1 //===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This tablegen backend emits a target specifier matcher for converting parsed
10 // assembly operands in the MCInst structures. It also emits a matcher for
11 // custom operand parsing.
12 //
13 // Converting assembly operands into MCInst structures
14 // ---------------------------------------------------
15 //
16 // The input to the target specific matcher is a list of literal tokens and
17 // operands. The target specific parser should generally eliminate any syntax
18 // which is not relevant for matching; for example, comma tokens should have
19 // already been consumed and eliminated by the parser. Most instructions will
20 // end up with a single literal token (the instruction name) and some number of
21 // operands.
22 //
23 // Some example inputs, for X86:
24 // 'addl' (immediate ...) (register ...)
25 // 'add' (immediate ...) (memory ...)
26 // 'call' '*' %epc
27 //
28 // The assembly matcher is responsible for converting this input into a precise
29 // machine instruction (i.e., an instruction with a well defined encoding). This
30 // mapping has several properties which complicate matching:
31 //
32 // - It may be ambiguous; many architectures can legally encode particular
33 // variants of an instruction in different ways (for example, using a smaller
34 // encoding for small immediates). Such ambiguities should never be
35 // arbitrarily resolved by the assembler, the assembler is always responsible
36 // for choosing the "best" available instruction.
37 //
38 // - It may depend on the subtarget or the assembler context. Instructions
39 // which are invalid for the current mode, but otherwise unambiguous (e.g.,
40 // an SSE instruction in a file being assembled for i486) should be accepted
41 // and rejected by the assembler front end. However, if the proper encoding
42 // for an instruction is dependent on the assembler context then the matcher
43 // is responsible for selecting the correct machine instruction for the
44 // current mode.
45 //
46 // The core matching algorithm attempts to exploit the regularity in most
47 // instruction sets to quickly determine the set of possibly matching
48 // instructions, and the simplify the generated code. Additionally, this helps
49 // to ensure that the ambiguities are intentionally resolved by the user.
50 //
51 // The matching is divided into two distinct phases:
52 //
53 // 1. Classification: Each operand is mapped to the unique set which (a)
54 // contains it, and (b) is the largest such subset for which a single
55 // instruction could match all members.
56 //
57 // For register classes, we can generate these subgroups automatically. For
58 // arbitrary operands, we expect the user to define the classes and their
59 // relations to one another (for example, 8-bit signed immediates as a
60 // subset of 32-bit immediates).
61 //
62 // By partitioning the operands in this way, we guarantee that for any
63 // tuple of classes, any single instruction must match either all or none
64 // of the sets of operands which could classify to that tuple.
65 //
66 // In addition, the subset relation amongst classes induces a partial order
67 // on such tuples, which we use to resolve ambiguities.
68 //
69 // 2. The input can now be treated as a tuple of classes (static tokens are
70 // simple singleton sets). Each such tuple should generally map to a single
71 // instruction (we currently ignore cases where this isn't true, whee!!!),
72 // which we can emit a simple matcher for.
73 //
74 // Custom Operand Parsing
75 // ----------------------
76 //
77 // Some targets need a custom way to parse operands, some specific instructions
78 // can contain arguments that can represent processor flags and other kinds of
79 // identifiers that need to be mapped to specific values in the final encoded
80 // instructions. The target specific custom operand parsing works in the
81 // following way:
82 //
83 // 1. A operand match table is built, each entry contains a mnemonic, an
84 // operand class, a mask for all operand positions for that same
85 // class/mnemonic and target features to be checked while trying to match.
86 //
87 // 2. The operand matcher will try every possible entry with the same
88 // mnemonic and will check if the target feature for this mnemonic also
89 // matches. After that, if the operand to be matched has its index
90 // present in the mask, a successful match occurs. Otherwise, fallback
91 // to the regular operand parsing.
92 //
93 // 3. For a match success, each operand class that has a 'ParserMethod'
94 // becomes part of a switch from where the custom method is called.
95 //
96 //===----------------------------------------------------------------------===//
97
98 #include "CodeGenTarget.h"
99 #include "SubtargetFeatureInfo.h"
100 #include "Types.h"
101 #include "llvm/ADT/CachedHashString.h"
102 #include "llvm/ADT/PointerUnion.h"
103 #include "llvm/ADT/STLExtras.h"
104 #include "llvm/ADT/SmallPtrSet.h"
105 #include "llvm/ADT/SmallVector.h"
106 #include "llvm/ADT/StringExtras.h"
107 #include "llvm/Config/llvm-config.h"
108 #include "llvm/Support/CommandLine.h"
109 #include "llvm/Support/Debug.h"
110 #include "llvm/Support/ErrorHandling.h"
111 #include "llvm/TableGen/Error.h"
112 #include "llvm/TableGen/Record.h"
113 #include "llvm/TableGen/StringMatcher.h"
114 #include "llvm/TableGen/StringToOffsetTable.h"
115 #include "llvm/TableGen/TableGenBackend.h"
116 #include <cassert>
117 #include <cctype>
118 #include <forward_list>
119 #include <map>
120 #include <set>
121
122 using namespace llvm;
123
124 #define DEBUG_TYPE "asm-matcher-emitter"
125
126 cl::OptionCategory AsmMatcherEmitterCat("Options for -gen-asm-matcher");
127
128 static cl::opt<std::string>
129 MatchPrefix("match-prefix", cl::init(""),
130 cl::desc("Only match instructions with the given prefix"),
131 cl::cat(AsmMatcherEmitterCat));
132
133 namespace {
134 class AsmMatcherInfo;
135
136 // Register sets are used as keys in some second-order sets TableGen creates
137 // when generating its data structures. This means that the order of two
138 // RegisterSets can be seen in the outputted AsmMatcher tables occasionally, and
139 // can even affect compiler output (at least seen in diagnostics produced when
140 // all matches fail). So we use a type that sorts them consistently.
141 typedef std::set<Record*, LessRecordByID> RegisterSet;
142
143 class AsmMatcherEmitter {
144 RecordKeeper &Records;
145 public:
AsmMatcherEmitter(RecordKeeper & R)146 AsmMatcherEmitter(RecordKeeper &R) : Records(R) {}
147
148 void run(raw_ostream &o);
149 };
150
151 /// ClassInfo - Helper class for storing the information about a particular
152 /// class of operands which can be matched.
153 struct ClassInfo {
154 enum ClassInfoKind {
155 /// Invalid kind, for use as a sentinel value.
156 Invalid = 0,
157
158 /// The class for a particular token.
159 Token,
160
161 /// The (first) register class, subsequent register classes are
162 /// RegisterClass0+1, and so on.
163 RegisterClass0,
164
165 /// The (first) user defined class, subsequent user defined classes are
166 /// UserClass0+1, and so on.
167 UserClass0 = 1<<16
168 };
169
170 /// Kind - The class kind, which is either a predefined kind, or (UserClass0 +
171 /// N) for the Nth user defined class.
172 unsigned Kind;
173
174 /// SuperClasses - The super classes of this class. Note that for simplicities
175 /// sake user operands only record their immediate super class, while register
176 /// operands include all superclasses.
177 std::vector<ClassInfo*> SuperClasses;
178
179 /// Name - The full class name, suitable for use in an enum.
180 std::string Name;
181
182 /// ClassName - The unadorned generic name for this class (e.g., Token).
183 std::string ClassName;
184
185 /// ValueName - The name of the value this class represents; for a token this
186 /// is the literal token string, for an operand it is the TableGen class (or
187 /// empty if this is a derived class).
188 std::string ValueName;
189
190 /// PredicateMethod - The name of the operand method to test whether the
191 /// operand matches this class; this is not valid for Token or register kinds.
192 std::string PredicateMethod;
193
194 /// RenderMethod - The name of the operand method to add this operand to an
195 /// MCInst; this is not valid for Token or register kinds.
196 std::string RenderMethod;
197
198 /// ParserMethod - The name of the operand method to do a target specific
199 /// parsing on the operand.
200 std::string ParserMethod;
201
202 /// For register classes: the records for all the registers in this class.
203 RegisterSet Registers;
204
205 /// For custom match classes: the diagnostic kind for when the predicate fails.
206 std::string DiagnosticType;
207
208 /// For custom match classes: the diagnostic string for when the predicate fails.
209 std::string DiagnosticString;
210
211 /// Is this operand optional and not always required.
212 bool IsOptional;
213
214 /// DefaultMethod - The name of the method that returns the default operand
215 /// for optional operand
216 std::string DefaultMethod;
217
218 public:
219 /// isRegisterClass() - Check if this is a register class.
isRegisterClass__anonf14fc8a50111::ClassInfo220 bool isRegisterClass() const {
221 return Kind >= RegisterClass0 && Kind < UserClass0;
222 }
223
224 /// isUserClass() - Check if this is a user defined class.
isUserClass__anonf14fc8a50111::ClassInfo225 bool isUserClass() const {
226 return Kind >= UserClass0;
227 }
228
229 /// isRelatedTo - Check whether this class is "related" to \p RHS. Classes
230 /// are related if they are in the same class hierarchy.
isRelatedTo__anonf14fc8a50111::ClassInfo231 bool isRelatedTo(const ClassInfo &RHS) const {
232 // Tokens are only related to tokens.
233 if (Kind == Token || RHS.Kind == Token)
234 return Kind == Token && RHS.Kind == Token;
235
236 // Registers classes are only related to registers classes, and only if
237 // their intersection is non-empty.
238 if (isRegisterClass() || RHS.isRegisterClass()) {
239 if (!isRegisterClass() || !RHS.isRegisterClass())
240 return false;
241
242 RegisterSet Tmp;
243 std::insert_iterator<RegisterSet> II(Tmp, Tmp.begin());
244 std::set_intersection(Registers.begin(), Registers.end(),
245 RHS.Registers.begin(), RHS.Registers.end(),
246 II, LessRecordByID());
247
248 return !Tmp.empty();
249 }
250
251 // Otherwise we have two users operands; they are related if they are in the
252 // same class hierarchy.
253 //
254 // FIXME: This is an oversimplification, they should only be related if they
255 // intersect, however we don't have that information.
256 assert(isUserClass() && RHS.isUserClass() && "Unexpected class!");
257 const ClassInfo *Root = this;
258 while (!Root->SuperClasses.empty())
259 Root = Root->SuperClasses.front();
260
261 const ClassInfo *RHSRoot = &RHS;
262 while (!RHSRoot->SuperClasses.empty())
263 RHSRoot = RHSRoot->SuperClasses.front();
264
265 return Root == RHSRoot;
266 }
267
268 /// isSubsetOf - Test whether this class is a subset of \p RHS.
isSubsetOf__anonf14fc8a50111::ClassInfo269 bool isSubsetOf(const ClassInfo &RHS) const {
270 // This is a subset of RHS if it is the same class...
271 if (this == &RHS)
272 return true;
273
274 // ... or if any of its super classes are a subset of RHS.
275 SmallVector<const ClassInfo *, 16> Worklist(SuperClasses.begin(),
276 SuperClasses.end());
277 SmallPtrSet<const ClassInfo *, 16> Visited;
278 while (!Worklist.empty()) {
279 auto *CI = Worklist.pop_back_val();
280 if (CI == &RHS)
281 return true;
282 for (auto *Super : CI->SuperClasses)
283 if (Visited.insert(Super).second)
284 Worklist.push_back(Super);
285 }
286
287 return false;
288 }
289
getTreeDepth__anonf14fc8a50111::ClassInfo290 int getTreeDepth() const {
291 int Depth = 0;
292 const ClassInfo *Root = this;
293 while (!Root->SuperClasses.empty()) {
294 Depth++;
295 Root = Root->SuperClasses.front();
296 }
297 return Depth;
298 }
299
findRoot__anonf14fc8a50111::ClassInfo300 const ClassInfo *findRoot() const {
301 const ClassInfo *Root = this;
302 while (!Root->SuperClasses.empty())
303 Root = Root->SuperClasses.front();
304 return Root;
305 }
306
307 /// Compare two classes. This does not produce a total ordering, but does
308 /// guarantee that subclasses are sorted before their parents, and that the
309 /// ordering is transitive.
operator <__anonf14fc8a50111::ClassInfo310 bool operator<(const ClassInfo &RHS) const {
311 if (this == &RHS)
312 return false;
313
314 // First, enforce the ordering between the three different types of class.
315 // Tokens sort before registers, which sort before user classes.
316 if (Kind == Token) {
317 if (RHS.Kind != Token)
318 return true;
319 assert(RHS.Kind == Token);
320 } else if (isRegisterClass()) {
321 if (RHS.Kind == Token)
322 return false;
323 else if (RHS.isUserClass())
324 return true;
325 assert(RHS.isRegisterClass());
326 } else if (isUserClass()) {
327 if (!RHS.isUserClass())
328 return false;
329 assert(RHS.isUserClass());
330 } else {
331 llvm_unreachable("Unknown ClassInfoKind");
332 }
333
334 if (Kind == Token || isUserClass()) {
335 // Related tokens and user classes get sorted by depth in the inheritence
336 // tree (so that subclasses are before their parents).
337 if (isRelatedTo(RHS)) {
338 if (getTreeDepth() > RHS.getTreeDepth())
339 return true;
340 if (getTreeDepth() < RHS.getTreeDepth())
341 return false;
342 } else {
343 // Unrelated tokens and user classes are ordered by the name of their
344 // root nodes, so that there is a consistent ordering between
345 // unconnected trees.
346 return findRoot()->ValueName < RHS.findRoot()->ValueName;
347 }
348 } else if (isRegisterClass()) {
349 // For register sets, sort by number of registers. This guarantees that
350 // a set will always sort before all of it's strict supersets.
351 if (Registers.size() != RHS.Registers.size())
352 return Registers.size() < RHS.Registers.size();
353 } else {
354 llvm_unreachable("Unknown ClassInfoKind");
355 }
356
357 // FIXME: We should be able to just return false here, as we only need a
358 // partial order (we use stable sorts, so this is deterministic) and the
359 // name of a class shouldn't be significant. However, some of the backends
360 // accidentally rely on this behaviour, so it will have to stay like this
361 // until they are fixed.
362 return ValueName < RHS.ValueName;
363 }
364 };
365
366 class AsmVariantInfo {
367 public:
368 StringRef RegisterPrefix;
369 StringRef TokenizingCharacters;
370 StringRef SeparatorCharacters;
371 StringRef BreakCharacters;
372 StringRef Name;
373 int AsmVariantNo;
374 };
375
376 /// MatchableInfo - Helper class for storing the necessary information for an
377 /// instruction or alias which is capable of being matched.
378 struct MatchableInfo {
379 struct AsmOperand {
380 /// Token - This is the token that the operand came from.
381 StringRef Token;
382
383 /// The unique class instance this operand should match.
384 ClassInfo *Class;
385
386 /// The operand name this is, if anything.
387 StringRef SrcOpName;
388
389 /// The operand name this is, before renaming for tied operands.
390 StringRef OrigSrcOpName;
391
392 /// The suboperand index within SrcOpName, or -1 for the entire operand.
393 int SubOpIdx;
394
395 /// Whether the token is "isolated", i.e., it is preceded and followed
396 /// by separators.
397 bool IsIsolatedToken;
398
399 /// Register record if this token is singleton register.
400 Record *SingletonReg;
401
AsmOperand__anonf14fc8a50111::MatchableInfo::AsmOperand402 explicit AsmOperand(bool IsIsolatedToken, StringRef T)
403 : Token(T), Class(nullptr), SubOpIdx(-1),
404 IsIsolatedToken(IsIsolatedToken), SingletonReg(nullptr) {}
405 };
406
407 /// ResOperand - This represents a single operand in the result instruction
408 /// generated by the match. In cases (like addressing modes) where a single
409 /// assembler operand expands to multiple MCOperands, this represents the
410 /// single assembler operand, not the MCOperand.
411 struct ResOperand {
412 enum {
413 /// RenderAsmOperand - This represents an operand result that is
414 /// generated by calling the render method on the assembly operand. The
415 /// corresponding AsmOperand is specified by AsmOperandNum.
416 RenderAsmOperand,
417
418 /// TiedOperand - This represents a result operand that is a duplicate of
419 /// a previous result operand.
420 TiedOperand,
421
422 /// ImmOperand - This represents an immediate value that is dumped into
423 /// the operand.
424 ImmOperand,
425
426 /// RegOperand - This represents a fixed register that is dumped in.
427 RegOperand
428 } Kind;
429
430 /// Tuple containing the index of the (earlier) result operand that should
431 /// be copied from, as well as the indices of the corresponding (parsed)
432 /// operands in the asm string.
433 struct TiedOperandsTuple {
434 unsigned ResOpnd;
435 unsigned SrcOpnd1Idx;
436 unsigned SrcOpnd2Idx;
437 };
438
439 union {
440 /// This is the operand # in the AsmOperands list that this should be
441 /// copied from.
442 unsigned AsmOperandNum;
443
444 /// Description of tied operands.
445 TiedOperandsTuple TiedOperands;
446
447 /// ImmVal - This is the immediate value added to the instruction.
448 int64_t ImmVal;
449
450 /// Register - This is the register record.
451 Record *Register;
452 };
453
454 /// MINumOperands - The number of MCInst operands populated by this
455 /// operand.
456 unsigned MINumOperands;
457
getRenderedOp__anonf14fc8a50111::MatchableInfo::ResOperand458 static ResOperand getRenderedOp(unsigned AsmOpNum, unsigned NumOperands) {
459 ResOperand X;
460 X.Kind = RenderAsmOperand;
461 X.AsmOperandNum = AsmOpNum;
462 X.MINumOperands = NumOperands;
463 return X;
464 }
465
getTiedOp__anonf14fc8a50111::MatchableInfo::ResOperand466 static ResOperand getTiedOp(unsigned TiedOperandNum, unsigned SrcOperand1,
467 unsigned SrcOperand2) {
468 ResOperand X;
469 X.Kind = TiedOperand;
470 X.TiedOperands = { TiedOperandNum, SrcOperand1, SrcOperand2 };
471 X.MINumOperands = 1;
472 return X;
473 }
474
getImmOp__anonf14fc8a50111::MatchableInfo::ResOperand475 static ResOperand getImmOp(int64_t Val) {
476 ResOperand X;
477 X.Kind = ImmOperand;
478 X.ImmVal = Val;
479 X.MINumOperands = 1;
480 return X;
481 }
482
getRegOp__anonf14fc8a50111::MatchableInfo::ResOperand483 static ResOperand getRegOp(Record *Reg) {
484 ResOperand X;
485 X.Kind = RegOperand;
486 X.Register = Reg;
487 X.MINumOperands = 1;
488 return X;
489 }
490 };
491
492 /// AsmVariantID - Target's assembly syntax variant no.
493 int AsmVariantID;
494
495 /// AsmString - The assembly string for this instruction (with variants
496 /// removed), e.g. "movsx $src, $dst".
497 std::string AsmString;
498
499 /// TheDef - This is the definition of the instruction or InstAlias that this
500 /// matchable came from.
501 Record *const TheDef;
502
503 /// DefRec - This is the definition that it came from.
504 PointerUnion<const CodeGenInstruction*, const CodeGenInstAlias*> DefRec;
505
getResultInst__anonf14fc8a50111::MatchableInfo506 const CodeGenInstruction *getResultInst() const {
507 if (DefRec.is<const CodeGenInstruction*>())
508 return DefRec.get<const CodeGenInstruction*>();
509 return DefRec.get<const CodeGenInstAlias*>()->ResultInst;
510 }
511
512 /// ResOperands - This is the operand list that should be built for the result
513 /// MCInst.
514 SmallVector<ResOperand, 8> ResOperands;
515
516 /// Mnemonic - This is the first token of the matched instruction, its
517 /// mnemonic.
518 StringRef Mnemonic;
519
520 /// AsmOperands - The textual operands that this instruction matches,
521 /// annotated with a class and where in the OperandList they were defined.
522 /// This directly corresponds to the tokenized AsmString after the mnemonic is
523 /// removed.
524 SmallVector<AsmOperand, 8> AsmOperands;
525
526 /// Predicates - The required subtarget features to match this instruction.
527 SmallVector<const SubtargetFeatureInfo *, 4> RequiredFeatures;
528
529 /// ConversionFnKind - The enum value which is passed to the generated
530 /// convertToMCInst to convert parsed operands into an MCInst for this
531 /// function.
532 std::string ConversionFnKind;
533
534 /// If this instruction is deprecated in some form.
535 bool HasDeprecation;
536
537 /// If this is an alias, this is use to determine whether or not to using
538 /// the conversion function defined by the instruction's AsmMatchConverter
539 /// or to use the function generated by the alias.
540 bool UseInstAsmMatchConverter;
541
MatchableInfo__anonf14fc8a50111::MatchableInfo542 MatchableInfo(const CodeGenInstruction &CGI)
543 : AsmVariantID(0), AsmString(CGI.AsmString), TheDef(CGI.TheDef), DefRec(&CGI),
544 UseInstAsmMatchConverter(true) {
545 }
546
MatchableInfo__anonf14fc8a50111::MatchableInfo547 MatchableInfo(std::unique_ptr<const CodeGenInstAlias> Alias)
548 : AsmVariantID(0), AsmString(Alias->AsmString), TheDef(Alias->TheDef),
549 DefRec(Alias.release()),
550 UseInstAsmMatchConverter(
551 TheDef->getValueAsBit("UseInstAsmMatchConverter")) {
552 }
553
554 // Could remove this and the dtor if PointerUnion supported unique_ptr
555 // elements with a dynamic failure/assertion (like the one below) in the case
556 // where it was copied while being in an owning state.
MatchableInfo__anonf14fc8a50111::MatchableInfo557 MatchableInfo(const MatchableInfo &RHS)
558 : AsmVariantID(RHS.AsmVariantID), AsmString(RHS.AsmString),
559 TheDef(RHS.TheDef), DefRec(RHS.DefRec), ResOperands(RHS.ResOperands),
560 Mnemonic(RHS.Mnemonic), AsmOperands(RHS.AsmOperands),
561 RequiredFeatures(RHS.RequiredFeatures),
562 ConversionFnKind(RHS.ConversionFnKind),
563 HasDeprecation(RHS.HasDeprecation),
564 UseInstAsmMatchConverter(RHS.UseInstAsmMatchConverter) {
565 assert(!DefRec.is<const CodeGenInstAlias *>());
566 }
567
~MatchableInfo__anonf14fc8a50111::MatchableInfo568 ~MatchableInfo() {
569 delete DefRec.dyn_cast<const CodeGenInstAlias*>();
570 }
571
572 // Two-operand aliases clone from the main matchable, but mark the second
573 // operand as a tied operand of the first for purposes of the assembler.
574 void formTwoOperandAlias(StringRef Constraint);
575
576 void initialize(const AsmMatcherInfo &Info,
577 SmallPtrSetImpl<Record*> &SingletonRegisters,
578 AsmVariantInfo const &Variant,
579 bool HasMnemonicFirst);
580
581 /// validate - Return true if this matchable is a valid thing to match against
582 /// and perform a bunch of validity checking.
583 bool validate(StringRef CommentDelimiter, bool IsAlias) const;
584
585 /// findAsmOperand - Find the AsmOperand with the specified name and
586 /// suboperand index.
findAsmOperand__anonf14fc8a50111::MatchableInfo587 int findAsmOperand(StringRef N, int SubOpIdx) const {
588 auto I = find_if(AsmOperands, [&](const AsmOperand &Op) {
589 return Op.SrcOpName == N && Op.SubOpIdx == SubOpIdx;
590 });
591 return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1;
592 }
593
594 /// findAsmOperandNamed - Find the first AsmOperand with the specified name.
595 /// This does not check the suboperand index.
findAsmOperandNamed__anonf14fc8a50111::MatchableInfo596 int findAsmOperandNamed(StringRef N, int LastIdx = -1) const {
597 auto I = std::find_if(AsmOperands.begin() + LastIdx + 1, AsmOperands.end(),
598 [&](const AsmOperand &Op) { return Op.SrcOpName == N; });
599 return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1;
600 }
601
findAsmOperandOriginallyNamed__anonf14fc8a50111::MatchableInfo602 int findAsmOperandOriginallyNamed(StringRef N) const {
603 auto I =
604 find_if(AsmOperands,
605 [&](const AsmOperand &Op) { return Op.OrigSrcOpName == N; });
606 return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1;
607 }
608
609 void buildInstructionResultOperands();
610 void buildAliasResultOperands(bool AliasConstraintsAreChecked);
611
612 /// operator< - Compare two matchables.
operator <__anonf14fc8a50111::MatchableInfo613 bool operator<(const MatchableInfo &RHS) const {
614 // The primary comparator is the instruction mnemonic.
615 if (int Cmp = Mnemonic.compare_lower(RHS.Mnemonic))
616 return Cmp == -1;
617
618 if (AsmOperands.size() != RHS.AsmOperands.size())
619 return AsmOperands.size() < RHS.AsmOperands.size();
620
621 // Compare lexicographically by operand. The matcher validates that other
622 // orderings wouldn't be ambiguous using \see couldMatchAmbiguouslyWith().
623 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
624 if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
625 return true;
626 if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
627 return false;
628 }
629
630 // Give matches that require more features higher precedence. This is useful
631 // because we cannot define AssemblerPredicates with the negation of
632 // processor features. For example, ARM v6 "nop" may be either a HINT or
633 // MOV. With v6, we want to match HINT. The assembler has no way to
634 // predicate MOV under "NoV6", but HINT will always match first because it
635 // requires V6 while MOV does not.
636 if (RequiredFeatures.size() != RHS.RequiredFeatures.size())
637 return RequiredFeatures.size() > RHS.RequiredFeatures.size();
638
639 return false;
640 }
641
642 /// couldMatchAmbiguouslyWith - Check whether this matchable could
643 /// ambiguously match the same set of operands as \p RHS (without being a
644 /// strictly superior match).
couldMatchAmbiguouslyWith__anonf14fc8a50111::MatchableInfo645 bool couldMatchAmbiguouslyWith(const MatchableInfo &RHS) const {
646 // The primary comparator is the instruction mnemonic.
647 if (Mnemonic != RHS.Mnemonic)
648 return false;
649
650 // Different variants can't conflict.
651 if (AsmVariantID != RHS.AsmVariantID)
652 return false;
653
654 // The number of operands is unambiguous.
655 if (AsmOperands.size() != RHS.AsmOperands.size())
656 return false;
657
658 // Otherwise, make sure the ordering of the two instructions is unambiguous
659 // by checking that either (a) a token or operand kind discriminates them,
660 // or (b) the ordering among equivalent kinds is consistent.
661
662 // Tokens and operand kinds are unambiguous (assuming a correct target
663 // specific parser).
664 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
665 if (AsmOperands[i].Class->Kind != RHS.AsmOperands[i].Class->Kind ||
666 AsmOperands[i].Class->Kind == ClassInfo::Token)
667 if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class ||
668 *RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
669 return false;
670
671 // Otherwise, this operand could commute if all operands are equivalent, or
672 // there is a pair of operands that compare less than and a pair that
673 // compare greater than.
674 bool HasLT = false, HasGT = false;
675 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
676 if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
677 HasLT = true;
678 if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
679 HasGT = true;
680 }
681
682 return HasLT == HasGT;
683 }
684
685 void dump() const;
686
687 private:
688 void tokenizeAsmString(AsmMatcherInfo const &Info,
689 AsmVariantInfo const &Variant);
690 void addAsmOperand(StringRef Token, bool IsIsolatedToken = false);
691 };
692
693 struct OperandMatchEntry {
694 unsigned OperandMask;
695 const MatchableInfo* MI;
696 ClassInfo *CI;
697
create__anonf14fc8a50111::OperandMatchEntry698 static OperandMatchEntry create(const MatchableInfo *mi, ClassInfo *ci,
699 unsigned opMask) {
700 OperandMatchEntry X;
701 X.OperandMask = opMask;
702 X.CI = ci;
703 X.MI = mi;
704 return X;
705 }
706 };
707
708 class AsmMatcherInfo {
709 public:
710 /// Tracked Records
711 RecordKeeper &Records;
712
713 /// The tablegen AsmParser record.
714 Record *AsmParser;
715
716 /// Target - The target information.
717 CodeGenTarget &Target;
718
719 /// The classes which are needed for matching.
720 std::forward_list<ClassInfo> Classes;
721
722 /// The information on the matchables to match.
723 std::vector<std::unique_ptr<MatchableInfo>> Matchables;
724
725 /// Info for custom matching operands by user defined methods.
726 std::vector<OperandMatchEntry> OperandMatchInfo;
727
728 /// Map of Register records to their class information.
729 typedef std::map<Record*, ClassInfo*, LessRecordByID> RegisterClassesTy;
730 RegisterClassesTy RegisterClasses;
731
732 /// Map of Predicate records to their subtarget information.
733 std::map<Record *, SubtargetFeatureInfo, LessRecordByID> SubtargetFeatures;
734
735 /// Map of AsmOperandClass records to their class information.
736 std::map<Record*, ClassInfo*> AsmOperandClasses;
737
738 /// Map of RegisterClass records to their class information.
739 std::map<Record*, ClassInfo*> RegisterClassClasses;
740
741 private:
742 /// Map of token to class information which has already been constructed.
743 std::map<std::string, ClassInfo*> TokenClasses;
744
745 private:
746 /// getTokenClass - Lookup or create the class for the given token.
747 ClassInfo *getTokenClass(StringRef Token);
748
749 /// getOperandClass - Lookup or create the class for the given operand.
750 ClassInfo *getOperandClass(const CGIOperandList::OperandInfo &OI,
751 int SubOpIdx);
752 ClassInfo *getOperandClass(Record *Rec, int SubOpIdx);
753
754 /// buildRegisterClasses - Build the ClassInfo* instances for register
755 /// classes.
756 void buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters);
757
758 /// buildOperandClasses - Build the ClassInfo* instances for user defined
759 /// operand classes.
760 void buildOperandClasses();
761
762 void buildInstructionOperandReference(MatchableInfo *II, StringRef OpName,
763 unsigned AsmOpIdx);
764 void buildAliasOperandReference(MatchableInfo *II, StringRef OpName,
765 MatchableInfo::AsmOperand &Op);
766
767 public:
768 AsmMatcherInfo(Record *AsmParser,
769 CodeGenTarget &Target,
770 RecordKeeper &Records);
771
772 /// Construct the various tables used during matching.
773 void buildInfo();
774
775 /// buildOperandMatchInfo - Build the necessary information to handle user
776 /// defined operand parsing methods.
777 void buildOperandMatchInfo();
778
779 /// getSubtargetFeature - Lookup or create the subtarget feature info for the
780 /// given operand.
getSubtargetFeature(Record * Def) const781 const SubtargetFeatureInfo *getSubtargetFeature(Record *Def) const {
782 assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!");
783 const auto &I = SubtargetFeatures.find(Def);
784 return I == SubtargetFeatures.end() ? nullptr : &I->second;
785 }
786
getRecords() const787 RecordKeeper &getRecords() const {
788 return Records;
789 }
790
hasOptionalOperands() const791 bool hasOptionalOperands() const {
792 return any_of(Classes,
793 [](const ClassInfo &Class) { return Class.IsOptional; });
794 }
795 };
796
797 } // end anonymous namespace
798
799 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const800 LLVM_DUMP_METHOD void MatchableInfo::dump() const {
801 errs() << TheDef->getName() << " -- " << "flattened:\"" << AsmString <<"\"\n";
802
803 errs() << " variant: " << AsmVariantID << "\n";
804
805 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
806 const AsmOperand &Op = AsmOperands[i];
807 errs() << " op[" << i << "] = " << Op.Class->ClassName << " - ";
808 errs() << '\"' << Op.Token << "\"\n";
809 }
810 }
811 #endif
812
813 static std::pair<StringRef, StringRef>
parseTwoOperandConstraint(StringRef S,ArrayRef<SMLoc> Loc)814 parseTwoOperandConstraint(StringRef S, ArrayRef<SMLoc> Loc) {
815 // Split via the '='.
816 std::pair<StringRef, StringRef> Ops = S.split('=');
817 if (Ops.second == "")
818 PrintFatalError(Loc, "missing '=' in two-operand alias constraint");
819 // Trim whitespace and the leading '$' on the operand names.
820 size_t start = Ops.first.find_first_of('$');
821 if (start == std::string::npos)
822 PrintFatalError(Loc, "expected '$' prefix on asm operand name");
823 Ops.first = Ops.first.slice(start + 1, std::string::npos);
824 size_t end = Ops.first.find_last_of(" \t");
825 Ops.first = Ops.first.slice(0, end);
826 // Now the second operand.
827 start = Ops.second.find_first_of('$');
828 if (start == std::string::npos)
829 PrintFatalError(Loc, "expected '$' prefix on asm operand name");
830 Ops.second = Ops.second.slice(start + 1, std::string::npos);
831 end = Ops.second.find_last_of(" \t");
832 Ops.first = Ops.first.slice(0, end);
833 return Ops;
834 }
835
formTwoOperandAlias(StringRef Constraint)836 void MatchableInfo::formTwoOperandAlias(StringRef Constraint) {
837 // Figure out which operands are aliased and mark them as tied.
838 std::pair<StringRef, StringRef> Ops =
839 parseTwoOperandConstraint(Constraint, TheDef->getLoc());
840
841 // Find the AsmOperands that refer to the operands we're aliasing.
842 int SrcAsmOperand = findAsmOperandNamed(Ops.first);
843 int DstAsmOperand = findAsmOperandNamed(Ops.second);
844 if (SrcAsmOperand == -1)
845 PrintFatalError(TheDef->getLoc(),
846 "unknown source two-operand alias operand '" + Ops.first +
847 "'.");
848 if (DstAsmOperand == -1)
849 PrintFatalError(TheDef->getLoc(),
850 "unknown destination two-operand alias operand '" +
851 Ops.second + "'.");
852
853 // Find the ResOperand that refers to the operand we're aliasing away
854 // and update it to refer to the combined operand instead.
855 for (ResOperand &Op : ResOperands) {
856 if (Op.Kind == ResOperand::RenderAsmOperand &&
857 Op.AsmOperandNum == (unsigned)SrcAsmOperand) {
858 Op.AsmOperandNum = DstAsmOperand;
859 break;
860 }
861 }
862 // Remove the AsmOperand for the alias operand.
863 AsmOperands.erase(AsmOperands.begin() + SrcAsmOperand);
864 // Adjust the ResOperand references to any AsmOperands that followed
865 // the one we just deleted.
866 for (ResOperand &Op : ResOperands) {
867 switch(Op.Kind) {
868 default:
869 // Nothing to do for operands that don't reference AsmOperands.
870 break;
871 case ResOperand::RenderAsmOperand:
872 if (Op.AsmOperandNum > (unsigned)SrcAsmOperand)
873 --Op.AsmOperandNum;
874 break;
875 }
876 }
877 }
878
879 /// extractSingletonRegisterForAsmOperand - Extract singleton register,
880 /// if present, from specified token.
881 static void
extractSingletonRegisterForAsmOperand(MatchableInfo::AsmOperand & Op,const AsmMatcherInfo & Info,StringRef RegisterPrefix)882 extractSingletonRegisterForAsmOperand(MatchableInfo::AsmOperand &Op,
883 const AsmMatcherInfo &Info,
884 StringRef RegisterPrefix) {
885 StringRef Tok = Op.Token;
886
887 // If this token is not an isolated token, i.e., it isn't separated from
888 // other tokens (e.g. with whitespace), don't interpret it as a register name.
889 if (!Op.IsIsolatedToken)
890 return;
891
892 if (RegisterPrefix.empty()) {
893 std::string LoweredTok = Tok.lower();
894 if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(LoweredTok))
895 Op.SingletonReg = Reg->TheDef;
896 return;
897 }
898
899 if (!Tok.startswith(RegisterPrefix))
900 return;
901
902 StringRef RegName = Tok.substr(RegisterPrefix.size());
903 if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(RegName))
904 Op.SingletonReg = Reg->TheDef;
905
906 // If there is no register prefix (i.e. "%" in "%eax"), then this may
907 // be some random non-register token, just ignore it.
908 }
909
initialize(const AsmMatcherInfo & Info,SmallPtrSetImpl<Record * > & SingletonRegisters,AsmVariantInfo const & Variant,bool HasMnemonicFirst)910 void MatchableInfo::initialize(const AsmMatcherInfo &Info,
911 SmallPtrSetImpl<Record*> &SingletonRegisters,
912 AsmVariantInfo const &Variant,
913 bool HasMnemonicFirst) {
914 AsmVariantID = Variant.AsmVariantNo;
915 AsmString =
916 CodeGenInstruction::FlattenAsmStringVariants(AsmString,
917 Variant.AsmVariantNo);
918
919 tokenizeAsmString(Info, Variant);
920
921 // The first token of the instruction is the mnemonic, which must be a
922 // simple string, not a $foo variable or a singleton register.
923 if (AsmOperands.empty())
924 PrintFatalError(TheDef->getLoc(),
925 "Instruction '" + TheDef->getName() + "' has no tokens");
926
927 assert(!AsmOperands[0].Token.empty());
928 if (HasMnemonicFirst) {
929 Mnemonic = AsmOperands[0].Token;
930 if (Mnemonic[0] == '$')
931 PrintFatalError(TheDef->getLoc(),
932 "Invalid instruction mnemonic '" + Mnemonic + "'!");
933
934 // Remove the first operand, it is tracked in the mnemonic field.
935 AsmOperands.erase(AsmOperands.begin());
936 } else if (AsmOperands[0].Token[0] != '$')
937 Mnemonic = AsmOperands[0].Token;
938
939 // Compute the require features.
940 for (Record *Predicate : TheDef->getValueAsListOfDefs("Predicates"))
941 if (const SubtargetFeatureInfo *Feature =
942 Info.getSubtargetFeature(Predicate))
943 RequiredFeatures.push_back(Feature);
944
945 // Collect singleton registers, if used.
946 for (MatchableInfo::AsmOperand &Op : AsmOperands) {
947 extractSingletonRegisterForAsmOperand(Op, Info, Variant.RegisterPrefix);
948 if (Record *Reg = Op.SingletonReg)
949 SingletonRegisters.insert(Reg);
950 }
951
952 const RecordVal *DepMask = TheDef->getValue("DeprecatedFeatureMask");
953 if (!DepMask)
954 DepMask = TheDef->getValue("ComplexDeprecationPredicate");
955
956 HasDeprecation =
957 DepMask ? !DepMask->getValue()->getAsUnquotedString().empty() : false;
958 }
959
960 /// Append an AsmOperand for the given substring of AsmString.
addAsmOperand(StringRef Token,bool IsIsolatedToken)961 void MatchableInfo::addAsmOperand(StringRef Token, bool IsIsolatedToken) {
962 AsmOperands.push_back(AsmOperand(IsIsolatedToken, Token));
963 }
964
965 /// tokenizeAsmString - Tokenize a simplified assembly string.
tokenizeAsmString(const AsmMatcherInfo & Info,AsmVariantInfo const & Variant)966 void MatchableInfo::tokenizeAsmString(const AsmMatcherInfo &Info,
967 AsmVariantInfo const &Variant) {
968 StringRef String = AsmString;
969 size_t Prev = 0;
970 bool InTok = false;
971 bool IsIsolatedToken = true;
972 for (size_t i = 0, e = String.size(); i != e; ++i) {
973 char Char = String[i];
974 if (Variant.BreakCharacters.find(Char) != std::string::npos) {
975 if (InTok) {
976 addAsmOperand(String.slice(Prev, i), false);
977 Prev = i;
978 IsIsolatedToken = false;
979 }
980 InTok = true;
981 continue;
982 }
983 if (Variant.TokenizingCharacters.find(Char) != std::string::npos) {
984 if (InTok) {
985 addAsmOperand(String.slice(Prev, i), IsIsolatedToken);
986 InTok = false;
987 IsIsolatedToken = false;
988 }
989 addAsmOperand(String.slice(i, i + 1), IsIsolatedToken);
990 Prev = i + 1;
991 IsIsolatedToken = true;
992 continue;
993 }
994 if (Variant.SeparatorCharacters.find(Char) != std::string::npos) {
995 if (InTok) {
996 addAsmOperand(String.slice(Prev, i), IsIsolatedToken);
997 InTok = false;
998 }
999 Prev = i + 1;
1000 IsIsolatedToken = true;
1001 continue;
1002 }
1003
1004 switch (Char) {
1005 case '\\':
1006 if (InTok) {
1007 addAsmOperand(String.slice(Prev, i), false);
1008 InTok = false;
1009 IsIsolatedToken = false;
1010 }
1011 ++i;
1012 assert(i != String.size() && "Invalid quoted character");
1013 addAsmOperand(String.slice(i, i + 1), IsIsolatedToken);
1014 Prev = i + 1;
1015 IsIsolatedToken = false;
1016 break;
1017
1018 case '$': {
1019 if (InTok) {
1020 addAsmOperand(String.slice(Prev, i), IsIsolatedToken);
1021 InTok = false;
1022 IsIsolatedToken = false;
1023 }
1024
1025 // If this isn't "${", start new identifier looking like "$xxx"
1026 if (i + 1 == String.size() || String[i + 1] != '{') {
1027 Prev = i;
1028 break;
1029 }
1030
1031 size_t EndPos = String.find('}', i);
1032 assert(EndPos != StringRef::npos &&
1033 "Missing brace in operand reference!");
1034 addAsmOperand(String.slice(i, EndPos+1), IsIsolatedToken);
1035 Prev = EndPos + 1;
1036 i = EndPos;
1037 IsIsolatedToken = false;
1038 break;
1039 }
1040
1041 default:
1042 InTok = true;
1043 break;
1044 }
1045 }
1046 if (InTok && Prev != String.size())
1047 addAsmOperand(String.substr(Prev), IsIsolatedToken);
1048 }
1049
validate(StringRef CommentDelimiter,bool IsAlias) const1050 bool MatchableInfo::validate(StringRef CommentDelimiter, bool IsAlias) const {
1051 // Reject matchables with no .s string.
1052 if (AsmString.empty())
1053 PrintFatalError(TheDef->getLoc(), "instruction with empty asm string");
1054
1055 // Reject any matchables with a newline in them, they should be marked
1056 // isCodeGenOnly if they are pseudo instructions.
1057 if (AsmString.find('\n') != std::string::npos)
1058 PrintFatalError(TheDef->getLoc(),
1059 "multiline instruction is not valid for the asmparser, "
1060 "mark it isCodeGenOnly");
1061
1062 // Remove comments from the asm string. We know that the asmstring only
1063 // has one line.
1064 if (!CommentDelimiter.empty() &&
1065 StringRef(AsmString).find(CommentDelimiter) != StringRef::npos)
1066 PrintFatalError(TheDef->getLoc(),
1067 "asmstring for instruction has comment character in it, "
1068 "mark it isCodeGenOnly");
1069
1070 // Reject matchables with operand modifiers, these aren't something we can
1071 // handle, the target should be refactored to use operands instead of
1072 // modifiers.
1073 //
1074 // Also, check for instructions which reference the operand multiple times,
1075 // if they don't define a custom AsmMatcher: this implies a constraint that
1076 // the built-in matching code would not honor.
1077 std::set<std::string> OperandNames;
1078 for (const AsmOperand &Op : AsmOperands) {
1079 StringRef Tok = Op.Token;
1080 if (Tok[0] == '$' && Tok.find(':') != StringRef::npos)
1081 PrintFatalError(TheDef->getLoc(),
1082 "matchable with operand modifier '" + Tok +
1083 "' not supported by asm matcher. Mark isCodeGenOnly!");
1084 // Verify that any operand is only mentioned once.
1085 // We reject aliases and ignore instructions for now.
1086 if (!IsAlias && TheDef->getValueAsString("AsmMatchConverter").empty() &&
1087 Tok[0] == '$' && !OperandNames.insert(std::string(Tok)).second) {
1088 LLVM_DEBUG({
1089 errs() << "warning: '" << TheDef->getName() << "': "
1090 << "ignoring instruction with tied operand '"
1091 << Tok << "'\n";
1092 });
1093 return false;
1094 }
1095 }
1096
1097 return true;
1098 }
1099
getEnumNameForToken(StringRef Str)1100 static std::string getEnumNameForToken(StringRef Str) {
1101 std::string Res;
1102
1103 for (char C : Str) {
1104 switch (C) {
1105 case '*': Res += "_STAR_"; break;
1106 case '%': Res += "_PCT_"; break;
1107 case ':': Res += "_COLON_"; break;
1108 case '!': Res += "_EXCLAIM_"; break;
1109 case '.': Res += "_DOT_"; break;
1110 case '<': Res += "_LT_"; break;
1111 case '>': Res += "_GT_"; break;
1112 case '-': Res += "_MINUS_"; break;
1113 case '#': Res += "_HASH_"; break;
1114 default:
1115 if (isAlnum(C))
1116 Res += C;
1117 else
1118 Res += "_" + utostr((unsigned)C) + "_";
1119 }
1120 }
1121
1122 return Res;
1123 }
1124
getTokenClass(StringRef Token)1125 ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) {
1126 ClassInfo *&Entry = TokenClasses[std::string(Token)];
1127
1128 if (!Entry) {
1129 Classes.emplace_front();
1130 Entry = &Classes.front();
1131 Entry->Kind = ClassInfo::Token;
1132 Entry->ClassName = "Token";
1133 Entry->Name = "MCK_" + getEnumNameForToken(Token);
1134 Entry->ValueName = std::string(Token);
1135 Entry->PredicateMethod = "<invalid>";
1136 Entry->RenderMethod = "<invalid>";
1137 Entry->ParserMethod = "";
1138 Entry->DiagnosticType = "";
1139 Entry->IsOptional = false;
1140 Entry->DefaultMethod = "<invalid>";
1141 }
1142
1143 return Entry;
1144 }
1145
1146 ClassInfo *
getOperandClass(const CGIOperandList::OperandInfo & OI,int SubOpIdx)1147 AsmMatcherInfo::getOperandClass(const CGIOperandList::OperandInfo &OI,
1148 int SubOpIdx) {
1149 Record *Rec = OI.Rec;
1150 if (SubOpIdx != -1)
1151 Rec = cast<DefInit>(OI.MIOperandInfo->getArg(SubOpIdx))->getDef();
1152 return getOperandClass(Rec, SubOpIdx);
1153 }
1154
1155 ClassInfo *
getOperandClass(Record * Rec,int SubOpIdx)1156 AsmMatcherInfo::getOperandClass(Record *Rec, int SubOpIdx) {
1157 if (Rec->isSubClassOf("RegisterOperand")) {
1158 // RegisterOperand may have an associated ParserMatchClass. If it does,
1159 // use it, else just fall back to the underlying register class.
1160 const RecordVal *R = Rec->getValue("ParserMatchClass");
1161 if (!R || !R->getValue())
1162 PrintFatalError(Rec->getLoc(),
1163 "Record `" + Rec->getName() +
1164 "' does not have a ParserMatchClass!\n");
1165
1166 if (DefInit *DI= dyn_cast<DefInit>(R->getValue())) {
1167 Record *MatchClass = DI->getDef();
1168 if (ClassInfo *CI = AsmOperandClasses[MatchClass])
1169 return CI;
1170 }
1171
1172 // No custom match class. Just use the register class.
1173 Record *ClassRec = Rec->getValueAsDef("RegClass");
1174 if (!ClassRec)
1175 PrintFatalError(Rec->getLoc(), "RegisterOperand `" + Rec->getName() +
1176 "' has no associated register class!\n");
1177 if (ClassInfo *CI = RegisterClassClasses[ClassRec])
1178 return CI;
1179 PrintFatalError(Rec->getLoc(), "register class has no class info!");
1180 }
1181
1182 if (Rec->isSubClassOf("RegisterClass")) {
1183 if (ClassInfo *CI = RegisterClassClasses[Rec])
1184 return CI;
1185 PrintFatalError(Rec->getLoc(), "register class has no class info!");
1186 }
1187
1188 if (!Rec->isSubClassOf("Operand"))
1189 PrintFatalError(Rec->getLoc(), "Operand `" + Rec->getName() +
1190 "' does not derive from class Operand!\n");
1191 Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
1192 if (ClassInfo *CI = AsmOperandClasses[MatchClass])
1193 return CI;
1194
1195 PrintFatalError(Rec->getLoc(), "operand has no match class!");
1196 }
1197
1198 struct LessRegisterSet {
operator ()LessRegisterSet1199 bool operator() (const RegisterSet &LHS, const RegisterSet & RHS) const {
1200 // std::set<T> defines its own compariso "operator<", but it
1201 // performs a lexicographical comparison by T's innate comparison
1202 // for some reason. We don't want non-deterministic pointer
1203 // comparisons so use this instead.
1204 return std::lexicographical_compare(LHS.begin(), LHS.end(),
1205 RHS.begin(), RHS.end(),
1206 LessRecordByID());
1207 }
1208 };
1209
1210 void AsmMatcherInfo::
buildRegisterClasses(SmallPtrSetImpl<Record * > & SingletonRegisters)1211 buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters) {
1212 const auto &Registers = Target.getRegBank().getRegisters();
1213 auto &RegClassList = Target.getRegBank().getRegClasses();
1214
1215 typedef std::set<RegisterSet, LessRegisterSet> RegisterSetSet;
1216
1217 // The register sets used for matching.
1218 RegisterSetSet RegisterSets;
1219
1220 // Gather the defined sets.
1221 for (const CodeGenRegisterClass &RC : RegClassList)
1222 RegisterSets.insert(
1223 RegisterSet(RC.getOrder().begin(), RC.getOrder().end()));
1224
1225 // Add any required singleton sets.
1226 for (Record *Rec : SingletonRegisters) {
1227 RegisterSets.insert(RegisterSet(&Rec, &Rec + 1));
1228 }
1229
1230 // Introduce derived sets where necessary (when a register does not determine
1231 // a unique register set class), and build the mapping of registers to the set
1232 // they should classify to.
1233 std::map<Record*, RegisterSet> RegisterMap;
1234 for (const CodeGenRegister &CGR : Registers) {
1235 // Compute the intersection of all sets containing this register.
1236 RegisterSet ContainingSet;
1237
1238 for (const RegisterSet &RS : RegisterSets) {
1239 if (!RS.count(CGR.TheDef))
1240 continue;
1241
1242 if (ContainingSet.empty()) {
1243 ContainingSet = RS;
1244 continue;
1245 }
1246
1247 RegisterSet Tmp;
1248 std::swap(Tmp, ContainingSet);
1249 std::insert_iterator<RegisterSet> II(ContainingSet,
1250 ContainingSet.begin());
1251 std::set_intersection(Tmp.begin(), Tmp.end(), RS.begin(), RS.end(), II,
1252 LessRecordByID());
1253 }
1254
1255 if (!ContainingSet.empty()) {
1256 RegisterSets.insert(ContainingSet);
1257 RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet));
1258 }
1259 }
1260
1261 // Construct the register classes.
1262 std::map<RegisterSet, ClassInfo*, LessRegisterSet> RegisterSetClasses;
1263 unsigned Index = 0;
1264 for (const RegisterSet &RS : RegisterSets) {
1265 Classes.emplace_front();
1266 ClassInfo *CI = &Classes.front();
1267 CI->Kind = ClassInfo::RegisterClass0 + Index;
1268 CI->ClassName = "Reg" + utostr(Index);
1269 CI->Name = "MCK_Reg" + utostr(Index);
1270 CI->ValueName = "";
1271 CI->PredicateMethod = ""; // unused
1272 CI->RenderMethod = "addRegOperands";
1273 CI->Registers = RS;
1274 // FIXME: diagnostic type.
1275 CI->DiagnosticType = "";
1276 CI->IsOptional = false;
1277 CI->DefaultMethod = ""; // unused
1278 RegisterSetClasses.insert(std::make_pair(RS, CI));
1279 ++Index;
1280 }
1281
1282 // Find the superclasses; we could compute only the subgroup lattice edges,
1283 // but there isn't really a point.
1284 for (const RegisterSet &RS : RegisterSets) {
1285 ClassInfo *CI = RegisterSetClasses[RS];
1286 for (const RegisterSet &RS2 : RegisterSets)
1287 if (RS != RS2 &&
1288 std::includes(RS2.begin(), RS2.end(), RS.begin(), RS.end(),
1289 LessRecordByID()))
1290 CI->SuperClasses.push_back(RegisterSetClasses[RS2]);
1291 }
1292
1293 // Name the register classes which correspond to a user defined RegisterClass.
1294 for (const CodeGenRegisterClass &RC : RegClassList) {
1295 // Def will be NULL for non-user defined register classes.
1296 Record *Def = RC.getDef();
1297 if (!Def)
1298 continue;
1299 ClassInfo *CI = RegisterSetClasses[RegisterSet(RC.getOrder().begin(),
1300 RC.getOrder().end())];
1301 if (CI->ValueName.empty()) {
1302 CI->ClassName = RC.getName();
1303 CI->Name = "MCK_" + RC.getName();
1304 CI->ValueName = RC.getName();
1305 } else
1306 CI->ValueName = CI->ValueName + "," + RC.getName();
1307
1308 Init *DiagnosticType = Def->getValueInit("DiagnosticType");
1309 if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType))
1310 CI->DiagnosticType = std::string(SI->getValue());
1311
1312 Init *DiagnosticString = Def->getValueInit("DiagnosticString");
1313 if (StringInit *SI = dyn_cast<StringInit>(DiagnosticString))
1314 CI->DiagnosticString = std::string(SI->getValue());
1315
1316 // If we have a diagnostic string but the diagnostic type is not specified
1317 // explicitly, create an anonymous diagnostic type.
1318 if (!CI->DiagnosticString.empty() && CI->DiagnosticType.empty())
1319 CI->DiagnosticType = RC.getName();
1320
1321 RegisterClassClasses.insert(std::make_pair(Def, CI));
1322 }
1323
1324 // Populate the map for individual registers.
1325 for (auto &It : RegisterMap)
1326 RegisterClasses[It.first] = RegisterSetClasses[It.second];
1327
1328 // Name the register classes which correspond to singleton registers.
1329 for (Record *Rec : SingletonRegisters) {
1330 ClassInfo *CI = RegisterClasses[Rec];
1331 assert(CI && "Missing singleton register class info!");
1332
1333 if (CI->ValueName.empty()) {
1334 CI->ClassName = std::string(Rec->getName());
1335 CI->Name = "MCK_" + Rec->getName().str();
1336 CI->ValueName = std::string(Rec->getName());
1337 } else
1338 CI->ValueName = CI->ValueName + "," + Rec->getName().str();
1339 }
1340 }
1341
buildOperandClasses()1342 void AsmMatcherInfo::buildOperandClasses() {
1343 std::vector<Record*> AsmOperands =
1344 Records.getAllDerivedDefinitions("AsmOperandClass");
1345
1346 // Pre-populate AsmOperandClasses map.
1347 for (Record *Rec : AsmOperands) {
1348 Classes.emplace_front();
1349 AsmOperandClasses[Rec] = &Classes.front();
1350 }
1351
1352 unsigned Index = 0;
1353 for (Record *Rec : AsmOperands) {
1354 ClassInfo *CI = AsmOperandClasses[Rec];
1355 CI->Kind = ClassInfo::UserClass0 + Index;
1356
1357 ListInit *Supers = Rec->getValueAsListInit("SuperClasses");
1358 for (Init *I : Supers->getValues()) {
1359 DefInit *DI = dyn_cast<DefInit>(I);
1360 if (!DI) {
1361 PrintError(Rec->getLoc(), "Invalid super class reference!");
1362 continue;
1363 }
1364
1365 ClassInfo *SC = AsmOperandClasses[DI->getDef()];
1366 if (!SC)
1367 PrintError(Rec->getLoc(), "Invalid super class reference!");
1368 else
1369 CI->SuperClasses.push_back(SC);
1370 }
1371 CI->ClassName = std::string(Rec->getValueAsString("Name"));
1372 CI->Name = "MCK_" + CI->ClassName;
1373 CI->ValueName = std::string(Rec->getName());
1374
1375 // Get or construct the predicate method name.
1376 Init *PMName = Rec->getValueInit("PredicateMethod");
1377 if (StringInit *SI = dyn_cast<StringInit>(PMName)) {
1378 CI->PredicateMethod = std::string(SI->getValue());
1379 } else {
1380 assert(isa<UnsetInit>(PMName) && "Unexpected PredicateMethod field!");
1381 CI->PredicateMethod = "is" + CI->ClassName;
1382 }
1383
1384 // Get or construct the render method name.
1385 Init *RMName = Rec->getValueInit("RenderMethod");
1386 if (StringInit *SI = dyn_cast<StringInit>(RMName)) {
1387 CI->RenderMethod = std::string(SI->getValue());
1388 } else {
1389 assert(isa<UnsetInit>(RMName) && "Unexpected RenderMethod field!");
1390 CI->RenderMethod = "add" + CI->ClassName + "Operands";
1391 }
1392
1393 // Get the parse method name or leave it as empty.
1394 Init *PRMName = Rec->getValueInit("ParserMethod");
1395 if (StringInit *SI = dyn_cast<StringInit>(PRMName))
1396 CI->ParserMethod = std::string(SI->getValue());
1397
1398 // Get the diagnostic type and string or leave them as empty.
1399 Init *DiagnosticType = Rec->getValueInit("DiagnosticType");
1400 if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType))
1401 CI->DiagnosticType = std::string(SI->getValue());
1402 Init *DiagnosticString = Rec->getValueInit("DiagnosticString");
1403 if (StringInit *SI = dyn_cast<StringInit>(DiagnosticString))
1404 CI->DiagnosticString = std::string(SI->getValue());
1405 // If we have a DiagnosticString, we need a DiagnosticType for use within
1406 // the matcher.
1407 if (!CI->DiagnosticString.empty() && CI->DiagnosticType.empty())
1408 CI->DiagnosticType = CI->ClassName;
1409
1410 Init *IsOptional = Rec->getValueInit("IsOptional");
1411 if (BitInit *BI = dyn_cast<BitInit>(IsOptional))
1412 CI->IsOptional = BI->getValue();
1413
1414 // Get or construct the default method name.
1415 Init *DMName = Rec->getValueInit("DefaultMethod");
1416 if (StringInit *SI = dyn_cast<StringInit>(DMName)) {
1417 CI->DefaultMethod = std::string(SI->getValue());
1418 } else {
1419 assert(isa<UnsetInit>(DMName) && "Unexpected DefaultMethod field!");
1420 CI->DefaultMethod = "default" + CI->ClassName + "Operands";
1421 }
1422
1423 ++Index;
1424 }
1425 }
1426
AsmMatcherInfo(Record * asmParser,CodeGenTarget & target,RecordKeeper & records)1427 AsmMatcherInfo::AsmMatcherInfo(Record *asmParser,
1428 CodeGenTarget &target,
1429 RecordKeeper &records)
1430 : Records(records), AsmParser(asmParser), Target(target) {
1431 }
1432
1433 /// buildOperandMatchInfo - Build the necessary information to handle user
1434 /// defined operand parsing methods.
buildOperandMatchInfo()1435 void AsmMatcherInfo::buildOperandMatchInfo() {
1436
1437 /// Map containing a mask with all operands indices that can be found for
1438 /// that class inside a instruction.
1439 typedef std::map<ClassInfo *, unsigned, deref<std::less<>>> OpClassMaskTy;
1440 OpClassMaskTy OpClassMask;
1441
1442 for (const auto &MI : Matchables) {
1443 OpClassMask.clear();
1444
1445 // Keep track of all operands of this instructions which belong to the
1446 // same class.
1447 for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) {
1448 const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i];
1449 if (Op.Class->ParserMethod.empty())
1450 continue;
1451 unsigned &OperandMask = OpClassMask[Op.Class];
1452 OperandMask |= (1 << i);
1453 }
1454
1455 // Generate operand match info for each mnemonic/operand class pair.
1456 for (const auto &OCM : OpClassMask) {
1457 unsigned OpMask = OCM.second;
1458 ClassInfo *CI = OCM.first;
1459 OperandMatchInfo.push_back(OperandMatchEntry::create(MI.get(), CI,
1460 OpMask));
1461 }
1462 }
1463 }
1464
buildInfo()1465 void AsmMatcherInfo::buildInfo() {
1466 // Build information about all of the AssemblerPredicates.
1467 const std::vector<std::pair<Record *, SubtargetFeatureInfo>>
1468 &SubtargetFeaturePairs = SubtargetFeatureInfo::getAll(Records);
1469 SubtargetFeatures.insert(SubtargetFeaturePairs.begin(),
1470 SubtargetFeaturePairs.end());
1471 #ifndef NDEBUG
1472 for (const auto &Pair : SubtargetFeatures)
1473 LLVM_DEBUG(Pair.second.dump());
1474 #endif // NDEBUG
1475
1476 bool HasMnemonicFirst = AsmParser->getValueAsBit("HasMnemonicFirst");
1477 bool ReportMultipleNearMisses =
1478 AsmParser->getValueAsBit("ReportMultipleNearMisses");
1479
1480 // Parse the instructions; we need to do this first so that we can gather the
1481 // singleton register classes.
1482 SmallPtrSet<Record*, 16> SingletonRegisters;
1483 unsigned VariantCount = Target.getAsmParserVariantCount();
1484 for (unsigned VC = 0; VC != VariantCount; ++VC) {
1485 Record *AsmVariant = Target.getAsmParserVariant(VC);
1486 StringRef CommentDelimiter =
1487 AsmVariant->getValueAsString("CommentDelimiter");
1488 AsmVariantInfo Variant;
1489 Variant.RegisterPrefix = AsmVariant->getValueAsString("RegisterPrefix");
1490 Variant.TokenizingCharacters =
1491 AsmVariant->getValueAsString("TokenizingCharacters");
1492 Variant.SeparatorCharacters =
1493 AsmVariant->getValueAsString("SeparatorCharacters");
1494 Variant.BreakCharacters =
1495 AsmVariant->getValueAsString("BreakCharacters");
1496 Variant.Name = AsmVariant->getValueAsString("Name");
1497 Variant.AsmVariantNo = AsmVariant->getValueAsInt("Variant");
1498
1499 for (const CodeGenInstruction *CGI : Target.getInstructionsByEnumValue()) {
1500
1501 // If the tblgen -match-prefix option is specified (for tblgen hackers),
1502 // filter the set of instructions we consider.
1503 if (!StringRef(CGI->TheDef->getName()).startswith(MatchPrefix))
1504 continue;
1505
1506 // Ignore "codegen only" instructions.
1507 if (CGI->TheDef->getValueAsBit("isCodeGenOnly"))
1508 continue;
1509
1510 // Ignore instructions for different instructions
1511 StringRef V = CGI->TheDef->getValueAsString("AsmVariantName");
1512 if (!V.empty() && V != Variant.Name)
1513 continue;
1514
1515 auto II = std::make_unique<MatchableInfo>(*CGI);
1516
1517 II->initialize(*this, SingletonRegisters, Variant, HasMnemonicFirst);
1518
1519 // Ignore instructions which shouldn't be matched and diagnose invalid
1520 // instruction definitions with an error.
1521 if (!II->validate(CommentDelimiter, false))
1522 continue;
1523
1524 Matchables.push_back(std::move(II));
1525 }
1526
1527 // Parse all of the InstAlias definitions and stick them in the list of
1528 // matchables.
1529 std::vector<Record*> AllInstAliases =
1530 Records.getAllDerivedDefinitions("InstAlias");
1531 for (Record *InstAlias : AllInstAliases) {
1532 auto Alias = std::make_unique<CodeGenInstAlias>(InstAlias, Target);
1533
1534 // If the tblgen -match-prefix option is specified (for tblgen hackers),
1535 // filter the set of instruction aliases we consider, based on the target
1536 // instruction.
1537 if (!StringRef(Alias->ResultInst->TheDef->getName())
1538 .startswith( MatchPrefix))
1539 continue;
1540
1541 StringRef V = Alias->TheDef->getValueAsString("AsmVariantName");
1542 if (!V.empty() && V != Variant.Name)
1543 continue;
1544
1545 auto II = std::make_unique<MatchableInfo>(std::move(Alias));
1546
1547 II->initialize(*this, SingletonRegisters, Variant, HasMnemonicFirst);
1548
1549 // Validate the alias definitions.
1550 II->validate(CommentDelimiter, true);
1551
1552 Matchables.push_back(std::move(II));
1553 }
1554 }
1555
1556 // Build info for the register classes.
1557 buildRegisterClasses(SingletonRegisters);
1558
1559 // Build info for the user defined assembly operand classes.
1560 buildOperandClasses();
1561
1562 // Build the information about matchables, now that we have fully formed
1563 // classes.
1564 std::vector<std::unique_ptr<MatchableInfo>> NewMatchables;
1565 for (auto &II : Matchables) {
1566 // Parse the tokens after the mnemonic.
1567 // Note: buildInstructionOperandReference may insert new AsmOperands, so
1568 // don't precompute the loop bound.
1569 for (unsigned i = 0; i != II->AsmOperands.size(); ++i) {
1570 MatchableInfo::AsmOperand &Op = II->AsmOperands[i];
1571 StringRef Token = Op.Token;
1572
1573 // Check for singleton registers.
1574 if (Record *RegRecord = Op.SingletonReg) {
1575 Op.Class = RegisterClasses[RegRecord];
1576 assert(Op.Class && Op.Class->Registers.size() == 1 &&
1577 "Unexpected class for singleton register");
1578 continue;
1579 }
1580
1581 // Check for simple tokens.
1582 if (Token[0] != '$') {
1583 Op.Class = getTokenClass(Token);
1584 continue;
1585 }
1586
1587 if (Token.size() > 1 && isdigit(Token[1])) {
1588 Op.Class = getTokenClass(Token);
1589 continue;
1590 }
1591
1592 // Otherwise this is an operand reference.
1593 StringRef OperandName;
1594 if (Token[1] == '{')
1595 OperandName = Token.substr(2, Token.size() - 3);
1596 else
1597 OperandName = Token.substr(1);
1598
1599 if (II->DefRec.is<const CodeGenInstruction*>())
1600 buildInstructionOperandReference(II.get(), OperandName, i);
1601 else
1602 buildAliasOperandReference(II.get(), OperandName, Op);
1603 }
1604
1605 if (II->DefRec.is<const CodeGenInstruction*>()) {
1606 II->buildInstructionResultOperands();
1607 // If the instruction has a two-operand alias, build up the
1608 // matchable here. We'll add them in bulk at the end to avoid
1609 // confusing this loop.
1610 StringRef Constraint =
1611 II->TheDef->getValueAsString("TwoOperandAliasConstraint");
1612 if (Constraint != "") {
1613 // Start by making a copy of the original matchable.
1614 auto AliasII = std::make_unique<MatchableInfo>(*II);
1615
1616 // Adjust it to be a two-operand alias.
1617 AliasII->formTwoOperandAlias(Constraint);
1618
1619 // Add the alias to the matchables list.
1620 NewMatchables.push_back(std::move(AliasII));
1621 }
1622 } else
1623 // FIXME: The tied operands checking is not yet integrated with the
1624 // framework for reporting multiple near misses. To prevent invalid
1625 // formats from being matched with an alias if a tied-operands check
1626 // would otherwise have disallowed it, we just disallow such constructs
1627 // in TableGen completely.
1628 II->buildAliasResultOperands(!ReportMultipleNearMisses);
1629 }
1630 if (!NewMatchables.empty())
1631 Matchables.insert(Matchables.end(),
1632 std::make_move_iterator(NewMatchables.begin()),
1633 std::make_move_iterator(NewMatchables.end()));
1634
1635 // Process token alias definitions and set up the associated superclass
1636 // information.
1637 std::vector<Record*> AllTokenAliases =
1638 Records.getAllDerivedDefinitions("TokenAlias");
1639 for (Record *Rec : AllTokenAliases) {
1640 ClassInfo *FromClass = getTokenClass(Rec->getValueAsString("FromToken"));
1641 ClassInfo *ToClass = getTokenClass(Rec->getValueAsString("ToToken"));
1642 if (FromClass == ToClass)
1643 PrintFatalError(Rec->getLoc(),
1644 "error: Destination value identical to source value.");
1645 FromClass->SuperClasses.push_back(ToClass);
1646 }
1647
1648 // Reorder classes so that classes precede super classes.
1649 Classes.sort();
1650
1651 #ifdef EXPENSIVE_CHECKS
1652 // Verify that the table is sorted and operator < works transitively.
1653 for (auto I = Classes.begin(), E = Classes.end(); I != E; ++I) {
1654 for (auto J = I; J != E; ++J) {
1655 assert(!(*J < *I));
1656 assert(I == J || !J->isSubsetOf(*I));
1657 }
1658 }
1659 #endif
1660 }
1661
1662 /// buildInstructionOperandReference - The specified operand is a reference to a
1663 /// named operand such as $src. Resolve the Class and OperandInfo pointers.
1664 void AsmMatcherInfo::
buildInstructionOperandReference(MatchableInfo * II,StringRef OperandName,unsigned AsmOpIdx)1665 buildInstructionOperandReference(MatchableInfo *II,
1666 StringRef OperandName,
1667 unsigned AsmOpIdx) {
1668 const CodeGenInstruction &CGI = *II->DefRec.get<const CodeGenInstruction*>();
1669 const CGIOperandList &Operands = CGI.Operands;
1670 MatchableInfo::AsmOperand *Op = &II->AsmOperands[AsmOpIdx];
1671
1672 // Map this token to an operand.
1673 unsigned Idx;
1674 if (!Operands.hasOperandNamed(OperandName, Idx))
1675 PrintFatalError(II->TheDef->getLoc(),
1676 "error: unable to find operand: '" + OperandName + "'");
1677
1678 // If the instruction operand has multiple suboperands, but the parser
1679 // match class for the asm operand is still the default "ImmAsmOperand",
1680 // then handle each suboperand separately.
1681 if (Op->SubOpIdx == -1 && Operands[Idx].MINumOperands > 1) {
1682 Record *Rec = Operands[Idx].Rec;
1683 assert(Rec->isSubClassOf("Operand") && "Unexpected operand!");
1684 Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
1685 if (MatchClass && MatchClass->getValueAsString("Name") == "Imm") {
1686 // Insert remaining suboperands after AsmOpIdx in II->AsmOperands.
1687 StringRef Token = Op->Token; // save this in case Op gets moved
1688 for (unsigned SI = 1, SE = Operands[Idx].MINumOperands; SI != SE; ++SI) {
1689 MatchableInfo::AsmOperand NewAsmOp(/*IsIsolatedToken=*/true, Token);
1690 NewAsmOp.SubOpIdx = SI;
1691 II->AsmOperands.insert(II->AsmOperands.begin()+AsmOpIdx+SI, NewAsmOp);
1692 }
1693 // Replace Op with first suboperand.
1694 Op = &II->AsmOperands[AsmOpIdx]; // update the pointer in case it moved
1695 Op->SubOpIdx = 0;
1696 }
1697 }
1698
1699 // Set up the operand class.
1700 Op->Class = getOperandClass(Operands[Idx], Op->SubOpIdx);
1701 Op->OrigSrcOpName = OperandName;
1702
1703 // If the named operand is tied, canonicalize it to the untied operand.
1704 // For example, something like:
1705 // (outs GPR:$dst), (ins GPR:$src)
1706 // with an asmstring of
1707 // "inc $src"
1708 // we want to canonicalize to:
1709 // "inc $dst"
1710 // so that we know how to provide the $dst operand when filling in the result.
1711 int OITied = -1;
1712 if (Operands[Idx].MINumOperands == 1)
1713 OITied = Operands[Idx].getTiedRegister();
1714 if (OITied != -1) {
1715 // The tied operand index is an MIOperand index, find the operand that
1716 // contains it.
1717 std::pair<unsigned, unsigned> Idx = Operands.getSubOperandNumber(OITied);
1718 OperandName = Operands[Idx.first].Name;
1719 Op->SubOpIdx = Idx.second;
1720 }
1721
1722 Op->SrcOpName = OperandName;
1723 }
1724
1725 /// buildAliasOperandReference - When parsing an operand reference out of the
1726 /// matching string (e.g. "movsx $src, $dst"), determine what the class of the
1727 /// operand reference is by looking it up in the result pattern definition.
buildAliasOperandReference(MatchableInfo * II,StringRef OperandName,MatchableInfo::AsmOperand & Op)1728 void AsmMatcherInfo::buildAliasOperandReference(MatchableInfo *II,
1729 StringRef OperandName,
1730 MatchableInfo::AsmOperand &Op) {
1731 const CodeGenInstAlias &CGA = *II->DefRec.get<const CodeGenInstAlias*>();
1732
1733 // Set up the operand class.
1734 for (unsigned i = 0, e = CGA.ResultOperands.size(); i != e; ++i)
1735 if (CGA.ResultOperands[i].isRecord() &&
1736 CGA.ResultOperands[i].getName() == OperandName) {
1737 // It's safe to go with the first one we find, because CodeGenInstAlias
1738 // validates that all operands with the same name have the same record.
1739 Op.SubOpIdx = CGA.ResultInstOperandIndex[i].second;
1740 // Use the match class from the Alias definition, not the
1741 // destination instruction, as we may have an immediate that's
1742 // being munged by the match class.
1743 Op.Class = getOperandClass(CGA.ResultOperands[i].getRecord(),
1744 Op.SubOpIdx);
1745 Op.SrcOpName = OperandName;
1746 Op.OrigSrcOpName = OperandName;
1747 return;
1748 }
1749
1750 PrintFatalError(II->TheDef->getLoc(),
1751 "error: unable to find operand: '" + OperandName + "'");
1752 }
1753
buildInstructionResultOperands()1754 void MatchableInfo::buildInstructionResultOperands() {
1755 const CodeGenInstruction *ResultInst = getResultInst();
1756
1757 // Loop over all operands of the result instruction, determining how to
1758 // populate them.
1759 for (const CGIOperandList::OperandInfo &OpInfo : ResultInst->Operands) {
1760 // If this is a tied operand, just copy from the previously handled operand.
1761 int TiedOp = -1;
1762 if (OpInfo.MINumOperands == 1)
1763 TiedOp = OpInfo.getTiedRegister();
1764 if (TiedOp != -1) {
1765 int TiedSrcOperand = findAsmOperandOriginallyNamed(OpInfo.Name);
1766 if (TiedSrcOperand != -1 &&
1767 ResOperands[TiedOp].Kind == ResOperand::RenderAsmOperand)
1768 ResOperands.push_back(ResOperand::getTiedOp(
1769 TiedOp, ResOperands[TiedOp].AsmOperandNum, TiedSrcOperand));
1770 else
1771 ResOperands.push_back(ResOperand::getTiedOp(TiedOp, 0, 0));
1772 continue;
1773 }
1774
1775 int SrcOperand = findAsmOperandNamed(OpInfo.Name);
1776 if (OpInfo.Name.empty() || SrcOperand == -1) {
1777 // This may happen for operands that are tied to a suboperand of a
1778 // complex operand. Simply use a dummy value here; nobody should
1779 // use this operand slot.
1780 // FIXME: The long term goal is for the MCOperand list to not contain
1781 // tied operands at all.
1782 ResOperands.push_back(ResOperand::getImmOp(0));
1783 continue;
1784 }
1785
1786 // Check if the one AsmOperand populates the entire operand.
1787 unsigned NumOperands = OpInfo.MINumOperands;
1788 if (AsmOperands[SrcOperand].SubOpIdx == -1) {
1789 ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, NumOperands));
1790 continue;
1791 }
1792
1793 // Add a separate ResOperand for each suboperand.
1794 for (unsigned AI = 0; AI < NumOperands; ++AI) {
1795 assert(AsmOperands[SrcOperand+AI].SubOpIdx == (int)AI &&
1796 AsmOperands[SrcOperand+AI].SrcOpName == OpInfo.Name &&
1797 "unexpected AsmOperands for suboperands");
1798 ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand + AI, 1));
1799 }
1800 }
1801 }
1802
buildAliasResultOperands(bool AliasConstraintsAreChecked)1803 void MatchableInfo::buildAliasResultOperands(bool AliasConstraintsAreChecked) {
1804 const CodeGenInstAlias &CGA = *DefRec.get<const CodeGenInstAlias*>();
1805 const CodeGenInstruction *ResultInst = getResultInst();
1806
1807 // Map of: $reg -> #lastref
1808 // where $reg is the name of the operand in the asm string
1809 // where #lastref is the last processed index where $reg was referenced in
1810 // the asm string.
1811 SmallDenseMap<StringRef, int> OperandRefs;
1812
1813 // Loop over all operands of the result instruction, determining how to
1814 // populate them.
1815 unsigned AliasOpNo = 0;
1816 unsigned LastOpNo = CGA.ResultInstOperandIndex.size();
1817 for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
1818 const CGIOperandList::OperandInfo *OpInfo = &ResultInst->Operands[i];
1819
1820 // If this is a tied operand, just copy from the previously handled operand.
1821 int TiedOp = -1;
1822 if (OpInfo->MINumOperands == 1)
1823 TiedOp = OpInfo->getTiedRegister();
1824 if (TiedOp != -1) {
1825 unsigned SrcOp1 = 0;
1826 unsigned SrcOp2 = 0;
1827
1828 // If an operand has been specified twice in the asm string,
1829 // add the two source operand's indices to the TiedOp so that
1830 // at runtime the 'tied' constraint is checked.
1831 if (ResOperands[TiedOp].Kind == ResOperand::RenderAsmOperand) {
1832 SrcOp1 = ResOperands[TiedOp].AsmOperandNum;
1833
1834 // Find the next operand (similarly named operand) in the string.
1835 StringRef Name = AsmOperands[SrcOp1].SrcOpName;
1836 auto Insert = OperandRefs.try_emplace(Name, SrcOp1);
1837 SrcOp2 = findAsmOperandNamed(Name, Insert.first->second);
1838
1839 // Not updating the record in OperandRefs will cause TableGen
1840 // to fail with an error at the end of this function.
1841 if (AliasConstraintsAreChecked)
1842 Insert.first->second = SrcOp2;
1843
1844 // In case it only has one reference in the asm string,
1845 // it doesn't need to be checked for tied constraints.
1846 SrcOp2 = (SrcOp2 == (unsigned)-1) ? SrcOp1 : SrcOp2;
1847 }
1848
1849 // If the alias operand is of a different operand class, we only want
1850 // to benefit from the tied-operands check and just match the operand
1851 // as a normal, but not copy the original (TiedOp) to the result
1852 // instruction. We do this by passing -1 as the tied operand to copy.
1853 if (ResultInst->Operands[i].Rec->getName() !=
1854 ResultInst->Operands[TiedOp].Rec->getName()) {
1855 SrcOp1 = ResOperands[TiedOp].AsmOperandNum;
1856 int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second;
1857 StringRef Name = CGA.ResultOperands[AliasOpNo].getName();
1858 SrcOp2 = findAsmOperand(Name, SubIdx);
1859 ResOperands.push_back(
1860 ResOperand::getTiedOp((unsigned)-1, SrcOp1, SrcOp2));
1861 } else {
1862 ResOperands.push_back(ResOperand::getTiedOp(TiedOp, SrcOp1, SrcOp2));
1863 continue;
1864 }
1865 }
1866
1867 // Handle all the suboperands for this operand.
1868 const std::string &OpName = OpInfo->Name;
1869 for ( ; AliasOpNo < LastOpNo &&
1870 CGA.ResultInstOperandIndex[AliasOpNo].first == i; ++AliasOpNo) {
1871 int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second;
1872
1873 // Find out what operand from the asmparser that this MCInst operand
1874 // comes from.
1875 switch (CGA.ResultOperands[AliasOpNo].Kind) {
1876 case CodeGenInstAlias::ResultOperand::K_Record: {
1877 StringRef Name = CGA.ResultOperands[AliasOpNo].getName();
1878 int SrcOperand = findAsmOperand(Name, SubIdx);
1879 if (SrcOperand == -1)
1880 PrintFatalError(TheDef->getLoc(), "Instruction '" +
1881 TheDef->getName() + "' has operand '" + OpName +
1882 "' that doesn't appear in asm string!");
1883
1884 // Add it to the operand references. If it is added a second time, the
1885 // record won't be updated and it will fail later on.
1886 OperandRefs.try_emplace(Name, SrcOperand);
1887
1888 unsigned NumOperands = (SubIdx == -1 ? OpInfo->MINumOperands : 1);
1889 ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand,
1890 NumOperands));
1891 break;
1892 }
1893 case CodeGenInstAlias::ResultOperand::K_Imm: {
1894 int64_t ImmVal = CGA.ResultOperands[AliasOpNo].getImm();
1895 ResOperands.push_back(ResOperand::getImmOp(ImmVal));
1896 break;
1897 }
1898 case CodeGenInstAlias::ResultOperand::K_Reg: {
1899 Record *Reg = CGA.ResultOperands[AliasOpNo].getRegister();
1900 ResOperands.push_back(ResOperand::getRegOp(Reg));
1901 break;
1902 }
1903 }
1904 }
1905 }
1906
1907 // Check that operands are not repeated more times than is supported.
1908 for (auto &T : OperandRefs) {
1909 if (T.second != -1 && findAsmOperandNamed(T.first, T.second) != -1)
1910 PrintFatalError(TheDef->getLoc(),
1911 "Operand '" + T.first + "' can never be matched");
1912 }
1913 }
1914
1915 static unsigned
getConverterOperandID(const std::string & Name,SmallSetVector<CachedHashString,16> & Table,bool & IsNew)1916 getConverterOperandID(const std::string &Name,
1917 SmallSetVector<CachedHashString, 16> &Table,
1918 bool &IsNew) {
1919 IsNew = Table.insert(CachedHashString(Name));
1920
1921 unsigned ID = IsNew ? Table.size() - 1 : find(Table, Name) - Table.begin();
1922
1923 assert(ID < Table.size());
1924
1925 return ID;
1926 }
1927
1928 static unsigned
emitConvertFuncs(CodeGenTarget & Target,StringRef ClassName,std::vector<std::unique_ptr<MatchableInfo>> & Infos,bool HasMnemonicFirst,bool HasOptionalOperands,raw_ostream & OS)1929 emitConvertFuncs(CodeGenTarget &Target, StringRef ClassName,
1930 std::vector<std::unique_ptr<MatchableInfo>> &Infos,
1931 bool HasMnemonicFirst, bool HasOptionalOperands,
1932 raw_ostream &OS) {
1933 SmallSetVector<CachedHashString, 16> OperandConversionKinds;
1934 SmallSetVector<CachedHashString, 16> InstructionConversionKinds;
1935 std::vector<std::vector<uint8_t> > ConversionTable;
1936 size_t MaxRowLength = 2; // minimum is custom converter plus terminator.
1937
1938 // TargetOperandClass - This is the target's operand class, like X86Operand.
1939 std::string TargetOperandClass = Target.getName().str() + "Operand";
1940
1941 // Write the convert function to a separate stream, so we can drop it after
1942 // the enum. We'll build up the conversion handlers for the individual
1943 // operand types opportunistically as we encounter them.
1944 std::string ConvertFnBody;
1945 raw_string_ostream CvtOS(ConvertFnBody);
1946 // Start the unified conversion function.
1947 if (HasOptionalOperands) {
1948 CvtOS << "void " << Target.getName() << ClassName << "::\n"
1949 << "convertToMCInst(unsigned Kind, MCInst &Inst, "
1950 << "unsigned Opcode,\n"
1951 << " const OperandVector &Operands,\n"
1952 << " const SmallBitVector &OptionalOperandsMask) {\n";
1953 } else {
1954 CvtOS << "void " << Target.getName() << ClassName << "::\n"
1955 << "convertToMCInst(unsigned Kind, MCInst &Inst, "
1956 << "unsigned Opcode,\n"
1957 << " const OperandVector &Operands) {\n";
1958 }
1959 CvtOS << " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n";
1960 CvtOS << " const uint8_t *Converter = ConversionTable[Kind];\n";
1961 if (HasOptionalOperands) {
1962 size_t MaxNumOperands = 0;
1963 for (const auto &MI : Infos) {
1964 MaxNumOperands = std::max(MaxNumOperands, MI->AsmOperands.size());
1965 }
1966 CvtOS << " unsigned DefaultsOffset[" << (MaxNumOperands + 1)
1967 << "] = { 0 };\n";
1968 CvtOS << " assert(OptionalOperandsMask.size() == " << (MaxNumOperands)
1969 << ");\n";
1970 CvtOS << " for (unsigned i = 0, NumDefaults = 0; i < " << (MaxNumOperands)
1971 << "; ++i) {\n";
1972 CvtOS << " DefaultsOffset[i + 1] = NumDefaults;\n";
1973 CvtOS << " NumDefaults += (OptionalOperandsMask[i] ? 1 : 0);\n";
1974 CvtOS << " }\n";
1975 }
1976 CvtOS << " unsigned OpIdx;\n";
1977 CvtOS << " Inst.setOpcode(Opcode);\n";
1978 CvtOS << " for (const uint8_t *p = Converter; *p; p += 2) {\n";
1979 if (HasOptionalOperands) {
1980 CvtOS << " OpIdx = *(p + 1) - DefaultsOffset[*(p + 1)];\n";
1981 } else {
1982 CvtOS << " OpIdx = *(p + 1);\n";
1983 }
1984 CvtOS << " switch (*p) {\n";
1985 CvtOS << " default: llvm_unreachable(\"invalid conversion entry!\");\n";
1986 CvtOS << " case CVT_Reg:\n";
1987 CvtOS << " static_cast<" << TargetOperandClass
1988 << " &>(*Operands[OpIdx]).addRegOperands(Inst, 1);\n";
1989 CvtOS << " break;\n";
1990 CvtOS << " case CVT_Tied: {\n";
1991 CvtOS << " assert(OpIdx < (size_t)(std::end(TiedAsmOperandTable) -\n";
1992 CvtOS << " std::begin(TiedAsmOperandTable)) &&\n";
1993 CvtOS << " \"Tied operand not found\");\n";
1994 CvtOS << " unsigned TiedResOpnd = TiedAsmOperandTable[OpIdx][0];\n";
1995 CvtOS << " if (TiedResOpnd != (uint8_t)-1)\n";
1996 CvtOS << " Inst.addOperand(Inst.getOperand(TiedResOpnd));\n";
1997 CvtOS << " break;\n";
1998 CvtOS << " }\n";
1999
2000 std::string OperandFnBody;
2001 raw_string_ostream OpOS(OperandFnBody);
2002 // Start the operand number lookup function.
2003 OpOS << "void " << Target.getName() << ClassName << "::\n"
2004 << "convertToMapAndConstraints(unsigned Kind,\n";
2005 OpOS.indent(27);
2006 OpOS << "const OperandVector &Operands) {\n"
2007 << " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"
2008 << " unsigned NumMCOperands = 0;\n"
2009 << " const uint8_t *Converter = ConversionTable[Kind];\n"
2010 << " for (const uint8_t *p = Converter; *p; p += 2) {\n"
2011 << " switch (*p) {\n"
2012 << " default: llvm_unreachable(\"invalid conversion entry!\");\n"
2013 << " case CVT_Reg:\n"
2014 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
2015 << " Operands[*(p + 1)]->setConstraint(\"r\");\n"
2016 << " ++NumMCOperands;\n"
2017 << " break;\n"
2018 << " case CVT_Tied:\n"
2019 << " ++NumMCOperands;\n"
2020 << " break;\n";
2021
2022 // Pre-populate the operand conversion kinds with the standard always
2023 // available entries.
2024 OperandConversionKinds.insert(CachedHashString("CVT_Done"));
2025 OperandConversionKinds.insert(CachedHashString("CVT_Reg"));
2026 OperandConversionKinds.insert(CachedHashString("CVT_Tied"));
2027 enum { CVT_Done, CVT_Reg, CVT_Tied };
2028
2029 // Map of e.g. <0, 2, 3> -> "Tie_0_2_3" enum label.
2030 std::map<std::tuple<uint8_t, uint8_t, uint8_t>, std::string>
2031 TiedOperandsEnumMap;
2032
2033 for (auto &II : Infos) {
2034 // Check if we have a custom match function.
2035 StringRef AsmMatchConverter =
2036 II->getResultInst()->TheDef->getValueAsString("AsmMatchConverter");
2037 if (!AsmMatchConverter.empty() && II->UseInstAsmMatchConverter) {
2038 std::string Signature = ("ConvertCustom_" + AsmMatchConverter).str();
2039 II->ConversionFnKind = Signature;
2040
2041 // Check if we have already generated this signature.
2042 if (!InstructionConversionKinds.insert(CachedHashString(Signature)))
2043 continue;
2044
2045 // Remember this converter for the kind enum.
2046 unsigned KindID = OperandConversionKinds.size();
2047 OperandConversionKinds.insert(
2048 CachedHashString("CVT_" + getEnumNameForToken(AsmMatchConverter)));
2049
2050 // Add the converter row for this instruction.
2051 ConversionTable.emplace_back();
2052 ConversionTable.back().push_back(KindID);
2053 ConversionTable.back().push_back(CVT_Done);
2054
2055 // Add the handler to the conversion driver function.
2056 CvtOS << " case CVT_"
2057 << getEnumNameForToken(AsmMatchConverter) << ":\n"
2058 << " " << AsmMatchConverter << "(Inst, Operands);\n"
2059 << " break;\n";
2060
2061 // FIXME: Handle the operand number lookup for custom match functions.
2062 continue;
2063 }
2064
2065 // Build the conversion function signature.
2066 std::string Signature = "Convert";
2067
2068 std::vector<uint8_t> ConversionRow;
2069
2070 // Compute the convert enum and the case body.
2071 MaxRowLength = std::max(MaxRowLength, II->ResOperands.size()*2 + 1 );
2072
2073 for (unsigned i = 0, e = II->ResOperands.size(); i != e; ++i) {
2074 const MatchableInfo::ResOperand &OpInfo = II->ResOperands[i];
2075
2076 // Generate code to populate each result operand.
2077 switch (OpInfo.Kind) {
2078 case MatchableInfo::ResOperand::RenderAsmOperand: {
2079 // This comes from something we parsed.
2080 const MatchableInfo::AsmOperand &Op =
2081 II->AsmOperands[OpInfo.AsmOperandNum];
2082
2083 // Registers are always converted the same, don't duplicate the
2084 // conversion function based on them.
2085 Signature += "__";
2086 std::string Class;
2087 Class = Op.Class->isRegisterClass() ? "Reg" : Op.Class->ClassName;
2088 Signature += Class;
2089 Signature += utostr(OpInfo.MINumOperands);
2090 Signature += "_" + itostr(OpInfo.AsmOperandNum);
2091
2092 // Add the conversion kind, if necessary, and get the associated ID
2093 // the index of its entry in the vector).
2094 std::string Name = "CVT_" + (Op.Class->isRegisterClass() ? "Reg" :
2095 Op.Class->RenderMethod);
2096 if (Op.Class->IsOptional) {
2097 // For optional operands we must also care about DefaultMethod
2098 assert(HasOptionalOperands);
2099 Name += "_" + Op.Class->DefaultMethod;
2100 }
2101 Name = getEnumNameForToken(Name);
2102
2103 bool IsNewConverter = false;
2104 unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
2105 IsNewConverter);
2106
2107 // Add the operand entry to the instruction kind conversion row.
2108 ConversionRow.push_back(ID);
2109 ConversionRow.push_back(OpInfo.AsmOperandNum + HasMnemonicFirst);
2110
2111 if (!IsNewConverter)
2112 break;
2113
2114 // This is a new operand kind. Add a handler for it to the
2115 // converter driver.
2116 CvtOS << " case " << Name << ":\n";
2117 if (Op.Class->IsOptional) {
2118 // If optional operand is not present in actual instruction then we
2119 // should call its DefaultMethod before RenderMethod
2120 assert(HasOptionalOperands);
2121 CvtOS << " if (OptionalOperandsMask[*(p + 1) - 1]) {\n"
2122 << " " << Op.Class->DefaultMethod << "()"
2123 << "->" << Op.Class->RenderMethod << "(Inst, "
2124 << OpInfo.MINumOperands << ");\n"
2125 << " } else {\n"
2126 << " static_cast<" << TargetOperandClass
2127 << " &>(*Operands[OpIdx])." << Op.Class->RenderMethod
2128 << "(Inst, " << OpInfo.MINumOperands << ");\n"
2129 << " }\n";
2130 } else {
2131 CvtOS << " static_cast<" << TargetOperandClass
2132 << " &>(*Operands[OpIdx])." << Op.Class->RenderMethod
2133 << "(Inst, " << OpInfo.MINumOperands << ");\n";
2134 }
2135 CvtOS << " break;\n";
2136
2137 // Add a handler for the operand number lookup.
2138 OpOS << " case " << Name << ":\n"
2139 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n";
2140
2141 if (Op.Class->isRegisterClass())
2142 OpOS << " Operands[*(p + 1)]->setConstraint(\"r\");\n";
2143 else
2144 OpOS << " Operands[*(p + 1)]->setConstraint(\"m\");\n";
2145 OpOS << " NumMCOperands += " << OpInfo.MINumOperands << ";\n"
2146 << " break;\n";
2147 break;
2148 }
2149 case MatchableInfo::ResOperand::TiedOperand: {
2150 // If this operand is tied to a previous one, just copy the MCInst
2151 // operand from the earlier one.We can only tie single MCOperand values.
2152 assert(OpInfo.MINumOperands == 1 && "Not a singular MCOperand");
2153 uint8_t TiedOp = OpInfo.TiedOperands.ResOpnd;
2154 uint8_t SrcOp1 =
2155 OpInfo.TiedOperands.SrcOpnd1Idx + HasMnemonicFirst;
2156 uint8_t SrcOp2 =
2157 OpInfo.TiedOperands.SrcOpnd2Idx + HasMnemonicFirst;
2158 assert((i > TiedOp || TiedOp == (uint8_t)-1) &&
2159 "Tied operand precedes its target!");
2160 auto TiedTupleName = std::string("Tie") + utostr(TiedOp) + '_' +
2161 utostr(SrcOp1) + '_' + utostr(SrcOp2);
2162 Signature += "__" + TiedTupleName;
2163 ConversionRow.push_back(CVT_Tied);
2164 ConversionRow.push_back(TiedOp);
2165 ConversionRow.push_back(SrcOp1);
2166 ConversionRow.push_back(SrcOp2);
2167
2168 // Also create an 'enum' for this combination of tied operands.
2169 auto Key = std::make_tuple(TiedOp, SrcOp1, SrcOp2);
2170 TiedOperandsEnumMap.emplace(Key, TiedTupleName);
2171 break;
2172 }
2173 case MatchableInfo::ResOperand::ImmOperand: {
2174 int64_t Val = OpInfo.ImmVal;
2175 std::string Ty = "imm_" + itostr(Val);
2176 Ty = getEnumNameForToken(Ty);
2177 Signature += "__" + Ty;
2178
2179 std::string Name = "CVT_" + Ty;
2180 bool IsNewConverter = false;
2181 unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
2182 IsNewConverter);
2183 // Add the operand entry to the instruction kind conversion row.
2184 ConversionRow.push_back(ID);
2185 ConversionRow.push_back(0);
2186
2187 if (!IsNewConverter)
2188 break;
2189
2190 CvtOS << " case " << Name << ":\n"
2191 << " Inst.addOperand(MCOperand::createImm(" << Val << "));\n"
2192 << " break;\n";
2193
2194 OpOS << " case " << Name << ":\n"
2195 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
2196 << " Operands[*(p + 1)]->setConstraint(\"\");\n"
2197 << " ++NumMCOperands;\n"
2198 << " break;\n";
2199 break;
2200 }
2201 case MatchableInfo::ResOperand::RegOperand: {
2202 std::string Reg, Name;
2203 if (!OpInfo.Register) {
2204 Name = "reg0";
2205 Reg = "0";
2206 } else {
2207 Reg = getQualifiedName(OpInfo.Register);
2208 Name = "reg" + OpInfo.Register->getName().str();
2209 }
2210 Signature += "__" + Name;
2211 Name = "CVT_" + Name;
2212 bool IsNewConverter = false;
2213 unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
2214 IsNewConverter);
2215 // Add the operand entry to the instruction kind conversion row.
2216 ConversionRow.push_back(ID);
2217 ConversionRow.push_back(0);
2218
2219 if (!IsNewConverter)
2220 break;
2221 CvtOS << " case " << Name << ":\n"
2222 << " Inst.addOperand(MCOperand::createReg(" << Reg << "));\n"
2223 << " break;\n";
2224
2225 OpOS << " case " << Name << ":\n"
2226 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
2227 << " Operands[*(p + 1)]->setConstraint(\"m\");\n"
2228 << " ++NumMCOperands;\n"
2229 << " break;\n";
2230 }
2231 }
2232 }
2233
2234 // If there were no operands, add to the signature to that effect
2235 if (Signature == "Convert")
2236 Signature += "_NoOperands";
2237
2238 II->ConversionFnKind = Signature;
2239
2240 // Save the signature. If we already have it, don't add a new row
2241 // to the table.
2242 if (!InstructionConversionKinds.insert(CachedHashString(Signature)))
2243 continue;
2244
2245 // Add the row to the table.
2246 ConversionTable.push_back(std::move(ConversionRow));
2247 }
2248
2249 // Finish up the converter driver function.
2250 CvtOS << " }\n }\n}\n\n";
2251
2252 // Finish up the operand number lookup function.
2253 OpOS << " }\n }\n}\n\n";
2254
2255 // Output a static table for tied operands.
2256 if (TiedOperandsEnumMap.size()) {
2257 // The number of tied operand combinations will be small in practice,
2258 // but just add the assert to be sure.
2259 assert(TiedOperandsEnumMap.size() <= 254 &&
2260 "Too many tied-operand combinations to reference with "
2261 "an 8bit offset from the conversion table, where index "
2262 "'255' is reserved as operand not to be copied.");
2263
2264 OS << "enum {\n";
2265 for (auto &KV : TiedOperandsEnumMap) {
2266 OS << " " << KV.second << ",\n";
2267 }
2268 OS << "};\n\n";
2269
2270 OS << "static const uint8_t TiedAsmOperandTable[][3] = {\n";
2271 for (auto &KV : TiedOperandsEnumMap) {
2272 OS << " /* " << KV.second << " */ { "
2273 << utostr(std::get<0>(KV.first)) << ", "
2274 << utostr(std::get<1>(KV.first)) << ", "
2275 << utostr(std::get<2>(KV.first)) << " },\n";
2276 }
2277 OS << "};\n\n";
2278 } else
2279 OS << "static const uint8_t TiedAsmOperandTable[][3] = "
2280 "{ /* empty */ {0, 0, 0} };\n\n";
2281
2282 OS << "namespace {\n";
2283
2284 // Output the operand conversion kind enum.
2285 OS << "enum OperatorConversionKind {\n";
2286 for (const auto &Converter : OperandConversionKinds)
2287 OS << " " << Converter << ",\n";
2288 OS << " CVT_NUM_CONVERTERS\n";
2289 OS << "};\n\n";
2290
2291 // Output the instruction conversion kind enum.
2292 OS << "enum InstructionConversionKind {\n";
2293 for (const auto &Signature : InstructionConversionKinds)
2294 OS << " " << Signature << ",\n";
2295 OS << " CVT_NUM_SIGNATURES\n";
2296 OS << "};\n\n";
2297
2298 OS << "} // end anonymous namespace\n\n";
2299
2300 // Output the conversion table.
2301 OS << "static const uint8_t ConversionTable[CVT_NUM_SIGNATURES]["
2302 << MaxRowLength << "] = {\n";
2303
2304 for (unsigned Row = 0, ERow = ConversionTable.size(); Row != ERow; ++Row) {
2305 assert(ConversionTable[Row].size() % 2 == 0 && "bad conversion row!");
2306 OS << " // " << InstructionConversionKinds[Row] << "\n";
2307 OS << " { ";
2308 for (unsigned i = 0, e = ConversionTable[Row].size(); i != e; i += 2) {
2309 OS << OperandConversionKinds[ConversionTable[Row][i]] << ", ";
2310 if (OperandConversionKinds[ConversionTable[Row][i]] !=
2311 CachedHashString("CVT_Tied")) {
2312 OS << (unsigned)(ConversionTable[Row][i + 1]) << ", ";
2313 continue;
2314 }
2315
2316 // For a tied operand, emit a reference to the TiedAsmOperandTable
2317 // that contains the operand to copy, and the parsed operands to
2318 // check for their tied constraints.
2319 auto Key = std::make_tuple((uint8_t)ConversionTable[Row][i + 1],
2320 (uint8_t)ConversionTable[Row][i + 2],
2321 (uint8_t)ConversionTable[Row][i + 3]);
2322 auto TiedOpndEnum = TiedOperandsEnumMap.find(Key);
2323 assert(TiedOpndEnum != TiedOperandsEnumMap.end() &&
2324 "No record for tied operand pair");
2325 OS << TiedOpndEnum->second << ", ";
2326 i += 2;
2327 }
2328 OS << "CVT_Done },\n";
2329 }
2330
2331 OS << "};\n\n";
2332
2333 // Spit out the conversion driver function.
2334 OS << CvtOS.str();
2335
2336 // Spit out the operand number lookup function.
2337 OS << OpOS.str();
2338
2339 return ConversionTable.size();
2340 }
2341
2342 /// emitMatchClassEnumeration - Emit the enumeration for match class kinds.
emitMatchClassEnumeration(CodeGenTarget & Target,std::forward_list<ClassInfo> & Infos,raw_ostream & OS)2343 static void emitMatchClassEnumeration(CodeGenTarget &Target,
2344 std::forward_list<ClassInfo> &Infos,
2345 raw_ostream &OS) {
2346 OS << "namespace {\n\n";
2347
2348 OS << "/// MatchClassKind - The kinds of classes which participate in\n"
2349 << "/// instruction matching.\n";
2350 OS << "enum MatchClassKind {\n";
2351 OS << " InvalidMatchClass = 0,\n";
2352 OS << " OptionalMatchClass = 1,\n";
2353 ClassInfo::ClassInfoKind LastKind = ClassInfo::Token;
2354 StringRef LastName = "OptionalMatchClass";
2355 for (const auto &CI : Infos) {
2356 if (LastKind == ClassInfo::Token && CI.Kind != ClassInfo::Token) {
2357 OS << " MCK_LAST_TOKEN = " << LastName << ",\n";
2358 } else if (LastKind < ClassInfo::UserClass0 &&
2359 CI.Kind >= ClassInfo::UserClass0) {
2360 OS << " MCK_LAST_REGISTER = " << LastName << ",\n";
2361 }
2362 LastKind = (ClassInfo::ClassInfoKind)CI.Kind;
2363 LastName = CI.Name;
2364
2365 OS << " " << CI.Name << ", // ";
2366 if (CI.Kind == ClassInfo::Token) {
2367 OS << "'" << CI.ValueName << "'\n";
2368 } else if (CI.isRegisterClass()) {
2369 if (!CI.ValueName.empty())
2370 OS << "register class '" << CI.ValueName << "'\n";
2371 else
2372 OS << "derived register class\n";
2373 } else {
2374 OS << "user defined class '" << CI.ValueName << "'\n";
2375 }
2376 }
2377 OS << " NumMatchClassKinds\n";
2378 OS << "};\n\n";
2379
2380 OS << "} // end anonymous namespace\n\n";
2381 }
2382
2383 /// emitMatchClassDiagStrings - Emit a function to get the diagnostic text to be
2384 /// used when an assembly operand does not match the expected operand class.
emitOperandMatchErrorDiagStrings(AsmMatcherInfo & Info,raw_ostream & OS)2385 static void emitOperandMatchErrorDiagStrings(AsmMatcherInfo &Info, raw_ostream &OS) {
2386 // If the target does not use DiagnosticString for any operands, don't emit
2387 // an unused function.
2388 if (llvm::all_of(Info.Classes, [](const ClassInfo &CI) {
2389 return CI.DiagnosticString.empty();
2390 }))
2391 return;
2392
2393 OS << "static const char *getMatchKindDiag(" << Info.Target.getName()
2394 << "AsmParser::" << Info.Target.getName()
2395 << "MatchResultTy MatchResult) {\n";
2396 OS << " switch (MatchResult) {\n";
2397
2398 for (const auto &CI: Info.Classes) {
2399 if (!CI.DiagnosticString.empty()) {
2400 assert(!CI.DiagnosticType.empty() &&
2401 "DiagnosticString set without DiagnosticType");
2402 OS << " case " << Info.Target.getName()
2403 << "AsmParser::Match_" << CI.DiagnosticType << ":\n";
2404 OS << " return \"" << CI.DiagnosticString << "\";\n";
2405 }
2406 }
2407
2408 OS << " default:\n";
2409 OS << " return nullptr;\n";
2410
2411 OS << " }\n";
2412 OS << "}\n\n";
2413 }
2414
emitRegisterMatchErrorFunc(AsmMatcherInfo & Info,raw_ostream & OS)2415 static void emitRegisterMatchErrorFunc(AsmMatcherInfo &Info, raw_ostream &OS) {
2416 OS << "static unsigned getDiagKindFromRegisterClass(MatchClassKind "
2417 "RegisterClass) {\n";
2418 if (none_of(Info.Classes, [](const ClassInfo &CI) {
2419 return CI.isRegisterClass() && !CI.DiagnosticType.empty();
2420 })) {
2421 OS << " return MCTargetAsmParser::Match_InvalidOperand;\n";
2422 } else {
2423 OS << " switch (RegisterClass) {\n";
2424 for (const auto &CI: Info.Classes) {
2425 if (CI.isRegisterClass() && !CI.DiagnosticType.empty()) {
2426 OS << " case " << CI.Name << ":\n";
2427 OS << " return " << Info.Target.getName() << "AsmParser::Match_"
2428 << CI.DiagnosticType << ";\n";
2429 }
2430 }
2431
2432 OS << " default:\n";
2433 OS << " return MCTargetAsmParser::Match_InvalidOperand;\n";
2434
2435 OS << " }\n";
2436 }
2437 OS << "}\n\n";
2438 }
2439
2440 /// emitValidateOperandClass - Emit the function to validate an operand class.
emitValidateOperandClass(AsmMatcherInfo & Info,raw_ostream & OS)2441 static void emitValidateOperandClass(AsmMatcherInfo &Info,
2442 raw_ostream &OS) {
2443 OS << "static unsigned validateOperandClass(MCParsedAsmOperand &GOp, "
2444 << "MatchClassKind Kind) {\n";
2445 OS << " " << Info.Target.getName() << "Operand &Operand = ("
2446 << Info.Target.getName() << "Operand &)GOp;\n";
2447
2448 // The InvalidMatchClass is not to match any operand.
2449 OS << " if (Kind == InvalidMatchClass)\n";
2450 OS << " return MCTargetAsmParser::Match_InvalidOperand;\n\n";
2451
2452 // Check for Token operands first.
2453 // FIXME: Use a more specific diagnostic type.
2454 OS << " if (Operand.isToken() && Kind <= MCK_LAST_TOKEN)\n";
2455 OS << " return isSubclass(matchTokenString(Operand.getToken()), Kind) ?\n"
2456 << " MCTargetAsmParser::Match_Success :\n"
2457 << " MCTargetAsmParser::Match_InvalidOperand;\n\n";
2458
2459 // Check the user classes. We don't care what order since we're only
2460 // actually matching against one of them.
2461 OS << " switch (Kind) {\n"
2462 " default: break;\n";
2463 for (const auto &CI : Info.Classes) {
2464 if (!CI.isUserClass())
2465 continue;
2466
2467 OS << " // '" << CI.ClassName << "' class\n";
2468 OS << " case " << CI.Name << ": {\n";
2469 OS << " DiagnosticPredicate DP(Operand." << CI.PredicateMethod
2470 << "());\n";
2471 OS << " if (DP.isMatch())\n";
2472 OS << " return MCTargetAsmParser::Match_Success;\n";
2473 if (!CI.DiagnosticType.empty()) {
2474 OS << " if (DP.isNearMatch())\n";
2475 OS << " return " << Info.Target.getName() << "AsmParser::Match_"
2476 << CI.DiagnosticType << ";\n";
2477 OS << " break;\n";
2478 }
2479 else
2480 OS << " break;\n";
2481 OS << " }\n";
2482 }
2483 OS << " } // end switch (Kind)\n\n";
2484
2485 // Check for register operands, including sub-classes.
2486 OS << " if (Operand.isReg()) {\n";
2487 OS << " MatchClassKind OpKind;\n";
2488 OS << " switch (Operand.getReg()) {\n";
2489 OS << " default: OpKind = InvalidMatchClass; break;\n";
2490 for (const auto &RC : Info.RegisterClasses)
2491 OS << " case " << RC.first->getValueAsString("Namespace") << "::"
2492 << RC.first->getName() << ": OpKind = " << RC.second->Name
2493 << "; break;\n";
2494 OS << " }\n";
2495 OS << " return isSubclass(OpKind, Kind) ? "
2496 << "(unsigned)MCTargetAsmParser::Match_Success :\n "
2497 << " getDiagKindFromRegisterClass(Kind);\n }\n\n";
2498
2499 // Expected operand is a register, but actual is not.
2500 OS << " if (Kind > MCK_LAST_TOKEN && Kind <= MCK_LAST_REGISTER)\n";
2501 OS << " return getDiagKindFromRegisterClass(Kind);\n\n";
2502
2503 // Generic fallthrough match failure case for operands that don't have
2504 // specialized diagnostic types.
2505 OS << " return MCTargetAsmParser::Match_InvalidOperand;\n";
2506 OS << "}\n\n";
2507 }
2508
2509 /// emitIsSubclass - Emit the subclass predicate function.
emitIsSubclass(CodeGenTarget & Target,std::forward_list<ClassInfo> & Infos,raw_ostream & OS)2510 static void emitIsSubclass(CodeGenTarget &Target,
2511 std::forward_list<ClassInfo> &Infos,
2512 raw_ostream &OS) {
2513 OS << "/// isSubclass - Compute whether \\p A is a subclass of \\p B.\n";
2514 OS << "static bool isSubclass(MatchClassKind A, MatchClassKind B) {\n";
2515 OS << " if (A == B)\n";
2516 OS << " return true;\n\n";
2517
2518 bool EmittedSwitch = false;
2519 for (const auto &A : Infos) {
2520 std::vector<StringRef> SuperClasses;
2521 if (A.IsOptional)
2522 SuperClasses.push_back("OptionalMatchClass");
2523 for (const auto &B : Infos) {
2524 if (&A != &B && A.isSubsetOf(B))
2525 SuperClasses.push_back(B.Name);
2526 }
2527
2528 if (SuperClasses.empty())
2529 continue;
2530
2531 // If this is the first SuperClass, emit the switch header.
2532 if (!EmittedSwitch) {
2533 OS << " switch (A) {\n";
2534 OS << " default:\n";
2535 OS << " return false;\n";
2536 EmittedSwitch = true;
2537 }
2538
2539 OS << "\n case " << A.Name << ":\n";
2540
2541 if (SuperClasses.size() == 1) {
2542 OS << " return B == " << SuperClasses.back() << ";\n";
2543 continue;
2544 }
2545
2546 if (!SuperClasses.empty()) {
2547 OS << " switch (B) {\n";
2548 OS << " default: return false;\n";
2549 for (StringRef SC : SuperClasses)
2550 OS << " case " << SC << ": return true;\n";
2551 OS << " }\n";
2552 } else {
2553 // No case statement to emit
2554 OS << " return false;\n";
2555 }
2556 }
2557
2558 // If there were case statements emitted into the string stream write the
2559 // default.
2560 if (EmittedSwitch)
2561 OS << " }\n";
2562 else
2563 OS << " return false;\n";
2564
2565 OS << "}\n\n";
2566 }
2567
2568 /// emitMatchTokenString - Emit the function to match a token string to the
2569 /// appropriate match class value.
emitMatchTokenString(CodeGenTarget & Target,std::forward_list<ClassInfo> & Infos,raw_ostream & OS)2570 static void emitMatchTokenString(CodeGenTarget &Target,
2571 std::forward_list<ClassInfo> &Infos,
2572 raw_ostream &OS) {
2573 // Construct the match list.
2574 std::vector<StringMatcher::StringPair> Matches;
2575 for (const auto &CI : Infos) {
2576 if (CI.Kind == ClassInfo::Token)
2577 Matches.emplace_back(CI.ValueName, "return " + CI.Name + ";");
2578 }
2579
2580 OS << "static MatchClassKind matchTokenString(StringRef Name) {\n";
2581
2582 StringMatcher("Name", Matches, OS).Emit();
2583
2584 OS << " return InvalidMatchClass;\n";
2585 OS << "}\n\n";
2586 }
2587
2588 /// emitMatchRegisterName - Emit the function to match a string to the target
2589 /// specific register enum.
emitMatchRegisterName(CodeGenTarget & Target,Record * AsmParser,raw_ostream & OS)2590 static void emitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser,
2591 raw_ostream &OS) {
2592 // Construct the match list.
2593 std::vector<StringMatcher::StringPair> Matches;
2594 const auto &Regs = Target.getRegBank().getRegisters();
2595 for (const CodeGenRegister &Reg : Regs) {
2596 if (Reg.TheDef->getValueAsString("AsmName").empty())
2597 continue;
2598
2599 Matches.emplace_back(std::string(Reg.TheDef->getValueAsString("AsmName")),
2600 "return " + utostr(Reg.EnumValue) + ";");
2601 }
2602
2603 OS << "static unsigned MatchRegisterName(StringRef Name) {\n";
2604
2605 bool IgnoreDuplicates =
2606 AsmParser->getValueAsBit("AllowDuplicateRegisterNames");
2607 StringMatcher("Name", Matches, OS).Emit(0, IgnoreDuplicates);
2608
2609 OS << " return 0;\n";
2610 OS << "}\n\n";
2611 }
2612
2613 /// Emit the function to match a string to the target
2614 /// specific register enum.
emitMatchRegisterAltName(CodeGenTarget & Target,Record * AsmParser,raw_ostream & OS)2615 static void emitMatchRegisterAltName(CodeGenTarget &Target, Record *AsmParser,
2616 raw_ostream &OS) {
2617 // Construct the match list.
2618 std::vector<StringMatcher::StringPair> Matches;
2619 const auto &Regs = Target.getRegBank().getRegisters();
2620 for (const CodeGenRegister &Reg : Regs) {
2621
2622 auto AltNames = Reg.TheDef->getValueAsListOfStrings("AltNames");
2623
2624 for (auto AltName : AltNames) {
2625 AltName = StringRef(AltName).trim();
2626
2627 // don't handle empty alternative names
2628 if (AltName.empty())
2629 continue;
2630
2631 Matches.emplace_back(std::string(AltName),
2632 "return " + utostr(Reg.EnumValue) + ";");
2633 }
2634 }
2635
2636 OS << "static unsigned MatchRegisterAltName(StringRef Name) {\n";
2637
2638 bool IgnoreDuplicates =
2639 AsmParser->getValueAsBit("AllowDuplicateRegisterNames");
2640 StringMatcher("Name", Matches, OS).Emit(0, IgnoreDuplicates);
2641
2642 OS << " return 0;\n";
2643 OS << "}\n\n";
2644 }
2645
2646 /// emitOperandDiagnosticTypes - Emit the operand matching diagnostic types.
emitOperandDiagnosticTypes(AsmMatcherInfo & Info,raw_ostream & OS)2647 static void emitOperandDiagnosticTypes(AsmMatcherInfo &Info, raw_ostream &OS) {
2648 // Get the set of diagnostic types from all of the operand classes.
2649 std::set<StringRef> Types;
2650 for (const auto &OpClassEntry : Info.AsmOperandClasses) {
2651 if (!OpClassEntry.second->DiagnosticType.empty())
2652 Types.insert(OpClassEntry.second->DiagnosticType);
2653 }
2654 for (const auto &OpClassEntry : Info.RegisterClassClasses) {
2655 if (!OpClassEntry.second->DiagnosticType.empty())
2656 Types.insert(OpClassEntry.second->DiagnosticType);
2657 }
2658
2659 if (Types.empty()) return;
2660
2661 // Now emit the enum entries.
2662 for (StringRef Type : Types)
2663 OS << " Match_" << Type << ",\n";
2664 OS << " END_OPERAND_DIAGNOSTIC_TYPES\n";
2665 }
2666
2667 /// emitGetSubtargetFeatureName - Emit the helper function to get the
2668 /// user-level name for a subtarget feature.
emitGetSubtargetFeatureName(AsmMatcherInfo & Info,raw_ostream & OS)2669 static void emitGetSubtargetFeatureName(AsmMatcherInfo &Info, raw_ostream &OS) {
2670 OS << "// User-level names for subtarget features that participate in\n"
2671 << "// instruction matching.\n"
2672 << "static const char *getSubtargetFeatureName(uint64_t Val) {\n";
2673 if (!Info.SubtargetFeatures.empty()) {
2674 OS << " switch(Val) {\n";
2675 for (const auto &SF : Info.SubtargetFeatures) {
2676 const SubtargetFeatureInfo &SFI = SF.second;
2677 // FIXME: Totally just a placeholder name to get the algorithm working.
2678 OS << " case " << SFI.getEnumBitName() << ": return \""
2679 << SFI.TheDef->getValueAsString("PredicateName") << "\";\n";
2680 }
2681 OS << " default: return \"(unknown)\";\n";
2682 OS << " }\n";
2683 } else {
2684 // Nothing to emit, so skip the switch
2685 OS << " return \"(unknown)\";\n";
2686 }
2687 OS << "}\n\n";
2688 }
2689
GetAliasRequiredFeatures(Record * R,const AsmMatcherInfo & Info)2690 static std::string GetAliasRequiredFeatures(Record *R,
2691 const AsmMatcherInfo &Info) {
2692 std::vector<Record*> ReqFeatures = R->getValueAsListOfDefs("Predicates");
2693 std::string Result;
2694
2695 if (ReqFeatures.empty())
2696 return Result;
2697
2698 for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) {
2699 const SubtargetFeatureInfo *F = Info.getSubtargetFeature(ReqFeatures[i]);
2700
2701 if (!F)
2702 PrintFatalError(R->getLoc(), "Predicate '" + ReqFeatures[i]->getName() +
2703 "' is not marked as an AssemblerPredicate!");
2704
2705 if (i)
2706 Result += " && ";
2707
2708 Result += "Features.test(" + F->getEnumBitName() + ')';
2709 }
2710
2711 return Result;
2712 }
2713
emitMnemonicAliasVariant(raw_ostream & OS,const AsmMatcherInfo & Info,std::vector<Record * > & Aliases,unsigned Indent=0,StringRef AsmParserVariantName=StringRef ())2714 static void emitMnemonicAliasVariant(raw_ostream &OS,const AsmMatcherInfo &Info,
2715 std::vector<Record*> &Aliases,
2716 unsigned Indent = 0,
2717 StringRef AsmParserVariantName = StringRef()){
2718 // Keep track of all the aliases from a mnemonic. Use an std::map so that the
2719 // iteration order of the map is stable.
2720 std::map<std::string, std::vector<Record*> > AliasesFromMnemonic;
2721
2722 for (Record *R : Aliases) {
2723 // FIXME: Allow AssemblerVariantName to be a comma separated list.
2724 StringRef AsmVariantName = R->getValueAsString("AsmVariantName");
2725 if (AsmVariantName != AsmParserVariantName)
2726 continue;
2727 AliasesFromMnemonic[R->getValueAsString("FromMnemonic").lower()]
2728 .push_back(R);
2729 }
2730 if (AliasesFromMnemonic.empty())
2731 return;
2732
2733 // Process each alias a "from" mnemonic at a time, building the code executed
2734 // by the string remapper.
2735 std::vector<StringMatcher::StringPair> Cases;
2736 for (const auto &AliasEntry : AliasesFromMnemonic) {
2737 const std::vector<Record*> &ToVec = AliasEntry.second;
2738
2739 // Loop through each alias and emit code that handles each case. If there
2740 // are two instructions without predicates, emit an error. If there is one,
2741 // emit it last.
2742 std::string MatchCode;
2743 int AliasWithNoPredicate = -1;
2744
2745 for (unsigned i = 0, e = ToVec.size(); i != e; ++i) {
2746 Record *R = ToVec[i];
2747 std::string FeatureMask = GetAliasRequiredFeatures(R, Info);
2748
2749 // If this unconditionally matches, remember it for later and diagnose
2750 // duplicates.
2751 if (FeatureMask.empty()) {
2752 if (AliasWithNoPredicate != -1) {
2753 // We can't have two aliases from the same mnemonic with no predicate.
2754 PrintError(ToVec[AliasWithNoPredicate]->getLoc(),
2755 "two MnemonicAliases with the same 'from' mnemonic!");
2756 PrintFatalError(R->getLoc(), "this is the other MnemonicAlias.");
2757 }
2758
2759 AliasWithNoPredicate = i;
2760 continue;
2761 }
2762 if (R->getValueAsString("ToMnemonic") == AliasEntry.first)
2763 PrintFatalError(R->getLoc(), "MnemonicAlias to the same string");
2764
2765 if (!MatchCode.empty())
2766 MatchCode += "else ";
2767 MatchCode += "if (" + FeatureMask + ")\n";
2768 MatchCode += " Mnemonic = \"";
2769 MatchCode += R->getValueAsString("ToMnemonic").lower();
2770 MatchCode += "\";\n";
2771 }
2772
2773 if (AliasWithNoPredicate != -1) {
2774 Record *R = ToVec[AliasWithNoPredicate];
2775 if (!MatchCode.empty())
2776 MatchCode += "else\n ";
2777 MatchCode += "Mnemonic = \"";
2778 MatchCode += R->getValueAsString("ToMnemonic").lower();
2779 MatchCode += "\";\n";
2780 }
2781
2782 MatchCode += "return;";
2783
2784 Cases.push_back(std::make_pair(AliasEntry.first, MatchCode));
2785 }
2786 StringMatcher("Mnemonic", Cases, OS).Emit(Indent);
2787 }
2788
2789 /// emitMnemonicAliases - If the target has any MnemonicAlias<> definitions,
2790 /// emit a function for them and return true, otherwise return false.
emitMnemonicAliases(raw_ostream & OS,const AsmMatcherInfo & Info,CodeGenTarget & Target)2791 static bool emitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info,
2792 CodeGenTarget &Target) {
2793 // Ignore aliases when match-prefix is set.
2794 if (!MatchPrefix.empty())
2795 return false;
2796
2797 std::vector<Record*> Aliases =
2798 Info.getRecords().getAllDerivedDefinitions("MnemonicAlias");
2799 if (Aliases.empty()) return false;
2800
2801 OS << "static void applyMnemonicAliases(StringRef &Mnemonic, "
2802 "const FeatureBitset &Features, unsigned VariantID) {\n";
2803 OS << " switch (VariantID) {\n";
2804 unsigned VariantCount = Target.getAsmParserVariantCount();
2805 for (unsigned VC = 0; VC != VariantCount; ++VC) {
2806 Record *AsmVariant = Target.getAsmParserVariant(VC);
2807 int AsmParserVariantNo = AsmVariant->getValueAsInt("Variant");
2808 StringRef AsmParserVariantName = AsmVariant->getValueAsString("Name");
2809 OS << " case " << AsmParserVariantNo << ":\n";
2810 emitMnemonicAliasVariant(OS, Info, Aliases, /*Indent=*/2,
2811 AsmParserVariantName);
2812 OS << " break;\n";
2813 }
2814 OS << " }\n";
2815
2816 // Emit aliases that apply to all variants.
2817 emitMnemonicAliasVariant(OS, Info, Aliases);
2818
2819 OS << "}\n\n";
2820
2821 return true;
2822 }
2823
emitCustomOperandParsing(raw_ostream & OS,CodeGenTarget & Target,const AsmMatcherInfo & Info,StringRef ClassName,StringToOffsetTable & StringTable,unsigned MaxMnemonicIndex,unsigned MaxFeaturesIndex,bool HasMnemonicFirst)2824 static void emitCustomOperandParsing(raw_ostream &OS, CodeGenTarget &Target,
2825 const AsmMatcherInfo &Info, StringRef ClassName,
2826 StringToOffsetTable &StringTable,
2827 unsigned MaxMnemonicIndex,
2828 unsigned MaxFeaturesIndex,
2829 bool HasMnemonicFirst) {
2830 unsigned MaxMask = 0;
2831 for (const OperandMatchEntry &OMI : Info.OperandMatchInfo) {
2832 MaxMask |= OMI.OperandMask;
2833 }
2834
2835 // Emit the static custom operand parsing table;
2836 OS << "namespace {\n";
2837 OS << " struct OperandMatchEntry {\n";
2838 OS << " " << getMinimalTypeForRange(MaxMnemonicIndex)
2839 << " Mnemonic;\n";
2840 OS << " " << getMinimalTypeForRange(MaxMask)
2841 << " OperandMask;\n";
2842 OS << " " << getMinimalTypeForRange(std::distance(
2843 Info.Classes.begin(), Info.Classes.end())) << " Class;\n";
2844 OS << " " << getMinimalTypeForRange(MaxFeaturesIndex)
2845 << " RequiredFeaturesIdx;\n\n";
2846 OS << " StringRef getMnemonic() const {\n";
2847 OS << " return StringRef(MnemonicTable + Mnemonic + 1,\n";
2848 OS << " MnemonicTable[Mnemonic]);\n";
2849 OS << " }\n";
2850 OS << " };\n\n";
2851
2852 OS << " // Predicate for searching for an opcode.\n";
2853 OS << " struct LessOpcodeOperand {\n";
2854 OS << " bool operator()(const OperandMatchEntry &LHS, StringRef RHS) {\n";
2855 OS << " return LHS.getMnemonic() < RHS;\n";
2856 OS << " }\n";
2857 OS << " bool operator()(StringRef LHS, const OperandMatchEntry &RHS) {\n";
2858 OS << " return LHS < RHS.getMnemonic();\n";
2859 OS << " }\n";
2860 OS << " bool operator()(const OperandMatchEntry &LHS,";
2861 OS << " const OperandMatchEntry &RHS) {\n";
2862 OS << " return LHS.getMnemonic() < RHS.getMnemonic();\n";
2863 OS << " }\n";
2864 OS << " };\n";
2865
2866 OS << "} // end anonymous namespace\n\n";
2867
2868 OS << "static const OperandMatchEntry OperandMatchTable["
2869 << Info.OperandMatchInfo.size() << "] = {\n";
2870
2871 OS << " /* Operand List Mnemonic, Mask, Operand Class, Features */\n";
2872 for (const OperandMatchEntry &OMI : Info.OperandMatchInfo) {
2873 const MatchableInfo &II = *OMI.MI;
2874
2875 OS << " { ";
2876
2877 // Store a pascal-style length byte in the mnemonic.
2878 std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.lower();
2879 OS << StringTable.GetOrAddStringOffset(LenMnemonic, false)
2880 << " /* " << II.Mnemonic << " */, ";
2881
2882 OS << OMI.OperandMask;
2883 OS << " /* ";
2884 ListSeparator LS;
2885 for (int i = 0, e = 31; i !=e; ++i)
2886 if (OMI.OperandMask & (1 << i))
2887 OS << LS << i;
2888 OS << " */, ";
2889
2890 OS << OMI.CI->Name;
2891
2892 // Write the required features mask.
2893 OS << ", AMFBS";
2894 if (II.RequiredFeatures.empty())
2895 OS << "_None";
2896 else
2897 for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i)
2898 OS << '_' << II.RequiredFeatures[i]->TheDef->getName();
2899
2900 OS << " },\n";
2901 }
2902 OS << "};\n\n";
2903
2904 // Emit the operand class switch to call the correct custom parser for
2905 // the found operand class.
2906 OS << "OperandMatchResultTy " << Target.getName() << ClassName << "::\n"
2907 << "tryCustomParseOperand(OperandVector"
2908 << " &Operands,\n unsigned MCK) {\n\n"
2909 << " switch(MCK) {\n";
2910
2911 for (const auto &CI : Info.Classes) {
2912 if (CI.ParserMethod.empty())
2913 continue;
2914 OS << " case " << CI.Name << ":\n"
2915 << " return " << CI.ParserMethod << "(Operands);\n";
2916 }
2917
2918 OS << " default:\n";
2919 OS << " return MatchOperand_NoMatch;\n";
2920 OS << " }\n";
2921 OS << " return MatchOperand_NoMatch;\n";
2922 OS << "}\n\n";
2923
2924 // Emit the static custom operand parser. This code is very similar with
2925 // the other matcher. Also use MatchResultTy here just in case we go for
2926 // a better error handling.
2927 OS << "OperandMatchResultTy " << Target.getName() << ClassName << "::\n"
2928 << "MatchOperandParserImpl(OperandVector"
2929 << " &Operands,\n StringRef Mnemonic,\n"
2930 << " bool ParseForAllFeatures) {\n";
2931
2932 // Emit code to get the available features.
2933 OS << " // Get the current feature set.\n";
2934 OS << " const FeatureBitset &AvailableFeatures = getAvailableFeatures();\n\n";
2935
2936 OS << " // Get the next operand index.\n";
2937 OS << " unsigned NextOpNum = Operands.size()"
2938 << (HasMnemonicFirst ? " - 1" : "") << ";\n";
2939
2940 // Emit code to search the table.
2941 OS << " // Search the table.\n";
2942 if (HasMnemonicFirst) {
2943 OS << " auto MnemonicRange =\n";
2944 OS << " std::equal_range(std::begin(OperandMatchTable), "
2945 "std::end(OperandMatchTable),\n";
2946 OS << " Mnemonic, LessOpcodeOperand());\n\n";
2947 } else {
2948 OS << " auto MnemonicRange = std::make_pair(std::begin(OperandMatchTable),"
2949 " std::end(OperandMatchTable));\n";
2950 OS << " if (!Mnemonic.empty())\n";
2951 OS << " MnemonicRange =\n";
2952 OS << " std::equal_range(std::begin(OperandMatchTable), "
2953 "std::end(OperandMatchTable),\n";
2954 OS << " Mnemonic, LessOpcodeOperand());\n\n";
2955 }
2956
2957 OS << " if (MnemonicRange.first == MnemonicRange.second)\n";
2958 OS << " return MatchOperand_NoMatch;\n\n";
2959
2960 OS << " for (const OperandMatchEntry *it = MnemonicRange.first,\n"
2961 << " *ie = MnemonicRange.second; it != ie; ++it) {\n";
2962
2963 OS << " // equal_range guarantees that instruction mnemonic matches.\n";
2964 OS << " assert(Mnemonic == it->getMnemonic());\n\n";
2965
2966 // Emit check that the required features are available.
2967 OS << " // check if the available features match\n";
2968 OS << " const FeatureBitset &RequiredFeatures = "
2969 "FeatureBitsets[it->RequiredFeaturesIdx];\n";
2970 OS << " if (!ParseForAllFeatures && (AvailableFeatures & "
2971 "RequiredFeatures) != RequiredFeatures)\n";
2972 OS << " continue;\n\n";
2973
2974 // Emit check to ensure the operand number matches.
2975 OS << " // check if the operand in question has a custom parser.\n";
2976 OS << " if (!(it->OperandMask & (1 << NextOpNum)))\n";
2977 OS << " continue;\n\n";
2978
2979 // Emit call to the custom parser method
2980 OS << " // call custom parse method to handle the operand\n";
2981 OS << " OperandMatchResultTy Result = ";
2982 OS << "tryCustomParseOperand(Operands, it->Class);\n";
2983 OS << " if (Result != MatchOperand_NoMatch)\n";
2984 OS << " return Result;\n";
2985 OS << " }\n\n";
2986
2987 OS << " // Okay, we had no match.\n";
2988 OS << " return MatchOperand_NoMatch;\n";
2989 OS << "}\n\n";
2990 }
2991
emitAsmTiedOperandConstraints(CodeGenTarget & Target,AsmMatcherInfo & Info,raw_ostream & OS)2992 static void emitAsmTiedOperandConstraints(CodeGenTarget &Target,
2993 AsmMatcherInfo &Info,
2994 raw_ostream &OS) {
2995 std::string AsmParserName =
2996 std::string(Info.AsmParser->getValueAsString("AsmParserClassName"));
2997 OS << "static bool ";
2998 OS << "checkAsmTiedOperandConstraints(const " << Target.getName()
2999 << AsmParserName << "&AsmParser,\n";
3000 OS << " unsigned Kind,\n";
3001 OS << " const OperandVector &Operands,\n";
3002 OS << " uint64_t &ErrorInfo) {\n";
3003 OS << " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n";
3004 OS << " const uint8_t *Converter = ConversionTable[Kind];\n";
3005 OS << " for (const uint8_t *p = Converter; *p; p += 2) {\n";
3006 OS << " switch (*p) {\n";
3007 OS << " case CVT_Tied: {\n";
3008 OS << " unsigned OpIdx = *(p + 1);\n";
3009 OS << " assert(OpIdx < (size_t)(std::end(TiedAsmOperandTable) -\n";
3010 OS << " std::begin(TiedAsmOperandTable)) &&\n";
3011 OS << " \"Tied operand not found\");\n";
3012 OS << " unsigned OpndNum1 = TiedAsmOperandTable[OpIdx][1];\n";
3013 OS << " unsigned OpndNum2 = TiedAsmOperandTable[OpIdx][2];\n";
3014 OS << " if (OpndNum1 != OpndNum2) {\n";
3015 OS << " auto &SrcOp1 = Operands[OpndNum1];\n";
3016 OS << " auto &SrcOp2 = Operands[OpndNum2];\n";
3017 OS << " if (SrcOp1->isReg() && SrcOp2->isReg()) {\n";
3018 OS << " if (!AsmParser.regsEqual(*SrcOp1, *SrcOp2)) {\n";
3019 OS << " ErrorInfo = OpndNum2;\n";
3020 OS << " return false;\n";
3021 OS << " }\n";
3022 OS << " }\n";
3023 OS << " }\n";
3024 OS << " break;\n";
3025 OS << " }\n";
3026 OS << " default:\n";
3027 OS << " break;\n";
3028 OS << " }\n";
3029 OS << " }\n";
3030 OS << " return true;\n";
3031 OS << "}\n\n";
3032 }
3033
emitMnemonicSpellChecker(raw_ostream & OS,CodeGenTarget & Target,unsigned VariantCount)3034 static void emitMnemonicSpellChecker(raw_ostream &OS, CodeGenTarget &Target,
3035 unsigned VariantCount) {
3036 OS << "static std::string " << Target.getName()
3037 << "MnemonicSpellCheck(StringRef S, const FeatureBitset &FBS,"
3038 << " unsigned VariantID) {\n";
3039 if (!VariantCount)
3040 OS << " return \"\";";
3041 else {
3042 OS << " const unsigned MaxEditDist = 2;\n";
3043 OS << " std::vector<StringRef> Candidates;\n";
3044 OS << " StringRef Prev = \"\";\n\n";
3045
3046 OS << " // Find the appropriate table for this asm variant.\n";
3047 OS << " const MatchEntry *Start, *End;\n";
3048 OS << " switch (VariantID) {\n";
3049 OS << " default: llvm_unreachable(\"invalid variant!\");\n";
3050 for (unsigned VC = 0; VC != VariantCount; ++VC) {
3051 Record *AsmVariant = Target.getAsmParserVariant(VC);
3052 int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
3053 OS << " case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC
3054 << "); End = std::end(MatchTable" << VC << "); break;\n";
3055 }
3056 OS << " }\n\n";
3057 OS << " for (auto I = Start; I < End; I++) {\n";
3058 OS << " // Ignore unsupported instructions.\n";
3059 OS << " const FeatureBitset &RequiredFeatures = "
3060 "FeatureBitsets[I->RequiredFeaturesIdx];\n";
3061 OS << " if ((FBS & RequiredFeatures) != RequiredFeatures)\n";
3062 OS << " continue;\n";
3063 OS << "\n";
3064 OS << " StringRef T = I->getMnemonic();\n";
3065 OS << " // Avoid recomputing the edit distance for the same string.\n";
3066 OS << " if (T.equals(Prev))\n";
3067 OS << " continue;\n";
3068 OS << "\n";
3069 OS << " Prev = T;\n";
3070 OS << " unsigned Dist = S.edit_distance(T, false, MaxEditDist);\n";
3071 OS << " if (Dist <= MaxEditDist)\n";
3072 OS << " Candidates.push_back(T);\n";
3073 OS << " }\n";
3074 OS << "\n";
3075 OS << " if (Candidates.empty())\n";
3076 OS << " return \"\";\n";
3077 OS << "\n";
3078 OS << " std::string Res = \", did you mean: \";\n";
3079 OS << " unsigned i = 0;\n";
3080 OS << " for (; i < Candidates.size() - 1; i++)\n";
3081 OS << " Res += Candidates[i].str() + \", \";\n";
3082 OS << " return Res + Candidates[i].str() + \"?\";\n";
3083 }
3084 OS << "}\n";
3085 OS << "\n";
3086 }
3087
emitMnemonicChecker(raw_ostream & OS,CodeGenTarget & Target,unsigned VariantCount,bool HasMnemonicFirst,bool HasMnemonicAliases)3088 static void emitMnemonicChecker(raw_ostream &OS,
3089 CodeGenTarget &Target,
3090 unsigned VariantCount,
3091 bool HasMnemonicFirst,
3092 bool HasMnemonicAliases) {
3093 OS << "static bool " << Target.getName()
3094 << "CheckMnemonic(StringRef Mnemonic,\n";
3095 OS << " "
3096 << "const FeatureBitset &AvailableFeatures,\n";
3097 OS << " "
3098 << "unsigned VariantID) {\n";
3099
3100 if (!VariantCount) {
3101 OS << " return false;\n";
3102 } else {
3103 if (HasMnemonicAliases) {
3104 OS << " // Process all MnemonicAliases to remap the mnemonic.\n";
3105 OS << " applyMnemonicAliases(Mnemonic, AvailableFeatures, VariantID);";
3106 OS << "\n\n";
3107 }
3108 OS << " // Find the appropriate table for this asm variant.\n";
3109 OS << " const MatchEntry *Start, *End;\n";
3110 OS << " switch (VariantID) {\n";
3111 OS << " default: llvm_unreachable(\"invalid variant!\");\n";
3112 for (unsigned VC = 0; VC != VariantCount; ++VC) {
3113 Record *AsmVariant = Target.getAsmParserVariant(VC);
3114 int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
3115 OS << " case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC
3116 << "); End = std::end(MatchTable" << VC << "); break;\n";
3117 }
3118 OS << " }\n\n";
3119
3120 OS << " // Search the table.\n";
3121 if (HasMnemonicFirst) {
3122 OS << " auto MnemonicRange = "
3123 "std::equal_range(Start, End, Mnemonic, LessOpcode());\n\n";
3124 } else {
3125 OS << " auto MnemonicRange = std::make_pair(Start, End);\n";
3126 OS << " unsigned SIndex = Mnemonic.empty() ? 0 : 1;\n";
3127 OS << " if (!Mnemonic.empty())\n";
3128 OS << " MnemonicRange = "
3129 << "std::equal_range(Start, End, Mnemonic.lower(), LessOpcode());\n\n";
3130 }
3131
3132 OS << " if (MnemonicRange.first == MnemonicRange.second)\n";
3133 OS << " return false;\n\n";
3134
3135 OS << " for (const MatchEntry *it = MnemonicRange.first, "
3136 << "*ie = MnemonicRange.second;\n";
3137 OS << " it != ie; ++it) {\n";
3138 OS << " const FeatureBitset &RequiredFeatures =\n";
3139 OS << " FeatureBitsets[it->RequiredFeaturesIdx];\n";
3140 OS << " if ((AvailableFeatures & RequiredFeatures) == ";
3141 OS << "RequiredFeatures)\n";
3142 OS << " return true;\n";
3143 OS << " }\n";
3144 OS << " return false;\n";
3145 }
3146 OS << "}\n";
3147 OS << "\n";
3148 }
3149
3150 // Emit a function mapping match classes to strings, for debugging.
emitMatchClassKindNames(std::forward_list<ClassInfo> & Infos,raw_ostream & OS)3151 static void emitMatchClassKindNames(std::forward_list<ClassInfo> &Infos,
3152 raw_ostream &OS) {
3153 OS << "#ifndef NDEBUG\n";
3154 OS << "const char *getMatchClassName(MatchClassKind Kind) {\n";
3155 OS << " switch (Kind) {\n";
3156
3157 OS << " case InvalidMatchClass: return \"InvalidMatchClass\";\n";
3158 OS << " case OptionalMatchClass: return \"OptionalMatchClass\";\n";
3159 for (const auto &CI : Infos) {
3160 OS << " case " << CI.Name << ": return \"" << CI.Name << "\";\n";
3161 }
3162 OS << " case NumMatchClassKinds: return \"NumMatchClassKinds\";\n";
3163
3164 OS << " }\n";
3165 OS << " llvm_unreachable(\"unhandled MatchClassKind!\");\n";
3166 OS << "}\n\n";
3167 OS << "#endif // NDEBUG\n";
3168 }
3169
3170 static std::string
getNameForFeatureBitset(const std::vector<Record * > & FeatureBitset)3171 getNameForFeatureBitset(const std::vector<Record *> &FeatureBitset) {
3172 std::string Name = "AMFBS";
3173 for (const auto &Feature : FeatureBitset)
3174 Name += ("_" + Feature->getName()).str();
3175 return Name;
3176 }
3177
run(raw_ostream & OS)3178 void AsmMatcherEmitter::run(raw_ostream &OS) {
3179 CodeGenTarget Target(Records);
3180 Record *AsmParser = Target.getAsmParser();
3181 StringRef ClassName = AsmParser->getValueAsString("AsmParserClassName");
3182
3183 // Compute the information on the instructions to match.
3184 AsmMatcherInfo Info(AsmParser, Target, Records);
3185 Info.buildInfo();
3186
3187 // Sort the instruction table using the partial order on classes. We use
3188 // stable_sort to ensure that ambiguous instructions are still
3189 // deterministically ordered.
3190 llvm::stable_sort(
3191 Info.Matchables,
3192 [](const std::unique_ptr<MatchableInfo> &a,
3193 const std::unique_ptr<MatchableInfo> &b) { return *a < *b; });
3194
3195 #ifdef EXPENSIVE_CHECKS
3196 // Verify that the table is sorted and operator < works transitively.
3197 for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E;
3198 ++I) {
3199 for (auto J = I; J != E; ++J) {
3200 assert(!(**J < **I));
3201 }
3202 }
3203 #endif
3204
3205 DEBUG_WITH_TYPE("instruction_info", {
3206 for (const auto &MI : Info.Matchables)
3207 MI->dump();
3208 });
3209
3210 // Check for ambiguous matchables.
3211 DEBUG_WITH_TYPE("ambiguous_instrs", {
3212 unsigned NumAmbiguous = 0;
3213 for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E;
3214 ++I) {
3215 for (auto J = std::next(I); J != E; ++J) {
3216 const MatchableInfo &A = **I;
3217 const MatchableInfo &B = **J;
3218
3219 if (A.couldMatchAmbiguouslyWith(B)) {
3220 errs() << "warning: ambiguous matchables:\n";
3221 A.dump();
3222 errs() << "\nis incomparable with:\n";
3223 B.dump();
3224 errs() << "\n\n";
3225 ++NumAmbiguous;
3226 }
3227 }
3228 }
3229 if (NumAmbiguous)
3230 errs() << "warning: " << NumAmbiguous
3231 << " ambiguous matchables!\n";
3232 });
3233
3234 // Compute the information on the custom operand parsing.
3235 Info.buildOperandMatchInfo();
3236
3237 bool HasMnemonicFirst = AsmParser->getValueAsBit("HasMnemonicFirst");
3238 bool HasOptionalOperands = Info.hasOptionalOperands();
3239 bool ReportMultipleNearMisses =
3240 AsmParser->getValueAsBit("ReportMultipleNearMisses");
3241
3242 // Write the output.
3243
3244 // Information for the class declaration.
3245 OS << "\n#ifdef GET_ASSEMBLER_HEADER\n";
3246 OS << "#undef GET_ASSEMBLER_HEADER\n";
3247 OS << " // This should be included into the middle of the declaration of\n";
3248 OS << " // your subclasses implementation of MCTargetAsmParser.\n";
3249 OS << " FeatureBitset ComputeAvailableFeatures(const FeatureBitset &FB) const;\n";
3250 if (HasOptionalOperands) {
3251 OS << " void convertToMCInst(unsigned Kind, MCInst &Inst, "
3252 << "unsigned Opcode,\n"
3253 << " const OperandVector &Operands,\n"
3254 << " const SmallBitVector &OptionalOperandsMask);\n";
3255 } else {
3256 OS << " void convertToMCInst(unsigned Kind, MCInst &Inst, "
3257 << "unsigned Opcode,\n"
3258 << " const OperandVector &Operands);\n";
3259 }
3260 OS << " void convertToMapAndConstraints(unsigned Kind,\n ";
3261 OS << " const OperandVector &Operands) override;\n";
3262 OS << " unsigned MatchInstructionImpl(const OperandVector &Operands,\n"
3263 << " MCInst &Inst,\n";
3264 if (ReportMultipleNearMisses)
3265 OS << " SmallVectorImpl<NearMissInfo> *NearMisses,\n";
3266 else
3267 OS << " uint64_t &ErrorInfo,\n"
3268 << " FeatureBitset &MissingFeatures,\n";
3269 OS << " bool matchingInlineAsm,\n"
3270 << " unsigned VariantID = 0);\n";
3271 if (!ReportMultipleNearMisses)
3272 OS << " unsigned MatchInstructionImpl(const OperandVector &Operands,\n"
3273 << " MCInst &Inst,\n"
3274 << " uint64_t &ErrorInfo,\n"
3275 << " bool matchingInlineAsm,\n"
3276 << " unsigned VariantID = 0) {\n"
3277 << " FeatureBitset MissingFeatures;\n"
3278 << " return MatchInstructionImpl(Operands, Inst, ErrorInfo, MissingFeatures,\n"
3279 << " matchingInlineAsm, VariantID);\n"
3280 << " }\n\n";
3281
3282
3283 if (!Info.OperandMatchInfo.empty()) {
3284 OS << " OperandMatchResultTy MatchOperandParserImpl(\n";
3285 OS << " OperandVector &Operands,\n";
3286 OS << " StringRef Mnemonic,\n";
3287 OS << " bool ParseForAllFeatures = false);\n";
3288
3289 OS << " OperandMatchResultTy tryCustomParseOperand(\n";
3290 OS << " OperandVector &Operands,\n";
3291 OS << " unsigned MCK);\n\n";
3292 }
3293
3294 OS << "#endif // GET_ASSEMBLER_HEADER_INFO\n\n";
3295
3296 // Emit the operand match diagnostic enum names.
3297 OS << "\n#ifdef GET_OPERAND_DIAGNOSTIC_TYPES\n";
3298 OS << "#undef GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
3299 emitOperandDiagnosticTypes(Info, OS);
3300 OS << "#endif // GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
3301
3302 OS << "\n#ifdef GET_REGISTER_MATCHER\n";
3303 OS << "#undef GET_REGISTER_MATCHER\n\n";
3304
3305 // Emit the subtarget feature enumeration.
3306 SubtargetFeatureInfo::emitSubtargetFeatureBitEnumeration(
3307 Info.SubtargetFeatures, OS);
3308
3309 // Emit the function to match a register name to number.
3310 // This should be omitted for Mips target
3311 if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterName"))
3312 emitMatchRegisterName(Target, AsmParser, OS);
3313
3314 if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterAltName"))
3315 emitMatchRegisterAltName(Target, AsmParser, OS);
3316
3317 OS << "#endif // GET_REGISTER_MATCHER\n\n";
3318
3319 OS << "\n#ifdef GET_SUBTARGET_FEATURE_NAME\n";
3320 OS << "#undef GET_SUBTARGET_FEATURE_NAME\n\n";
3321
3322 // Generate the helper function to get the names for subtarget features.
3323 emitGetSubtargetFeatureName(Info, OS);
3324
3325 OS << "#endif // GET_SUBTARGET_FEATURE_NAME\n\n";
3326
3327 OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n";
3328 OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n";
3329
3330 // Generate the function that remaps for mnemonic aliases.
3331 bool HasMnemonicAliases = emitMnemonicAliases(OS, Info, Target);
3332
3333 // Generate the convertToMCInst function to convert operands into an MCInst.
3334 // Also, generate the convertToMapAndConstraints function for MS-style inline
3335 // assembly. The latter doesn't actually generate a MCInst.
3336 unsigned NumConverters = emitConvertFuncs(Target, ClassName, Info.Matchables,
3337 HasMnemonicFirst,
3338 HasOptionalOperands, OS);
3339
3340 // Emit the enumeration for classes which participate in matching.
3341 emitMatchClassEnumeration(Target, Info.Classes, OS);
3342
3343 // Emit a function to get the user-visible string to describe an operand
3344 // match failure in diagnostics.
3345 emitOperandMatchErrorDiagStrings(Info, OS);
3346
3347 // Emit a function to map register classes to operand match failure codes.
3348 emitRegisterMatchErrorFunc(Info, OS);
3349
3350 // Emit the routine to match token strings to their match class.
3351 emitMatchTokenString(Target, Info.Classes, OS);
3352
3353 // Emit the subclass predicate routine.
3354 emitIsSubclass(Target, Info.Classes, OS);
3355
3356 // Emit the routine to validate an operand against a match class.
3357 emitValidateOperandClass(Info, OS);
3358
3359 emitMatchClassKindNames(Info.Classes, OS);
3360
3361 // Emit the available features compute function.
3362 SubtargetFeatureInfo::emitComputeAssemblerAvailableFeatures(
3363 Info.Target.getName(), ClassName, "ComputeAvailableFeatures",
3364 Info.SubtargetFeatures, OS);
3365
3366 if (!ReportMultipleNearMisses)
3367 emitAsmTiedOperandConstraints(Target, Info, OS);
3368
3369 StringToOffsetTable StringTable;
3370
3371 size_t MaxNumOperands = 0;
3372 unsigned MaxMnemonicIndex = 0;
3373 bool HasDeprecation = false;
3374 for (const auto &MI : Info.Matchables) {
3375 MaxNumOperands = std::max(MaxNumOperands, MI->AsmOperands.size());
3376 HasDeprecation |= MI->HasDeprecation;
3377
3378 // Store a pascal-style length byte in the mnemonic.
3379 std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.lower();
3380 MaxMnemonicIndex = std::max(MaxMnemonicIndex,
3381 StringTable.GetOrAddStringOffset(LenMnemonic, false));
3382 }
3383
3384 OS << "static const char *const MnemonicTable =\n";
3385 StringTable.EmitString(OS);
3386 OS << ";\n\n";
3387
3388 std::vector<std::vector<Record *>> FeatureBitsets;
3389 for (const auto &MI : Info.Matchables) {
3390 if (MI->RequiredFeatures.empty())
3391 continue;
3392 FeatureBitsets.emplace_back();
3393 for (unsigned I = 0, E = MI->RequiredFeatures.size(); I != E; ++I)
3394 FeatureBitsets.back().push_back(MI->RequiredFeatures[I]->TheDef);
3395 }
3396
3397 llvm::sort(FeatureBitsets, [&](const std::vector<Record *> &A,
3398 const std::vector<Record *> &B) {
3399 if (A.size() < B.size())
3400 return true;
3401 if (A.size() > B.size())
3402 return false;
3403 for (auto Pair : zip(A, B)) {
3404 if (std::get<0>(Pair)->getName() < std::get<1>(Pair)->getName())
3405 return true;
3406 if (std::get<0>(Pair)->getName() > std::get<1>(Pair)->getName())
3407 return false;
3408 }
3409 return false;
3410 });
3411 FeatureBitsets.erase(
3412 std::unique(FeatureBitsets.begin(), FeatureBitsets.end()),
3413 FeatureBitsets.end());
3414 OS << "// Feature bitsets.\n"
3415 << "enum : " << getMinimalTypeForRange(FeatureBitsets.size()) << " {\n"
3416 << " AMFBS_None,\n";
3417 for (const auto &FeatureBitset : FeatureBitsets) {
3418 if (FeatureBitset.empty())
3419 continue;
3420 OS << " " << getNameForFeatureBitset(FeatureBitset) << ",\n";
3421 }
3422 OS << "};\n\n"
3423 << "static constexpr FeatureBitset FeatureBitsets[] = {\n"
3424 << " {}, // AMFBS_None\n";
3425 for (const auto &FeatureBitset : FeatureBitsets) {
3426 if (FeatureBitset.empty())
3427 continue;
3428 OS << " {";
3429 for (const auto &Feature : FeatureBitset) {
3430 const auto &I = Info.SubtargetFeatures.find(Feature);
3431 assert(I != Info.SubtargetFeatures.end() && "Didn't import predicate?");
3432 OS << I->second.getEnumBitName() << ", ";
3433 }
3434 OS << "},\n";
3435 }
3436 OS << "};\n\n";
3437
3438 // Emit the static match table; unused classes get initialized to 0 which is
3439 // guaranteed to be InvalidMatchClass.
3440 //
3441 // FIXME: We can reduce the size of this table very easily. First, we change
3442 // it so that store the kinds in separate bit-fields for each index, which
3443 // only needs to be the max width used for classes at that index (we also need
3444 // to reject based on this during classification). If we then make sure to
3445 // order the match kinds appropriately (putting mnemonics last), then we
3446 // should only end up using a few bits for each class, especially the ones
3447 // following the mnemonic.
3448 OS << "namespace {\n";
3449 OS << " struct MatchEntry {\n";
3450 OS << " " << getMinimalTypeForRange(MaxMnemonicIndex)
3451 << " Mnemonic;\n";
3452 OS << " uint16_t Opcode;\n";
3453 OS << " " << getMinimalTypeForRange(NumConverters)
3454 << " ConvertFn;\n";
3455 OS << " " << getMinimalTypeForRange(FeatureBitsets.size())
3456 << " RequiredFeaturesIdx;\n";
3457 OS << " " << getMinimalTypeForRange(
3458 std::distance(Info.Classes.begin(), Info.Classes.end()))
3459 << " Classes[" << MaxNumOperands << "];\n";
3460 OS << " StringRef getMnemonic() const {\n";
3461 OS << " return StringRef(MnemonicTable + Mnemonic + 1,\n";
3462 OS << " MnemonicTable[Mnemonic]);\n";
3463 OS << " }\n";
3464 OS << " };\n\n";
3465
3466 OS << " // Predicate for searching for an opcode.\n";
3467 OS << " struct LessOpcode {\n";
3468 OS << " bool operator()(const MatchEntry &LHS, StringRef RHS) {\n";
3469 OS << " return LHS.getMnemonic() < RHS;\n";
3470 OS << " }\n";
3471 OS << " bool operator()(StringRef LHS, const MatchEntry &RHS) {\n";
3472 OS << " return LHS < RHS.getMnemonic();\n";
3473 OS << " }\n";
3474 OS << " bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n";
3475 OS << " return LHS.getMnemonic() < RHS.getMnemonic();\n";
3476 OS << " }\n";
3477 OS << " };\n";
3478
3479 OS << "} // end anonymous namespace\n\n";
3480
3481 unsigned VariantCount = Target.getAsmParserVariantCount();
3482 for (unsigned VC = 0; VC != VariantCount; ++VC) {
3483 Record *AsmVariant = Target.getAsmParserVariant(VC);
3484 int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
3485
3486 OS << "static const MatchEntry MatchTable" << VC << "[] = {\n";
3487
3488 for (const auto &MI : Info.Matchables) {
3489 if (MI->AsmVariantID != AsmVariantNo)
3490 continue;
3491
3492 // Store a pascal-style length byte in the mnemonic.
3493 std::string LenMnemonic =
3494 char(MI->Mnemonic.size()) + MI->Mnemonic.lower();
3495 OS << " { " << StringTable.GetOrAddStringOffset(LenMnemonic, false)
3496 << " /* " << MI->Mnemonic << " */, "
3497 << Target.getInstNamespace() << "::"
3498 << MI->getResultInst()->TheDef->getName() << ", "
3499 << MI->ConversionFnKind << ", ";
3500
3501 // Write the required features mask.
3502 OS << "AMFBS";
3503 if (MI->RequiredFeatures.empty())
3504 OS << "_None";
3505 else
3506 for (unsigned i = 0, e = MI->RequiredFeatures.size(); i != e; ++i)
3507 OS << '_' << MI->RequiredFeatures[i]->TheDef->getName();
3508
3509 OS << ", { ";
3510 ListSeparator LS;
3511 for (const MatchableInfo::AsmOperand &Op : MI->AsmOperands)
3512 OS << LS << Op.Class->Name;
3513 OS << " }, },\n";
3514 }
3515
3516 OS << "};\n\n";
3517 }
3518
3519 OS << "#include \"llvm/Support/Debug.h\"\n";
3520 OS << "#include \"llvm/Support/Format.h\"\n\n";
3521
3522 // Finally, build the match function.
3523 OS << "unsigned " << Target.getName() << ClassName << "::\n"
3524 << "MatchInstructionImpl(const OperandVector &Operands,\n";
3525 OS << " MCInst &Inst,\n";
3526 if (ReportMultipleNearMisses)
3527 OS << " SmallVectorImpl<NearMissInfo> *NearMisses,\n";
3528 else
3529 OS << " uint64_t &ErrorInfo,\n"
3530 << " FeatureBitset &MissingFeatures,\n";
3531 OS << " bool matchingInlineAsm, unsigned VariantID) {\n";
3532
3533 if (!ReportMultipleNearMisses) {
3534 OS << " // Eliminate obvious mismatches.\n";
3535 OS << " if (Operands.size() > "
3536 << (MaxNumOperands + HasMnemonicFirst) << ") {\n";
3537 OS << " ErrorInfo = "
3538 << (MaxNumOperands + HasMnemonicFirst) << ";\n";
3539 OS << " return Match_InvalidOperand;\n";
3540 OS << " }\n\n";
3541 }
3542
3543 // Emit code to get the available features.
3544 OS << " // Get the current feature set.\n";
3545 OS << " const FeatureBitset &AvailableFeatures = getAvailableFeatures();\n\n";
3546
3547 OS << " // Get the instruction mnemonic, which is the first token.\n";
3548 if (HasMnemonicFirst) {
3549 OS << " StringRef Mnemonic = ((" << Target.getName()
3550 << "Operand &)*Operands[0]).getToken();\n\n";
3551 } else {
3552 OS << " StringRef Mnemonic;\n";
3553 OS << " if (Operands[0]->isToken())\n";
3554 OS << " Mnemonic = ((" << Target.getName()
3555 << "Operand &)*Operands[0]).getToken();\n\n";
3556 }
3557
3558 if (HasMnemonicAliases) {
3559 OS << " // Process all MnemonicAliases to remap the mnemonic.\n";
3560 OS << " applyMnemonicAliases(Mnemonic, AvailableFeatures, VariantID);\n\n";
3561 }
3562
3563 // Emit code to compute the class list for this operand vector.
3564 if (!ReportMultipleNearMisses) {
3565 OS << " // Some state to try to produce better error messages.\n";
3566 OS << " bool HadMatchOtherThanFeatures = false;\n";
3567 OS << " bool HadMatchOtherThanPredicate = false;\n";
3568 OS << " unsigned RetCode = Match_InvalidOperand;\n";
3569 OS << " MissingFeatures.set();\n";
3570 OS << " // Set ErrorInfo to the operand that mismatches if it is\n";
3571 OS << " // wrong for all instances of the instruction.\n";
3572 OS << " ErrorInfo = ~0ULL;\n";
3573 }
3574
3575 if (HasOptionalOperands) {
3576 OS << " SmallBitVector OptionalOperandsMask(" << MaxNumOperands << ");\n";
3577 }
3578
3579 // Emit code to search the table.
3580 OS << " // Find the appropriate table for this asm variant.\n";
3581 OS << " const MatchEntry *Start, *End;\n";
3582 OS << " switch (VariantID) {\n";
3583 OS << " default: llvm_unreachable(\"invalid variant!\");\n";
3584 for (unsigned VC = 0; VC != VariantCount; ++VC) {
3585 Record *AsmVariant = Target.getAsmParserVariant(VC);
3586 int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
3587 OS << " case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC
3588 << "); End = std::end(MatchTable" << VC << "); break;\n";
3589 }
3590 OS << " }\n";
3591
3592 OS << " // Search the table.\n";
3593 if (HasMnemonicFirst) {
3594 OS << " auto MnemonicRange = "
3595 "std::equal_range(Start, End, Mnemonic, LessOpcode());\n\n";
3596 } else {
3597 OS << " auto MnemonicRange = std::make_pair(Start, End);\n";
3598 OS << " unsigned SIndex = Mnemonic.empty() ? 0 : 1;\n";
3599 OS << " if (!Mnemonic.empty())\n";
3600 OS << " MnemonicRange = "
3601 "std::equal_range(Start, End, Mnemonic.lower(), LessOpcode());\n\n";
3602 }
3603
3604 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"AsmMatcher: found \" <<\n"
3605 << " std::distance(MnemonicRange.first, MnemonicRange.second) <<\n"
3606 << " \" encodings with mnemonic '\" << Mnemonic << \"'\\n\");\n\n";
3607
3608 OS << " // Return a more specific error code if no mnemonics match.\n";
3609 OS << " if (MnemonicRange.first == MnemonicRange.second)\n";
3610 OS << " return Match_MnemonicFail;\n\n";
3611
3612 OS << " for (const MatchEntry *it = MnemonicRange.first, "
3613 << "*ie = MnemonicRange.second;\n";
3614 OS << " it != ie; ++it) {\n";
3615 OS << " const FeatureBitset &RequiredFeatures = "
3616 "FeatureBitsets[it->RequiredFeaturesIdx];\n";
3617 OS << " bool HasRequiredFeatures =\n";
3618 OS << " (AvailableFeatures & RequiredFeatures) == RequiredFeatures;\n";
3619 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Trying to match opcode \"\n";
3620 OS << " << MII.getName(it->Opcode) << \"\\n\");\n";
3621
3622 if (ReportMultipleNearMisses) {
3623 OS << " // Some state to record ways in which this instruction did not match.\n";
3624 OS << " NearMissInfo OperandNearMiss = NearMissInfo::getSuccess();\n";
3625 OS << " NearMissInfo FeaturesNearMiss = NearMissInfo::getSuccess();\n";
3626 OS << " NearMissInfo EarlyPredicateNearMiss = NearMissInfo::getSuccess();\n";
3627 OS << " NearMissInfo LatePredicateNearMiss = NearMissInfo::getSuccess();\n";
3628 OS << " bool MultipleInvalidOperands = false;\n";
3629 }
3630
3631 if (HasMnemonicFirst) {
3632 OS << " // equal_range guarantees that instruction mnemonic matches.\n";
3633 OS << " assert(Mnemonic == it->getMnemonic());\n";
3634 }
3635
3636 // Emit check that the subclasses match.
3637 if (!ReportMultipleNearMisses)
3638 OS << " bool OperandsValid = true;\n";
3639 if (HasOptionalOperands) {
3640 OS << " OptionalOperandsMask.reset(0, " << MaxNumOperands << ");\n";
3641 }
3642 OS << " for (unsigned FormalIdx = " << (HasMnemonicFirst ? "0" : "SIndex")
3643 << ", ActualIdx = " << (HasMnemonicFirst ? "1" : "SIndex")
3644 << "; FormalIdx != " << MaxNumOperands << "; ++FormalIdx) {\n";
3645 OS << " auto Formal = "
3646 << "static_cast<MatchClassKind>(it->Classes[FormalIdx]);\n";
3647 OS << " DEBUG_WITH_TYPE(\"asm-matcher\",\n";
3648 OS << " dbgs() << \" Matching formal operand class \" << getMatchClassName(Formal)\n";
3649 OS << " << \" against actual operand at index \" << ActualIdx);\n";
3650 OS << " if (ActualIdx < Operands.size())\n";
3651 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \" (\";\n";
3652 OS << " Operands[ActualIdx]->print(dbgs()); dbgs() << \"): \");\n";
3653 OS << " else\n";
3654 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \": \");\n";
3655 OS << " if (ActualIdx >= Operands.size()) {\n";
3656 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"actual operand index out of range \");\n";
3657 if (ReportMultipleNearMisses) {
3658 OS << " bool ThisOperandValid = (Formal == " <<"InvalidMatchClass) || "
3659 "isSubclass(Formal, OptionalMatchClass);\n";
3660 OS << " if (!ThisOperandValid) {\n";
3661 OS << " if (!OperandNearMiss) {\n";
3662 OS << " // Record info about match failure for later use.\n";
3663 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"recording too-few-operands near miss\\n\");\n";
3664 OS << " OperandNearMiss =\n";
3665 OS << " NearMissInfo::getTooFewOperands(Formal, it->Opcode);\n";
3666 OS << " } else if (OperandNearMiss.getKind() != NearMissInfo::NearMissTooFewOperands) {\n";
3667 OS << " // If more than one operand is invalid, give up on this match entry.\n";
3668 OS << " DEBUG_WITH_TYPE(\n";
3669 OS << " \"asm-matcher\",\n";
3670 OS << " dbgs() << \"second invalid operand, giving up on this opcode\\n\");\n";
3671 OS << " MultipleInvalidOperands = true;\n";
3672 OS << " break;\n";
3673 OS << " }\n";
3674 OS << " } else {\n";
3675 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"but formal operand not required\\n\");\n";
3676 OS << " break;\n";
3677 OS << " }\n";
3678 OS << " continue;\n";
3679 } else {
3680 OS << " OperandsValid = (Formal == InvalidMatchClass) || isSubclass(Formal, OptionalMatchClass);\n";
3681 OS << " if (!OperandsValid) ErrorInfo = ActualIdx;\n";
3682 if (HasOptionalOperands) {
3683 OS << " OptionalOperandsMask.set(FormalIdx, " << MaxNumOperands
3684 << ");\n";
3685 }
3686 OS << " break;\n";
3687 }
3688 OS << " }\n";
3689 OS << " MCParsedAsmOperand &Actual = *Operands[ActualIdx];\n";
3690 OS << " unsigned Diag = validateOperandClass(Actual, Formal);\n";
3691 OS << " if (Diag == Match_Success) {\n";
3692 OS << " DEBUG_WITH_TYPE(\"asm-matcher\",\n";
3693 OS << " dbgs() << \"match success using generic matcher\\n\");\n";
3694 OS << " ++ActualIdx;\n";
3695 OS << " continue;\n";
3696 OS << " }\n";
3697 OS << " // If the generic handler indicates an invalid operand\n";
3698 OS << " // failure, check for a special case.\n";
3699 OS << " if (Diag != Match_Success) {\n";
3700 OS << " unsigned TargetDiag = validateTargetOperandClass(Actual, Formal);\n";
3701 OS << " if (TargetDiag == Match_Success) {\n";
3702 OS << " DEBUG_WITH_TYPE(\"asm-matcher\",\n";
3703 OS << " dbgs() << \"match success using target matcher\\n\");\n";
3704 OS << " ++ActualIdx;\n";
3705 OS << " continue;\n";
3706 OS << " }\n";
3707 OS << " // If the target matcher returned a specific error code use\n";
3708 OS << " // that, else use the one from the generic matcher.\n";
3709 OS << " if (TargetDiag != Match_InvalidOperand && "
3710 "HasRequiredFeatures)\n";
3711 OS << " Diag = TargetDiag;\n";
3712 OS << " }\n";
3713 OS << " // If current formal operand wasn't matched and it is optional\n"
3714 << " // then try to match next formal operand\n";
3715 OS << " if (Diag == Match_InvalidOperand "
3716 << "&& isSubclass(Formal, OptionalMatchClass)) {\n";
3717 if (HasOptionalOperands) {
3718 OS << " OptionalOperandsMask.set(FormalIdx);\n";
3719 }
3720 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"ignoring optional operand\\n\");\n";
3721 OS << " continue;\n";
3722 OS << " }\n";
3723
3724 if (ReportMultipleNearMisses) {
3725 OS << " if (!OperandNearMiss) {\n";
3726 OS << " // If this is the first invalid operand we have seen, record some\n";
3727 OS << " // information about it.\n";
3728 OS << " DEBUG_WITH_TYPE(\n";
3729 OS << " \"asm-matcher\",\n";
3730 OS << " dbgs()\n";
3731 OS << " << \"operand match failed, recording near-miss with diag code \"\n";
3732 OS << " << Diag << \"\\n\");\n";
3733 OS << " OperandNearMiss =\n";
3734 OS << " NearMissInfo::getMissedOperand(Diag, Formal, it->Opcode, ActualIdx);\n";
3735 OS << " ++ActualIdx;\n";
3736 OS << " } else {\n";
3737 OS << " // If more than one operand is invalid, give up on this match entry.\n";
3738 OS << " DEBUG_WITH_TYPE(\n";
3739 OS << " \"asm-matcher\",\n";
3740 OS << " dbgs() << \"second operand mismatch, skipping this opcode\\n\");\n";
3741 OS << " MultipleInvalidOperands = true;\n";
3742 OS << " break;\n";
3743 OS << " }\n";
3744 OS << " }\n\n";
3745 } else {
3746 OS << " // If this operand is broken for all of the instances of this\n";
3747 OS << " // mnemonic, keep track of it so we can report loc info.\n";
3748 OS << " // If we already had a match that only failed due to a\n";
3749 OS << " // target predicate, that diagnostic is preferred.\n";
3750 OS << " if (!HadMatchOtherThanPredicate &&\n";
3751 OS << " (it == MnemonicRange.first || ErrorInfo <= ActualIdx)) {\n";
3752 OS << " if (HasRequiredFeatures && (ErrorInfo != ActualIdx || Diag "
3753 "!= Match_InvalidOperand))\n";
3754 OS << " RetCode = Diag;\n";
3755 OS << " ErrorInfo = ActualIdx;\n";
3756 OS << " }\n";
3757 OS << " // Otherwise, just reject this instance of the mnemonic.\n";
3758 OS << " OperandsValid = false;\n";
3759 OS << " break;\n";
3760 OS << " }\n\n";
3761 }
3762
3763 if (ReportMultipleNearMisses)
3764 OS << " if (MultipleInvalidOperands) {\n";
3765 else
3766 OS << " if (!OperandsValid) {\n";
3767 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n";
3768 OS << " \"operand mismatches, ignoring \"\n";
3769 OS << " \"this opcode\\n\");\n";
3770 OS << " continue;\n";
3771 OS << " }\n";
3772
3773 // Emit check that the required features are available.
3774 OS << " if (!HasRequiredFeatures) {\n";
3775 if (!ReportMultipleNearMisses)
3776 OS << " HadMatchOtherThanFeatures = true;\n";
3777 OS << " FeatureBitset NewMissingFeatures = RequiredFeatures & "
3778 "~AvailableFeatures;\n";
3779 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Missing target features:\";\n";
3780 OS << " for (unsigned I = 0, E = NewMissingFeatures.size(); I != E; ++I)\n";
3781 OS << " if (NewMissingFeatures[I])\n";
3782 OS << " dbgs() << ' ' << I;\n";
3783 OS << " dbgs() << \"\\n\");\n";
3784 if (ReportMultipleNearMisses) {
3785 OS << " FeaturesNearMiss = NearMissInfo::getMissedFeature(NewMissingFeatures);\n";
3786 } else {
3787 OS << " if (NewMissingFeatures.count() <=\n"
3788 " MissingFeatures.count())\n";
3789 OS << " MissingFeatures = NewMissingFeatures;\n";
3790 OS << " continue;\n";
3791 }
3792 OS << " }\n";
3793 OS << "\n";
3794 OS << " Inst.clear();\n\n";
3795 OS << " Inst.setOpcode(it->Opcode);\n";
3796 // Verify the instruction with the target-specific match predicate function.
3797 OS << " // We have a potential match but have not rendered the operands.\n"
3798 << " // Check the target predicate to handle any context sensitive\n"
3799 " // constraints.\n"
3800 << " // For example, Ties that are referenced multiple times must be\n"
3801 " // checked here to ensure the input is the same for each match\n"
3802 " // constraints. If we leave it any later the ties will have been\n"
3803 " // canonicalized\n"
3804 << " unsigned MatchResult;\n"
3805 << " if ((MatchResult = checkEarlyTargetMatchPredicate(Inst, "
3806 "Operands)) != Match_Success) {\n"
3807 << " Inst.clear();\n";
3808 OS << " DEBUG_WITH_TYPE(\n";
3809 OS << " \"asm-matcher\",\n";
3810 OS << " dbgs() << \"Early target match predicate failed with diag code \"\n";
3811 OS << " << MatchResult << \"\\n\");\n";
3812 if (ReportMultipleNearMisses) {
3813 OS << " EarlyPredicateNearMiss = NearMissInfo::getMissedPredicate(MatchResult);\n";
3814 } else {
3815 OS << " RetCode = MatchResult;\n"
3816 << " HadMatchOtherThanPredicate = true;\n"
3817 << " continue;\n";
3818 }
3819 OS << " }\n\n";
3820
3821 if (ReportMultipleNearMisses) {
3822 OS << " // If we did not successfully match the operands, then we can't convert to\n";
3823 OS << " // an MCInst, so bail out on this instruction variant now.\n";
3824 OS << " if (OperandNearMiss) {\n";
3825 OS << " // If the operand mismatch was the only problem, reprrt it as a near-miss.\n";
3826 OS << " if (NearMisses && !FeaturesNearMiss && !EarlyPredicateNearMiss) {\n";
3827 OS << " DEBUG_WITH_TYPE(\n";
3828 OS << " \"asm-matcher\",\n";
3829 OS << " dbgs()\n";
3830 OS << " << \"Opcode result: one mismatched operand, adding near-miss\\n\");\n";
3831 OS << " NearMisses->push_back(OperandNearMiss);\n";
3832 OS << " } else {\n";
3833 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n";
3834 OS << " \"types of mismatch, so not \"\n";
3835 OS << " \"reporting near-miss\\n\");\n";
3836 OS << " }\n";
3837 OS << " continue;\n";
3838 OS << " }\n\n";
3839 }
3840
3841 OS << " if (matchingInlineAsm) {\n";
3842 OS << " convertToMapAndConstraints(it->ConvertFn, Operands);\n";
3843 if (!ReportMultipleNearMisses) {
3844 OS << " if (!checkAsmTiedOperandConstraints(*this, it->ConvertFn, "
3845 "Operands, ErrorInfo))\n";
3846 OS << " return Match_InvalidTiedOperand;\n";
3847 OS << "\n";
3848 }
3849 OS << " return Match_Success;\n";
3850 OS << " }\n\n";
3851 OS << " // We have selected a definite instruction, convert the parsed\n"
3852 << " // operands into the appropriate MCInst.\n";
3853 if (HasOptionalOperands) {
3854 OS << " convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands,\n"
3855 << " OptionalOperandsMask);\n";
3856 } else {
3857 OS << " convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n";
3858 }
3859 OS << "\n";
3860
3861 // Verify the instruction with the target-specific match predicate function.
3862 OS << " // We have a potential match. Check the target predicate to\n"
3863 << " // handle any context sensitive constraints.\n"
3864 << " if ((MatchResult = checkTargetMatchPredicate(Inst)) !="
3865 << " Match_Success) {\n"
3866 << " DEBUG_WITH_TYPE(\"asm-matcher\",\n"
3867 << " dbgs() << \"Target match predicate failed with diag code \"\n"
3868 << " << MatchResult << \"\\n\");\n"
3869 << " Inst.clear();\n";
3870 if (ReportMultipleNearMisses) {
3871 OS << " LatePredicateNearMiss = NearMissInfo::getMissedPredicate(MatchResult);\n";
3872 } else {
3873 OS << " RetCode = MatchResult;\n"
3874 << " HadMatchOtherThanPredicate = true;\n"
3875 << " continue;\n";
3876 }
3877 OS << " }\n\n";
3878
3879 if (ReportMultipleNearMisses) {
3880 OS << " int NumNearMisses = ((int)(bool)OperandNearMiss +\n";
3881 OS << " (int)(bool)FeaturesNearMiss +\n";
3882 OS << " (int)(bool)EarlyPredicateNearMiss +\n";
3883 OS << " (int)(bool)LatePredicateNearMiss);\n";
3884 OS << " if (NumNearMisses == 1) {\n";
3885 OS << " // We had exactly one type of near-miss, so add that to the list.\n";
3886 OS << " assert(!OperandNearMiss && \"OperandNearMiss was handled earlier\");\n";
3887 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: found one type of \"\n";
3888 OS << " \"mismatch, so reporting a \"\n";
3889 OS << " \"near-miss\\n\");\n";
3890 OS << " if (NearMisses && FeaturesNearMiss)\n";
3891 OS << " NearMisses->push_back(FeaturesNearMiss);\n";
3892 OS << " else if (NearMisses && EarlyPredicateNearMiss)\n";
3893 OS << " NearMisses->push_back(EarlyPredicateNearMiss);\n";
3894 OS << " else if (NearMisses && LatePredicateNearMiss)\n";
3895 OS << " NearMisses->push_back(LatePredicateNearMiss);\n";
3896 OS << "\n";
3897 OS << " continue;\n";
3898 OS << " } else if (NumNearMisses > 1) {\n";
3899 OS << " // This instruction missed in more than one way, so ignore it.\n";
3900 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n";
3901 OS << " \"types of mismatch, so not \"\n";
3902 OS << " \"reporting near-miss\\n\");\n";
3903 OS << " continue;\n";
3904 OS << " }\n";
3905 }
3906
3907 // Call the post-processing function, if used.
3908 StringRef InsnCleanupFn = AsmParser->getValueAsString("AsmParserInstCleanup");
3909 if (!InsnCleanupFn.empty())
3910 OS << " " << InsnCleanupFn << "(Inst);\n";
3911
3912 if (HasDeprecation) {
3913 OS << " std::string Info;\n";
3914 OS << " if (!getParser().getTargetParser().\n";
3915 OS << " getTargetOptions().MCNoDeprecatedWarn &&\n";
3916 OS << " MII.getDeprecatedInfo(Inst, getSTI(), Info)) {\n";
3917 OS << " SMLoc Loc = ((" << Target.getName()
3918 << "Operand &)*Operands[0]).getStartLoc();\n";
3919 OS << " getParser().Warning(Loc, Info, None);\n";
3920 OS << " }\n";
3921 }
3922
3923 if (!ReportMultipleNearMisses) {
3924 OS << " if (!checkAsmTiedOperandConstraints(*this, it->ConvertFn, "
3925 "Operands, ErrorInfo))\n";
3926 OS << " return Match_InvalidTiedOperand;\n";
3927 OS << "\n";
3928 }
3929
3930 OS << " DEBUG_WITH_TYPE(\n";
3931 OS << " \"asm-matcher\",\n";
3932 OS << " dbgs() << \"Opcode result: complete match, selecting this opcode\\n\");\n";
3933 OS << " return Match_Success;\n";
3934 OS << " }\n\n";
3935
3936 if (ReportMultipleNearMisses) {
3937 OS << " // No instruction variants matched exactly.\n";
3938 OS << " return Match_NearMisses;\n";
3939 } else {
3940 OS << " // Okay, we had no match. Try to return a useful error code.\n";
3941 OS << " if (HadMatchOtherThanPredicate || !HadMatchOtherThanFeatures)\n";
3942 OS << " return RetCode;\n\n";
3943 OS << " ErrorInfo = 0;\n";
3944 OS << " return Match_MissingFeature;\n";
3945 }
3946 OS << "}\n\n";
3947
3948 if (!Info.OperandMatchInfo.empty())
3949 emitCustomOperandParsing(OS, Target, Info, ClassName, StringTable,
3950 MaxMnemonicIndex, FeatureBitsets.size(),
3951 HasMnemonicFirst);
3952
3953 OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n";
3954
3955 OS << "\n#ifdef GET_MNEMONIC_SPELL_CHECKER\n";
3956 OS << "#undef GET_MNEMONIC_SPELL_CHECKER\n\n";
3957
3958 emitMnemonicSpellChecker(OS, Target, VariantCount);
3959
3960 OS << "#endif // GET_MNEMONIC_SPELL_CHECKER\n\n";
3961
3962 OS << "\n#ifdef GET_MNEMONIC_CHECKER\n";
3963 OS << "#undef GET_MNEMONIC_CHECKER\n\n";
3964
3965 emitMnemonicChecker(OS, Target, VariantCount,
3966 HasMnemonicFirst, HasMnemonicAliases);
3967
3968 OS << "#endif // GET_MNEMONIC_CHECKER\n\n";
3969 }
3970
3971 namespace llvm {
3972
EmitAsmMatcher(RecordKeeper & RK,raw_ostream & OS)3973 void EmitAsmMatcher(RecordKeeper &RK, raw_ostream &OS) {
3974 emitSourceFileHeader("Assembly Matcher Source Fragment", OS);
3975 AsmMatcherEmitter(RK).run(OS);
3976 }
3977
3978 } // end namespace llvm
3979