276       // type, default to int.
17277       EnumUnderlying = Context.IntTy.getTypePtr();
17278     } else if (UnderlyingType.get()) {
17279       // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
17280       // integral type; any cv-qualification is ignored.
17281       TypeSourceInfo *TI = nullptr;
17282       GetTypeFromParser(UnderlyingType.get(), &TI);
17283       EnumUnderlying = TI;
17284 
17285       if (CheckEnumUnderlyingType(TI))
17286         // Recover by falling back to int.
17287         EnumUnderlying = Context.IntTy.getTypePtr();
17288 
17289       if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
17290                                           UPPC_FixedUnderlyingType))
17291         EnumUnderlying = Context.IntTy.getTypePtr();
17292 
17293     } else if (Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment()) {
17294       // For MSVC ABI compatibility, unfixed enums must use an underlying type
17295       // of 'int'. However, if this is an unfixed forward declaration, don't set
17296       // the underlying type unless the user enables -fms-compatibility. This
17297       // makes unfixed forward declared enums incomplete and is more conforming.
17298       if (TUK == TagUseKind::Definition || getLangOpts().MSVCCompat)
17299         EnumUnderlying = Context.IntTy.getTypePtr();
17300     }
17301   }
17302 
17303   DeclContext *SearchDC = CurContext;
17304   DeclContext *DC = CurContext;
17305   bool isStdBadAlloc = false;
17306   bool isStdAlignValT = false;
17307 
17308   RedeclarationKind Redecl = forRedeclarationInCurContext();
17309   if (TUK == TagUseKind::Friend || TUK == TagUseKind::Reference)
17310     Redecl = RedeclarationKind::NotForRedeclaration;
17311 
17312   /// Create a new tag decl in C/ObjC. Since the ODR-like semantics for ObjC/C
17313   /// implemented asks for structural equivalence checking, the returned decl
17314   /// here is passed back to the parser, allowing the tag body to be parsed.
17315   auto createTagFromNewDecl = [&]() -> TagDecl * {
17316     assert(!getLangOpts().CPlusPlus && "not meant for C++ usage");
17317     // If there is an identifier, use the location of the identifier as the
17318     // location of the decl, otherwise use the location of the struct/union
17319     // keyword.
17320     SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
17321     TagDecl *New = nullptr;
17322 
17323     if (Kind == TagTypeKind::Enum) {
17324       New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name, nullptr,
17325                              ScopedEnum, ScopedEnumUsesClassTag, IsFixed);
17326       // If this is an undefined enum, bail.
17327       if (TUK != TagUseKind::Definition && !Invalid)
17328         return nullptr;
17329       if (EnumUnderlying) {
17330         EnumDecl *ED = cast<EnumDecl>(New);
17331         if (TypeSourceInfo *TI = dyn_cast<TypeSourceInfo *>(EnumUnderlying))
17332           ED->setIntegerTypeSourceInfo(TI);
17333         else
17334           ED->setIntegerType(QualType(cast<const Type *>(EnumUnderlying), 0));
17335         QualType EnumTy = ED->getIntegerType();
17336         ED->setPromotionType(Context.isPromotableIntegerType(EnumTy)
17337                                  ? Context.getPromotedIntegerType(EnumTy)
17338                                  : EnumTy);
17339       }
17340     } else { // struct/union
17341       New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
17342                                nullptr);
17343     }
17344 
17345     if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
17346       // Add alignment attributes if necessary; these attributes are checked
17347       // when the ASTContext lays out the structure.
17348       //
17349       // It is important for implementing the correct semantics that this
17350       // happen here (in ActOnTag). The #pragma pack stack is
17351       // maintained as a result of parser callbacks which can occur at
17352       // many points during the parsing of a struct declaration (because
17353       // the #pragma tokens are effectively skipped over during the
17354       // parsing of the struct).
17355       if (TUK == TagUseKind::Definition &&
17356           (!SkipBody || !SkipBody->ShouldSkip)) {
17357         AddAlignmentAttributesForRecord(RD);
17358         AddMsStructLayoutForRecord(RD);
17359       }
17360     }
17361     New->setLexicalDeclContext(CurContext);
17362     return New;
17363   };
17364 
17365   LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
17366   if (Name && SS.isNotEmpty()) {
17367     // We have a nested-name tag ('struct foo::bar').
17368 
17369     // Check for invalid 'foo::'.
17370     if (SS.isInvalid()) {
17371       Name = nullptr;
17372       goto CreateNewDecl;
17373     }
17374 
17375     // If this is a friend or a reference to a class in a dependent
17376     // context, don't try to make a decl for it.
17377     if (TUK == TagUseKind::Friend || TUK == TagUseKind::Reference) {
17378       DC = computeDeclContext(SS, false);
17379       if (!DC) {
17380         IsDependent = true;
17381         return true;
17382       }
17383     } else {
17384       DC = computeDeclContext(SS, true);
17385       if (!DC) {
17386         Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
17387           << SS.getRange();
17388         return true;
17389       }
17390     }
17391 
17392     if (RequireCompleteDeclContext(SS, DC))
17393       return true;
17394 
17395     SearchDC = DC;
17396     // Look-up name inside 'foo::'.
17397     LookupQualifiedName(Previous, DC);
17398 
17399     if (Previous.isAmbiguous())
17400       return true;
17401 
17402     if (Previous.empty()) {
17403       // Name lookup did not find anything. However, if the
17404       // nested-name-specifier refers to the current instantiation,
17405       // and that current instantiation has any dependent base
17406       // classes, we might find something at instantiation time: treat
17407       // this as a dependent elaborated-type-specifier.
17408       // But this only makes any sense for reference-like lookups.
17409       if (Previous.wasNotFoundInCurrentInstantiation() &&
17410           (TUK == TagUseKind::Reference || TUK == TagUseKind::Friend)) {
17411         IsDependent = true;
17412         return true;
17413       }
17414 
17415       // A tag 'foo::bar' must already exist.
17416       Diag(NameLoc, diag::err_not_tag_in_scope)
17417           << llvm::to_underlying(Kind) << Name << DC << SS.getRange();
17418       Name = nullptr;
17419       Invalid = true;
17420       goto CreateNewDecl;
17421     }
17422   } else if (Name) {
17423     // C++14 [class.mem]p14:
17424     //   If T is the name of a class, then each of the following shall have a
17425     //   name different from T:
17426     //    -- every member of class T that is itself a type
17427     if (TUK != TagUseKind::Reference && TUK != TagUseKind::Friend &&
17428         DiagnoseClassNameShadow(SearchDC, DeclarationNameInfo(Name, NameLoc)))
17429       return true;
17430 
17431     // If this is a named struct, check to see if there was a previous forward
17432     // declaration or definition.
17433     // FIXME: We're looking into outer scopes here, even when we
17434     // shouldn't be. Doing so can result in ambiguities that we
17435     // shouldn't be diagnosing.
17436     LookupName(Previous, S);
17437 
17438     // When declaring or defining a tag, ignore ambiguities introduced
17439     // by types using'ed into this scope.
17440     if (Previous.isAmbiguous() &&
17441         (TUK == TagUseKind::Definition || TUK == TagUseKind::Declaration)) {
17442       LookupResult::Filter F = Previous.makeFilter();
17443       while (F.hasNext()) {
17444         NamedDecl *ND = F.next();
17445         if (!ND->getDeclContext()->getRedeclContext()->Equals(
17446                 SearchDC->getRedeclContext()))
17447           F.erase();
17448       }
17449       F.done();
17450     }
17451 
17452     // C++11 [namespace.memdef]p3:
17453     //   If the name in a friend declaration is neither qualified nor
17454     //   a template-id and the declaration is a function or an
17455     //   elaborated-type-specifier, the lookup to determine whether
17456     //   the entity has been previously declared shall not consider
17457     //   any scopes outside the innermost enclosing namespace.
17458     //
17459     // MSVC doesn't implement the above rule for types, so a friend tag
17460     // declaration may be a redeclaration of a type declared in an enclosing
17461     // scope.  They do implement this rule for friend functions.
17462     //
17463     // Does it matter that this should be by scope instead of by
17464     // semantic context?
17465     if (!Previous.empty() && TUK == TagUseKind::Friend) {
17466       DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext();
17467       LookupResult::Filter F = Previous.makeFilter();
17468       bool FriendSawTagOutsideEnclosingNamespace = false;
17469       while (F.hasNext()) {
17470         NamedDecl *ND = F.next();
17471         DeclContext *DC = ND->getDeclContext()->getRedeclContext();
17472         if (DC->isFileContext() &&
17473             !EnclosingNS->Encloses(ND->getDeclContext())) {
17474           if (getLangOpts().MSVCCompat)
17475             FriendSawTagOutsideEnclosingNamespace = true;
17476           else
17477             F.erase();
17478         }
17479       }
17480       F.done();
17481 
17482       // Diagnose this MSVC extension in the easy case where lookup would have
17483       // unambiguously found something outside the enclosing namespace.
17484       if (Previous.isSingleResult() && FriendSawTagOutsideEnclosingNamespace) {
17485         NamedDecl *ND = Previous.getFoundDecl();
17486         Diag(NameLoc, diag::ext_friend_tag_redecl_outside_namespace)
17487             << createFriendTagNNSFixIt(*this, ND, S, NameLoc);
17488       }
17489     }
17490 
17491     // Note:  there used to be some attempt at recovery here.
17492     if (Previous.isAmbiguous())
17493       return true;
17494 
17495     if (!getLangOpts().CPlusPlus && TUK != TagUseKind::Reference) {
17496       // FIXME: This makes sure that we ignore the contexts associated
17497       // with C structs, unions, and enums when looking for a matching
17498       // tag declaration or definition. See the similar lookup tweak
17499       // in Sema::LookupName; is there a better way to deal with this?
17500       while (isa<RecordDecl, EnumDecl, ObjCContainerDecl>(SearchDC))
17501         SearchDC = SearchDC->getParent();
17502     } else if (getLangOpts().CPlusPlus) {
17503       // Inside ObjCContainer want to keep it as a lexical decl context but go
17504       // past it (most often to TranslationUnit) to find the semantic decl
17505       // context.
17506       while (isa<ObjCContainerDecl>(SearchDC))
17507         SearchDC = SearchDC->getParent();
17508     }
17509   } else if (getLangOpts().CPlusPlus) {
17510     // Don't use ObjCContainerDecl as the semantic decl context for anonymous
17511     // TagDecl the same way as we skip it for named TagDecl.
17512     while (isa<ObjCContainerDecl>(SearchDC))
17513       SearchDC = SearchDC->getParent();
17514   }
17515 
17516   if (Previous.isSingleResult() &&
17517       Previous.getFoundDecl()->isTemplateParameter()) {
17518     // Maybe we will complain about the shadowed template parameter.
17519     DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
17520     // Just pretend that we didn't see the previous declaration.
17521     Previous.clear();
17522   }
17523 
17524   if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
17525       DC->Equals(getStdNamespace())) {
17526     if (Name->isStr("bad_alloc")) {
17527       // This is a declaration of or a reference to "std::bad_alloc".
17528       isStdBadAlloc = true;
17529 
17530       // If std::bad_alloc has been implicitly declared (but made invisible to
17531       // name lookup), fill in this implicit declaration as the previous
17532       // declaration, so that the declarations get chained appropriately.
17533       if (Previous.empty() && StdBadAlloc)
17534         Previous.addDecl(getStdBadAlloc());
17535     } else if (Name->isStr("align_val_t")) {
17536       isStdAlignValT = true;
17537       if (Previous.empty() && StdAlignValT)
17538         Previous.addDecl(getStdAlignValT());
17539     }
17540   }
17541 
17542   // If we didn't find a previous declaration, and this is a reference
17543   // (or friend reference), move to the correct scope.  In C++, we
17544   // also need to do a redeclaration lookup there, just in case
17545   // there's a shadow friend decl.
17546   if (Name && Previous.empty() &&
17547       (TUK == TagUseKind::Reference || TUK == TagUseKind::Friend ||
17548        IsTemplateParamOrArg)) {
17549     if (Invalid) goto CreateNewDecl;
17550     assert(SS.isEmpty());
17551 
17552     if (TUK == TagUseKind::Reference || IsTemplateParamOrArg) {
17553       // C++ [basic.scope.pdecl]p5:
17554       //   -- for an elaborated-type-specifier of the form
17555       //
17556       //          class-key identifier
17557       //
17558       //      if the elaborated-type-specifier is used in the
17559       //      decl-specifier-seq or parameter-declaration-clause of a
17560       //      function defined in namespace scope, the identifier is
17561       //      declared as a class-name in the namespace that contains
17562       //      the declaration; otherwise, except as a friend
17563       //      declaration, the identifier is declared in the smallest
17564       //      non-class, non-function-prototype scope that contains the
17565       //      declaration.
17566       //
17567       // C99 6.7.2.3p8 has a similar (but not identical!) provision for
17568       // C structs and unions.
17569       //
17570       // It is an error in C++ to declare (rather than define) an enum
17571       // type, including via an elaborated type specifier.  We'll
17572       // diagnose that later; for now, declare the enum in the same
17573       // scope as we would have picked for any other tag type.
17574       //
17575       // GNU C also supports this behavior as part of its incomplete
17576       // enum types extension, while GNU C++ does not.
17577       //
17578       // Find the context where we'll be declaring the tag.
17579       // FIXME: We would like to maintain the current DeclContext as the
17580       // lexical context,
17581       SearchDC = getTagInjectionContext(SearchDC);
17582 
17583       // Find the scope where we'll be declaring the tag.
17584       S = getTagInjectionScope(S, getLangOpts());
17585     } else {
17586       assert(TUK == TagUseKind::Friend);
17587       CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(SearchDC);
17588 
17589       // C++ [namespace.memdef]p3:
17590       //   If a friend declaration in a non-local class first declares a
17591       //   class or function, the friend class or function is a member of
17592       //   the innermost enclosing namespace.
17593       SearchDC = RD->isLocalClass() ? RD->isLocalClass()
17594                                     : SearchDC->getEnclosingNamespaceContext();
17595     }
17596 
17597     // In C++, we need to do a redeclaration lookup to properly
17598     // diagnose some problems.
17599     // FIXME: redeclaration lookup is also used (with and without C++) to find a
17600     // hidden declaration so that we don't get ambiguity errors when using a
17601     // type declared by an elaborated-type-specifier.  In C that is not correct
17602     // and we should instead merge compatible types found by lookup.
17603     if (getLangOpts().CPlusPlus) {
17604       // FIXME: This can perform qualified lookups into function contexts,
17605       // which are meaningless.
17606       Previous.setRedeclarationKind(forRedeclarationInCurContext());
17607       LookupQualifiedName(Previous, SearchDC);
17608     } else {
17609       Previous.setRedeclarationKind(forRedeclarationInCurContext());
17610       LookupName(Previous, S);
17611     }
17612   }
17613 
17614   // If we have a known previous declaration to use, then use it.
17615   if (Previous.empty() && SkipBody && SkipBody->Previous)
17616     Previous.addDecl(SkipBody->Previous);
17617 
17618   if (!Previous.empty()) {
17619     NamedDecl *PrevDecl = Previous.getFoundDecl();
17620     NamedDecl *DirectPrevDecl = Previous.getRepresentativeDecl();
17621 
17622     // It's okay to have a tag decl in the same scope as a typedef
17623     // which hides a tag decl in the same scope.  Finding this
17624     // with a redeclaration lookup can only actually happen in C++.
17625     //
17626     // This is also okay for elaborated-type-specifiers, which is
17627     // technically forbidden by the current standard but which is
17628     // okay according to the likely resolution of an open issue;
17629     // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
17630     if (getLangOpts().CPlusPlus) {
17631       if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
17632         if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
17633           TagDecl *Tag = TT->getDecl();
17634           if (Tag->getDeclName() == Name &&
17635               Tag->getDeclContext()->getRedeclContext()
17636                           ->Equals(TD->getDeclContext()->getRedeclContext())) {
17637             PrevDecl = Tag;
17638             Previous.clear();
17639             Previous.addDecl(Tag);
17640             Previous.resolveKind();
17641           }
17642         }
17643       }
17644     }
17645 
17646     // If this is a redeclaration of a using shadow declaration, it must
17647     // declare a tag in the same context. In MSVC mode, we allow a
17648     // redefinition if either context is within the other.
17649     if (auto *Shadow = dyn_cast<UsingShadowDecl>(DirectPrevDecl)) {
17650       auto *OldTag = dyn_cast<TagDecl>(PrevDecl);
17651       if (SS.isEmpty() && TUK != TagUseKind::Reference &&
17652           TUK != TagUseKind::Friend &&
17653           isDeclInScope(Shadow, SearchDC, S, isMemberSpecialization) &&
17654           !(OldTag && isAcceptableTagRedeclContext(
17655                           *this, OldTag->getDeclContext(), SearchDC))) {
17656         Diag(KWLoc, diag::err_using_decl_conflict_reverse);
17657         Diag(Shadow->getTargetDecl()->getLocation(),
17658              diag::note_using_decl_target);
17659         Diag(Shadow->getIntroducer()->getLocation(), diag::note_using_decl)
17660             << 0;
17661         // Recover by ignoring the old declaration.
17662         Previous.clear();
17663         goto CreateNewDecl;
17664       }
17665     }
17666 
17667     if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
17668       // If this is a use of a previous tag, or if the tag is already declared
17669       // in the same scope (so that the definition/declaration completes or
17670       // rementions the tag), reuse the decl.
17671       if (TUK == TagUseKind::Reference || TUK == TagUseKind::Friend ||
17672           isDeclInScope(DirectPrevDecl, SearchDC, S,
17673                         SS.isNotEmpty() || isMemberSpecialization)) {
17674         // Make sure that this wasn't declared as an enum and now used as a
17675         // struct or something similar.
17676         if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
17677                                           TUK == TagUseKind::Definition, KWLoc,
17678                                           Name)) {
17679           bool SafeToContinue =
17680               (PrevTagDecl->getTagKind() != TagTypeKind::Enum &&
17681                Kind != TagTypeKind::Enum);
17682           if (SafeToContinue)
17683             Diag(KWLoc, diag::err_use_with_wrong_tag)
17684               << Name
17685               << FixItHint::CreateReplacement(SourceRange(KWLoc),
17686                                               PrevTagDecl->getKindName());
17687           else
17688             Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
17689           Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
17690 
17691           if (SafeToContinue)
17692             Kind = PrevTagDecl->getTagKind();
17693           else {
17694             // Recover by making this an anonymous redefinition.
17695             Name = nullptr;
17696             Previous.clear();
17697             Invalid = true;
17698           }
17699         }
17700 
17701         if (Kind == TagTypeKind::Enum &&
17702             PrevTagDecl->getTagKind() == TagTypeKind::Enum) {
17703           const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
17704           if (TUK == TagUseKind::Reference || TUK == TagUseKind::Friend)
17705             return PrevTagDecl;
17706 
17707           QualType EnumUnderlyingTy;
17708           if (TypeSourceInfo *TI =
17709                   dyn_cast_if_present<TypeSourceInfo *>(EnumUnderlying))
17710             EnumUnderlyingTy = TI->getType().getUnqualifiedType();
17711           else if (const Type *T =
17712                        dyn_cast_if_present<const Type *>(EnumUnderlying))
17713             EnumUnderlyingTy = QualType(T, 0);
17714 
17715           // All conflicts with previous declarations are recovered by
17716           // returning the previous declaration, unless this is a definition,
17717           // in which case we want the caller to bail out.
17718           if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
17719                                      ScopedEnum, EnumUnderlyingTy,
17720                                      IsFixed, PrevEnum))
17721             return TUK == TagUseKind::Declaration ? PrevTagDecl : nullptr;
17722         }
17723 
17724         // C++11 [class.mem]p1:
17725         //   A member shall not be declared twice in the member-specification,
17726         //   except that a nested class or member class template can be declared
17727         //   and then later defined.
17728         if (TUK == TagUseKind::Declaration && PrevDecl->isCXXClassMember() &&
17729             S->isDeclScope(PrevDecl)) {
17730           Diag(NameLoc, diag::ext_member_redeclared);
17731           Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration);
17732         }
17733 
17734         if (!Invalid) {
17735           // If this is a use, just return the declaration we found, unless
17736           // we have attributes.
17737           if (TUK == TagUseKind::Reference || TUK == TagUseKind::Friend) {
17738             if (!Attrs.empty()) {
17739               // FIXME: Diagnose these attributes. For now, we create a new
17740               // declaration to hold them.
17741             } else if (TUK == TagUseKind::Reference &&
17742                        (PrevTagDecl->getFriendObjectKind() ==
17743                             Decl::FOK_Undeclared ||
17744                         PrevDecl->getOwningModule() != getCurrentModule()) &&
17745                        SS.isEmpty()) {
17746               // This declaration is a reference to an existing entity, but
17747               // has different visibility from that entity: it either makes
17748               // a friend visible or it makes a type visible in a new module.
17749               // In either case, create a new declaration. We only do this if
17750               // the declaration would have meant the same thing if no prior
17751               // declaration were found, that is, if it was found in the same
17752               // scope where we would have injected a declaration.
17753               if (!getTagInjectionContext(CurContext)->getRedeclContext()
17754                        ->Equals(PrevDecl->getDeclContext()->getRedeclContext()))
17755                 return PrevTagDecl;
17756               // This is in the injected scope, create a new declaration in
17757               // that scope.
17758               S = getTagInjectionScope(S, getLangOpts());
17759             } else {
17760               return PrevTagDecl;
17761             }
17762           }
17763 
17764           // Diagnose attempts to redefine a tag.
17765           if (TUK == TagUseKind::Definition) {
17766             if (NamedDecl *Def = PrevTagDecl->getDefinition()) {
17767               // If we're defining a specialization and the previous definition
17768               // is from an implicit instantiation, don't emit an error
17769               // here; we'll catch this in the general case below.
17770               bool IsExplicitSpecializationAfterInstantiation = false;
17771               if (isMemberSpecialization) {
17772                 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
17773                   IsExplicitSpecializationAfterInstantiation =
17774                     RD->getTemplateSpecializationKind() !=
17775                     TSK_ExplicitSpecialization;
17776                 else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
17777                   IsExplicitSpecializationAfterInstantiation =
17778                     ED->getTemplateSpecializationKind() !=
17779                     TSK_ExplicitSpecialization;
17780               }
17781 
17782               // Note that clang allows ODR-like semantics for ObjC/C, i.e., do
17783               // not keep more that one definition around (merge them). However,
17784               // ensure the decl passes the structural compatibility check in
17785               // C11 6.2.7/1 (or 6.1.2.6/1 in C89).
17786               NamedDecl *Hidden = nullptr;
17787               if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
17788                 // There is a definition of this tag, but it is not visible. We
17789                 // explicitly make use of C++'s one definition rule here, and
17790                 // assume that this definition is identical to the hidden one
17791                 // we already have. Make the existing definition visible and
17792                 // use it in place of this one.
17793                 if (!getLangOpts().CPlusPlus) {
17794                   // Postpone making the old definition visible until after we
17795                   // complete parsing the new one and do the structural
17796                   // comparison.
17797                   SkipBody->CheckSameAsPrevious = true;
17798                   SkipBody->New = createTagFromNewDecl();
17799                   SkipBody->Previous = Def;
17800                   return Def;
17801                 } else {
17802                   SkipBody->ShouldSkip = true;
17803                   SkipBody->Previous = Def;
17804                   makeMergedDefinitionVisible(Hidden);
17805                   // Carry on and handle it like a normal definition. We'll
17806                   // skip starting the definition later.
17807                 }
17808               } else if (!IsExplicitSpecializationAfterInstantiation) {
17809                 // A redeclaration in function prototype scope in C isn't
17810                 // visible elsewhere, so merely issue a warning.
17811                 if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
17812                   Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
17813                 else
17814                   Diag(NameLoc, diag::err_redefinition) << Name;
17815                 notePreviousDefinition(Def,
17816                                        NameLoc.isValid() ? NameLoc : KWLoc);
17817                 // If this is a redefinition, recover by making this
17818                 // struct be anonymous, which will make any later
17819                 // references get the previous definition.
17820                 Name = nullptr;
17821                 Previous.clear();
17822                 Invalid = true;
17823               }
17824             } else {
17825               // If the type is currently being defined, complain
17826               // about a nested redefinition.
17827               auto *TD = Context.getTagDeclType(PrevTagDecl)->getAsTagDecl();
17828               if (TD->isBeingDefined()) {
17829                 Diag(NameLoc, diag::err_nested_redefinition) << Name;
17830                 Diag(PrevTagDecl->getLocation(),
17831                      diag::note_previous_definition);
17832                 Name = nullptr;
17833                 Previous.clear();
17834                 Invalid = true;
17835               }
17836             }
17837 
17838             // Okay, this is definition of a previously declared or referenced
17839             // tag. We're going to create a new Decl for it.
17840           }
17841 
17842           // Okay, we're going to make a redeclaration.  If this is some kind
17843           // of reference, make sure we build the redeclaration in the same DC
17844           // as the original, and ignore the current access specifier.
17845           if (TUK == TagUseKind::Friend || TUK == TagUseKind::Reference) {
17846             SearchDC = PrevTagDecl->getDeclContext();
17847             AS = AS_none;
17848           }
17849         }
17850         // If we get here we have (another) forward declaration or we
17851         // have a definition.  Just create a new decl.
17852 
17853       } else {
17854         // If we get here, this is a definition of a new tag type in a nested
17855         // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
17856         // new decl/type.  We set PrevDecl to NULL so that the entities
17857         // have distinct types.
17858         Previous.clear();
17859       }
17860       // If we get here, we're going to create a new Decl. If PrevDecl
17861       // is non-NULL, it's a definition of the tag declared by
17862       // PrevDecl. If it's NULL, we have a new definition.
17863 
17864     // Otherwise, PrevDecl is not a tag, but was found with tag
17865     // lookup.  This is only actually possible in C++, where a few
17866     // things like templates still live in the tag namespace.
17867     } else {
17868       // Use a better diagnostic if an elaborated-type-specifier
17869       // found the wrong kind of type on the first
17870       // (non-redeclaration) lookup.
17871       if ((TUK == TagUseKind::Reference || TUK == TagUseKind::Friend) &&
17872           !Previous.isForRedeclaration()) {
17873         NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind);
17874         Diag(NameLoc, diag::err_tag_reference_non_tag)
17875             << PrevDecl << NTK << llvm::to_underlying(Kind);
17876         Diag(PrevDecl->getLocation(), diag::note_declared_at);
17877         Invalid = true;
17878 
17879       // Otherwise, only diagnose if the declaration is in scope.
17880       } else if (!isDeclInScope(DirectPrevDecl, SearchDC, S,
17881                                 SS.isNotEmpty() || isMemberSpecialization)) {
17882         // do nothing
17883 
17884       // Diagnose implicit declarations introduced by elaborated types.
17885       } else if (TUK == TagUseKind::Reference || TUK == TagUseKind::Friend) {
17886         NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind);
17887         Diag(NameLoc, diag::err_tag_reference_conflict) << NTK;
17888         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
17889         Invalid = true;
17890 
17891       // Otherwise it's a declaration.  Call out a particularly common
17892       // case here.
17893       } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
17894         unsigned Kind = 0;
17895         if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
17896         Diag(NameLoc, diag::err_tag_definition_of_typedef)
17897           << Name << Kind << TND->getUnderlyingType();
17898         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
17899         Invalid = true;
17900 
17901       // Otherwise, diagnose.
17902       } else {
17903         // The tag name clashes with something else in the target scope,
17904         // issue an error and recover by making this tag be anonymous.
17905         Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
17906         notePreviousDefinition(PrevDecl, NameLoc);
17907         Name = nullptr;
17908         Invalid = true;
17909       }
17910 
17911       // The existing declaration isn't relevant to us; we're in a
17912       // new scope, so clear out the previous declaration.
17913       Previous.clear();
17914     }
17915   }
17916 
17917 CreateNewDecl:
17918 
17919   TagDecl *PrevDecl = nullptr;
17920   if (Previous.isSingleResult())
17921     PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
17922 
17923   // If there is an identifier, use the location of the identifier as the
17924   // location of the decl, otherwise use the location of the struct/union
17925   // keyword.
17926   SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
17927 
17928   // Otherwise, create a new declaration. If there is a previous
17929   // declaration of the same entity, the two will be linked via
17930   // PrevDecl.
17931   TagDecl *New;
17932 
17933   if (Kind == TagTypeKind::Enum) {
17934     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
17935     // enum X { A, B, C } D;    D should chain to X.
17936     New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
17937                            cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
17938                            ScopedEnumUsesClassTag, IsFixed);
17939 
17940     if (isStdAlignValT && (!StdAlignValT || getStdAlignValT()->isImplicit()))
17941       StdAlignValT = cast<EnumDecl>(New);
17942 
17943     // If this is an undefined enum, warn.
17944     if (TUK != TagUseKind::Definition && !Invalid) {
17945       TagDecl *Def;
17946       if (IsFixed && cast<EnumDecl>(New)->isFixed()) {
17947         // C++0x: 7.2p2: opaque-enum-declaration.
17948         // Conflicts are diagnosed above. Do nothing.
17949       }
17950       else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
17951         Diag(Loc, diag::ext_forward_ref_enum_def)
17952           << New;
17953         Diag(Def->getLocation(), diag::note_previous_definition);
17954       } else {
17955         unsigned DiagID = diag::ext_forward_ref_enum;
17956         if (getLangOpts().MSVCCompat)
17957           DiagID = diag::ext_ms_forward_ref_enum;
17958         else if (getLangOpts().CPlusPlus)
17959           DiagID = diag::err_forward_ref_enum;
17960         Diag(Loc, DiagID);
17961       }
17962     }
17963 
17964     if (EnumUnderlying) {
17965       EnumDecl *ED = cast<EnumDecl>(New);
17966       if (TypeSourceInfo *TI = dyn_cast<TypeSourceInfo *>(EnumUnderlying))
17967         ED->setIntegerTypeSourceInfo(TI);
17968       else
17969         ED->setIntegerType(QualType(cast<const Type *>(EnumUnderlying), 0));
17970       QualType EnumTy = ED->getIntegerType();
17971       ED->setPromotionType(Context.isPromotableIntegerType(EnumTy)
17972                                ? Context.getPromotedIntegerType(EnumTy)
17973                                : EnumTy);
17974       assert(ED->isComplete() && "enum with type should be complete");
17975     }
17976   } else {
17977     // struct/union/class
17978 
17979     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
17980     // struct X { int A; } D;    D should chain to X.
17981     if (getLangOpts().CPlusPlus) {
17982       // FIXME: Look for a way to use RecordDecl for simple structs.
17983       New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
17984                                   cast_or_null<CXXRecordDecl>(PrevDecl));
17985 
17986       if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
17987         StdBadAlloc = cast<CXXRecordDecl>(New);
17988     } else
17989       New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
17990                                cast_or_null<RecordDecl>(PrevDecl));
17991   }
17992 
17993   // Only C23 and later allow defining new types in 'offsetof()'.
17994   if (OOK != OOK_Outside && TUK == TagUseKind::Definition &&
17995       !getLangOpts().CPlusPlus && !getLangOpts().C23)
17996     Diag(New->getLocation(), diag::ext_type_defined_in_offsetof)
17997         << (OOK == OOK_Macro) << New->getSourceRange();
17998 
17999   // C++11 [dcl.type]p3:
18000   //   A type-specifier-seq shall not define a class or enumeration [...].
18001   if (!Invalid && getLangOpts().CPlusPlus &&
18002       (IsTypeSpecifier || IsTemplateParamOrArg) &&
18003       TUK == TagUseKind::Definition) {
18004     Diag(New->getLocation(), diag::err_type_defined_in_type_specifier)
18005       << Context.getTagDeclType(New);
18006     Invalid = true;
18007   }
18008 
18009   if (!Invalid && getLangOpts().CPlusPlus && TUK == TagUseKind::Definition &&
18010       DC->getDeclKind() == Decl::Enum) {
18011     Diag(New->getLocation(), diag::err_type_defined_in_enum)
18012       << Context.getTagDeclType(New);
18013     Invalid = true;
18014   }
18015 
18016   // Maybe add qualifier info.
18017   if (SS.isNotEmpty()) {
18018     if (SS.isSet()) {
18019       // If this is either a declaration or a definition, check the
18020       // nested-name-specifier against the current context.
18021       if ((TUK == TagUseKind::Definition || TUK == TagUseKind::Declaration) &&
18022           diagnoseQualifiedDeclaration(SS, DC, OrigName, Loc,
18023                                        /*TemplateId=*/nullptr,
18024                                        isMemberSpecialization))
18025         Invalid = true;
18026 
18027       New->setQualifierInfo(SS.getWithLocInContext(Context));
18028       if (TemplateParameterLists.size() > 0) {
18029         New->setTemplateParameterListsInfo(Context, TemplateParameterLists);
18030       }
18031     }
18032     else
18033       Invalid = true;
18034   }
18035 
18036   if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
18037     // Add alignment attributes if necessary; these attributes are checked when
18038     // the ASTContext lays out the structure.
18039     //
18040     // It is important for implementing the correct semantics that this
18041     // happen here (in ActOnTag). The #pragma pack stack is
18042     // maintained as a result of parser callbacks which can occur at
18043     // many points during the parsing of a struct declaration (because
18044     // the #pragma tokens are effectively skipped over during the
18045     // parsing of the struct).
18046     if (TUK == TagUseKind::Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
18047       AddAlignmentAttributesForRecord(RD);
18048       AddMsStructLayoutForRecord(RD);
18049     }
18050   }
18051 
18052   if (ModulePrivateLoc.isValid()) {
18053     if (isMemberSpecialization)
18054       Diag(New->getLocation(), diag::err_module_private_specialization)
18055         << 2
18056         << FixItHint::CreateRemoval(ModulePrivateLoc);
18057     // __module_private__ does not apply to local classes. However, we only
18058     // diagnose this as an error when the declaration specifiers are
18059     // freestanding. Here, we just ignore the __module_private__.
18060     else if (!SearchDC->isFunctionOrMethod())
18061       New->setModulePrivate();
18062   }
18063 
18064   // If this is a specialization of a member class (of a class template),
18065   // check the specialization.
18066   if (isMemberSpecialization && CheckMemberSpecialization(New, Previous))
18067     Invalid = true;
18068 
18069   // If we're declaring or defining a tag in function prototype scope in C,
18070   // note that this type can only be used within the function and add it to
18071   // the list of decls to inject into the function definition scope.
18072   if ((Name || Kind == TagTypeKind::Enum) &&
18073       getNonFieldDeclScope(S)->isFunctionPrototypeScope()) {
18074     if (getLangOpts().CPlusPlus) {
18075       // C++ [dcl.fct]p6:
18076       //   Types shall not be defined in return or parameter types.
18077       if (TUK == TagUseKind::Definition && !IsTypeSpecifier) {
18078         Diag(Loc, diag::err_type_defined_in_param_type)
18079             << Name;
18080         Invalid = true;
18081       }
18082       if (TUK == TagUseKind::Declaration)
18083         Invalid = true;
18084     } else if (!PrevDecl) {
18085       Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
18086     }
18087   }
18088 
18089   if (Invalid)
18090     New->setInvalidDecl();
18091 
18092   // Set the lexical context. If the tag has a C++ scope specifier, the
18093   // lexical context will be different from the semantic context.
18094   New->setLexicalDeclContext(CurContext);
18095 
18096   // Mark this as a friend decl if applicable.
18097   // In Microsoft mode, a friend declaration also acts as a forward
18098   // declaration so we always pass true to setObjectOfFriendDecl to make
18099   // the tag name visible.
18100   if (TUK == TagUseKind::Friend)
18101     New->setObjectOfFriendDecl(getLangOpts().MSVCCompat);
18102 
18103   // Set the access specifier.
18104   if (!Invalid && SearchDC->isRecord())
18105     SetMemberAccessSpecifier(New, PrevDecl, AS);
18106 
18107   if (PrevDecl)
18108     CheckRedeclarationInModule(New, PrevDecl);
18109 
18110   if (TUK == TagUseKind::Definition && (!SkipBody || !SkipBody->ShouldSkip))
18111     New->startDefinition();
18112 
18113   ProcessDeclAttributeList(S, New, Attrs);
18114   AddPragmaAttributes(S, New);
18115 
18116   // If this has an identifier, add it to the scope stack.
18117   if (TUK == TagUseKind::Friend) {
18118     // We might be replacing an existing declaration in the lookup tables;
18119     // if so, borrow its access specifier.
18120     if (PrevDecl)
18121       New->setAccess(PrevDecl->getAccess());
18122 
18123     DeclContext *DC = New->getDeclContext()->getRedeclContext();
18124     DC->makeDeclVisibleInContext(New);
18125     if (Name) // can be null along some error paths
18126       if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
18127         PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
18128   } else if (Name) {
18129     S = getNonFieldDeclScope(S);
18130     PushOnScopeChains(New, S, true);
18131   } else {
18132     CurContext->addDecl(New);
18133   }
18134 
18135   // If this is the C FILE type, notify the AST context.
18136   if (IdentifierInfo *II = New->getIdentifier())
18137     if (!New->isInvalidDecl() &&
18138         New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
18139         II->isStr("FILE"))
18140       Context.setFILEDecl(New);
18141 
18142   if (PrevDecl)
18143     mergeDeclAttributes(New, PrevDecl);
18144 
18145   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(New)) {
18146     inferGslOwnerPointerAttribute(CXXRD);
18147     inferNullableClassAttribute(CXXRD);
18148   }
18149 
18150   // If there's a #pragma GCC visibility in scope, set the visibility of this
18151   // record.
18152   AddPushedVisibilityAttribute(New);
18153 
18154   if (isMemberSpecialization && !New->isInvalidDecl())
18155     CompleteMemberSpecialization(New, Previous);
18156 
18157   OwnedDecl = true;
18158   // In C++, don't return an invalid declaration. We can't recover well from
18159   // the cases where we make the type anonymous.
18160   if (Invalid && getLangOpts().CPlusPlus) {
18161     if (New->isBeingDefined())
18162       if (auto RD = dyn_cast<RecordDecl>(New))
18163         RD->completeDefinition();
18164     return true;
18165   } else if (SkipBody && SkipBody->ShouldSkip) {
18166     return SkipBody->Previous;
18167   } else {
18168     return New;
18169   }
18170 }
18171 
18172 void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
18173   AdjustDeclIfTemplate(TagD);
18174   TagDecl *Tag = cast<TagDecl>(TagD);
18175 
18176   // Enter the tag context.
18177   PushDeclContext(S, Tag);
18178 
18179   ActOnDocumentableDecl(TagD);
18180 
18181   // If there's a #pragma GCC visibility in scope, set the visibility of this
18182   // record.
18183   AddPushedVisibilityAttribute(Tag);
18184 }
18185 
18186 bool Sema::ActOnDuplicateDefinition(Decl *Prev, SkipBodyInfo &SkipBody) {
18187   if (!hasStructuralCompatLayout(Prev, SkipBody.New))
18188     return false;
18189 
18190   // Make the previous decl visible.
18191   makeMergedDefinitionVisible(SkipBody.Previous);
18192   return true;
18193 }
18194 
18195 void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
18196                                            SourceLocation FinalLoc,
18197                                            bool IsFinalSpelledSealed,
18198                                            bool IsAbstract,
18199                                            SourceLocation LBraceLoc) {
18200   AdjustDeclIfTemplate(TagD);
18201   CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
18202 
18203   FieldCollector->StartClass();
18204 
18205   if (!Record->getIdentifier())
18206     return;
18207 
18208   if (IsAbstract)
18209     Record->markAbstract();
18210 
18211   if (FinalLoc.isValid()) {
18212     Record->addAttr(FinalAttr::Create(Context, FinalLoc,
18213                                       IsFinalSpelledSealed
18214                                           ? FinalAttr::Keyword_sealed
18215                                           : FinalAttr::Keyword_final));
18216   }
18217   // C++ [class]p2:
18218   //   [...] The class-name is also inserted into the scope of the
18219   //   class itself; this is known as the injected-class-name. For
18220   //   purposes of access checking, the injected-class-name is treated
18221   //   as if it were a public member name.
18222   CXXRecordDecl *InjectedClassName = CXXRecordDecl::Create(
18223       Context, Record->getTagKind(), CurContext, Record->getBeginLoc(),
18224       Record->getLocation(), Record->getIdentifier(),
18225       /*PrevDecl=*/nullptr,
18226       /*DelayTypeCreation=*/true);
18227   Context.getTypeDeclType(InjectedClassName, Record);
18228   InjectedClassName->setImplicit();
18229   InjectedClassName->setAccess(AS_public);
18230   if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
18231       InjectedClassName->setDescribedClassTemplate(Template);
18232   PushOnScopeChains(InjectedClassName, S);
18233   assert(InjectedClassName->isInjectedClassName() &&
18234          "Broken injected-class-name");
18235 }
18236 
18237 void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
18238                                     SourceRange BraceRange) {
18239   AdjustDeclIfTemplate(TagD);
18240   TagDecl *Tag = cast<TagDecl>(TagD);
18241   Tag->setBraceRange(BraceRange);
18242 
18243   // Make sure we "complete" the definition even it is invalid.
18244   if (Tag->isBeingDefined()) {
18245     assert(Tag->isInvalidDecl() && "We should already have completed it");
18246     if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
18247       RD->completeDefinition();
18248   }
18249 
18250   if (auto *RD = dyn_cast<CXXRecordDecl>(Tag)) {
18251     FieldCollector->FinishClass();
18252     if (RD->hasAttr<SYCLSpecialClassAttr>()) {
18253       auto *Def = RD->getDefinition();
18254       assert(Def && "The record is expected to have a completed definition");
18255       unsigned NumInitMethods = 0;
18256       for (auto *Method : Def->methods()) {
18257         if (!Method->getIdentifier())
18258             continue;
18259         if (Method->getName() == "__init")
18260           NumInitMethods++;
18261       }
18262       if (NumInitMethods > 1 || !Def->hasInitMethod())
18263         Diag(RD->getLocation(), diag::err_sycl_special_type_num_init_method);
18264     }
18265 
18266     // If we're defining a dynamic class in a module interface unit, we always
18267     // need to produce the vtable for it, even if the vtable is not used in the
18268     // current TU.
18269     //
18270     // The case where the current class is not dynamic is handled in
18271     // MarkVTableUsed.
18272     if (getCurrentModule() && getCurrentModule()->isInterfaceOrPartition())
18273       MarkVTableUsed(RD->getLocation(), RD, /*DefinitionRequired=*/true);
18274   }
18275 
18276   // Exit this scope of this tag's definition.
18277   PopDeclContext();
18278 
18279   if (getCurLexicalContext()->isObjCContainer() &&
18280       Tag->getDeclContext()->isFileContext())
18281     Tag->setTopLevelDeclInObjCContainer();
18282 
18283   // Notify the consumer that we've defined a tag.
18284   if (!Tag->isInvalidDecl())
18285     Consumer.HandleTagDeclDefinition(Tag);
18286 
18287   // Clangs implementation of #pragma align(packed) differs in bitfield layout
18288   // from XLs and instead matches the XL #pragma pack(1) behavior.
18289   if (Context.getTargetInfo().getTriple().isOSAIX() &&
18290       AlignPackStack.hasValue()) {
18291     AlignPackInfo APInfo = AlignPackStack.CurrentValue;
18292     // Only diagnose #pragma align(packed).
18293     if (!APInfo.IsAlignAttr() || APInfo.getAlignMode() != AlignPackInfo::Packed)
18294       return;
18295     const RecordDecl *RD = dyn_cast<RecordDecl>(Tag);
18296     if (!RD)
18297       return;
18298     // Only warn if there is at least 1 bitfield member.
18299     if (llvm::any_of(RD->fields(),
18300                      [](const FieldDecl *FD) { return FD->isBitField(); }))
18301       Diag(BraceRange.getBegin(), diag::warn_pragma_align_not_xl_compatible);
18302   }
18303 }
18304 
18305 void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
18306   AdjustDeclIfTemplate(TagD);
18307   TagDecl *Tag = cast<TagDecl>(TagD);
18308   Tag->setInvalidDecl();
18309 
18310   // Make sure we "complete" the definition even it is invalid.
18311   if (Tag->isBeingDefined()) {
18312     if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
18313       RD->completeDefinition();
18314   }
18315 
18316   // We're undoing ActOnTagStartDefinition here, not
18317   // ActOnStartCXXMemberDeclarations, so we don't have to mess with
18318   // the FieldCollector.
18319 
18320   PopDeclContext();
18321 }
18322 
18323 // Note that FieldName may be null for anonymous bitfields.
18324 ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
18325                                 const IdentifierInfo *FieldName,
18326                                 QualType FieldTy, bool IsMsStruct,
18327                                 Expr *BitWidth) {
18328   assert(BitWidth);
18329   if (BitWidth->containsErrors())
18330     return ExprError();
18331 
18332   // C99 6.7.2.1p4 - verify the field type.
18333   // C++ 9.6p3: A bit-field shall have integral or enumeration type.
18334   if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
18335     // Handle incomplete and sizeless types with a specific error.
18336     if (RequireCompleteSizedType(FieldLoc, FieldTy,
18337                                  diag::err_field_incomplete_or_sizeless))
18338       return ExprError();
18339     if (FieldName)
18340       return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
18341         << FieldName << FieldTy << BitWidth->getSourceRange();
18342     return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
18343       << FieldTy << BitWidth->getSourceRange();
18344   } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
18345                                              UPPC_BitFieldWidth))
18346     return ExprError();
18347 
18348   // If the bit-width is type- or value-dependent, don't try to check
18349   // it now.
18350   if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
18351     return BitWidth;
18352 
18353   llvm::APSInt Value;
18354   ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value, AllowFold);
18355   if (ICE.isInvalid())
18356     return ICE;
18357   BitWidth = ICE.get();
18358 
18359   // Zero-width bitfield is ok for anonymous field.
18360   if (Value == 0 && FieldName)
18361     return Diag(FieldLoc, diag::err_bitfield_has_zero_width)
18362            << FieldName << BitWidth->getSourceRange();
18363 
18364   if (Value.isSigned() && Value.isNegative()) {
18365     if (FieldName)
18366       return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
18367                << FieldName << toString(Value, 10);
18368     return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
18369       << toString(Value, 10);
18370   }
18371 
18372   // The size of the bit-field must not exceed our maximum permitted object
18373   // size.
18374   if (Value.getActiveBits() > ConstantArrayType::getMaxSizeBits(Context)) {
18375     return Diag(FieldLoc, diag::err_bitfield_too_wide)
18376            << !FieldName << FieldName << toString(Value, 10);
18377   }
18378 
18379   if (!FieldTy->isDependentType()) {
18380     uint64_t TypeStorageSize = Context.getTypeSize(FieldTy);
18381     uint64_t TypeWidth = Context.getIntWidth(FieldTy);
18382     bool BitfieldIsOverwide = Value.ugt(TypeWidth);
18383 
18384     // Over-wide bitfields are an error in C or when using the MSVC bitfield
18385     // ABI.
18386     bool CStdConstraintViolation =
18387         BitfieldIsOverwide && !getLangOpts().CPlusPlus;
18388     bool MSBitfieldViolation =
18389         Value.ugt(TypeStorageSize) &&
18390         (IsMsStruct || Context.getTargetInfo().getCXXABI().isMicrosoft());
18391     if (CStdConstraintViolation || MSBitfieldViolation) {
18392       unsigned DiagWidth =
18393           CStdConstraintViolation ? TypeWidth : TypeStorageSize;
18394       return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_width)
18395              << (bool)FieldName << FieldName << toString(Value, 10)
18396              << !CStdConstraintViolation << DiagWidth;
18397     }
18398 
18399     // Warn on types where the user might conceivably expect to get all
18400     // specified bits as value bits: that's all integral types other than
18401     // 'bool'.
18402     if (BitfieldIsOverwide && !FieldTy->isBooleanType() && FieldName) {
18403       Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_width)
18404           << FieldName << toString(Value, 10)
18405           << (unsigned)TypeWidth;
18406     }
18407   }
18408 
18409   if (isa<ConstantExpr>(BitWidth))
18410     return BitWidth;
18411   return ConstantExpr::Create(getASTContext(), BitWidth, APValue{Value});
18412 }
18413 
18414 Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
18415                        Declarator &D, Expr *BitfieldWidth) {
18416   FieldDecl *Res = HandleField(S, cast_if_present<RecordDecl>(TagD), DeclStart,
18417                                D, BitfieldWidth,
18418                                /*InitStyle=*/ICIS_NoInit, AS_public);
18419   return Res;
18420 }
18421 
18422 FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
18423                              SourceLocation DeclStart,
18424                              Declarator &D, Expr *BitWidth,
18425                              InClassInitStyle InitStyle,
18426                              AccessSpecifier AS) {
18427   if (D.isDecompositionDeclarator()) {
18428     const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator();
18429     Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context)
18430       << Decomp.getSourceRange();
18431     return nullptr;
18432   }
18433 
18434   const IdentifierInfo *II = D.getIdentifier();
18435   SourceLocation Loc = DeclStart;
18436   if (II) Loc = D.getIdentifierLoc();
18437 
18438   TypeSourceInfo *TInfo = GetTypeForDeclarator(D);
18439   QualType T = TInfo->getType();
18440   if (getLangOpts().CPlusPlus) {
18441     CheckExtraCXXDefaultArguments(D);
18442 
18443     if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
18444                                         UPPC_DataMemberType)) {
18445       D.setInvalidType();
18446       T = Context.IntTy;
18447       TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
18448     }
18449   }
18450 
18451   DiagnoseFunctionSpecifiers(D.getDeclSpec());
18452 
18453   if (D.getDeclSpec().isInlineSpecified())
18454     Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
18455         << getLangOpts().CPlusPlus17;
18456   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
18457     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
18458          diag::err_invalid_thread)
18459       << DeclSpec::getSpecifierName(TSCS);
18460 
18461   // Check to see if this name was declared as a member previously
18462   NamedDecl *PrevDecl = nullptr;
18463   LookupResult Previous(*this, II, Loc, LookupMemberName,
18464                         RedeclarationKind::ForVisibleRedeclaration);
18465   LookupName(Previous, S);
18466   switch (Previous.getResultKind()) {
18467     case LookupResult::Found:
18468     case LookupResult::FoundUnresolvedValue:
18469       PrevDecl = Previous.getAsSingle<NamedDecl>();
18470       break;
18471 
18472     case LookupResult::FoundOverloaded:
18473       PrevDecl = Previous.getRepresentativeDecl();
18474       break;
18475 
18476     case LookupResult::NotFound:
18477     case LookupResult::NotFoundInCurrentInstantiation:
18478     case LookupResult::Ambiguous:
18479       break;
18480   }
18481   Previous.suppressDiagnostics();
18482 
18483   if (PrevDecl && PrevDecl->isTemplateParameter()) {
18484     // Maybe we will complain about the shadowed template parameter.
18485     DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
18486     // Just pretend that we didn't see the previous declaration.
18487     PrevDecl = nullptr;
18488   }
18489 
18490   if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
18491     PrevDecl = nullptr;
18492 
18493   bool Mutable
18494     = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
18495   SourceLocation TSSL = D.getBeginLoc();
18496   FieldDecl *NewFD
18497     = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
18498                      TSSL, AS, PrevDecl, &D);
18499 
18500   if (NewFD->isInvalidDecl())
18501     Record->setInvalidDecl();
18502 
18503   if (D.getDeclSpec().isModulePrivateSpecified())
18504     NewFD->setModulePrivate();
18505 
18506   if (NewFD->isInvalidDecl() && PrevDecl) {
18507     // Don't introduce NewFD into scope; there's already something
18508     // with the same name in the same scope.
18509   } else if (II) {
18510     PushOnScopeChains(NewFD, S);
18511   } else
18512     Record->addDecl(NewFD);
18513 
18514   return NewFD;
18515 }
18516 
18517 FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
18518                                 TypeSourceInfo *TInfo,
18519                                 RecordDecl *Record, SourceLocation Loc,
18520                                 bool Mutable, Expr *BitWidth,
18521                                 InClassInitStyle InitStyle,
18522                                 SourceLocation TSSL,
18523                                 AccessSpecifier AS, NamedDecl *PrevDecl,
18524                                 Declarator *D) {
18525   const IdentifierInfo *II = Name.getAsIdentifierInfo();
18526   bool InvalidDecl = false;
18527   if (D) InvalidDecl = D->isInvalidType();
18528 
18529   // If we receive a broken type, recover by assuming 'int' and
18530   // marking this declaration as invalid.
18531   if (T.isNull() || T->containsErrors()) {
18532     InvalidDecl = true;
18533     T = Context.IntTy;
18534   }
18535 
18536   QualType EltTy = Context.getBaseElementType(T);
18537   if (!EltTy->isDependentType() && !EltTy->containsErrors()) {
18538     bool isIncomplete =
18539         LangOpts.HLSL // HLSL allows sizeless builtin types
18540             ? RequireCompleteType(Loc, EltTy, diag::err_incomplete_type)
18541             : RequireCompleteSizedType(Loc, EltTy,
18542                                        diag::err_field_incomplete_or_sizeless);
18543     if (isIncomplete) {
18544       // Fields of incomplete type force their record to be invalid.
18545       Record->setInvalidDecl();
18546       InvalidDecl = true;
18547     } else {
18548       NamedDecl *Def;
18549       EltTy->isIncompleteType(&Def);
18550       if (Def && Def->isInvalidDecl()) {
18551         Record->setInvalidDecl();
18552         InvalidDecl = true;
18553       }
18554     }
18555   }
18556 
18557   // TR 18037 does not allow fields to be declared with address space
18558   if (T.hasAddressSpace() || T->isDependentAddressSpaceType() ||
18559       T->getBaseElementTypeUnsafe()->isDependentAddressSpaceType()) {
18560     Diag(Loc, diag::err_field_with_address_space);
18561     Record->setInvalidDecl();
18562     InvalidDecl = true;
18563   }
18564 
18565   if (LangOpts.OpenCL) {
18566     // OpenCL v1.2 s6.9b,r & OpenCL v2.0 s6.12.5 - The following types cannot be
18567     // used as structure or union field: image, sampler, event or block types.
18568     if (T->isEventT() || T->isImageType() || T->isSamplerT() ||
18569         T->isBlockPointerType()) {
18570       Diag(Loc, diag::err_opencl_type_struct_or_union_field) << T;
18571       Record->setInvalidDecl();
18572       InvalidDecl = true;
18573     }
18574     // OpenCL v1.2 s6.9.c: bitfields are not supported, unless Clang extension
18575     // is enabled.
18576     if (BitWidth && !getOpenCLOptions().isAvailableOption(
18577                         "__cl_clang_bitfields", LangOpts)) {
18578       Diag(Loc, diag::err_opencl_bitfields);
18579       InvalidDecl = true;
18580     }
18581   }
18582 
18583   // Anonymous bit-fields cannot be cv-qualified (CWG 2229).
18584   if (!InvalidDecl && getLangOpts().CPlusPlus && !II && BitWidth &&
18585       T.hasQualifiers()) {
18586     InvalidDecl = true;
18587     Diag(Loc, diag::err_anon_bitfield_qualifiers);
18588   }
18589 
18590   // C99 6.7.2.1p8: A member of a structure or union may have any type other
18591   // than a variably modified type.
18592   if (!InvalidDecl && T->isVariablyModifiedType()) {
18593     if (!tryToFixVariablyModifiedVarType(
18594             TInfo, T, Loc, diag::err_typecheck_field_variable_size))
18595       InvalidDecl = true;
18596   }
18597 
18598   // Fields can not have abstract class types
18599   if (!InvalidDecl && RequireNonAbstractType(Loc, T,
18600                                              diag::err_abstract_type_in_decl,
18601                                              AbstractFieldType))
18602     InvalidDecl = true;
18603 
18604   if (InvalidDecl)
18605     BitWidth = nullptr;
18606   // If this is declared as a bit-field, check the bit-field.
18607   if (BitWidth) {
18608     BitWidth =
18609         VerifyBitField(Loc, II, T, Record->isMsStruct(Context), BitWidth).get();
18610     if (!BitWidth) {
18611       InvalidDecl = true;
18612       BitWidth = nullptr;
18613     }
18614   }
18615 
18616   // Check that 'mutable' is consistent with the type of the declaration.
18617   if (!InvalidDecl && Mutable) {
18618     unsigned DiagID = 0;
18619     if (T->isReferenceType())
18620       DiagID = getLangOpts().MSVCCompat ? diag::ext_mutable_reference
18621                                         : diag::err_mutable_reference;
18622     else if (T.isConstQualified())
18623       DiagID = diag::err_mutable_const;
18624 
18625     if (DiagID) {
18626       SourceLocation ErrLoc = Loc;
18627       if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
18628         ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
18629       Diag(ErrLoc, DiagID);
18630       if (DiagID != diag::ext_mutable_reference) {
18631         Mutable = false;
18632         InvalidDecl = true;
18633       }
18634     }
18635   }
18636 
18637   // C++11 [class.union]p8 (DR1460):
18638   //   At most one variant member of a union may have a
18639   //   brace-or-equal-initializer.
18640   if (InitStyle != ICIS_NoInit)
18641     checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Record), Loc);
18642 
18643   FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
18644                                        BitWidth, Mutable, InitStyle);
18645   if (InvalidDecl)
18646     NewFD->setInvalidDecl();
18647 
18648   if (PrevDecl && !isa<TagDecl>(PrevDecl) &&
18649       !PrevDecl->isPlaceholderVar(getLangOpts())) {
18650     Diag(Loc, diag::err_duplicate_member) << II;
18651     Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
18652     NewFD->setInvalidDecl();
18653   }
18654 
18655   if (!InvalidDecl && getLangOpts().CPlusPlus) {
18656     if (Record->isUnion()) {
18657       if (const RecordType *RT = EltTy->getAs<RecordType>()) {
18658         CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
18659         if (RDecl->getDefinition()) {
18660           // C++ [class.union]p1: An object of a class with a non-trivial
18661           // constructor, a non-trivial copy constructor, a non-trivial
18662           // destructor, or a non-trivial copy assignment operator
18663           // cannot be a member of a union, nor can an array of such
18664           // objects.
18665           if (CheckNontrivialField(NewFD))
18666             NewFD->setInvalidDecl();
18667         }
18668       }
18669 
18670       // C++ [class.union]p1: If a union contains a member of reference type,
18671       // the program is ill-formed, except when compiling with MSVC extensions
18672       // enabled.
18673       if (EltTy->isReferenceType()) {
18674         const bool HaveMSExt =
18675             getLangOpts().MicrosoftExt &&
18676             !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015);
18677 
18678         Diag(NewFD->getLocation(),
18679              HaveMSExt ? diag::ext_union_member_of_reference_type
18680                        : diag::err_union_member_of_reference_type)
18681             << NewFD->getDeclName() << EltTy;
18682         if (!HaveMSExt)
18683           NewFD->setInvalidDecl();
18684       }
18685     }
18686   }
18687 
18688   // FIXME: We need to pass in the attributes given an AST
18689   // representation, not a parser representation.
18690   if (D) {
18691     // FIXME: The current scope is almost... but not entirely... correct here.
18692     ProcessDeclAttributes(getCurScope(), NewFD, *D);
18693 
18694     if (NewFD->hasAttrs())
18695       CheckAlignasUnderalignment(NewFD);
18696   }
18697 
18698   // In auto-retain/release, infer strong retension for fields of
18699   // retainable type.
18700   if (getLangOpts().ObjCAutoRefCount && ObjC().inferObjCARCLifetime(NewFD))
18701     NewFD->setInvalidDecl();
18702 
18703   if (T.isObjCGCWeak())
18704     Diag(Loc, diag::warn_attribute_weak_on_field);
18705 
18706   // PPC MMA non-pointer types are not allowed as field types.
18707   if (Context.getTargetInfo().getTriple().isPPC64() &&
18708       PPC().CheckPPCMMAType(T, NewFD->getLocation()))
18709     NewFD->setInvalidDecl();
18710 
18711   NewFD->setAccess(AS);
18712   return NewFD;
18713 }
18714 
18715 bool Sema::CheckNontrivialField(FieldDecl *FD) {
18716   assert(FD);
18717   assert(getLangOpts().CPlusPlus && "valid check only for C++");
18718 
18719   if (FD->isInvalidDecl() || FD->getType()->isDependentType())
18720     return false;
18721 
18722   QualType EltTy = Context.getBaseElementType(FD->getType());
18723   if (const RecordType *RT = EltTy->getAs<RecordType>()) {
18724     CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
18725     if (RDecl->getDefinition()) {
18726       // We check for copy constructors before constructors
18727       // because otherwise we'll never get complaints about
18728       // copy constructors.
18729 
18730       CXXSpecialMemberKind member = CXXSpecialMemberKind::Invalid;
18731       // We're required to check for any non-trivial constructors. Since the
18732       // implicit default constructor is suppressed if there are any
18733       // user-declared constructors, we just need to check that there is a
18734       // trivial default constructor and a trivial copy constructor. (We don't
18735       // worry about move constructors here, since this is a C++98 check.)
18736       if (RDecl->hasNonTrivialCopyConstructor())
18737         member = CXXSpecialMemberKind::CopyConstructor;
18738       else if (!RDecl->hasTrivialDefaultConstructor())
18739         member = CXXSpecialMemberKind::DefaultConstructor;
18740       else if (RDecl->hasNonTrivialCopyAssignment())
18741         member = CXXSpecialMemberKind::CopyAssignment;
18742       else if (RDecl->hasNonTrivialDestructor())
18743         member = CXXSpecialMemberKind::Destructor;
18744 
18745       if (member != CXXSpecialMemberKind::Invalid) {
18746         if (!getLangOpts().CPlusPlus11 &&
18747             getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
18748           // Objective-C++ ARC: it is an error to have a non-trivial field of
18749           // a union. However, system headers in Objective-C programs
18750           // occasionally have Objective-C lifetime objects within unions,
18751           // and rather than cause the program to fail, we make those
18752           // members unavailable.
18753           SourceLocation Loc = FD->getLocation();
18754           if (getSourceManager().isInSystemHeader(Loc)) {
18755             if (!FD->hasAttr<UnavailableAttr>())
18756               FD->addAttr(UnavailableAttr::CreateImplicit(Context, "",
18757                             UnavailableAttr::IR_ARCFieldWithOwnership, Loc));
18758             return false;
18759           }
18760         }
18761 
18762         Diag(
18763             FD->getLocation(),
18764             getLangOpts().CPlusPlus11
18765                 ? diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member
18766                 : diag::err_illegal_union_or_anon_struct_member)
18767             << FD->getParent()->isUnion() << FD->getDeclName()
18768             << llvm::to_underlying(member);
18769         DiagnoseNontrivial(RDecl, member);
18770         return !getLangOpts().CPlusPlus11;
18771       }
18772     }
18773   }
18774 
18775   return false;
18776 }
18777 
18778 void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
18779                              SmallVectorImpl<Decl *> &AllIvarDecls) {
18780   if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
18781     return;
18782 
18783   Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
18784   ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
18785 
18786   if (!Ivar->isBitField() || Ivar->isZeroLengthBitField())
18787     return;
18788   ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
18789   if (!ID) {
18790     if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
18791       if (!CD->IsClassExtension())
18792         return;
18793     }
18794     // No need to add this to end of @implementation.
18795     else
18796       return;
18797   }
18798   // All conditions are met. Add a new bitfield to the tail end of ivars.
18799   llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
18800   Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
18801   Expr *BitWidth =
18802       ConstantExpr::Create(Context, BW, APValue(llvm::APSInt(Zero)));
18803 
18804   Ivar = ObjCIvarDecl::Create(
18805       Context, cast<ObjCContainerDecl>(CurContext), DeclLoc, DeclLoc, nullptr,
18806       Context.CharTy, Context.getTrivialTypeSourceInfo(Context.CharTy, DeclLoc),
18807       ObjCIvarDecl::Private, BitWidth, true);
18808   AllIvarDecls.push_back(Ivar);
18809 }
18810 
18811 /// [class.dtor]p4:
18812 ///   At the end of the definition of a class, overload resolution is
18813 ///   performed among the prospective destructors declared in that class with
18814 ///   an empty argument list to select the destructor for the class, also
18815 ///   known as the selected destructor.
18816 ///
18817 /// We do the overload resolution here, then mark the selected constructor in the AST.
18818 /// Later CXXRecordDecl::getDestructor() will return the selected constructor.
18819 static void ComputeSelectedDestructor(Sema &S, CXXRecordDecl *Record) {
18820   if (!Record->hasUserDeclaredDestructor()) {
18821     return;
18822   }
18823 
18824   SourceLocation Loc = Record->getLocation();
18825   OverloadCandidateSet OCS(Loc, OverloadCandidateSet::CSK_Normal);
18826 
18827   for (auto *Decl : Record->decls()) {
18828     if (auto *DD = dyn_cast<CXXDestructorDecl>(Decl)) {
18829       if (DD->isInvalidDecl())
18830         continue;
18831       S.AddOverloadCandidate(DD, DeclAccessPair::make(DD, DD->getAccess()), {},
18832                              OCS);
18833       assert(DD->isIneligibleOrNotSelected() && "Selecting a destructor but a destructor was already selected.");
18834     }
18835   }
18836 
18837   if (OCS.empty()) {
18838     return;
18839   }
18840   OverloadCandidateSet::iterator Best;
18841   unsigned Msg = 0;
18842   OverloadCandidateDisplayKind DisplayKind;
18843 
18844   switch (OCS.BestViableFunction(S, Loc, Best)) {
18845   case OR_Success:
18846   case OR_Deleted:
18847     Record->addedSelectedDestructor(dyn_cast<CXXDestructorDecl>(Best->Function));
18848     break;
18849 
18850   case OR_Ambiguous:
18851     Msg = diag::err_ambiguous_destructor;
18852     DisplayKind = OCD_AmbiguousCandidates;
18853     break;
18854 
18855   case OR_No_Viable_Function:
18856     Msg = diag::err_no_viable_destructor;
18857     DisplayKind = OCD_AllCandidates;
18858     break;
18859   }
18860 
18861   if (Msg) {
18862     // OpenCL have got their own thing going with destructors. It's slightly broken,
18863     // but we allow it.
18864     if (!S.LangOpts.OpenCL) {
18865       PartialDiagnostic Diag = S.PDiag(Msg) << Record;
18866       OCS.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S, DisplayKind, {});
18867       Record->setInvalidDecl();
18868     }
18869     // It's a bit hacky: At this point we've raised an error but we want the
18870     // rest of the compiler to continue somehow working. However almost
18871     // everything we'll try to do with the class will depend on there being a
18872     // destructor. So let's pretend the first one is selected and hope for the
18873     // best.
18874     Record->addedSelectedDestructor(dyn_cast<CXXDestructorDecl>(OCS.begin()->Function));
18875   }
18876 }
18877 
18878 /// [class.mem.special]p5
18879 /// Two special member functions are of the same kind if:
18880 /// - they are both default constructors,
18881 /// - they are both copy or move constructors with the same first parameter
18882 ///   type, or
18883 /// - they are both copy or move assignment operators with the same first
18884 ///   parameter type and the same cv-qualifiers and ref-qualifier, if any.
18885 static bool AreSpecialMemberFunctionsSameKind(ASTContext &Context,
18886                                               CXXMethodDecl *M1,
18887                                               CXXMethodDecl *M2,
18888                                               CXXSpecialMemberKind CSM) {
18889   // We don't want to compare templates to non-templates: See
18890   // https://github.com/llvm/llvm-project/issues/59206
18891   if (CSM == CXXSpecialMemberKind::DefaultConstructor)
18892     return bool(M1->getDescribedFunctionTemplate()) ==
18893            bool(M2->getDescribedFunctionTemplate());
18894   // FIXME: better resolve CWG
18895   // https://cplusplus.github.io/CWG/issues/2787.html
18896   if (!Context.hasSameType(M1->getNonObjectParameter(0)->getType(),
18897                            M2->getNonObjectParameter(0)->getType()))
18898     return false;
18899   if (!Context.hasSameType(M1->getFunctionObjectParameterReferenceType(),
18900                            M2->getFunctionObjectParameterReferenceType()))
18901     return false;
18902 
18903   return true;
18904 }
18905 
18906 /// [class.mem.special]p6:
18907 /// An eligible special member function is a special member function for which:
18908 /// - the function is not deleted,
18909 /// - the associated constraints, if any, are satisfied, and
18910 /// - no special member function of the same kind whose associated constraints
18911 ///   [CWG2595], if any, are satisfied is more constrained.
18912 static void SetEligibleMethods(Sema &S, CXXRecordDecl *Record,
18913                                ArrayRef<CXXMethodDecl *> Methods,
18914                                CXXSpecialMemberKind CSM) {
18915   SmallVector<bool, 4> SatisfactionStatus;
18916 
18917   for (CXXMethodDecl *Method : Methods) {
18918     const Expr *Constraints = Method->getTrailingRequiresClause();
18919     if (!Constraints)
18920       SatisfactionStatus.push_back(true);
18921     else {
18922       ConstraintSatisfaction Satisfaction;
18923       if (S.CheckFunctionConstraints(Method, Satisfaction))
18924         SatisfactionStatus.push_back(false);
18925       else
18926         SatisfactionStatus.push_back(Satisfaction.IsSatisfied);
18927     }
18928   }
18929 
18930   for (size_t i = 0; i < Methods.size(); i++) {
18931     if (!SatisfactionStatus[i])
18932       continue;
18933     CXXMethodDecl *Method = Methods[i];
18934     CXXMethodDecl *OrigMethod = Method;
18935     if (FunctionDecl *MF = OrigMethod->getInstantiatedFromMemberFunction())
18936       OrigMethod = cast<CXXMethodDecl>(MF);
18937 
18938     const Expr *Constraints = OrigMethod->getTrailingRequiresClause();
18939     bool AnotherMethodIsMoreConstrained = false;
18940     for (size_t j = 0; j < Methods.size(); j++) {
18941       if (i == j || !SatisfactionStatus[j])
18942         continue;
18943       CXXMethodDecl *OtherMethod = Methods[j];
18944       if (FunctionDecl *MF = OtherMethod->getInstantiatedFromMemberFunction())
18945         OtherMethod = cast<CXXMethodDecl>(MF);
18946 
18947       if (!AreSpecialMemberFunctionsSameKind(S.Context, OrigMethod, OtherMethod,
18948                                              CSM))
18949         continue;
18950 
18951       const Expr *OtherConstraints = OtherMethod->getTrailingRequiresClause();
18952       if (!OtherConstraints)
18953         continue;
18954       if (!Constraints) {
18955         AnotherMethodIsMoreConstrained = true;
18956         break;
18957       }
18958       if (S.IsAtLeastAsConstrained(OtherMethod, {OtherConstraints}, OrigMethod,
18959                                    {Constraints},
18960                                    AnotherMethodIsMoreConstrained)) {
18961         // There was an error with the constraints comparison. Exit the loop
18962         // and don't consider this function eligible.
18963         AnotherMethodIsMoreConstrained = true;
18964       }
18965       if (AnotherMethodIsMoreConstrained)
18966         break;
18967     }
18968     // FIXME: Do not consider deleted methods as eligible after implementing
18969     // DR1734 and DR1496.
18970     if (!AnotherMethodIsMoreConstrained) {
18971       Method->setIneligibleOrNotSelected(false);
18972       Record->addedEligibleSpecialMemberFunction(Method,
18973                                                  1 << llvm::to_underlying(CSM));
18974     }
18975   }
18976 }
18977 
18978 static void ComputeSpecialMemberFunctionsEligiblity(Sema &S,
18979                                                     CXXRecordDecl *Record) {
18980   SmallVector<CXXMethodDecl *, 4> DefaultConstructors;
18981   SmallVector<CXXMethodDecl *, 4> CopyConstructors;
18982   SmallVector<CXXMethodDecl *, 4> MoveConstructors;
18983   SmallVector<CXXMethodDecl *, 4> CopyAssignmentOperators;
18984   SmallVector<CXXMethodDecl *, 4> MoveAssignmentOperators;
18985 
18986   for (auto *Decl : Record->decls()) {
18987     auto *MD = dyn_cast<CXXMethodDecl>(Decl);
18988     if (!MD) {
18989       auto *FTD = dyn_cast<FunctionTemplateDecl>(Decl);
18990       if (FTD)
18991         MD = dyn_cast<CXXMethodDecl>(FTD->getTemplatedDecl());
18992     }
18993     if (!MD)
18994       continue;
18995     if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
18996       if (CD->isInvalidDecl())
18997         continue;
18998       if (CD->isDefaultConstructor())
18999         DefaultConstructors.push_back(MD);
19000       else if (CD->isCopyConstructor())
19001         CopyConstructors.push_back(MD);
19002       else if (CD->isMoveConstructor())
19003         MoveConstructors.push_back(MD);
19004     } else if (MD->isCopyAssignmentOperator()) {
19005       CopyAssignmentOperators.push_back(MD);
19006     } else if (MD->isMoveAssignmentOperator()) {
19007       MoveAssignmentOperators.push_back(MD);
19008     }
19009   }
19010 
19011   SetEligibleMethods(S, Record, DefaultConstructors,
19012                      CXXSpecialMemberKind::DefaultConstructor);
19013   SetEligibleMethods(S, Record, CopyConstructors,
19014                      CXXSpecialMemberKind::CopyConstructor);
19015   SetEligibleMethods(S, Record, MoveConstructors,
19016                      CXXSpecialMemberKind::MoveConstructor);
19017   SetEligibleMethods(S, Record, CopyAssignmentOperators,
19018                      CXXSpecialMemberKind::CopyAssignment);
19019   SetEligibleMethods(S, Record, MoveAssignmentOperators,
19020                      CXXSpecialMemberKind::MoveAssignment);
19021 }
19022 
19023 void Sema::ActOnFields(Scope *S, SourceLocation RecLoc, Decl *EnclosingDecl,
19024                        ArrayRef<Decl *> Fields, SourceLocation LBrac,
19025                        SourceLocation RBrac,
19026                        const ParsedAttributesView &Attrs) {
19027   assert(EnclosingDecl && "missing record or interface decl");
19028 
19029   // If this is an Objective-C @implementation or category and we have
19030   // new fields here we should reset the layout of the interface since
19031   // it will now change.
19032   if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
19033     ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
19034     switch (DC->getKind()) {
19035     default: break;
19036     case Decl::ObjCCategory:
19037       Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
19038       break;
19039     case Decl::ObjCImplementation:
19040       Context.
19041         ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
19042       break;
19043     }
19044   }
19045 
19046   RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
19047   CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(EnclosingDecl);
19048 
19049   // Start counting up the number of named members; make sure to include
19050   // members of anonymous structs and unions in the total.
19051   unsigned NumNamedMembers = 0;
19052   if (Record) {
19053     for (const auto *I : Record->decls()) {
19054       if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
19055         if (IFD->getDeclName())
19056           ++NumNamedMembers;
19057     }
19058   }
19059 
19060   // Verify that all the fields are okay.
19061   SmallVector<FieldDecl*, 32> RecFields;
19062 
19063   for (ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
19064        i != end; ++i) {
19065     FieldDecl *FD = cast<FieldDecl>(*i);
19066 
19067     // Get the type for the field.
19068     const Type *FDTy = FD->getType().getTypePtr();
19069 
19070     if (!FD->isAnonymousStructOrUnion()) {
19071       // Remember all fields written by the user.
19072       RecFields.push_back(FD);
19073     }
19074 
19075     // If the field is already invalid for some reason, don't emit more
19076     // diagnostics about it.
19077     if (FD->isInvalidDecl()) {
19078       EnclosingDecl->setInvalidDecl();
19079       continue;
19080     }
19081 
19082     // C99 6.7.2.1p2:
19083     //   A structure or union shall not contain a member with
19084     //   incomplete or function type (hence, a structure shall not
19085     //   contain an instance of itself, but may contain a pointer to
19086     //   an instance of itself), except that the last member of a
19087     //   structure with more than one named member may have incomplete
19088     //   array type; such a structure (and any union containing,
19089     //   possibly recursively, a member that is such a structure)
19090     //   shall not be a member of a structure or an element of an
19091     //   array.
19092     bool IsLastField = (i + 1 == Fields.end());
19093     if (FDTy->isFunctionType()) {
19094       // Field declared as a function.
19095       Diag(FD->getLocation(), diag::err_field_declared_as_function)
19096         << FD->getDeclName();
19097       FD->setInvalidDecl();
19098       EnclosingDecl->setInvalidDecl();
19099       continue;
19100     } else if (FDTy->isIncompleteArrayType() &&
19101                (Record || isa<ObjCContainerDecl>(EnclosingDecl))) {
19102       if (Record) {
19103         // Flexible array member.
19104         // Microsoft and g++ is more permissive regarding flexible array.
19105         // It will accept flexible array in union and also
19106         // as the sole element of a struct/class.
19107         unsigned DiagID = 0;
19108         if (!Record->isUnion() && !IsLastField) {
19109           Diag(FD->getLocation(), diag::err_flexible_array_not_at_end)
19110               << FD->getDeclName() << FD->getType()
19111               << llvm::to_underlying(Record->getTagKind());
19112           Diag((*(i + 1))->getLocation(), diag::note_next_field_declaration);
19113           FD->setInvalidDecl();
19114           EnclosingDecl->setInvalidDecl();
19115           continue;
19116         } else if (Record->isUnion())
19117           DiagID = getLangOpts().MicrosoftExt
19118                        ? diag::ext_flexible_array_union_ms
19119                        : diag::ext_flexible_array_union_gnu;
19120         else if (NumNamedMembers < 1)
19121           DiagID = getLangOpts().MicrosoftExt
19122                        ? diag::ext_flexible_array_empty_aggregate_ms
19123                        : diag::ext_flexible_array_empty_aggregate_gnu;
19124 
19125         if (DiagID)
19126           Diag(FD->getLocation(), DiagID)
19127               << FD->getDeclName() << llvm::to_underlying(Record->getTagKind());
19128         // While the layout of types that contain virtual bases is not specified
19129         // by the C++ standard, both the Itanium and Microsoft C++ ABIs place
19130         // virtual bases after the derived members.  This would make a flexible
19131         // array member declared at the end of an object not adjacent to the end
19132         // of the type.
19133         if (CXXRecord && CXXRecord->getNumVBases() != 0)
19134           Diag(FD->getLocation(), diag::err_flexible_array_virtual_base)
19135               << FD->getDeclName() << llvm::to_underlying(Record->getTagKind());
19136         if (!getLangOpts().C99)
19137           Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
19138               << FD->getDeclName() << llvm::to_underlying(Record->getTagKind());
19139 
19140         // If the element type has a non-trivial destructor, we would not
19141         // implicitly destroy the elements, so disallow it for now.
19142         //
19143         // FIXME: GCC allows this. We should probably either implicitly delete
19144         // the destructor of the containing class, or just allow this.
19145         QualType BaseElem = Context.getBaseElementType(FD->getType());
19146         if (!BaseElem->isDependentType() && BaseElem.isDestructedType()) {
19147           Diag(FD->getLocation(), diag::err_flexible_array_has_nontrivial_dtor)
19148             << FD->getDeclName() << FD->getType();
19149           FD->setInvalidDecl();
19150           EnclosingDecl->setInvalidDecl();
19151           continue;
19152         }
19153         // Okay, we have a legal flexible array member at the end of the struct.
19154         Record->setHasFlexibleArrayMember(true);
19155       } else {
19156         // In ObjCContainerDecl ivars with incomplete array type are accepted,
19157         // unless they are followed by another ivar. That check is done
19158         // elsewhere, after synthesized ivars are known.
19159       }
19160     } else if (!FDTy->isDependentType() &&
19161                (LangOpts.HLSL // HLSL allows sizeless builtin types
19162                     ? RequireCompleteType(FD->getLocation(), FD->getType(),
19163                                           diag::err_incomplete_type)
19164                     : RequireCompleteSizedType(
19165                           FD->getLocation(), FD->getType(),
19166                           diag::err_field_incomplete_or_sizeless))) {
19167       // Incomplete type
19168       FD->setInvalidDecl();
19169       EnclosingDecl->setInvalidDecl();
19170       continue;
19171     } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
19172       if (Record && FDTTy->getDecl()->hasFlexibleArrayMember()) {
19173         // A type which contains a flexible array member is considered to be a
19174         // flexible array member.
19175         Record->setHasFlexibleArrayMember(true);
19176         if (!Record->isUnion()) {
19177           // If this is a struct/class and this is not the last element, reject
19178           // it.  Note that GCC supports variable sized arrays in the middle of
19179           // structures.
19180           if (!IsLastField)
19181             Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
19182               << FD->getDeclName() << FD->getType();
19183           else {
19184             // We support flexible arrays at the end of structs in
19185             // other structs as an extension.
19186             Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
19187               << FD->getDeclName();
19188           }
19189         }
19190       }
19191       if (isa<ObjCContainerDecl>(EnclosingDecl) &&
19192           RequireNonAbstractType(FD->getLocation(), FD->getType(),
19193                                  diag::err_abstract_type_in_decl,
19194                                  AbstractIvarType)) {
19195         // Ivars can not have abstract class types
19196         FD->setInvalidDecl();
19197       }
19198       if (Record && FDTTy->getDecl()->hasObjectMember())
19199         Record->setHasObjectMember(true);
19200       if (Record && FDTTy->getDecl()->hasVolatileMember())
19201         Record->setHasVolatileMember(true);
19202     } else if (FDTy->isObjCObjectType()) {
19203       /// A field cannot be an Objective-c object
19204       Diag(FD->getLocation(), diag::err_statically_allocated_object)
19205         << FixItHint::CreateInsertion(FD->getLocation(), "*");
19206       QualType T = Context.getObjCObjectPointerType(FD->getType());
19207       FD->setType(T);
19208     } else if (Record && Record->isUnion() &&
19209                FD->getType().hasNonTrivialObjCLifetime() &&
19210                getSourceManager().isInSystemHeader(FD->getLocation()) &&
19211                !getLangOpts().CPlusPlus && !FD->hasAttr<UnavailableAttr>() &&
19212                (FD->getType().getObjCLifetime() != Qualifiers::OCL_Strong ||
19213                 !Context.hasDirectOwnershipQualifier(FD->getType()))) {
19214       // For backward compatibility, fields of C unions declared in system
19215       // headers that have non-trivial ObjC ownership qualifications are marked
19216       // as unavailable unless the qualifier is explicit and __strong. This can
19217       // break ABI compatibility between programs compiled with ARC and MRR, but
19218       // is a better option than rejecting programs using those unions under
19219       // ARC.
19220       FD->addAttr(UnavailableAttr::CreateImplicit(
19221           Context, "", UnavailableAttr::IR_ARCFieldWithOwnership,
19222           FD->getLocation()));
19223     } else if (getLangOpts().ObjC &&
19224                getLangOpts().getGC() != LangOptions::NonGC && Record &&
19225                !Record->hasObjectMember()) {
19226       if (FD->getType()->isObjCObjectPointerType() ||
19227           FD->getType().isObjCGCStrong())
19228         Record->setHasObjectMember(true);
19229       else if (Context.getAsArrayType(FD->getType())) {
19230         QualType BaseType = Context.getBaseElementType(FD->getType());
19231         if (BaseType->isRecordType() &&
19232             BaseType->castAs<RecordType>()->getDecl()->hasObjectMember())
19233           Record->setHasObjectMember(true);
19234         else if (BaseType->isObjCObjectPointerType() ||
19235                  BaseType.isObjCGCStrong())
19236                Record->setHasObjectMember(true);
19237       }
19238     }
19239 
19240     if (Record && !getLangOpts().CPlusPlus &&
19241         !shouldIgnoreForRecordTriviality(FD)) {
19242       QualType FT = FD->getType();
19243       if (FT.isNonTrivialToPrimitiveDefaultInitialize()) {
19244         Record->setNonTrivialToPrimitiveDefaultInitialize(true);
19245         if (FT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
19246             Record->isUnion())
19247           Record->setHasNonTrivialToPrimitiveDefaultInitializeCUnion(true);
19248       }
19249       QualType::PrimitiveCopyKind PCK = FT.isNonTrivialToPrimitiveCopy();
19250       if (PCK != QualType::PCK_Trivial && PCK != QualType::PCK_VolatileTrivial) {
19251         Record->setNonTrivialToPrimitiveCopy(true);
19252         if (FT.hasNonTrivialToPrimitiveCopyCUnion() || Record->isUnion())
19253           Record->setHasNonTrivialToPrimitiveCopyCUnion(true);
19254       }
19255       if (FD->hasAttr<ExplicitInitAttr>())
19256         Record->setHasUninitializedExplicitInitFields(true);
19257       if (FT.isDestructedType()) {
19258         Record->setNonTrivialToPrimitiveDestroy(true);
19259         Record->setParamDestroyedInCallee(true);
19260         if (FT.hasNonTrivialToPrimitiveDestructCUnion() || Record->isUnion())
19261           Record->setHasNonTrivialToPrimitiveDestructCUnion(true);
19262       }
19263 
19264       if (const auto *RT = FT->getAs<RecordType>()) {
19265         if (RT->getDecl()->getArgPassingRestrictions() ==
19266             RecordArgPassingKind::CanNeverPassInRegs)
19267           Record->setArgPassingRestrictions(
19268               RecordArgPassingKind::CanNeverPassInRegs);
19269       } else if (FT.getQualifiers().getObjCLifetime() == Qualifiers::OCL_Weak)
19270         Record->setArgPassingRestrictions(
19271             RecordArgPassingKind::CanNeverPassInRegs);
19272     }
19273 
19274     if (Record && FD->getType().isVolatileQualified())
19275       Record->setHasVolatileMember(true);
19276     // Keep track of the number of named members.
19277     if (FD->getIdentifier())
19278       ++NumNamedMembers;
19279   }
19280 
19281   // Okay, we successfully defined 'Record'.
19282   if (Record) {
19283     bool Completed = false;
19284     if (S) {
19285       Scope *Parent = S->getParent();
19286       if (Parent && Parent->isTypeAliasScope() &&
19287           Parent->isTemplateParamScope())
19288         Record->setInvalidDecl();
19289     }
19290 
19291     if (CXXRecord) {
19292       if (!CXXRecord->isInvalidDecl()) {
19293         // Set access bits correctly on the directly-declared conversions.
19294         for (CXXRecordDecl::conversion_iterator
19295                I = CXXRecord->conversion_begin(),
19296                E = CXXRecord->conversion_end(); I != E; ++I)
19297           I.setAccess((*I)->getAccess());
19298       }
19299 
19300       // Add any implicitly-declared members to this class.
19301       AddImplicitlyDeclaredMembersToClass(CXXRecord);
19302 
19303       if (!CXXRecord->isDependentType()) {
19304         if (!CXXRecord->isInvalidDecl()) {
19305           // If we have virtual base classes, we may end up finding multiple
19306           // final overriders for a given virtual function. Check for this
19307           // problem now.
19308           if (CXXRecord->getNumVBases()) {
19309             CXXFinalOverriderMap FinalOverriders;
19310             CXXRecord->getFinalOverriders(FinalOverriders);
19311 
19312             for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
19313                                              MEnd = FinalOverriders.end();
19314                  M != MEnd; ++M) {
19315               for (OverridingMethods::iterator SO = M->second.begin(),
19316                                             SOEnd = M->second.end();
19317                    SO != SOEnd; ++SO) {
19318                 assert(SO->second.size() > 0 &&
19319                        "Virtual function without overriding functions?");
19320                 if (SO->second.size() == 1)
19321                   continue;
19322 
19323                 // C++ [class.virtual]p2:
19324                 //   In a derived class, if a virtual member function of a base
19325                 //   class subobject has more than one final overrider the
19326                 //   program is ill-formed.
19327                 Diag(Record->getLocation(), diag::err_multiple_final_overriders)
19328                   << (const NamedDecl *)M->first << Record;
19329                 Diag(M->first->getLocation(),
19330                      diag::note_overridden_virtual_function);
19331                 for (OverridingMethods::overriding_iterator
19332                           OM = SO->second.begin(),
19333                        OMEnd = SO->second.end();
19334                      OM != OMEnd; ++OM)
19335                   Diag(OM->Method->getLocation(), diag::note_final_overrider)
19336                     << (const NamedDecl *)M->first << OM->Method->getParent();
19337 
19338                 Record->setInvalidDecl();
19339               }
19340             }
19341             CXXRecord->completeDefinition(&FinalOverriders);
19342             Completed = true;
19343           }
19344         }
19345         ComputeSelectedDestructor(*this, CXXRecord);
19346         ComputeSpecialMemberFunctionsEligiblity(*this, CXXRecord);
19347       }
19348     }
19349 
19350     if (!Completed)
19351       Record->completeDefinition();
19352 
19353     // Handle attributes before checking the layout.
19354     ProcessDeclAttributeList(S, Record, Attrs);
19355 
19356     // Check to see if a FieldDecl is a pointer to a function.
19357     auto IsFunctionPointerOrForwardDecl = [&](const Decl *D) {
19358       const FieldDecl *FD = dyn_cast<FieldDecl>(D);
19359       if (!FD) {
19360         // Check whether this is a forward declaration that was inserted by
19361         // Clang. This happens when a non-forward declared / defined type is
19362         // used, e.g.:
19363         //
19364         //   struct foo {
19365         //     struct bar *(*f)();
19366         //     struct bar *(*g)();
19367         //   };
19368         //
19369         // "struct bar" shows up in the decl AST as a "RecordDecl" with an
19370         // incomplete definition.
19371         if (const auto *TD = dyn_cast<TagDecl>(D))
19372           return !TD->isCompleteDefinition();
19373         return false;
19374       }
19375       QualType FieldType = FD->getType().getDesugaredType(Context);
19376       if (isa<PointerType>(FieldType)) {
19377         QualType PointeeType = cast<PointerType>(FieldType)->getPointeeType();
19378         return PointeeType.getDesugaredType(Context)->isFunctionType();
19379       }
19380       return false;
19381     };
19382 
19383     // Maybe randomize the record's decls. We automatically randomize a record
19384     // of function pointers, unless it has the "no_randomize_layout" attribute.
19385     if (!getLangOpts().CPlusPlus &&
19386         (Record->hasAttr<RandomizeLayoutAttr>() ||
19387          (!Record->hasAttr<NoRandomizeLayoutAttr>() &&
19388           llvm::all_of(Record->decls(), IsFunctionPointerOrForwardDecl))) &&
19389         !Record->isUnion() && !getLangOpts().RandstructSeed.empty() &&
19390         !Record->isRandomized()) {
19391       SmallVector<Decl *, 32> NewDeclOrdering;
19392       if (randstruct::randomizeStructureLayout(Context, Record,
19393                                                NewDeclOrdering))
19394         Record->reorderDecls(NewDeclOrdering);
19395     }
19396 
19397     // We may have deferred checking for a deleted destructor. Check now.
19398     if (CXXRecord) {
19399       auto *Dtor = CXXRecord->getDestructor();
19400       if (Dtor && Dtor->isImplicit() &&
19401           ShouldDeleteSpecialMember(Dtor, CXXSpecialMemberKind::Destructor)) {
19402         CXXRecord->setImplicitDestructorIsDeleted();
19403         SetDeclDeleted(Dtor, CXXRecord->getLocation());
19404       }
19405     }
19406 
19407     if (Record->hasAttrs()) {
19408       CheckAlignasUnderalignment(Record);
19409 
19410       if (const MSInheritanceAttr *IA = Record->getAttr<MSInheritanceAttr>())
19411         checkMSInheritanceAttrOnDefinition(cast<CXXRecordDecl>(Record),
19412                                            IA->getRange(), IA->getBestCase(),
19413                                            IA->getInheritanceModel());
19414     }
19415 
19416     // Check if the structure/union declaration is a type that can have zero
19417     // size in C. For C this is a language extension, for C++ it may cause
19418     // compatibility problems.
19419     bool CheckForZeroSize;
19420     if (!getLangOpts().CPlusPlus) {
19421       CheckForZeroSize = true;
19422     } else {
19423       // For C++ filter out types that cannot be referenced in C code.
19424       CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
19425       CheckForZeroSize =
19426           CXXRecord->getLexicalDeclContext()->isExternCContext() &&
19427           !CXXRecord->isDependentType() && !inTemplateInstantiation() &&
19428           CXXRecord->isCLike();
19429     }
19430     if (CheckForZeroSize) {
19431       bool ZeroSize = true;
19432       bool IsEmpty = true;
19433       unsigned NonBitFields = 0;
19434       for (RecordDecl::field_iterator I = Record->field_begin(),
19435                                       E = Record->field_end();
19436            (NonBitFields == 0 || ZeroSize) && I != E; ++I) {
19437         IsEmpty = false;
19438         if (I->isUnnamedBitField()) {
19439           if (!I->isZeroLengthBitField())
19440             ZeroSize = false;
19441         } else {
19442           ++NonBitFields;
19443           QualType FieldType = I->getType();
19444           if (FieldType->isIncompleteType() ||
19445               !Context.getTypeSizeInChars(FieldType).isZero())
19446             ZeroSize = false;
19447         }
19448       }
19449 
19450       // Empty structs are an extension in C (C99 6.7.2.1p7). They are
19451       // allowed in C++, but warn if its declaration is inside
19452       // extern "C" block.
19453       if (ZeroSize) {
19454         Diag(RecLoc, getLangOpts().CPlusPlus ?
19455                          diag::warn_zero_size_struct_union_in_extern_c :
19456                          diag::warn_zero_size_struct_union_compat)
19457           << IsEmpty << Record->isUnion() << (NonBitFields > 1);
19458       }
19459 
19460       // Structs without named members are extension in C (C99 6.7.2.1p7),
19461       // but are accepted by GCC. In C2y, this became implementation-defined
19462       // (C2y 6.7.3.2p10).
19463       if (NonBitFields == 0 && !getLangOpts().CPlusPlus && !getLangOpts().C2y) {
19464         Diag(RecLoc, IsEmpty ? diag::ext_empty_struct_union
19465                              : diag::ext_no_named_members_in_struct_union)
19466             << Record->isUnion();
19467       }
19468     }
19469   } else {
19470     ObjCIvarDecl **ClsFields =
19471       reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
19472     if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
19473       ID->setEndOfDefinitionLoc(RBrac);
19474       // Add ivar's to class's DeclContext.
19475       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
19476         ClsFields[i]->setLexicalDeclContext(ID);
19477         ID->addDecl(ClsFields[i]);
19478       }
19479       // Must enforce the rule that ivars in the base classes may not be
19480       // duplicates.
19481       if (ID->getSuperClass())
19482         ObjC().DiagnoseDuplicateIvars(ID, ID->getSuperClass());
19483     } else if (ObjCImplementationDecl *IMPDecl =
19484                   dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
19485       assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
19486       for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
19487         // Ivar declared in @implementation never belongs to the implementation.
19488         // Only it is in implementation's lexical context.
19489         ClsFields[I]->setLexicalDeclContext(IMPDecl);
19490       ObjC().CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(),
19491                                       RBrac);
19492       IMPDecl->setIvarLBraceLoc(LBrac);
19493       IMPDecl->setIvarRBraceLoc(RBrac);
19494     } else if (ObjCCategoryDecl *CDecl =
19495                 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
19496       // case of ivars in class extension; all other cases have been
19497       // reported as errors elsewhere.
19498       // FIXME. Class extension does not have a LocEnd field.
19499       // CDecl->setLocEnd(RBrac);
19500       // Add ivar's to class extension's DeclContext.
19501       // Diagnose redeclaration of private ivars.
19502       ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
19503       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
19504         if (IDecl) {
19505           if (const ObjCIvarDecl *ClsIvar =
19506               IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
19507             Diag(ClsFields[i]->getLocation(),
19508                  diag::err_duplicate_ivar_declaration);
19509             Diag(ClsIvar->getLocation(), diag::note_previous_definition);
19510             continue;
19511           }
19512           for (const auto *Ext : IDecl->known_extensions()) {
19513             if (const ObjCIvarDecl *ClsExtIvar
19514                   = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
19515               Diag(ClsFields[i]->getLocation(),
19516                    diag::err_duplicate_ivar_declaration);
19517               Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
19518               continue;
19519             }
19520           }
19521         }
19522         ClsFields[i]->setLexicalDeclContext(CDecl);
19523         CDecl->addDecl(ClsFields[i]);
19524       }
19525       CDecl->setIvarLBraceLoc(LBrac);
19526       CDecl->setIvarRBraceLoc(RBrac);
19527     }
19528   }
19529   ProcessAPINotes(Record);
19530 }
19531 
19532 /// Determine whether the given integral value is representable within
19533 /// the given type T.
19534 static bool isRepresentableIntegerValue(ASTContext &Context,
19535                                         llvm::APSInt &Value,
19536                                         QualType T) {
19537   assert((T->isIntegralType(Context) || T->isEnumeralType()) &&
19538          "Integral type required!");
19539   unsigned BitWidth = Context.getIntWidth(T);
19540 
19541   if (Value.isUnsigned() || Value.isNonNegative()) {
19542     if (T->isSignedIntegerOrEnumerationType())
19543       --BitWidth;
19544     return Value.getActiveBits() <= BitWidth;
19545   }
19546   return Value.getSignificantBits() <= BitWidth;
19547 }
19548 
19549 // Given an integral type, return the next larger integral type
19550 // (or a NULL type of no such type exists).
19551 static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
19552   // FIXME: Int128/UInt128 support, which also needs to be introduced into
19553   // enum checking below.
19554   assert((T->isIntegralType(Context) ||
19555          T->isEnumeralType()) && "Integral type required!");
19556   const unsigned NumTypes = 4;
19557   QualType SignedIntegralTypes[NumTypes] = {
19558     Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
19559   };
19560   QualType UnsignedIntegralTypes[NumTypes] = {
19561     Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
19562     Context.UnsignedLongLongTy
19563   };
19564 
19565   unsigned BitWidth = Context.getTypeSize(T);
19566   QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
19567                                                         : UnsignedIntegralTypes;
19568   for (unsigned I = 0; I != NumTypes; ++I)
19569     if (Context.getTypeSize(Types[I]) > BitWidth)
19570       return Types[I];
19571 
19572   return QualType();
19573 }
19574 
19575 EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
19576                                           EnumConstantDecl *LastEnumConst,
19577                                           SourceLocation IdLoc,
19578                                           IdentifierInfo *Id,
19579                                           Expr *Val) {
19580   unsigned IntWidth = Context.getTargetInfo().getIntWidth();
19581   llvm::APSInt EnumVal(IntWidth);
19582   QualType EltTy;
19583 
19584   if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
19585     Val = nullptr;
19586 
19587   if (Val)
19588     Val = DefaultLvalueConversion(Val).get();
19589 
19590   if (Val) {
19591     if (Enum->isDependentType() || Val->isTypeDependent() ||
19592         Val->containsErrors())
19593       EltTy = Context.DependentTy;
19594     else {
19595       // FIXME: We don't allow folding in C++11 mode for an enum with a fixed
19596       // underlying type, but do allow it in all other contexts.
19597       if (getLangOpts().CPlusPlus11 && Enum->isFixed()) {
19598         // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
19599         // constant-expression in the enumerator-definition shall be a converted
19600         // constant expression of the underlying type.
19601         EltTy = Enum->getIntegerType();
19602         ExprResult Converted =
19603           CheckConvertedConstantExpression(Val, EltTy, EnumVal,
19604                                            CCEK_Enumerator);
19605         if (Converted.isInvalid())
19606           Val = nullptr;
19607         else
19608           Val = Converted.get();
19609       } else if (!Val->isValueDependent() &&
19610                  !(Val =
19611                        VerifyIntegerConstantExpression(Val, &EnumVal, AllowFold)
19612                            .get())) {
19613         // C99 6.7.2.2p2: Make sure we have an integer constant expression.
19614       } else {
19615         if (Enum->isComplete()) {
19616           EltTy = Enum->getIntegerType();
19617 
19618           // In Obj-C and Microsoft mode, require the enumeration value to be
19619           // representable in the underlying type of the enumeration. In C++11,
19620           // we perform a non-narrowing conversion as part of converted constant
19621           // expression checking.
19622           if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
19623             if (Context.getTargetInfo()
19624                     .getTriple()
19625                     .isWindowsMSVCEnvironment()) {
19626               Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
19627             } else {
19628               Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
19629             }
19630           }
19631 
19632           // Cast to the underlying type.
19633           Val = ImpCastExprToType(Val, EltTy,
19634                                   EltTy->isBooleanType() ? CK_IntegralToBoolean
19635                                                          : CK_IntegralCast)
19636                     .get();
19637         } else if (getLangOpts().CPlusPlus) {
19638           // C++11 [dcl.enum]p5:
19639           //   If the underlying type is not fixed, the type of each enumerator
19640           //   is the type of its initializing value:
19641           //     - If an initializer is specified for an enumerator, the
19642           //       initializing value has the same type as the expression.
19643           EltTy = Val->getType();
19644         } else {
19645           // C99 6.7.2.2p2:
19646           //   The expression that defines the value of an enumeration constant
19647           //   shall be an integer constant expression that has a value
19648           //   representable as an int.
19649 
19650           // Complain if the value is not representable in an int.
19651           if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy)) {
19652             Diag(IdLoc, getLangOpts().C23
19653                             ? diag::warn_c17_compat_enum_value_not_int
19654                             : diag::ext_c23_enum_value_not_int)
19655                 << 0 << toString(EnumVal, 10) << Val->getSourceRange()
19656                 << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
19657           } else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
19658             // Force the type of the expression to 'int'.
19659             Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).get();
19660           }
19661           EltTy = Val->getType();
19662         }
19663       }
19664     }
19665   }
19666 
19667   if (!Val) {
19668     if (Enum->isDependentType())
19669       EltTy = Context.DependentTy;
19670     else if (!LastEnumConst) {
19671       // C++0x [dcl.enum]p5:
19672       //   If the underlying type is not fixed, the type of each enumerator
19673       //   is the type of its initializing value:
19674       //     - If no initializer is specified for the first enumerator, the
19675       //       initializing value has an unspecified integral type.
19676       //
19677       // GCC uses 'int' for its unspecified integral type, as does
19678       // C99 6.7.2.2p3.
19679       if (Enum->isFixed()) {
19680         EltTy = Enum->getIntegerType();
19681       }
19682       else {
19683         EltTy = Context.IntTy;
19684       }
19685     } else {
19686       // Assign the last value + 1.
19687       EnumVal = LastEnumConst->getInitVal();
19688       ++EnumVal;
19689       EltTy = LastEnumConst->getType();
19690 
19691       // Check for overflow on increment.
19692       if (EnumVal < LastEnumConst->getInitVal()) {
19693         // C++0x [dcl.enum]p5:
19694         //   If the underlying type is not fixed, the type of each enumerator
19695         //   is the type of its initializing value:
19696         //
19697         //     - Otherwise the type of the initializing value is the same as
19698         //       the type of the initializing value of the preceding enumerator
19699         //       unless the incremented value is not representable in that type,
19700         //       in which case the type is an unspecified integral type
19701         //       sufficient to contain the incremented value. If no such type
19702         //       exists, the program is ill-formed.
19703         QualType T = getNextLargerIntegralType(Context, EltTy);
19704         if (T.isNull() || Enum->isFixed()) {
19705           // There is no integral type larger enough to represent this
19706           // value. Complain, then allow the value to wrap around.
19707           EnumVal = LastEnumConst->getInitVal();
19708           EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
19709           ++EnumVal;
19710           if (Enum->isFixed())
19711             // When the underlying type is fixed, this is ill-formed.
19712             Diag(IdLoc, diag::err_enumerator_wrapped)
19713               << toString(EnumVal, 10)
19714               << EltTy;
19715           else
19716             Diag(IdLoc, diag::ext_enumerator_increment_too_large)
19717               << toString(EnumVal, 10);
19718         } else {
19719           EltTy = T;
19720         }
19721 
19722         // Retrieve the last enumerator's value, extent that type to the
19723         // type that is supposed to be large enough to represent the incremented
19724         // value, then increment.
19725         EnumVal = LastEnumConst->getInitVal();
19726         EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
19727         EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
19728         ++EnumVal;
19729 
19730         // If we're not in C++, diagnose the overflow of enumerator values,
19731         // which in C99 means that the enumerator value is not representable in
19732         // an int (C99 6.7.2.2p2). However C23 permits enumerator values that
19733         // are representable in some larger integral type and we allow it in
19734         // older language modes as an extension.
19735         // Exclude fixed enumerators since they are diagnosed with an error for
19736         // this case.
19737         if (!getLangOpts().CPlusPlus && !T.isNull() && !Enum->isFixed())
19738           Diag(IdLoc, getLangOpts().C23
19739                           ? diag::warn_c17_compat_enum_value_not_int
19740                           : diag::ext_c23_enum_value_not_int)
19741               << 1 << toString(EnumVal, 10) << 1;
19742       } else if (!getLangOpts().CPlusPlus && !EltTy->isDependentType() &&
19743                  !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
19744         // Enforce C99 6.7.2.2p2 even when we compute the next value.
19745         Diag(IdLoc, getLangOpts().C23 ? diag::warn_c17_compat_enum_value_not_int
19746                                       : diag::ext_c23_enum_value_not_int)
19747             << 1 << toString(EnumVal, 10) << 1;
19748       }
19749     }
19750   }
19751 
19752   if (!EltTy->isDependentType()) {
19753     // Make the enumerator value match the signedness and size of the
19754     // enumerator's type.
19755     EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
19756     EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
19757   }
19758 
19759   return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
19760                                   Val, EnumVal);
19761 }
19762 
19763 SkipBodyInfo Sema::shouldSkipAnonEnumBody(Scope *S, IdentifierInfo *II,
19764                                                 SourceLocation IILoc) {
19765   if (!(getLangOpts().Modules || getLangOpts().ModulesLocalVisibility) ||
19766       !getLangOpts().CPlusPlus)
19767     return SkipBodyInfo();
19768 
19769   // We have an anonymous enum definition. Look up the first enumerator to
19770   // determine if we should merge the definition with an existing one and
19771   // skip the body.
19772   NamedDecl *PrevDecl = LookupSingleName(S, II, IILoc, LookupOrdinaryName,
19773                                          forRedeclarationInCurContext());
19774   auto *PrevECD = dyn_cast_or_null<EnumConstantDecl>(PrevDecl);
19775   if (!PrevECD)
19776     return SkipBodyInfo();
19777 
19778   EnumDecl *PrevED = cast<EnumDecl>(PrevECD->getDeclContext());
19779   NamedDecl *Hidden;
19780   if (!PrevED->getDeclName() && !hasVisibleDefinition(PrevED, &Hidden)) {
19781     SkipBodyInfo Skip;
19782     Skip.Previous = Hidden;
19783     return Skip;
19784   }
19785 
19786   return SkipBodyInfo();
19787 }
19788 
19789 Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
19790                               SourceLocation IdLoc, IdentifierInfo *Id,
19791                               const ParsedAttributesView &Attrs,
19792                               SourceLocation EqualLoc, Expr *Val) {
19793   EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
19794   EnumConstantDecl *LastEnumConst =
19795     cast_or_null<EnumConstantDecl>(lastEnumConst);
19796 
19797   // The scope passed in may not be a decl scope.  Zip up the scope tree until
19798   // we find one that is.
19799   S = getNonFieldDeclScope(S);
19800 
19801   // Verify that there isn't already something declared with this name in this
19802   // scope.
19803   LookupResult R(*this, Id, IdLoc, LookupOrdinaryName,
19804                  RedeclarationKind::ForVisibleRedeclaration);
19805   LookupName(R, S);
19806   NamedDecl *PrevDecl = R.getAsSingle<NamedDecl>();
19807 
19808   if (PrevDecl && PrevDecl->isTemplateParameter()) {
19809     // Maybe we will complain about the shadowed template parameter.
19810     DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
19811     // Just pretend that we didn't see the previous declaration.
19812     PrevDecl = nullptr;
19813   }
19814 
19815   // C++ [class.mem]p15:
19816   // If T is the name of a class, then each of the following shall have a name
19817   // different from T:
19818   // - every enumerator of every member of class T that is an unscoped
19819   // enumerated type
19820   if (getLangOpts().CPlusPlus && !TheEnumDecl->isScoped())
19821     DiagnoseClassNameShadow(TheEnumDecl->getDeclContext(),
19822                             DeclarationNameInfo(Id, IdLoc));
19823 
19824   EnumConstantDecl *New =
19825     CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
19826   if (!New)
19827     return nullptr;
19828 
19829   if (PrevDecl) {
19830     if (!TheEnumDecl->isScoped() && isa<ValueDecl>(PrevDecl)) {
19831       // Check for other kinds of shadowing not already handled.
19832       CheckShadow(New, PrevDecl, R);
19833     }
19834 
19835     // When in C++, we may get a TagDecl with the same name; in this case the
19836     // enum constant will 'hide' the tag.
19837     assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
19838            "Received TagDecl when not in C++!");
19839     if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
19840       if (isa<EnumConstantDecl>(PrevDecl))
19841         Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
19842       else
19843         Diag(IdLoc, diag::err_redefinition) << Id;
19844       notePreviousDefinition(PrevDecl, IdLoc);
19845       return nullptr;
19846     }
19847   }
19848 
19849   // Process attributes.
19850   ProcessDeclAttributeList(S, New, Attrs);
19851   AddPragmaAttributes(S, New);
19852   ProcessAPINotes(New);
19853 
19854   // Register this decl in the current scope stack.
19855   New->setAccess(TheEnumDecl->getAccess());
19856   PushOnScopeChains(New, S);
19857 
19858   ActOnDocumentableDecl(New);
19859 
19860   return New;
19861 }
19862 
19863 // Returns true when the enum initial expression does not trigger the
19864 // duplicate enum warning.  A few common cases are exempted as follows:
19865 // Element2 = Element1
19866 // Element2 = Element1 + 1
19867 // Element2 = Element1 - 1
19868 // Where Element2 and Element1 are from the same enum.
19869 static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
19870   Expr *InitExpr = ECD->getInitExpr();
19871   if (!InitExpr)
19872     return true;
19873   InitExpr = InitExpr->IgnoreImpCasts();
19874 
19875   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
19876     if (!BO->isAdditiveOp())
19877       return true;
19878     IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
19879     if (!IL)
19880       return true;
19881     if (IL->getValue() != 1)
19882       return true;
19883 
19884     InitExpr = BO->getLHS();
19885   }
19886 
19887   // This checks if the elements are from the same enum.
19888   DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
19889   if (!DRE)
19890     return true;
19891 
19892   EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
19893   if (!EnumConstant)
19894     return true;
19895 
19896   if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
19897       Enum)
19898     return true;
19899 
19900   return false;
19901 }
19902 
19903 // Emits a warning when an element is implicitly set a value that
19904 // a previous element has already been set to.
19905 static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements,
19906                                         EnumDecl *Enum, QualType EnumType) {
19907   // Avoid anonymous enums
19908   if (!Enum->getIdentifier())
19909     return;
19910 
19911   // Only check for small enums.
19912   if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
19913     return;
19914 
19915   if (S.Diags.isIgnored(diag::warn_duplicate_enum_values, Enum->getLocation()))
19916     return;
19917 
19918   typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
19919   typedef SmallVector<std::unique_ptr<ECDVector>, 3> DuplicatesVector;
19920 
19921   typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
19922 
19923   // DenseMaps cannot contain the all ones int64_t value, so use unordered_map.
19924   typedef std::unordered_map<int64_t, DeclOrVector> ValueToVectorMap;
19925 
19926   // Use int64_t as a key to avoid needing special handling for map keys.
19927   auto EnumConstantToKey = [](const EnumConstantDecl *D) {
19928     llvm::APSInt Val = D->getInitVal();
19929     return Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue();
19930   };
19931 
19932   DuplicatesVector DupVector;
19933   ValueToVectorMap EnumMap;
19934 
19935   // Populate the EnumMap with all values represented by enum constants without
19936   // an initializer.
19937   for (auto *Element : Elements) {
19938     EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Element);
19939 
19940     // Null EnumConstantDecl means a previous diagnostic has been emitted for
19941     // this constant.  Skip this enum since it may be ill-formed.
19942     if (!ECD) {
19943       return;
19944     }
19945 
19946     // Constants with initializers are handled in the next loop.
19947     if (ECD->getInitExpr())
19948       continue;
19949 
19950     // Duplicate values are handled in the next loop.
19951     EnumMap.insert({EnumConstantToKey(ECD), ECD});
19952   }
19953 
19954   if (EnumMap.size() == 0)
19955     return;
19956 
19957   // Create vectors for any values that has duplicates.
19958   for (auto *Element : Elements) {
19959     // The last loop returned if any constant was null.
19960     EnumConstantDecl *ECD = cast<EnumConstantDecl>(Element);
19961     if (!ValidDuplicateEnum(ECD, Enum))
19962       continue;
19963 
19964     auto Iter = EnumMap.find(EnumConstantToKey(ECD));
19965     if (Iter == EnumMap.end())
19966       continue;
19967 
19968     DeclOrVector& Entry = Iter->second;
19969     if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
19970       // Ensure constants are different.
19971       if (D == ECD)
19972         continue;
19973 
19974       // Create new vector and push values onto it.
19975       auto Vec = std::make_unique<ECDVector>();
19976       Vec->push_back(D);
19977       Vec->push_back(ECD);
19978 
19979       // Update entry to point to the duplicates vector.
19980       Entry = Vec.get();
19981 
19982       // Store the vector somewhere we can consult later for quick emission of
19983       // diagnostics.
19984       DupVector.emplace_back(std::move(Vec));
19985       continue;
19986     }
19987 
19988     ECDVector *Vec = cast<ECDVector *>(Entry);
19989     // Make sure constants are not added more than once.
19990     if (*Vec->begin() == ECD)
19991       continue;
19992 
19993     Vec->push_back(ECD);
19994   }
19995 
19996   // Emit diagnostics.
19997   for (const auto &Vec : DupVector) {
19998     assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
19999 
20000     // Emit warning for one enum constant.
20001     auto *FirstECD = Vec->front();
20002     S.Diag(FirstECD->getLocation(), diag::warn_duplicate_enum_values)
20003       << FirstECD << toString(FirstECD->getInitVal(), 10)
20004       << FirstECD->getSourceRange();
20005 
20006     // Emit one note for each of the remaining enum constants with
20007     // the same value.
20008     for (auto *ECD : llvm::drop_begin(*Vec))
20009       S.Diag(ECD->getLocation(), diag::note_duplicate_element)
20010         << ECD << toString(ECD->getInitVal(), 10)
20011         << ECD->getSourceRange();
20012   }
20013 }
20014 
20015 bool Sema::IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val,
20016                              bool AllowMask) const {
20017   assert(ED->isClosedFlag() && "looking for value in non-flag or open enum");
20018   assert(ED->isCompleteDefinition() && "expected enum definition");
20019 
20020   auto R = FlagBitsCache.insert(std::make_pair(ED, llvm::APInt()));
20021   llvm::APInt &FlagBits = R.first->second;
20022 
20023   if (R.second) {
20024     for (auto *E : ED->enumerators()) {
20025       const auto &EVal = E->getInitVal();
20026       // Only single-bit enumerators introduce new flag values.
20027       if (EVal.isPowerOf2())
20028         FlagBits = FlagBits.zext(EVal.getBitWidth()) | EVal;
20029     }
20030   }
20031 
20032   // A value is in a flag enum if either its bits are a subset of the enum's
20033   // flag bits (the first condition) or we are allowing masks and the same is
20034   // true of its complement (the second condition). When masks are allowed, we
20035   // allow the common idiom of ~(enum1 | enum2) to be a valid enum value.
20036   //
20037   // While it's true that any value could be used as a mask, the assumption is
20038   // that a mask will have all of the insignificant bits set. Anything else is
20039   // likely a logic error.
20040   llvm::APInt FlagMask = ~FlagBits.zextOrTrunc(Val.getBitWidth());
20041   return !(FlagMask & Val) || (AllowMask && !(FlagMask & ~Val));
20042 }
20043 
20044 void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceRange BraceRange,
20045                          Decl *EnumDeclX, ArrayRef<Decl *> Elements, Scope *S,
20046                          const ParsedAttributesView &Attrs) {
20047   EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
20048   QualType EnumType = Context.getTypeDeclType(Enum);
20049 
20050   ProcessDeclAttributeList(S, Enum, Attrs);
20051   ProcessAPINotes(Enum);
20052 
20053   if (Enum->isDependentType()) {
20054     for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
20055       EnumConstantDecl *ECD =
20056         cast_or_null<EnumConstantDecl>(Elements[i]);
20057       if (!ECD) continue;
20058 
20059       ECD->setType(EnumType);
20060     }
20061 
20062     Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
20063     return;
20064   }
20065 
20066   // Verify that all the values are okay, compute the size of the values, and
20067   // reverse the list.
20068   unsigned NumNegativeBits = 0;
20069   unsigned NumPositiveBits = 0;
20070   bool MembersRepresentableByInt = true;
20071 
20072   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
20073     EnumConstantDecl *ECD =
20074       cast_or_null<EnumConstantDecl>(Elements[i]);
20075     if (!ECD) continue;  // Already issued a diagnostic.
20076 
20077     llvm::APSInt InitVal = ECD->getInitVal();
20078 
20079     // Keep track of the size of positive and negative values.
20080     if (InitVal.isUnsigned() || InitVal.isNonNegative()) {
20081       // If the enumerator is zero that should still be counted as a positive
20082       // bit since we need a bit to store the value zero.
20083       unsigned ActiveBits = InitVal.getActiveBits();
20084       NumPositiveBits = std::max({NumPositiveBits, ActiveBits, 1u});
20085     } else {
20086       NumNegativeBits =
20087           std::max(NumNegativeBits, (unsigned)InitVal.getSignificantBits());
20088     }
20089     MembersRepresentableByInt &=
20090         isRepresentableIntegerValue(Context, InitVal, Context.IntTy);
20091   }
20092 
20093   // If we have an empty set of enumerators we still need one bit.
20094   // From [dcl.enum]p8
20095   // If the enumerator-list is empty, the values of the enumeration are as if
20096   // the enumeration had a single enumerator with value 0
20097   if (!NumPositiveBits && !NumNegativeBits)
20098     NumPositiveBits = 1;
20099 
20100   // Figure out the type that should be used for this enum.
20101   QualType BestType;
20102   unsigned BestWidth;
20103 
20104   // C++0x N3000 [conv.prom]p3:
20105   //   An rvalue of an unscoped enumeration type whose underlying
20106   //   type is not fixed can be converted to an rvalue of the first
20107   //   of the following types that can represent all the values of
20108   //   the enumeration: int, unsigned int, long int, unsigned long
20109   //   int, long long int, or unsigned long long int.
20110   // C99 6.4.4.3p2:
20111   //   An identifier declared as an enumeration constant has type int.
20112   // The C99 rule is modified by C23.
20113   QualType BestPromotionType;
20114 
20115   bool Packed = Enum->hasAttr<PackedAttr>();
20116   // -fshort-enums is the equivalent to specifying the packed attribute on all
20117   // enum definitions.
20118   if (LangOpts.ShortEnums)
20119     Packed = true;
20120 
20121   // If the enum already has a type because it is fixed or dictated by the
20122   // target, promote that type instead of analyzing the enumerators.
20123   if (Enum->isComplete()) {
20124     BestType = Enum->getIntegerType();
20125     if (Context.isPromotableIntegerType(BestType))
20126       BestPromotionType = Context.getPromotedIntegerType(BestType);
20127     else
20128       BestPromotionType = BestType;
20129 
20130     BestWidth = Context.getIntWidth(BestType);
20131   } else {
20132     bool EnumTooLarge = Context.computeBestEnumTypes(
20133         Packed, NumNegativeBits, NumPositiveBits, BestType, BestPromotionType);
20134     BestWidth = Context.getIntWidth(BestType);
20135     if (EnumTooLarge)
20136       Diag(Enum->getLocation(), diag::ext_enum_too_large);
20137   }
20138 
20139   // Loop over all of the enumerator constants, changing their types to match
20140   // the type of the enum if needed.
20141   for (auto *D : Elements) {
20142     auto *ECD = cast_or_null<EnumConstantDecl>(D);
20143     if (!ECD) continue;  // Already issued a diagnostic.
20144 
20145     // C99 says the enumerators have int type, but we allow, as an
20146     // extension, the enumerators to be larger than int size.  If each
20147     // enumerator value fits in an int, type it as an int, otherwise type it the
20148     // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
20149     // that X has type 'int', not 'unsigned'.
20150 
20151     // Determine whether the value fits into an int.
20152     llvm::APSInt InitVal = ECD->getInitVal();
20153 
20154     // If it fits into an integer type, force it.  Otherwise force it to match
20155     // the enum decl type.
20156     QualType NewTy;
20157     unsigned NewWidth;
20158     bool NewSign;
20159     if (!getLangOpts().CPlusPlus && !Enum->isFixed() &&
20160         MembersRepresentableByInt) {
20161       // C23 6.7.3.3.3p15:
20162       // The enumeration member type for an enumerated type without fixed
20163       // underlying type upon completion is:
20164       //  - int if all the values of the enumeration are representable as an
20165       //  int; or,
20166       //  - the enumerated type
20167       NewTy = Context.IntTy;
20168       NewWidth = Context.getTargetInfo().getIntWidth();
20169       NewSign = true;
20170     } else if (ECD->getType() == BestType) {
20171       // Already the right type!
20172       if (getLangOpts().CPlusPlus)
20173         // C++ [dcl.enum]p4: Following the closing brace of an
20174         // enum-specifier, each enumerator has the type of its
20175         // enumeration.
20176         ECD->setType(EnumType);
20177       continue;
20178     } else {
20179       NewTy = BestType;
20180       NewWidth = BestWidth;
20181       NewSign = BestType->isSignedIntegerOrEnumerationType();
20182     }
20183 
20184     // Adjust the APSInt value.
20185     InitVal = InitVal.extOrTrunc(NewWidth);
20186     InitVal.setIsSigned(NewSign);
20187     ECD->setInitVal(Context, InitVal);
20188 
20189     // Adjust the Expr initializer and type.
20190     if (ECD->getInitExpr() &&
20191         !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
20192       ECD->setInitExpr(ImplicitCastExpr::Create(
20193           Context, NewTy, CK_IntegralCast, ECD->getInitExpr(),
20194           /*base paths*/ nullptr, VK_PRValue, FPOptionsOverride()));
20195     if (getLangOpts().CPlusPlus)
20196       // C++ [dcl.enum]p4: Following the closing brace of an
20197       // enum-specifier, each enumerator has the type of its
20198       // enumeration.
20199       ECD->setType(EnumType);
20200     else
20201       ECD->setType(NewTy);
20202   }
20203 
20204   Enum->completeDefinition(BestType, BestPromotionType,
20205                            NumPositiveBits, NumNegativeBits);
20206 
20207   CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType);
20208 
20209   if (Enum->isClosedFlag()) {
20210     for (Decl *D : Elements) {
20211       EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(D);
20212       if (!ECD) continue;  // Already issued a diagnostic.
20213 
20214       llvm::APSInt InitVal = ECD->getInitVal();
20215       if (InitVal != 0 && !InitVal.isPowerOf2() &&
20216           !IsValueInFlagEnum(Enum, InitVal, true))
20217         Diag(ECD->getLocation(), diag::warn_flag_enum_constant_out_of_range)
20218           << ECD << Enum;
20219     }
20220   }
20221 
20222   // Now that the enum type is defined, ensure it's not been underaligned.
20223   if (Enum->hasAttrs())
20224     CheckAlignasUnderalignment(Enum);
20225 }
20226 
20227 Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
20228                                   SourceLocation StartLoc,
20229                                   SourceLocation EndLoc) {
20230   StringLiteral *AsmString = cast<StringLiteral>(expr);
20231 
20232   FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
20233                                                    AsmString, StartLoc,
20234                                                    EndLoc);
20235   CurContext->addDecl(New);
20236   return New;
20237 }
20238 
20239 TopLevelStmtDecl *Sema::ActOnStartTopLevelStmtDecl(Scope *S) {
20240   auto *New = TopLevelStmtDecl::Create(Context, /*Statement=*/nullptr);
20241   CurContext->addDecl(New);
20242   PushDeclContext(S, New);
20243   PushFunctionScope();
20244   PushCompoundScope(false);
20245   return New;
20246 }
20247 
20248 void Sema::ActOnFinishTopLevelStmtDecl(TopLevelStmtDecl *D, Stmt *Statement) {
20249   D->setStmt(Statement);
20250   PopCompoundScope();
20251   PopFunctionScopeInfo();
20252   PopDeclContext();
20253 }
20254 
20255 void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
20256                                       IdentifierInfo* AliasName,
20257                                       SourceLocation PragmaLoc,
20258                                       SourceLocation NameLoc,
20259                                       SourceLocation AliasNameLoc) {
20260   NamedDecl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
20261                                          LookupOrdinaryName);
20262   AttributeCommonInfo Info(AliasName, SourceRange(AliasNameLoc),
20263                            AttributeCommonInfo::Form::Pragma());
20264   AsmLabelAttr *Attr = AsmLabelAttr::CreateImplicit(
20265       Context, AliasName->getName(), /*IsLiteralLabel=*/true, Info);
20266 
20267   // If a declaration that:
20268   // 1) declares a function or a variable
20269   // 2) has external linkage
20270   // already exists, add a label attribute to it.
20271   if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) {
20272     if (isDeclExternC(PrevDecl))
20273       PrevDecl->addAttr(Attr);
20274     else
20275       Diag(PrevDecl->getLocation(), diag::warn_redefine_extname_not_applied)
20276           << /*Variable*/(isa<FunctionDecl>(PrevDecl) ? 0 : 1) << PrevDecl;
20277     // Otherwise, add a label attribute to ExtnameUndeclaredIdentifiers.
20278   } else
20279     (void)ExtnameUndeclaredIdentifiers.insert(std::make_pair(Name, Attr));
20280 }
20281 
20282 void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
20283                              SourceLocation PragmaLoc,
20284                              SourceLocation NameLoc) {
20285   Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
20286 
20287   if (PrevDecl) {
20288     PrevDecl->addAttr(WeakAttr::CreateImplicit(Context, PragmaLoc));
20289   } else {
20290     (void)WeakUndeclaredIdentifiers[Name].insert(WeakInfo(nullptr, NameLoc));
20291   }
20292 }
20293 
20294 void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
20295                                 IdentifierInfo* AliasName,
20296                                 SourceLocation PragmaLoc,
20297                                 SourceLocation NameLoc,
20298                                 SourceLocation AliasNameLoc) {
20299   Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
20300                                     LookupOrdinaryName);
20301   WeakInfo W = WeakInfo(Name, NameLoc);
20302 
20303   if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) {
20304     if (!PrevDecl->hasAttr<AliasAttr>())
20305       if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
20306         DeclApplyPragmaWeak(TUScope, ND, W);
20307   } else {
20308     (void)WeakUndeclaredIdentifiers[AliasName].insert(W);
20309   }
20310 }
20311 
20312 Sema::FunctionEmissionStatus Sema::getEmissionStatus(const FunctionDecl *FD,
20313                                                      bool Final) {
20314   assert(FD && "Expected non-null FunctionDecl");
20315 
20316   // SYCL functions can be template, so we check if they have appropriate
20317   // attribute prior to checking if it is a template.
20318   if (LangOpts.SYCLIsDevice && FD->hasAttr<SYCLKernelAttr>())
20319     return FunctionEmissionStatus::Emitted;
20320 
20321   // Templates are emitted when they're instantiated.
20322   if (FD->isDependentContext())
20323     return FunctionEmissionStatus::TemplateDiscarded;
20324 
20325   // Check whether this function is an externally visible definition.
20326   auto IsEmittedForExternalSymbol = [this, FD]() {
20327     // We have to check the GVA linkage of the function's *definition* -- if we
20328     // only have a declaration, we don't know whether or not the function will
20329     // be emitted, because (say) the definition could include "inline".
20330     const FunctionDecl *Def = FD->getDefinition();
20331 
20332     // We can't compute linkage when we skip function bodies.
20333     return Def && !Def->hasSkippedBody() &&
20334            !isDiscardableGVALinkage(
20335                getASTContext().GetGVALinkageForFunction(Def));
20336   };
20337 
20338   if (LangOpts.OpenMPIsTargetDevice) {
20339     // In OpenMP device mode we will not emit host only functions, or functions
20340     // we don't need due to their linkage.
20341     std::optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy =
20342         OMPDeclareTargetDeclAttr::getDeviceType(FD->getCanonicalDecl());
20343     // DevTy may be changed later by
20344     //  #pragma omp declare target to(*) device_type(*).
20345     // Therefore DevTy having no value does not imply host. The emission status
20346     // will be checked again at the end of compilation unit with Final = true.
20347     if (DevTy)
20348       if (*DevTy == OMPDeclareTargetDeclAttr::DT_Host)
20349         return FunctionEmissionStatus::OMPDiscarded;
20350     // If we have an explicit value for the device type, or we are in a target
20351     // declare context, we need to emit all extern and used symbols.
20352     if (OpenMP().isInOpenMPDeclareTargetContext() || DevTy)
20353       if (IsEmittedForExternalSymbol())
20354         return FunctionEmissionStatus::Emitted;
20355     // Device mode only emits what it must, if it wasn't tagged yet and needed,
20356     // we'll omit it.
20357     if (Final)
20358       return FunctionEmissionStatus::OMPDiscarded;
20359   } else if (LangOpts.OpenMP > 45) {
20360     // In OpenMP host compilation prior to 5.0 everything was an emitted host
20361     // function. In 5.0, no_host was introduced which might cause a function to
20362     // be omitted.
20363     std::optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy =
20364         OMPDeclareTargetDeclAttr::getDeviceType(FD->getCanonicalDecl());
20365     if (DevTy)
20366       if (*DevTy == OMPDeclareTargetDeclAttr::DT_NoHost)
20367         return FunctionEmissionStatus::OMPDiscarded;
20368   }
20369 
20370   if (Final && LangOpts.OpenMP && !LangOpts.CUDA)
20371     return FunctionEmissionStatus::Emitted;
20372 
20373   if (LangOpts.CUDA) {
20374     // When compiling for device, host functions are never emitted.  Similarly,
20375     // when compiling for host, device and global functions are never emitted.
20376     // (Technically, we do emit a host-side stub for global functions, but this
20377     // doesn't count for our purposes here.)
20378     CUDAFunctionTarget T = CUDA().IdentifyTarget(FD);
20379     if (LangOpts.CUDAIsDevice && T == CUDAFunctionTarget::Host)
20380       return FunctionEmissionStatus::CUDADiscarded;
20381     if (!LangOpts.CUDAIsDevice &&
20382         (T == CUDAFunctionTarget::Device || T == CUDAFunctionTarget::Global))
20383       return FunctionEmissionStatus::CUDADiscarded;
20384 
20385     if (IsEmittedForExternalSymbol())
20386       return FunctionEmissionStatus::Emitted;
20387   }
20388 
20389   // Otherwise, the function is known-emitted if it's in our set of
20390   // known-emitted functions.
20391   return FunctionEmissionStatus::Unknown;
20392 }
20393 
20394 bool Sema::shouldIgnoreInHostDeviceCheck(FunctionDecl *Callee) {
20395   // Host-side references to a __global__ function refer to the stub, so the
20396   // function itself is never emitted and therefore should not be marked.
20397   // If we have host fn calls kernel fn calls host+device, the HD function
20398   // does not get instantiated on the host. We model this by omitting at the
20399   // call to the kernel from the callgraph. This ensures that, when compiling
20400   // for host, only HD functions actually called from the host get marked as
20401   // known-emitted.
20402   return LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
20403          CUDA().IdentifyTarget(Callee) == CUDAFunctionTarget::Global;
20404 }
20405