xref: /openbsd-src/gnu/gcc/gcc/config/iq2000/iq2000.h (revision 404b540a9034ac75a6199ad1a32d1bbc7a0d4210)
1 /* Definitions of target machine for GNU compiler.
2    Vitesse IQ2000 processors
3    Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.
4 
5    This file is part of GCC.
6 
7    GCC is free software; you can redistribute it and/or modify it
8    under the terms of the GNU General Public License as published
9    by the Free Software Foundation; either version 2, or (at your
10    option) any later version.
11 
12    GCC is distributed in the hope that it will be useful, but WITHOUT
13    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14    or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
15    License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with GCC; see the file COPYING.  If not, write to the Free
19    Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20    02110-1301, USA.  */
21 
22 /* Driver configuration.  */
23 
24 #undef  SWITCH_TAKES_ARG
25 #define SWITCH_TAKES_ARG(CHAR)						\
26   (DEFAULT_SWITCH_TAKES_ARG (CHAR) || (CHAR) == 'G')
27 
28 /* The svr4.h LIB_SPEC with -leval and --*group tacked on */
29 #undef  LIB_SPEC
30 #define LIB_SPEC "%{!shared:%{!symbolic:--start-group -lc -leval -lgcc --end-group}}"
31 
32 #undef STARTFILE_SPEC
33 #undef ENDFILE_SPEC
34 
35 
36 /* Run-time target specifications.  */
37 
38 #define TARGET_CPU_CPP_BUILTINS()               \
39   do                                            \
40     {                                           \
41       builtin_define ("__iq2000__"); 		\
42       builtin_assert ("cpu=iq2000"); 		\
43       builtin_assert ("machine=iq2000");	\
44     }                                           \
45   while (0)
46 
47 /* Macros used in the machine description to test the flags.  */
48 
49 #define TARGET_STATS		0
50 
51 #define TARGET_DEBUG_MODE	0
52 #define TARGET_DEBUG_A_MODE	0
53 #define TARGET_DEBUG_B_MODE	0
54 #define TARGET_DEBUG_C_MODE	0
55 #define TARGET_DEBUG_D_MODE	0
56 
57 #ifndef IQ2000_ISA_DEFAULT
58 #define IQ2000_ISA_DEFAULT 1
59 #endif
60 
61 #define IQ2000_VERSION "[1.0]"
62 
63 #ifndef MACHINE_TYPE
64 #define MACHINE_TYPE "IQ2000"
65 #endif
66 
67 #ifndef TARGET_VERSION_INTERNAL
68 #define TARGET_VERSION_INTERNAL(STREAM)					\
69   fprintf (STREAM, " %s %s", IQ2000_VERSION, MACHINE_TYPE)
70 #endif
71 
72 #ifndef TARGET_VERSION
73 #define TARGET_VERSION TARGET_VERSION_INTERNAL (stderr)
74 #endif
75 
76 #define OVERRIDE_OPTIONS override_options ()
77 
78 #define CAN_DEBUG_WITHOUT_FP
79 
80 /* Storage Layout.  */
81 
82 #define BITS_BIG_ENDIAN 		0
83 #define BYTES_BIG_ENDIAN 		1
84 #define WORDS_BIG_ENDIAN 		1
85 #define LIBGCC2_WORDS_BIG_ENDIAN	1
86 #define BITS_PER_WORD 			32
87 #define MAX_BITS_PER_WORD 		64
88 #define UNITS_PER_WORD 			4
89 #define MIN_UNITS_PER_WORD 		4
90 #define POINTER_SIZE 			32
91 
92 /* Define this macro if it is advisable to hold scalars in registers
93    in a wider mode than that declared by the program.  In such cases,
94    the value is constrained to be within the bounds of the declared
95    type, but kept valid in the wider mode.  The signedness of the
96    extension may differ from that of the type.
97 
98    We promote any value smaller than SImode up to SImode.  */
99 
100 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE)	\
101   if (GET_MODE_CLASS (MODE) == MODE_INT		\
102       && GET_MODE_SIZE (MODE) < 4)		\
103     (MODE) = SImode;
104 
105 #define PARM_BOUNDARY 32
106 
107 #define STACK_BOUNDARY 64
108 
109 #define FUNCTION_BOUNDARY 32
110 
111 #define BIGGEST_ALIGNMENT 64
112 
113 #undef  DATA_ALIGNMENT
114 #define DATA_ALIGNMENT(TYPE, ALIGN)					\
115   ((((ALIGN) < BITS_PER_WORD)						\
116     && (TREE_CODE (TYPE) == ARRAY_TYPE					\
117 	|| TREE_CODE (TYPE) == UNION_TYPE				\
118 	|| TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
119 
120 #define CONSTANT_ALIGNMENT(EXP, ALIGN)					\
121   ((TREE_CODE (EXP) == STRING_CST  || TREE_CODE (EXP) == CONSTRUCTOR)	\
122    && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
123 
124 #define EMPTY_FIELD_BOUNDARY 32
125 
126 #define STRUCTURE_SIZE_BOUNDARY 8
127 
128 #define STRICT_ALIGNMENT 1
129 
130 #define PCC_BITFIELD_TYPE_MATTERS 1
131 
132 #define TARGET_FLOAT_FORMAT IEEE_FLOAT_FORMAT
133 
134 
135 /* Layout of Source Language Data Types.  */
136 
137 #define INT_TYPE_SIZE 		32
138 #define SHORT_TYPE_SIZE 	16
139 #define LONG_TYPE_SIZE 		32
140 #define LONG_LONG_TYPE_SIZE 	64
141 #define CHAR_TYPE_SIZE		BITS_PER_UNIT
142 #define FLOAT_TYPE_SIZE 	32
143 #define DOUBLE_TYPE_SIZE 	64
144 #define LONG_DOUBLE_TYPE_SIZE	64
145 #define DEFAULT_SIGNED_CHAR	1
146 
147 
148 /* Register Basics.  */
149 
150 /* On the IQ2000, we have 32 integer registers.  */
151 #define FIRST_PSEUDO_REGISTER 33
152 
153 #define FIXED_REGISTERS							\
154 {									\
155   1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
156   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1			\
157 }
158 
159 #define CALL_USED_REGISTERS						\
160 {									\
161   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			\
162   0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1			\
163 }
164 
165 
166 /* Order of allocation of registers.  */
167 
168 #define REG_ALLOC_ORDER							\
169 {  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15,	\
170   16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31	\
171 }
172 
173 
174 /* How Values Fit in Registers.  */
175 
176 #define HARD_REGNO_NREGS(REGNO, MODE)   \
177   ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
178 
179 #define HARD_REGNO_MODE_OK(REGNO, MODE) 			\
180  ((REGNO_REG_CLASS (REGNO) == GR_REGS)				\
181   ? ((REGNO) & 1) == 0 || GET_MODE_SIZE (MODE) <= 4     	\
182   : ((REGNO) & 1) == 0 || GET_MODE_SIZE (MODE) == 4)
183 
184 #define MODES_TIEABLE_P(MODE1, MODE2)				\
185   ((GET_MODE_CLASS (MODE1) == MODE_FLOAT ||			\
186     GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT)		\
187    == (GET_MODE_CLASS (MODE2) == MODE_FLOAT ||			\
188        GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
189 
190 #define AVOID_CCMODE_COPIES
191 
192 
193 /* Register Classes.  */
194 
195 enum reg_class
196 {
197   NO_REGS,			/* No registers in set.  */
198   GR_REGS,			/* Integer registers.  */
199   ALL_REGS,			/* All registers.  */
200   LIM_REG_CLASSES		/* Max value + 1.  */
201 };
202 
203 #define GENERAL_REGS GR_REGS
204 
205 #define N_REG_CLASSES (int) LIM_REG_CLASSES
206 
207 #define REG_CLASS_NAMES						\
208 {								\
209   "NO_REGS",							\
210   "GR_REGS",							\
211   "ALL_REGS"							\
212 }
213 
214 #define REG_CLASS_CONTENTS					\
215 {								\
216   { 0x00000000, 0x00000000 },	/* No registers,  */		\
217   { 0xffffffff, 0x00000000 },	/* Integer registers.  */	\
218   { 0xffffffff, 0x00000001 }	/* All registers.  */		\
219 }
220 
221 #define REGNO_REG_CLASS(REGNO) \
222 ((REGNO) <= GP_REG_LAST + 1 ? GR_REGS : NO_REGS)
223 
224 #define BASE_REG_CLASS  (GR_REGS)
225 
226 #define INDEX_REG_CLASS NO_REGS
227 
228 #define REG_CLASS_FROM_LETTER(C) \
229   ((C) == 'd' ? GR_REGS :        \
230    (C) == 'b' ? ALL_REGS :       \
231    (C) == 'y' ? GR_REGS :        \
232    NO_REGS)
233 
234 #define REGNO_OK_FOR_INDEX_P(regno)	0
235 
236 #define PREFERRED_RELOAD_CLASS(X,CLASS)				\
237   ((CLASS) != ALL_REGS						\
238    ? (CLASS)							\
239    : ((GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT		\
240        || GET_MODE_CLASS (GET_MODE (X)) == MODE_COMPLEX_FLOAT)	\
241       ? (GR_REGS)						\
242       : ((GET_MODE_CLASS (GET_MODE (X)) == MODE_INT		\
243 	  || GET_MODE (X) == VOIDmode)				\
244 	 ? (GR_REGS)						\
245 	 : (CLASS))))
246 
247 #define SMALL_REGISTER_CLASSES 0
248 
249 #define CLASS_MAX_NREGS(CLASS, MODE)    \
250   ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
251 
252 /* For IQ2000:
253 
254    `I'	is used for the range of constants an arithmetic insn can
255 	actually contain (16 bits signed integers).
256 
257    `J'	is used for the range which is just zero (i.e., $r0).
258 
259    `K'	is used for the range of constants a logical insn can actually
260 	contain (16 bit zero-extended integers).
261 
262    `L'	is used for the range of constants that be loaded with lui
263 	(i.e., the bottom 16 bits are zero).
264 
265    `M'	is used for the range of constants that take two words to load
266 	(i.e., not matched by `I', `K', and `L').
267 
268    `N'	is used for constants 0xffffnnnn or 0xnnnnffff
269 
270    `O'	is a 5 bit zero-extended integer.  */
271 
272 #define CONST_OK_FOR_LETTER_P(VALUE, C)					\
273   ((C) == 'I' ? ((unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000)	\
274    : (C) == 'J' ? ((VALUE) == 0)					\
275    : (C) == 'K' ? ((unsigned HOST_WIDE_INT) (VALUE) < 0x10000)		\
276    : (C) == 'L' ? (((VALUE) & 0x0000ffff) == 0				\
277 		   && (((VALUE) & ~2147483647) == 0			\
278 		       || ((VALUE) & ~2147483647) == ~2147483647))	\
279    : (C) == 'M' ? ((((VALUE) & ~0x0000ffff) != 0)			\
280 		   && (((VALUE) & ~0x0000ffff) != ~0x0000ffff)		\
281 		   && (((VALUE) & 0x0000ffff) != 0			\
282 		       || (((VALUE) & ~2147483647) != 0			\
283 			   && ((VALUE) & ~2147483647) != ~2147483647)))	\
284    : (C) == 'N' ? ((((VALUE) & 0xffff) == 0xffff)			\
285 		   || (((VALUE) & 0xffff0000) == 0xffff0000))		\
286    : (C) == 'O' ? ((unsigned HOST_WIDE_INT) ((VALUE) + 0x20) < 0x40)	\
287    : 0)
288 
289 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C)				\
290   ((C) == 'G'								\
291    && (VALUE) == CONST0_RTX (GET_MODE (VALUE)))
292 
293 /* `R' is for memory references which take 1 word for the instruction.  */
294 
295 #define EXTRA_CONSTRAINT(OP,CODE)					\
296   (((CODE) == 'R')	  ? simple_memory_operand (OP, GET_MODE (OP))	\
297    : FALSE)
298 
299 
300 /* Basic Stack Layout.  */
301 
302 #define STACK_GROWS_DOWNWARD
303 
304 #define FRAME_GROWS_DOWNWARD 0
305 
306 #define STARTING_FRAME_OFFSET						\
307   (current_function_outgoing_args_size)
308 
309 /* Use the default value zero.  */
310 /* #define STACK_POINTER_OFFSET 0 */
311 
312 #define FIRST_PARM_OFFSET(FNDECL) 0
313 
314 /* The return address for the current frame is in r31 if this is a leaf
315    function.  Otherwise, it is on the stack.  It is at a variable offset
316    from sp/fp/ap, so we define a fake hard register rap which is a
317    pointer to the return address on the stack.  This always gets eliminated
318    during reload to be either the frame pointer or the stack pointer plus
319    an offset.  */
320 
321 #define RETURN_ADDR_RTX(count, frame)                                   \
322   (((count) == 0)                                                       \
323    ? (leaf_function_p ()                                                \
324       ? gen_rtx_REG (Pmode, GP_REG_FIRST + 31)                          \
325       : gen_rtx_MEM (Pmode, gen_rtx_REG (Pmode,                         \
326                                          RETURN_ADDRESS_POINTER_REGNUM))) \
327     : (rtx) 0)
328 
329 /* Before the prologue, RA lives in r31.  */
330 #define INCOMING_RETURN_ADDR_RTX  gen_rtx_REG (VOIDmode, GP_REG_FIRST + 31)
331 
332 
333 /* Register That Address the Stack Frame.  */
334 
335 #define STACK_POINTER_REGNUM 		(GP_REG_FIRST + 29)
336 #define FRAME_POINTER_REGNUM 		(GP_REG_FIRST + 1)
337 #define HARD_FRAME_POINTER_REGNUM 	(GP_REG_FIRST + 27)
338 #define ARG_POINTER_REGNUM 		GP_REG_FIRST
339 #define RETURN_ADDRESS_POINTER_REGNUM	RAP_REG_NUM
340 #define STATIC_CHAIN_REGNUM 		(GP_REG_FIRST + 2)
341 
342 
343 /* Eliminating the Frame Pointer and the Arg Pointer.  */
344 
345 #define FRAME_POINTER_REQUIRED 0
346 
347 #define ELIMINABLE_REGS							\
348 {{ ARG_POINTER_REGNUM,   STACK_POINTER_REGNUM},				\
349  { ARG_POINTER_REGNUM,   HARD_FRAME_POINTER_REGNUM},			\
350  { RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
351  { RETURN_ADDRESS_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},		\
352  { RETURN_ADDRESS_POINTER_REGNUM, GP_REG_FIRST + 31},			\
353  { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},				\
354  { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
355 
356 
357 /* We can always eliminate to the frame pointer.  We can eliminate to the
358    stack pointer unless a frame pointer is needed.  */
359 
360 #define CAN_ELIMINATE(FROM, TO)						\
361   (((FROM) == RETURN_ADDRESS_POINTER_REGNUM && (! leaf_function_p ()	\
362    || (TO == GP_REG_FIRST + 31 && leaf_function_p)))   			\
363   || ((FROM) != RETURN_ADDRESS_POINTER_REGNUM				\
364    && ((TO) == HARD_FRAME_POINTER_REGNUM 				\
365    || ((TO) == STACK_POINTER_REGNUM && ! frame_pointer_needed))))
366 
367 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET)			 \
368         (OFFSET) = iq2000_initial_elimination_offset ((FROM), (TO))
369 
370 /* Passing Function Arguments on the Stack.  */
371 
372 /* #define PUSH_ROUNDING(BYTES) 0 */
373 
374 #define ACCUMULATE_OUTGOING_ARGS 1
375 
376 #define REG_PARM_STACK_SPACE(FNDECL) 0
377 
378 #define OUTGOING_REG_PARM_STACK_SPACE
379 
380 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
381 
382 
383 /* Function Arguments in Registers.  */
384 
385 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
386   function_arg (& CUM, MODE, TYPE, NAMED)
387 
388 #define MAX_ARGS_IN_REGISTERS 8
389 
390 typedef struct iq2000_args
391 {
392   int gp_reg_found;		/* Whether a gp register was found yet.  */
393   unsigned int arg_number;	/* Argument number.  */
394   unsigned int arg_words;	/* # total words the arguments take.  */
395   unsigned int fp_arg_words;	/* # words for FP args (IQ2000_EABI only).  */
396   int last_arg_fp;		/* Nonzero if last arg was FP (EABI only).  */
397   int fp_code;			/* Mode of FP arguments.  */
398   unsigned int num_adjusts;	/* Number of adjustments made.  */
399 				/* Adjustments made to args pass in regs.  */
400   struct rtx_def * adjust[MAX_ARGS_IN_REGISTERS * 2];
401 } CUMULATIVE_ARGS;
402 
403 /* Initialize a variable CUM of type CUMULATIVE_ARGS
404    for a call to a function whose data type is FNTYPE.
405    For a library call, FNTYPE is 0.  */
406 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
407   init_cumulative_args (& CUM, FNTYPE, LIBNAME)				\
408 
409 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)			\
410   function_arg_advance (& CUM, MODE, TYPE, NAMED)
411 
412 #define FUNCTION_ARG_PADDING(MODE, TYPE)				\
413   (! BYTES_BIG_ENDIAN							\
414    ? upward								\
415    : (((MODE) == BLKmode						\
416        ? ((TYPE) && TREE_CODE (TYPE_SIZE (TYPE)) == INTEGER_CST		\
417 	  && int_size_in_bytes (TYPE) < (PARM_BOUNDARY / BITS_PER_UNIT))\
418        : (GET_MODE_BITSIZE (MODE) < PARM_BOUNDARY			\
419 	  && (GET_MODE_CLASS (MODE) == MODE_INT)))			\
420       ? downward : upward))
421 
422 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE)				\
423   (((TYPE) != 0)							\
424 	? ((TYPE_ALIGN(TYPE) <= PARM_BOUNDARY)				\
425 		? PARM_BOUNDARY						\
426 		: TYPE_ALIGN(TYPE))					\
427 	: ((GET_MODE_ALIGNMENT(MODE) <= PARM_BOUNDARY)			\
428 		? PARM_BOUNDARY						\
429 		: GET_MODE_ALIGNMENT(MODE)))
430 
431 #define FUNCTION_ARG_REGNO_P(N)						\
432   (((N) >= GP_ARG_FIRST && (N) <= GP_ARG_LAST))
433 
434 
435 /* How Scalar Function Values are Returned.  */
436 
437 #define FUNCTION_VALUE(VALTYPE, FUNC)	iq2000_function_value (VALTYPE, FUNC)
438 
439 #define LIBCALL_VALUE(MODE)				\
440   gen_rtx_REG (((GET_MODE_CLASS (MODE) != MODE_INT	\
441 		 || GET_MODE_SIZE (MODE) >= 4)		\
442 		? (MODE)				\
443 		: SImode),				\
444 	       GP_RETURN)
445 
446 /* On the IQ2000, R2 and R3 are the only register thus used.  */
447 
448 #define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_RETURN)
449 
450 
451 /* How Large Values are Returned.  */
452 
453 #define DEFAULT_PCC_STRUCT_RETURN 0
454 
455 /* Function Entry and Exit.  */
456 
457 #define EXIT_IGNORE_STACK 1
458 
459 
460 /* Generating Code for Profiling.  */
461 
462 #define FUNCTION_PROFILER(FILE, LABELNO)				\
463 {									\
464   fprintf (FILE, "\t.set\tnoreorder\n");				\
465   fprintf (FILE, "\t.set\tnoat\n");					\
466   fprintf (FILE, "\tmove\t%s,%s\t\t# save current return address\n",	\
467 	   reg_names[GP_REG_FIRST + 1], reg_names[GP_REG_FIRST + 31]);	\
468   fprintf (FILE, "\tjal\t_mcount\n");					\
469   fprintf (FILE,							\
470 	   "\t%s\t%s,%s,%d\t\t# _mcount pops 2 words from  stack\n",	\
471 	   "subu",							\
472 	   reg_names[STACK_POINTER_REGNUM],				\
473 	   reg_names[STACK_POINTER_REGNUM],				\
474 	   Pmode == DImode ? 16 : 8);					\
475   fprintf (FILE, "\t.set\treorder\n");					\
476   fprintf (FILE, "\t.set\tat\n");					\
477 }
478 
479 
480 /* Implementing the Varargs Macros.  */
481 
482 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
483   iq2000_va_start (valist, nextarg)
484 
485 
486 /* Trampolines for Nested Functions.  */
487 
488 /* A C statement to output, on the stream FILE, assembler code for a
489    block of data that contains the constant parts of a trampoline.
490    This code should not include a label--the label is taken care of
491    automatically.  */
492 
493 #define TRAMPOLINE_TEMPLATE(STREAM)					 \
494 {									 \
495   fprintf (STREAM, "\t.word\t0x03e00821\t\t# move   $1,$31\n");		\
496   fprintf (STREAM, "\t.word\t0x04110001\t\t# bgezal $0,.+8\n");		\
497   fprintf (STREAM, "\t.word\t0x00000000\t\t# nop\n");			\
498   if (Pmode == DImode)							\
499     {									\
500       fprintf (STREAM, "\t.word\t0xdfe30014\t\t# ld     $3,20($31)\n");	\
501       fprintf (STREAM, "\t.word\t0xdfe2001c\t\t# ld     $2,28($31)\n");	\
502     }									\
503   else									\
504     {									\
505       fprintf (STREAM, "\t.word\t0x8fe30014\t\t# lw     $3,20($31)\n");	\
506       fprintf (STREAM, "\t.word\t0x8fe20018\t\t# lw     $2,24($31)\n");	\
507     }									\
508   fprintf (STREAM, "\t.word\t0x0060c821\t\t# move   $25,$3 (abicalls)\n"); \
509   fprintf (STREAM, "\t.word\t0x00600008\t\t# jr     $3\n");		\
510   fprintf (STREAM, "\t.word\t0x0020f821\t\t# move   $31,$1\n");		\
511   fprintf (STREAM, "\t.word\t0x00000000\t\t# <function address>\n"); \
512   fprintf (STREAM, "\t.word\t0x00000000\t\t# <static chain value>\n"); \
513 }
514 
515 #define TRAMPOLINE_SIZE (40)
516 
517 #define TRAMPOLINE_ALIGNMENT 32
518 
519 #define INITIALIZE_TRAMPOLINE(ADDR, FUNC, CHAIN)			    \
520 {									    \
521   rtx addr = ADDR;							    \
522     emit_move_insn (gen_rtx_MEM (SImode, plus_constant (addr, 32)), FUNC); \
523     emit_move_insn (gen_rtx_MEM (SImode, plus_constant (addr, 36)), CHAIN);\
524 }
525 
526 
527 /* Addressing Modes.  */
528 
529 #define CONSTANT_ADDRESS_P(X)						\
530   (   (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF		\
531     || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH		\
532     || (GET_CODE (X) == CONST)))
533 
534 #define MAX_REGS_PER_ADDRESS 1
535 
536 #ifdef REG_OK_STRICT
537 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)		\
538   {							\
539     if (iq2000_legitimate_address_p (MODE, X, 1))	\
540       goto ADDR;					\
541   }
542 #else
543 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)		\
544   {							\
545     if (iq2000_legitimate_address_p (MODE, X, 0))	\
546       goto ADDR;					\
547   }
548 #endif
549 
550 #define REG_OK_FOR_INDEX_P(X) 0
551 
552 
553 /* For the IQ2000, transform:
554 
555 	memory(X + <large int>)
556    into:
557 	Y = <large int> & ~0x7fff;
558 	Z = X + Y
559 	memory (Z + (<large int> & 0x7fff));
560 */
561 
562 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN)				\
563 {									\
564   rtx xinsn = (X);							\
565 									\
566   if (TARGET_DEBUG_B_MODE)						\
567     {									\
568       GO_PRINTF ("\n========== LEGITIMIZE_ADDRESS\n");			\
569       GO_DEBUG_RTX (xinsn);						\
570     }									\
571 									\
572   if (iq2000_check_split (X, MODE))		\
573     {									\
574       X = gen_rtx_LO_SUM (Pmode,					\
575 			  copy_to_mode_reg (Pmode,			\
576 					    gen_rtx_HIGH (Pmode, X)),	\
577 			  X);						\
578       goto WIN;								\
579     }									\
580 									\
581   if (GET_CODE (xinsn) == PLUS)						\
582     {									\
583       rtx xplus0 = XEXP (xinsn, 0);					\
584       rtx xplus1 = XEXP (xinsn, 1);					\
585       enum rtx_code code0 = GET_CODE (xplus0);				\
586       enum rtx_code code1 = GET_CODE (xplus1);				\
587 									\
588       if (code0 != REG && code1 == REG)					\
589 	{								\
590 	  xplus0 = XEXP (xinsn, 1);					\
591 	  xplus1 = XEXP (xinsn, 0);					\
592 	  code0 = GET_CODE (xplus0);					\
593 	  code1 = GET_CODE (xplus1);					\
594 	}								\
595 									\
596       if (code0 == REG && REG_MODE_OK_FOR_BASE_P (xplus0, MODE)		\
597 	  && code1 == CONST_INT && !SMALL_INT (xplus1))			\
598 	{								\
599 	  rtx int_reg = gen_reg_rtx (Pmode);				\
600 	  rtx ptr_reg = gen_reg_rtx (Pmode);				\
601 									\
602 	  emit_move_insn (int_reg,					\
603 			  GEN_INT (INTVAL (xplus1) & ~ 0x7fff));	\
604 									\
605 	  emit_insn (gen_rtx_SET (VOIDmode,				\
606 				  ptr_reg,				\
607 				  gen_rtx_PLUS (Pmode, xplus0, int_reg))); \
608 									\
609 	  X = plus_constant (ptr_reg, INTVAL (xplus1) & 0x7fff);	\
610 	  goto WIN;							\
611 	}								\
612     }									\
613 									\
614   if (TARGET_DEBUG_B_MODE)						\
615     GO_PRINTF ("LEGITIMIZE_ADDRESS could not fix.\n");			\
616 }
617 
618 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {}
619 
620 #define LEGITIMATE_CONSTANT_P(X) (1)
621 
622 
623 /* Describing Relative Costs of Operations.  */
624 
625 #define REGISTER_MOVE_COST(MODE, FROM, TO)	2
626 
627 #define MEMORY_MOVE_COST(MODE,CLASS,TO_P)	\
628   (TO_P ? 2 : 16)
629 
630 #define BRANCH_COST 2
631 
632 #define SLOW_BYTE_ACCESS 1
633 
634 #define NO_FUNCTION_CSE 1
635 
636 #define ADJUST_COST(INSN,LINK,DEP_INSN,COST)				\
637   if (REG_NOTE_KIND (LINK) != 0)					\
638     (COST) = 0; /* Anti or output dependence.  */
639 
640 
641 /* Dividing the output into sections.  */
642 
643 #define TEXT_SECTION_ASM_OP	"\t.text"	/* Instructions.  */
644 
645 #define DATA_SECTION_ASM_OP	"\t.data"	/* Large data.  */
646 
647 
648 /* The Overall Framework of an Assembler File.  */
649 
650 #define ASM_COMMENT_START " #"
651 
652 #define ASM_APP_ON "#APP\n"
653 
654 #define ASM_APP_OFF "#NO_APP\n"
655 
656 
657 /* Output and Generation of Labels.  */
658 
659 #undef ASM_GENERATE_INTERNAL_LABEL
660 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM)			\
661   sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long) (NUM))
662 
663 #define GLOBAL_ASM_OP "\t.globl\t"
664 
665 
666 /* Output of Assembler Instructions.  */
667 
668 #define REGISTER_NAMES							\
669 {									\
670  "%0",   "%1",   "%2",   "%3",   "%4",   "%5",   "%6",   "%7",		\
671  "%8",   "%9",   "%10",  "%11",  "%12",  "%13",  "%14",  "%15",		\
672  "%16",  "%17",  "%18",  "%19",  "%20",  "%21",  "%22",  "%23",		\
673  "%24",  "%25",  "%26",  "%27",  "%28",  "%29",  "%30",  "%31",  "%rap"	\
674 };
675 
676 #define ADDITIONAL_REGISTER_NAMES					\
677 {									\
678   { "%0",	 0 + GP_REG_FIRST },					\
679   { "%1",	 1 + GP_REG_FIRST },					\
680   { "%2",	 2 + GP_REG_FIRST },					\
681   { "%3",	 3 + GP_REG_FIRST },					\
682   { "%4",	 4 + GP_REG_FIRST },					\
683   { "%5",	 5 + GP_REG_FIRST },					\
684   { "%6",	 6 + GP_REG_FIRST },					\
685   { "%7",	 7 + GP_REG_FIRST },					\
686   { "%8",	 8 + GP_REG_FIRST },					\
687   { "%9",	 9 + GP_REG_FIRST },					\
688   { "%10",	10 + GP_REG_FIRST },					\
689   { "%11",	11 + GP_REG_FIRST },					\
690   { "%12",	12 + GP_REG_FIRST },					\
691   { "%13",	13 + GP_REG_FIRST },					\
692   { "%14",	14 + GP_REG_FIRST },					\
693   { "%15",	15 + GP_REG_FIRST },					\
694   { "%16",	16 + GP_REG_FIRST },					\
695   { "%17",	17 + GP_REG_FIRST },					\
696   { "%18",	18 + GP_REG_FIRST },					\
697   { "%19",	19 + GP_REG_FIRST },					\
698   { "%20",	20 + GP_REG_FIRST },					\
699   { "%21",	21 + GP_REG_FIRST },					\
700   { "%22",	22 + GP_REG_FIRST },					\
701   { "%23",	23 + GP_REG_FIRST },					\
702   { "%24",	24 + GP_REG_FIRST },					\
703   { "%25",	25 + GP_REG_FIRST },					\
704   { "%26",	26 + GP_REG_FIRST },					\
705   { "%27",	27 + GP_REG_FIRST },					\
706   { "%28",	28 + GP_REG_FIRST },					\
707   { "%29",	29 + GP_REG_FIRST },					\
708   { "%30",	27 + GP_REG_FIRST },					\
709   { "%31",	31 + GP_REG_FIRST },					\
710   { "%rap",	32 + GP_REG_FIRST },					\
711 }
712 
713 /* Check if the current insn needs a nop in front of it
714    because of load delays, and also update the delay slot statistics.  */
715 
716 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS)			\
717   final_prescan_insn (INSN, OPVEC, NOPERANDS)
718 
719 /* See iq2000.c for the IQ2000 specific codes.  */
720 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
721 
722 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) iq2000_print_operand_punct[CODE]
723 
724 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
725 
726 #define DBR_OUTPUT_SEQEND(STREAM)					\
727 do									\
728   {									\
729     fputs ("\n", STREAM);						\
730   }									\
731 while (0)
732 
733 #define LOCAL_LABEL_PREFIX	"$"
734 
735 #define USER_LABEL_PREFIX	""
736 
737 
738 /* Output of dispatch tables.  */
739 
740 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL)		\
741   do									\
742     {									\
743       fprintf (STREAM, "\t%s\t%sL%d\n",					\
744 	       Pmode == DImode ? ".dword" : ".word",			\
745 	       LOCAL_LABEL_PREFIX, VALUE);				\
746     }									\
747   while (0)
748 
749 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE)				\
750   fprintf (STREAM, "\t%s\t%sL%d\n",					\
751 	   Pmode == DImode ? ".dword" : ".word",			\
752 	   LOCAL_LABEL_PREFIX,						\
753 	   VALUE)
754 
755 
756 /* Assembler Commands for Alignment.  */
757 
758 #undef ASM_OUTPUT_SKIP
759 #define ASM_OUTPUT_SKIP(STREAM,SIZE)					\
760   fprintf (STREAM, "\t.space\t%u\n", (SIZE))
761 
762 #define ASM_OUTPUT_ALIGN(STREAM,LOG)					\
763   if ((LOG) != 0)                       				\
764     fprintf (STREAM, "\t.balign %d\n", 1<<(LOG))
765 
766 
767 /* Macros Affecting all Debug Formats.  */
768 
769 #define DEBUGGER_AUTO_OFFSET(X)  \
770   iq2000_debugger_offset (X, (HOST_WIDE_INT) 0)
771 
772 #define DEBUGGER_ARG_OFFSET(OFFSET, X)  \
773   iq2000_debugger_offset (X, (HOST_WIDE_INT) OFFSET)
774 
775 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
776 
777 #define DWARF2_DEBUGGING_INFO 1
778 
779 
780 /* Miscellaneous Parameters.  */
781 
782 #define CASE_VECTOR_MODE SImode
783 
784 #define WORD_REGISTER_OPERATIONS
785 
786 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
787 
788 #define MOVE_MAX 4
789 
790 #define MAX_MOVE_MAX 8
791 
792 #define SHIFT_COUNT_TRUNCATED 1
793 
794 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
795 
796 #define STORE_FLAG_VALUE 1
797 
798 #define Pmode SImode
799 
800 #define FUNCTION_MODE SImode
801 
802 /* Standard GCC variables that we reference.  */
803 
804 extern char	call_used_regs[];
805 
806 /* IQ2000 external variables defined in iq2000.c.  */
807 
808 /* Comparison type.  */
809 enum cmp_type
810 {
811   CMP_SI,				/* Compare four byte integers.  */
812   CMP_DI,				/* Compare eight byte integers.  */
813   CMP_SF,				/* Compare single precision floats.  */
814   CMP_DF,				/* Compare double precision floats.  */
815   CMP_MAX				/* Max comparison type.  */
816 };
817 
818 /* Types of delay slot.  */
819 enum delay_type
820 {
821   DELAY_NONE,				/* No delay slot.  */
822   DELAY_LOAD,				/* Load from memory delay.  */
823   DELAY_FCMP				/* Delay after doing c.<xx>.{d,s}.  */
824 };
825 
826 /* Which processor to schedule for.  */
827 
828 enum processor_type
829 {
830   PROCESSOR_DEFAULT,
831   PROCESSOR_IQ2000,
832   PROCESSOR_IQ10
833 };
834 
835 /* Recast the cpu class to be the cpu attribute.  */
836 #define iq2000_cpu_attr ((enum attr_cpu) iq2000_tune)
837 
838 #define BITMASK_UPPER16	((unsigned long) 0xffff << 16)	/* 0xffff0000 */
839 #define BITMASK_LOWER16	((unsigned long) 0xffff)	/* 0x0000ffff */
840 
841 
842 #define GENERATE_BRANCHLIKELY  (ISA_HAS_BRANCHLIKELY)
843 
844 /* Macros to decide whether certain features are available or not,
845    depending on the instruction set architecture level.  */
846 
847 #define BRANCH_LIKELY_P()	GENERATE_BRANCHLIKELY
848 
849 /* ISA has branch likely instructions.  */
850 #define ISA_HAS_BRANCHLIKELY	(iq2000_isa == 1)
851 
852 
853 #undef ASM_SPEC
854 
855 
856 /* The mapping from gcc register number to DWARF 2 CFA column number.  */
857 #define DWARF_FRAME_REGNUM(REG)        (REG)
858 
859 /* The DWARF 2 CFA column which tracks the return address.  */
860 #define DWARF_FRAME_RETURN_COLUMN (GP_REG_FIRST + 31)
861 
862 /* Describe how we implement __builtin_eh_return.  */
863 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
864 
865 /* The EH_RETURN_STACKADJ_RTX macro returns RTL which describes the
866    location used to store the amount to adjust the stack.  This is
867    usually a register that is available from end of the function's body
868    to the end of the epilogue. Thus, this cannot be a register used as a
869    temporary by the epilogue.
870 
871    This must be an integer register.  */
872 #define EH_RETURN_STACKADJ_REGNO        3
873 #define EH_RETURN_STACKADJ_RTX  gen_rtx_REG (Pmode, EH_RETURN_STACKADJ_REGNO)
874 
875 /* The EH_RETURN_HANDLER_RTX macro returns RTL which describes the
876    location used to store the address the processor should jump to
877    catch exception.  This is usually a registers that is available from
878    end of the function's body to the end of the epilogue. Thus, this
879    cannot be a register used as a temporary by the epilogue.
880 
881    This must be an address register.  */
882 #define EH_RETURN_HANDLER_REGNO         26
883 #define EH_RETURN_HANDLER_RTX           \
884         gen_rtx_REG (Pmode, EH_RETURN_HANDLER_REGNO)
885 
886 /* Offsets recorded in opcodes are a multiple of this alignment factor.  */
887 #define DWARF_CIE_DATA_ALIGNMENT 4
888 
889 /* For IQ2000, width of a floating point register.  */
890 #define UNITS_PER_FPREG 4
891 
892 /* Force right-alignment for small varargs in 32 bit little_endian mode */
893 
894 #define PAD_VARARGS_DOWN !BYTES_BIG_ENDIAN
895 
896 /* Internal macros to classify a register number as to whether it's a
897    general purpose register, a floating point register, a
898    multiply/divide register, or a status register.  */
899 
900 #define GP_REG_FIRST 0
901 #define GP_REG_LAST  31
902 #define GP_REG_NUM   (GP_REG_LAST - GP_REG_FIRST + 1)
903 
904 #define RAP_REG_NUM   32
905 #define AT_REGNUM	(GP_REG_FIRST + 1)
906 
907 #define GP_REG_P(REGNO)	\
908   ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
909 
910 /* IQ2000 registers used in prologue/epilogue code when the stack frame
911    is larger than 32K bytes.  These registers must come from the
912    scratch register set, and not used for passing and returning
913    arguments and any other information used in the calling sequence.  */
914 
915 #define IQ2000_TEMP1_REGNUM (GP_REG_FIRST + 12)
916 #define IQ2000_TEMP2_REGNUM (GP_REG_FIRST + 13)
917 
918 /* This macro is used later on in the file.  */
919 #define GR_REG_CLASS_P(CLASS)						\
920   ((CLASS) == GR_REGS)
921 
922 #define SMALL_INT(X) ((unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
923 #define SMALL_INT_UNSIGNED(X) ((unsigned HOST_WIDE_INT) (INTVAL (X)) < 0x10000)
924 
925 /* Certain machines have the property that some registers cannot be
926    copied to some other registers without using memory.  Define this
927    macro on those machines to be a C expression that is nonzero if
928    objects of mode MODE in registers of CLASS1 can only be copied to
929    registers of class CLASS2 by storing a register of CLASS1 into
930    memory and loading that memory location into a register of CLASS2.
931 
932    Do not define this macro if its value would always be zero.  */
933 
934 /* Return the maximum number of consecutive registers
935    needed to represent mode MODE in a register of class CLASS.  */
936 
937 #define CLASS_UNITS(mode, size)						\
938   ((GET_MODE_SIZE (mode) + (size) - 1) / (size))
939 
940 /* If defined, gives a class of registers that cannot be used as the
941    operand of a SUBREG that changes the mode of the object illegally.  */
942 
943 #define CLASS_CANNOT_CHANGE_MODE 0
944 
945 /* Defines illegal mode changes for CLASS_CANNOT_CHANGE_MODE.  */
946 
947 #define CLASS_CANNOT_CHANGE_MODE_P(FROM,TO) \
948   (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO))
949 
950 /* Make sure 4 words are always allocated on the stack.  */
951 
952 #ifndef STACK_ARGS_ADJUST
953 #define STACK_ARGS_ADJUST(SIZE)						\
954   {									\
955     if (SIZE.constant < 4 * UNITS_PER_WORD)				\
956       SIZE.constant = 4 * UNITS_PER_WORD;				\
957   }
958 #endif
959 
960 
961 /* Symbolic macros for the registers used to return integer and floating
962    point values.  */
963 
964 #define GP_RETURN (GP_REG_FIRST + 2)
965 
966 /* Symbolic macros for the first/last argument registers.  */
967 
968 #define GP_ARG_FIRST (GP_REG_FIRST + 4)
969 #define GP_ARG_LAST  (GP_REG_FIRST + 11)
970 
971 #define MAX_ARGS_IN_REGISTERS	8
972 
973 
974 /* Tell prologue and epilogue if register REGNO should be saved / restored.  */
975 
976 #define MUST_SAVE_REGISTER(regno) \
977  ((regs_ever_live[regno] && !call_used_regs[regno])			\
978   || (regno == HARD_FRAME_POINTER_REGNUM && frame_pointer_needed)	\
979   || (regno == (GP_REG_FIRST + 31) && regs_ever_live[GP_REG_FIRST + 31]))
980 
981 /* ALIGN FRAMES on double word boundaries */
982 #ifndef IQ2000_STACK_ALIGN
983 #define IQ2000_STACK_ALIGN(LOC) (((LOC) + 7) & ~7)
984 #endif
985 
986 
987 /* These assume that REGNO is a hard or pseudo reg number.
988    They give nonzero only if REGNO is a hard reg of the suitable class
989    or a pseudo reg currently allocated to a suitable hard reg.
990    These definitions are NOT overridden anywhere.  */
991 
992 #define BASE_REG_P(regno, mode)					\
993   (GP_REG_P (regno))
994 
995 #define GP_REG_OR_PSEUDO_STRICT_P(regno, mode)				    \
996   BASE_REG_P((regno < FIRST_PSEUDO_REGISTER) ? regno : reg_renumber[regno], \
997 	     (mode))
998 
999 #define GP_REG_OR_PSEUDO_NONSTRICT_P(regno, mode) \
1000   (((regno) >= FIRST_PSEUDO_REGISTER) || (BASE_REG_P ((regno), (mode))))
1001 
1002 #define REGNO_MODE_OK_FOR_BASE_P(regno, mode) \
1003   GP_REG_OR_PSEUDO_STRICT_P ((regno), (mode))
1004 
1005 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1006    and check its validity for a certain class.
1007    We have two alternate definitions for each of them.
1008    The usual definition accepts all pseudo regs; the other rejects them all.
1009    The symbol REG_OK_STRICT causes the latter definition to be used.
1010 
1011    Most source files want to accept pseudo regs in the hope that
1012    they will get allocated to the class that the insn wants them to be in.
1013    Some source files that are used after register allocation
1014    need to be strict.  */
1015 
1016 #ifndef REG_OK_STRICT
1017 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
1018   iq2000_reg_mode_ok_for_base_p (X, MODE, 0)
1019 #else
1020 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
1021   iq2000_reg_mode_ok_for_base_p (X, MODE, 1)
1022 #endif
1023 
1024 #if 1
1025 #define GO_PRINTF(x)	fprintf (stderr, (x))
1026 #define GO_PRINTF2(x,y)	fprintf (stderr, (x), (y))
1027 #define GO_DEBUG_RTX(x) debug_rtx (x)
1028 
1029 #else
1030 #define GO_PRINTF(x)
1031 #define GO_PRINTF2(x,y)
1032 #define GO_DEBUG_RTX(x)
1033 #endif
1034 
1035 /* If defined, modifies the length assigned to instruction INSN as a
1036    function of the context in which it is used.  LENGTH is an lvalue
1037    that contains the initially computed length of the insn and should
1038    be updated with the correct length of the insn.  */
1039 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
1040   ((LENGTH) = iq2000_adjust_insn_length ((INSN), (LENGTH)))
1041 
1042 
1043 
1044 
1045 /* How to tell the debugger about changes of source files.  */
1046 
1047 #ifndef SET_FILE_NUMBER
1048 #define SET_FILE_NUMBER() ++ num_source_filenames
1049 #endif
1050 
1051 /* This is how to output a note the debugger telling it the line number
1052    to which the following sequence of instructions corresponds.  */
1053 
1054 #ifndef LABEL_AFTER_LOC
1055 #define LABEL_AFTER_LOC(STREAM)
1056 #endif
1057 
1058 
1059 /* Default to -G 8 */
1060 #ifndef IQ2000_DEFAULT_GVALUE
1061 #define IQ2000_DEFAULT_GVALUE 8
1062 #endif
1063 
1064 #define SDATA_SECTION_ASM_OP	"\t.sdata"	/* Small data.  */
1065 
1066 
1067 /* List of all IQ2000 punctuation characters used by print_operand.  */
1068 extern char iq2000_print_operand_punct[256];
1069 
1070 /* The target cpu for optimization and scheduling.  */
1071 extern enum processor_type iq2000_tune;
1072 
1073 /* Which instruction set architecture to use.  */
1074 extern int iq2000_isa;
1075 
1076 /* Cached operands, and operator to compare for use in set/branch/trap
1077    on condition codes.  */
1078 extern rtx branch_cmp[2];
1079 
1080 /* What type of branch to use.  */
1081 extern enum cmp_type branch_type;
1082 
1083 enum iq2000_builtins
1084 {
1085   IQ2000_BUILTIN_ADO16,
1086   IQ2000_BUILTIN_CFC0,
1087   IQ2000_BUILTIN_CFC1,
1088   IQ2000_BUILTIN_CFC2,
1089   IQ2000_BUILTIN_CFC3,
1090   IQ2000_BUILTIN_CHKHDR,
1091   IQ2000_BUILTIN_CTC0,
1092   IQ2000_BUILTIN_CTC1,
1093   IQ2000_BUILTIN_CTC2,
1094   IQ2000_BUILTIN_CTC3,
1095   IQ2000_BUILTIN_LU,
1096   IQ2000_BUILTIN_LUC32L,
1097   IQ2000_BUILTIN_LUC64,
1098   IQ2000_BUILTIN_LUC64L,
1099   IQ2000_BUILTIN_LUK,
1100   IQ2000_BUILTIN_LULCK,
1101   IQ2000_BUILTIN_LUM32,
1102   IQ2000_BUILTIN_LUM32L,
1103   IQ2000_BUILTIN_LUM64,
1104   IQ2000_BUILTIN_LUM64L,
1105   IQ2000_BUILTIN_LUR,
1106   IQ2000_BUILTIN_LURL,
1107   IQ2000_BUILTIN_MFC0,
1108   IQ2000_BUILTIN_MFC1,
1109   IQ2000_BUILTIN_MFC2,
1110   IQ2000_BUILTIN_MFC3,
1111   IQ2000_BUILTIN_MRGB,
1112   IQ2000_BUILTIN_MTC0,
1113   IQ2000_BUILTIN_MTC1,
1114   IQ2000_BUILTIN_MTC2,
1115   IQ2000_BUILTIN_MTC3,
1116   IQ2000_BUILTIN_PKRL,
1117   IQ2000_BUILTIN_RAM,
1118   IQ2000_BUILTIN_RB,
1119   IQ2000_BUILTIN_RX,
1120   IQ2000_BUILTIN_SRRD,
1121   IQ2000_BUILTIN_SRRDL,
1122   IQ2000_BUILTIN_SRULC,
1123   IQ2000_BUILTIN_SRULCK,
1124   IQ2000_BUILTIN_SRWR,
1125   IQ2000_BUILTIN_SRWRU,
1126   IQ2000_BUILTIN_TRAPQF,
1127   IQ2000_BUILTIN_TRAPQFL,
1128   IQ2000_BUILTIN_TRAPQN,
1129   IQ2000_BUILTIN_TRAPQNE,
1130   IQ2000_BUILTIN_TRAPRE,
1131   IQ2000_BUILTIN_TRAPREL,
1132   IQ2000_BUILTIN_WB,
1133   IQ2000_BUILTIN_WBR,
1134   IQ2000_BUILTIN_WBU,
1135   IQ2000_BUILTIN_WX,
1136   IQ2000_BUILTIN_SYSCALL
1137 };
1138