1 //===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for C++ declarations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/ASTConsumer.h" 14 #include "clang/AST/ASTContext.h" 15 #include "clang/AST/ASTMutationListener.h" 16 #include "clang/AST/CXXInheritance.h" 17 #include "clang/AST/CharUnits.h" 18 #include "clang/AST/ComparisonCategories.h" 19 #include "clang/AST/DeclCXX.h" 20 #include "clang/AST/DeclTemplate.h" 21 #include "clang/AST/DynamicRecursiveASTVisitor.h" 22 #include "clang/AST/EvaluatedExprVisitor.h" 23 #include "clang/AST/Expr.h" 24 #include "clang/AST/ExprCXX.h" 25 #include "clang/AST/RecordLayout.h" 26 #include "clang/AST/StmtVisitor.h" 27 #include "clang/AST/TypeLoc.h" 28 #include "clang/AST/TypeOrdering.h" 29 #include "clang/Basic/AttributeCommonInfo.h" 30 #include "clang/Basic/PartialDiagnostic.h" 31 #include "clang/Basic/Specifiers.h" 32 #include "clang/Basic/TargetInfo.h" 33 #include "clang/Lex/LiteralSupport.h" 34 #include "clang/Lex/Preprocessor.h" 35 #include "clang/Sema/CXXFieldCollector.h" 36 #include "clang/Sema/DeclSpec.h" 37 #include "clang/Sema/EnterExpressionEvaluationContext.h" 38 #include "clang/Sema/Initialization.h" 39 #include "clang/Sema/Lookup.h" 40 #include "clang/Sema/Ownership.h" 41 #include "clang/Sema/ParsedTemplate.h" 42 #include "clang/Sema/Scope.h" 43 #include "clang/Sema/ScopeInfo.h" 44 #include "clang/Sema/SemaCUDA.h" 45 #include "clang/Sema/SemaInternal.h" 46 #include "clang/Sema/SemaObjC.h" 47 #include "clang/Sema/SemaOpenMP.h" 48 #include "clang/Sema/Template.h" 49 #include "llvm/ADT/ArrayRef.h" 50 #include "llvm/ADT/STLExtras.h" 51 #include "llvm/ADT/STLForwardCompat.h" 52 #include "llvm/ADT/StringExtras.h" 53 #include "llvm/Support/ConvertUTF.h" 54 #include "llvm/Support/SaveAndRestore.h" 55 #include <map> 56 #include <optional> 57 #include <set> 58 59 using namespace clang; 60 61 //===----------------------------------------------------------------------===// 62 // CheckDefaultArgumentVisitor 63 //===----------------------------------------------------------------------===// 64 65 namespace { 66 /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses 67 /// the default argument of a parameter to determine whether it 68 /// contains any ill-formed subexpressions. For example, this will 69 /// diagnose the use of local variables or parameters within the 70 /// default argument expression. 71 class CheckDefaultArgumentVisitor 72 : public ConstStmtVisitor<CheckDefaultArgumentVisitor, bool> { 73 Sema &S; 74 const Expr *DefaultArg; 75 76 public: 77 CheckDefaultArgumentVisitor(Sema &S, const Expr *DefaultArg) 78 : S(S), DefaultArg(DefaultArg) {} 79 80 bool VisitExpr(const Expr *Node); 81 bool VisitDeclRefExpr(const DeclRefExpr *DRE); 82 bool VisitCXXThisExpr(const CXXThisExpr *ThisE); 83 bool VisitLambdaExpr(const LambdaExpr *Lambda); 84 bool VisitPseudoObjectExpr(const PseudoObjectExpr *POE); 85 }; 86 87 /// VisitExpr - Visit all of the children of this expression. 88 bool CheckDefaultArgumentVisitor::VisitExpr(const Expr *Node) { 89 bool IsInvalid = false; 90 for (const Stmt *SubStmt : Node->children()) 91 if (SubStmt) 92 IsInvalid |= Visit(SubStmt); 93 return IsInvalid; 94 } 95 96 /// VisitDeclRefExpr - Visit a reference to a declaration, to 97 /// determine whether this declaration can be used in the default 98 /// argument expression. 99 bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(const DeclRefExpr *DRE) { 100 const ValueDecl *Decl = dyn_cast<ValueDecl>(DRE->getDecl()); 101 102 if (!isa<VarDecl, BindingDecl>(Decl)) 103 return false; 104 105 if (const auto *Param = dyn_cast<ParmVarDecl>(Decl)) { 106 // C++ [dcl.fct.default]p9: 107 // [...] parameters of a function shall not be used in default 108 // argument expressions, even if they are not evaluated. [...] 109 // 110 // C++17 [dcl.fct.default]p9 (by CWG 2082): 111 // [...] A parameter shall not appear as a potentially-evaluated 112 // expression in a default argument. [...] 113 // 114 if (DRE->isNonOdrUse() != NOUR_Unevaluated) 115 return S.Diag(DRE->getBeginLoc(), 116 diag::err_param_default_argument_references_param) 117 << Param->getDeclName() << DefaultArg->getSourceRange(); 118 } else if (auto *VD = Decl->getPotentiallyDecomposedVarDecl()) { 119 // C++ [dcl.fct.default]p7: 120 // Local variables shall not be used in default argument 121 // expressions. 122 // 123 // C++17 [dcl.fct.default]p7 (by CWG 2082): 124 // A local variable shall not appear as a potentially-evaluated 125 // expression in a default argument. 126 // 127 // C++20 [dcl.fct.default]p7 (DR as part of P0588R1, see also CWG 2346): 128 // Note: A local variable cannot be odr-used (6.3) in a default 129 // argument. 130 // 131 if (VD->isLocalVarDecl() && !DRE->isNonOdrUse()) 132 return S.Diag(DRE->getBeginLoc(), 133 diag::err_param_default_argument_references_local) 134 << Decl << DefaultArg->getSourceRange(); 135 } 136 return false; 137 } 138 139 /// VisitCXXThisExpr - Visit a C++ "this" expression. 140 bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(const CXXThisExpr *ThisE) { 141 // C++ [dcl.fct.default]p8: 142 // The keyword this shall not be used in a default argument of a 143 // member function. 144 return S.Diag(ThisE->getBeginLoc(), 145 diag::err_param_default_argument_references_this) 146 << ThisE->getSourceRange(); 147 } 148 149 bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr( 150 const PseudoObjectExpr *POE) { 151 bool Invalid = false; 152 for (const Expr *E : POE->semantics()) { 153 // Look through bindings. 154 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) { 155 E = OVE->getSourceExpr(); 156 assert(E && "pseudo-object binding without source expression?"); 157 } 158 159 Invalid |= Visit(E); 160 } 161 return Invalid; 162 } 163 164 bool CheckDefaultArgumentVisitor::VisitLambdaExpr(const LambdaExpr *Lambda) { 165 // [expr.prim.lambda.capture]p9 166 // a lambda-expression appearing in a default argument cannot implicitly or 167 // explicitly capture any local entity. Such a lambda-expression can still 168 // have an init-capture if any full-expression in its initializer satisfies 169 // the constraints of an expression appearing in a default argument. 170 bool Invalid = false; 171 for (const LambdaCapture &LC : Lambda->captures()) { 172 if (!Lambda->isInitCapture(&LC)) 173 return S.Diag(LC.getLocation(), diag::err_lambda_capture_default_arg); 174 // Init captures are always VarDecl. 175 auto *D = cast<VarDecl>(LC.getCapturedVar()); 176 Invalid |= Visit(D->getInit()); 177 } 178 return Invalid; 179 } 180 } // namespace 181 182 void 183 Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc, 184 const CXXMethodDecl *Method) { 185 // If we have an MSAny spec already, don't bother. 186 if (!Method || ComputedEST == EST_MSAny) 187 return; 188 189 const FunctionProtoType *Proto 190 = Method->getType()->getAs<FunctionProtoType>(); 191 Proto = Self->ResolveExceptionSpec(CallLoc, Proto); 192 if (!Proto) 193 return; 194 195 ExceptionSpecificationType EST = Proto->getExceptionSpecType(); 196 197 // If we have a throw-all spec at this point, ignore the function. 198 if (ComputedEST == EST_None) 199 return; 200 201 if (EST == EST_None && Method->hasAttr<NoThrowAttr>()) 202 EST = EST_BasicNoexcept; 203 204 switch (EST) { 205 case EST_Unparsed: 206 case EST_Uninstantiated: 207 case EST_Unevaluated: 208 llvm_unreachable("should not see unresolved exception specs here"); 209 210 // If this function can throw any exceptions, make a note of that. 211 case EST_MSAny: 212 case EST_None: 213 // FIXME: Whichever we see last of MSAny and None determines our result. 214 // We should make a consistent, order-independent choice here. 215 ClearExceptions(); 216 ComputedEST = EST; 217 return; 218 case EST_NoexceptFalse: 219 ClearExceptions(); 220 ComputedEST = EST_None; 221 return; 222 // FIXME: If the call to this decl is using any of its default arguments, we 223 // need to search them for potentially-throwing calls. 224 // If this function has a basic noexcept, it doesn't affect the outcome. 225 case EST_BasicNoexcept: 226 case EST_NoexceptTrue: 227 case EST_NoThrow: 228 return; 229 // If we're still at noexcept(true) and there's a throw() callee, 230 // change to that specification. 231 case EST_DynamicNone: 232 if (ComputedEST == EST_BasicNoexcept) 233 ComputedEST = EST_DynamicNone; 234 return; 235 case EST_DependentNoexcept: 236 llvm_unreachable( 237 "should not generate implicit declarations for dependent cases"); 238 case EST_Dynamic: 239 break; 240 } 241 assert(EST == EST_Dynamic && "EST case not considered earlier."); 242 assert(ComputedEST != EST_None && 243 "Shouldn't collect exceptions when throw-all is guaranteed."); 244 ComputedEST = EST_Dynamic; 245 // Record the exceptions in this function's exception specification. 246 for (const auto &E : Proto->exceptions()) 247 if (ExceptionsSeen.insert(Self->Context.getCanonicalType(E)).second) 248 Exceptions.push_back(E); 249 } 250 251 void Sema::ImplicitExceptionSpecification::CalledStmt(Stmt *S) { 252 if (!S || ComputedEST == EST_MSAny) 253 return; 254 255 // FIXME: 256 // 257 // C++0x [except.spec]p14: 258 // [An] implicit exception-specification specifies the type-id T if and 259 // only if T is allowed by the exception-specification of a function directly 260 // invoked by f's implicit definition; f shall allow all exceptions if any 261 // function it directly invokes allows all exceptions, and f shall allow no 262 // exceptions if every function it directly invokes allows no exceptions. 263 // 264 // Note in particular that if an implicit exception-specification is generated 265 // for a function containing a throw-expression, that specification can still 266 // be noexcept(true). 267 // 268 // Note also that 'directly invoked' is not defined in the standard, and there 269 // is no indication that we should only consider potentially-evaluated calls. 270 // 271 // Ultimately we should implement the intent of the standard: the exception 272 // specification should be the set of exceptions which can be thrown by the 273 // implicit definition. For now, we assume that any non-nothrow expression can 274 // throw any exception. 275 276 if (Self->canThrow(S)) 277 ComputedEST = EST_None; 278 } 279 280 ExprResult Sema::ConvertParamDefaultArgument(ParmVarDecl *Param, Expr *Arg, 281 SourceLocation EqualLoc) { 282 if (RequireCompleteType(Param->getLocation(), Param->getType(), 283 diag::err_typecheck_decl_incomplete_type)) 284 return true; 285 286 // C++ [dcl.fct.default]p5 287 // A default argument expression is implicitly converted (clause 288 // 4) to the parameter type. The default argument expression has 289 // the same semantic constraints as the initializer expression in 290 // a declaration of a variable of the parameter type, using the 291 // copy-initialization semantics (8.5). 292 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, 293 Param); 294 InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(), 295 EqualLoc); 296 InitializationSequence InitSeq(*this, Entity, Kind, Arg); 297 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg); 298 if (Result.isInvalid()) 299 return true; 300 Arg = Result.getAs<Expr>(); 301 302 CheckCompletedExpr(Arg, EqualLoc); 303 Arg = MaybeCreateExprWithCleanups(Arg); 304 305 return Arg; 306 } 307 308 void Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg, 309 SourceLocation EqualLoc) { 310 // Add the default argument to the parameter 311 Param->setDefaultArg(Arg); 312 313 // We have already instantiated this parameter; provide each of the 314 // instantiations with the uninstantiated default argument. 315 UnparsedDefaultArgInstantiationsMap::iterator InstPos 316 = UnparsedDefaultArgInstantiations.find(Param); 317 if (InstPos != UnparsedDefaultArgInstantiations.end()) { 318 for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I) 319 InstPos->second[I]->setUninstantiatedDefaultArg(Arg); 320 321 // We're done tracking this parameter's instantiations. 322 UnparsedDefaultArgInstantiations.erase(InstPos); 323 } 324 } 325 326 void 327 Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc, 328 Expr *DefaultArg) { 329 if (!param || !DefaultArg) 330 return; 331 332 ParmVarDecl *Param = cast<ParmVarDecl>(param); 333 UnparsedDefaultArgLocs.erase(Param); 334 335 // Default arguments are only permitted in C++ 336 if (!getLangOpts().CPlusPlus) { 337 Diag(EqualLoc, diag::err_param_default_argument) 338 << DefaultArg->getSourceRange(); 339 return ActOnParamDefaultArgumentError(param, EqualLoc, DefaultArg); 340 } 341 342 // Check for unexpanded parameter packs. 343 if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) 344 return ActOnParamDefaultArgumentError(param, EqualLoc, DefaultArg); 345 346 // C++11 [dcl.fct.default]p3 347 // A default argument expression [...] shall not be specified for a 348 // parameter pack. 349 if (Param->isParameterPack()) { 350 Diag(EqualLoc, diag::err_param_default_argument_on_parameter_pack) 351 << DefaultArg->getSourceRange(); 352 // Recover by discarding the default argument. 353 Param->setDefaultArg(nullptr); 354 return; 355 } 356 357 ExprResult Result = ConvertParamDefaultArgument(Param, DefaultArg, EqualLoc); 358 if (Result.isInvalid()) 359 return ActOnParamDefaultArgumentError(param, EqualLoc, DefaultArg); 360 361 DefaultArg = Result.getAs<Expr>(); 362 363 // Check that the default argument is well-formed 364 CheckDefaultArgumentVisitor DefaultArgChecker(*this, DefaultArg); 365 if (DefaultArgChecker.Visit(DefaultArg)) 366 return ActOnParamDefaultArgumentError(param, EqualLoc, DefaultArg); 367 368 SetParamDefaultArgument(Param, DefaultArg, EqualLoc); 369 } 370 371 void Sema::ActOnParamUnparsedDefaultArgument(Decl *param, 372 SourceLocation EqualLoc, 373 SourceLocation ArgLoc) { 374 if (!param) 375 return; 376 377 ParmVarDecl *Param = cast<ParmVarDecl>(param); 378 Param->setUnparsedDefaultArg(); 379 UnparsedDefaultArgLocs[Param] = ArgLoc; 380 } 381 382 void Sema::ActOnParamDefaultArgumentError(Decl *param, SourceLocation EqualLoc, 383 Expr *DefaultArg) { 384 if (!param) 385 return; 386 387 ParmVarDecl *Param = cast<ParmVarDecl>(param); 388 Param->setInvalidDecl(); 389 UnparsedDefaultArgLocs.erase(Param); 390 ExprResult RE; 391 if (DefaultArg) { 392 RE = CreateRecoveryExpr(EqualLoc, DefaultArg->getEndLoc(), {DefaultArg}, 393 Param->getType().getNonReferenceType()); 394 } else { 395 RE = CreateRecoveryExpr(EqualLoc, EqualLoc, {}, 396 Param->getType().getNonReferenceType()); 397 } 398 Param->setDefaultArg(RE.get()); 399 } 400 401 void Sema::CheckExtraCXXDefaultArguments(Declarator &D) { 402 // C++ [dcl.fct.default]p3 403 // A default argument expression shall be specified only in the 404 // parameter-declaration-clause of a function declaration or in a 405 // template-parameter (14.1). It shall not be specified for a 406 // parameter pack. If it is specified in a 407 // parameter-declaration-clause, it shall not occur within a 408 // declarator or abstract-declarator of a parameter-declaration. 409 bool MightBeFunction = D.isFunctionDeclarationContext(); 410 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) { 411 DeclaratorChunk &chunk = D.getTypeObject(i); 412 if (chunk.Kind == DeclaratorChunk::Function) { 413 if (MightBeFunction) { 414 // This is a function declaration. It can have default arguments, but 415 // keep looking in case its return type is a function type with default 416 // arguments. 417 MightBeFunction = false; 418 continue; 419 } 420 for (unsigned argIdx = 0, e = chunk.Fun.NumParams; argIdx != e; 421 ++argIdx) { 422 ParmVarDecl *Param = cast<ParmVarDecl>(chunk.Fun.Params[argIdx].Param); 423 if (Param->hasUnparsedDefaultArg()) { 424 std::unique_ptr<CachedTokens> Toks = 425 std::move(chunk.Fun.Params[argIdx].DefaultArgTokens); 426 SourceRange SR; 427 if (Toks->size() > 1) 428 SR = SourceRange((*Toks)[1].getLocation(), 429 Toks->back().getLocation()); 430 else 431 SR = UnparsedDefaultArgLocs[Param]; 432 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc) 433 << SR; 434 } else if (Param->getDefaultArg()) { 435 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc) 436 << Param->getDefaultArg()->getSourceRange(); 437 Param->setDefaultArg(nullptr); 438 } 439 } 440 } else if (chunk.Kind != DeclaratorChunk::Paren) { 441 MightBeFunction = false; 442 } 443 } 444 } 445 446 static bool functionDeclHasDefaultArgument(const FunctionDecl *FD) { 447 return llvm::any_of(FD->parameters(), [](ParmVarDecl *P) { 448 return P->hasDefaultArg() && !P->hasInheritedDefaultArg(); 449 }); 450 } 451 452 bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old, 453 Scope *S) { 454 bool Invalid = false; 455 456 // The declaration context corresponding to the scope is the semantic 457 // parent, unless this is a local function declaration, in which case 458 // it is that surrounding function. 459 DeclContext *ScopeDC = New->isLocalExternDecl() 460 ? New->getLexicalDeclContext() 461 : New->getDeclContext(); 462 463 // Find the previous declaration for the purpose of default arguments. 464 FunctionDecl *PrevForDefaultArgs = Old; 465 for (/**/; PrevForDefaultArgs; 466 // Don't bother looking back past the latest decl if this is a local 467 // extern declaration; nothing else could work. 468 PrevForDefaultArgs = New->isLocalExternDecl() 469 ? nullptr 470 : PrevForDefaultArgs->getPreviousDecl()) { 471 // Ignore hidden declarations. 472 if (!LookupResult::isVisible(*this, PrevForDefaultArgs)) 473 continue; 474 475 if (S && !isDeclInScope(PrevForDefaultArgs, ScopeDC, S) && 476 !New->isCXXClassMember()) { 477 // Ignore default arguments of old decl if they are not in 478 // the same scope and this is not an out-of-line definition of 479 // a member function. 480 continue; 481 } 482 483 if (PrevForDefaultArgs->isLocalExternDecl() != New->isLocalExternDecl()) { 484 // If only one of these is a local function declaration, then they are 485 // declared in different scopes, even though isDeclInScope may think 486 // they're in the same scope. (If both are local, the scope check is 487 // sufficient, and if neither is local, then they are in the same scope.) 488 continue; 489 } 490 491 // We found the right previous declaration. 492 break; 493 } 494 495 // C++ [dcl.fct.default]p4: 496 // For non-template functions, default arguments can be added in 497 // later declarations of a function in the same 498 // scope. Declarations in different scopes have completely 499 // distinct sets of default arguments. That is, declarations in 500 // inner scopes do not acquire default arguments from 501 // declarations in outer scopes, and vice versa. In a given 502 // function declaration, all parameters subsequent to a 503 // parameter with a default argument shall have default 504 // arguments supplied in this or previous declarations. A 505 // default argument shall not be redefined by a later 506 // declaration (not even to the same value). 507 // 508 // C++ [dcl.fct.default]p6: 509 // Except for member functions of class templates, the default arguments 510 // in a member function definition that appears outside of the class 511 // definition are added to the set of default arguments provided by the 512 // member function declaration in the class definition. 513 for (unsigned p = 0, NumParams = PrevForDefaultArgs 514 ? PrevForDefaultArgs->getNumParams() 515 : 0; 516 p < NumParams; ++p) { 517 ParmVarDecl *OldParam = PrevForDefaultArgs->getParamDecl(p); 518 ParmVarDecl *NewParam = New->getParamDecl(p); 519 520 bool OldParamHasDfl = OldParam ? OldParam->hasDefaultArg() : false; 521 bool NewParamHasDfl = NewParam->hasDefaultArg(); 522 523 if (OldParamHasDfl && NewParamHasDfl) { 524 unsigned DiagDefaultParamID = 525 diag::err_param_default_argument_redefinition; 526 527 // MSVC accepts that default parameters be redefined for member functions 528 // of template class. The new default parameter's value is ignored. 529 Invalid = true; 530 if (getLangOpts().MicrosoftExt) { 531 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(New); 532 if (MD && MD->getParent()->getDescribedClassTemplate()) { 533 // Merge the old default argument into the new parameter. 534 NewParam->setHasInheritedDefaultArg(); 535 if (OldParam->hasUninstantiatedDefaultArg()) 536 NewParam->setUninstantiatedDefaultArg( 537 OldParam->getUninstantiatedDefaultArg()); 538 else 539 NewParam->setDefaultArg(OldParam->getInit()); 540 DiagDefaultParamID = diag::ext_param_default_argument_redefinition; 541 Invalid = false; 542 } 543 } 544 545 // FIXME: If we knew where the '=' was, we could easily provide a fix-it 546 // hint here. Alternatively, we could walk the type-source information 547 // for NewParam to find the last source location in the type... but it 548 // isn't worth the effort right now. This is the kind of test case that 549 // is hard to get right: 550 // int f(int); 551 // void g(int (*fp)(int) = f); 552 // void g(int (*fp)(int) = &f); 553 Diag(NewParam->getLocation(), DiagDefaultParamID) 554 << NewParam->getDefaultArgRange(); 555 556 // Look for the function declaration where the default argument was 557 // actually written, which may be a declaration prior to Old. 558 for (auto Older = PrevForDefaultArgs; 559 OldParam->hasInheritedDefaultArg(); /**/) { 560 Older = Older->getPreviousDecl(); 561 OldParam = Older->getParamDecl(p); 562 } 563 564 Diag(OldParam->getLocation(), diag::note_previous_definition) 565 << OldParam->getDefaultArgRange(); 566 } else if (OldParamHasDfl) { 567 // Merge the old default argument into the new parameter unless the new 568 // function is a friend declaration in a template class. In the latter 569 // case the default arguments will be inherited when the friend 570 // declaration will be instantiated. 571 if (New->getFriendObjectKind() == Decl::FOK_None || 572 !New->getLexicalDeclContext()->isDependentContext()) { 573 // It's important to use getInit() here; getDefaultArg() 574 // strips off any top-level ExprWithCleanups. 575 NewParam->setHasInheritedDefaultArg(); 576 if (OldParam->hasUnparsedDefaultArg()) 577 NewParam->setUnparsedDefaultArg(); 578 else if (OldParam->hasUninstantiatedDefaultArg()) 579 NewParam->setUninstantiatedDefaultArg( 580 OldParam->getUninstantiatedDefaultArg()); 581 else 582 NewParam->setDefaultArg(OldParam->getInit()); 583 } 584 } else if (NewParamHasDfl) { 585 if (New->getDescribedFunctionTemplate()) { 586 // Paragraph 4, quoted above, only applies to non-template functions. 587 Diag(NewParam->getLocation(), 588 diag::err_param_default_argument_template_redecl) 589 << NewParam->getDefaultArgRange(); 590 Diag(PrevForDefaultArgs->getLocation(), 591 diag::note_template_prev_declaration) 592 << false; 593 } else if (New->getTemplateSpecializationKind() 594 != TSK_ImplicitInstantiation && 595 New->getTemplateSpecializationKind() != TSK_Undeclared) { 596 // C++ [temp.expr.spec]p21: 597 // Default function arguments shall not be specified in a declaration 598 // or a definition for one of the following explicit specializations: 599 // - the explicit specialization of a function template; 600 // - the explicit specialization of a member function template; 601 // - the explicit specialization of a member function of a class 602 // template where the class template specialization to which the 603 // member function specialization belongs is implicitly 604 // instantiated. 605 Diag(NewParam->getLocation(), diag::err_template_spec_default_arg) 606 << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization) 607 << New->getDeclName() 608 << NewParam->getDefaultArgRange(); 609 } else if (New->getDeclContext()->isDependentContext()) { 610 // C++ [dcl.fct.default]p6 (DR217): 611 // Default arguments for a member function of a class template shall 612 // be specified on the initial declaration of the member function 613 // within the class template. 614 // 615 // Reading the tea leaves a bit in DR217 and its reference to DR205 616 // leads me to the conclusion that one cannot add default function 617 // arguments for an out-of-line definition of a member function of a 618 // dependent type. 619 int WhichKind = 2; 620 if (CXXRecordDecl *Record 621 = dyn_cast<CXXRecordDecl>(New->getDeclContext())) { 622 if (Record->getDescribedClassTemplate()) 623 WhichKind = 0; 624 else if (isa<ClassTemplatePartialSpecializationDecl>(Record)) 625 WhichKind = 1; 626 else 627 WhichKind = 2; 628 } 629 630 Diag(NewParam->getLocation(), 631 diag::err_param_default_argument_member_template_redecl) 632 << WhichKind 633 << NewParam->getDefaultArgRange(); 634 } 635 } 636 } 637 638 // DR1344: If a default argument is added outside a class definition and that 639 // default argument makes the function a special member function, the program 640 // is ill-formed. This can only happen for constructors. 641 if (isa<CXXConstructorDecl>(New) && 642 New->getMinRequiredArguments() < Old->getMinRequiredArguments()) { 643 CXXSpecialMemberKind NewSM = getSpecialMember(cast<CXXMethodDecl>(New)), 644 OldSM = getSpecialMember(cast<CXXMethodDecl>(Old)); 645 if (NewSM != OldSM) { 646 ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments()); 647 assert(NewParam->hasDefaultArg()); 648 Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special) 649 << NewParam->getDefaultArgRange() << llvm::to_underlying(NewSM); 650 Diag(Old->getLocation(), diag::note_previous_declaration); 651 } 652 } 653 654 const FunctionDecl *Def; 655 // C++11 [dcl.constexpr]p1: If any declaration of a function or function 656 // template has a constexpr specifier then all its declarations shall 657 // contain the constexpr specifier. 658 if (New->getConstexprKind() != Old->getConstexprKind()) { 659 Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch) 660 << New << static_cast<int>(New->getConstexprKind()) 661 << static_cast<int>(Old->getConstexprKind()); 662 Diag(Old->getLocation(), diag::note_previous_declaration); 663 Invalid = true; 664 } else if (!Old->getMostRecentDecl()->isInlined() && New->isInlined() && 665 Old->isDefined(Def) && 666 // If a friend function is inlined but does not have 'inline' 667 // specifier, it is a definition. Do not report attribute conflict 668 // in this case, redefinition will be diagnosed later. 669 (New->isInlineSpecified() || 670 New->getFriendObjectKind() == Decl::FOK_None)) { 671 // C++11 [dcl.fcn.spec]p4: 672 // If the definition of a function appears in a translation unit before its 673 // first declaration as inline, the program is ill-formed. 674 Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New; 675 Diag(Def->getLocation(), diag::note_previous_definition); 676 Invalid = true; 677 } 678 679 // C++17 [temp.deduct.guide]p3: 680 // Two deduction guide declarations in the same translation unit 681 // for the same class template shall not have equivalent 682 // parameter-declaration-clauses. 683 if (isa<CXXDeductionGuideDecl>(New) && 684 !New->isFunctionTemplateSpecialization() && isVisible(Old)) { 685 Diag(New->getLocation(), diag::err_deduction_guide_redeclared); 686 Diag(Old->getLocation(), diag::note_previous_declaration); 687 } 688 689 // C++11 [dcl.fct.default]p4: If a friend declaration specifies a default 690 // argument expression, that declaration shall be a definition and shall be 691 // the only declaration of the function or function template in the 692 // translation unit. 693 if (Old->getFriendObjectKind() == Decl::FOK_Undeclared && 694 functionDeclHasDefaultArgument(Old)) { 695 Diag(New->getLocation(), diag::err_friend_decl_with_def_arg_redeclared); 696 Diag(Old->getLocation(), diag::note_previous_declaration); 697 Invalid = true; 698 } 699 700 // C++11 [temp.friend]p4 (DR329): 701 // When a function is defined in a friend function declaration in a class 702 // template, the function is instantiated when the function is odr-used. 703 // The same restrictions on multiple declarations and definitions that 704 // apply to non-template function declarations and definitions also apply 705 // to these implicit definitions. 706 const FunctionDecl *OldDefinition = nullptr; 707 if (New->isThisDeclarationInstantiatedFromAFriendDefinition() && 708 Old->isDefined(OldDefinition, true)) 709 CheckForFunctionRedefinition(New, OldDefinition); 710 711 return Invalid; 712 } 713 714 void Sema::DiagPlaceholderVariableDefinition(SourceLocation Loc) { 715 Diag(Loc, getLangOpts().CPlusPlus26 716 ? diag::warn_cxx23_placeholder_var_definition 717 : diag::ext_placeholder_var_definition); 718 } 719 720 NamedDecl * 721 Sema::ActOnDecompositionDeclarator(Scope *S, Declarator &D, 722 MultiTemplateParamsArg TemplateParamLists) { 723 assert(D.isDecompositionDeclarator()); 724 const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator(); 725 726 // The syntax only allows a decomposition declarator as a simple-declaration, 727 // a for-range-declaration, or a condition in Clang, but we parse it in more 728 // cases than that. 729 if (!D.mayHaveDecompositionDeclarator()) { 730 Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context) 731 << Decomp.getSourceRange(); 732 return nullptr; 733 } 734 735 if (!TemplateParamLists.empty()) { 736 // FIXME: There's no rule against this, but there are also no rules that 737 // would actually make it usable, so we reject it for now. 738 Diag(TemplateParamLists.front()->getTemplateLoc(), 739 diag::err_decomp_decl_template); 740 return nullptr; 741 } 742 743 Diag(Decomp.getLSquareLoc(), 744 !getLangOpts().CPlusPlus17 745 ? diag::ext_decomp_decl 746 : D.getContext() == DeclaratorContext::Condition 747 ? diag::ext_decomp_decl_cond 748 : diag::warn_cxx14_compat_decomp_decl) 749 << Decomp.getSourceRange(); 750 751 // The semantic context is always just the current context. 752 DeclContext *const DC = CurContext; 753 754 // C++17 [dcl.dcl]/8: 755 // The decl-specifier-seq shall contain only the type-specifier auto 756 // and cv-qualifiers. 757 // C++20 [dcl.dcl]/8: 758 // If decl-specifier-seq contains any decl-specifier other than static, 759 // thread_local, auto, or cv-qualifiers, the program is ill-formed. 760 // C++23 [dcl.pre]/6: 761 // Each decl-specifier in the decl-specifier-seq shall be static, 762 // thread_local, auto (9.2.9.6 [dcl.spec.auto]), or a cv-qualifier. 763 auto &DS = D.getDeclSpec(); 764 { 765 // Note: While constrained-auto needs to be checked, we do so separately so 766 // we can emit a better diagnostic. 767 SmallVector<StringRef, 8> BadSpecifiers; 768 SmallVector<SourceLocation, 8> BadSpecifierLocs; 769 SmallVector<StringRef, 8> CPlusPlus20Specifiers; 770 SmallVector<SourceLocation, 8> CPlusPlus20SpecifierLocs; 771 if (auto SCS = DS.getStorageClassSpec()) { 772 if (SCS == DeclSpec::SCS_static) { 773 CPlusPlus20Specifiers.push_back(DeclSpec::getSpecifierName(SCS)); 774 CPlusPlus20SpecifierLocs.push_back(DS.getStorageClassSpecLoc()); 775 } else { 776 BadSpecifiers.push_back(DeclSpec::getSpecifierName(SCS)); 777 BadSpecifierLocs.push_back(DS.getStorageClassSpecLoc()); 778 } 779 } 780 if (auto TSCS = DS.getThreadStorageClassSpec()) { 781 CPlusPlus20Specifiers.push_back(DeclSpec::getSpecifierName(TSCS)); 782 CPlusPlus20SpecifierLocs.push_back(DS.getThreadStorageClassSpecLoc()); 783 } 784 if (DS.hasConstexprSpecifier()) { 785 BadSpecifiers.push_back( 786 DeclSpec::getSpecifierName(DS.getConstexprSpecifier())); 787 BadSpecifierLocs.push_back(DS.getConstexprSpecLoc()); 788 } 789 if (DS.isInlineSpecified()) { 790 BadSpecifiers.push_back("inline"); 791 BadSpecifierLocs.push_back(DS.getInlineSpecLoc()); 792 } 793 794 if (!BadSpecifiers.empty()) { 795 auto &&Err = Diag(BadSpecifierLocs.front(), diag::err_decomp_decl_spec); 796 Err << (int)BadSpecifiers.size() 797 << llvm::join(BadSpecifiers.begin(), BadSpecifiers.end(), " "); 798 // Don't add FixItHints to remove the specifiers; we do still respect 799 // them when building the underlying variable. 800 for (auto Loc : BadSpecifierLocs) 801 Err << SourceRange(Loc, Loc); 802 } else if (!CPlusPlus20Specifiers.empty()) { 803 auto &&Warn = Diag(CPlusPlus20SpecifierLocs.front(), 804 getLangOpts().CPlusPlus20 805 ? diag::warn_cxx17_compat_decomp_decl_spec 806 : diag::ext_decomp_decl_spec); 807 Warn << (int)CPlusPlus20Specifiers.size() 808 << llvm::join(CPlusPlus20Specifiers.begin(), 809 CPlusPlus20Specifiers.end(), " "); 810 for (auto Loc : CPlusPlus20SpecifierLocs) 811 Warn << SourceRange(Loc, Loc); 812 } 813 // We can't recover from it being declared as a typedef. 814 if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) 815 return nullptr; 816 } 817 818 // C++2a [dcl.struct.bind]p1: 819 // A cv that includes volatile is deprecated 820 if ((DS.getTypeQualifiers() & DeclSpec::TQ_volatile) && 821 getLangOpts().CPlusPlus20) 822 Diag(DS.getVolatileSpecLoc(), 823 diag::warn_deprecated_volatile_structured_binding); 824 825 TypeSourceInfo *TInfo = GetTypeForDeclarator(D); 826 QualType R = TInfo->getType(); 827 828 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, 829 UPPC_DeclarationType)) 830 D.setInvalidType(); 831 832 // The syntax only allows a single ref-qualifier prior to the decomposition 833 // declarator. No other declarator chunks are permitted. Also check the type 834 // specifier here. 835 if (DS.getTypeSpecType() != DeclSpec::TST_auto || 836 D.hasGroupingParens() || D.getNumTypeObjects() > 1 || 837 (D.getNumTypeObjects() == 1 && 838 D.getTypeObject(0).Kind != DeclaratorChunk::Reference)) { 839 Diag(Decomp.getLSquareLoc(), 840 (D.hasGroupingParens() || 841 (D.getNumTypeObjects() && 842 D.getTypeObject(0).Kind == DeclaratorChunk::Paren)) 843 ? diag::err_decomp_decl_parens 844 : diag::err_decomp_decl_type) 845 << R; 846 847 // In most cases, there's no actual problem with an explicitly-specified 848 // type, but a function type won't work here, and ActOnVariableDeclarator 849 // shouldn't be called for such a type. 850 if (R->isFunctionType()) 851 D.setInvalidType(); 852 } 853 854 // Constrained auto is prohibited by [decl.pre]p6, so check that here. 855 if (DS.isConstrainedAuto()) { 856 TemplateIdAnnotation *TemplRep = DS.getRepAsTemplateId(); 857 assert(TemplRep->Kind == TNK_Concept_template && 858 "No other template kind should be possible for a constrained auto"); 859 860 SourceRange TemplRange{TemplRep->TemplateNameLoc, 861 TemplRep->RAngleLoc.isValid() 862 ? TemplRep->RAngleLoc 863 : TemplRep->TemplateNameLoc}; 864 Diag(TemplRep->TemplateNameLoc, diag::err_decomp_decl_constraint) 865 << TemplRange << FixItHint::CreateRemoval(TemplRange); 866 } 867 868 // Build the BindingDecls. 869 SmallVector<BindingDecl*, 8> Bindings; 870 871 // Build the BindingDecls. 872 for (auto &B : D.getDecompositionDeclarator().bindings()) { 873 // Check for name conflicts. 874 DeclarationNameInfo NameInfo(B.Name, B.NameLoc); 875 IdentifierInfo *VarName = B.Name; 876 assert(VarName && "Cannot have an unnamed binding declaration"); 877 878 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, 879 RedeclarationKind::ForVisibleRedeclaration); 880 LookupName(Previous, S, 881 /*CreateBuiltins*/DC->getRedeclContext()->isTranslationUnit()); 882 883 // It's not permitted to shadow a template parameter name. 884 if (Previous.isSingleResult() && 885 Previous.getFoundDecl()->isTemplateParameter()) { 886 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), 887 Previous.getFoundDecl()); 888 Previous.clear(); 889 } 890 891 QualType QT; 892 if (B.EllipsisLoc.isValid()) { 893 if (!cast<Decl>(DC)->isTemplated()) 894 Diag(B.EllipsisLoc, diag::err_pack_outside_template); 895 QT = Context.getPackExpansionType(Context.DependentTy, std::nullopt, 896 /*ExpectsPackInType=*/false); 897 } 898 899 auto *BD = BindingDecl::Create(Context, DC, B.NameLoc, B.Name, QT); 900 901 ProcessDeclAttributeList(S, BD, *B.Attrs); 902 903 // Find the shadowed declaration before filtering for scope. 904 NamedDecl *ShadowedDecl = D.getCXXScopeSpec().isEmpty() 905 ? getShadowedDeclaration(BD, Previous) 906 : nullptr; 907 908 bool ConsiderLinkage = DC->isFunctionOrMethod() && 909 DS.getStorageClassSpec() == DeclSpec::SCS_extern; 910 FilterLookupForScope(Previous, DC, S, ConsiderLinkage, 911 /*AllowInlineNamespace*/false); 912 913 bool IsPlaceholder = DS.getStorageClassSpec() != DeclSpec::SCS_static && 914 DC->isFunctionOrMethod() && VarName->isPlaceholder(); 915 if (!Previous.empty()) { 916 if (IsPlaceholder) { 917 bool sameDC = (Previous.end() - 1) 918 ->getDeclContext() 919 ->getRedeclContext() 920 ->Equals(DC->getRedeclContext()); 921 if (sameDC && 922 isDeclInScope(*(Previous.end() - 1), CurContext, S, false)) { 923 Previous.clear(); 924 DiagPlaceholderVariableDefinition(B.NameLoc); 925 } 926 } else { 927 auto *Old = Previous.getRepresentativeDecl(); 928 Diag(B.NameLoc, diag::err_redefinition) << B.Name; 929 Diag(Old->getLocation(), diag::note_previous_definition); 930 } 931 } else if (ShadowedDecl && !D.isRedeclaration()) { 932 CheckShadow(BD, ShadowedDecl, Previous); 933 } 934 PushOnScopeChains(BD, S, true); 935 Bindings.push_back(BD); 936 ParsingInitForAutoVars.insert(BD); 937 } 938 939 // There are no prior lookup results for the variable itself, because it 940 // is unnamed. 941 DeclarationNameInfo NameInfo((IdentifierInfo *)nullptr, 942 Decomp.getLSquareLoc()); 943 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, 944 RedeclarationKind::ForVisibleRedeclaration); 945 946 // Build the variable that holds the non-decomposed object. 947 bool AddToScope = true; 948 NamedDecl *New = 949 ActOnVariableDeclarator(S, D, DC, TInfo, Previous, 950 MultiTemplateParamsArg(), AddToScope, Bindings); 951 if (AddToScope) { 952 S->AddDecl(New); 953 CurContext->addHiddenDecl(New); 954 } 955 956 if (OpenMP().isInOpenMPDeclareTargetContext()) 957 OpenMP().checkDeclIsAllowedInOpenMPTarget(nullptr, New); 958 959 return New; 960 } 961 962 // Check the arity of the structured bindings. 963 // Create the resolved pack expr if needed. 964 static bool CheckBindingsCount(Sema &S, DecompositionDecl *DD, 965 QualType DecompType, 966 ArrayRef<BindingDecl *> Bindings, 967 unsigned MemberCount) { 968 auto BindingWithPackItr = 969 std::find_if(Bindings.begin(), Bindings.end(), 970 [](BindingDecl *D) -> bool { return D->isParameterPack(); }); 971 bool HasPack = BindingWithPackItr != Bindings.end(); 972 bool IsValid; 973 if (!HasPack) { 974 IsValid = Bindings.size() == MemberCount; 975 } else { 976 // There may not be more members than non-pack bindings. 977 IsValid = MemberCount >= Bindings.size() - 1; 978 } 979 980 if (IsValid && HasPack) { 981 // Create the pack expr and assign it to the binding. 982 unsigned PackSize = MemberCount - Bindings.size() + 1; 983 QualType PackType = S.Context.getPackExpansionType( 984 S.Context.DependentTy, std::nullopt, /*ExpectsPackInType=*/false); 985 BindingDecl *BD = (*BindingWithPackItr); 986 auto *RP = ResolvedUnexpandedPackExpr::Create(S.Context, DD->getBeginLoc(), 987 DecompType, PackSize); 988 BD->setDecomposedDecl(DD); 989 BD->setBinding(PackType, RP); 990 991 BindingDecl *BPack = *BindingWithPackItr; 992 // Create the nested BindingDecls. 993 for (Expr *&E : RP->getExprs()) { 994 auto *NestedBD = BindingDecl::Create(S.Context, BPack->getDeclContext(), 995 BPack->getLocation(), 996 BPack->getIdentifier(), QualType()); 997 NestedBD->setDecomposedDecl(DD); 998 E = S.BuildDeclRefExpr(NestedBD, S.Context.DependentTy, VK_LValue, 999 BPack->getLocation()); 1000 } 1001 } 1002 1003 if (IsValid) 1004 return false; 1005 1006 S.Diag(DD->getLocation(), diag::err_decomp_decl_wrong_number_bindings) 1007 << DecompType << (unsigned)Bindings.size() << MemberCount << MemberCount 1008 << (MemberCount < Bindings.size()); 1009 return true; 1010 } 1011 1012 static bool checkSimpleDecomposition( 1013 Sema &S, ArrayRef<BindingDecl *> Bindings, ValueDecl *Src, 1014 QualType DecompType, const llvm::APSInt &NumElemsAPS, QualType ElemType, 1015 llvm::function_ref<ExprResult(SourceLocation, Expr *, unsigned)> GetInit) { 1016 unsigned NumElems = (unsigned)NumElemsAPS.getLimitedValue(UINT_MAX); 1017 auto *DD = cast<DecompositionDecl>(Src); 1018 1019 if (CheckBindingsCount(S, DD, DecompType, Bindings, NumElems)) 1020 return true; 1021 1022 unsigned I = 0; 1023 for (auto *B : DD->flat_bindings()) { 1024 SourceLocation Loc = B->getLocation(); 1025 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc); 1026 if (E.isInvalid()) 1027 return true; 1028 E = GetInit(Loc, E.get(), I++); 1029 if (E.isInvalid()) 1030 return true; 1031 B->setBinding(ElemType, E.get()); 1032 } 1033 1034 return false; 1035 } 1036 1037 static bool checkArrayLikeDecomposition(Sema &S, 1038 ArrayRef<BindingDecl *> Bindings, 1039 ValueDecl *Src, QualType DecompType, 1040 const llvm::APSInt &NumElems, 1041 QualType ElemType) { 1042 return checkSimpleDecomposition( 1043 S, Bindings, Src, DecompType, NumElems, ElemType, 1044 [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult { 1045 ExprResult E = S.ActOnIntegerConstant(Loc, I); 1046 if (E.isInvalid()) 1047 return ExprError(); 1048 return S.CreateBuiltinArraySubscriptExpr(Base, Loc, E.get(), Loc); 1049 }); 1050 } 1051 1052 static bool checkArrayDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings, 1053 ValueDecl *Src, QualType DecompType, 1054 const ConstantArrayType *CAT) { 1055 return checkArrayLikeDecomposition(S, Bindings, Src, DecompType, 1056 llvm::APSInt(CAT->getSize()), 1057 CAT->getElementType()); 1058 } 1059 1060 static bool checkVectorDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings, 1061 ValueDecl *Src, QualType DecompType, 1062 const VectorType *VT) { 1063 return checkArrayLikeDecomposition( 1064 S, Bindings, Src, DecompType, llvm::APSInt::get(VT->getNumElements()), 1065 S.Context.getQualifiedType(VT->getElementType(), 1066 DecompType.getQualifiers())); 1067 } 1068 1069 static bool checkComplexDecomposition(Sema &S, 1070 ArrayRef<BindingDecl *> Bindings, 1071 ValueDecl *Src, QualType DecompType, 1072 const ComplexType *CT) { 1073 return checkSimpleDecomposition( 1074 S, Bindings, Src, DecompType, llvm::APSInt::get(2), 1075 S.Context.getQualifiedType(CT->getElementType(), 1076 DecompType.getQualifiers()), 1077 [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult { 1078 return S.CreateBuiltinUnaryOp(Loc, I ? UO_Imag : UO_Real, Base); 1079 }); 1080 } 1081 1082 static std::string printTemplateArgs(const PrintingPolicy &PrintingPolicy, 1083 TemplateArgumentListInfo &Args, 1084 const TemplateParameterList *Params) { 1085 SmallString<128> SS; 1086 llvm::raw_svector_ostream OS(SS); 1087 bool First = true; 1088 unsigned I = 0; 1089 for (auto &Arg : Args.arguments()) { 1090 if (!First) 1091 OS << ", "; 1092 Arg.getArgument().print(PrintingPolicy, OS, 1093 TemplateParameterList::shouldIncludeTypeForArgument( 1094 PrintingPolicy, Params, I)); 1095 First = false; 1096 I++; 1097 } 1098 return std::string(OS.str()); 1099 } 1100 1101 static bool lookupStdTypeTraitMember(Sema &S, LookupResult &TraitMemberLookup, 1102 SourceLocation Loc, StringRef Trait, 1103 TemplateArgumentListInfo &Args, 1104 unsigned DiagID) { 1105 auto DiagnoseMissing = [&] { 1106 if (DiagID) 1107 S.Diag(Loc, DiagID) << printTemplateArgs(S.Context.getPrintingPolicy(), 1108 Args, /*Params*/ nullptr); 1109 return true; 1110 }; 1111 1112 // FIXME: Factor out duplication with lookupPromiseType in SemaCoroutine. 1113 NamespaceDecl *Std = S.getStdNamespace(); 1114 if (!Std) 1115 return DiagnoseMissing(); 1116 1117 // Look up the trait itself, within namespace std. We can diagnose various 1118 // problems with this lookup even if we've been asked to not diagnose a 1119 // missing specialization, because this can only fail if the user has been 1120 // declaring their own names in namespace std or we don't support the 1121 // standard library implementation in use. 1122 LookupResult Result(S, &S.PP.getIdentifierTable().get(Trait), 1123 Loc, Sema::LookupOrdinaryName); 1124 if (!S.LookupQualifiedName(Result, Std)) 1125 return DiagnoseMissing(); 1126 if (Result.isAmbiguous()) 1127 return true; 1128 1129 ClassTemplateDecl *TraitTD = Result.getAsSingle<ClassTemplateDecl>(); 1130 if (!TraitTD) { 1131 Result.suppressDiagnostics(); 1132 NamedDecl *Found = *Result.begin(); 1133 S.Diag(Loc, diag::err_std_type_trait_not_class_template) << Trait; 1134 S.Diag(Found->getLocation(), diag::note_declared_at); 1135 return true; 1136 } 1137 1138 // Build the template-id. 1139 QualType TraitTy = S.CheckTemplateIdType(TemplateName(TraitTD), Loc, Args); 1140 if (TraitTy.isNull()) 1141 return true; 1142 if (!S.isCompleteType(Loc, TraitTy)) { 1143 if (DiagID) 1144 S.RequireCompleteType( 1145 Loc, TraitTy, DiagID, 1146 printTemplateArgs(S.Context.getPrintingPolicy(), Args, 1147 TraitTD->getTemplateParameters())); 1148 return true; 1149 } 1150 1151 CXXRecordDecl *RD = TraitTy->getAsCXXRecordDecl(); 1152 assert(RD && "specialization of class template is not a class?"); 1153 1154 // Look up the member of the trait type. 1155 S.LookupQualifiedName(TraitMemberLookup, RD); 1156 return TraitMemberLookup.isAmbiguous(); 1157 } 1158 1159 static TemplateArgumentLoc 1160 getTrivialIntegralTemplateArgument(Sema &S, SourceLocation Loc, QualType T, 1161 uint64_t I) { 1162 TemplateArgument Arg(S.Context, S.Context.MakeIntValue(I, T), T); 1163 return S.getTrivialTemplateArgumentLoc(Arg, T, Loc); 1164 } 1165 1166 static TemplateArgumentLoc 1167 getTrivialTypeTemplateArgument(Sema &S, SourceLocation Loc, QualType T) { 1168 return S.getTrivialTemplateArgumentLoc(TemplateArgument(T), QualType(), Loc); 1169 } 1170 1171 namespace { enum class IsTupleLike { TupleLike, NotTupleLike, Error }; } 1172 1173 static IsTupleLike isTupleLike(Sema &S, SourceLocation Loc, QualType T, 1174 llvm::APSInt &Size) { 1175 EnterExpressionEvaluationContext ContextRAII( 1176 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 1177 1178 DeclarationName Value = S.PP.getIdentifierInfo("value"); 1179 LookupResult R(S, Value, Loc, Sema::LookupOrdinaryName); 1180 1181 // Form template argument list for tuple_size<T>. 1182 TemplateArgumentListInfo Args(Loc, Loc); 1183 Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T)); 1184 1185 // If there's no tuple_size specialization or the lookup of 'value' is empty, 1186 // it's not tuple-like. 1187 if (lookupStdTypeTraitMember(S, R, Loc, "tuple_size", Args, /*DiagID*/ 0) || 1188 R.empty()) 1189 return IsTupleLike::NotTupleLike; 1190 1191 // If we get this far, we've committed to the tuple interpretation, but 1192 // we can still fail if there actually isn't a usable ::value. 1193 1194 struct ICEDiagnoser : Sema::VerifyICEDiagnoser { 1195 LookupResult &R; 1196 TemplateArgumentListInfo &Args; 1197 ICEDiagnoser(LookupResult &R, TemplateArgumentListInfo &Args) 1198 : R(R), Args(Args) {} 1199 Sema::SemaDiagnosticBuilder diagnoseNotICE(Sema &S, 1200 SourceLocation Loc) override { 1201 return S.Diag(Loc, diag::err_decomp_decl_std_tuple_size_not_constant) 1202 << printTemplateArgs(S.Context.getPrintingPolicy(), Args, 1203 /*Params*/ nullptr); 1204 } 1205 } Diagnoser(R, Args); 1206 1207 ExprResult E = 1208 S.BuildDeclarationNameExpr(CXXScopeSpec(), R, /*NeedsADL*/false); 1209 if (E.isInvalid()) 1210 return IsTupleLike::Error; 1211 1212 E = S.VerifyIntegerConstantExpression(E.get(), &Size, Diagnoser); 1213 if (E.isInvalid()) 1214 return IsTupleLike::Error; 1215 1216 return IsTupleLike::TupleLike; 1217 } 1218 1219 /// \return std::tuple_element<I, T>::type. 1220 static QualType getTupleLikeElementType(Sema &S, SourceLocation Loc, 1221 unsigned I, QualType T) { 1222 // Form template argument list for tuple_element<I, T>. 1223 TemplateArgumentListInfo Args(Loc, Loc); 1224 Args.addArgument( 1225 getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I)); 1226 Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T)); 1227 1228 DeclarationName TypeDN = S.PP.getIdentifierInfo("type"); 1229 LookupResult R(S, TypeDN, Loc, Sema::LookupOrdinaryName); 1230 if (lookupStdTypeTraitMember( 1231 S, R, Loc, "tuple_element", Args, 1232 diag::err_decomp_decl_std_tuple_element_not_specialized)) 1233 return QualType(); 1234 1235 auto *TD = R.getAsSingle<TypeDecl>(); 1236 if (!TD) { 1237 R.suppressDiagnostics(); 1238 S.Diag(Loc, diag::err_decomp_decl_std_tuple_element_not_specialized) 1239 << printTemplateArgs(S.Context.getPrintingPolicy(), Args, 1240 /*Params*/ nullptr); 1241 if (!R.empty()) 1242 S.Diag(R.getRepresentativeDecl()->getLocation(), diag::note_declared_at); 1243 return QualType(); 1244 } 1245 1246 return S.Context.getTypeDeclType(TD); 1247 } 1248 1249 namespace { 1250 struct InitializingBinding { 1251 Sema &S; 1252 InitializingBinding(Sema &S, BindingDecl *BD) : S(S) { 1253 Sema::CodeSynthesisContext Ctx; 1254 Ctx.Kind = Sema::CodeSynthesisContext::InitializingStructuredBinding; 1255 Ctx.PointOfInstantiation = BD->getLocation(); 1256 Ctx.Entity = BD; 1257 S.pushCodeSynthesisContext(Ctx); 1258 } 1259 ~InitializingBinding() { 1260 S.popCodeSynthesisContext(); 1261 } 1262 }; 1263 } 1264 1265 static bool checkTupleLikeDecomposition(Sema &S, 1266 ArrayRef<BindingDecl *> Bindings, 1267 VarDecl *Src, QualType DecompType, 1268 const llvm::APSInt &TupleSize) { 1269 auto *DD = cast<DecompositionDecl>(Src); 1270 unsigned NumElems = (unsigned)TupleSize.getLimitedValue(UINT_MAX); 1271 if (CheckBindingsCount(S, DD, DecompType, Bindings, NumElems)) 1272 return true; 1273 1274 if (Bindings.empty()) 1275 return false; 1276 1277 DeclarationName GetDN = S.PP.getIdentifierInfo("get"); 1278 1279 // [dcl.decomp]p3: 1280 // The unqualified-id get is looked up in the scope of E by class member 1281 // access lookup ... 1282 LookupResult MemberGet(S, GetDN, Src->getLocation(), Sema::LookupMemberName); 1283 bool UseMemberGet = false; 1284 if (S.isCompleteType(Src->getLocation(), DecompType)) { 1285 if (auto *RD = DecompType->getAsCXXRecordDecl()) 1286 S.LookupQualifiedName(MemberGet, RD); 1287 if (MemberGet.isAmbiguous()) 1288 return true; 1289 // ... and if that finds at least one declaration that is a function 1290 // template whose first template parameter is a non-type parameter ... 1291 for (NamedDecl *D : MemberGet) { 1292 if (FunctionTemplateDecl *FTD = 1293 dyn_cast<FunctionTemplateDecl>(D->getUnderlyingDecl())) { 1294 TemplateParameterList *TPL = FTD->getTemplateParameters(); 1295 if (TPL->size() != 0 && 1296 isa<NonTypeTemplateParmDecl>(TPL->getParam(0))) { 1297 // ... the initializer is e.get<i>(). 1298 UseMemberGet = true; 1299 break; 1300 } 1301 } 1302 } 1303 } 1304 1305 unsigned I = 0; 1306 for (auto *B : DD->flat_bindings()) { 1307 InitializingBinding InitContext(S, B); 1308 SourceLocation Loc = B->getLocation(); 1309 1310 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc); 1311 if (E.isInvalid()) 1312 return true; 1313 1314 // e is an lvalue if the type of the entity is an lvalue reference and 1315 // an xvalue otherwise 1316 if (!Src->getType()->isLValueReferenceType()) 1317 E = ImplicitCastExpr::Create(S.Context, E.get()->getType(), CK_NoOp, 1318 E.get(), nullptr, VK_XValue, 1319 FPOptionsOverride()); 1320 1321 TemplateArgumentListInfo Args(Loc, Loc); 1322 Args.addArgument( 1323 getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I)); 1324 1325 if (UseMemberGet) { 1326 // if [lookup of member get] finds at least one declaration, the 1327 // initializer is e.get<i-1>(). 1328 E = S.BuildMemberReferenceExpr(E.get(), DecompType, Loc, false, 1329 CXXScopeSpec(), SourceLocation(), nullptr, 1330 MemberGet, &Args, nullptr); 1331 if (E.isInvalid()) 1332 return true; 1333 1334 E = S.BuildCallExpr(nullptr, E.get(), Loc, {}, Loc); 1335 } else { 1336 // Otherwise, the initializer is get<i-1>(e), where get is looked up 1337 // in the associated namespaces. 1338 Expr *Get = UnresolvedLookupExpr::Create( 1339 S.Context, nullptr, NestedNameSpecifierLoc(), SourceLocation(), 1340 DeclarationNameInfo(GetDN, Loc), /*RequiresADL=*/true, &Args, 1341 UnresolvedSetIterator(), UnresolvedSetIterator(), 1342 /*KnownDependent=*/false, /*KnownInstantiationDependent=*/false); 1343 1344 Expr *Arg = E.get(); 1345 E = S.BuildCallExpr(nullptr, Get, Loc, Arg, Loc); 1346 } 1347 if (E.isInvalid()) 1348 return true; 1349 Expr *Init = E.get(); 1350 1351 // Given the type T designated by std::tuple_element<i - 1, E>::type, 1352 QualType T = getTupleLikeElementType(S, Loc, I, DecompType); 1353 if (T.isNull()) 1354 return true; 1355 1356 // each vi is a variable of type "reference to T" initialized with the 1357 // initializer, where the reference is an lvalue reference if the 1358 // initializer is an lvalue and an rvalue reference otherwise 1359 QualType RefType = 1360 S.BuildReferenceType(T, E.get()->isLValue(), Loc, B->getDeclName()); 1361 if (RefType.isNull()) 1362 return true; 1363 auto *RefVD = VarDecl::Create( 1364 S.Context, Src->getDeclContext(), Loc, Loc, 1365 B->getDeclName().getAsIdentifierInfo(), RefType, 1366 S.Context.getTrivialTypeSourceInfo(T, Loc), Src->getStorageClass()); 1367 RefVD->setLexicalDeclContext(Src->getLexicalDeclContext()); 1368 RefVD->setTSCSpec(Src->getTSCSpec()); 1369 RefVD->setImplicit(); 1370 if (Src->isInlineSpecified()) 1371 RefVD->setInlineSpecified(); 1372 RefVD->getLexicalDeclContext()->addHiddenDecl(RefVD); 1373 1374 InitializedEntity Entity = InitializedEntity::InitializeBinding(RefVD); 1375 InitializationKind Kind = InitializationKind::CreateCopy(Loc, Loc); 1376 InitializationSequence Seq(S, Entity, Kind, Init); 1377 E = Seq.Perform(S, Entity, Kind, Init); 1378 if (E.isInvalid()) 1379 return true; 1380 E = S.ActOnFinishFullExpr(E.get(), Loc, /*DiscardedValue*/ false); 1381 if (E.isInvalid()) 1382 return true; 1383 RefVD->setInit(E.get()); 1384 S.CheckCompleteVariableDeclaration(RefVD); 1385 1386 E = S.BuildDeclarationNameExpr(CXXScopeSpec(), 1387 DeclarationNameInfo(B->getDeclName(), Loc), 1388 RefVD); 1389 if (E.isInvalid()) 1390 return true; 1391 1392 B->setBinding(T, E.get()); 1393 I++; 1394 } 1395 1396 return false; 1397 } 1398 1399 /// Find the base class to decompose in a built-in decomposition of a class type. 1400 /// This base class search is, unfortunately, not quite like any other that we 1401 /// perform anywhere else in C++. 1402 static DeclAccessPair findDecomposableBaseClass(Sema &S, SourceLocation Loc, 1403 const CXXRecordDecl *RD, 1404 CXXCastPath &BasePath) { 1405 auto BaseHasFields = [](const CXXBaseSpecifier *Specifier, 1406 CXXBasePath &Path) { 1407 return Specifier->getType()->getAsCXXRecordDecl()->hasDirectFields(); 1408 }; 1409 1410 const CXXRecordDecl *ClassWithFields = nullptr; 1411 AccessSpecifier AS = AS_public; 1412 if (RD->hasDirectFields()) 1413 // [dcl.decomp]p4: 1414 // Otherwise, all of E's non-static data members shall be public direct 1415 // members of E ... 1416 ClassWithFields = RD; 1417 else { 1418 // ... or of ... 1419 CXXBasePaths Paths; 1420 Paths.setOrigin(const_cast<CXXRecordDecl*>(RD)); 1421 if (!RD->lookupInBases(BaseHasFields, Paths)) { 1422 // If no classes have fields, just decompose RD itself. (This will work 1423 // if and only if zero bindings were provided.) 1424 return DeclAccessPair::make(const_cast<CXXRecordDecl*>(RD), AS_public); 1425 } 1426 1427 CXXBasePath *BestPath = nullptr; 1428 for (auto &P : Paths) { 1429 if (!BestPath) 1430 BestPath = &P; 1431 else if (!S.Context.hasSameType(P.back().Base->getType(), 1432 BestPath->back().Base->getType())) { 1433 // ... the same ... 1434 S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members) 1435 << false << RD << BestPath->back().Base->getType() 1436 << P.back().Base->getType(); 1437 return DeclAccessPair(); 1438 } else if (P.Access < BestPath->Access) { 1439 BestPath = &P; 1440 } 1441 } 1442 1443 // ... unambiguous ... 1444 QualType BaseType = BestPath->back().Base->getType(); 1445 if (Paths.isAmbiguous(S.Context.getCanonicalType(BaseType))) { 1446 S.Diag(Loc, diag::err_decomp_decl_ambiguous_base) 1447 << RD << BaseType << S.getAmbiguousPathsDisplayString(Paths); 1448 return DeclAccessPair(); 1449 } 1450 1451 // ... [accessible, implied by other rules] base class of E. 1452 S.CheckBaseClassAccess(Loc, BaseType, S.Context.getRecordType(RD), 1453 *BestPath, diag::err_decomp_decl_inaccessible_base); 1454 AS = BestPath->Access; 1455 1456 ClassWithFields = BaseType->getAsCXXRecordDecl(); 1457 S.BuildBasePathArray(Paths, BasePath); 1458 } 1459 1460 // The above search did not check whether the selected class itself has base 1461 // classes with fields, so check that now. 1462 CXXBasePaths Paths; 1463 if (ClassWithFields->lookupInBases(BaseHasFields, Paths)) { 1464 S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members) 1465 << (ClassWithFields == RD) << RD << ClassWithFields 1466 << Paths.front().back().Base->getType(); 1467 return DeclAccessPair(); 1468 } 1469 1470 return DeclAccessPair::make(const_cast<CXXRecordDecl*>(ClassWithFields), AS); 1471 } 1472 1473 static bool checkMemberDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings, 1474 ValueDecl *Src, QualType DecompType, 1475 const CXXRecordDecl *OrigRD) { 1476 if (S.RequireCompleteType(Src->getLocation(), DecompType, 1477 diag::err_incomplete_type)) 1478 return true; 1479 1480 CXXCastPath BasePath; 1481 DeclAccessPair BasePair = 1482 findDecomposableBaseClass(S, Src->getLocation(), OrigRD, BasePath); 1483 const CXXRecordDecl *RD = cast_or_null<CXXRecordDecl>(BasePair.getDecl()); 1484 if (!RD) 1485 return true; 1486 QualType BaseType = S.Context.getQualifiedType(S.Context.getRecordType(RD), 1487 DecompType.getQualifiers()); 1488 1489 auto *DD = cast<DecompositionDecl>(Src); 1490 unsigned NumFields = llvm::count_if( 1491 RD->fields(), [](FieldDecl *FD) { return !FD->isUnnamedBitField(); }); 1492 if (CheckBindingsCount(S, DD, DecompType, Bindings, NumFields)) 1493 return true; 1494 1495 // all of E's non-static data members shall be [...] well-formed 1496 // when named as e.name in the context of the structured binding, 1497 // E shall not have an anonymous union member, ... 1498 auto FlatBindings = DD->flat_bindings(); 1499 assert(llvm::range_size(FlatBindings) == NumFields); 1500 auto FlatBindingsItr = FlatBindings.begin(); 1501 for (auto *FD : RD->fields()) { 1502 if (FD->isUnnamedBitField()) 1503 continue; 1504 1505 // All the non-static data members are required to be nameable, so they 1506 // must all have names. 1507 if (!FD->getDeclName()) { 1508 if (RD->isLambda()) { 1509 S.Diag(Src->getLocation(), diag::err_decomp_decl_lambda); 1510 S.Diag(RD->getLocation(), diag::note_lambda_decl); 1511 return true; 1512 } 1513 1514 if (FD->isAnonymousStructOrUnion()) { 1515 S.Diag(Src->getLocation(), diag::err_decomp_decl_anon_union_member) 1516 << DecompType << FD->getType()->isUnionType(); 1517 S.Diag(FD->getLocation(), diag::note_declared_at); 1518 return true; 1519 } 1520 1521 // FIXME: Are there any other ways we could have an anonymous member? 1522 } 1523 1524 // We have a real field to bind. 1525 assert(FlatBindingsItr != FlatBindings.end()); 1526 BindingDecl *B = *(FlatBindingsItr++); 1527 SourceLocation Loc = B->getLocation(); 1528 1529 // The field must be accessible in the context of the structured binding. 1530 // We already checked that the base class is accessible. 1531 // FIXME: Add 'const' to AccessedEntity's classes so we can remove the 1532 // const_cast here. 1533 S.CheckStructuredBindingMemberAccess( 1534 Loc, const_cast<CXXRecordDecl *>(OrigRD), 1535 DeclAccessPair::make(FD, CXXRecordDecl::MergeAccess( 1536 BasePair.getAccess(), FD->getAccess()))); 1537 1538 // Initialize the binding to Src.FD. 1539 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc); 1540 if (E.isInvalid()) 1541 return true; 1542 E = S.ImpCastExprToType(E.get(), BaseType, CK_UncheckedDerivedToBase, 1543 VK_LValue, &BasePath); 1544 if (E.isInvalid()) 1545 return true; 1546 E = S.BuildFieldReferenceExpr(E.get(), /*IsArrow*/ false, Loc, 1547 CXXScopeSpec(), FD, 1548 DeclAccessPair::make(FD, FD->getAccess()), 1549 DeclarationNameInfo(FD->getDeclName(), Loc)); 1550 if (E.isInvalid()) 1551 return true; 1552 1553 // If the type of the member is T, the referenced type is cv T, where cv is 1554 // the cv-qualification of the decomposition expression. 1555 // 1556 // FIXME: We resolve a defect here: if the field is mutable, we do not add 1557 // 'const' to the type of the field. 1558 Qualifiers Q = DecompType.getQualifiers(); 1559 if (FD->isMutable()) 1560 Q.removeConst(); 1561 B->setBinding(S.BuildQualifiedType(FD->getType(), Loc, Q), E.get()); 1562 } 1563 1564 return false; 1565 } 1566 1567 void Sema::CheckCompleteDecompositionDeclaration(DecompositionDecl *DD) { 1568 QualType DecompType = DD->getType(); 1569 1570 // If the type of the decomposition is dependent, then so is the type of 1571 // each binding. 1572 if (DecompType->isDependentType()) { 1573 // Note that all of the types are still Null or PackExpansionType. 1574 for (auto *B : DD->bindings()) { 1575 // Do not overwrite any pack type. 1576 if (B->getType().isNull()) 1577 B->setType(Context.DependentTy); 1578 } 1579 return; 1580 } 1581 1582 DecompType = DecompType.getNonReferenceType(); 1583 ArrayRef<BindingDecl*> Bindings = DD->bindings(); 1584 1585 // C++1z [dcl.decomp]/2: 1586 // If E is an array type [...] 1587 // As an extension, we also support decomposition of built-in complex and 1588 // vector types. 1589 if (auto *CAT = Context.getAsConstantArrayType(DecompType)) { 1590 if (checkArrayDecomposition(*this, Bindings, DD, DecompType, CAT)) 1591 DD->setInvalidDecl(); 1592 return; 1593 } 1594 if (auto *VT = DecompType->getAs<VectorType>()) { 1595 if (checkVectorDecomposition(*this, Bindings, DD, DecompType, VT)) 1596 DD->setInvalidDecl(); 1597 return; 1598 } 1599 if (auto *CT = DecompType->getAs<ComplexType>()) { 1600 if (checkComplexDecomposition(*this, Bindings, DD, DecompType, CT)) 1601 DD->setInvalidDecl(); 1602 return; 1603 } 1604 1605 // C++1z [dcl.decomp]/3: 1606 // if the expression std::tuple_size<E>::value is a well-formed integral 1607 // constant expression, [...] 1608 llvm::APSInt TupleSize(32); 1609 switch (isTupleLike(*this, DD->getLocation(), DecompType, TupleSize)) { 1610 case IsTupleLike::Error: 1611 DD->setInvalidDecl(); 1612 return; 1613 1614 case IsTupleLike::TupleLike: 1615 if (checkTupleLikeDecomposition(*this, Bindings, DD, DecompType, TupleSize)) 1616 DD->setInvalidDecl(); 1617 return; 1618 1619 case IsTupleLike::NotTupleLike: 1620 break; 1621 } 1622 1623 // C++1z [dcl.dcl]/8: 1624 // [E shall be of array or non-union class type] 1625 CXXRecordDecl *RD = DecompType->getAsCXXRecordDecl(); 1626 if (!RD || RD->isUnion()) { 1627 Diag(DD->getLocation(), diag::err_decomp_decl_unbindable_type) 1628 << DD << !RD << DecompType; 1629 DD->setInvalidDecl(); 1630 return; 1631 } 1632 1633 // C++1z [dcl.decomp]/4: 1634 // all of E's non-static data members shall be [...] direct members of 1635 // E or of the same unambiguous public base class of E, ... 1636 if (checkMemberDecomposition(*this, Bindings, DD, DecompType, RD)) 1637 DD->setInvalidDecl(); 1638 } 1639 1640 void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) { 1641 // Shortcut if exceptions are disabled. 1642 if (!getLangOpts().CXXExceptions) 1643 return; 1644 1645 assert(Context.hasSameType(New->getType(), Old->getType()) && 1646 "Should only be called if types are otherwise the same."); 1647 1648 QualType NewType = New->getType(); 1649 QualType OldType = Old->getType(); 1650 1651 // We're only interested in pointers and references to functions, as well 1652 // as pointers to member functions. 1653 if (const ReferenceType *R = NewType->getAs<ReferenceType>()) { 1654 NewType = R->getPointeeType(); 1655 OldType = OldType->castAs<ReferenceType>()->getPointeeType(); 1656 } else if (const PointerType *P = NewType->getAs<PointerType>()) { 1657 NewType = P->getPointeeType(); 1658 OldType = OldType->castAs<PointerType>()->getPointeeType(); 1659 } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) { 1660 NewType = M->getPointeeType(); 1661 OldType = OldType->castAs<MemberPointerType>()->getPointeeType(); 1662 } 1663 1664 if (!NewType->isFunctionProtoType()) 1665 return; 1666 1667 // There's lots of special cases for functions. For function pointers, system 1668 // libraries are hopefully not as broken so that we don't need these 1669 // workarounds. 1670 if (CheckEquivalentExceptionSpec( 1671 OldType->getAs<FunctionProtoType>(), Old->getLocation(), 1672 NewType->getAs<FunctionProtoType>(), New->getLocation())) { 1673 New->setInvalidDecl(); 1674 } 1675 } 1676 1677 /// CheckCXXDefaultArguments - Verify that the default arguments for a 1678 /// function declaration are well-formed according to C++ 1679 /// [dcl.fct.default]. 1680 void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) { 1681 // This checking doesn't make sense for explicit specializations; their 1682 // default arguments are determined by the declaration we're specializing, 1683 // not by FD. 1684 if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) 1685 return; 1686 if (auto *FTD = FD->getDescribedFunctionTemplate()) 1687 if (FTD->isMemberSpecialization()) 1688 return; 1689 1690 unsigned NumParams = FD->getNumParams(); 1691 unsigned ParamIdx = 0; 1692 1693 // Find first parameter with a default argument 1694 for (; ParamIdx < NumParams; ++ParamIdx) { 1695 ParmVarDecl *Param = FD->getParamDecl(ParamIdx); 1696 if (Param->hasDefaultArg()) 1697 break; 1698 } 1699 1700 // C++20 [dcl.fct.default]p4: 1701 // In a given function declaration, each parameter subsequent to a parameter 1702 // with a default argument shall have a default argument supplied in this or 1703 // a previous declaration, unless the parameter was expanded from a 1704 // parameter pack, or shall be a function parameter pack. 1705 for (++ParamIdx; ParamIdx < NumParams; ++ParamIdx) { 1706 ParmVarDecl *Param = FD->getParamDecl(ParamIdx); 1707 if (Param->hasDefaultArg() || Param->isParameterPack() || 1708 (CurrentInstantiationScope && 1709 CurrentInstantiationScope->isLocalPackExpansion(Param))) 1710 continue; 1711 if (Param->isInvalidDecl()) 1712 /* We already complained about this parameter. */; 1713 else if (Param->getIdentifier()) 1714 Diag(Param->getLocation(), diag::err_param_default_argument_missing_name) 1715 << Param->getIdentifier(); 1716 else 1717 Diag(Param->getLocation(), diag::err_param_default_argument_missing); 1718 } 1719 } 1720 1721 /// Check that the given type is a literal type. Issue a diagnostic if not, 1722 /// if Kind is Diagnose. 1723 /// \return \c true if a problem has been found (and optionally diagnosed). 1724 template <typename... Ts> 1725 static bool CheckLiteralType(Sema &SemaRef, Sema::CheckConstexprKind Kind, 1726 SourceLocation Loc, QualType T, unsigned DiagID, 1727 Ts &&...DiagArgs) { 1728 if (T->isDependentType()) 1729 return false; 1730 1731 switch (Kind) { 1732 case Sema::CheckConstexprKind::Diagnose: 1733 return SemaRef.RequireLiteralType(Loc, T, DiagID, 1734 std::forward<Ts>(DiagArgs)...); 1735 1736 case Sema::CheckConstexprKind::CheckValid: 1737 return !T->isLiteralType(SemaRef.Context); 1738 } 1739 1740 llvm_unreachable("unknown CheckConstexprKind"); 1741 } 1742 1743 /// Determine whether a destructor cannot be constexpr due to 1744 static bool CheckConstexprDestructorSubobjects(Sema &SemaRef, 1745 const CXXDestructorDecl *DD, 1746 Sema::CheckConstexprKind Kind) { 1747 assert(!SemaRef.getLangOpts().CPlusPlus23 && 1748 "this check is obsolete for C++23"); 1749 auto Check = [&](SourceLocation Loc, QualType T, const FieldDecl *FD) { 1750 const CXXRecordDecl *RD = 1751 T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1752 if (!RD || RD->hasConstexprDestructor()) 1753 return true; 1754 1755 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1756 SemaRef.Diag(DD->getLocation(), diag::err_constexpr_dtor_subobject) 1757 << static_cast<int>(DD->getConstexprKind()) << !FD 1758 << (FD ? FD->getDeclName() : DeclarationName()) << T; 1759 SemaRef.Diag(Loc, diag::note_constexpr_dtor_subobject) 1760 << !FD << (FD ? FD->getDeclName() : DeclarationName()) << T; 1761 } 1762 return false; 1763 }; 1764 1765 const CXXRecordDecl *RD = DD->getParent(); 1766 for (const CXXBaseSpecifier &B : RD->bases()) 1767 if (!Check(B.getBaseTypeLoc(), B.getType(), nullptr)) 1768 return false; 1769 for (const FieldDecl *FD : RD->fields()) 1770 if (!Check(FD->getLocation(), FD->getType(), FD)) 1771 return false; 1772 return true; 1773 } 1774 1775 /// Check whether a function's parameter types are all literal types. If so, 1776 /// return true. If not, produce a suitable diagnostic and return false. 1777 static bool CheckConstexprParameterTypes(Sema &SemaRef, 1778 const FunctionDecl *FD, 1779 Sema::CheckConstexprKind Kind) { 1780 assert(!SemaRef.getLangOpts().CPlusPlus23 && 1781 "this check is obsolete for C++23"); 1782 unsigned ArgIndex = 0; 1783 const auto *FT = FD->getType()->castAs<FunctionProtoType>(); 1784 for (FunctionProtoType::param_type_iterator i = FT->param_type_begin(), 1785 e = FT->param_type_end(); 1786 i != e; ++i, ++ArgIndex) { 1787 const ParmVarDecl *PD = FD->getParamDecl(ArgIndex); 1788 assert(PD && "null in a parameter list"); 1789 SourceLocation ParamLoc = PD->getLocation(); 1790 if (CheckLiteralType(SemaRef, Kind, ParamLoc, *i, 1791 diag::err_constexpr_non_literal_param, ArgIndex + 1, 1792 PD->getSourceRange(), isa<CXXConstructorDecl>(FD), 1793 FD->isConsteval())) 1794 return false; 1795 } 1796 return true; 1797 } 1798 1799 /// Check whether a function's return type is a literal type. If so, return 1800 /// true. If not, produce a suitable diagnostic and return false. 1801 static bool CheckConstexprReturnType(Sema &SemaRef, const FunctionDecl *FD, 1802 Sema::CheckConstexprKind Kind) { 1803 assert(!SemaRef.getLangOpts().CPlusPlus23 && 1804 "this check is obsolete for C++23"); 1805 if (CheckLiteralType(SemaRef, Kind, FD->getLocation(), FD->getReturnType(), 1806 diag::err_constexpr_non_literal_return, 1807 FD->isConsteval())) 1808 return false; 1809 return true; 1810 } 1811 1812 /// Get diagnostic %select index for tag kind for 1813 /// record diagnostic message. 1814 /// WARNING: Indexes apply to particular diagnostics only! 1815 /// 1816 /// \returns diagnostic %select index. 1817 static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) { 1818 switch (Tag) { 1819 case TagTypeKind::Struct: 1820 return 0; 1821 case TagTypeKind::Interface: 1822 return 1; 1823 case TagTypeKind::Class: 1824 return 2; 1825 default: llvm_unreachable("Invalid tag kind for record diagnostic!"); 1826 } 1827 } 1828 1829 static bool CheckConstexprFunctionBody(Sema &SemaRef, const FunctionDecl *Dcl, 1830 Stmt *Body, 1831 Sema::CheckConstexprKind Kind); 1832 static bool CheckConstexprMissingReturn(Sema &SemaRef, const FunctionDecl *Dcl); 1833 1834 bool Sema::CheckConstexprFunctionDefinition(const FunctionDecl *NewFD, 1835 CheckConstexprKind Kind) { 1836 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD); 1837 if (MD && MD->isInstance()) { 1838 // C++11 [dcl.constexpr]p4: 1839 // The definition of a constexpr constructor shall satisfy the following 1840 // constraints: 1841 // - the class shall not have any virtual base classes; 1842 // 1843 // FIXME: This only applies to constructors and destructors, not arbitrary 1844 // member functions. 1845 const CXXRecordDecl *RD = MD->getParent(); 1846 if (RD->getNumVBases()) { 1847 if (Kind == CheckConstexprKind::CheckValid) 1848 return false; 1849 1850 Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base) 1851 << isa<CXXConstructorDecl>(NewFD) 1852 << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases(); 1853 for (const auto &I : RD->vbases()) 1854 Diag(I.getBeginLoc(), diag::note_constexpr_virtual_base_here) 1855 << I.getSourceRange(); 1856 return false; 1857 } 1858 } 1859 1860 if (!isa<CXXConstructorDecl>(NewFD)) { 1861 // C++11 [dcl.constexpr]p3: 1862 // The definition of a constexpr function shall satisfy the following 1863 // constraints: 1864 // - it shall not be virtual; (removed in C++20) 1865 const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD); 1866 if (Method && Method->isVirtual()) { 1867 if (getLangOpts().CPlusPlus20) { 1868 if (Kind == CheckConstexprKind::Diagnose) 1869 Diag(Method->getLocation(), diag::warn_cxx17_compat_constexpr_virtual); 1870 } else { 1871 if (Kind == CheckConstexprKind::CheckValid) 1872 return false; 1873 1874 Method = Method->getCanonicalDecl(); 1875 Diag(Method->getLocation(), diag::err_constexpr_virtual); 1876 1877 // If it's not obvious why this function is virtual, find an overridden 1878 // function which uses the 'virtual' keyword. 1879 const CXXMethodDecl *WrittenVirtual = Method; 1880 while (!WrittenVirtual->isVirtualAsWritten()) 1881 WrittenVirtual = *WrittenVirtual->begin_overridden_methods(); 1882 if (WrittenVirtual != Method) 1883 Diag(WrittenVirtual->getLocation(), 1884 diag::note_overridden_virtual_function); 1885 return false; 1886 } 1887 } 1888 1889 // - its return type shall be a literal type; (removed in C++23) 1890 if (!getLangOpts().CPlusPlus23 && 1891 !CheckConstexprReturnType(*this, NewFD, Kind)) 1892 return false; 1893 } 1894 1895 if (auto *Dtor = dyn_cast<CXXDestructorDecl>(NewFD)) { 1896 // A destructor can be constexpr only if the defaulted destructor could be; 1897 // we don't need to check the members and bases if we already know they all 1898 // have constexpr destructors. (removed in C++23) 1899 if (!getLangOpts().CPlusPlus23 && 1900 !Dtor->getParent()->defaultedDestructorIsConstexpr()) { 1901 if (Kind == CheckConstexprKind::CheckValid) 1902 return false; 1903 if (!CheckConstexprDestructorSubobjects(*this, Dtor, Kind)) 1904 return false; 1905 } 1906 } 1907 1908 // - each of its parameter types shall be a literal type; (removed in C++23) 1909 if (!getLangOpts().CPlusPlus23 && 1910 !CheckConstexprParameterTypes(*this, NewFD, Kind)) 1911 return false; 1912 1913 Stmt *Body = NewFD->getBody(); 1914 assert(Body && 1915 "CheckConstexprFunctionDefinition called on function with no body"); 1916 return CheckConstexprFunctionBody(*this, NewFD, Body, Kind); 1917 } 1918 1919 /// Check the given declaration statement is legal within a constexpr function 1920 /// body. C++11 [dcl.constexpr]p3,p4, and C++1y [dcl.constexpr]p3. 1921 /// 1922 /// \return true if the body is OK (maybe only as an extension), false if we 1923 /// have diagnosed a problem. 1924 static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl, 1925 DeclStmt *DS, SourceLocation &Cxx1yLoc, 1926 Sema::CheckConstexprKind Kind) { 1927 // C++11 [dcl.constexpr]p3 and p4: 1928 // The definition of a constexpr function(p3) or constructor(p4) [...] shall 1929 // contain only 1930 for (const auto *DclIt : DS->decls()) { 1931 switch (DclIt->getKind()) { 1932 case Decl::StaticAssert: 1933 case Decl::Using: 1934 case Decl::UsingShadow: 1935 case Decl::UsingDirective: 1936 case Decl::UnresolvedUsingTypename: 1937 case Decl::UnresolvedUsingValue: 1938 case Decl::UsingEnum: 1939 // - static_assert-declarations 1940 // - using-declarations, 1941 // - using-directives, 1942 // - using-enum-declaration 1943 continue; 1944 1945 case Decl::Typedef: 1946 case Decl::TypeAlias: { 1947 // - typedef declarations and alias-declarations that do not define 1948 // classes or enumerations, 1949 const auto *TN = cast<TypedefNameDecl>(DclIt); 1950 if (TN->getUnderlyingType()->isVariablyModifiedType()) { 1951 // Don't allow variably-modified types in constexpr functions. 1952 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1953 TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc(); 1954 SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla) 1955 << TL.getSourceRange() << TL.getType() 1956 << isa<CXXConstructorDecl>(Dcl); 1957 } 1958 return false; 1959 } 1960 continue; 1961 } 1962 1963 case Decl::Enum: 1964 case Decl::CXXRecord: 1965 // C++1y allows types to be defined, not just declared. 1966 if (cast<TagDecl>(DclIt)->isThisDeclarationADefinition()) { 1967 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1968 SemaRef.Diag(DS->getBeginLoc(), 1969 SemaRef.getLangOpts().CPlusPlus14 1970 ? diag::warn_cxx11_compat_constexpr_type_definition 1971 : diag::ext_constexpr_type_definition) 1972 << isa<CXXConstructorDecl>(Dcl); 1973 } else if (!SemaRef.getLangOpts().CPlusPlus14) { 1974 return false; 1975 } 1976 } 1977 continue; 1978 1979 case Decl::EnumConstant: 1980 case Decl::IndirectField: 1981 case Decl::ParmVar: 1982 // These can only appear with other declarations which are banned in 1983 // C++11 and permitted in C++1y, so ignore them. 1984 continue; 1985 1986 case Decl::Var: 1987 case Decl::Decomposition: { 1988 // C++1y [dcl.constexpr]p3 allows anything except: 1989 // a definition of a variable of non-literal type or of static or 1990 // thread storage duration or [before C++2a] for which no 1991 // initialization is performed. 1992 const auto *VD = cast<VarDecl>(DclIt); 1993 if (VD->isThisDeclarationADefinition()) { 1994 if (VD->isStaticLocal()) { 1995 if (Kind == Sema::CheckConstexprKind::Diagnose) { 1996 SemaRef.Diag(VD->getLocation(), 1997 SemaRef.getLangOpts().CPlusPlus23 1998 ? diag::warn_cxx20_compat_constexpr_var 1999 : diag::ext_constexpr_static_var) 2000 << isa<CXXConstructorDecl>(Dcl) 2001 << (VD->getTLSKind() == VarDecl::TLS_Dynamic); 2002 } else if (!SemaRef.getLangOpts().CPlusPlus23) { 2003 return false; 2004 } 2005 } 2006 if (SemaRef.LangOpts.CPlusPlus23) { 2007 CheckLiteralType(SemaRef, Kind, VD->getLocation(), VD->getType(), 2008 diag::warn_cxx20_compat_constexpr_var, 2009 isa<CXXConstructorDecl>(Dcl), 2010 /*variable of non-literal type*/ 2); 2011 } else if (CheckLiteralType( 2012 SemaRef, Kind, VD->getLocation(), VD->getType(), 2013 diag::err_constexpr_local_var_non_literal_type, 2014 isa<CXXConstructorDecl>(Dcl))) { 2015 return false; 2016 } 2017 if (!VD->getType()->isDependentType() && 2018 !VD->hasInit() && !VD->isCXXForRangeDecl()) { 2019 if (Kind == Sema::CheckConstexprKind::Diagnose) { 2020 SemaRef.Diag( 2021 VD->getLocation(), 2022 SemaRef.getLangOpts().CPlusPlus20 2023 ? diag::warn_cxx17_compat_constexpr_local_var_no_init 2024 : diag::ext_constexpr_local_var_no_init) 2025 << isa<CXXConstructorDecl>(Dcl); 2026 } else if (!SemaRef.getLangOpts().CPlusPlus20) { 2027 return false; 2028 } 2029 continue; 2030 } 2031 } 2032 if (Kind == Sema::CheckConstexprKind::Diagnose) { 2033 SemaRef.Diag(VD->getLocation(), 2034 SemaRef.getLangOpts().CPlusPlus14 2035 ? diag::warn_cxx11_compat_constexpr_local_var 2036 : diag::ext_constexpr_local_var) 2037 << isa<CXXConstructorDecl>(Dcl); 2038 } else if (!SemaRef.getLangOpts().CPlusPlus14) { 2039 return false; 2040 } 2041 continue; 2042 } 2043 2044 case Decl::NamespaceAlias: 2045 case Decl::Function: 2046 // These are disallowed in C++11 and permitted in C++1y. Allow them 2047 // everywhere as an extension. 2048 if (!Cxx1yLoc.isValid()) 2049 Cxx1yLoc = DS->getBeginLoc(); 2050 continue; 2051 2052 default: 2053 if (Kind == Sema::CheckConstexprKind::Diagnose) { 2054 SemaRef.Diag(DS->getBeginLoc(), diag::err_constexpr_body_invalid_stmt) 2055 << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval(); 2056 } 2057 return false; 2058 } 2059 } 2060 2061 return true; 2062 } 2063 2064 /// Check that the given field is initialized within a constexpr constructor. 2065 /// 2066 /// \param Dcl The constexpr constructor being checked. 2067 /// \param Field The field being checked. This may be a member of an anonymous 2068 /// struct or union nested within the class being checked. 2069 /// \param Inits All declarations, including anonymous struct/union members and 2070 /// indirect members, for which any initialization was provided. 2071 /// \param Diagnosed Whether we've emitted the error message yet. Used to attach 2072 /// multiple notes for different members to the same error. 2073 /// \param Kind Whether we're diagnosing a constructor as written or determining 2074 /// whether the formal requirements are satisfied. 2075 /// \return \c false if we're checking for validity and the constructor does 2076 /// not satisfy the requirements on a constexpr constructor. 2077 static bool CheckConstexprCtorInitializer(Sema &SemaRef, 2078 const FunctionDecl *Dcl, 2079 FieldDecl *Field, 2080 llvm::SmallSet<Decl*, 16> &Inits, 2081 bool &Diagnosed, 2082 Sema::CheckConstexprKind Kind) { 2083 // In C++20 onwards, there's nothing to check for validity. 2084 if (Kind == Sema::CheckConstexprKind::CheckValid && 2085 SemaRef.getLangOpts().CPlusPlus20) 2086 return true; 2087 2088 if (Field->isInvalidDecl()) 2089 return true; 2090 2091 if (Field->isUnnamedBitField()) 2092 return true; 2093 2094 // Anonymous unions with no variant members and empty anonymous structs do not 2095 // need to be explicitly initialized. FIXME: Anonymous structs that contain no 2096 // indirect fields don't need initializing. 2097 if (Field->isAnonymousStructOrUnion() && 2098 (Field->getType()->isUnionType() 2099 ? !Field->getType()->getAsCXXRecordDecl()->hasVariantMembers() 2100 : Field->getType()->getAsCXXRecordDecl()->isEmpty())) 2101 return true; 2102 2103 if (!Inits.count(Field)) { 2104 if (Kind == Sema::CheckConstexprKind::Diagnose) { 2105 if (!Diagnosed) { 2106 SemaRef.Diag(Dcl->getLocation(), 2107 SemaRef.getLangOpts().CPlusPlus20 2108 ? diag::warn_cxx17_compat_constexpr_ctor_missing_init 2109 : diag::ext_constexpr_ctor_missing_init); 2110 Diagnosed = true; 2111 } 2112 SemaRef.Diag(Field->getLocation(), 2113 diag::note_constexpr_ctor_missing_init); 2114 } else if (!SemaRef.getLangOpts().CPlusPlus20) { 2115 return false; 2116 } 2117 } else if (Field->isAnonymousStructOrUnion()) { 2118 const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl(); 2119 for (auto *I : RD->fields()) 2120 // If an anonymous union contains an anonymous struct of which any member 2121 // is initialized, all members must be initialized. 2122 if (!RD->isUnion() || Inits.count(I)) 2123 if (!CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed, 2124 Kind)) 2125 return false; 2126 } 2127 return true; 2128 } 2129 2130 /// Check the provided statement is allowed in a constexpr function 2131 /// definition. 2132 static bool 2133 CheckConstexprFunctionStmt(Sema &SemaRef, const FunctionDecl *Dcl, Stmt *S, 2134 SmallVectorImpl<SourceLocation> &ReturnStmts, 2135 SourceLocation &Cxx1yLoc, SourceLocation &Cxx2aLoc, 2136 SourceLocation &Cxx2bLoc, 2137 Sema::CheckConstexprKind Kind) { 2138 // - its function-body shall be [...] a compound-statement that contains only 2139 switch (S->getStmtClass()) { 2140 case Stmt::NullStmtClass: 2141 // - null statements, 2142 return true; 2143 2144 case Stmt::DeclStmtClass: 2145 // - static_assert-declarations 2146 // - using-declarations, 2147 // - using-directives, 2148 // - typedef declarations and alias-declarations that do not define 2149 // classes or enumerations, 2150 if (!CheckConstexprDeclStmt(SemaRef, Dcl, cast<DeclStmt>(S), Cxx1yLoc, Kind)) 2151 return false; 2152 return true; 2153 2154 case Stmt::ReturnStmtClass: 2155 // - and exactly one return statement; 2156 if (isa<CXXConstructorDecl>(Dcl)) { 2157 // C++1y allows return statements in constexpr constructors. 2158 if (!Cxx1yLoc.isValid()) 2159 Cxx1yLoc = S->getBeginLoc(); 2160 return true; 2161 } 2162 2163 ReturnStmts.push_back(S->getBeginLoc()); 2164 return true; 2165 2166 case Stmt::AttributedStmtClass: 2167 // Attributes on a statement don't affect its formal kind and hence don't 2168 // affect its validity in a constexpr function. 2169 return CheckConstexprFunctionStmt( 2170 SemaRef, Dcl, cast<AttributedStmt>(S)->getSubStmt(), ReturnStmts, 2171 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind); 2172 2173 case Stmt::CompoundStmtClass: { 2174 // C++1y allows compound-statements. 2175 if (!Cxx1yLoc.isValid()) 2176 Cxx1yLoc = S->getBeginLoc(); 2177 2178 CompoundStmt *CompStmt = cast<CompoundStmt>(S); 2179 for (auto *BodyIt : CompStmt->body()) { 2180 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, BodyIt, ReturnStmts, 2181 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) 2182 return false; 2183 } 2184 return true; 2185 } 2186 2187 case Stmt::IfStmtClass: { 2188 // C++1y allows if-statements. 2189 if (!Cxx1yLoc.isValid()) 2190 Cxx1yLoc = S->getBeginLoc(); 2191 2192 IfStmt *If = cast<IfStmt>(S); 2193 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, If->getThen(), ReturnStmts, 2194 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) 2195 return false; 2196 if (If->getElse() && 2197 !CheckConstexprFunctionStmt(SemaRef, Dcl, If->getElse(), ReturnStmts, 2198 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) 2199 return false; 2200 return true; 2201 } 2202 2203 case Stmt::WhileStmtClass: 2204 case Stmt::DoStmtClass: 2205 case Stmt::ForStmtClass: 2206 case Stmt::CXXForRangeStmtClass: 2207 case Stmt::ContinueStmtClass: 2208 // C++1y allows all of these. We don't allow them as extensions in C++11, 2209 // because they don't make sense without variable mutation. 2210 if (!SemaRef.getLangOpts().CPlusPlus14) 2211 break; 2212 if (!Cxx1yLoc.isValid()) 2213 Cxx1yLoc = S->getBeginLoc(); 2214 for (Stmt *SubStmt : S->children()) { 2215 if (SubStmt && 2216 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, 2217 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) 2218 return false; 2219 } 2220 return true; 2221 2222 case Stmt::SwitchStmtClass: 2223 case Stmt::CaseStmtClass: 2224 case Stmt::DefaultStmtClass: 2225 case Stmt::BreakStmtClass: 2226 // C++1y allows switch-statements, and since they don't need variable 2227 // mutation, we can reasonably allow them in C++11 as an extension. 2228 if (!Cxx1yLoc.isValid()) 2229 Cxx1yLoc = S->getBeginLoc(); 2230 for (Stmt *SubStmt : S->children()) { 2231 if (SubStmt && 2232 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, 2233 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) 2234 return false; 2235 } 2236 return true; 2237 2238 case Stmt::LabelStmtClass: 2239 case Stmt::GotoStmtClass: 2240 if (Cxx2bLoc.isInvalid()) 2241 Cxx2bLoc = S->getBeginLoc(); 2242 for (Stmt *SubStmt : S->children()) { 2243 if (SubStmt && 2244 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, 2245 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) 2246 return false; 2247 } 2248 return true; 2249 2250 case Stmt::GCCAsmStmtClass: 2251 case Stmt::MSAsmStmtClass: 2252 // C++2a allows inline assembly statements. 2253 case Stmt::CXXTryStmtClass: 2254 if (Cxx2aLoc.isInvalid()) 2255 Cxx2aLoc = S->getBeginLoc(); 2256 for (Stmt *SubStmt : S->children()) { 2257 if (SubStmt && 2258 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, 2259 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) 2260 return false; 2261 } 2262 return true; 2263 2264 case Stmt::CXXCatchStmtClass: 2265 // Do not bother checking the language mode (already covered by the 2266 // try block check). 2267 if (!CheckConstexprFunctionStmt( 2268 SemaRef, Dcl, cast<CXXCatchStmt>(S)->getHandlerBlock(), ReturnStmts, 2269 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) 2270 return false; 2271 return true; 2272 2273 default: 2274 if (!isa<Expr>(S)) 2275 break; 2276 2277 // C++1y allows expression-statements. 2278 if (!Cxx1yLoc.isValid()) 2279 Cxx1yLoc = S->getBeginLoc(); 2280 return true; 2281 } 2282 2283 if (Kind == Sema::CheckConstexprKind::Diagnose) { 2284 SemaRef.Diag(S->getBeginLoc(), diag::err_constexpr_body_invalid_stmt) 2285 << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval(); 2286 } 2287 return false; 2288 } 2289 2290 /// Check the body for the given constexpr function declaration only contains 2291 /// the permitted types of statement. C++11 [dcl.constexpr]p3,p4. 2292 /// 2293 /// \return true if the body is OK, false if we have found or diagnosed a 2294 /// problem. 2295 static bool CheckConstexprFunctionBody(Sema &SemaRef, const FunctionDecl *Dcl, 2296 Stmt *Body, 2297 Sema::CheckConstexprKind Kind) { 2298 SmallVector<SourceLocation, 4> ReturnStmts; 2299 2300 if (isa<CXXTryStmt>(Body)) { 2301 // C++11 [dcl.constexpr]p3: 2302 // The definition of a constexpr function shall satisfy the following 2303 // constraints: [...] 2304 // - its function-body shall be = delete, = default, or a 2305 // compound-statement 2306 // 2307 // C++11 [dcl.constexpr]p4: 2308 // In the definition of a constexpr constructor, [...] 2309 // - its function-body shall not be a function-try-block; 2310 // 2311 // This restriction is lifted in C++2a, as long as inner statements also 2312 // apply the general constexpr rules. 2313 switch (Kind) { 2314 case Sema::CheckConstexprKind::CheckValid: 2315 if (!SemaRef.getLangOpts().CPlusPlus20) 2316 return false; 2317 break; 2318 2319 case Sema::CheckConstexprKind::Diagnose: 2320 SemaRef.Diag(Body->getBeginLoc(), 2321 !SemaRef.getLangOpts().CPlusPlus20 2322 ? diag::ext_constexpr_function_try_block_cxx20 2323 : diag::warn_cxx17_compat_constexpr_function_try_block) 2324 << isa<CXXConstructorDecl>(Dcl); 2325 break; 2326 } 2327 } 2328 2329 // - its function-body shall be [...] a compound-statement that contains only 2330 // [... list of cases ...] 2331 // 2332 // Note that walking the children here is enough to properly check for 2333 // CompoundStmt and CXXTryStmt body. 2334 SourceLocation Cxx1yLoc, Cxx2aLoc, Cxx2bLoc; 2335 for (Stmt *SubStmt : Body->children()) { 2336 if (SubStmt && 2337 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts, 2338 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) 2339 return false; 2340 } 2341 2342 if (Kind == Sema::CheckConstexprKind::CheckValid) { 2343 // If this is only valid as an extension, report that we don't satisfy the 2344 // constraints of the current language. 2345 if ((Cxx2bLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus23) || 2346 (Cxx2aLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus20) || 2347 (Cxx1yLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus17)) 2348 return false; 2349 } else if (Cxx2bLoc.isValid()) { 2350 SemaRef.Diag(Cxx2bLoc, 2351 SemaRef.getLangOpts().CPlusPlus23 2352 ? diag::warn_cxx20_compat_constexpr_body_invalid_stmt 2353 : diag::ext_constexpr_body_invalid_stmt_cxx23) 2354 << isa<CXXConstructorDecl>(Dcl); 2355 } else if (Cxx2aLoc.isValid()) { 2356 SemaRef.Diag(Cxx2aLoc, 2357 SemaRef.getLangOpts().CPlusPlus20 2358 ? diag::warn_cxx17_compat_constexpr_body_invalid_stmt 2359 : diag::ext_constexpr_body_invalid_stmt_cxx20) 2360 << isa<CXXConstructorDecl>(Dcl); 2361 } else if (Cxx1yLoc.isValid()) { 2362 SemaRef.Diag(Cxx1yLoc, 2363 SemaRef.getLangOpts().CPlusPlus14 2364 ? diag::warn_cxx11_compat_constexpr_body_invalid_stmt 2365 : diag::ext_constexpr_body_invalid_stmt) 2366 << isa<CXXConstructorDecl>(Dcl); 2367 } 2368 2369 if (const CXXConstructorDecl *Constructor 2370 = dyn_cast<CXXConstructorDecl>(Dcl)) { 2371 const CXXRecordDecl *RD = Constructor->getParent(); 2372 // DR1359: 2373 // - every non-variant non-static data member and base class sub-object 2374 // shall be initialized; 2375 // DR1460: 2376 // - if the class is a union having variant members, exactly one of them 2377 // shall be initialized; 2378 if (RD->isUnion()) { 2379 if (Constructor->getNumCtorInitializers() == 0 && 2380 RD->hasVariantMembers()) { 2381 if (Kind == Sema::CheckConstexprKind::Diagnose) { 2382 SemaRef.Diag( 2383 Dcl->getLocation(), 2384 SemaRef.getLangOpts().CPlusPlus20 2385 ? diag::warn_cxx17_compat_constexpr_union_ctor_no_init 2386 : diag::ext_constexpr_union_ctor_no_init); 2387 } else if (!SemaRef.getLangOpts().CPlusPlus20) { 2388 return false; 2389 } 2390 } 2391 } else if (!Constructor->isDependentContext() && 2392 !Constructor->isDelegatingConstructor()) { 2393 assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases"); 2394 2395 // Skip detailed checking if we have enough initializers, and we would 2396 // allow at most one initializer per member. 2397 bool AnyAnonStructUnionMembers = false; 2398 unsigned Fields = 0; 2399 for (CXXRecordDecl::field_iterator I = RD->field_begin(), 2400 E = RD->field_end(); I != E; ++I, ++Fields) { 2401 if (I->isAnonymousStructOrUnion()) { 2402 AnyAnonStructUnionMembers = true; 2403 break; 2404 } 2405 } 2406 // DR1460: 2407 // - if the class is a union-like class, but is not a union, for each of 2408 // its anonymous union members having variant members, exactly one of 2409 // them shall be initialized; 2410 if (AnyAnonStructUnionMembers || 2411 Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) { 2412 // Check initialization of non-static data members. Base classes are 2413 // always initialized so do not need to be checked. Dependent bases 2414 // might not have initializers in the member initializer list. 2415 llvm::SmallSet<Decl*, 16> Inits; 2416 for (const auto *I: Constructor->inits()) { 2417 if (FieldDecl *FD = I->getMember()) 2418 Inits.insert(FD); 2419 else if (IndirectFieldDecl *ID = I->getIndirectMember()) 2420 Inits.insert(ID->chain_begin(), ID->chain_end()); 2421 } 2422 2423 bool Diagnosed = false; 2424 for (auto *I : RD->fields()) 2425 if (!CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed, 2426 Kind)) 2427 return false; 2428 } 2429 } 2430 } else { 2431 if (ReturnStmts.empty()) { 2432 switch (Kind) { 2433 case Sema::CheckConstexprKind::Diagnose: 2434 if (!CheckConstexprMissingReturn(SemaRef, Dcl)) 2435 return false; 2436 break; 2437 2438 case Sema::CheckConstexprKind::CheckValid: 2439 // The formal requirements don't include this rule in C++14, even 2440 // though the "must be able to produce a constant expression" rules 2441 // still imply it in some cases. 2442 if (!SemaRef.getLangOpts().CPlusPlus14) 2443 return false; 2444 break; 2445 } 2446 } else if (ReturnStmts.size() > 1) { 2447 switch (Kind) { 2448 case Sema::CheckConstexprKind::Diagnose: 2449 SemaRef.Diag( 2450 ReturnStmts.back(), 2451 SemaRef.getLangOpts().CPlusPlus14 2452 ? diag::warn_cxx11_compat_constexpr_body_multiple_return 2453 : diag::ext_constexpr_body_multiple_return); 2454 for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I) 2455 SemaRef.Diag(ReturnStmts[I], 2456 diag::note_constexpr_body_previous_return); 2457 break; 2458 2459 case Sema::CheckConstexprKind::CheckValid: 2460 if (!SemaRef.getLangOpts().CPlusPlus14) 2461 return false; 2462 break; 2463 } 2464 } 2465 } 2466 2467 // C++11 [dcl.constexpr]p5: 2468 // if no function argument values exist such that the function invocation 2469 // substitution would produce a constant expression, the program is 2470 // ill-formed; no diagnostic required. 2471 // C++11 [dcl.constexpr]p3: 2472 // - every constructor call and implicit conversion used in initializing the 2473 // return value shall be one of those allowed in a constant expression. 2474 // C++11 [dcl.constexpr]p4: 2475 // - every constructor involved in initializing non-static data members and 2476 // base class sub-objects shall be a constexpr constructor. 2477 // 2478 // Note that this rule is distinct from the "requirements for a constexpr 2479 // function", so is not checked in CheckValid mode. Because the check for 2480 // constexpr potential is expensive, skip the check if the diagnostic is 2481 // disabled, the function is declared in a system header, or we're in C++23 2482 // or later mode (see https://wg21.link/P2448). 2483 bool SkipCheck = 2484 !SemaRef.getLangOpts().CheckConstexprFunctionBodies || 2485 SemaRef.getSourceManager().isInSystemHeader(Dcl->getLocation()) || 2486 SemaRef.getDiagnostics().isIgnored( 2487 diag::ext_constexpr_function_never_constant_expr, Dcl->getLocation()); 2488 SmallVector<PartialDiagnosticAt, 8> Diags; 2489 if (Kind == Sema::CheckConstexprKind::Diagnose && !SkipCheck && 2490 !Expr::isPotentialConstantExpr(Dcl, Diags)) { 2491 SemaRef.Diag(Dcl->getLocation(), 2492 diag::ext_constexpr_function_never_constant_expr) 2493 << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval() 2494 << Dcl->getNameInfo().getSourceRange(); 2495 for (size_t I = 0, N = Diags.size(); I != N; ++I) 2496 SemaRef.Diag(Diags[I].first, Diags[I].second); 2497 // Don't return false here: we allow this for compatibility in 2498 // system headers. 2499 } 2500 2501 return true; 2502 } 2503 2504 static bool CheckConstexprMissingReturn(Sema &SemaRef, 2505 const FunctionDecl *Dcl) { 2506 bool IsVoidOrDependentType = Dcl->getReturnType()->isVoidType() || 2507 Dcl->getReturnType()->isDependentType(); 2508 // Skip emitting a missing return error diagnostic for non-void functions 2509 // since C++23 no longer mandates constexpr functions to yield constant 2510 // expressions. 2511 if (SemaRef.getLangOpts().CPlusPlus23 && !IsVoidOrDependentType) 2512 return true; 2513 2514 // C++14 doesn't require constexpr functions to contain a 'return' 2515 // statement. We still do, unless the return type might be void, because 2516 // otherwise if there's no return statement, the function cannot 2517 // be used in a core constant expression. 2518 bool OK = SemaRef.getLangOpts().CPlusPlus14 && IsVoidOrDependentType; 2519 SemaRef.Diag(Dcl->getLocation(), 2520 OK ? diag::warn_cxx11_compat_constexpr_body_no_return 2521 : diag::err_constexpr_body_no_return) 2522 << Dcl->isConsteval(); 2523 return OK; 2524 } 2525 2526 bool Sema::CheckImmediateEscalatingFunctionDefinition( 2527 FunctionDecl *FD, const sema::FunctionScopeInfo *FSI) { 2528 if (!getLangOpts().CPlusPlus20 || !FD->isImmediateEscalating()) 2529 return true; 2530 FD->setBodyContainsImmediateEscalatingExpressions( 2531 FSI->FoundImmediateEscalatingExpression); 2532 if (FSI->FoundImmediateEscalatingExpression) { 2533 auto it = UndefinedButUsed.find(FD->getCanonicalDecl()); 2534 if (it != UndefinedButUsed.end()) { 2535 Diag(it->second, diag::err_immediate_function_used_before_definition) 2536 << it->first; 2537 Diag(FD->getLocation(), diag::note_defined_here) << FD; 2538 if (FD->isImmediateFunction() && !FD->isConsteval()) 2539 DiagnoseImmediateEscalatingReason(FD); 2540 return false; 2541 } 2542 } 2543 return true; 2544 } 2545 2546 void Sema::DiagnoseImmediateEscalatingReason(FunctionDecl *FD) { 2547 assert(FD->isImmediateEscalating() && !FD->isConsteval() && 2548 "expected an immediate function"); 2549 assert(FD->hasBody() && "expected the function to have a body"); 2550 struct ImmediateEscalatingExpressionsVisitor : DynamicRecursiveASTVisitor { 2551 Sema &SemaRef; 2552 2553 const FunctionDecl *ImmediateFn; 2554 bool ImmediateFnIsConstructor; 2555 CXXConstructorDecl *CurrentConstructor = nullptr; 2556 CXXCtorInitializer *CurrentInit = nullptr; 2557 2558 ImmediateEscalatingExpressionsVisitor(Sema &SemaRef, FunctionDecl *FD) 2559 : SemaRef(SemaRef), ImmediateFn(FD), 2560 ImmediateFnIsConstructor(isa<CXXConstructorDecl>(FD)) { 2561 ShouldVisitImplicitCode = true; 2562 ShouldVisitLambdaBody = false; 2563 } 2564 2565 void Diag(const Expr *E, const FunctionDecl *Fn, bool IsCall) { 2566 SourceLocation Loc = E->getBeginLoc(); 2567 SourceRange Range = E->getSourceRange(); 2568 if (CurrentConstructor && CurrentInit) { 2569 Loc = CurrentConstructor->getLocation(); 2570 Range = CurrentInit->isWritten() ? CurrentInit->getSourceRange() 2571 : SourceRange(); 2572 } 2573 2574 FieldDecl* InitializedField = CurrentInit ? CurrentInit->getAnyMember() : nullptr; 2575 2576 SemaRef.Diag(Loc, diag::note_immediate_function_reason) 2577 << ImmediateFn << Fn << Fn->isConsteval() << IsCall 2578 << isa<CXXConstructorDecl>(Fn) << ImmediateFnIsConstructor 2579 << (InitializedField != nullptr) 2580 << (CurrentInit && !CurrentInit->isWritten()) 2581 << InitializedField << Range; 2582 } 2583 bool TraverseCallExpr(CallExpr *E) override { 2584 if (const auto *DR = 2585 dyn_cast<DeclRefExpr>(E->getCallee()->IgnoreImplicit()); 2586 DR && DR->isImmediateEscalating()) { 2587 Diag(E, E->getDirectCallee(), /*IsCall=*/true); 2588 return false; 2589 } 2590 2591 for (Expr *A : E->arguments()) 2592 if (!TraverseStmt(A)) 2593 return false; 2594 2595 return true; 2596 } 2597 2598 bool VisitDeclRefExpr(DeclRefExpr *E) override { 2599 if (const auto *ReferencedFn = dyn_cast<FunctionDecl>(E->getDecl()); 2600 ReferencedFn && E->isImmediateEscalating()) { 2601 Diag(E, ReferencedFn, /*IsCall=*/false); 2602 return false; 2603 } 2604 2605 return true; 2606 } 2607 2608 bool VisitCXXConstructExpr(CXXConstructExpr *E) override { 2609 CXXConstructorDecl *D = E->getConstructor(); 2610 if (E->isImmediateEscalating()) { 2611 Diag(E, D, /*IsCall=*/true); 2612 return false; 2613 } 2614 return true; 2615 } 2616 2617 bool TraverseConstructorInitializer(CXXCtorInitializer *Init) override { 2618 llvm::SaveAndRestore RAII(CurrentInit, Init); 2619 return DynamicRecursiveASTVisitor::TraverseConstructorInitializer(Init); 2620 } 2621 2622 bool TraverseCXXConstructorDecl(CXXConstructorDecl *Ctr) override { 2623 llvm::SaveAndRestore RAII(CurrentConstructor, Ctr); 2624 return DynamicRecursiveASTVisitor::TraverseCXXConstructorDecl(Ctr); 2625 } 2626 2627 bool TraverseType(QualType T) override { return true; } 2628 bool VisitBlockExpr(BlockExpr *T) override { return true; } 2629 2630 } Visitor(*this, FD); 2631 Visitor.TraverseDecl(FD); 2632 } 2633 2634 CXXRecordDecl *Sema::getCurrentClass(Scope *, const CXXScopeSpec *SS) { 2635 assert(getLangOpts().CPlusPlus && "No class names in C!"); 2636 2637 if (SS && SS->isInvalid()) 2638 return nullptr; 2639 2640 if (SS && SS->isNotEmpty()) { 2641 DeclContext *DC = computeDeclContext(*SS, true); 2642 return dyn_cast_or_null<CXXRecordDecl>(DC); 2643 } 2644 2645 return dyn_cast_or_null<CXXRecordDecl>(CurContext); 2646 } 2647 2648 bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *S, 2649 const CXXScopeSpec *SS) { 2650 CXXRecordDecl *CurDecl = getCurrentClass(S, SS); 2651 return CurDecl && &II == CurDecl->getIdentifier(); 2652 } 2653 2654 bool Sema::isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS) { 2655 assert(getLangOpts().CPlusPlus && "No class names in C!"); 2656 2657 if (!getLangOpts().SpellChecking) 2658 return false; 2659 2660 CXXRecordDecl *CurDecl; 2661 if (SS && SS->isSet() && !SS->isInvalid()) { 2662 DeclContext *DC = computeDeclContext(*SS, true); 2663 CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC); 2664 } else 2665 CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext); 2666 2667 if (CurDecl && CurDecl->getIdentifier() && II != CurDecl->getIdentifier() && 2668 3 * II->getName().edit_distance(CurDecl->getIdentifier()->getName()) 2669 < II->getLength()) { 2670 II = CurDecl->getIdentifier(); 2671 return true; 2672 } 2673 2674 return false; 2675 } 2676 2677 CXXBaseSpecifier *Sema::CheckBaseSpecifier(CXXRecordDecl *Class, 2678 SourceRange SpecifierRange, 2679 bool Virtual, AccessSpecifier Access, 2680 TypeSourceInfo *TInfo, 2681 SourceLocation EllipsisLoc) { 2682 QualType BaseType = TInfo->getType(); 2683 SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc(); 2684 if (BaseType->containsErrors()) { 2685 // Already emitted a diagnostic when parsing the error type. 2686 return nullptr; 2687 } 2688 2689 if (EllipsisLoc.isValid() && !BaseType->containsUnexpandedParameterPack()) { 2690 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) 2691 << TInfo->getTypeLoc().getSourceRange(); 2692 EllipsisLoc = SourceLocation(); 2693 } 2694 2695 auto *BaseDecl = 2696 dyn_cast_if_present<CXXRecordDecl>(computeDeclContext(BaseType)); 2697 // C++ [class.derived.general]p2: 2698 // A class-or-decltype shall denote a (possibly cv-qualified) class type 2699 // that is not an incompletely defined class; any cv-qualifiers are 2700 // ignored. 2701 if (BaseDecl) { 2702 // C++ [class.union.general]p4: 2703 // [...] A union shall not be used as a base class. 2704 if (BaseDecl->isUnion()) { 2705 Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange; 2706 return nullptr; 2707 } 2708 2709 if (BaseType.hasQualifiers()) { 2710 std::string Quals = 2711 BaseType.getQualifiers().getAsString(Context.getPrintingPolicy()); 2712 Diag(BaseLoc, diag::warn_qual_base_type) 2713 << Quals << std::count(Quals.begin(), Quals.end(), ' ') + 1 2714 << BaseType; 2715 Diag(BaseLoc, diag::note_base_class_specified_here) << BaseType; 2716 } 2717 2718 // For the MS ABI, propagate DLL attributes to base class templates. 2719 if (Context.getTargetInfo().getCXXABI().isMicrosoft() || 2720 Context.getTargetInfo().getTriple().isPS()) { 2721 if (Attr *ClassAttr = getDLLAttr(Class)) { 2722 if (auto *BaseSpec = 2723 dyn_cast<ClassTemplateSpecializationDecl>(BaseDecl)) { 2724 propagateDLLAttrToBaseClassTemplate(Class, ClassAttr, BaseSpec, 2725 BaseLoc); 2726 } 2727 } 2728 } 2729 2730 if (RequireCompleteType(BaseLoc, BaseType, diag::err_incomplete_base_class, 2731 SpecifierRange)) { 2732 Class->setInvalidDecl(); 2733 return nullptr; 2734 } 2735 2736 BaseDecl = BaseDecl->getDefinition(); 2737 assert(BaseDecl && "Base type is not incomplete, but has no definition"); 2738 2739 // Microsoft docs say: 2740 // "If a base-class has a code_seg attribute, derived classes must have the 2741 // same attribute." 2742 const auto *BaseCSA = BaseDecl->getAttr<CodeSegAttr>(); 2743 const auto *DerivedCSA = Class->getAttr<CodeSegAttr>(); 2744 if ((DerivedCSA || BaseCSA) && 2745 (!BaseCSA || !DerivedCSA || 2746 BaseCSA->getName() != DerivedCSA->getName())) { 2747 Diag(Class->getLocation(), diag::err_mismatched_code_seg_base); 2748 Diag(BaseDecl->getLocation(), diag::note_base_class_specified_here) 2749 << BaseDecl; 2750 return nullptr; 2751 } 2752 2753 // A class which contains a flexible array member is not suitable for use as 2754 // a base class: 2755 // - If the layout determines that a base comes before another base, 2756 // the flexible array member would index into the subsequent base. 2757 // - If the layout determines that base comes before the derived class, 2758 // the flexible array member would index into the derived class. 2759 if (BaseDecl->hasFlexibleArrayMember()) { 2760 Diag(BaseLoc, diag::err_base_class_has_flexible_array_member) 2761 << BaseDecl->getDeclName(); 2762 return nullptr; 2763 } 2764 2765 // C++ [class]p3: 2766 // If a class is marked final and it appears as a base-type-specifier in 2767 // base-clause, the program is ill-formed. 2768 if (FinalAttr *FA = BaseDecl->getAttr<FinalAttr>()) { 2769 Diag(BaseLoc, diag::err_class_marked_final_used_as_base) 2770 << BaseDecl->getDeclName() << FA->isSpelledAsSealed(); 2771 Diag(BaseDecl->getLocation(), diag::note_entity_declared_at) 2772 << BaseDecl->getDeclName() << FA->getRange(); 2773 return nullptr; 2774 } 2775 2776 // If the base class is invalid the derived class is as well. 2777 if (BaseDecl->isInvalidDecl()) 2778 Class->setInvalidDecl(); 2779 } else if (BaseType->isDependentType()) { 2780 // Make sure that we don't make an ill-formed AST where the type of the 2781 // Class is non-dependent and its attached base class specifier is an 2782 // dependent type, which violates invariants in many clang code paths (e.g. 2783 // constexpr evaluator). If this case happens (in errory-recovery mode), we 2784 // explicitly mark the Class decl invalid. The diagnostic was already 2785 // emitted. 2786 if (!Class->isDependentContext()) 2787 Class->setInvalidDecl(); 2788 } else { 2789 // The base class is some non-dependent non-class type. 2790 Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange; 2791 return nullptr; 2792 } 2793 2794 // In HLSL, unspecified class access is public rather than private. 2795 if (getLangOpts().HLSL && Class->getTagKind() == TagTypeKind::Class && 2796 Access == AS_none) 2797 Access = AS_public; 2798 2799 // Create the base specifier. 2800 return new (Context) CXXBaseSpecifier( 2801 SpecifierRange, Virtual, Class->getTagKind() == TagTypeKind::Class, 2802 Access, TInfo, EllipsisLoc); 2803 } 2804 2805 BaseResult Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange, 2806 const ParsedAttributesView &Attributes, 2807 bool Virtual, AccessSpecifier Access, 2808 ParsedType basetype, SourceLocation BaseLoc, 2809 SourceLocation EllipsisLoc) { 2810 if (!classdecl) 2811 return true; 2812 2813 AdjustDeclIfTemplate(classdecl); 2814 CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl); 2815 if (!Class) 2816 return true; 2817 2818 // We haven't yet attached the base specifiers. 2819 Class->setIsParsingBaseSpecifiers(); 2820 2821 // We do not support any C++11 attributes on base-specifiers yet. 2822 // Diagnose any attributes we see. 2823 for (const ParsedAttr &AL : Attributes) { 2824 if (AL.isInvalid() || AL.getKind() == ParsedAttr::IgnoredAttribute) 2825 continue; 2826 if (AL.getKind() == ParsedAttr::UnknownAttribute) 2827 Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored) 2828 << AL << AL.getRange(); 2829 else 2830 Diag(AL.getLoc(), diag::err_base_specifier_attribute) 2831 << AL << AL.isRegularKeywordAttribute() << AL.getRange(); 2832 } 2833 2834 TypeSourceInfo *TInfo = nullptr; 2835 GetTypeFromParser(basetype, &TInfo); 2836 2837 if (EllipsisLoc.isInvalid() && 2838 DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo, 2839 UPPC_BaseType)) 2840 return true; 2841 2842 // C++ [class.union.general]p4: 2843 // [...] A union shall not have base classes. 2844 if (Class->isUnion()) { 2845 Diag(Class->getLocation(), diag::err_base_clause_on_union) 2846 << SpecifierRange; 2847 return true; 2848 } 2849 2850 if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange, 2851 Virtual, Access, TInfo, 2852 EllipsisLoc)) 2853 return BaseSpec; 2854 2855 Class->setInvalidDecl(); 2856 return true; 2857 } 2858 2859 /// Use small set to collect indirect bases. As this is only used 2860 /// locally, there's no need to abstract the small size parameter. 2861 typedef llvm::SmallPtrSet<QualType, 4> IndirectBaseSet; 2862 2863 /// Recursively add the bases of Type. Don't add Type itself. 2864 static void 2865 NoteIndirectBases(ASTContext &Context, IndirectBaseSet &Set, 2866 const QualType &Type) 2867 { 2868 // Even though the incoming type is a base, it might not be 2869 // a class -- it could be a template parm, for instance. 2870 if (auto Rec = Type->getAs<RecordType>()) { 2871 auto Decl = Rec->getAsCXXRecordDecl(); 2872 2873 // Iterate over its bases. 2874 for (const auto &BaseSpec : Decl->bases()) { 2875 QualType Base = Context.getCanonicalType(BaseSpec.getType()) 2876 .getUnqualifiedType(); 2877 if (Set.insert(Base).second) 2878 // If we've not already seen it, recurse. 2879 NoteIndirectBases(Context, Set, Base); 2880 } 2881 } 2882 } 2883 2884 bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, 2885 MutableArrayRef<CXXBaseSpecifier *> Bases) { 2886 if (Bases.empty()) 2887 return false; 2888 2889 // Used to keep track of which base types we have already seen, so 2890 // that we can properly diagnose redundant direct base types. Note 2891 // that the key is always the unqualified canonical type of the base 2892 // class. 2893 std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes; 2894 2895 // Used to track indirect bases so we can see if a direct base is 2896 // ambiguous. 2897 IndirectBaseSet IndirectBaseTypes; 2898 2899 // Copy non-redundant base specifiers into permanent storage. 2900 unsigned NumGoodBases = 0; 2901 bool Invalid = false; 2902 for (unsigned idx = 0; idx < Bases.size(); ++idx) { 2903 QualType NewBaseType 2904 = Context.getCanonicalType(Bases[idx]->getType()); 2905 NewBaseType = NewBaseType.getLocalUnqualifiedType(); 2906 2907 CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType]; 2908 if (KnownBase) { 2909 // C++ [class.mi]p3: 2910 // A class shall not be specified as a direct base class of a 2911 // derived class more than once. 2912 Diag(Bases[idx]->getBeginLoc(), diag::err_duplicate_base_class) 2913 << KnownBase->getType() << Bases[idx]->getSourceRange(); 2914 2915 // Delete the duplicate base class specifier; we're going to 2916 // overwrite its pointer later. 2917 Context.Deallocate(Bases[idx]); 2918 2919 Invalid = true; 2920 } else { 2921 // Okay, add this new base class. 2922 KnownBase = Bases[idx]; 2923 Bases[NumGoodBases++] = Bases[idx]; 2924 2925 if (NewBaseType->isDependentType()) 2926 continue; 2927 // Note this base's direct & indirect bases, if there could be ambiguity. 2928 if (Bases.size() > 1) 2929 NoteIndirectBases(Context, IndirectBaseTypes, NewBaseType); 2930 2931 if (const RecordType *Record = NewBaseType->getAs<RecordType>()) { 2932 const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()); 2933 if (Class->isInterface() && 2934 (!RD->isInterfaceLike() || 2935 KnownBase->getAccessSpecifier() != AS_public)) { 2936 // The Microsoft extension __interface does not permit bases that 2937 // are not themselves public interfaces. 2938 Diag(KnownBase->getBeginLoc(), diag::err_invalid_base_in_interface) 2939 << getRecordDiagFromTagKind(RD->getTagKind()) << RD 2940 << RD->getSourceRange(); 2941 Invalid = true; 2942 } 2943 if (RD->hasAttr<WeakAttr>()) 2944 Class->addAttr(WeakAttr::CreateImplicit(Context)); 2945 } 2946 } 2947 } 2948 2949 // Attach the remaining base class specifiers to the derived class. 2950 Class->setBases(Bases.data(), NumGoodBases); 2951 2952 // Check that the only base classes that are duplicate are virtual. 2953 for (unsigned idx = 0; idx < NumGoodBases; ++idx) { 2954 // Check whether this direct base is inaccessible due to ambiguity. 2955 QualType BaseType = Bases[idx]->getType(); 2956 2957 // Skip all dependent types in templates being used as base specifiers. 2958 // Checks below assume that the base specifier is a CXXRecord. 2959 if (BaseType->isDependentType()) 2960 continue; 2961 2962 CanQualType CanonicalBase = Context.getCanonicalType(BaseType) 2963 .getUnqualifiedType(); 2964 2965 if (IndirectBaseTypes.count(CanonicalBase)) { 2966 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 2967 /*DetectVirtual=*/true); 2968 bool found 2969 = Class->isDerivedFrom(CanonicalBase->getAsCXXRecordDecl(), Paths); 2970 assert(found); 2971 (void)found; 2972 2973 if (Paths.isAmbiguous(CanonicalBase)) 2974 Diag(Bases[idx]->getBeginLoc(), diag::warn_inaccessible_base_class) 2975 << BaseType << getAmbiguousPathsDisplayString(Paths) 2976 << Bases[idx]->getSourceRange(); 2977 else 2978 assert(Bases[idx]->isVirtual()); 2979 } 2980 2981 // Delete the base class specifier, since its data has been copied 2982 // into the CXXRecordDecl. 2983 Context.Deallocate(Bases[idx]); 2984 } 2985 2986 return Invalid; 2987 } 2988 2989 void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, 2990 MutableArrayRef<CXXBaseSpecifier *> Bases) { 2991 if (!ClassDecl || Bases.empty()) 2992 return; 2993 2994 AdjustDeclIfTemplate(ClassDecl); 2995 AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl), Bases); 2996 } 2997 2998 bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base) { 2999 if (!getLangOpts().CPlusPlus) 3000 return false; 3001 3002 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl(); 3003 if (!DerivedRD) 3004 return false; 3005 3006 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl(); 3007 if (!BaseRD) 3008 return false; 3009 3010 // If either the base or the derived type is invalid, don't try to 3011 // check whether one is derived from the other. 3012 if (BaseRD->isInvalidDecl() || DerivedRD->isInvalidDecl()) 3013 return false; 3014 3015 // FIXME: In a modules build, do we need the entire path to be visible for us 3016 // to be able to use the inheritance relationship? 3017 if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined()) 3018 return false; 3019 3020 return DerivedRD->isDerivedFrom(BaseRD); 3021 } 3022 3023 bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base, 3024 CXXBasePaths &Paths) { 3025 if (!getLangOpts().CPlusPlus) 3026 return false; 3027 3028 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl(); 3029 if (!DerivedRD) 3030 return false; 3031 3032 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl(); 3033 if (!BaseRD) 3034 return false; 3035 3036 if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined()) 3037 return false; 3038 3039 return DerivedRD->isDerivedFrom(BaseRD, Paths); 3040 } 3041 3042 static void BuildBasePathArray(const CXXBasePath &Path, 3043 CXXCastPath &BasePathArray) { 3044 // We first go backward and check if we have a virtual base. 3045 // FIXME: It would be better if CXXBasePath had the base specifier for 3046 // the nearest virtual base. 3047 unsigned Start = 0; 3048 for (unsigned I = Path.size(); I != 0; --I) { 3049 if (Path[I - 1].Base->isVirtual()) { 3050 Start = I - 1; 3051 break; 3052 } 3053 } 3054 3055 // Now add all bases. 3056 for (unsigned I = Start, E = Path.size(); I != E; ++I) 3057 BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base)); 3058 } 3059 3060 3061 void Sema::BuildBasePathArray(const CXXBasePaths &Paths, 3062 CXXCastPath &BasePathArray) { 3063 assert(BasePathArray.empty() && "Base path array must be empty!"); 3064 assert(Paths.isRecordingPaths() && "Must record paths!"); 3065 return ::BuildBasePathArray(Paths.front(), BasePathArray); 3066 } 3067 3068 bool 3069 Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base, 3070 unsigned InaccessibleBaseID, 3071 unsigned AmbiguousBaseConvID, 3072 SourceLocation Loc, SourceRange Range, 3073 DeclarationName Name, 3074 CXXCastPath *BasePath, 3075 bool IgnoreAccess) { 3076 // First, determine whether the path from Derived to Base is 3077 // ambiguous. This is slightly more expensive than checking whether 3078 // the Derived to Base conversion exists, because here we need to 3079 // explore multiple paths to determine if there is an ambiguity. 3080 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 3081 /*DetectVirtual=*/false); 3082 bool DerivationOkay = IsDerivedFrom(Loc, Derived, Base, Paths); 3083 if (!DerivationOkay) 3084 return true; 3085 3086 const CXXBasePath *Path = nullptr; 3087 if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) 3088 Path = &Paths.front(); 3089 3090 // For MSVC compatibility, check if Derived directly inherits from Base. Clang 3091 // warns about this hierarchy under -Winaccessible-base, but MSVC allows the 3092 // user to access such bases. 3093 if (!Path && getLangOpts().MSVCCompat) { 3094 for (const CXXBasePath &PossiblePath : Paths) { 3095 if (PossiblePath.size() == 1) { 3096 Path = &PossiblePath; 3097 if (AmbiguousBaseConvID) 3098 Diag(Loc, diag::ext_ms_ambiguous_direct_base) 3099 << Base << Derived << Range; 3100 break; 3101 } 3102 } 3103 } 3104 3105 if (Path) { 3106 if (!IgnoreAccess) { 3107 // Check that the base class can be accessed. 3108 switch ( 3109 CheckBaseClassAccess(Loc, Base, Derived, *Path, InaccessibleBaseID)) { 3110 case AR_inaccessible: 3111 return true; 3112 case AR_accessible: 3113 case AR_dependent: 3114 case AR_delayed: 3115 break; 3116 } 3117 } 3118 3119 // Build a base path if necessary. 3120 if (BasePath) 3121 ::BuildBasePathArray(*Path, *BasePath); 3122 return false; 3123 } 3124 3125 if (AmbiguousBaseConvID) { 3126 // We know that the derived-to-base conversion is ambiguous, and 3127 // we're going to produce a diagnostic. Perform the derived-to-base 3128 // search just one more time to compute all of the possible paths so 3129 // that we can print them out. This is more expensive than any of 3130 // the previous derived-to-base checks we've done, but at this point 3131 // performance isn't as much of an issue. 3132 Paths.clear(); 3133 Paths.setRecordingPaths(true); 3134 bool StillOkay = IsDerivedFrom(Loc, Derived, Base, Paths); 3135 assert(StillOkay && "Can only be used with a derived-to-base conversion"); 3136 (void)StillOkay; 3137 3138 // Build up a textual representation of the ambiguous paths, e.g., 3139 // D -> B -> A, that will be used to illustrate the ambiguous 3140 // conversions in the diagnostic. We only print one of the paths 3141 // to each base class subobject. 3142 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); 3143 3144 Diag(Loc, AmbiguousBaseConvID) 3145 << Derived << Base << PathDisplayStr << Range << Name; 3146 } 3147 return true; 3148 } 3149 3150 bool 3151 Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base, 3152 SourceLocation Loc, SourceRange Range, 3153 CXXCastPath *BasePath, 3154 bool IgnoreAccess) { 3155 return CheckDerivedToBaseConversion( 3156 Derived, Base, diag::err_upcast_to_inaccessible_base, 3157 diag::err_ambiguous_derived_to_base_conv, Loc, Range, DeclarationName(), 3158 BasePath, IgnoreAccess); 3159 } 3160 3161 std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) { 3162 std::string PathDisplayStr; 3163 std::set<unsigned> DisplayedPaths; 3164 for (CXXBasePaths::paths_iterator Path = Paths.begin(); 3165 Path != Paths.end(); ++Path) { 3166 if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) { 3167 // We haven't displayed a path to this particular base 3168 // class subobject yet. 3169 PathDisplayStr += "\n "; 3170 PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString(); 3171 for (CXXBasePath::const_iterator Element = Path->begin(); 3172 Element != Path->end(); ++Element) 3173 PathDisplayStr += " -> " + Element->Base->getType().getAsString(); 3174 } 3175 } 3176 3177 return PathDisplayStr; 3178 } 3179 3180 //===----------------------------------------------------------------------===// 3181 // C++ class member Handling 3182 //===----------------------------------------------------------------------===// 3183 3184 bool Sema::ActOnAccessSpecifier(AccessSpecifier Access, SourceLocation ASLoc, 3185 SourceLocation ColonLoc, 3186 const ParsedAttributesView &Attrs) { 3187 assert(Access != AS_none && "Invalid kind for syntactic access specifier!"); 3188 AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext, 3189 ASLoc, ColonLoc); 3190 CurContext->addHiddenDecl(ASDecl); 3191 return ProcessAccessDeclAttributeList(ASDecl, Attrs); 3192 } 3193 3194 void Sema::CheckOverrideControl(NamedDecl *D) { 3195 if (D->isInvalidDecl()) 3196 return; 3197 3198 // We only care about "override" and "final" declarations. 3199 if (!D->hasAttr<OverrideAttr>() && !D->hasAttr<FinalAttr>()) 3200 return; 3201 3202 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D); 3203 3204 // We can't check dependent instance methods. 3205 if (MD && MD->isInstance() && 3206 (MD->getParent()->hasAnyDependentBases() || 3207 MD->getType()->isDependentType())) 3208 return; 3209 3210 if (MD && !MD->isVirtual()) { 3211 // If we have a non-virtual method, check if it hides a virtual method. 3212 // (In that case, it's most likely the method has the wrong type.) 3213 SmallVector<CXXMethodDecl *, 8> OverloadedMethods; 3214 FindHiddenVirtualMethods(MD, OverloadedMethods); 3215 3216 if (!OverloadedMethods.empty()) { 3217 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) { 3218 Diag(OA->getLocation(), 3219 diag::override_keyword_hides_virtual_member_function) 3220 << "override" << (OverloadedMethods.size() > 1); 3221 } else if (FinalAttr *FA = D->getAttr<FinalAttr>()) { 3222 Diag(FA->getLocation(), 3223 diag::override_keyword_hides_virtual_member_function) 3224 << (FA->isSpelledAsSealed() ? "sealed" : "final") 3225 << (OverloadedMethods.size() > 1); 3226 } 3227 NoteHiddenVirtualMethods(MD, OverloadedMethods); 3228 MD->setInvalidDecl(); 3229 return; 3230 } 3231 // Fall through into the general case diagnostic. 3232 // FIXME: We might want to attempt typo correction here. 3233 } 3234 3235 if (!MD || !MD->isVirtual()) { 3236 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) { 3237 Diag(OA->getLocation(), 3238 diag::override_keyword_only_allowed_on_virtual_member_functions) 3239 << "override" << FixItHint::CreateRemoval(OA->getLocation()); 3240 D->dropAttr<OverrideAttr>(); 3241 } 3242 if (FinalAttr *FA = D->getAttr<FinalAttr>()) { 3243 Diag(FA->getLocation(), 3244 diag::override_keyword_only_allowed_on_virtual_member_functions) 3245 << (FA->isSpelledAsSealed() ? "sealed" : "final") 3246 << FixItHint::CreateRemoval(FA->getLocation()); 3247 D->dropAttr<FinalAttr>(); 3248 } 3249 return; 3250 } 3251 3252 // C++11 [class.virtual]p5: 3253 // If a function is marked with the virt-specifier override and 3254 // does not override a member function of a base class, the program is 3255 // ill-formed. 3256 bool HasOverriddenMethods = MD->size_overridden_methods() != 0; 3257 if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) 3258 Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding) 3259 << MD->getDeclName(); 3260 } 3261 3262 void Sema::DiagnoseAbsenceOfOverrideControl(NamedDecl *D, bool Inconsistent) { 3263 if (D->isInvalidDecl() || D->hasAttr<OverrideAttr>()) 3264 return; 3265 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D); 3266 if (!MD || MD->isImplicit() || MD->hasAttr<FinalAttr>()) 3267 return; 3268 3269 SourceLocation Loc = MD->getLocation(); 3270 SourceLocation SpellingLoc = Loc; 3271 if (getSourceManager().isMacroArgExpansion(Loc)) 3272 SpellingLoc = getSourceManager().getImmediateExpansionRange(Loc).getBegin(); 3273 SpellingLoc = getSourceManager().getSpellingLoc(SpellingLoc); 3274 if (SpellingLoc.isValid() && getSourceManager().isInSystemHeader(SpellingLoc)) 3275 return; 3276 3277 if (MD->size_overridden_methods() > 0) { 3278 auto EmitDiag = [&](unsigned DiagInconsistent, unsigned DiagSuggest) { 3279 unsigned DiagID = 3280 Inconsistent && !Diags.isIgnored(DiagInconsistent, MD->getLocation()) 3281 ? DiagInconsistent 3282 : DiagSuggest; 3283 Diag(MD->getLocation(), DiagID) << MD->getDeclName(); 3284 const CXXMethodDecl *OMD = *MD->begin_overridden_methods(); 3285 Diag(OMD->getLocation(), diag::note_overridden_virtual_function); 3286 }; 3287 if (isa<CXXDestructorDecl>(MD)) 3288 EmitDiag( 3289 diag::warn_inconsistent_destructor_marked_not_override_overriding, 3290 diag::warn_suggest_destructor_marked_not_override_overriding); 3291 else 3292 EmitDiag(diag::warn_inconsistent_function_marked_not_override_overriding, 3293 diag::warn_suggest_function_marked_not_override_overriding); 3294 } 3295 } 3296 3297 bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New, 3298 const CXXMethodDecl *Old) { 3299 FinalAttr *FA = Old->getAttr<FinalAttr>(); 3300 if (!FA) 3301 return false; 3302 3303 Diag(New->getLocation(), diag::err_final_function_overridden) 3304 << New->getDeclName() 3305 << FA->isSpelledAsSealed(); 3306 Diag(Old->getLocation(), diag::note_overridden_virtual_function); 3307 return true; 3308 } 3309 3310 static bool InitializationHasSideEffects(const FieldDecl &FD) { 3311 const Type *T = FD.getType()->getBaseElementTypeUnsafe(); 3312 // FIXME: Destruction of ObjC lifetime types has side-effects. 3313 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 3314 return !RD->isCompleteDefinition() || 3315 !RD->hasTrivialDefaultConstructor() || 3316 !RD->hasTrivialDestructor(); 3317 return false; 3318 } 3319 3320 void Sema::CheckShadowInheritedFields(const SourceLocation &Loc, 3321 DeclarationName FieldName, 3322 const CXXRecordDecl *RD, 3323 bool DeclIsField) { 3324 if (Diags.isIgnored(diag::warn_shadow_field, Loc)) 3325 return; 3326 3327 // To record a shadowed field in a base 3328 std::map<CXXRecordDecl*, NamedDecl*> Bases; 3329 auto FieldShadowed = [&](const CXXBaseSpecifier *Specifier, 3330 CXXBasePath &Path) { 3331 const auto Base = Specifier->getType()->getAsCXXRecordDecl(); 3332 // Record an ambiguous path directly 3333 if (Bases.find(Base) != Bases.end()) 3334 return true; 3335 for (const auto Field : Base->lookup(FieldName)) { 3336 if ((isa<FieldDecl>(Field) || isa<IndirectFieldDecl>(Field)) && 3337 Field->getAccess() != AS_private) { 3338 assert(Field->getAccess() != AS_none); 3339 assert(Bases.find(Base) == Bases.end()); 3340 Bases[Base] = Field; 3341 return true; 3342 } 3343 } 3344 return false; 3345 }; 3346 3347 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 3348 /*DetectVirtual=*/true); 3349 if (!RD->lookupInBases(FieldShadowed, Paths)) 3350 return; 3351 3352 for (const auto &P : Paths) { 3353 auto Base = P.back().Base->getType()->getAsCXXRecordDecl(); 3354 auto It = Bases.find(Base); 3355 // Skip duplicated bases 3356 if (It == Bases.end()) 3357 continue; 3358 auto BaseField = It->second; 3359 assert(BaseField->getAccess() != AS_private); 3360 if (AS_none != 3361 CXXRecordDecl::MergeAccess(P.Access, BaseField->getAccess())) { 3362 Diag(Loc, diag::warn_shadow_field) 3363 << FieldName << RD << Base << DeclIsField; 3364 Diag(BaseField->getLocation(), diag::note_shadow_field); 3365 Bases.erase(It); 3366 } 3367 } 3368 } 3369 3370 template <typename AttrType> 3371 inline static bool HasAttribute(const QualType &T) { 3372 if (const TagDecl *TD = T->getAsTagDecl()) 3373 return TD->hasAttr<AttrType>(); 3374 if (const TypedefType *TDT = T->getAs<TypedefType>()) 3375 return TDT->getDecl()->hasAttr<AttrType>(); 3376 return false; 3377 } 3378 3379 static bool IsUnusedPrivateField(const FieldDecl *FD) { 3380 if (FD->getAccess() == AS_private && FD->getDeclName()) { 3381 QualType FieldType = FD->getType(); 3382 if (HasAttribute<WarnUnusedAttr>(FieldType)) 3383 return true; 3384 3385 return !FD->isImplicit() && !FD->hasAttr<UnusedAttr>() && 3386 !FD->getParent()->isDependentContext() && 3387 !HasAttribute<UnusedAttr>(FieldType) && 3388 !InitializationHasSideEffects(*FD); 3389 } 3390 return false; 3391 } 3392 3393 NamedDecl * 3394 Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D, 3395 MultiTemplateParamsArg TemplateParameterLists, 3396 Expr *BW, const VirtSpecifiers &VS, 3397 InClassInitStyle InitStyle) { 3398 const DeclSpec &DS = D.getDeclSpec(); 3399 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 3400 DeclarationName Name = NameInfo.getName(); 3401 SourceLocation Loc = NameInfo.getLoc(); 3402 3403 // For anonymous bitfields, the location should point to the type. 3404 if (Loc.isInvalid()) 3405 Loc = D.getBeginLoc(); 3406 3407 Expr *BitWidth = static_cast<Expr*>(BW); 3408 3409 assert(isa<CXXRecordDecl>(CurContext)); 3410 assert(!DS.isFriendSpecified()); 3411 3412 bool isFunc = D.isDeclarationOfFunction(); 3413 const ParsedAttr *MSPropertyAttr = 3414 D.getDeclSpec().getAttributes().getMSPropertyAttr(); 3415 3416 if (cast<CXXRecordDecl>(CurContext)->isInterface()) { 3417 // The Microsoft extension __interface only permits public member functions 3418 // and prohibits constructors, destructors, operators, non-public member 3419 // functions, static methods and data members. 3420 unsigned InvalidDecl; 3421 bool ShowDeclName = true; 3422 if (!isFunc && 3423 (DS.getStorageClassSpec() == DeclSpec::SCS_typedef || MSPropertyAttr)) 3424 InvalidDecl = 0; 3425 else if (!isFunc) 3426 InvalidDecl = 1; 3427 else if (AS != AS_public) 3428 InvalidDecl = 2; 3429 else if (DS.getStorageClassSpec() == DeclSpec::SCS_static) 3430 InvalidDecl = 3; 3431 else switch (Name.getNameKind()) { 3432 case DeclarationName::CXXConstructorName: 3433 InvalidDecl = 4; 3434 ShowDeclName = false; 3435 break; 3436 3437 case DeclarationName::CXXDestructorName: 3438 InvalidDecl = 5; 3439 ShowDeclName = false; 3440 break; 3441 3442 case DeclarationName::CXXOperatorName: 3443 case DeclarationName::CXXConversionFunctionName: 3444 InvalidDecl = 6; 3445 break; 3446 3447 default: 3448 InvalidDecl = 0; 3449 break; 3450 } 3451 3452 if (InvalidDecl) { 3453 if (ShowDeclName) 3454 Diag(Loc, diag::err_invalid_member_in_interface) 3455 << (InvalidDecl-1) << Name; 3456 else 3457 Diag(Loc, diag::err_invalid_member_in_interface) 3458 << (InvalidDecl-1) << ""; 3459 return nullptr; 3460 } 3461 } 3462 3463 // C++ 9.2p6: A member shall not be declared to have automatic storage 3464 // duration (auto, register) or with the extern storage-class-specifier. 3465 // C++ 7.1.1p8: The mutable specifier can be applied only to names of class 3466 // data members and cannot be applied to names declared const or static, 3467 // and cannot be applied to reference members. 3468 switch (DS.getStorageClassSpec()) { 3469 case DeclSpec::SCS_unspecified: 3470 case DeclSpec::SCS_typedef: 3471 case DeclSpec::SCS_static: 3472 break; 3473 case DeclSpec::SCS_mutable: 3474 if (isFunc) { 3475 Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function); 3476 3477 // FIXME: It would be nicer if the keyword was ignored only for this 3478 // declarator. Otherwise we could get follow-up errors. 3479 D.getMutableDeclSpec().ClearStorageClassSpecs(); 3480 } 3481 break; 3482 default: 3483 Diag(DS.getStorageClassSpecLoc(), 3484 diag::err_storageclass_invalid_for_member); 3485 D.getMutableDeclSpec().ClearStorageClassSpecs(); 3486 break; 3487 } 3488 3489 bool isInstField = (DS.getStorageClassSpec() == DeclSpec::SCS_unspecified || 3490 DS.getStorageClassSpec() == DeclSpec::SCS_mutable) && 3491 !isFunc && TemplateParameterLists.empty(); 3492 3493 if (DS.hasConstexprSpecifier() && isInstField) { 3494 SemaDiagnosticBuilder B = 3495 Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member); 3496 SourceLocation ConstexprLoc = DS.getConstexprSpecLoc(); 3497 if (InitStyle == ICIS_NoInit) { 3498 B << 0 << 0; 3499 if (D.getDeclSpec().getTypeQualifiers() & DeclSpec::TQ_const) 3500 B << FixItHint::CreateRemoval(ConstexprLoc); 3501 else { 3502 B << FixItHint::CreateReplacement(ConstexprLoc, "const"); 3503 D.getMutableDeclSpec().ClearConstexprSpec(); 3504 const char *PrevSpec; 3505 unsigned DiagID; 3506 bool Failed = D.getMutableDeclSpec().SetTypeQual( 3507 DeclSpec::TQ_const, ConstexprLoc, PrevSpec, DiagID, getLangOpts()); 3508 (void)Failed; 3509 assert(!Failed && "Making a constexpr member const shouldn't fail"); 3510 } 3511 } else { 3512 B << 1; 3513 const char *PrevSpec; 3514 unsigned DiagID; 3515 if (D.getMutableDeclSpec().SetStorageClassSpec( 3516 *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID, 3517 Context.getPrintingPolicy())) { 3518 assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable && 3519 "This is the only DeclSpec that should fail to be applied"); 3520 B << 1; 3521 } else { 3522 B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static "); 3523 isInstField = false; 3524 } 3525 } 3526 } 3527 3528 NamedDecl *Member; 3529 if (isInstField) { 3530 CXXScopeSpec &SS = D.getCXXScopeSpec(); 3531 3532 // Data members must have identifiers for names. 3533 if (!Name.isIdentifier()) { 3534 Diag(Loc, diag::err_bad_variable_name) 3535 << Name; 3536 return nullptr; 3537 } 3538 3539 IdentifierInfo *II = Name.getAsIdentifierInfo(); 3540 if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) { 3541 Diag(D.getIdentifierLoc(), diag::err_member_with_template_arguments) 3542 << II 3543 << SourceRange(D.getName().TemplateId->LAngleLoc, 3544 D.getName().TemplateId->RAngleLoc) 3545 << D.getName().TemplateId->LAngleLoc; 3546 D.SetIdentifier(II, Loc); 3547 } 3548 3549 if (SS.isSet() && !SS.isInvalid()) { 3550 // The user provided a superfluous scope specifier inside a class 3551 // definition: 3552 // 3553 // class X { 3554 // int X::member; 3555 // }; 3556 if (DeclContext *DC = computeDeclContext(SS, false)) { 3557 TemplateIdAnnotation *TemplateId = 3558 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId 3559 ? D.getName().TemplateId 3560 : nullptr; 3561 diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc(), 3562 TemplateId, 3563 /*IsMemberSpecialization=*/false); 3564 } else { 3565 Diag(D.getIdentifierLoc(), diag::err_member_qualification) 3566 << Name << SS.getRange(); 3567 } 3568 SS.clear(); 3569 } 3570 3571 if (MSPropertyAttr) { 3572 Member = HandleMSProperty(S, cast<CXXRecordDecl>(CurContext), Loc, D, 3573 BitWidth, InitStyle, AS, *MSPropertyAttr); 3574 if (!Member) 3575 return nullptr; 3576 isInstField = false; 3577 } else { 3578 Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, 3579 BitWidth, InitStyle, AS); 3580 if (!Member) 3581 return nullptr; 3582 } 3583 3584 CheckShadowInheritedFields(Loc, Name, cast<CXXRecordDecl>(CurContext)); 3585 } else { 3586 Member = HandleDeclarator(S, D, TemplateParameterLists); 3587 if (!Member) 3588 return nullptr; 3589 3590 // Non-instance-fields can't have a bitfield. 3591 if (BitWidth) { 3592 if (Member->isInvalidDecl()) { 3593 // don't emit another diagnostic. 3594 } else if (isa<VarDecl>(Member) || isa<VarTemplateDecl>(Member)) { 3595 // C++ 9.6p3: A bit-field shall not be a static member. 3596 // "static member 'A' cannot be a bit-field" 3597 Diag(Loc, diag::err_static_not_bitfield) 3598 << Name << BitWidth->getSourceRange(); 3599 } else if (isa<TypedefDecl>(Member)) { 3600 // "typedef member 'x' cannot be a bit-field" 3601 Diag(Loc, diag::err_typedef_not_bitfield) 3602 << Name << BitWidth->getSourceRange(); 3603 } else { 3604 // A function typedef ("typedef int f(); f a;"). 3605 // C++ 9.6p3: A bit-field shall have integral or enumeration type. 3606 Diag(Loc, diag::err_not_integral_type_bitfield) 3607 << Name << cast<ValueDecl>(Member)->getType() 3608 << BitWidth->getSourceRange(); 3609 } 3610 3611 BitWidth = nullptr; 3612 Member->setInvalidDecl(); 3613 } 3614 3615 NamedDecl *NonTemplateMember = Member; 3616 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member)) 3617 NonTemplateMember = FunTmpl->getTemplatedDecl(); 3618 else if (VarTemplateDecl *VarTmpl = dyn_cast<VarTemplateDecl>(Member)) 3619 NonTemplateMember = VarTmpl->getTemplatedDecl(); 3620 3621 Member->setAccess(AS); 3622 3623 // If we have declared a member function template or static data member 3624 // template, set the access of the templated declaration as well. 3625 if (NonTemplateMember != Member) 3626 NonTemplateMember->setAccess(AS); 3627 3628 // C++ [temp.deduct.guide]p3: 3629 // A deduction guide [...] for a member class template [shall be 3630 // declared] with the same access [as the template]. 3631 if (auto *DG = dyn_cast<CXXDeductionGuideDecl>(NonTemplateMember)) { 3632 auto *TD = DG->getDeducedTemplate(); 3633 // Access specifiers are only meaningful if both the template and the 3634 // deduction guide are from the same scope. 3635 if (AS != TD->getAccess() && 3636 TD->getDeclContext()->getRedeclContext()->Equals( 3637 DG->getDeclContext()->getRedeclContext())) { 3638 Diag(DG->getBeginLoc(), diag::err_deduction_guide_wrong_access); 3639 Diag(TD->getBeginLoc(), diag::note_deduction_guide_template_access) 3640 << TD->getAccess(); 3641 const AccessSpecDecl *LastAccessSpec = nullptr; 3642 for (const auto *D : cast<CXXRecordDecl>(CurContext)->decls()) { 3643 if (const auto *AccessSpec = dyn_cast<AccessSpecDecl>(D)) 3644 LastAccessSpec = AccessSpec; 3645 } 3646 assert(LastAccessSpec && "differing access with no access specifier"); 3647 Diag(LastAccessSpec->getBeginLoc(), diag::note_deduction_guide_access) 3648 << AS; 3649 } 3650 } 3651 } 3652 3653 if (VS.isOverrideSpecified()) 3654 Member->addAttr(OverrideAttr::Create(Context, VS.getOverrideLoc())); 3655 if (VS.isFinalSpecified()) 3656 Member->addAttr(FinalAttr::Create(Context, VS.getFinalLoc(), 3657 VS.isFinalSpelledSealed() 3658 ? FinalAttr::Keyword_sealed 3659 : FinalAttr::Keyword_final)); 3660 3661 if (VS.getLastLocation().isValid()) { 3662 // Update the end location of a method that has a virt-specifiers. 3663 if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member)) 3664 MD->setRangeEnd(VS.getLastLocation()); 3665 } 3666 3667 CheckOverrideControl(Member); 3668 3669 assert((Name || isInstField) && "No identifier for non-field ?"); 3670 3671 if (isInstField) { 3672 FieldDecl *FD = cast<FieldDecl>(Member); 3673 FieldCollector->Add(FD); 3674 3675 if (!Diags.isIgnored(diag::warn_unused_private_field, FD->getLocation()) && 3676 IsUnusedPrivateField(FD)) { 3677 // Remember all explicit private FieldDecls that have a name, no side 3678 // effects and are not part of a dependent type declaration. 3679 UnusedPrivateFields.insert(FD); 3680 } 3681 } 3682 3683 return Member; 3684 } 3685 3686 namespace { 3687 class UninitializedFieldVisitor 3688 : public EvaluatedExprVisitor<UninitializedFieldVisitor> { 3689 Sema &S; 3690 // List of Decls to generate a warning on. Also remove Decls that become 3691 // initialized. 3692 llvm::SmallPtrSetImpl<ValueDecl*> &Decls; 3693 // List of base classes of the record. Classes are removed after their 3694 // initializers. 3695 llvm::SmallPtrSetImpl<QualType> &BaseClasses; 3696 // Vector of decls to be removed from the Decl set prior to visiting the 3697 // nodes. These Decls may have been initialized in the prior initializer. 3698 llvm::SmallVector<ValueDecl*, 4> DeclsToRemove; 3699 // If non-null, add a note to the warning pointing back to the constructor. 3700 const CXXConstructorDecl *Constructor; 3701 // Variables to hold state when processing an initializer list. When 3702 // InitList is true, special case initialization of FieldDecls matching 3703 // InitListFieldDecl. 3704 bool InitList; 3705 FieldDecl *InitListFieldDecl; 3706 llvm::SmallVector<unsigned, 4> InitFieldIndex; 3707 3708 public: 3709 typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited; 3710 UninitializedFieldVisitor(Sema &S, 3711 llvm::SmallPtrSetImpl<ValueDecl*> &Decls, 3712 llvm::SmallPtrSetImpl<QualType> &BaseClasses) 3713 : Inherited(S.Context), S(S), Decls(Decls), BaseClasses(BaseClasses), 3714 Constructor(nullptr), InitList(false), InitListFieldDecl(nullptr) {} 3715 3716 // Returns true if the use of ME is not an uninitialized use. 3717 bool IsInitListMemberExprInitialized(MemberExpr *ME, 3718 bool CheckReferenceOnly) { 3719 llvm::SmallVector<FieldDecl*, 4> Fields; 3720 bool ReferenceField = false; 3721 while (ME) { 3722 FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()); 3723 if (!FD) 3724 return false; 3725 Fields.push_back(FD); 3726 if (FD->getType()->isReferenceType()) 3727 ReferenceField = true; 3728 ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParenImpCasts()); 3729 } 3730 3731 // Binding a reference to an uninitialized field is not an 3732 // uninitialized use. 3733 if (CheckReferenceOnly && !ReferenceField) 3734 return true; 3735 3736 llvm::SmallVector<unsigned, 4> UsedFieldIndex; 3737 // Discard the first field since it is the field decl that is being 3738 // initialized. 3739 for (const FieldDecl *FD : llvm::drop_begin(llvm::reverse(Fields))) 3740 UsedFieldIndex.push_back(FD->getFieldIndex()); 3741 3742 for (auto UsedIter = UsedFieldIndex.begin(), 3743 UsedEnd = UsedFieldIndex.end(), 3744 OrigIter = InitFieldIndex.begin(), 3745 OrigEnd = InitFieldIndex.end(); 3746 UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) { 3747 if (*UsedIter < *OrigIter) 3748 return true; 3749 if (*UsedIter > *OrigIter) 3750 break; 3751 } 3752 3753 return false; 3754 } 3755 3756 void HandleMemberExpr(MemberExpr *ME, bool CheckReferenceOnly, 3757 bool AddressOf) { 3758 if (isa<EnumConstantDecl>(ME->getMemberDecl())) 3759 return; 3760 3761 // FieldME is the inner-most MemberExpr that is not an anonymous struct 3762 // or union. 3763 MemberExpr *FieldME = ME; 3764 3765 bool AllPODFields = FieldME->getType().isPODType(S.Context); 3766 3767 Expr *Base = ME; 3768 while (MemberExpr *SubME = 3769 dyn_cast<MemberExpr>(Base->IgnoreParenImpCasts())) { 3770 3771 if (isa<VarDecl>(SubME->getMemberDecl())) 3772 return; 3773 3774 if (FieldDecl *FD = dyn_cast<FieldDecl>(SubME->getMemberDecl())) 3775 if (!FD->isAnonymousStructOrUnion()) 3776 FieldME = SubME; 3777 3778 if (!FieldME->getType().isPODType(S.Context)) 3779 AllPODFields = false; 3780 3781 Base = SubME->getBase(); 3782 } 3783 3784 if (!isa<CXXThisExpr>(Base->IgnoreParenImpCasts())) { 3785 Visit(Base); 3786 return; 3787 } 3788 3789 if (AddressOf && AllPODFields) 3790 return; 3791 3792 ValueDecl* FoundVD = FieldME->getMemberDecl(); 3793 3794 if (ImplicitCastExpr *BaseCast = dyn_cast<ImplicitCastExpr>(Base)) { 3795 while (isa<ImplicitCastExpr>(BaseCast->getSubExpr())) { 3796 BaseCast = cast<ImplicitCastExpr>(BaseCast->getSubExpr()); 3797 } 3798 3799 if (BaseCast->getCastKind() == CK_UncheckedDerivedToBase) { 3800 QualType T = BaseCast->getType(); 3801 if (T->isPointerType() && 3802 BaseClasses.count(T->getPointeeType())) { 3803 S.Diag(FieldME->getExprLoc(), diag::warn_base_class_is_uninit) 3804 << T->getPointeeType() << FoundVD; 3805 } 3806 } 3807 } 3808 3809 if (!Decls.count(FoundVD)) 3810 return; 3811 3812 const bool IsReference = FoundVD->getType()->isReferenceType(); 3813 3814 if (InitList && !AddressOf && FoundVD == InitListFieldDecl) { 3815 // Special checking for initializer lists. 3816 if (IsInitListMemberExprInitialized(ME, CheckReferenceOnly)) { 3817 return; 3818 } 3819 } else { 3820 // Prevent double warnings on use of unbounded references. 3821 if (CheckReferenceOnly && !IsReference) 3822 return; 3823 } 3824 3825 unsigned diag = IsReference 3826 ? diag::warn_reference_field_is_uninit 3827 : diag::warn_field_is_uninit; 3828 S.Diag(FieldME->getExprLoc(), diag) << FoundVD; 3829 if (Constructor) 3830 S.Diag(Constructor->getLocation(), 3831 diag::note_uninit_in_this_constructor) 3832 << (Constructor->isDefaultConstructor() && Constructor->isImplicit()); 3833 3834 } 3835 3836 void HandleValue(Expr *E, bool AddressOf) { 3837 E = E->IgnoreParens(); 3838 3839 if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) { 3840 HandleMemberExpr(ME, false /*CheckReferenceOnly*/, 3841 AddressOf /*AddressOf*/); 3842 return; 3843 } 3844 3845 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { 3846 Visit(CO->getCond()); 3847 HandleValue(CO->getTrueExpr(), AddressOf); 3848 HandleValue(CO->getFalseExpr(), AddressOf); 3849 return; 3850 } 3851 3852 if (BinaryConditionalOperator *BCO = 3853 dyn_cast<BinaryConditionalOperator>(E)) { 3854 Visit(BCO->getCond()); 3855 HandleValue(BCO->getFalseExpr(), AddressOf); 3856 return; 3857 } 3858 3859 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) { 3860 HandleValue(OVE->getSourceExpr(), AddressOf); 3861 return; 3862 } 3863 3864 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 3865 switch (BO->getOpcode()) { 3866 default: 3867 break; 3868 case(BO_PtrMemD): 3869 case(BO_PtrMemI): 3870 HandleValue(BO->getLHS(), AddressOf); 3871 Visit(BO->getRHS()); 3872 return; 3873 case(BO_Comma): 3874 Visit(BO->getLHS()); 3875 HandleValue(BO->getRHS(), AddressOf); 3876 return; 3877 } 3878 } 3879 3880 Visit(E); 3881 } 3882 3883 void CheckInitListExpr(InitListExpr *ILE) { 3884 InitFieldIndex.push_back(0); 3885 for (auto *Child : ILE->children()) { 3886 if (InitListExpr *SubList = dyn_cast<InitListExpr>(Child)) { 3887 CheckInitListExpr(SubList); 3888 } else { 3889 Visit(Child); 3890 } 3891 ++InitFieldIndex.back(); 3892 } 3893 InitFieldIndex.pop_back(); 3894 } 3895 3896 void CheckInitializer(Expr *E, const CXXConstructorDecl *FieldConstructor, 3897 FieldDecl *Field, const Type *BaseClass) { 3898 // Remove Decls that may have been initialized in the previous 3899 // initializer. 3900 for (ValueDecl* VD : DeclsToRemove) 3901 Decls.erase(VD); 3902 DeclsToRemove.clear(); 3903 3904 Constructor = FieldConstructor; 3905 InitListExpr *ILE = dyn_cast<InitListExpr>(E); 3906 3907 if (ILE && Field) { 3908 InitList = true; 3909 InitListFieldDecl = Field; 3910 InitFieldIndex.clear(); 3911 CheckInitListExpr(ILE); 3912 } else { 3913 InitList = false; 3914 Visit(E); 3915 } 3916 3917 if (Field) 3918 Decls.erase(Field); 3919 if (BaseClass) 3920 BaseClasses.erase(BaseClass->getCanonicalTypeInternal()); 3921 } 3922 3923 void VisitMemberExpr(MemberExpr *ME) { 3924 // All uses of unbounded reference fields will warn. 3925 HandleMemberExpr(ME, true /*CheckReferenceOnly*/, false /*AddressOf*/); 3926 } 3927 3928 void VisitImplicitCastExpr(ImplicitCastExpr *E) { 3929 if (E->getCastKind() == CK_LValueToRValue) { 3930 HandleValue(E->getSubExpr(), false /*AddressOf*/); 3931 return; 3932 } 3933 3934 Inherited::VisitImplicitCastExpr(E); 3935 } 3936 3937 void VisitCXXConstructExpr(CXXConstructExpr *E) { 3938 if (E->getConstructor()->isCopyConstructor()) { 3939 Expr *ArgExpr = E->getArg(0); 3940 if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr)) 3941 if (ILE->getNumInits() == 1) 3942 ArgExpr = ILE->getInit(0); 3943 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr)) 3944 if (ICE->getCastKind() == CK_NoOp) 3945 ArgExpr = ICE->getSubExpr(); 3946 HandleValue(ArgExpr, false /*AddressOf*/); 3947 return; 3948 } 3949 Inherited::VisitCXXConstructExpr(E); 3950 } 3951 3952 void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 3953 Expr *Callee = E->getCallee(); 3954 if (isa<MemberExpr>(Callee)) { 3955 HandleValue(Callee, false /*AddressOf*/); 3956 for (auto *Arg : E->arguments()) 3957 Visit(Arg); 3958 return; 3959 } 3960 3961 Inherited::VisitCXXMemberCallExpr(E); 3962 } 3963 3964 void VisitCallExpr(CallExpr *E) { 3965 // Treat std::move as a use. 3966 if (E->isCallToStdMove()) { 3967 HandleValue(E->getArg(0), /*AddressOf=*/false); 3968 return; 3969 } 3970 3971 Inherited::VisitCallExpr(E); 3972 } 3973 3974 void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) { 3975 Expr *Callee = E->getCallee(); 3976 3977 if (isa<UnresolvedLookupExpr>(Callee)) 3978 return Inherited::VisitCXXOperatorCallExpr(E); 3979 3980 Visit(Callee); 3981 for (auto *Arg : E->arguments()) 3982 HandleValue(Arg->IgnoreParenImpCasts(), false /*AddressOf*/); 3983 } 3984 3985 void VisitBinaryOperator(BinaryOperator *E) { 3986 // If a field assignment is detected, remove the field from the 3987 // uninitiailized field set. 3988 if (E->getOpcode() == BO_Assign) 3989 if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getLHS())) 3990 if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) 3991 if (!FD->getType()->isReferenceType()) 3992 DeclsToRemove.push_back(FD); 3993 3994 if (E->isCompoundAssignmentOp()) { 3995 HandleValue(E->getLHS(), false /*AddressOf*/); 3996 Visit(E->getRHS()); 3997 return; 3998 } 3999 4000 Inherited::VisitBinaryOperator(E); 4001 } 4002 4003 void VisitUnaryOperator(UnaryOperator *E) { 4004 if (E->isIncrementDecrementOp()) { 4005 HandleValue(E->getSubExpr(), false /*AddressOf*/); 4006 return; 4007 } 4008 if (E->getOpcode() == UO_AddrOf) { 4009 if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getSubExpr())) { 4010 HandleValue(ME->getBase(), true /*AddressOf*/); 4011 return; 4012 } 4013 } 4014 4015 Inherited::VisitUnaryOperator(E); 4016 } 4017 }; 4018 4019 // Diagnose value-uses of fields to initialize themselves, e.g. 4020 // foo(foo) 4021 // where foo is not also a parameter to the constructor. 4022 // Also diagnose across field uninitialized use such as 4023 // x(y), y(x) 4024 // TODO: implement -Wuninitialized and fold this into that framework. 4025 static void DiagnoseUninitializedFields( 4026 Sema &SemaRef, const CXXConstructorDecl *Constructor) { 4027 4028 if (SemaRef.getDiagnostics().isIgnored(diag::warn_field_is_uninit, 4029 Constructor->getLocation())) { 4030 return; 4031 } 4032 4033 if (Constructor->isInvalidDecl()) 4034 return; 4035 4036 const CXXRecordDecl *RD = Constructor->getParent(); 4037 4038 if (RD->isDependentContext()) 4039 return; 4040 4041 // Holds fields that are uninitialized. 4042 llvm::SmallPtrSet<ValueDecl*, 4> UninitializedFields; 4043 4044 // At the beginning, all fields are uninitialized. 4045 for (auto *I : RD->decls()) { 4046 if (auto *FD = dyn_cast<FieldDecl>(I)) { 4047 UninitializedFields.insert(FD); 4048 } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(I)) { 4049 UninitializedFields.insert(IFD->getAnonField()); 4050 } 4051 } 4052 4053 llvm::SmallPtrSet<QualType, 4> UninitializedBaseClasses; 4054 for (const auto &I : RD->bases()) 4055 UninitializedBaseClasses.insert(I.getType().getCanonicalType()); 4056 4057 if (UninitializedFields.empty() && UninitializedBaseClasses.empty()) 4058 return; 4059 4060 UninitializedFieldVisitor UninitializedChecker(SemaRef, 4061 UninitializedFields, 4062 UninitializedBaseClasses); 4063 4064 for (const auto *FieldInit : Constructor->inits()) { 4065 if (UninitializedFields.empty() && UninitializedBaseClasses.empty()) 4066 break; 4067 4068 Expr *InitExpr = FieldInit->getInit(); 4069 if (!InitExpr) 4070 continue; 4071 4072 if (CXXDefaultInitExpr *Default = 4073 dyn_cast<CXXDefaultInitExpr>(InitExpr)) { 4074 InitExpr = Default->getExpr(); 4075 if (!InitExpr) 4076 continue; 4077 // In class initializers will point to the constructor. 4078 UninitializedChecker.CheckInitializer(InitExpr, Constructor, 4079 FieldInit->getAnyMember(), 4080 FieldInit->getBaseClass()); 4081 } else { 4082 UninitializedChecker.CheckInitializer(InitExpr, nullptr, 4083 FieldInit->getAnyMember(), 4084 FieldInit->getBaseClass()); 4085 } 4086 } 4087 } 4088 } // namespace 4089 4090 void Sema::ActOnStartCXXInClassMemberInitializer() { 4091 // Create a synthetic function scope to represent the call to the constructor 4092 // that notionally surrounds a use of this initializer. 4093 PushFunctionScope(); 4094 } 4095 4096 void Sema::ActOnStartTrailingRequiresClause(Scope *S, Declarator &D) { 4097 if (!D.isFunctionDeclarator()) 4098 return; 4099 auto &FTI = D.getFunctionTypeInfo(); 4100 if (!FTI.Params) 4101 return; 4102 for (auto &Param : ArrayRef<DeclaratorChunk::ParamInfo>(FTI.Params, 4103 FTI.NumParams)) { 4104 auto *ParamDecl = cast<NamedDecl>(Param.Param); 4105 if (ParamDecl->getDeclName()) 4106 PushOnScopeChains(ParamDecl, S, /*AddToContext=*/false); 4107 } 4108 } 4109 4110 ExprResult Sema::ActOnFinishTrailingRequiresClause(ExprResult ConstraintExpr) { 4111 return ActOnRequiresClause(ConstraintExpr); 4112 } 4113 4114 ExprResult Sema::ActOnRequiresClause(ExprResult ConstraintExpr) { 4115 if (ConstraintExpr.isInvalid()) 4116 return ExprError(); 4117 4118 ConstraintExpr = CorrectDelayedTyposInExpr(ConstraintExpr); 4119 if (ConstraintExpr.isInvalid()) 4120 return ExprError(); 4121 4122 if (DiagnoseUnexpandedParameterPack(ConstraintExpr.get(), 4123 UPPC_RequiresClause)) 4124 return ExprError(); 4125 4126 return ConstraintExpr; 4127 } 4128 4129 ExprResult Sema::ConvertMemberDefaultInitExpression(FieldDecl *FD, 4130 Expr *InitExpr, 4131 SourceLocation InitLoc) { 4132 InitializedEntity Entity = 4133 InitializedEntity::InitializeMemberFromDefaultMemberInitializer(FD); 4134 InitializationKind Kind = 4135 FD->getInClassInitStyle() == ICIS_ListInit 4136 ? InitializationKind::CreateDirectList(InitExpr->getBeginLoc(), 4137 InitExpr->getBeginLoc(), 4138 InitExpr->getEndLoc()) 4139 : InitializationKind::CreateCopy(InitExpr->getBeginLoc(), InitLoc); 4140 InitializationSequence Seq(*this, Entity, Kind, InitExpr); 4141 return Seq.Perform(*this, Entity, Kind, InitExpr); 4142 } 4143 4144 void Sema::ActOnFinishCXXInClassMemberInitializer(Decl *D, 4145 SourceLocation InitLoc, 4146 ExprResult InitExpr) { 4147 // Pop the notional constructor scope we created earlier. 4148 PopFunctionScopeInfo(nullptr, D); 4149 4150 // Microsoft C++'s property declaration cannot have a default member 4151 // initializer. 4152 if (isa<MSPropertyDecl>(D)) { 4153 D->setInvalidDecl(); 4154 return; 4155 } 4156 4157 FieldDecl *FD = dyn_cast<FieldDecl>(D); 4158 assert((FD && FD->getInClassInitStyle() != ICIS_NoInit) && 4159 "must set init style when field is created"); 4160 4161 if (!InitExpr.isUsable() || 4162 DiagnoseUnexpandedParameterPack(InitExpr.get(), UPPC_Initializer)) { 4163 FD->setInvalidDecl(); 4164 ExprResult RecoveryInit = 4165 CreateRecoveryExpr(InitLoc, InitLoc, {}, FD->getType()); 4166 if (RecoveryInit.isUsable()) 4167 FD->setInClassInitializer(RecoveryInit.get()); 4168 return; 4169 } 4170 4171 ExprResult Init = CorrectDelayedTyposInExpr(InitExpr, /*InitDecl=*/nullptr, 4172 /*RecoverUncorrectedTypos=*/true); 4173 assert(Init.isUsable() && "Init should at least have a RecoveryExpr"); 4174 if (!FD->getType()->isDependentType() && !Init.get()->isTypeDependent()) { 4175 Init = ConvertMemberDefaultInitExpression(FD, Init.get(), InitLoc); 4176 // C++11 [class.base.init]p7: 4177 // The initialization of each base and member constitutes a 4178 // full-expression. 4179 if (!Init.isInvalid()) 4180 Init = ActOnFinishFullExpr(Init.get(), /*DiscarededValue=*/false); 4181 if (Init.isInvalid()) { 4182 FD->setInvalidDecl(); 4183 return; 4184 } 4185 } 4186 4187 FD->setInClassInitializer(Init.get()); 4188 } 4189 4190 /// Find the direct and/or virtual base specifiers that 4191 /// correspond to the given base type, for use in base initialization 4192 /// within a constructor. 4193 static bool FindBaseInitializer(Sema &SemaRef, 4194 CXXRecordDecl *ClassDecl, 4195 QualType BaseType, 4196 const CXXBaseSpecifier *&DirectBaseSpec, 4197 const CXXBaseSpecifier *&VirtualBaseSpec) { 4198 // First, check for a direct base class. 4199 DirectBaseSpec = nullptr; 4200 for (const auto &Base : ClassDecl->bases()) { 4201 if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base.getType())) { 4202 // We found a direct base of this type. That's what we're 4203 // initializing. 4204 DirectBaseSpec = &Base; 4205 break; 4206 } 4207 } 4208 4209 // Check for a virtual base class. 4210 // FIXME: We might be able to short-circuit this if we know in advance that 4211 // there are no virtual bases. 4212 VirtualBaseSpec = nullptr; 4213 if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) { 4214 // We haven't found a base yet; search the class hierarchy for a 4215 // virtual base class. 4216 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 4217 /*DetectVirtual=*/false); 4218 if (SemaRef.IsDerivedFrom(ClassDecl->getLocation(), 4219 SemaRef.Context.getTypeDeclType(ClassDecl), 4220 BaseType, Paths)) { 4221 for (CXXBasePaths::paths_iterator Path = Paths.begin(); 4222 Path != Paths.end(); ++Path) { 4223 if (Path->back().Base->isVirtual()) { 4224 VirtualBaseSpec = Path->back().Base; 4225 break; 4226 } 4227 } 4228 } 4229 } 4230 4231 return DirectBaseSpec || VirtualBaseSpec; 4232 } 4233 4234 MemInitResult 4235 Sema::ActOnMemInitializer(Decl *ConstructorD, 4236 Scope *S, 4237 CXXScopeSpec &SS, 4238 IdentifierInfo *MemberOrBase, 4239 ParsedType TemplateTypeTy, 4240 const DeclSpec &DS, 4241 SourceLocation IdLoc, 4242 Expr *InitList, 4243 SourceLocation EllipsisLoc) { 4244 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy, 4245 DS, IdLoc, InitList, 4246 EllipsisLoc); 4247 } 4248 4249 MemInitResult 4250 Sema::ActOnMemInitializer(Decl *ConstructorD, 4251 Scope *S, 4252 CXXScopeSpec &SS, 4253 IdentifierInfo *MemberOrBase, 4254 ParsedType TemplateTypeTy, 4255 const DeclSpec &DS, 4256 SourceLocation IdLoc, 4257 SourceLocation LParenLoc, 4258 ArrayRef<Expr *> Args, 4259 SourceLocation RParenLoc, 4260 SourceLocation EllipsisLoc) { 4261 Expr *List = ParenListExpr::Create(Context, LParenLoc, Args, RParenLoc); 4262 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy, 4263 DS, IdLoc, List, EllipsisLoc); 4264 } 4265 4266 namespace { 4267 4268 // Callback to only accept typo corrections that can be a valid C++ member 4269 // initializer: either a non-static field member or a base class. 4270 class MemInitializerValidatorCCC final : public CorrectionCandidateCallback { 4271 public: 4272 explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl) 4273 : ClassDecl(ClassDecl) {} 4274 4275 bool ValidateCandidate(const TypoCorrection &candidate) override { 4276 if (NamedDecl *ND = candidate.getCorrectionDecl()) { 4277 if (FieldDecl *Member = dyn_cast<FieldDecl>(ND)) 4278 return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl); 4279 return isa<TypeDecl>(ND); 4280 } 4281 return false; 4282 } 4283 4284 std::unique_ptr<CorrectionCandidateCallback> clone() override { 4285 return std::make_unique<MemInitializerValidatorCCC>(*this); 4286 } 4287 4288 private: 4289 CXXRecordDecl *ClassDecl; 4290 }; 4291 4292 } 4293 4294 bool Sema::DiagRedefinedPlaceholderFieldDecl(SourceLocation Loc, 4295 RecordDecl *ClassDecl, 4296 const IdentifierInfo *Name) { 4297 DeclContextLookupResult Result = ClassDecl->lookup(Name); 4298 DeclContextLookupResult::iterator Found = 4299 llvm::find_if(Result, [this](const NamedDecl *Elem) { 4300 return isa<FieldDecl, IndirectFieldDecl>(Elem) && 4301 Elem->isPlaceholderVar(getLangOpts()); 4302 }); 4303 // We did not find a placeholder variable 4304 if (Found == Result.end()) 4305 return false; 4306 Diag(Loc, diag::err_using_placeholder_variable) << Name; 4307 for (DeclContextLookupResult::iterator It = Found; It != Result.end(); It++) { 4308 const NamedDecl *ND = *It; 4309 if (ND->getDeclContext() != ND->getDeclContext()) 4310 break; 4311 if (isa<FieldDecl, IndirectFieldDecl>(ND) && 4312 ND->isPlaceholderVar(getLangOpts())) 4313 Diag(ND->getLocation(), diag::note_reference_placeholder) << ND; 4314 } 4315 return true; 4316 } 4317 4318 ValueDecl * 4319 Sema::tryLookupUnambiguousFieldDecl(RecordDecl *ClassDecl, 4320 const IdentifierInfo *MemberOrBase) { 4321 ValueDecl *ND = nullptr; 4322 for (auto *D : ClassDecl->lookup(MemberOrBase)) { 4323 if (isa<FieldDecl, IndirectFieldDecl>(D)) { 4324 bool IsPlaceholder = D->isPlaceholderVar(getLangOpts()); 4325 if (ND) { 4326 if (IsPlaceholder && D->getDeclContext() == ND->getDeclContext()) 4327 return nullptr; 4328 break; 4329 } 4330 if (!IsPlaceholder) 4331 return cast<ValueDecl>(D); 4332 ND = cast<ValueDecl>(D); 4333 } 4334 } 4335 return ND; 4336 } 4337 4338 ValueDecl *Sema::tryLookupCtorInitMemberDecl(CXXRecordDecl *ClassDecl, 4339 CXXScopeSpec &SS, 4340 ParsedType TemplateTypeTy, 4341 IdentifierInfo *MemberOrBase) { 4342 if (SS.getScopeRep() || TemplateTypeTy) 4343 return nullptr; 4344 return tryLookupUnambiguousFieldDecl(ClassDecl, MemberOrBase); 4345 } 4346 4347 MemInitResult 4348 Sema::BuildMemInitializer(Decl *ConstructorD, 4349 Scope *S, 4350 CXXScopeSpec &SS, 4351 IdentifierInfo *MemberOrBase, 4352 ParsedType TemplateTypeTy, 4353 const DeclSpec &DS, 4354 SourceLocation IdLoc, 4355 Expr *Init, 4356 SourceLocation EllipsisLoc) { 4357 ExprResult Res = CorrectDelayedTyposInExpr(Init, /*InitDecl=*/nullptr, 4358 /*RecoverUncorrectedTypos=*/true); 4359 if (!Res.isUsable()) 4360 return true; 4361 Init = Res.get(); 4362 4363 if (!ConstructorD) 4364 return true; 4365 4366 AdjustDeclIfTemplate(ConstructorD); 4367 4368 CXXConstructorDecl *Constructor 4369 = dyn_cast<CXXConstructorDecl>(ConstructorD); 4370 if (!Constructor) { 4371 // The user wrote a constructor initializer on a function that is 4372 // not a C++ constructor. Ignore the error for now, because we may 4373 // have more member initializers coming; we'll diagnose it just 4374 // once in ActOnMemInitializers. 4375 return true; 4376 } 4377 4378 CXXRecordDecl *ClassDecl = Constructor->getParent(); 4379 4380 // C++ [class.base.init]p2: 4381 // Names in a mem-initializer-id are looked up in the scope of the 4382 // constructor's class and, if not found in that scope, are looked 4383 // up in the scope containing the constructor's definition. 4384 // [Note: if the constructor's class contains a member with the 4385 // same name as a direct or virtual base class of the class, a 4386 // mem-initializer-id naming the member or base class and composed 4387 // of a single identifier refers to the class member. A 4388 // mem-initializer-id for the hidden base class may be specified 4389 // using a qualified name. ] 4390 4391 // Look for a member, first. 4392 if (ValueDecl *Member = tryLookupCtorInitMemberDecl( 4393 ClassDecl, SS, TemplateTypeTy, MemberOrBase)) { 4394 if (EllipsisLoc.isValid()) 4395 Diag(EllipsisLoc, diag::err_pack_expansion_member_init) 4396 << MemberOrBase 4397 << SourceRange(IdLoc, Init->getSourceRange().getEnd()); 4398 4399 return BuildMemberInitializer(Member, Init, IdLoc); 4400 } 4401 // It didn't name a member, so see if it names a class. 4402 QualType BaseType; 4403 TypeSourceInfo *TInfo = nullptr; 4404 4405 if (TemplateTypeTy) { 4406 BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo); 4407 if (BaseType.isNull()) 4408 return true; 4409 } else if (DS.getTypeSpecType() == TST_decltype) { 4410 BaseType = BuildDecltypeType(DS.getRepAsExpr()); 4411 } else if (DS.getTypeSpecType() == TST_decltype_auto) { 4412 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid); 4413 return true; 4414 } else if (DS.getTypeSpecType() == TST_typename_pack_indexing) { 4415 BaseType = 4416 BuildPackIndexingType(DS.getRepAsType().get(), DS.getPackIndexingExpr(), 4417 DS.getBeginLoc(), DS.getEllipsisLoc()); 4418 } else { 4419 LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName); 4420 LookupParsedName(R, S, &SS, /*ObjectType=*/QualType()); 4421 4422 TypeDecl *TyD = R.getAsSingle<TypeDecl>(); 4423 if (!TyD) { 4424 if (R.isAmbiguous()) return true; 4425 4426 // We don't want access-control diagnostics here. 4427 R.suppressDiagnostics(); 4428 4429 if (SS.isSet() && isDependentScopeSpecifier(SS)) { 4430 bool NotUnknownSpecialization = false; 4431 DeclContext *DC = computeDeclContext(SS, false); 4432 if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC)) 4433 NotUnknownSpecialization = !Record->hasAnyDependentBases(); 4434 4435 if (!NotUnknownSpecialization) { 4436 // When the scope specifier can refer to a member of an unknown 4437 // specialization, we take it as a type name. 4438 BaseType = CheckTypenameType( 4439 ElaboratedTypeKeyword::None, SourceLocation(), 4440 SS.getWithLocInContext(Context), *MemberOrBase, IdLoc); 4441 if (BaseType.isNull()) 4442 return true; 4443 4444 TInfo = Context.CreateTypeSourceInfo(BaseType); 4445 DependentNameTypeLoc TL = 4446 TInfo->getTypeLoc().castAs<DependentNameTypeLoc>(); 4447 if (!TL.isNull()) { 4448 TL.setNameLoc(IdLoc); 4449 TL.setElaboratedKeywordLoc(SourceLocation()); 4450 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 4451 } 4452 4453 R.clear(); 4454 R.setLookupName(MemberOrBase); 4455 } 4456 } 4457 4458 if (getLangOpts().MSVCCompat && !getLangOpts().CPlusPlus20) { 4459 if (auto UnqualifiedBase = R.getAsSingle<ClassTemplateDecl>()) { 4460 auto *TempSpec = cast<TemplateSpecializationType>( 4461 UnqualifiedBase->getInjectedClassNameSpecialization()); 4462 TemplateName TN = TempSpec->getTemplateName(); 4463 for (auto const &Base : ClassDecl->bases()) { 4464 auto BaseTemplate = 4465 Base.getType()->getAs<TemplateSpecializationType>(); 4466 if (BaseTemplate && 4467 Context.hasSameTemplateName(BaseTemplate->getTemplateName(), TN, 4468 /*IgnoreDeduced=*/true)) { 4469 Diag(IdLoc, diag::ext_unqualified_base_class) 4470 << SourceRange(IdLoc, Init->getSourceRange().getEnd()); 4471 BaseType = Base.getType(); 4472 break; 4473 } 4474 } 4475 } 4476 } 4477 4478 // If no results were found, try to correct typos. 4479 TypoCorrection Corr; 4480 MemInitializerValidatorCCC CCC(ClassDecl); 4481 if (R.empty() && BaseType.isNull() && 4482 (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS, 4483 CCC, CTK_ErrorRecovery, ClassDecl))) { 4484 if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) { 4485 // We have found a non-static data member with a similar 4486 // name to what was typed; complain and initialize that 4487 // member. 4488 diagnoseTypo(Corr, 4489 PDiag(diag::err_mem_init_not_member_or_class_suggest) 4490 << MemberOrBase << true); 4491 return BuildMemberInitializer(Member, Init, IdLoc); 4492 } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) { 4493 const CXXBaseSpecifier *DirectBaseSpec; 4494 const CXXBaseSpecifier *VirtualBaseSpec; 4495 if (FindBaseInitializer(*this, ClassDecl, 4496 Context.getTypeDeclType(Type), 4497 DirectBaseSpec, VirtualBaseSpec)) { 4498 // We have found a direct or virtual base class with a 4499 // similar name to what was typed; complain and initialize 4500 // that base class. 4501 diagnoseTypo(Corr, 4502 PDiag(diag::err_mem_init_not_member_or_class_suggest) 4503 << MemberOrBase << false, 4504 PDiag() /*Suppress note, we provide our own.*/); 4505 4506 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec ? DirectBaseSpec 4507 : VirtualBaseSpec; 4508 Diag(BaseSpec->getBeginLoc(), diag::note_base_class_specified_here) 4509 << BaseSpec->getType() << BaseSpec->getSourceRange(); 4510 4511 TyD = Type; 4512 } 4513 } 4514 } 4515 4516 if (!TyD && BaseType.isNull()) { 4517 Diag(IdLoc, diag::err_mem_init_not_member_or_class) 4518 << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd()); 4519 return true; 4520 } 4521 } 4522 4523 if (BaseType.isNull()) { 4524 BaseType = getElaboratedType(ElaboratedTypeKeyword::None, SS, 4525 Context.getTypeDeclType(TyD)); 4526 MarkAnyDeclReferenced(TyD->getLocation(), TyD, /*OdrUse=*/false); 4527 TInfo = Context.CreateTypeSourceInfo(BaseType); 4528 ElaboratedTypeLoc TL = TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>(); 4529 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc); 4530 TL.setElaboratedKeywordLoc(SourceLocation()); 4531 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 4532 } 4533 } 4534 4535 if (!TInfo) 4536 TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc); 4537 4538 return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc); 4539 } 4540 4541 MemInitResult 4542 Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init, 4543 SourceLocation IdLoc) { 4544 FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member); 4545 IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member); 4546 assert((DirectMember || IndirectMember) && 4547 "Member must be a FieldDecl or IndirectFieldDecl"); 4548 4549 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) 4550 return true; 4551 4552 if (Member->isInvalidDecl()) 4553 return true; 4554 4555 MultiExprArg Args; 4556 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) { 4557 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs()); 4558 } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) { 4559 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits()); 4560 } else { 4561 // Template instantiation doesn't reconstruct ParenListExprs for us. 4562 Args = Init; 4563 } 4564 4565 SourceRange InitRange = Init->getSourceRange(); 4566 4567 if (Member->getType()->isDependentType() || Init->isTypeDependent()) { 4568 // Can't check initialization for a member of dependent type or when 4569 // any of the arguments are type-dependent expressions. 4570 DiscardCleanupsInEvaluationContext(); 4571 } else { 4572 bool InitList = false; 4573 if (isa<InitListExpr>(Init)) { 4574 InitList = true; 4575 Args = Init; 4576 } 4577 4578 // Initialize the member. 4579 InitializedEntity MemberEntity = 4580 DirectMember ? InitializedEntity::InitializeMember(DirectMember, nullptr) 4581 : InitializedEntity::InitializeMember(IndirectMember, 4582 nullptr); 4583 InitializationKind Kind = 4584 InitList ? InitializationKind::CreateDirectList( 4585 IdLoc, Init->getBeginLoc(), Init->getEndLoc()) 4586 : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(), 4587 InitRange.getEnd()); 4588 4589 InitializationSequence InitSeq(*this, MemberEntity, Kind, Args); 4590 ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind, Args, 4591 nullptr); 4592 if (!MemberInit.isInvalid()) { 4593 // C++11 [class.base.init]p7: 4594 // The initialization of each base and member constitutes a 4595 // full-expression. 4596 MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin(), 4597 /*DiscardedValue*/ false); 4598 } 4599 4600 if (MemberInit.isInvalid()) { 4601 // Args were sensible expressions but we couldn't initialize the member 4602 // from them. Preserve them in a RecoveryExpr instead. 4603 Init = CreateRecoveryExpr(InitRange.getBegin(), InitRange.getEnd(), Args, 4604 Member->getType()) 4605 .get(); 4606 if (!Init) 4607 return true; 4608 } else { 4609 Init = MemberInit.get(); 4610 } 4611 } 4612 4613 if (DirectMember) { 4614 return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc, 4615 InitRange.getBegin(), Init, 4616 InitRange.getEnd()); 4617 } else { 4618 return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc, 4619 InitRange.getBegin(), Init, 4620 InitRange.getEnd()); 4621 } 4622 } 4623 4624 MemInitResult 4625 Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init, 4626 CXXRecordDecl *ClassDecl) { 4627 SourceLocation NameLoc = TInfo->getTypeLoc().getSourceRange().getBegin(); 4628 if (!LangOpts.CPlusPlus11) 4629 return Diag(NameLoc, diag::err_delegating_ctor) 4630 << TInfo->getTypeLoc().getSourceRange(); 4631 Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor); 4632 4633 bool InitList = true; 4634 MultiExprArg Args = Init; 4635 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) { 4636 InitList = false; 4637 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs()); 4638 } 4639 4640 SourceRange InitRange = Init->getSourceRange(); 4641 // Initialize the object. 4642 InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation( 4643 QualType(ClassDecl->getTypeForDecl(), 0)); 4644 InitializationKind Kind = 4645 InitList ? InitializationKind::CreateDirectList( 4646 NameLoc, Init->getBeginLoc(), Init->getEndLoc()) 4647 : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(), 4648 InitRange.getEnd()); 4649 InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args); 4650 ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind, 4651 Args, nullptr); 4652 if (!DelegationInit.isInvalid()) { 4653 assert((DelegationInit.get()->containsErrors() || 4654 cast<CXXConstructExpr>(DelegationInit.get())->getConstructor()) && 4655 "Delegating constructor with no target?"); 4656 4657 // C++11 [class.base.init]p7: 4658 // The initialization of each base and member constitutes a 4659 // full-expression. 4660 DelegationInit = ActOnFinishFullExpr( 4661 DelegationInit.get(), InitRange.getBegin(), /*DiscardedValue*/ false); 4662 } 4663 4664 if (DelegationInit.isInvalid()) { 4665 DelegationInit = 4666 CreateRecoveryExpr(InitRange.getBegin(), InitRange.getEnd(), Args, 4667 QualType(ClassDecl->getTypeForDecl(), 0)); 4668 if (DelegationInit.isInvalid()) 4669 return true; 4670 } else { 4671 // If we are in a dependent context, template instantiation will 4672 // perform this type-checking again. Just save the arguments that we 4673 // received in a ParenListExpr. 4674 // FIXME: This isn't quite ideal, since our ASTs don't capture all 4675 // of the information that we have about the base 4676 // initializer. However, deconstructing the ASTs is a dicey process, 4677 // and this approach is far more likely to get the corner cases right. 4678 if (CurContext->isDependentContext()) 4679 DelegationInit = Init; 4680 } 4681 4682 return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(), 4683 DelegationInit.getAs<Expr>(), 4684 InitRange.getEnd()); 4685 } 4686 4687 MemInitResult 4688 Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo, 4689 Expr *Init, CXXRecordDecl *ClassDecl, 4690 SourceLocation EllipsisLoc) { 4691 SourceLocation BaseLoc = BaseTInfo->getTypeLoc().getBeginLoc(); 4692 4693 if (!BaseType->isDependentType() && !BaseType->isRecordType()) 4694 return Diag(BaseLoc, diag::err_base_init_does_not_name_class) 4695 << BaseType << BaseTInfo->getTypeLoc().getSourceRange(); 4696 4697 // C++ [class.base.init]p2: 4698 // [...] Unless the mem-initializer-id names a nonstatic data 4699 // member of the constructor's class or a direct or virtual base 4700 // of that class, the mem-initializer is ill-formed. A 4701 // mem-initializer-list can initialize a base class using any 4702 // name that denotes that base class type. 4703 4704 // We can store the initializers in "as-written" form and delay analysis until 4705 // instantiation if the constructor is dependent. But not for dependent 4706 // (broken) code in a non-template! SetCtorInitializers does not expect this. 4707 bool Dependent = CurContext->isDependentContext() && 4708 (BaseType->isDependentType() || Init->isTypeDependent()); 4709 4710 SourceRange InitRange = Init->getSourceRange(); 4711 if (EllipsisLoc.isValid()) { 4712 // This is a pack expansion. 4713 if (!BaseType->containsUnexpandedParameterPack()) { 4714 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) 4715 << SourceRange(BaseLoc, InitRange.getEnd()); 4716 4717 EllipsisLoc = SourceLocation(); 4718 } 4719 } else { 4720 // Check for any unexpanded parameter packs. 4721 if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer)) 4722 return true; 4723 4724 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) 4725 return true; 4726 } 4727 4728 // Check for direct and virtual base classes. 4729 const CXXBaseSpecifier *DirectBaseSpec = nullptr; 4730 const CXXBaseSpecifier *VirtualBaseSpec = nullptr; 4731 if (!Dependent) { 4732 if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0), 4733 BaseType)) 4734 return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl); 4735 4736 FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec, 4737 VirtualBaseSpec); 4738 4739 // C++ [base.class.init]p2: 4740 // Unless the mem-initializer-id names a nonstatic data member of the 4741 // constructor's class or a direct or virtual base of that class, the 4742 // mem-initializer is ill-formed. 4743 if (!DirectBaseSpec && !VirtualBaseSpec) { 4744 // If the class has any dependent bases, then it's possible that 4745 // one of those types will resolve to the same type as 4746 // BaseType. Therefore, just treat this as a dependent base 4747 // class initialization. FIXME: Should we try to check the 4748 // initialization anyway? It seems odd. 4749 if (ClassDecl->hasAnyDependentBases()) 4750 Dependent = true; 4751 else 4752 return Diag(BaseLoc, diag::err_not_direct_base_or_virtual) 4753 << BaseType << Context.getTypeDeclType(ClassDecl) 4754 << BaseTInfo->getTypeLoc().getSourceRange(); 4755 } 4756 } 4757 4758 if (Dependent) { 4759 DiscardCleanupsInEvaluationContext(); 4760 4761 return new (Context) CXXCtorInitializer(Context, BaseTInfo, 4762 /*IsVirtual=*/false, 4763 InitRange.getBegin(), Init, 4764 InitRange.getEnd(), EllipsisLoc); 4765 } 4766 4767 // C++ [base.class.init]p2: 4768 // If a mem-initializer-id is ambiguous because it designates both 4769 // a direct non-virtual base class and an inherited virtual base 4770 // class, the mem-initializer is ill-formed. 4771 if (DirectBaseSpec && VirtualBaseSpec) 4772 return Diag(BaseLoc, diag::err_base_init_direct_and_virtual) 4773 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange(); 4774 4775 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec; 4776 if (!BaseSpec) 4777 BaseSpec = VirtualBaseSpec; 4778 4779 // Initialize the base. 4780 bool InitList = true; 4781 MultiExprArg Args = Init; 4782 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) { 4783 InitList = false; 4784 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs()); 4785 } 4786 4787 InitializedEntity BaseEntity = 4788 InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec); 4789 InitializationKind Kind = 4790 InitList ? InitializationKind::CreateDirectList(BaseLoc) 4791 : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(), 4792 InitRange.getEnd()); 4793 InitializationSequence InitSeq(*this, BaseEntity, Kind, Args); 4794 ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind, Args, nullptr); 4795 if (!BaseInit.isInvalid()) { 4796 // C++11 [class.base.init]p7: 4797 // The initialization of each base and member constitutes a 4798 // full-expression. 4799 BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin(), 4800 /*DiscardedValue*/ false); 4801 } 4802 4803 if (BaseInit.isInvalid()) { 4804 BaseInit = CreateRecoveryExpr(InitRange.getBegin(), InitRange.getEnd(), 4805 Args, BaseType); 4806 if (BaseInit.isInvalid()) 4807 return true; 4808 } else { 4809 // If we are in a dependent context, template instantiation will 4810 // perform this type-checking again. Just save the arguments that we 4811 // received in a ParenListExpr. 4812 // FIXME: This isn't quite ideal, since our ASTs don't capture all 4813 // of the information that we have about the base 4814 // initializer. However, deconstructing the ASTs is a dicey process, 4815 // and this approach is far more likely to get the corner cases right. 4816 if (CurContext->isDependentContext()) 4817 BaseInit = Init; 4818 } 4819 4820 return new (Context) CXXCtorInitializer(Context, BaseTInfo, 4821 BaseSpec->isVirtual(), 4822 InitRange.getBegin(), 4823 BaseInit.getAs<Expr>(), 4824 InitRange.getEnd(), EllipsisLoc); 4825 } 4826 4827 // Create a static_cast\<T&&>(expr). 4828 static Expr *CastForMoving(Sema &SemaRef, Expr *E) { 4829 QualType TargetType = 4830 SemaRef.BuildReferenceType(E->getType(), /*SpelledAsLValue*/ false, 4831 SourceLocation(), DeclarationName()); 4832 SourceLocation ExprLoc = E->getBeginLoc(); 4833 TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo( 4834 TargetType, ExprLoc); 4835 4836 return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E, 4837 SourceRange(ExprLoc, ExprLoc), 4838 E->getSourceRange()).get(); 4839 } 4840 4841 /// ImplicitInitializerKind - How an implicit base or member initializer should 4842 /// initialize its base or member. 4843 enum ImplicitInitializerKind { 4844 IIK_Default, 4845 IIK_Copy, 4846 IIK_Move, 4847 IIK_Inherit 4848 }; 4849 4850 static bool 4851 BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor, 4852 ImplicitInitializerKind ImplicitInitKind, 4853 CXXBaseSpecifier *BaseSpec, 4854 bool IsInheritedVirtualBase, 4855 CXXCtorInitializer *&CXXBaseInit) { 4856 InitializedEntity InitEntity 4857 = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec, 4858 IsInheritedVirtualBase); 4859 4860 ExprResult BaseInit; 4861 4862 switch (ImplicitInitKind) { 4863 case IIK_Inherit: 4864 case IIK_Default: { 4865 InitializationKind InitKind 4866 = InitializationKind::CreateDefault(Constructor->getLocation()); 4867 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, {}); 4868 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, {}); 4869 break; 4870 } 4871 4872 case IIK_Move: 4873 case IIK_Copy: { 4874 bool Moving = ImplicitInitKind == IIK_Move; 4875 ParmVarDecl *Param = Constructor->getParamDecl(0); 4876 QualType ParamType = Param->getType().getNonReferenceType(); 4877 4878 Expr *CopyCtorArg = 4879 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), 4880 SourceLocation(), Param, false, 4881 Constructor->getLocation(), ParamType, 4882 VK_LValue, nullptr); 4883 4884 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg)); 4885 4886 // Cast to the base class to avoid ambiguities. 4887 QualType ArgTy = 4888 SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(), 4889 ParamType.getQualifiers()); 4890 4891 if (Moving) { 4892 CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg); 4893 } 4894 4895 CXXCastPath BasePath; 4896 BasePath.push_back(BaseSpec); 4897 CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy, 4898 CK_UncheckedDerivedToBase, 4899 Moving ? VK_XValue : VK_LValue, 4900 &BasePath).get(); 4901 4902 InitializationKind InitKind 4903 = InitializationKind::CreateDirect(Constructor->getLocation(), 4904 SourceLocation(), SourceLocation()); 4905 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, CopyCtorArg); 4906 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, CopyCtorArg); 4907 break; 4908 } 4909 } 4910 4911 BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit); 4912 if (BaseInit.isInvalid()) 4913 return true; 4914 4915 CXXBaseInit = 4916 new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, 4917 SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(), 4918 SourceLocation()), 4919 BaseSpec->isVirtual(), 4920 SourceLocation(), 4921 BaseInit.getAs<Expr>(), 4922 SourceLocation(), 4923 SourceLocation()); 4924 4925 return false; 4926 } 4927 4928 static bool RefersToRValueRef(Expr *MemRef) { 4929 ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl(); 4930 return Referenced->getType()->isRValueReferenceType(); 4931 } 4932 4933 static bool 4934 BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor, 4935 ImplicitInitializerKind ImplicitInitKind, 4936 FieldDecl *Field, IndirectFieldDecl *Indirect, 4937 CXXCtorInitializer *&CXXMemberInit) { 4938 if (Field->isInvalidDecl()) 4939 return true; 4940 4941 SourceLocation Loc = Constructor->getLocation(); 4942 4943 if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) { 4944 bool Moving = ImplicitInitKind == IIK_Move; 4945 ParmVarDecl *Param = Constructor->getParamDecl(0); 4946 QualType ParamType = Param->getType().getNonReferenceType(); 4947 4948 // Suppress copying zero-width bitfields. 4949 if (Field->isZeroLengthBitField()) 4950 return false; 4951 4952 Expr *MemberExprBase = 4953 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), 4954 SourceLocation(), Param, false, 4955 Loc, ParamType, VK_LValue, nullptr); 4956 4957 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase)); 4958 4959 if (Moving) { 4960 MemberExprBase = CastForMoving(SemaRef, MemberExprBase); 4961 } 4962 4963 // Build a reference to this field within the parameter. 4964 CXXScopeSpec SS; 4965 LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc, 4966 Sema::LookupMemberName); 4967 MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect) 4968 : cast<ValueDecl>(Field), AS_public); 4969 MemberLookup.resolveKind(); 4970 ExprResult CtorArg 4971 = SemaRef.BuildMemberReferenceExpr(MemberExprBase, 4972 ParamType, Loc, 4973 /*IsArrow=*/false, 4974 SS, 4975 /*TemplateKWLoc=*/SourceLocation(), 4976 /*FirstQualifierInScope=*/nullptr, 4977 MemberLookup, 4978 /*TemplateArgs=*/nullptr, 4979 /*S*/nullptr); 4980 if (CtorArg.isInvalid()) 4981 return true; 4982 4983 // C++11 [class.copy]p15: 4984 // - if a member m has rvalue reference type T&&, it is direct-initialized 4985 // with static_cast<T&&>(x.m); 4986 if (RefersToRValueRef(CtorArg.get())) { 4987 CtorArg = CastForMoving(SemaRef, CtorArg.get()); 4988 } 4989 4990 InitializedEntity Entity = 4991 Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr, 4992 /*Implicit*/ true) 4993 : InitializedEntity::InitializeMember(Field, nullptr, 4994 /*Implicit*/ true); 4995 4996 // Direct-initialize to use the copy constructor. 4997 InitializationKind InitKind = 4998 InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation()); 4999 5000 Expr *CtorArgE = CtorArg.getAs<Expr>(); 5001 InitializationSequence InitSeq(SemaRef, Entity, InitKind, CtorArgE); 5002 ExprResult MemberInit = 5003 InitSeq.Perform(SemaRef, Entity, InitKind, MultiExprArg(&CtorArgE, 1)); 5004 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit); 5005 if (MemberInit.isInvalid()) 5006 return true; 5007 5008 if (Indirect) 5009 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer( 5010 SemaRef.Context, Indirect, Loc, Loc, MemberInit.getAs<Expr>(), Loc); 5011 else 5012 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer( 5013 SemaRef.Context, Field, Loc, Loc, MemberInit.getAs<Expr>(), Loc); 5014 return false; 5015 } 5016 5017 assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) && 5018 "Unhandled implicit init kind!"); 5019 5020 QualType FieldBaseElementType = 5021 SemaRef.Context.getBaseElementType(Field->getType()); 5022 5023 if (FieldBaseElementType->isRecordType()) { 5024 InitializedEntity InitEntity = 5025 Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr, 5026 /*Implicit*/ true) 5027 : InitializedEntity::InitializeMember(Field, nullptr, 5028 /*Implicit*/ true); 5029 InitializationKind InitKind = 5030 InitializationKind::CreateDefault(Loc); 5031 5032 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, {}); 5033 ExprResult MemberInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, {}); 5034 5035 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit); 5036 if (MemberInit.isInvalid()) 5037 return true; 5038 5039 if (Indirect) 5040 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, 5041 Indirect, Loc, 5042 Loc, 5043 MemberInit.get(), 5044 Loc); 5045 else 5046 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, 5047 Field, Loc, Loc, 5048 MemberInit.get(), 5049 Loc); 5050 return false; 5051 } 5052 5053 if (!Field->getParent()->isUnion()) { 5054 if (FieldBaseElementType->isReferenceType()) { 5055 SemaRef.Diag(Constructor->getLocation(), 5056 diag::err_uninitialized_member_in_ctor) 5057 << (int)Constructor->isImplicit() 5058 << SemaRef.Context.getTagDeclType(Constructor->getParent()) 5059 << 0 << Field->getDeclName(); 5060 SemaRef.Diag(Field->getLocation(), diag::note_declared_at); 5061 return true; 5062 } 5063 5064 if (FieldBaseElementType.isConstQualified()) { 5065 SemaRef.Diag(Constructor->getLocation(), 5066 diag::err_uninitialized_member_in_ctor) 5067 << (int)Constructor->isImplicit() 5068 << SemaRef.Context.getTagDeclType(Constructor->getParent()) 5069 << 1 << Field->getDeclName(); 5070 SemaRef.Diag(Field->getLocation(), diag::note_declared_at); 5071 return true; 5072 } 5073 } 5074 5075 if (FieldBaseElementType.hasNonTrivialObjCLifetime()) { 5076 // ARC and Weak: 5077 // Default-initialize Objective-C pointers to NULL. 5078 CXXMemberInit 5079 = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field, 5080 Loc, Loc, 5081 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()), 5082 Loc); 5083 return false; 5084 } 5085 5086 // Nothing to initialize. 5087 CXXMemberInit = nullptr; 5088 return false; 5089 } 5090 5091 namespace { 5092 struct BaseAndFieldInfo { 5093 Sema &S; 5094 CXXConstructorDecl *Ctor; 5095 bool AnyErrorsInInits; 5096 ImplicitInitializerKind IIK; 5097 llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields; 5098 SmallVector<CXXCtorInitializer*, 8> AllToInit; 5099 llvm::DenseMap<TagDecl*, FieldDecl*> ActiveUnionMember; 5100 5101 BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits) 5102 : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) { 5103 bool Generated = Ctor->isImplicit() || Ctor->isDefaulted(); 5104 if (Ctor->getInheritedConstructor()) 5105 IIK = IIK_Inherit; 5106 else if (Generated && Ctor->isCopyConstructor()) 5107 IIK = IIK_Copy; 5108 else if (Generated && Ctor->isMoveConstructor()) 5109 IIK = IIK_Move; 5110 else 5111 IIK = IIK_Default; 5112 } 5113 5114 bool isImplicitCopyOrMove() const { 5115 switch (IIK) { 5116 case IIK_Copy: 5117 case IIK_Move: 5118 return true; 5119 5120 case IIK_Default: 5121 case IIK_Inherit: 5122 return false; 5123 } 5124 5125 llvm_unreachable("Invalid ImplicitInitializerKind!"); 5126 } 5127 5128 bool addFieldInitializer(CXXCtorInitializer *Init) { 5129 AllToInit.push_back(Init); 5130 5131 // Check whether this initializer makes the field "used". 5132 if (Init->getInit()->HasSideEffects(S.Context)) 5133 S.UnusedPrivateFields.remove(Init->getAnyMember()); 5134 5135 return false; 5136 } 5137 5138 bool isInactiveUnionMember(FieldDecl *Field) { 5139 RecordDecl *Record = Field->getParent(); 5140 if (!Record->isUnion()) 5141 return false; 5142 5143 if (FieldDecl *Active = 5144 ActiveUnionMember.lookup(Record->getCanonicalDecl())) 5145 return Active != Field->getCanonicalDecl(); 5146 5147 // In an implicit copy or move constructor, ignore any in-class initializer. 5148 if (isImplicitCopyOrMove()) 5149 return true; 5150 5151 // If there's no explicit initialization, the field is active only if it 5152 // has an in-class initializer... 5153 if (Field->hasInClassInitializer()) 5154 return false; 5155 // ... or it's an anonymous struct or union whose class has an in-class 5156 // initializer. 5157 if (!Field->isAnonymousStructOrUnion()) 5158 return true; 5159 CXXRecordDecl *FieldRD = Field->getType()->getAsCXXRecordDecl(); 5160 return !FieldRD->hasInClassInitializer(); 5161 } 5162 5163 /// Determine whether the given field is, or is within, a union member 5164 /// that is inactive (because there was an initializer given for a different 5165 /// member of the union, or because the union was not initialized at all). 5166 bool isWithinInactiveUnionMember(FieldDecl *Field, 5167 IndirectFieldDecl *Indirect) { 5168 if (!Indirect) 5169 return isInactiveUnionMember(Field); 5170 5171 for (auto *C : Indirect->chain()) { 5172 FieldDecl *Field = dyn_cast<FieldDecl>(C); 5173 if (Field && isInactiveUnionMember(Field)) 5174 return true; 5175 } 5176 return false; 5177 } 5178 }; 5179 } 5180 5181 /// Determine whether the given type is an incomplete or zero-lenfgth 5182 /// array type. 5183 static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) { 5184 if (T->isIncompleteArrayType()) 5185 return true; 5186 5187 while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) { 5188 if (ArrayT->isZeroSize()) 5189 return true; 5190 5191 T = ArrayT->getElementType(); 5192 } 5193 5194 return false; 5195 } 5196 5197 static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info, 5198 FieldDecl *Field, 5199 IndirectFieldDecl *Indirect = nullptr) { 5200 if (Field->isInvalidDecl()) 5201 return false; 5202 5203 // Overwhelmingly common case: we have a direct initializer for this field. 5204 if (CXXCtorInitializer *Init = 5205 Info.AllBaseFields.lookup(Field->getCanonicalDecl())) 5206 return Info.addFieldInitializer(Init); 5207 5208 // C++11 [class.base.init]p8: 5209 // if the entity is a non-static data member that has a 5210 // brace-or-equal-initializer and either 5211 // -- the constructor's class is a union and no other variant member of that 5212 // union is designated by a mem-initializer-id or 5213 // -- the constructor's class is not a union, and, if the entity is a member 5214 // of an anonymous union, no other member of that union is designated by 5215 // a mem-initializer-id, 5216 // the entity is initialized as specified in [dcl.init]. 5217 // 5218 // We also apply the same rules to handle anonymous structs within anonymous 5219 // unions. 5220 if (Info.isWithinInactiveUnionMember(Field, Indirect)) 5221 return false; 5222 5223 if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) { 5224 ExprResult DIE = 5225 SemaRef.BuildCXXDefaultInitExpr(Info.Ctor->getLocation(), Field); 5226 if (DIE.isInvalid()) 5227 return true; 5228 5229 auto Entity = InitializedEntity::InitializeMember(Field, nullptr, true); 5230 SemaRef.checkInitializerLifetime(Entity, DIE.get()); 5231 5232 CXXCtorInitializer *Init; 5233 if (Indirect) 5234 Init = new (SemaRef.Context) 5235 CXXCtorInitializer(SemaRef.Context, Indirect, SourceLocation(), 5236 SourceLocation(), DIE.get(), SourceLocation()); 5237 else 5238 Init = new (SemaRef.Context) 5239 CXXCtorInitializer(SemaRef.Context, Field, SourceLocation(), 5240 SourceLocation(), DIE.get(), SourceLocation()); 5241 return Info.addFieldInitializer(Init); 5242 } 5243 5244 // Don't initialize incomplete or zero-length arrays. 5245 if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType())) 5246 return false; 5247 5248 // Don't try to build an implicit initializer if there were semantic 5249 // errors in any of the initializers (and therefore we might be 5250 // missing some that the user actually wrote). 5251 if (Info.AnyErrorsInInits) 5252 return false; 5253 5254 CXXCtorInitializer *Init = nullptr; 5255 if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, 5256 Indirect, Init)) 5257 return true; 5258 5259 if (!Init) 5260 return false; 5261 5262 return Info.addFieldInitializer(Init); 5263 } 5264 5265 bool 5266 Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor, 5267 CXXCtorInitializer *Initializer) { 5268 assert(Initializer->isDelegatingInitializer()); 5269 Constructor->setNumCtorInitializers(1); 5270 CXXCtorInitializer **initializer = 5271 new (Context) CXXCtorInitializer*[1]; 5272 memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*)); 5273 Constructor->setCtorInitializers(initializer); 5274 5275 if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) { 5276 MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor); 5277 DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation()); 5278 } 5279 5280 DelegatingCtorDecls.push_back(Constructor); 5281 5282 DiagnoseUninitializedFields(*this, Constructor); 5283 5284 return false; 5285 } 5286 5287 bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors, 5288 ArrayRef<CXXCtorInitializer *> Initializers) { 5289 if (Constructor->isDependentContext()) { 5290 // Just store the initializers as written, they will be checked during 5291 // instantiation. 5292 if (!Initializers.empty()) { 5293 Constructor->setNumCtorInitializers(Initializers.size()); 5294 CXXCtorInitializer **baseOrMemberInitializers = 5295 new (Context) CXXCtorInitializer*[Initializers.size()]; 5296 memcpy(baseOrMemberInitializers, Initializers.data(), 5297 Initializers.size() * sizeof(CXXCtorInitializer*)); 5298 Constructor->setCtorInitializers(baseOrMemberInitializers); 5299 } 5300 5301 // Let template instantiation know whether we had errors. 5302 if (AnyErrors) 5303 Constructor->setInvalidDecl(); 5304 5305 return false; 5306 } 5307 5308 BaseAndFieldInfo Info(*this, Constructor, AnyErrors); 5309 5310 // We need to build the initializer AST according to order of construction 5311 // and not what user specified in the Initializers list. 5312 CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition(); 5313 if (!ClassDecl) 5314 return true; 5315 5316 bool HadError = false; 5317 5318 for (unsigned i = 0; i < Initializers.size(); i++) { 5319 CXXCtorInitializer *Member = Initializers[i]; 5320 5321 if (Member->isBaseInitializer()) 5322 Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member; 5323 else { 5324 Info.AllBaseFields[Member->getAnyMember()->getCanonicalDecl()] = Member; 5325 5326 if (IndirectFieldDecl *F = Member->getIndirectMember()) { 5327 for (auto *C : F->chain()) { 5328 FieldDecl *FD = dyn_cast<FieldDecl>(C); 5329 if (FD && FD->getParent()->isUnion()) 5330 Info.ActiveUnionMember.insert(std::make_pair( 5331 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl())); 5332 } 5333 } else if (FieldDecl *FD = Member->getMember()) { 5334 if (FD->getParent()->isUnion()) 5335 Info.ActiveUnionMember.insert(std::make_pair( 5336 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl())); 5337 } 5338 } 5339 } 5340 5341 // Keep track of the direct virtual bases. 5342 llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases; 5343 for (auto &I : ClassDecl->bases()) { 5344 if (I.isVirtual()) 5345 DirectVBases.insert(&I); 5346 } 5347 5348 // Push virtual bases before others. 5349 for (auto &VBase : ClassDecl->vbases()) { 5350 if (CXXCtorInitializer *Value 5351 = Info.AllBaseFields.lookup(VBase.getType()->getAs<RecordType>())) { 5352 // [class.base.init]p7, per DR257: 5353 // A mem-initializer where the mem-initializer-id names a virtual base 5354 // class is ignored during execution of a constructor of any class that 5355 // is not the most derived class. 5356 if (ClassDecl->isAbstract()) { 5357 // FIXME: Provide a fixit to remove the base specifier. This requires 5358 // tracking the location of the associated comma for a base specifier. 5359 Diag(Value->getSourceLocation(), diag::warn_abstract_vbase_init_ignored) 5360 << VBase.getType() << ClassDecl; 5361 DiagnoseAbstractType(ClassDecl); 5362 } 5363 5364 Info.AllToInit.push_back(Value); 5365 } else if (!AnyErrors && !ClassDecl->isAbstract()) { 5366 // [class.base.init]p8, per DR257: 5367 // If a given [...] base class is not named by a mem-initializer-id 5368 // [...] and the entity is not a virtual base class of an abstract 5369 // class, then [...] the entity is default-initialized. 5370 bool IsInheritedVirtualBase = !DirectVBases.count(&VBase); 5371 CXXCtorInitializer *CXXBaseInit; 5372 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK, 5373 &VBase, IsInheritedVirtualBase, 5374 CXXBaseInit)) { 5375 HadError = true; 5376 continue; 5377 } 5378 5379 Info.AllToInit.push_back(CXXBaseInit); 5380 } 5381 } 5382 5383 // Non-virtual bases. 5384 for (auto &Base : ClassDecl->bases()) { 5385 // Virtuals are in the virtual base list and already constructed. 5386 if (Base.isVirtual()) 5387 continue; 5388 5389 if (CXXCtorInitializer *Value 5390 = Info.AllBaseFields.lookup(Base.getType()->getAs<RecordType>())) { 5391 Info.AllToInit.push_back(Value); 5392 } else if (!AnyErrors) { 5393 CXXCtorInitializer *CXXBaseInit; 5394 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK, 5395 &Base, /*IsInheritedVirtualBase=*/false, 5396 CXXBaseInit)) { 5397 HadError = true; 5398 continue; 5399 } 5400 5401 Info.AllToInit.push_back(CXXBaseInit); 5402 } 5403 } 5404 5405 // Fields. 5406 for (auto *Mem : ClassDecl->decls()) { 5407 if (auto *F = dyn_cast<FieldDecl>(Mem)) { 5408 // C++ [class.bit]p2: 5409 // A declaration for a bit-field that omits the identifier declares an 5410 // unnamed bit-field. Unnamed bit-fields are not members and cannot be 5411 // initialized. 5412 if (F->isUnnamedBitField()) 5413 continue; 5414 5415 // If we're not generating the implicit copy/move constructor, then we'll 5416 // handle anonymous struct/union fields based on their individual 5417 // indirect fields. 5418 if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove()) 5419 continue; 5420 5421 if (CollectFieldInitializer(*this, Info, F)) 5422 HadError = true; 5423 continue; 5424 } 5425 5426 // Beyond this point, we only consider default initialization. 5427 if (Info.isImplicitCopyOrMove()) 5428 continue; 5429 5430 if (auto *F = dyn_cast<IndirectFieldDecl>(Mem)) { 5431 if (F->getType()->isIncompleteArrayType()) { 5432 assert(ClassDecl->hasFlexibleArrayMember() && 5433 "Incomplete array type is not valid"); 5434 continue; 5435 } 5436 5437 // Initialize each field of an anonymous struct individually. 5438 if (CollectFieldInitializer(*this, Info, F->getAnonField(), F)) 5439 HadError = true; 5440 5441 continue; 5442 } 5443 } 5444 5445 unsigned NumInitializers = Info.AllToInit.size(); 5446 if (NumInitializers > 0) { 5447 Constructor->setNumCtorInitializers(NumInitializers); 5448 CXXCtorInitializer **baseOrMemberInitializers = 5449 new (Context) CXXCtorInitializer*[NumInitializers]; 5450 memcpy(baseOrMemberInitializers, Info.AllToInit.data(), 5451 NumInitializers * sizeof(CXXCtorInitializer*)); 5452 Constructor->setCtorInitializers(baseOrMemberInitializers); 5453 5454 // Constructors implicitly reference the base and member 5455 // destructors. 5456 MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(), 5457 Constructor->getParent()); 5458 } 5459 5460 return HadError; 5461 } 5462 5463 static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) { 5464 if (const RecordType *RT = Field->getType()->getAs<RecordType>()) { 5465 const RecordDecl *RD = RT->getDecl(); 5466 if (RD->isAnonymousStructOrUnion()) { 5467 for (auto *Field : RD->fields()) 5468 PopulateKeysForFields(Field, IdealInits); 5469 return; 5470 } 5471 } 5472 IdealInits.push_back(Field->getCanonicalDecl()); 5473 } 5474 5475 static const void *GetKeyForBase(ASTContext &Context, QualType BaseType) { 5476 return Context.getCanonicalType(BaseType).getTypePtr(); 5477 } 5478 5479 static const void *GetKeyForMember(ASTContext &Context, 5480 CXXCtorInitializer *Member) { 5481 if (!Member->isAnyMemberInitializer()) 5482 return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0)); 5483 5484 return Member->getAnyMember()->getCanonicalDecl(); 5485 } 5486 5487 static void AddInitializerToDiag(const Sema::SemaDiagnosticBuilder &Diag, 5488 const CXXCtorInitializer *Previous, 5489 const CXXCtorInitializer *Current) { 5490 if (Previous->isAnyMemberInitializer()) 5491 Diag << 0 << Previous->getAnyMember(); 5492 else 5493 Diag << 1 << Previous->getTypeSourceInfo()->getType(); 5494 5495 if (Current->isAnyMemberInitializer()) 5496 Diag << 0 << Current->getAnyMember(); 5497 else 5498 Diag << 1 << Current->getTypeSourceInfo()->getType(); 5499 } 5500 5501 static void DiagnoseBaseOrMemInitializerOrder( 5502 Sema &SemaRef, const CXXConstructorDecl *Constructor, 5503 ArrayRef<CXXCtorInitializer *> Inits) { 5504 if (Constructor->getDeclContext()->isDependentContext()) 5505 return; 5506 5507 // Don't check initializers order unless the warning is enabled at the 5508 // location of at least one initializer. 5509 bool ShouldCheckOrder = false; 5510 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) { 5511 CXXCtorInitializer *Init = Inits[InitIndex]; 5512 if (!SemaRef.Diags.isIgnored(diag::warn_initializer_out_of_order, 5513 Init->getSourceLocation())) { 5514 ShouldCheckOrder = true; 5515 break; 5516 } 5517 } 5518 if (!ShouldCheckOrder) 5519 return; 5520 5521 // Build the list of bases and members in the order that they'll 5522 // actually be initialized. The explicit initializers should be in 5523 // this same order but may be missing things. 5524 SmallVector<const void*, 32> IdealInitKeys; 5525 5526 const CXXRecordDecl *ClassDecl = Constructor->getParent(); 5527 5528 // 1. Virtual bases. 5529 for (const auto &VBase : ClassDecl->vbases()) 5530 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase.getType())); 5531 5532 // 2. Non-virtual bases. 5533 for (const auto &Base : ClassDecl->bases()) { 5534 if (Base.isVirtual()) 5535 continue; 5536 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base.getType())); 5537 } 5538 5539 // 3. Direct fields. 5540 for (auto *Field : ClassDecl->fields()) { 5541 if (Field->isUnnamedBitField()) 5542 continue; 5543 5544 PopulateKeysForFields(Field, IdealInitKeys); 5545 } 5546 5547 unsigned NumIdealInits = IdealInitKeys.size(); 5548 unsigned IdealIndex = 0; 5549 5550 // Track initializers that are in an incorrect order for either a warning or 5551 // note if multiple ones occur. 5552 SmallVector<unsigned> WarnIndexes; 5553 // Correlates the index of an initializer in the init-list to the index of 5554 // the field/base in the class. 5555 SmallVector<std::pair<unsigned, unsigned>, 32> CorrelatedInitOrder; 5556 5557 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) { 5558 const void *InitKey = GetKeyForMember(SemaRef.Context, Inits[InitIndex]); 5559 5560 // Scan forward to try to find this initializer in the idealized 5561 // initializers list. 5562 for (; IdealIndex != NumIdealInits; ++IdealIndex) 5563 if (InitKey == IdealInitKeys[IdealIndex]) 5564 break; 5565 5566 // If we didn't find this initializer, it must be because we 5567 // scanned past it on a previous iteration. That can only 5568 // happen if we're out of order; emit a warning. 5569 if (IdealIndex == NumIdealInits && InitIndex) { 5570 WarnIndexes.push_back(InitIndex); 5571 5572 // Move back to the initializer's location in the ideal list. 5573 for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex) 5574 if (InitKey == IdealInitKeys[IdealIndex]) 5575 break; 5576 5577 assert(IdealIndex < NumIdealInits && 5578 "initializer not found in initializer list"); 5579 } 5580 CorrelatedInitOrder.emplace_back(IdealIndex, InitIndex); 5581 } 5582 5583 if (WarnIndexes.empty()) 5584 return; 5585 5586 // Sort based on the ideal order, first in the pair. 5587 llvm::sort(CorrelatedInitOrder, llvm::less_first()); 5588 5589 // Introduce a new scope as SemaDiagnosticBuilder needs to be destroyed to 5590 // emit the diagnostic before we can try adding notes. 5591 { 5592 Sema::SemaDiagnosticBuilder D = SemaRef.Diag( 5593 Inits[WarnIndexes.front() - 1]->getSourceLocation(), 5594 WarnIndexes.size() == 1 ? diag::warn_initializer_out_of_order 5595 : diag::warn_some_initializers_out_of_order); 5596 5597 for (unsigned I = 0; I < CorrelatedInitOrder.size(); ++I) { 5598 if (CorrelatedInitOrder[I].second == I) 5599 continue; 5600 // Ideally we would be using InsertFromRange here, but clang doesn't 5601 // appear to handle InsertFromRange correctly when the source range is 5602 // modified by another fix-it. 5603 D << FixItHint::CreateReplacement( 5604 Inits[I]->getSourceRange(), 5605 Lexer::getSourceText( 5606 CharSourceRange::getTokenRange( 5607 Inits[CorrelatedInitOrder[I].second]->getSourceRange()), 5608 SemaRef.getSourceManager(), SemaRef.getLangOpts())); 5609 } 5610 5611 // If there is only 1 item out of order, the warning expects the name and 5612 // type of each being added to it. 5613 if (WarnIndexes.size() == 1) { 5614 AddInitializerToDiag(D, Inits[WarnIndexes.front() - 1], 5615 Inits[WarnIndexes.front()]); 5616 return; 5617 } 5618 } 5619 // More than 1 item to warn, create notes letting the user know which ones 5620 // are bad. 5621 for (unsigned WarnIndex : WarnIndexes) { 5622 const clang::CXXCtorInitializer *PrevInit = Inits[WarnIndex - 1]; 5623 auto D = SemaRef.Diag(PrevInit->getSourceLocation(), 5624 diag::note_initializer_out_of_order); 5625 AddInitializerToDiag(D, PrevInit, Inits[WarnIndex]); 5626 D << PrevInit->getSourceRange(); 5627 } 5628 } 5629 5630 namespace { 5631 bool CheckRedundantInit(Sema &S, 5632 CXXCtorInitializer *Init, 5633 CXXCtorInitializer *&PrevInit) { 5634 if (!PrevInit) { 5635 PrevInit = Init; 5636 return false; 5637 } 5638 5639 if (FieldDecl *Field = Init->getAnyMember()) 5640 S.Diag(Init->getSourceLocation(), 5641 diag::err_multiple_mem_initialization) 5642 << Field->getDeclName() 5643 << Init->getSourceRange(); 5644 else { 5645 const Type *BaseClass = Init->getBaseClass(); 5646 assert(BaseClass && "neither field nor base"); 5647 S.Diag(Init->getSourceLocation(), 5648 diag::err_multiple_base_initialization) 5649 << QualType(BaseClass, 0) 5650 << Init->getSourceRange(); 5651 } 5652 S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer) 5653 << 0 << PrevInit->getSourceRange(); 5654 5655 return true; 5656 } 5657 5658 typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry; 5659 typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap; 5660 5661 bool CheckRedundantUnionInit(Sema &S, 5662 CXXCtorInitializer *Init, 5663 RedundantUnionMap &Unions) { 5664 FieldDecl *Field = Init->getAnyMember(); 5665 RecordDecl *Parent = Field->getParent(); 5666 NamedDecl *Child = Field; 5667 5668 while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) { 5669 if (Parent->isUnion()) { 5670 UnionEntry &En = Unions[Parent]; 5671 if (En.first && En.first != Child) { 5672 S.Diag(Init->getSourceLocation(), 5673 diag::err_multiple_mem_union_initialization) 5674 << Field->getDeclName() 5675 << Init->getSourceRange(); 5676 S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer) 5677 << 0 << En.second->getSourceRange(); 5678 return true; 5679 } 5680 if (!En.first) { 5681 En.first = Child; 5682 En.second = Init; 5683 } 5684 if (!Parent->isAnonymousStructOrUnion()) 5685 return false; 5686 } 5687 5688 Child = Parent; 5689 Parent = cast<RecordDecl>(Parent->getDeclContext()); 5690 } 5691 5692 return false; 5693 } 5694 } // namespace 5695 5696 void Sema::ActOnMemInitializers(Decl *ConstructorDecl, 5697 SourceLocation ColonLoc, 5698 ArrayRef<CXXCtorInitializer*> MemInits, 5699 bool AnyErrors) { 5700 if (!ConstructorDecl) 5701 return; 5702 5703 AdjustDeclIfTemplate(ConstructorDecl); 5704 5705 CXXConstructorDecl *Constructor 5706 = dyn_cast<CXXConstructorDecl>(ConstructorDecl); 5707 5708 if (!Constructor) { 5709 Diag(ColonLoc, diag::err_only_constructors_take_base_inits); 5710 return; 5711 } 5712 5713 // Mapping for the duplicate initializers check. 5714 // For member initializers, this is keyed with a FieldDecl*. 5715 // For base initializers, this is keyed with a Type*. 5716 llvm::DenseMap<const void *, CXXCtorInitializer *> Members; 5717 5718 // Mapping for the inconsistent anonymous-union initializers check. 5719 RedundantUnionMap MemberUnions; 5720 5721 bool HadError = false; 5722 for (unsigned i = 0; i < MemInits.size(); i++) { 5723 CXXCtorInitializer *Init = MemInits[i]; 5724 5725 // Set the source order index. 5726 Init->setSourceOrder(i); 5727 5728 if (Init->isAnyMemberInitializer()) { 5729 const void *Key = GetKeyForMember(Context, Init); 5730 if (CheckRedundantInit(*this, Init, Members[Key]) || 5731 CheckRedundantUnionInit(*this, Init, MemberUnions)) 5732 HadError = true; 5733 } else if (Init->isBaseInitializer()) { 5734 const void *Key = GetKeyForMember(Context, Init); 5735 if (CheckRedundantInit(*this, Init, Members[Key])) 5736 HadError = true; 5737 } else { 5738 assert(Init->isDelegatingInitializer()); 5739 // This must be the only initializer 5740 if (MemInits.size() != 1) { 5741 Diag(Init->getSourceLocation(), 5742 diag::err_delegating_initializer_alone) 5743 << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange(); 5744 // We will treat this as being the only initializer. 5745 } 5746 SetDelegatingInitializer(Constructor, MemInits[i]); 5747 // Return immediately as the initializer is set. 5748 return; 5749 } 5750 } 5751 5752 if (HadError) 5753 return; 5754 5755 DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits); 5756 5757 SetCtorInitializers(Constructor, AnyErrors, MemInits); 5758 5759 DiagnoseUninitializedFields(*this, Constructor); 5760 } 5761 5762 void 5763 Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location, 5764 CXXRecordDecl *ClassDecl) { 5765 // Ignore dependent contexts. Also ignore unions, since their members never 5766 // have destructors implicitly called. 5767 if (ClassDecl->isDependentContext() || ClassDecl->isUnion()) 5768 return; 5769 5770 // FIXME: all the access-control diagnostics are positioned on the 5771 // field/base declaration. That's probably good; that said, the 5772 // user might reasonably want to know why the destructor is being 5773 // emitted, and we currently don't say. 5774 5775 // Non-static data members. 5776 for (auto *Field : ClassDecl->fields()) { 5777 if (Field->isInvalidDecl()) 5778 continue; 5779 5780 // Don't destroy incomplete or zero-length arrays. 5781 if (isIncompleteOrZeroLengthArrayType(Context, Field->getType())) 5782 continue; 5783 5784 QualType FieldType = Context.getBaseElementType(Field->getType()); 5785 5786 const RecordType* RT = FieldType->getAs<RecordType>(); 5787 if (!RT) 5788 continue; 5789 5790 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 5791 if (FieldClassDecl->isInvalidDecl()) 5792 continue; 5793 if (FieldClassDecl->hasIrrelevantDestructor()) 5794 continue; 5795 // The destructor for an implicit anonymous union member is never invoked. 5796 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion()) 5797 continue; 5798 5799 CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl); 5800 // Dtor might still be missing, e.g because it's invalid. 5801 if (!Dtor) 5802 continue; 5803 CheckDestructorAccess(Field->getLocation(), Dtor, 5804 PDiag(diag::err_access_dtor_field) 5805 << Field->getDeclName() 5806 << FieldType); 5807 5808 MarkFunctionReferenced(Location, Dtor); 5809 DiagnoseUseOfDecl(Dtor, Location); 5810 } 5811 5812 // We only potentially invoke the destructors of potentially constructed 5813 // subobjects. 5814 bool VisitVirtualBases = !ClassDecl->isAbstract(); 5815 5816 // If the destructor exists and has already been marked used in the MS ABI, 5817 // then virtual base destructors have already been checked and marked used. 5818 // Skip checking them again to avoid duplicate diagnostics. 5819 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 5820 CXXDestructorDecl *Dtor = ClassDecl->getDestructor(); 5821 if (Dtor && Dtor->isUsed()) 5822 VisitVirtualBases = false; 5823 } 5824 5825 llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases; 5826 5827 // Bases. 5828 for (const auto &Base : ClassDecl->bases()) { 5829 const RecordType *RT = Base.getType()->getAs<RecordType>(); 5830 if (!RT) 5831 continue; 5832 5833 // Remember direct virtual bases. 5834 if (Base.isVirtual()) { 5835 if (!VisitVirtualBases) 5836 continue; 5837 DirectVirtualBases.insert(RT); 5838 } 5839 5840 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 5841 // If our base class is invalid, we probably can't get its dtor anyway. 5842 if (BaseClassDecl->isInvalidDecl()) 5843 continue; 5844 if (BaseClassDecl->hasIrrelevantDestructor()) 5845 continue; 5846 5847 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl); 5848 // Dtor might still be missing, e.g because it's invalid. 5849 if (!Dtor) 5850 continue; 5851 5852 // FIXME: caret should be on the start of the class name 5853 CheckDestructorAccess(Base.getBeginLoc(), Dtor, 5854 PDiag(diag::err_access_dtor_base) 5855 << Base.getType() << Base.getSourceRange(), 5856 Context.getTypeDeclType(ClassDecl)); 5857 5858 MarkFunctionReferenced(Location, Dtor); 5859 DiagnoseUseOfDecl(Dtor, Location); 5860 } 5861 5862 if (VisitVirtualBases) 5863 MarkVirtualBaseDestructorsReferenced(Location, ClassDecl, 5864 &DirectVirtualBases); 5865 } 5866 5867 void Sema::MarkVirtualBaseDestructorsReferenced( 5868 SourceLocation Location, CXXRecordDecl *ClassDecl, 5869 llvm::SmallPtrSetImpl<const RecordType *> *DirectVirtualBases) { 5870 // Virtual bases. 5871 for (const auto &VBase : ClassDecl->vbases()) { 5872 // Bases are always records in a well-formed non-dependent class. 5873 const RecordType *RT = VBase.getType()->castAs<RecordType>(); 5874 5875 // Ignore already visited direct virtual bases. 5876 if (DirectVirtualBases && DirectVirtualBases->count(RT)) 5877 continue; 5878 5879 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 5880 // If our base class is invalid, we probably can't get its dtor anyway. 5881 if (BaseClassDecl->isInvalidDecl()) 5882 continue; 5883 if (BaseClassDecl->hasIrrelevantDestructor()) 5884 continue; 5885 5886 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl); 5887 // Dtor might still be missing, e.g because it's invalid. 5888 if (!Dtor) 5889 continue; 5890 if (CheckDestructorAccess( 5891 ClassDecl->getLocation(), Dtor, 5892 PDiag(diag::err_access_dtor_vbase) 5893 << Context.getTypeDeclType(ClassDecl) << VBase.getType(), 5894 Context.getTypeDeclType(ClassDecl)) == 5895 AR_accessible) { 5896 CheckDerivedToBaseConversion( 5897 Context.getTypeDeclType(ClassDecl), VBase.getType(), 5898 diag::err_access_dtor_vbase, 0, ClassDecl->getLocation(), 5899 SourceRange(), DeclarationName(), nullptr); 5900 } 5901 5902 MarkFunctionReferenced(Location, Dtor); 5903 DiagnoseUseOfDecl(Dtor, Location); 5904 } 5905 } 5906 5907 void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) { 5908 if (!CDtorDecl) 5909 return; 5910 5911 if (CXXConstructorDecl *Constructor 5912 = dyn_cast<CXXConstructorDecl>(CDtorDecl)) { 5913 if (CXXRecordDecl *ClassDecl = Constructor->getParent(); 5914 !ClassDecl || ClassDecl->isInvalidDecl()) { 5915 return; 5916 } 5917 SetCtorInitializers(Constructor, /*AnyErrors=*/false); 5918 DiagnoseUninitializedFields(*this, Constructor); 5919 } 5920 } 5921 5922 bool Sema::isAbstractType(SourceLocation Loc, QualType T) { 5923 if (!getLangOpts().CPlusPlus) 5924 return false; 5925 5926 const auto *RD = Context.getBaseElementType(T)->getAsCXXRecordDecl(); 5927 if (!RD) 5928 return false; 5929 5930 // FIXME: Per [temp.inst]p1, we are supposed to trigger instantiation of a 5931 // class template specialization here, but doing so breaks a lot of code. 5932 5933 // We can't answer whether something is abstract until it has a 5934 // definition. If it's currently being defined, we'll walk back 5935 // over all the declarations when we have a full definition. 5936 const CXXRecordDecl *Def = RD->getDefinition(); 5937 if (!Def || Def->isBeingDefined()) 5938 return false; 5939 5940 return RD->isAbstract(); 5941 } 5942 5943 bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T, 5944 TypeDiagnoser &Diagnoser) { 5945 if (!isAbstractType(Loc, T)) 5946 return false; 5947 5948 T = Context.getBaseElementType(T); 5949 Diagnoser.diagnose(*this, Loc, T); 5950 DiagnoseAbstractType(T->getAsCXXRecordDecl()); 5951 return true; 5952 } 5953 5954 void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) { 5955 // Check if we've already emitted the list of pure virtual functions 5956 // for this class. 5957 if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD)) 5958 return; 5959 5960 // If the diagnostic is suppressed, don't emit the notes. We're only 5961 // going to emit them once, so try to attach them to a diagnostic we're 5962 // actually going to show. 5963 if (Diags.isLastDiagnosticIgnored()) 5964 return; 5965 5966 CXXFinalOverriderMap FinalOverriders; 5967 RD->getFinalOverriders(FinalOverriders); 5968 5969 // Keep a set of seen pure methods so we won't diagnose the same method 5970 // more than once. 5971 llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods; 5972 5973 for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(), 5974 MEnd = FinalOverriders.end(); 5975 M != MEnd; 5976 ++M) { 5977 for (OverridingMethods::iterator SO = M->second.begin(), 5978 SOEnd = M->second.end(); 5979 SO != SOEnd; ++SO) { 5980 // C++ [class.abstract]p4: 5981 // A class is abstract if it contains or inherits at least one 5982 // pure virtual function for which the final overrider is pure 5983 // virtual. 5984 5985 // 5986 if (SO->second.size() != 1) 5987 continue; 5988 5989 if (!SO->second.front().Method->isPureVirtual()) 5990 continue; 5991 5992 if (!SeenPureMethods.insert(SO->second.front().Method).second) 5993 continue; 5994 5995 Diag(SO->second.front().Method->getLocation(), 5996 diag::note_pure_virtual_function) 5997 << SO->second.front().Method->getDeclName() << RD->getDeclName(); 5998 } 5999 } 6000 6001 if (!PureVirtualClassDiagSet) 6002 PureVirtualClassDiagSet.reset(new RecordDeclSetTy); 6003 PureVirtualClassDiagSet->insert(RD); 6004 } 6005 6006 namespace { 6007 struct AbstractUsageInfo { 6008 Sema &S; 6009 CXXRecordDecl *Record; 6010 CanQualType AbstractType; 6011 bool Invalid; 6012 6013 AbstractUsageInfo(Sema &S, CXXRecordDecl *Record) 6014 : S(S), Record(Record), 6015 AbstractType(S.Context.getCanonicalType( 6016 S.Context.getTypeDeclType(Record))), 6017 Invalid(false) {} 6018 6019 void DiagnoseAbstractType() { 6020 if (Invalid) return; 6021 S.DiagnoseAbstractType(Record); 6022 Invalid = true; 6023 } 6024 6025 void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel); 6026 }; 6027 6028 struct CheckAbstractUsage { 6029 AbstractUsageInfo &Info; 6030 const NamedDecl *Ctx; 6031 6032 CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx) 6033 : Info(Info), Ctx(Ctx) {} 6034 6035 void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) { 6036 switch (TL.getTypeLocClass()) { 6037 #define ABSTRACT_TYPELOC(CLASS, PARENT) 6038 #define TYPELOC(CLASS, PARENT) \ 6039 case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break; 6040 #include "clang/AST/TypeLocNodes.def" 6041 } 6042 } 6043 6044 void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) { 6045 Visit(TL.getReturnLoc(), Sema::AbstractReturnType); 6046 for (unsigned I = 0, E = TL.getNumParams(); I != E; ++I) { 6047 if (!TL.getParam(I)) 6048 continue; 6049 6050 TypeSourceInfo *TSI = TL.getParam(I)->getTypeSourceInfo(); 6051 if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType); 6052 } 6053 } 6054 6055 void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) { 6056 Visit(TL.getElementLoc(), Sema::AbstractArrayType); 6057 } 6058 6059 void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) { 6060 // Visit the type parameters from a permissive context. 6061 for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) { 6062 TemplateArgumentLoc TAL = TL.getArgLoc(I); 6063 if (TAL.getArgument().getKind() == TemplateArgument::Type) 6064 if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo()) 6065 Visit(TSI->getTypeLoc(), Sema::AbstractNone); 6066 // TODO: other template argument types? 6067 } 6068 } 6069 6070 // Visit pointee types from a permissive context. 6071 #define CheckPolymorphic(Type) \ 6072 void Check(Type TL, Sema::AbstractDiagSelID Sel) { \ 6073 Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \ 6074 } 6075 CheckPolymorphic(PointerTypeLoc) 6076 CheckPolymorphic(ReferenceTypeLoc) 6077 CheckPolymorphic(MemberPointerTypeLoc) 6078 CheckPolymorphic(BlockPointerTypeLoc) 6079 CheckPolymorphic(AtomicTypeLoc) 6080 6081 /// Handle all the types we haven't given a more specific 6082 /// implementation for above. 6083 void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) { 6084 // Every other kind of type that we haven't called out already 6085 // that has an inner type is either (1) sugar or (2) contains that 6086 // inner type in some way as a subobject. 6087 if (TypeLoc Next = TL.getNextTypeLoc()) 6088 return Visit(Next, Sel); 6089 6090 // If there's no inner type and we're in a permissive context, 6091 // don't diagnose. 6092 if (Sel == Sema::AbstractNone) return; 6093 6094 // Check whether the type matches the abstract type. 6095 QualType T = TL.getType(); 6096 if (T->isArrayType()) { 6097 Sel = Sema::AbstractArrayType; 6098 T = Info.S.Context.getBaseElementType(T); 6099 } 6100 CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType(); 6101 if (CT != Info.AbstractType) return; 6102 6103 // It matched; do some magic. 6104 // FIXME: These should be at most warnings. See P0929R2, CWG1640, CWG1646. 6105 if (Sel == Sema::AbstractArrayType) { 6106 Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type) 6107 << T << TL.getSourceRange(); 6108 } else { 6109 Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl) 6110 << Sel << T << TL.getSourceRange(); 6111 } 6112 Info.DiagnoseAbstractType(); 6113 } 6114 }; 6115 6116 void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL, 6117 Sema::AbstractDiagSelID Sel) { 6118 CheckAbstractUsage(*this, D).Visit(TL, Sel); 6119 } 6120 6121 } 6122 6123 /// Check for invalid uses of an abstract type in a function declaration. 6124 static void CheckAbstractClassUsage(AbstractUsageInfo &Info, 6125 FunctionDecl *FD) { 6126 // Only definitions are required to refer to complete and 6127 // non-abstract types. 6128 if (!FD->doesThisDeclarationHaveABody()) 6129 return; 6130 6131 // For safety's sake, just ignore it if we don't have type source 6132 // information. This should never happen for non-implicit methods, 6133 // but... 6134 if (TypeSourceInfo *TSI = FD->getTypeSourceInfo()) 6135 Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractNone); 6136 } 6137 6138 /// Check for invalid uses of an abstract type in a variable0 declaration. 6139 static void CheckAbstractClassUsage(AbstractUsageInfo &Info, 6140 VarDecl *VD) { 6141 // No need to do the check on definitions, which require that 6142 // the type is complete. 6143 if (VD->isThisDeclarationADefinition()) 6144 return; 6145 6146 Info.CheckType(VD, VD->getTypeSourceInfo()->getTypeLoc(), 6147 Sema::AbstractVariableType); 6148 } 6149 6150 /// Check for invalid uses of an abstract type within a class definition. 6151 static void CheckAbstractClassUsage(AbstractUsageInfo &Info, 6152 CXXRecordDecl *RD) { 6153 for (auto *D : RD->decls()) { 6154 if (D->isImplicit()) continue; 6155 6156 // Step through friends to the befriended declaration. 6157 if (auto *FD = dyn_cast<FriendDecl>(D)) { 6158 D = FD->getFriendDecl(); 6159 if (!D) continue; 6160 } 6161 6162 // Functions and function templates. 6163 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 6164 CheckAbstractClassUsage(Info, FD); 6165 } else if (auto *FTD = dyn_cast<FunctionTemplateDecl>(D)) { 6166 CheckAbstractClassUsage(Info, FTD->getTemplatedDecl()); 6167 6168 // Fields and static variables. 6169 } else if (auto *FD = dyn_cast<FieldDecl>(D)) { 6170 if (TypeSourceInfo *TSI = FD->getTypeSourceInfo()) 6171 Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType); 6172 } else if (auto *VD = dyn_cast<VarDecl>(D)) { 6173 CheckAbstractClassUsage(Info, VD); 6174 } else if (auto *VTD = dyn_cast<VarTemplateDecl>(D)) { 6175 CheckAbstractClassUsage(Info, VTD->getTemplatedDecl()); 6176 6177 // Nested classes and class templates. 6178 } else if (auto *RD = dyn_cast<CXXRecordDecl>(D)) { 6179 CheckAbstractClassUsage(Info, RD); 6180 } else if (auto *CTD = dyn_cast<ClassTemplateDecl>(D)) { 6181 CheckAbstractClassUsage(Info, CTD->getTemplatedDecl()); 6182 } 6183 } 6184 } 6185 6186 static void ReferenceDllExportedMembers(Sema &S, CXXRecordDecl *Class) { 6187 Attr *ClassAttr = getDLLAttr(Class); 6188 if (!ClassAttr) 6189 return; 6190 6191 assert(ClassAttr->getKind() == attr::DLLExport); 6192 6193 TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind(); 6194 6195 if (TSK == TSK_ExplicitInstantiationDeclaration) 6196 // Don't go any further if this is just an explicit instantiation 6197 // declaration. 6198 return; 6199 6200 // Add a context note to explain how we got to any diagnostics produced below. 6201 struct MarkingClassDllexported { 6202 Sema &S; 6203 MarkingClassDllexported(Sema &S, CXXRecordDecl *Class, 6204 SourceLocation AttrLoc) 6205 : S(S) { 6206 Sema::CodeSynthesisContext Ctx; 6207 Ctx.Kind = Sema::CodeSynthesisContext::MarkingClassDllexported; 6208 Ctx.PointOfInstantiation = AttrLoc; 6209 Ctx.Entity = Class; 6210 S.pushCodeSynthesisContext(Ctx); 6211 } 6212 ~MarkingClassDllexported() { 6213 S.popCodeSynthesisContext(); 6214 } 6215 } MarkingDllexportedContext(S, Class, ClassAttr->getLocation()); 6216 6217 if (S.Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) 6218 S.MarkVTableUsed(Class->getLocation(), Class, true); 6219 6220 for (Decl *Member : Class->decls()) { 6221 // Skip members that were not marked exported. 6222 if (!Member->hasAttr<DLLExportAttr>()) 6223 continue; 6224 6225 // Defined static variables that are members of an exported base 6226 // class must be marked export too. 6227 auto *VD = dyn_cast<VarDecl>(Member); 6228 if (VD && VD->getStorageClass() == SC_Static && 6229 TSK == TSK_ImplicitInstantiation) 6230 S.MarkVariableReferenced(VD->getLocation(), VD); 6231 6232 auto *MD = dyn_cast<CXXMethodDecl>(Member); 6233 if (!MD) 6234 continue; 6235 6236 if (MD->isUserProvided()) { 6237 // Instantiate non-default class member functions ... 6238 6239 // .. except for certain kinds of template specializations. 6240 if (TSK == TSK_ImplicitInstantiation && !ClassAttr->isInherited()) 6241 continue; 6242 6243 // If this is an MS ABI dllexport default constructor, instantiate any 6244 // default arguments. 6245 if (S.Context.getTargetInfo().getCXXABI().isMicrosoft()) { 6246 auto *CD = dyn_cast<CXXConstructorDecl>(MD); 6247 if (CD && CD->isDefaultConstructor() && TSK == TSK_Undeclared) { 6248 S.InstantiateDefaultCtorDefaultArgs(CD); 6249 } 6250 } 6251 6252 S.MarkFunctionReferenced(Class->getLocation(), MD); 6253 6254 // The function will be passed to the consumer when its definition is 6255 // encountered. 6256 } else if (MD->isExplicitlyDefaulted()) { 6257 // Synthesize and instantiate explicitly defaulted methods. 6258 S.MarkFunctionReferenced(Class->getLocation(), MD); 6259 6260 if (TSK != TSK_ExplicitInstantiationDefinition) { 6261 // Except for explicit instantiation defs, we will not see the 6262 // definition again later, so pass it to the consumer now. 6263 S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD)); 6264 } 6265 } else if (!MD->isTrivial() || 6266 MD->isCopyAssignmentOperator() || 6267 MD->isMoveAssignmentOperator()) { 6268 // Synthesize and instantiate non-trivial implicit methods, and the copy 6269 // and move assignment operators. The latter are exported even if they 6270 // are trivial, because the address of an operator can be taken and 6271 // should compare equal across libraries. 6272 S.MarkFunctionReferenced(Class->getLocation(), MD); 6273 6274 // There is no later point when we will see the definition of this 6275 // function, so pass it to the consumer now. 6276 S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD)); 6277 } 6278 } 6279 } 6280 6281 static void checkForMultipleExportedDefaultConstructors(Sema &S, 6282 CXXRecordDecl *Class) { 6283 // Only the MS ABI has default constructor closures, so we don't need to do 6284 // this semantic checking anywhere else. 6285 if (!S.Context.getTargetInfo().getCXXABI().isMicrosoft()) 6286 return; 6287 6288 CXXConstructorDecl *LastExportedDefaultCtor = nullptr; 6289 for (Decl *Member : Class->decls()) { 6290 // Look for exported default constructors. 6291 auto *CD = dyn_cast<CXXConstructorDecl>(Member); 6292 if (!CD || !CD->isDefaultConstructor()) 6293 continue; 6294 auto *Attr = CD->getAttr<DLLExportAttr>(); 6295 if (!Attr) 6296 continue; 6297 6298 // If the class is non-dependent, mark the default arguments as ODR-used so 6299 // that we can properly codegen the constructor closure. 6300 if (!Class->isDependentContext()) { 6301 for (ParmVarDecl *PD : CD->parameters()) { 6302 (void)S.CheckCXXDefaultArgExpr(Attr->getLocation(), CD, PD); 6303 S.DiscardCleanupsInEvaluationContext(); 6304 } 6305 } 6306 6307 if (LastExportedDefaultCtor) { 6308 S.Diag(LastExportedDefaultCtor->getLocation(), 6309 diag::err_attribute_dll_ambiguous_default_ctor) 6310 << Class; 6311 S.Diag(CD->getLocation(), diag::note_entity_declared_at) 6312 << CD->getDeclName(); 6313 return; 6314 } 6315 LastExportedDefaultCtor = CD; 6316 } 6317 } 6318 6319 static void checkCUDADeviceBuiltinSurfaceClassTemplate(Sema &S, 6320 CXXRecordDecl *Class) { 6321 bool ErrorReported = false; 6322 auto reportIllegalClassTemplate = [&ErrorReported](Sema &S, 6323 ClassTemplateDecl *TD) { 6324 if (ErrorReported) 6325 return; 6326 S.Diag(TD->getLocation(), 6327 diag::err_cuda_device_builtin_surftex_cls_template) 6328 << /*surface*/ 0 << TD; 6329 ErrorReported = true; 6330 }; 6331 6332 ClassTemplateDecl *TD = Class->getDescribedClassTemplate(); 6333 if (!TD) { 6334 auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(Class); 6335 if (!SD) { 6336 S.Diag(Class->getLocation(), 6337 diag::err_cuda_device_builtin_surftex_ref_decl) 6338 << /*surface*/ 0 << Class; 6339 S.Diag(Class->getLocation(), 6340 diag::note_cuda_device_builtin_surftex_should_be_template_class) 6341 << Class; 6342 return; 6343 } 6344 TD = SD->getSpecializedTemplate(); 6345 } 6346 6347 TemplateParameterList *Params = TD->getTemplateParameters(); 6348 unsigned N = Params->size(); 6349 6350 if (N != 2) { 6351 reportIllegalClassTemplate(S, TD); 6352 S.Diag(TD->getLocation(), 6353 diag::note_cuda_device_builtin_surftex_cls_should_have_n_args) 6354 << TD << 2; 6355 } 6356 if (N > 0 && !isa<TemplateTypeParmDecl>(Params->getParam(0))) { 6357 reportIllegalClassTemplate(S, TD); 6358 S.Diag(TD->getLocation(), 6359 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) 6360 << TD << /*1st*/ 0 << /*type*/ 0; 6361 } 6362 if (N > 1) { 6363 auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(1)); 6364 if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) { 6365 reportIllegalClassTemplate(S, TD); 6366 S.Diag(TD->getLocation(), 6367 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) 6368 << TD << /*2nd*/ 1 << /*integer*/ 1; 6369 } 6370 } 6371 } 6372 6373 static void checkCUDADeviceBuiltinTextureClassTemplate(Sema &S, 6374 CXXRecordDecl *Class) { 6375 bool ErrorReported = false; 6376 auto reportIllegalClassTemplate = [&ErrorReported](Sema &S, 6377 ClassTemplateDecl *TD) { 6378 if (ErrorReported) 6379 return; 6380 S.Diag(TD->getLocation(), 6381 diag::err_cuda_device_builtin_surftex_cls_template) 6382 << /*texture*/ 1 << TD; 6383 ErrorReported = true; 6384 }; 6385 6386 ClassTemplateDecl *TD = Class->getDescribedClassTemplate(); 6387 if (!TD) { 6388 auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(Class); 6389 if (!SD) { 6390 S.Diag(Class->getLocation(), 6391 diag::err_cuda_device_builtin_surftex_ref_decl) 6392 << /*texture*/ 1 << Class; 6393 S.Diag(Class->getLocation(), 6394 diag::note_cuda_device_builtin_surftex_should_be_template_class) 6395 << Class; 6396 return; 6397 } 6398 TD = SD->getSpecializedTemplate(); 6399 } 6400 6401 TemplateParameterList *Params = TD->getTemplateParameters(); 6402 unsigned N = Params->size(); 6403 6404 if (N != 3) { 6405 reportIllegalClassTemplate(S, TD); 6406 S.Diag(TD->getLocation(), 6407 diag::note_cuda_device_builtin_surftex_cls_should_have_n_args) 6408 << TD << 3; 6409 } 6410 if (N > 0 && !isa<TemplateTypeParmDecl>(Params->getParam(0))) { 6411 reportIllegalClassTemplate(S, TD); 6412 S.Diag(TD->getLocation(), 6413 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) 6414 << TD << /*1st*/ 0 << /*type*/ 0; 6415 } 6416 if (N > 1) { 6417 auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(1)); 6418 if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) { 6419 reportIllegalClassTemplate(S, TD); 6420 S.Diag(TD->getLocation(), 6421 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) 6422 << TD << /*2nd*/ 1 << /*integer*/ 1; 6423 } 6424 } 6425 if (N > 2) { 6426 auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(2)); 6427 if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) { 6428 reportIllegalClassTemplate(S, TD); 6429 S.Diag(TD->getLocation(), 6430 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) 6431 << TD << /*3rd*/ 2 << /*integer*/ 1; 6432 } 6433 } 6434 } 6435 6436 void Sema::checkClassLevelCodeSegAttribute(CXXRecordDecl *Class) { 6437 // Mark any compiler-generated routines with the implicit code_seg attribute. 6438 for (auto *Method : Class->methods()) { 6439 if (Method->isUserProvided()) 6440 continue; 6441 if (Attr *A = getImplicitCodeSegOrSectionAttrForFunction(Method, /*IsDefinition=*/true)) 6442 Method->addAttr(A); 6443 } 6444 } 6445 6446 void Sema::checkClassLevelDLLAttribute(CXXRecordDecl *Class) { 6447 Attr *ClassAttr = getDLLAttr(Class); 6448 6449 // MSVC inherits DLL attributes to partial class template specializations. 6450 if (Context.getTargetInfo().shouldDLLImportComdatSymbols() && !ClassAttr) { 6451 if (auto *Spec = dyn_cast<ClassTemplatePartialSpecializationDecl>(Class)) { 6452 if (Attr *TemplateAttr = 6453 getDLLAttr(Spec->getSpecializedTemplate()->getTemplatedDecl())) { 6454 auto *A = cast<InheritableAttr>(TemplateAttr->clone(getASTContext())); 6455 A->setInherited(true); 6456 ClassAttr = A; 6457 } 6458 } 6459 } 6460 6461 if (!ClassAttr) 6462 return; 6463 6464 // MSVC allows imported or exported template classes that have UniqueExternal 6465 // linkage. This occurs when the template class has been instantiated with 6466 // a template parameter which itself has internal linkage. 6467 // We drop the attribute to avoid exporting or importing any members. 6468 if ((Context.getTargetInfo().getCXXABI().isMicrosoft() || 6469 Context.getTargetInfo().getTriple().isPS()) && 6470 (!Class->isExternallyVisible() && Class->hasExternalFormalLinkage())) { 6471 Class->dropAttrs<DLLExportAttr, DLLImportAttr>(); 6472 return; 6473 } 6474 6475 if (!Class->isExternallyVisible()) { 6476 Diag(Class->getLocation(), diag::err_attribute_dll_not_extern) 6477 << Class << ClassAttr; 6478 return; 6479 } 6480 6481 if (Context.getTargetInfo().shouldDLLImportComdatSymbols() && 6482 !ClassAttr->isInherited()) { 6483 // Diagnose dll attributes on members of class with dll attribute. 6484 for (Decl *Member : Class->decls()) { 6485 if (!isa<VarDecl>(Member) && !isa<CXXMethodDecl>(Member)) 6486 continue; 6487 InheritableAttr *MemberAttr = getDLLAttr(Member); 6488 if (!MemberAttr || MemberAttr->isInherited() || Member->isInvalidDecl()) 6489 continue; 6490 6491 Diag(MemberAttr->getLocation(), 6492 diag::err_attribute_dll_member_of_dll_class) 6493 << MemberAttr << ClassAttr; 6494 Diag(ClassAttr->getLocation(), diag::note_previous_attribute); 6495 Member->setInvalidDecl(); 6496 } 6497 } 6498 6499 if (Class->getDescribedClassTemplate()) 6500 // Don't inherit dll attribute until the template is instantiated. 6501 return; 6502 6503 // The class is either imported or exported. 6504 const bool ClassExported = ClassAttr->getKind() == attr::DLLExport; 6505 6506 // Check if this was a dllimport attribute propagated from a derived class to 6507 // a base class template specialization. We don't apply these attributes to 6508 // static data members. 6509 const bool PropagatedImport = 6510 !ClassExported && 6511 cast<DLLImportAttr>(ClassAttr)->wasPropagatedToBaseTemplate(); 6512 6513 TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind(); 6514 6515 // Ignore explicit dllexport on explicit class template instantiation 6516 // declarations, except in MinGW mode. 6517 if (ClassExported && !ClassAttr->isInherited() && 6518 TSK == TSK_ExplicitInstantiationDeclaration && 6519 !Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) { 6520 Class->dropAttr<DLLExportAttr>(); 6521 return; 6522 } 6523 6524 // Force declaration of implicit members so they can inherit the attribute. 6525 ForceDeclarationOfImplicitMembers(Class); 6526 6527 // FIXME: MSVC's docs say all bases must be exportable, but this doesn't 6528 // seem to be true in practice? 6529 6530 for (Decl *Member : Class->decls()) { 6531 VarDecl *VD = dyn_cast<VarDecl>(Member); 6532 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member); 6533 6534 // Only methods and static fields inherit the attributes. 6535 if (!VD && !MD) 6536 continue; 6537 6538 if (MD) { 6539 // Don't process deleted methods. 6540 if (MD->isDeleted()) 6541 continue; 6542 6543 if (MD->isInlined()) { 6544 // MinGW does not import or export inline methods. But do it for 6545 // template instantiations. 6546 if (!Context.getTargetInfo().shouldDLLImportComdatSymbols() && 6547 TSK != TSK_ExplicitInstantiationDeclaration && 6548 TSK != TSK_ExplicitInstantiationDefinition) 6549 continue; 6550 6551 // MSVC versions before 2015 don't export the move assignment operators 6552 // and move constructor, so don't attempt to import/export them if 6553 // we have a definition. 6554 auto *Ctor = dyn_cast<CXXConstructorDecl>(MD); 6555 if ((MD->isMoveAssignmentOperator() || 6556 (Ctor && Ctor->isMoveConstructor())) && 6557 !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015)) 6558 continue; 6559 6560 // MSVC2015 doesn't export trivial defaulted x-tor but copy assign 6561 // operator is exported anyway. 6562 if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) && 6563 (Ctor || isa<CXXDestructorDecl>(MD)) && MD->isTrivial()) 6564 continue; 6565 } 6566 } 6567 6568 // Don't apply dllimport attributes to static data members of class template 6569 // instantiations when the attribute is propagated from a derived class. 6570 if (VD && PropagatedImport) 6571 continue; 6572 6573 if (!cast<NamedDecl>(Member)->isExternallyVisible()) 6574 continue; 6575 6576 if (!getDLLAttr(Member)) { 6577 InheritableAttr *NewAttr = nullptr; 6578 6579 // Do not export/import inline function when -fno-dllexport-inlines is 6580 // passed. But add attribute for later local static var check. 6581 if (!getLangOpts().DllExportInlines && MD && MD->isInlined() && 6582 TSK != TSK_ExplicitInstantiationDeclaration && 6583 TSK != TSK_ExplicitInstantiationDefinition) { 6584 if (ClassExported) { 6585 NewAttr = ::new (getASTContext()) 6586 DLLExportStaticLocalAttr(getASTContext(), *ClassAttr); 6587 } else { 6588 NewAttr = ::new (getASTContext()) 6589 DLLImportStaticLocalAttr(getASTContext(), *ClassAttr); 6590 } 6591 } else { 6592 NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext())); 6593 } 6594 6595 NewAttr->setInherited(true); 6596 Member->addAttr(NewAttr); 6597 6598 if (MD) { 6599 // Propagate DLLAttr to friend re-declarations of MD that have already 6600 // been constructed. 6601 for (FunctionDecl *FD = MD->getMostRecentDecl(); FD; 6602 FD = FD->getPreviousDecl()) { 6603 if (FD->getFriendObjectKind() == Decl::FOK_None) 6604 continue; 6605 assert(!getDLLAttr(FD) && 6606 "friend re-decl should not already have a DLLAttr"); 6607 NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext())); 6608 NewAttr->setInherited(true); 6609 FD->addAttr(NewAttr); 6610 } 6611 } 6612 } 6613 } 6614 6615 if (ClassExported) 6616 DelayedDllExportClasses.push_back(Class); 6617 } 6618 6619 void Sema::propagateDLLAttrToBaseClassTemplate( 6620 CXXRecordDecl *Class, Attr *ClassAttr, 6621 ClassTemplateSpecializationDecl *BaseTemplateSpec, SourceLocation BaseLoc) { 6622 if (getDLLAttr( 6623 BaseTemplateSpec->getSpecializedTemplate()->getTemplatedDecl())) { 6624 // If the base class template has a DLL attribute, don't try to change it. 6625 return; 6626 } 6627 6628 auto TSK = BaseTemplateSpec->getSpecializationKind(); 6629 if (!getDLLAttr(BaseTemplateSpec) && 6630 (TSK == TSK_Undeclared || TSK == TSK_ExplicitInstantiationDeclaration || 6631 TSK == TSK_ImplicitInstantiation)) { 6632 // The template hasn't been instantiated yet (or it has, but only as an 6633 // explicit instantiation declaration or implicit instantiation, which means 6634 // we haven't codegenned any members yet), so propagate the attribute. 6635 auto *NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext())); 6636 NewAttr->setInherited(true); 6637 BaseTemplateSpec->addAttr(NewAttr); 6638 6639 // If this was an import, mark that we propagated it from a derived class to 6640 // a base class template specialization. 6641 if (auto *ImportAttr = dyn_cast<DLLImportAttr>(NewAttr)) 6642 ImportAttr->setPropagatedToBaseTemplate(); 6643 6644 // If the template is already instantiated, checkDLLAttributeRedeclaration() 6645 // needs to be run again to work see the new attribute. Otherwise this will 6646 // get run whenever the template is instantiated. 6647 if (TSK != TSK_Undeclared) 6648 checkClassLevelDLLAttribute(BaseTemplateSpec); 6649 6650 return; 6651 } 6652 6653 if (getDLLAttr(BaseTemplateSpec)) { 6654 // The template has already been specialized or instantiated with an 6655 // attribute, explicitly or through propagation. We should not try to change 6656 // it. 6657 return; 6658 } 6659 6660 // The template was previously instantiated or explicitly specialized without 6661 // a dll attribute, It's too late for us to add an attribute, so warn that 6662 // this is unsupported. 6663 Diag(BaseLoc, diag::warn_attribute_dll_instantiated_base_class) 6664 << BaseTemplateSpec->isExplicitSpecialization(); 6665 Diag(ClassAttr->getLocation(), diag::note_attribute); 6666 if (BaseTemplateSpec->isExplicitSpecialization()) { 6667 Diag(BaseTemplateSpec->getLocation(), 6668 diag::note_template_class_explicit_specialization_was_here) 6669 << BaseTemplateSpec; 6670 } else { 6671 Diag(BaseTemplateSpec->getPointOfInstantiation(), 6672 diag::note_template_class_instantiation_was_here) 6673 << BaseTemplateSpec; 6674 } 6675 } 6676 6677 Sema::DefaultedFunctionKind 6678 Sema::getDefaultedFunctionKind(const FunctionDecl *FD) { 6679 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) { 6680 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(FD)) { 6681 if (Ctor->isDefaultConstructor()) 6682 return CXXSpecialMemberKind::DefaultConstructor; 6683 6684 if (Ctor->isCopyConstructor()) 6685 return CXXSpecialMemberKind::CopyConstructor; 6686 6687 if (Ctor->isMoveConstructor()) 6688 return CXXSpecialMemberKind::MoveConstructor; 6689 } 6690 6691 if (MD->isCopyAssignmentOperator()) 6692 return CXXSpecialMemberKind::CopyAssignment; 6693 6694 if (MD->isMoveAssignmentOperator()) 6695 return CXXSpecialMemberKind::MoveAssignment; 6696 6697 if (isa<CXXDestructorDecl>(FD)) 6698 return CXXSpecialMemberKind::Destructor; 6699 } 6700 6701 switch (FD->getDeclName().getCXXOverloadedOperator()) { 6702 case OO_EqualEqual: 6703 return DefaultedComparisonKind::Equal; 6704 6705 case OO_ExclaimEqual: 6706 return DefaultedComparisonKind::NotEqual; 6707 6708 case OO_Spaceship: 6709 // No point allowing this if <=> doesn't exist in the current language mode. 6710 if (!getLangOpts().CPlusPlus20) 6711 break; 6712 return DefaultedComparisonKind::ThreeWay; 6713 6714 case OO_Less: 6715 case OO_LessEqual: 6716 case OO_Greater: 6717 case OO_GreaterEqual: 6718 // No point allowing this if <=> doesn't exist in the current language mode. 6719 if (!getLangOpts().CPlusPlus20) 6720 break; 6721 return DefaultedComparisonKind::Relational; 6722 6723 default: 6724 break; 6725 } 6726 6727 // Not defaultable. 6728 return DefaultedFunctionKind(); 6729 } 6730 6731 static void DefineDefaultedFunction(Sema &S, FunctionDecl *FD, 6732 SourceLocation DefaultLoc) { 6733 Sema::DefaultedFunctionKind DFK = S.getDefaultedFunctionKind(FD); 6734 if (DFK.isComparison()) 6735 return S.DefineDefaultedComparison(DefaultLoc, FD, DFK.asComparison()); 6736 6737 switch (DFK.asSpecialMember()) { 6738 case CXXSpecialMemberKind::DefaultConstructor: 6739 S.DefineImplicitDefaultConstructor(DefaultLoc, 6740 cast<CXXConstructorDecl>(FD)); 6741 break; 6742 case CXXSpecialMemberKind::CopyConstructor: 6743 S.DefineImplicitCopyConstructor(DefaultLoc, cast<CXXConstructorDecl>(FD)); 6744 break; 6745 case CXXSpecialMemberKind::CopyAssignment: 6746 S.DefineImplicitCopyAssignment(DefaultLoc, cast<CXXMethodDecl>(FD)); 6747 break; 6748 case CXXSpecialMemberKind::Destructor: 6749 S.DefineImplicitDestructor(DefaultLoc, cast<CXXDestructorDecl>(FD)); 6750 break; 6751 case CXXSpecialMemberKind::MoveConstructor: 6752 S.DefineImplicitMoveConstructor(DefaultLoc, cast<CXXConstructorDecl>(FD)); 6753 break; 6754 case CXXSpecialMemberKind::MoveAssignment: 6755 S.DefineImplicitMoveAssignment(DefaultLoc, cast<CXXMethodDecl>(FD)); 6756 break; 6757 case CXXSpecialMemberKind::Invalid: 6758 llvm_unreachable("Invalid special member."); 6759 } 6760 } 6761 6762 /// Determine whether a type is permitted to be passed or returned in 6763 /// registers, per C++ [class.temporary]p3. 6764 static bool canPassInRegisters(Sema &S, CXXRecordDecl *D, 6765 TargetInfo::CallingConvKind CCK) { 6766 if (D->isDependentType() || D->isInvalidDecl()) 6767 return false; 6768 6769 // Clang <= 4 used the pre-C++11 rule, which ignores move operations. 6770 // The PS4 platform ABI follows the behavior of Clang 3.2. 6771 if (CCK == TargetInfo::CCK_ClangABI4OrPS4) 6772 return !D->hasNonTrivialDestructorForCall() && 6773 !D->hasNonTrivialCopyConstructorForCall(); 6774 6775 if (CCK == TargetInfo::CCK_MicrosoftWin64) { 6776 bool CopyCtorIsTrivial = false, CopyCtorIsTrivialForCall = false; 6777 bool DtorIsTrivialForCall = false; 6778 6779 // If a class has at least one eligible, trivial copy constructor, it 6780 // is passed according to the C ABI. Otherwise, it is passed indirectly. 6781 // 6782 // Note: This permits classes with non-trivial copy or move ctors to be 6783 // passed in registers, so long as they *also* have a trivial copy ctor, 6784 // which is non-conforming. 6785 if (D->needsImplicitCopyConstructor()) { 6786 if (!D->defaultedCopyConstructorIsDeleted()) { 6787 if (D->hasTrivialCopyConstructor()) 6788 CopyCtorIsTrivial = true; 6789 if (D->hasTrivialCopyConstructorForCall()) 6790 CopyCtorIsTrivialForCall = true; 6791 } 6792 } else { 6793 for (const CXXConstructorDecl *CD : D->ctors()) { 6794 if (CD->isCopyConstructor() && !CD->isDeleted() && 6795 !CD->isIneligibleOrNotSelected()) { 6796 if (CD->isTrivial()) 6797 CopyCtorIsTrivial = true; 6798 if (CD->isTrivialForCall()) 6799 CopyCtorIsTrivialForCall = true; 6800 } 6801 } 6802 } 6803 6804 if (D->needsImplicitDestructor()) { 6805 if (!D->defaultedDestructorIsDeleted() && 6806 D->hasTrivialDestructorForCall()) 6807 DtorIsTrivialForCall = true; 6808 } else if (const auto *DD = D->getDestructor()) { 6809 if (!DD->isDeleted() && DD->isTrivialForCall()) 6810 DtorIsTrivialForCall = true; 6811 } 6812 6813 // If the copy ctor and dtor are both trivial-for-calls, pass direct. 6814 if (CopyCtorIsTrivialForCall && DtorIsTrivialForCall) 6815 return true; 6816 6817 // If a class has a destructor, we'd really like to pass it indirectly 6818 // because it allows us to elide copies. Unfortunately, MSVC makes that 6819 // impossible for small types, which it will pass in a single register or 6820 // stack slot. Most objects with dtors are large-ish, so handle that early. 6821 // We can't call out all large objects as being indirect because there are 6822 // multiple x64 calling conventions and the C++ ABI code shouldn't dictate 6823 // how we pass large POD types. 6824 6825 // Note: This permits small classes with nontrivial destructors to be 6826 // passed in registers, which is non-conforming. 6827 bool isAArch64 = S.Context.getTargetInfo().getTriple().isAArch64(); 6828 uint64_t TypeSize = isAArch64 ? 128 : 64; 6829 6830 if (CopyCtorIsTrivial && 6831 S.getASTContext().getTypeSize(D->getTypeForDecl()) <= TypeSize) 6832 return true; 6833 return false; 6834 } 6835 6836 // Per C++ [class.temporary]p3, the relevant condition is: 6837 // each copy constructor, move constructor, and destructor of X is 6838 // either trivial or deleted, and X has at least one non-deleted copy 6839 // or move constructor 6840 bool HasNonDeletedCopyOrMove = false; 6841 6842 if (D->needsImplicitCopyConstructor() && 6843 !D->defaultedCopyConstructorIsDeleted()) { 6844 if (!D->hasTrivialCopyConstructorForCall()) 6845 return false; 6846 HasNonDeletedCopyOrMove = true; 6847 } 6848 6849 if (S.getLangOpts().CPlusPlus11 && D->needsImplicitMoveConstructor() && 6850 !D->defaultedMoveConstructorIsDeleted()) { 6851 if (!D->hasTrivialMoveConstructorForCall()) 6852 return false; 6853 HasNonDeletedCopyOrMove = true; 6854 } 6855 6856 if (D->needsImplicitDestructor() && !D->defaultedDestructorIsDeleted() && 6857 !D->hasTrivialDestructorForCall()) 6858 return false; 6859 6860 for (const CXXMethodDecl *MD : D->methods()) { 6861 if (MD->isDeleted() || MD->isIneligibleOrNotSelected()) 6862 continue; 6863 6864 auto *CD = dyn_cast<CXXConstructorDecl>(MD); 6865 if (CD && CD->isCopyOrMoveConstructor()) 6866 HasNonDeletedCopyOrMove = true; 6867 else if (!isa<CXXDestructorDecl>(MD)) 6868 continue; 6869 6870 if (!MD->isTrivialForCall()) 6871 return false; 6872 } 6873 6874 return HasNonDeletedCopyOrMove; 6875 } 6876 6877 /// Report an error regarding overriding, along with any relevant 6878 /// overridden methods. 6879 /// 6880 /// \param DiagID the primary error to report. 6881 /// \param MD the overriding method. 6882 static bool 6883 ReportOverrides(Sema &S, unsigned DiagID, const CXXMethodDecl *MD, 6884 llvm::function_ref<bool(const CXXMethodDecl *)> Report) { 6885 bool IssuedDiagnostic = false; 6886 for (const CXXMethodDecl *O : MD->overridden_methods()) { 6887 if (Report(O)) { 6888 if (!IssuedDiagnostic) { 6889 S.Diag(MD->getLocation(), DiagID) << MD->getDeclName(); 6890 IssuedDiagnostic = true; 6891 } 6892 S.Diag(O->getLocation(), diag::note_overridden_virtual_function); 6893 } 6894 } 6895 return IssuedDiagnostic; 6896 } 6897 6898 void Sema::CheckCompletedCXXClass(Scope *S, CXXRecordDecl *Record) { 6899 if (!Record) 6900 return; 6901 6902 if (Record->isAbstract() && !Record->isInvalidDecl()) { 6903 AbstractUsageInfo Info(*this, Record); 6904 CheckAbstractClassUsage(Info, Record); 6905 } 6906 6907 // If this is not an aggregate type and has no user-declared constructor, 6908 // complain about any non-static data members of reference or const scalar 6909 // type, since they will never get initializers. 6910 if (!Record->isInvalidDecl() && !Record->isDependentType() && 6911 !Record->isAggregate() && !Record->hasUserDeclaredConstructor() && 6912 !Record->isLambda()) { 6913 bool Complained = false; 6914 for (const auto *F : Record->fields()) { 6915 if (F->hasInClassInitializer() || F->isUnnamedBitField()) 6916 continue; 6917 6918 if (F->getType()->isReferenceType() || 6919 (F->getType().isConstQualified() && F->getType()->isScalarType())) { 6920 if (!Complained) { 6921 Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst) 6922 << llvm::to_underlying(Record->getTagKind()) << Record; 6923 Complained = true; 6924 } 6925 6926 Diag(F->getLocation(), diag::note_refconst_member_not_initialized) 6927 << F->getType()->isReferenceType() 6928 << F->getDeclName(); 6929 } 6930 } 6931 } 6932 6933 if (Record->getIdentifier()) { 6934 // C++ [class.mem]p13: 6935 // If T is the name of a class, then each of the following shall have a 6936 // name different from T: 6937 // - every member of every anonymous union that is a member of class T. 6938 // 6939 // C++ [class.mem]p14: 6940 // In addition, if class T has a user-declared constructor (12.1), every 6941 // non-static data member of class T shall have a name different from T. 6942 DeclContext::lookup_result R = Record->lookup(Record->getDeclName()); 6943 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; 6944 ++I) { 6945 NamedDecl *D = (*I)->getUnderlyingDecl(); 6946 if (((isa<FieldDecl>(D) || isa<UnresolvedUsingValueDecl>(D)) && 6947 Record->hasUserDeclaredConstructor()) || 6948 isa<IndirectFieldDecl>(D)) { 6949 Diag((*I)->getLocation(), diag::err_member_name_of_class) 6950 << D->getDeclName(); 6951 break; 6952 } 6953 } 6954 } 6955 6956 // Warn if the class has virtual methods but non-virtual public destructor. 6957 if (Record->isPolymorphic() && !Record->isDependentType()) { 6958 CXXDestructorDecl *dtor = Record->getDestructor(); 6959 if ((!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public)) && 6960 !Record->hasAttr<FinalAttr>()) 6961 Diag(dtor ? dtor->getLocation() : Record->getLocation(), 6962 diag::warn_non_virtual_dtor) << Context.getRecordType(Record); 6963 } 6964 6965 if (Record->isAbstract()) { 6966 if (FinalAttr *FA = Record->getAttr<FinalAttr>()) { 6967 Diag(Record->getLocation(), diag::warn_abstract_final_class) 6968 << FA->isSpelledAsSealed(); 6969 DiagnoseAbstractType(Record); 6970 } 6971 } 6972 6973 // Warn if the class has a final destructor but is not itself marked final. 6974 if (!Record->hasAttr<FinalAttr>()) { 6975 if (const CXXDestructorDecl *dtor = Record->getDestructor()) { 6976 if (const FinalAttr *FA = dtor->getAttr<FinalAttr>()) { 6977 Diag(FA->getLocation(), diag::warn_final_dtor_non_final_class) 6978 << FA->isSpelledAsSealed() 6979 << FixItHint::CreateInsertion( 6980 getLocForEndOfToken(Record->getLocation()), 6981 (FA->isSpelledAsSealed() ? " sealed" : " final")); 6982 Diag(Record->getLocation(), 6983 diag::note_final_dtor_non_final_class_silence) 6984 << Context.getRecordType(Record) << FA->isSpelledAsSealed(); 6985 } 6986 } 6987 } 6988 6989 // See if trivial_abi has to be dropped. 6990 if (Record->hasAttr<TrivialABIAttr>()) 6991 checkIllFormedTrivialABIStruct(*Record); 6992 6993 // Set HasTrivialSpecialMemberForCall if the record has attribute 6994 // "trivial_abi". 6995 bool HasTrivialABI = Record->hasAttr<TrivialABIAttr>(); 6996 6997 if (HasTrivialABI) 6998 Record->setHasTrivialSpecialMemberForCall(); 6999 7000 // Explicitly-defaulted secondary comparison functions (!=, <, <=, >, >=). 7001 // We check these last because they can depend on the properties of the 7002 // primary comparison functions (==, <=>). 7003 llvm::SmallVector<FunctionDecl*, 5> DefaultedSecondaryComparisons; 7004 7005 // Perform checks that can't be done until we know all the properties of a 7006 // member function (whether it's defaulted, deleted, virtual, overriding, 7007 // ...). 7008 auto CheckCompletedMemberFunction = [&](CXXMethodDecl *MD) { 7009 // A static function cannot override anything. 7010 if (MD->getStorageClass() == SC_Static) { 7011 if (ReportOverrides(*this, diag::err_static_overrides_virtual, MD, 7012 [](const CXXMethodDecl *) { return true; })) 7013 return; 7014 } 7015 7016 // A deleted function cannot override a non-deleted function and vice 7017 // versa. 7018 if (ReportOverrides(*this, 7019 MD->isDeleted() ? diag::err_deleted_override 7020 : diag::err_non_deleted_override, 7021 MD, [&](const CXXMethodDecl *V) { 7022 return MD->isDeleted() != V->isDeleted(); 7023 })) { 7024 if (MD->isDefaulted() && MD->isDeleted()) 7025 // Explain why this defaulted function was deleted. 7026 DiagnoseDeletedDefaultedFunction(MD); 7027 return; 7028 } 7029 7030 // A consteval function cannot override a non-consteval function and vice 7031 // versa. 7032 if (ReportOverrides(*this, 7033 MD->isConsteval() ? diag::err_consteval_override 7034 : diag::err_non_consteval_override, 7035 MD, [&](const CXXMethodDecl *V) { 7036 return MD->isConsteval() != V->isConsteval(); 7037 })) { 7038 if (MD->isDefaulted() && MD->isDeleted()) 7039 // Explain why this defaulted function was deleted. 7040 DiagnoseDeletedDefaultedFunction(MD); 7041 return; 7042 } 7043 }; 7044 7045 auto CheckForDefaultedFunction = [&](FunctionDecl *FD) -> bool { 7046 if (!FD || FD->isInvalidDecl() || !FD->isExplicitlyDefaulted()) 7047 return false; 7048 7049 DefaultedFunctionKind DFK = getDefaultedFunctionKind(FD); 7050 if (DFK.asComparison() == DefaultedComparisonKind::NotEqual || 7051 DFK.asComparison() == DefaultedComparisonKind::Relational) { 7052 DefaultedSecondaryComparisons.push_back(FD); 7053 return true; 7054 } 7055 7056 CheckExplicitlyDefaultedFunction(S, FD); 7057 return false; 7058 }; 7059 7060 if (!Record->isInvalidDecl() && 7061 Record->hasAttr<VTablePointerAuthenticationAttr>()) 7062 checkIncorrectVTablePointerAuthenticationAttribute(*Record); 7063 7064 auto CompleteMemberFunction = [&](CXXMethodDecl *M) { 7065 // Check whether the explicitly-defaulted members are valid. 7066 bool Incomplete = CheckForDefaultedFunction(M); 7067 7068 // Skip the rest of the checks for a member of a dependent class. 7069 if (Record->isDependentType()) 7070 return; 7071 7072 // For an explicitly defaulted or deleted special member, we defer 7073 // determining triviality until the class is complete. That time is now! 7074 CXXSpecialMemberKind CSM = getSpecialMember(M); 7075 if (!M->isImplicit() && !M->isUserProvided()) { 7076 if (CSM != CXXSpecialMemberKind::Invalid) { 7077 M->setTrivial(SpecialMemberIsTrivial(M, CSM)); 7078 // Inform the class that we've finished declaring this member. 7079 Record->finishedDefaultedOrDeletedMember(M); 7080 M->setTrivialForCall( 7081 HasTrivialABI || 7082 SpecialMemberIsTrivial(M, CSM, TAH_ConsiderTrivialABI)); 7083 Record->setTrivialForCallFlags(M); 7084 } 7085 } 7086 7087 // Set triviality for the purpose of calls if this is a user-provided 7088 // copy/move constructor or destructor. 7089 if ((CSM == CXXSpecialMemberKind::CopyConstructor || 7090 CSM == CXXSpecialMemberKind::MoveConstructor || 7091 CSM == CXXSpecialMemberKind::Destructor) && 7092 M->isUserProvided()) { 7093 M->setTrivialForCall(HasTrivialABI); 7094 Record->setTrivialForCallFlags(M); 7095 } 7096 7097 if (!M->isInvalidDecl() && M->isExplicitlyDefaulted() && 7098 M->hasAttr<DLLExportAttr>()) { 7099 if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) && 7100 M->isTrivial() && 7101 (CSM == CXXSpecialMemberKind::DefaultConstructor || 7102 CSM == CXXSpecialMemberKind::CopyConstructor || 7103 CSM == CXXSpecialMemberKind::Destructor)) 7104 M->dropAttr<DLLExportAttr>(); 7105 7106 if (M->hasAttr<DLLExportAttr>()) { 7107 // Define after any fields with in-class initializers have been parsed. 7108 DelayedDllExportMemberFunctions.push_back(M); 7109 } 7110 } 7111 7112 bool EffectivelyConstexprDestructor = true; 7113 // Avoid triggering vtable instantiation due to a dtor that is not 7114 // "effectively constexpr" for better compatibility. 7115 // See https://github.com/llvm/llvm-project/issues/102293 for more info. 7116 if (isa<CXXDestructorDecl>(M)) { 7117 auto Check = [](QualType T, auto &&Check) -> bool { 7118 const CXXRecordDecl *RD = 7119 T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 7120 if (!RD || !RD->isCompleteDefinition()) 7121 return true; 7122 7123 if (!RD->hasConstexprDestructor()) 7124 return false; 7125 7126 QualType CanUnqualT = T.getCanonicalType().getUnqualifiedType(); 7127 for (const CXXBaseSpecifier &B : RD->bases()) 7128 if (B.getType().getCanonicalType().getUnqualifiedType() != 7129 CanUnqualT && 7130 !Check(B.getType(), Check)) 7131 return false; 7132 for (const FieldDecl *FD : RD->fields()) 7133 if (FD->getType().getCanonicalType().getUnqualifiedType() != 7134 CanUnqualT && 7135 !Check(FD->getType(), Check)) 7136 return false; 7137 return true; 7138 }; 7139 EffectivelyConstexprDestructor = 7140 Check(QualType(Record->getTypeForDecl(), 0), Check); 7141 } 7142 7143 // Define defaulted constexpr virtual functions that override a base class 7144 // function right away. 7145 // FIXME: We can defer doing this until the vtable is marked as used. 7146 if (CSM != CXXSpecialMemberKind::Invalid && !M->isDeleted() && 7147 M->isDefaulted() && M->isConstexpr() && M->size_overridden_methods() && 7148 EffectivelyConstexprDestructor) 7149 DefineDefaultedFunction(*this, M, M->getLocation()); 7150 7151 if (!Incomplete) 7152 CheckCompletedMemberFunction(M); 7153 }; 7154 7155 // Check the destructor before any other member function. We need to 7156 // determine whether it's trivial in order to determine whether the claas 7157 // type is a literal type, which is a prerequisite for determining whether 7158 // other special member functions are valid and whether they're implicitly 7159 // 'constexpr'. 7160 if (CXXDestructorDecl *Dtor = Record->getDestructor()) 7161 CompleteMemberFunction(Dtor); 7162 7163 bool HasMethodWithOverrideControl = false, 7164 HasOverridingMethodWithoutOverrideControl = false; 7165 for (auto *D : Record->decls()) { 7166 if (auto *M = dyn_cast<CXXMethodDecl>(D)) { 7167 // FIXME: We could do this check for dependent types with non-dependent 7168 // bases. 7169 if (!Record->isDependentType()) { 7170 // See if a method overloads virtual methods in a base 7171 // class without overriding any. 7172 if (!M->isStatic()) 7173 DiagnoseHiddenVirtualMethods(M); 7174 if (M->hasAttr<OverrideAttr>()) 7175 HasMethodWithOverrideControl = true; 7176 else if (M->size_overridden_methods() > 0) 7177 HasOverridingMethodWithoutOverrideControl = true; 7178 } 7179 7180 if (!isa<CXXDestructorDecl>(M)) 7181 CompleteMemberFunction(M); 7182 } else if (auto *F = dyn_cast<FriendDecl>(D)) { 7183 CheckForDefaultedFunction( 7184 dyn_cast_or_null<FunctionDecl>(F->getFriendDecl())); 7185 } 7186 } 7187 7188 if (HasOverridingMethodWithoutOverrideControl) { 7189 bool HasInconsistentOverrideControl = HasMethodWithOverrideControl; 7190 for (auto *M : Record->methods()) 7191 DiagnoseAbsenceOfOverrideControl(M, HasInconsistentOverrideControl); 7192 } 7193 7194 // Check the defaulted secondary comparisons after any other member functions. 7195 for (FunctionDecl *FD : DefaultedSecondaryComparisons) { 7196 CheckExplicitlyDefaultedFunction(S, FD); 7197 7198 // If this is a member function, we deferred checking it until now. 7199 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) 7200 CheckCompletedMemberFunction(MD); 7201 } 7202 7203 // ms_struct is a request to use the same ABI rules as MSVC. Check 7204 // whether this class uses any C++ features that are implemented 7205 // completely differently in MSVC, and if so, emit a diagnostic. 7206 // That diagnostic defaults to an error, but we allow projects to 7207 // map it down to a warning (or ignore it). It's a fairly common 7208 // practice among users of the ms_struct pragma to mass-annotate 7209 // headers, sweeping up a bunch of types that the project doesn't 7210 // really rely on MSVC-compatible layout for. We must therefore 7211 // support "ms_struct except for C++ stuff" as a secondary ABI. 7212 // Don't emit this diagnostic if the feature was enabled as a 7213 // language option (as opposed to via a pragma or attribute), as 7214 // the option -mms-bitfields otherwise essentially makes it impossible 7215 // to build C++ code, unless this diagnostic is turned off. 7216 if (Record->isMsStruct(Context) && !Context.getLangOpts().MSBitfields && 7217 (Record->isPolymorphic() || Record->getNumBases())) { 7218 Diag(Record->getLocation(), diag::warn_cxx_ms_struct); 7219 } 7220 7221 checkClassLevelDLLAttribute(Record); 7222 checkClassLevelCodeSegAttribute(Record); 7223 7224 bool ClangABICompat4 = 7225 Context.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver4; 7226 TargetInfo::CallingConvKind CCK = 7227 Context.getTargetInfo().getCallingConvKind(ClangABICompat4); 7228 bool CanPass = canPassInRegisters(*this, Record, CCK); 7229 7230 // Do not change ArgPassingRestrictions if it has already been set to 7231 // RecordArgPassingKind::CanNeverPassInRegs. 7232 if (Record->getArgPassingRestrictions() != 7233 RecordArgPassingKind::CanNeverPassInRegs) 7234 Record->setArgPassingRestrictions( 7235 CanPass ? RecordArgPassingKind::CanPassInRegs 7236 : RecordArgPassingKind::CannotPassInRegs); 7237 7238 // If canPassInRegisters returns true despite the record having a non-trivial 7239 // destructor, the record is destructed in the callee. This happens only when 7240 // the record or one of its subobjects has a field annotated with trivial_abi 7241 // or a field qualified with ObjC __strong/__weak. 7242 if (Context.getTargetInfo().getCXXABI().areArgsDestroyedLeftToRightInCallee()) 7243 Record->setParamDestroyedInCallee(true); 7244 else if (Record->hasNonTrivialDestructor()) 7245 Record->setParamDestroyedInCallee(CanPass); 7246 7247 if (getLangOpts().ForceEmitVTables) { 7248 // If we want to emit all the vtables, we need to mark it as used. This 7249 // is especially required for cases like vtable assumption loads. 7250 MarkVTableUsed(Record->getInnerLocStart(), Record); 7251 } 7252 7253 if (getLangOpts().CUDA) { 7254 if (Record->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>()) 7255 checkCUDADeviceBuiltinSurfaceClassTemplate(*this, Record); 7256 else if (Record->hasAttr<CUDADeviceBuiltinTextureTypeAttr>()) 7257 checkCUDADeviceBuiltinTextureClassTemplate(*this, Record); 7258 } 7259 } 7260 7261 /// Look up the special member function that would be called by a special 7262 /// member function for a subobject of class type. 7263 /// 7264 /// \param Class The class type of the subobject. 7265 /// \param CSM The kind of special member function. 7266 /// \param FieldQuals If the subobject is a field, its cv-qualifiers. 7267 /// \param ConstRHS True if this is a copy operation with a const object 7268 /// on its RHS, that is, if the argument to the outer special member 7269 /// function is 'const' and this is not a field marked 'mutable'. 7270 static Sema::SpecialMemberOverloadResult 7271 lookupCallFromSpecialMember(Sema &S, CXXRecordDecl *Class, 7272 CXXSpecialMemberKind CSM, unsigned FieldQuals, 7273 bool ConstRHS) { 7274 unsigned LHSQuals = 0; 7275 if (CSM == CXXSpecialMemberKind::CopyAssignment || 7276 CSM == CXXSpecialMemberKind::MoveAssignment) 7277 LHSQuals = FieldQuals; 7278 7279 unsigned RHSQuals = FieldQuals; 7280 if (CSM == CXXSpecialMemberKind::DefaultConstructor || 7281 CSM == CXXSpecialMemberKind::Destructor) 7282 RHSQuals = 0; 7283 else if (ConstRHS) 7284 RHSQuals |= Qualifiers::Const; 7285 7286 return S.LookupSpecialMember(Class, CSM, 7287 RHSQuals & Qualifiers::Const, 7288 RHSQuals & Qualifiers::Volatile, 7289 false, 7290 LHSQuals & Qualifiers::Const, 7291 LHSQuals & Qualifiers::Volatile); 7292 } 7293 7294 class Sema::InheritedConstructorInfo { 7295 Sema &S; 7296 SourceLocation UseLoc; 7297 7298 /// A mapping from the base classes through which the constructor was 7299 /// inherited to the using shadow declaration in that base class (or a null 7300 /// pointer if the constructor was declared in that base class). 7301 llvm::DenseMap<CXXRecordDecl *, ConstructorUsingShadowDecl *> 7302 InheritedFromBases; 7303 7304 public: 7305 InheritedConstructorInfo(Sema &S, SourceLocation UseLoc, 7306 ConstructorUsingShadowDecl *Shadow) 7307 : S(S), UseLoc(UseLoc) { 7308 bool DiagnosedMultipleConstructedBases = false; 7309 CXXRecordDecl *ConstructedBase = nullptr; 7310 BaseUsingDecl *ConstructedBaseIntroducer = nullptr; 7311 7312 // Find the set of such base class subobjects and check that there's a 7313 // unique constructed subobject. 7314 for (auto *D : Shadow->redecls()) { 7315 auto *DShadow = cast<ConstructorUsingShadowDecl>(D); 7316 auto *DNominatedBase = DShadow->getNominatedBaseClass(); 7317 auto *DConstructedBase = DShadow->getConstructedBaseClass(); 7318 7319 InheritedFromBases.insert( 7320 std::make_pair(DNominatedBase->getCanonicalDecl(), 7321 DShadow->getNominatedBaseClassShadowDecl())); 7322 if (DShadow->constructsVirtualBase()) 7323 InheritedFromBases.insert( 7324 std::make_pair(DConstructedBase->getCanonicalDecl(), 7325 DShadow->getConstructedBaseClassShadowDecl())); 7326 else 7327 assert(DNominatedBase == DConstructedBase); 7328 7329 // [class.inhctor.init]p2: 7330 // If the constructor was inherited from multiple base class subobjects 7331 // of type B, the program is ill-formed. 7332 if (!ConstructedBase) { 7333 ConstructedBase = DConstructedBase; 7334 ConstructedBaseIntroducer = D->getIntroducer(); 7335 } else if (ConstructedBase != DConstructedBase && 7336 !Shadow->isInvalidDecl()) { 7337 if (!DiagnosedMultipleConstructedBases) { 7338 S.Diag(UseLoc, diag::err_ambiguous_inherited_constructor) 7339 << Shadow->getTargetDecl(); 7340 S.Diag(ConstructedBaseIntroducer->getLocation(), 7341 diag::note_ambiguous_inherited_constructor_using) 7342 << ConstructedBase; 7343 DiagnosedMultipleConstructedBases = true; 7344 } 7345 S.Diag(D->getIntroducer()->getLocation(), 7346 diag::note_ambiguous_inherited_constructor_using) 7347 << DConstructedBase; 7348 } 7349 } 7350 7351 if (DiagnosedMultipleConstructedBases) 7352 Shadow->setInvalidDecl(); 7353 } 7354 7355 /// Find the constructor to use for inherited construction of a base class, 7356 /// and whether that base class constructor inherits the constructor from a 7357 /// virtual base class (in which case it won't actually invoke it). 7358 std::pair<CXXConstructorDecl *, bool> 7359 findConstructorForBase(CXXRecordDecl *Base, CXXConstructorDecl *Ctor) const { 7360 auto It = InheritedFromBases.find(Base->getCanonicalDecl()); 7361 if (It == InheritedFromBases.end()) 7362 return std::make_pair(nullptr, false); 7363 7364 // This is an intermediary class. 7365 if (It->second) 7366 return std::make_pair( 7367 S.findInheritingConstructor(UseLoc, Ctor, It->second), 7368 It->second->constructsVirtualBase()); 7369 7370 // This is the base class from which the constructor was inherited. 7371 return std::make_pair(Ctor, false); 7372 } 7373 }; 7374 7375 /// Is the special member function which would be selected to perform the 7376 /// specified operation on the specified class type a constexpr constructor? 7377 static bool specialMemberIsConstexpr( 7378 Sema &S, CXXRecordDecl *ClassDecl, CXXSpecialMemberKind CSM, unsigned Quals, 7379 bool ConstRHS, CXXConstructorDecl *InheritedCtor = nullptr, 7380 Sema::InheritedConstructorInfo *Inherited = nullptr) { 7381 // Suppress duplicate constraint checking here, in case a constraint check 7382 // caused us to decide to do this. Any truely recursive checks will get 7383 // caught during these checks anyway. 7384 Sema::SatisfactionStackResetRAII SSRAII{S}; 7385 7386 // If we're inheriting a constructor, see if we need to call it for this base 7387 // class. 7388 if (InheritedCtor) { 7389 assert(CSM == CXXSpecialMemberKind::DefaultConstructor); 7390 auto BaseCtor = 7391 Inherited->findConstructorForBase(ClassDecl, InheritedCtor).first; 7392 if (BaseCtor) 7393 return BaseCtor->isConstexpr(); 7394 } 7395 7396 if (CSM == CXXSpecialMemberKind::DefaultConstructor) 7397 return ClassDecl->hasConstexprDefaultConstructor(); 7398 if (CSM == CXXSpecialMemberKind::Destructor) 7399 return ClassDecl->hasConstexprDestructor(); 7400 7401 Sema::SpecialMemberOverloadResult SMOR = 7402 lookupCallFromSpecialMember(S, ClassDecl, CSM, Quals, ConstRHS); 7403 if (!SMOR.getMethod()) 7404 // A constructor we wouldn't select can't be "involved in initializing" 7405 // anything. 7406 return true; 7407 return SMOR.getMethod()->isConstexpr(); 7408 } 7409 7410 /// Determine whether the specified special member function would be constexpr 7411 /// if it were implicitly defined. 7412 static bool defaultedSpecialMemberIsConstexpr( 7413 Sema &S, CXXRecordDecl *ClassDecl, CXXSpecialMemberKind CSM, bool ConstArg, 7414 CXXConstructorDecl *InheritedCtor = nullptr, 7415 Sema::InheritedConstructorInfo *Inherited = nullptr) { 7416 if (!S.getLangOpts().CPlusPlus11) 7417 return false; 7418 7419 // C++11 [dcl.constexpr]p4: 7420 // In the definition of a constexpr constructor [...] 7421 bool Ctor = true; 7422 switch (CSM) { 7423 case CXXSpecialMemberKind::DefaultConstructor: 7424 if (Inherited) 7425 break; 7426 // Since default constructor lookup is essentially trivial (and cannot 7427 // involve, for instance, template instantiation), we compute whether a 7428 // defaulted default constructor is constexpr directly within CXXRecordDecl. 7429 // 7430 // This is important for performance; we need to know whether the default 7431 // constructor is constexpr to determine whether the type is a literal type. 7432 return ClassDecl->defaultedDefaultConstructorIsConstexpr(); 7433 7434 case CXXSpecialMemberKind::CopyConstructor: 7435 case CXXSpecialMemberKind::MoveConstructor: 7436 // For copy or move constructors, we need to perform overload resolution. 7437 break; 7438 7439 case CXXSpecialMemberKind::CopyAssignment: 7440 case CXXSpecialMemberKind::MoveAssignment: 7441 if (!S.getLangOpts().CPlusPlus14) 7442 return false; 7443 // In C++1y, we need to perform overload resolution. 7444 Ctor = false; 7445 break; 7446 7447 case CXXSpecialMemberKind::Destructor: 7448 return ClassDecl->defaultedDestructorIsConstexpr(); 7449 7450 case CXXSpecialMemberKind::Invalid: 7451 return false; 7452 } 7453 7454 // -- if the class is a non-empty union, or for each non-empty anonymous 7455 // union member of a non-union class, exactly one non-static data member 7456 // shall be initialized; [DR1359] 7457 // 7458 // If we squint, this is guaranteed, since exactly one non-static data member 7459 // will be initialized (if the constructor isn't deleted), we just don't know 7460 // which one. 7461 if (Ctor && ClassDecl->isUnion()) 7462 return CSM == CXXSpecialMemberKind::DefaultConstructor 7463 ? ClassDecl->hasInClassInitializer() || 7464 !ClassDecl->hasVariantMembers() 7465 : true; 7466 7467 // -- the class shall not have any virtual base classes; 7468 if (Ctor && ClassDecl->getNumVBases()) 7469 return false; 7470 7471 // C++1y [class.copy]p26: 7472 // -- [the class] is a literal type, and 7473 if (!Ctor && !ClassDecl->isLiteral() && !S.getLangOpts().CPlusPlus23) 7474 return false; 7475 7476 // -- every constructor involved in initializing [...] base class 7477 // sub-objects shall be a constexpr constructor; 7478 // -- the assignment operator selected to copy/move each direct base 7479 // class is a constexpr function, and 7480 if (!S.getLangOpts().CPlusPlus23) { 7481 for (const auto &B : ClassDecl->bases()) { 7482 const RecordType *BaseType = B.getType()->getAs<RecordType>(); 7483 if (!BaseType) 7484 continue; 7485 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl()); 7486 if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, 0, ConstArg, 7487 InheritedCtor, Inherited)) 7488 return false; 7489 } 7490 } 7491 7492 // -- every constructor involved in initializing non-static data members 7493 // [...] shall be a constexpr constructor; 7494 // -- every non-static data member and base class sub-object shall be 7495 // initialized 7496 // -- for each non-static data member of X that is of class type (or array 7497 // thereof), the assignment operator selected to copy/move that member is 7498 // a constexpr function 7499 if (!S.getLangOpts().CPlusPlus23) { 7500 for (const auto *F : ClassDecl->fields()) { 7501 if (F->isInvalidDecl()) 7502 continue; 7503 if (CSM == CXXSpecialMemberKind::DefaultConstructor && 7504 F->hasInClassInitializer()) 7505 continue; 7506 QualType BaseType = S.Context.getBaseElementType(F->getType()); 7507 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { 7508 CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl()); 7509 if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM, 7510 BaseType.getCVRQualifiers(), 7511 ConstArg && !F->isMutable())) 7512 return false; 7513 } else if (CSM == CXXSpecialMemberKind::DefaultConstructor) { 7514 return false; 7515 } 7516 } 7517 } 7518 7519 // All OK, it's constexpr! 7520 return true; 7521 } 7522 7523 namespace { 7524 /// RAII object to register a defaulted function as having its exception 7525 /// specification computed. 7526 struct ComputingExceptionSpec { 7527 Sema &S; 7528 7529 ComputingExceptionSpec(Sema &S, FunctionDecl *FD, SourceLocation Loc) 7530 : S(S) { 7531 Sema::CodeSynthesisContext Ctx; 7532 Ctx.Kind = Sema::CodeSynthesisContext::ExceptionSpecEvaluation; 7533 Ctx.PointOfInstantiation = Loc; 7534 Ctx.Entity = FD; 7535 S.pushCodeSynthesisContext(Ctx); 7536 } 7537 ~ComputingExceptionSpec() { 7538 S.popCodeSynthesisContext(); 7539 } 7540 }; 7541 } 7542 7543 static Sema::ImplicitExceptionSpecification 7544 ComputeDefaultedSpecialMemberExceptionSpec(Sema &S, SourceLocation Loc, 7545 CXXMethodDecl *MD, 7546 CXXSpecialMemberKind CSM, 7547 Sema::InheritedConstructorInfo *ICI); 7548 7549 static Sema::ImplicitExceptionSpecification 7550 ComputeDefaultedComparisonExceptionSpec(Sema &S, SourceLocation Loc, 7551 FunctionDecl *FD, 7552 Sema::DefaultedComparisonKind DCK); 7553 7554 static Sema::ImplicitExceptionSpecification 7555 computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, FunctionDecl *FD) { 7556 auto DFK = S.getDefaultedFunctionKind(FD); 7557 if (DFK.isSpecialMember()) 7558 return ComputeDefaultedSpecialMemberExceptionSpec( 7559 S, Loc, cast<CXXMethodDecl>(FD), DFK.asSpecialMember(), nullptr); 7560 if (DFK.isComparison()) 7561 return ComputeDefaultedComparisonExceptionSpec(S, Loc, FD, 7562 DFK.asComparison()); 7563 7564 auto *CD = cast<CXXConstructorDecl>(FD); 7565 assert(CD->getInheritedConstructor() && 7566 "only defaulted functions and inherited constructors have implicit " 7567 "exception specs"); 7568 Sema::InheritedConstructorInfo ICI( 7569 S, Loc, CD->getInheritedConstructor().getShadowDecl()); 7570 return ComputeDefaultedSpecialMemberExceptionSpec( 7571 S, Loc, CD, CXXSpecialMemberKind::DefaultConstructor, &ICI); 7572 } 7573 7574 static FunctionProtoType::ExtProtoInfo getImplicitMethodEPI(Sema &S, 7575 CXXMethodDecl *MD) { 7576 FunctionProtoType::ExtProtoInfo EPI; 7577 7578 // Build an exception specification pointing back at this member. 7579 EPI.ExceptionSpec.Type = EST_Unevaluated; 7580 EPI.ExceptionSpec.SourceDecl = MD; 7581 7582 // Set the calling convention to the default for C++ instance methods. 7583 EPI.ExtInfo = EPI.ExtInfo.withCallingConv( 7584 S.Context.getDefaultCallingConvention(/*IsVariadic=*/false, 7585 /*IsCXXMethod=*/true)); 7586 return EPI; 7587 } 7588 7589 void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, FunctionDecl *FD) { 7590 const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>(); 7591 if (FPT->getExceptionSpecType() != EST_Unevaluated) 7592 return; 7593 7594 // Evaluate the exception specification. 7595 auto IES = computeImplicitExceptionSpec(*this, Loc, FD); 7596 auto ESI = IES.getExceptionSpec(); 7597 7598 // Update the type of the special member to use it. 7599 UpdateExceptionSpec(FD, ESI); 7600 } 7601 7602 void Sema::CheckExplicitlyDefaultedFunction(Scope *S, FunctionDecl *FD) { 7603 assert(FD->isExplicitlyDefaulted() && "not explicitly-defaulted"); 7604 7605 DefaultedFunctionKind DefKind = getDefaultedFunctionKind(FD); 7606 if (!DefKind) { 7607 assert(FD->getDeclContext()->isDependentContext()); 7608 return; 7609 } 7610 7611 if (DefKind.isComparison()) { 7612 auto PT = FD->getParamDecl(0)->getType(); 7613 if (const CXXRecordDecl *RD = 7614 PT.getNonReferenceType()->getAsCXXRecordDecl()) { 7615 for (FieldDecl *Field : RD->fields()) { 7616 UnusedPrivateFields.remove(Field); 7617 } 7618 } 7619 } 7620 7621 if (DefKind.isSpecialMember() 7622 ? CheckExplicitlyDefaultedSpecialMember(cast<CXXMethodDecl>(FD), 7623 DefKind.asSpecialMember(), 7624 FD->getDefaultLoc()) 7625 : CheckExplicitlyDefaultedComparison(S, FD, DefKind.asComparison())) 7626 FD->setInvalidDecl(); 7627 } 7628 7629 bool Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD, 7630 CXXSpecialMemberKind CSM, 7631 SourceLocation DefaultLoc) { 7632 CXXRecordDecl *RD = MD->getParent(); 7633 7634 assert(MD->isExplicitlyDefaulted() && CSM != CXXSpecialMemberKind::Invalid && 7635 "not an explicitly-defaulted special member"); 7636 7637 // Defer all checking for special members of a dependent type. 7638 if (RD->isDependentType()) 7639 return false; 7640 7641 // Whether this was the first-declared instance of the constructor. 7642 // This affects whether we implicitly add an exception spec and constexpr. 7643 bool First = MD == MD->getCanonicalDecl(); 7644 7645 bool HadError = false; 7646 7647 // C++11 [dcl.fct.def.default]p1: 7648 // A function that is explicitly defaulted shall 7649 // -- be a special member function [...] (checked elsewhere), 7650 // -- have the same type (except for ref-qualifiers, and except that a 7651 // copy operation can take a non-const reference) as an implicit 7652 // declaration, and 7653 // -- not have default arguments. 7654 // C++2a changes the second bullet to instead delete the function if it's 7655 // defaulted on its first declaration, unless it's "an assignment operator, 7656 // and its return type differs or its parameter type is not a reference". 7657 bool DeleteOnTypeMismatch = getLangOpts().CPlusPlus20 && First; 7658 bool ShouldDeleteForTypeMismatch = false; 7659 unsigned ExpectedParams = 1; 7660 if (CSM == CXXSpecialMemberKind::DefaultConstructor || 7661 CSM == CXXSpecialMemberKind::Destructor) 7662 ExpectedParams = 0; 7663 if (MD->getNumExplicitParams() != ExpectedParams) { 7664 // This checks for default arguments: a copy or move constructor with a 7665 // default argument is classified as a default constructor, and assignment 7666 // operations and destructors can't have default arguments. 7667 Diag(MD->getLocation(), diag::err_defaulted_special_member_params) 7668 << llvm::to_underlying(CSM) << MD->getSourceRange(); 7669 HadError = true; 7670 } else if (MD->isVariadic()) { 7671 if (DeleteOnTypeMismatch) 7672 ShouldDeleteForTypeMismatch = true; 7673 else { 7674 Diag(MD->getLocation(), diag::err_defaulted_special_member_variadic) 7675 << llvm::to_underlying(CSM) << MD->getSourceRange(); 7676 HadError = true; 7677 } 7678 } 7679 7680 const FunctionProtoType *Type = MD->getType()->castAs<FunctionProtoType>(); 7681 7682 bool CanHaveConstParam = false; 7683 if (CSM == CXXSpecialMemberKind::CopyConstructor) 7684 CanHaveConstParam = RD->implicitCopyConstructorHasConstParam(); 7685 else if (CSM == CXXSpecialMemberKind::CopyAssignment) 7686 CanHaveConstParam = RD->implicitCopyAssignmentHasConstParam(); 7687 7688 QualType ReturnType = Context.VoidTy; 7689 if (CSM == CXXSpecialMemberKind::CopyAssignment || 7690 CSM == CXXSpecialMemberKind::MoveAssignment) { 7691 // Check for return type matching. 7692 ReturnType = Type->getReturnType(); 7693 QualType ThisType = MD->getFunctionObjectParameterType(); 7694 7695 QualType DeclType = Context.getTypeDeclType(RD); 7696 DeclType = Context.getElaboratedType(ElaboratedTypeKeyword::None, nullptr, 7697 DeclType, nullptr); 7698 DeclType = Context.getAddrSpaceQualType( 7699 DeclType, ThisType.getQualifiers().getAddressSpace()); 7700 QualType ExpectedReturnType = Context.getLValueReferenceType(DeclType); 7701 7702 if (!Context.hasSameType(ReturnType, ExpectedReturnType)) { 7703 Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type) 7704 << (CSM == CXXSpecialMemberKind::MoveAssignment) 7705 << ExpectedReturnType; 7706 HadError = true; 7707 } 7708 7709 // A defaulted special member cannot have cv-qualifiers. 7710 if (ThisType.isConstQualified() || ThisType.isVolatileQualified()) { 7711 if (DeleteOnTypeMismatch) 7712 ShouldDeleteForTypeMismatch = true; 7713 else { 7714 Diag(MD->getLocation(), diag::err_defaulted_special_member_quals) 7715 << (CSM == CXXSpecialMemberKind::MoveAssignment) 7716 << getLangOpts().CPlusPlus14; 7717 HadError = true; 7718 } 7719 } 7720 // [C++23][dcl.fct.def.default]/p2.2 7721 // if F2 has an implicit object parameter of type “reference to C”, 7722 // F1 may be an explicit object member function whose explicit object 7723 // parameter is of (possibly different) type “reference to C”, 7724 // in which case the type of F1 would differ from the type of F2 7725 // in that the type of F1 has an additional parameter; 7726 QualType ExplicitObjectParameter = MD->isExplicitObjectMemberFunction() 7727 ? MD->getParamDecl(0)->getType() 7728 : QualType(); 7729 if (!ExplicitObjectParameter.isNull() && 7730 (!ExplicitObjectParameter->isReferenceType() || 7731 !Context.hasSameType(ExplicitObjectParameter.getNonReferenceType(), 7732 Context.getRecordType(RD)))) { 7733 if (DeleteOnTypeMismatch) 7734 ShouldDeleteForTypeMismatch = true; 7735 else { 7736 Diag(MD->getLocation(), 7737 diag::err_defaulted_special_member_explicit_object_mismatch) 7738 << (CSM == CXXSpecialMemberKind::MoveAssignment) << RD 7739 << MD->getSourceRange(); 7740 HadError = true; 7741 } 7742 } 7743 } 7744 7745 // Check for parameter type matching. 7746 QualType ArgType = 7747 ExpectedParams 7748 ? Type->getParamType(MD->isExplicitObjectMemberFunction() ? 1 : 0) 7749 : QualType(); 7750 bool HasConstParam = false; 7751 if (ExpectedParams && ArgType->isReferenceType()) { 7752 // Argument must be reference to possibly-const T. 7753 QualType ReferentType = ArgType->getPointeeType(); 7754 HasConstParam = ReferentType.isConstQualified(); 7755 7756 if (ReferentType.isVolatileQualified()) { 7757 if (DeleteOnTypeMismatch) 7758 ShouldDeleteForTypeMismatch = true; 7759 else { 7760 Diag(MD->getLocation(), 7761 diag::err_defaulted_special_member_volatile_param) 7762 << llvm::to_underlying(CSM); 7763 HadError = true; 7764 } 7765 } 7766 7767 if (HasConstParam && !CanHaveConstParam) { 7768 if (DeleteOnTypeMismatch) 7769 ShouldDeleteForTypeMismatch = true; 7770 else if (CSM == CXXSpecialMemberKind::CopyConstructor || 7771 CSM == CXXSpecialMemberKind::CopyAssignment) { 7772 Diag(MD->getLocation(), 7773 diag::err_defaulted_special_member_copy_const_param) 7774 << (CSM == CXXSpecialMemberKind::CopyAssignment); 7775 // FIXME: Explain why this special member can't be const. 7776 HadError = true; 7777 } else { 7778 Diag(MD->getLocation(), 7779 diag::err_defaulted_special_member_move_const_param) 7780 << (CSM == CXXSpecialMemberKind::MoveAssignment); 7781 HadError = true; 7782 } 7783 } 7784 } else if (ExpectedParams) { 7785 // A copy assignment operator can take its argument by value, but a 7786 // defaulted one cannot. 7787 assert(CSM == CXXSpecialMemberKind::CopyAssignment && 7788 "unexpected non-ref argument"); 7789 Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref); 7790 HadError = true; 7791 } 7792 7793 // C++11 [dcl.fct.def.default]p2: 7794 // An explicitly-defaulted function may be declared constexpr only if it 7795 // would have been implicitly declared as constexpr, 7796 // Do not apply this rule to members of class templates, since core issue 1358 7797 // makes such functions always instantiate to constexpr functions. For 7798 // functions which cannot be constexpr (for non-constructors in C++11 and for 7799 // destructors in C++14 and C++17), this is checked elsewhere. 7800 // 7801 // FIXME: This should not apply if the member is deleted. 7802 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM, 7803 HasConstParam); 7804 7805 // C++14 [dcl.constexpr]p6 (CWG DR647/CWG DR1358): 7806 // If the instantiated template specialization of a constexpr function 7807 // template or member function of a class template would fail to satisfy 7808 // the requirements for a constexpr function or constexpr constructor, that 7809 // specialization is still a constexpr function or constexpr constructor, 7810 // even though a call to such a function cannot appear in a constant 7811 // expression. 7812 if (MD->isTemplateInstantiation() && MD->isConstexpr()) 7813 Constexpr = true; 7814 7815 if ((getLangOpts().CPlusPlus20 || 7816 (getLangOpts().CPlusPlus14 ? !isa<CXXDestructorDecl>(MD) 7817 : isa<CXXConstructorDecl>(MD))) && 7818 MD->isConstexpr() && !Constexpr && 7819 MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) { 7820 if (!MD->isConsteval() && RD->getNumVBases()) { 7821 Diag(MD->getBeginLoc(), 7822 diag::err_incorrect_defaulted_constexpr_with_vb) 7823 << llvm::to_underlying(CSM); 7824 for (const auto &I : RD->vbases()) 7825 Diag(I.getBeginLoc(), diag::note_constexpr_virtual_base_here); 7826 } else { 7827 Diag(MD->getBeginLoc(), diag::err_incorrect_defaulted_constexpr) 7828 << llvm::to_underlying(CSM) << MD->isConsteval(); 7829 } 7830 HadError = true; 7831 // FIXME: Explain why the special member can't be constexpr. 7832 } 7833 7834 if (First) { 7835 // C++2a [dcl.fct.def.default]p3: 7836 // If a function is explicitly defaulted on its first declaration, it is 7837 // implicitly considered to be constexpr if the implicit declaration 7838 // would be. 7839 MD->setConstexprKind(Constexpr ? (MD->isConsteval() 7840 ? ConstexprSpecKind::Consteval 7841 : ConstexprSpecKind::Constexpr) 7842 : ConstexprSpecKind::Unspecified); 7843 7844 if (!Type->hasExceptionSpec()) { 7845 // C++2a [except.spec]p3: 7846 // If a declaration of a function does not have a noexcept-specifier 7847 // [and] is defaulted on its first declaration, [...] the exception 7848 // specification is as specified below 7849 FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo(); 7850 EPI.ExceptionSpec.Type = EST_Unevaluated; 7851 EPI.ExceptionSpec.SourceDecl = MD; 7852 MD->setType( 7853 Context.getFunctionType(ReturnType, Type->getParamTypes(), EPI)); 7854 } 7855 } 7856 7857 if (ShouldDeleteForTypeMismatch || ShouldDeleteSpecialMember(MD, CSM)) { 7858 if (First) { 7859 SetDeclDeleted(MD, MD->getLocation()); 7860 if (!inTemplateInstantiation() && !HadError) { 7861 Diag(MD->getLocation(), diag::warn_defaulted_method_deleted) 7862 << llvm::to_underlying(CSM); 7863 if (ShouldDeleteForTypeMismatch) { 7864 Diag(MD->getLocation(), diag::note_deleted_type_mismatch) 7865 << llvm::to_underlying(CSM); 7866 } else if (ShouldDeleteSpecialMember(MD, CSM, nullptr, 7867 /*Diagnose*/ true) && 7868 DefaultLoc.isValid()) { 7869 Diag(DefaultLoc, diag::note_replace_equals_default_to_delete) 7870 << FixItHint::CreateReplacement(DefaultLoc, "delete"); 7871 } 7872 } 7873 if (ShouldDeleteForTypeMismatch && !HadError) { 7874 Diag(MD->getLocation(), 7875 diag::warn_cxx17_compat_defaulted_method_type_mismatch) 7876 << llvm::to_underlying(CSM); 7877 } 7878 } else { 7879 // C++11 [dcl.fct.def.default]p4: 7880 // [For a] user-provided explicitly-defaulted function [...] if such a 7881 // function is implicitly defined as deleted, the program is ill-formed. 7882 Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) 7883 << llvm::to_underlying(CSM); 7884 assert(!ShouldDeleteForTypeMismatch && "deleted non-first decl"); 7885 ShouldDeleteSpecialMember(MD, CSM, nullptr, /*Diagnose*/true); 7886 HadError = true; 7887 } 7888 } 7889 7890 return HadError; 7891 } 7892 7893 namespace { 7894 /// Helper class for building and checking a defaulted comparison. 7895 /// 7896 /// Defaulted functions are built in two phases: 7897 /// 7898 /// * First, the set of operations that the function will perform are 7899 /// identified, and some of them are checked. If any of the checked 7900 /// operations is invalid in certain ways, the comparison function is 7901 /// defined as deleted and no body is built. 7902 /// * Then, if the function is not defined as deleted, the body is built. 7903 /// 7904 /// This is accomplished by performing two visitation steps over the eventual 7905 /// body of the function. 7906 template<typename Derived, typename ResultList, typename Result, 7907 typename Subobject> 7908 class DefaultedComparisonVisitor { 7909 public: 7910 using DefaultedComparisonKind = Sema::DefaultedComparisonKind; 7911 7912 DefaultedComparisonVisitor(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD, 7913 DefaultedComparisonKind DCK) 7914 : S(S), RD(RD), FD(FD), DCK(DCK) { 7915 if (auto *Info = FD->getDefalutedOrDeletedInfo()) { 7916 // FIXME: Change CreateOverloadedBinOp to take an ArrayRef instead of an 7917 // UnresolvedSet to avoid this copy. 7918 Fns.assign(Info->getUnqualifiedLookups().begin(), 7919 Info->getUnqualifiedLookups().end()); 7920 } 7921 } 7922 7923 ResultList visit() { 7924 // The type of an lvalue naming a parameter of this function. 7925 QualType ParamLvalType = 7926 FD->getParamDecl(0)->getType().getNonReferenceType(); 7927 7928 ResultList Results; 7929 7930 switch (DCK) { 7931 case DefaultedComparisonKind::None: 7932 llvm_unreachable("not a defaulted comparison"); 7933 7934 case DefaultedComparisonKind::Equal: 7935 case DefaultedComparisonKind::ThreeWay: 7936 getDerived().visitSubobjects(Results, RD, ParamLvalType.getQualifiers()); 7937 return Results; 7938 7939 case DefaultedComparisonKind::NotEqual: 7940 case DefaultedComparisonKind::Relational: 7941 Results.add(getDerived().visitExpandedSubobject( 7942 ParamLvalType, getDerived().getCompleteObject())); 7943 return Results; 7944 } 7945 llvm_unreachable(""); 7946 } 7947 7948 protected: 7949 Derived &getDerived() { return static_cast<Derived&>(*this); } 7950 7951 /// Visit the expanded list of subobjects of the given type, as specified in 7952 /// C++2a [class.compare.default]. 7953 /// 7954 /// \return \c true if the ResultList object said we're done, \c false if not. 7955 bool visitSubobjects(ResultList &Results, CXXRecordDecl *Record, 7956 Qualifiers Quals) { 7957 // C++2a [class.compare.default]p4: 7958 // The direct base class subobjects of C 7959 for (CXXBaseSpecifier &Base : Record->bases()) 7960 if (Results.add(getDerived().visitSubobject( 7961 S.Context.getQualifiedType(Base.getType(), Quals), 7962 getDerived().getBase(&Base)))) 7963 return true; 7964 7965 // followed by the non-static data members of C 7966 for (FieldDecl *Field : Record->fields()) { 7967 // C++23 [class.bit]p2: 7968 // Unnamed bit-fields are not members ... 7969 if (Field->isUnnamedBitField()) 7970 continue; 7971 // Recursively expand anonymous structs. 7972 if (Field->isAnonymousStructOrUnion()) { 7973 if (visitSubobjects(Results, Field->getType()->getAsCXXRecordDecl(), 7974 Quals)) 7975 return true; 7976 continue; 7977 } 7978 7979 // Figure out the type of an lvalue denoting this field. 7980 Qualifiers FieldQuals = Quals; 7981 if (Field->isMutable()) 7982 FieldQuals.removeConst(); 7983 QualType FieldType = 7984 S.Context.getQualifiedType(Field->getType(), FieldQuals); 7985 7986 if (Results.add(getDerived().visitSubobject( 7987 FieldType, getDerived().getField(Field)))) 7988 return true; 7989 } 7990 7991 // form a list of subobjects. 7992 return false; 7993 } 7994 7995 Result visitSubobject(QualType Type, Subobject Subobj) { 7996 // In that list, any subobject of array type is recursively expanded 7997 const ArrayType *AT = S.Context.getAsArrayType(Type); 7998 if (auto *CAT = dyn_cast_or_null<ConstantArrayType>(AT)) 7999 return getDerived().visitSubobjectArray(CAT->getElementType(), 8000 CAT->getSize(), Subobj); 8001 return getDerived().visitExpandedSubobject(Type, Subobj); 8002 } 8003 8004 Result visitSubobjectArray(QualType Type, const llvm::APInt &Size, 8005 Subobject Subobj) { 8006 return getDerived().visitSubobject(Type, Subobj); 8007 } 8008 8009 protected: 8010 Sema &S; 8011 CXXRecordDecl *RD; 8012 FunctionDecl *FD; 8013 DefaultedComparisonKind DCK; 8014 UnresolvedSet<16> Fns; 8015 }; 8016 8017 /// Information about a defaulted comparison, as determined by 8018 /// DefaultedComparisonAnalyzer. 8019 struct DefaultedComparisonInfo { 8020 bool Deleted = false; 8021 bool Constexpr = true; 8022 ComparisonCategoryType Category = ComparisonCategoryType::StrongOrdering; 8023 8024 static DefaultedComparisonInfo deleted() { 8025 DefaultedComparisonInfo Deleted; 8026 Deleted.Deleted = true; 8027 return Deleted; 8028 } 8029 8030 bool add(const DefaultedComparisonInfo &R) { 8031 Deleted |= R.Deleted; 8032 Constexpr &= R.Constexpr; 8033 Category = commonComparisonType(Category, R.Category); 8034 return Deleted; 8035 } 8036 }; 8037 8038 /// An element in the expanded list of subobjects of a defaulted comparison, as 8039 /// specified in C++2a [class.compare.default]p4. 8040 struct DefaultedComparisonSubobject { 8041 enum { CompleteObject, Member, Base } Kind; 8042 NamedDecl *Decl; 8043 SourceLocation Loc; 8044 }; 8045 8046 /// A visitor over the notional body of a defaulted comparison that determines 8047 /// whether that body would be deleted or constexpr. 8048 class DefaultedComparisonAnalyzer 8049 : public DefaultedComparisonVisitor<DefaultedComparisonAnalyzer, 8050 DefaultedComparisonInfo, 8051 DefaultedComparisonInfo, 8052 DefaultedComparisonSubobject> { 8053 public: 8054 enum DiagnosticKind { NoDiagnostics, ExplainDeleted, ExplainConstexpr }; 8055 8056 private: 8057 DiagnosticKind Diagnose; 8058 8059 public: 8060 using Base = DefaultedComparisonVisitor; 8061 using Result = DefaultedComparisonInfo; 8062 using Subobject = DefaultedComparisonSubobject; 8063 8064 friend Base; 8065 8066 DefaultedComparisonAnalyzer(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD, 8067 DefaultedComparisonKind DCK, 8068 DiagnosticKind Diagnose = NoDiagnostics) 8069 : Base(S, RD, FD, DCK), Diagnose(Diagnose) {} 8070 8071 Result visit() { 8072 if ((DCK == DefaultedComparisonKind::Equal || 8073 DCK == DefaultedComparisonKind::ThreeWay) && 8074 RD->hasVariantMembers()) { 8075 // C++2a [class.compare.default]p2 [P2002R0]: 8076 // A defaulted comparison operator function for class C is defined as 8077 // deleted if [...] C has variant members. 8078 if (Diagnose == ExplainDeleted) { 8079 S.Diag(FD->getLocation(), diag::note_defaulted_comparison_union) 8080 << FD << RD->isUnion() << RD; 8081 } 8082 return Result::deleted(); 8083 } 8084 8085 return Base::visit(); 8086 } 8087 8088 private: 8089 Subobject getCompleteObject() { 8090 return Subobject{Subobject::CompleteObject, RD, FD->getLocation()}; 8091 } 8092 8093 Subobject getBase(CXXBaseSpecifier *Base) { 8094 return Subobject{Subobject::Base, Base->getType()->getAsCXXRecordDecl(), 8095 Base->getBaseTypeLoc()}; 8096 } 8097 8098 Subobject getField(FieldDecl *Field) { 8099 return Subobject{Subobject::Member, Field, Field->getLocation()}; 8100 } 8101 8102 Result visitExpandedSubobject(QualType Type, Subobject Subobj) { 8103 // C++2a [class.compare.default]p2 [P2002R0]: 8104 // A defaulted <=> or == operator function for class C is defined as 8105 // deleted if any non-static data member of C is of reference type 8106 if (Type->isReferenceType()) { 8107 if (Diagnose == ExplainDeleted) { 8108 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_reference_member) 8109 << FD << RD; 8110 } 8111 return Result::deleted(); 8112 } 8113 8114 // [...] Let xi be an lvalue denoting the ith element [...] 8115 OpaqueValueExpr Xi(FD->getLocation(), Type, VK_LValue); 8116 Expr *Args[] = {&Xi, &Xi}; 8117 8118 // All operators start by trying to apply that same operator recursively. 8119 OverloadedOperatorKind OO = FD->getOverloadedOperator(); 8120 assert(OO != OO_None && "not an overloaded operator!"); 8121 return visitBinaryOperator(OO, Args, Subobj); 8122 } 8123 8124 Result 8125 visitBinaryOperator(OverloadedOperatorKind OO, ArrayRef<Expr *> Args, 8126 Subobject Subobj, 8127 OverloadCandidateSet *SpaceshipCandidates = nullptr) { 8128 // Note that there is no need to consider rewritten candidates here if 8129 // we've already found there is no viable 'operator<=>' candidate (and are 8130 // considering synthesizing a '<=>' from '==' and '<'). 8131 OverloadCandidateSet CandidateSet( 8132 FD->getLocation(), OverloadCandidateSet::CSK_Operator, 8133 OverloadCandidateSet::OperatorRewriteInfo( 8134 OO, FD->getLocation(), 8135 /*AllowRewrittenCandidates=*/!SpaceshipCandidates)); 8136 8137 /// C++2a [class.compare.default]p1 [P2002R0]: 8138 /// [...] the defaulted function itself is never a candidate for overload 8139 /// resolution [...] 8140 CandidateSet.exclude(FD); 8141 8142 if (Args[0]->getType()->isOverloadableType()) 8143 S.LookupOverloadedBinOp(CandidateSet, OO, Fns, Args); 8144 else 8145 // FIXME: We determine whether this is a valid expression by checking to 8146 // see if there's a viable builtin operator candidate for it. That isn't 8147 // really what the rules ask us to do, but should give the right results. 8148 S.AddBuiltinOperatorCandidates(OO, FD->getLocation(), Args, CandidateSet); 8149 8150 Result R; 8151 8152 OverloadCandidateSet::iterator Best; 8153 switch (CandidateSet.BestViableFunction(S, FD->getLocation(), Best)) { 8154 case OR_Success: { 8155 // C++2a [class.compare.secondary]p2 [P2002R0]: 8156 // The operator function [...] is defined as deleted if [...] the 8157 // candidate selected by overload resolution is not a rewritten 8158 // candidate. 8159 if ((DCK == DefaultedComparisonKind::NotEqual || 8160 DCK == DefaultedComparisonKind::Relational) && 8161 !Best->RewriteKind) { 8162 if (Diagnose == ExplainDeleted) { 8163 if (Best->Function) { 8164 S.Diag(Best->Function->getLocation(), 8165 diag::note_defaulted_comparison_not_rewritten_callee) 8166 << FD; 8167 } else { 8168 assert(Best->Conversions.size() == 2 && 8169 Best->Conversions[0].isUserDefined() && 8170 "non-user-defined conversion from class to built-in " 8171 "comparison"); 8172 S.Diag(Best->Conversions[0] 8173 .UserDefined.FoundConversionFunction.getDecl() 8174 ->getLocation(), 8175 diag::note_defaulted_comparison_not_rewritten_conversion) 8176 << FD; 8177 } 8178 } 8179 return Result::deleted(); 8180 } 8181 8182 // Throughout C++2a [class.compare]: if overload resolution does not 8183 // result in a usable function, the candidate function is defined as 8184 // deleted. This requires that we selected an accessible function. 8185 // 8186 // Note that this only considers the access of the function when named 8187 // within the type of the subobject, and not the access path for any 8188 // derived-to-base conversion. 8189 CXXRecordDecl *ArgClass = Args[0]->getType()->getAsCXXRecordDecl(); 8190 if (ArgClass && Best->FoundDecl.getDecl() && 8191 Best->FoundDecl.getDecl()->isCXXClassMember()) { 8192 QualType ObjectType = Subobj.Kind == Subobject::Member 8193 ? Args[0]->getType() 8194 : S.Context.getRecordType(RD); 8195 if (!S.isMemberAccessibleForDeletion( 8196 ArgClass, Best->FoundDecl, ObjectType, Subobj.Loc, 8197 Diagnose == ExplainDeleted 8198 ? S.PDiag(diag::note_defaulted_comparison_inaccessible) 8199 << FD << Subobj.Kind << Subobj.Decl 8200 : S.PDiag())) 8201 return Result::deleted(); 8202 } 8203 8204 bool NeedsDeducing = 8205 OO == OO_Spaceship && FD->getReturnType()->isUndeducedAutoType(); 8206 8207 if (FunctionDecl *BestFD = Best->Function) { 8208 // C++2a [class.compare.default]p3 [P2002R0]: 8209 // A defaulted comparison function is constexpr-compatible if 8210 // [...] no overlod resolution performed [...] results in a 8211 // non-constexpr function. 8212 assert(!BestFD->isDeleted() && "wrong overload resolution result"); 8213 // If it's not constexpr, explain why not. 8214 if (Diagnose == ExplainConstexpr && !BestFD->isConstexpr()) { 8215 if (Subobj.Kind != Subobject::CompleteObject) 8216 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_not_constexpr) 8217 << Subobj.Kind << Subobj.Decl; 8218 S.Diag(BestFD->getLocation(), 8219 diag::note_defaulted_comparison_not_constexpr_here); 8220 // Bail out after explaining; we don't want any more notes. 8221 return Result::deleted(); 8222 } 8223 R.Constexpr &= BestFD->isConstexpr(); 8224 8225 if (NeedsDeducing) { 8226 // If any callee has an undeduced return type, deduce it now. 8227 // FIXME: It's not clear how a failure here should be handled. For 8228 // now, we produce an eager diagnostic, because that is forward 8229 // compatible with most (all?) other reasonable options. 8230 if (BestFD->getReturnType()->isUndeducedType() && 8231 S.DeduceReturnType(BestFD, FD->getLocation(), 8232 /*Diagnose=*/false)) { 8233 // Don't produce a duplicate error when asked to explain why the 8234 // comparison is deleted: we diagnosed that when initially checking 8235 // the defaulted operator. 8236 if (Diagnose == NoDiagnostics) { 8237 S.Diag( 8238 FD->getLocation(), 8239 diag::err_defaulted_comparison_cannot_deduce_undeduced_auto) 8240 << Subobj.Kind << Subobj.Decl; 8241 S.Diag( 8242 Subobj.Loc, 8243 diag::note_defaulted_comparison_cannot_deduce_undeduced_auto) 8244 << Subobj.Kind << Subobj.Decl; 8245 S.Diag(BestFD->getLocation(), 8246 diag::note_defaulted_comparison_cannot_deduce_callee) 8247 << Subobj.Kind << Subobj.Decl; 8248 } 8249 return Result::deleted(); 8250 } 8251 auto *Info = S.Context.CompCategories.lookupInfoForType( 8252 BestFD->getCallResultType()); 8253 if (!Info) { 8254 if (Diagnose == ExplainDeleted) { 8255 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_cannot_deduce) 8256 << Subobj.Kind << Subobj.Decl 8257 << BestFD->getCallResultType().withoutLocalFastQualifiers(); 8258 S.Diag(BestFD->getLocation(), 8259 diag::note_defaulted_comparison_cannot_deduce_callee) 8260 << Subobj.Kind << Subobj.Decl; 8261 } 8262 return Result::deleted(); 8263 } 8264 R.Category = Info->Kind; 8265 } 8266 } else { 8267 QualType T = Best->BuiltinParamTypes[0]; 8268 assert(T == Best->BuiltinParamTypes[1] && 8269 "builtin comparison for different types?"); 8270 assert(Best->BuiltinParamTypes[2].isNull() && 8271 "invalid builtin comparison"); 8272 8273 if (NeedsDeducing) { 8274 std::optional<ComparisonCategoryType> Cat = 8275 getComparisonCategoryForBuiltinCmp(T); 8276 assert(Cat && "no category for builtin comparison?"); 8277 R.Category = *Cat; 8278 } 8279 } 8280 8281 // Note that we might be rewriting to a different operator. That call is 8282 // not considered until we come to actually build the comparison function. 8283 break; 8284 } 8285 8286 case OR_Ambiguous: 8287 if (Diagnose == ExplainDeleted) { 8288 unsigned Kind = 0; 8289 if (FD->getOverloadedOperator() == OO_Spaceship && OO != OO_Spaceship) 8290 Kind = OO == OO_EqualEqual ? 1 : 2; 8291 CandidateSet.NoteCandidates( 8292 PartialDiagnosticAt( 8293 Subobj.Loc, S.PDiag(diag::note_defaulted_comparison_ambiguous) 8294 << FD << Kind << Subobj.Kind << Subobj.Decl), 8295 S, OCD_AmbiguousCandidates, Args); 8296 } 8297 R = Result::deleted(); 8298 break; 8299 8300 case OR_Deleted: 8301 if (Diagnose == ExplainDeleted) { 8302 if ((DCK == DefaultedComparisonKind::NotEqual || 8303 DCK == DefaultedComparisonKind::Relational) && 8304 !Best->RewriteKind) { 8305 S.Diag(Best->Function->getLocation(), 8306 diag::note_defaulted_comparison_not_rewritten_callee) 8307 << FD; 8308 } else { 8309 S.Diag(Subobj.Loc, 8310 diag::note_defaulted_comparison_calls_deleted) 8311 << FD << Subobj.Kind << Subobj.Decl; 8312 S.NoteDeletedFunction(Best->Function); 8313 } 8314 } 8315 R = Result::deleted(); 8316 break; 8317 8318 case OR_No_Viable_Function: 8319 // If there's no usable candidate, we're done unless we can rewrite a 8320 // '<=>' in terms of '==' and '<'. 8321 if (OO == OO_Spaceship && 8322 S.Context.CompCategories.lookupInfoForType(FD->getReturnType())) { 8323 // For any kind of comparison category return type, we need a usable 8324 // '==' and a usable '<'. 8325 if (!R.add(visitBinaryOperator(OO_EqualEqual, Args, Subobj, 8326 &CandidateSet))) 8327 R.add(visitBinaryOperator(OO_Less, Args, Subobj, &CandidateSet)); 8328 break; 8329 } 8330 8331 if (Diagnose == ExplainDeleted) { 8332 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_no_viable_function) 8333 << FD << (OO == OO_EqualEqual || OO == OO_ExclaimEqual) 8334 << Subobj.Kind << Subobj.Decl; 8335 8336 // For a three-way comparison, list both the candidates for the 8337 // original operator and the candidates for the synthesized operator. 8338 if (SpaceshipCandidates) { 8339 SpaceshipCandidates->NoteCandidates( 8340 S, Args, 8341 SpaceshipCandidates->CompleteCandidates(S, OCD_AllCandidates, 8342 Args, FD->getLocation())); 8343 S.Diag(Subobj.Loc, 8344 diag::note_defaulted_comparison_no_viable_function_synthesized) 8345 << (OO == OO_EqualEqual ? 0 : 1); 8346 } 8347 8348 CandidateSet.NoteCandidates( 8349 S, Args, 8350 CandidateSet.CompleteCandidates(S, OCD_AllCandidates, Args, 8351 FD->getLocation())); 8352 } 8353 R = Result::deleted(); 8354 break; 8355 } 8356 8357 return R; 8358 } 8359 }; 8360 8361 /// A list of statements. 8362 struct StmtListResult { 8363 bool IsInvalid = false; 8364 llvm::SmallVector<Stmt*, 16> Stmts; 8365 8366 bool add(const StmtResult &S) { 8367 IsInvalid |= S.isInvalid(); 8368 if (IsInvalid) 8369 return true; 8370 Stmts.push_back(S.get()); 8371 return false; 8372 } 8373 }; 8374 8375 /// A visitor over the notional body of a defaulted comparison that synthesizes 8376 /// the actual body. 8377 class DefaultedComparisonSynthesizer 8378 : public DefaultedComparisonVisitor<DefaultedComparisonSynthesizer, 8379 StmtListResult, StmtResult, 8380 std::pair<ExprResult, ExprResult>> { 8381 SourceLocation Loc; 8382 unsigned ArrayDepth = 0; 8383 8384 public: 8385 using Base = DefaultedComparisonVisitor; 8386 using ExprPair = std::pair<ExprResult, ExprResult>; 8387 8388 friend Base; 8389 8390 DefaultedComparisonSynthesizer(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD, 8391 DefaultedComparisonKind DCK, 8392 SourceLocation BodyLoc) 8393 : Base(S, RD, FD, DCK), Loc(BodyLoc) {} 8394 8395 /// Build a suitable function body for this defaulted comparison operator. 8396 StmtResult build() { 8397 Sema::CompoundScopeRAII CompoundScope(S); 8398 8399 StmtListResult Stmts = visit(); 8400 if (Stmts.IsInvalid) 8401 return StmtError(); 8402 8403 ExprResult RetVal; 8404 switch (DCK) { 8405 case DefaultedComparisonKind::None: 8406 llvm_unreachable("not a defaulted comparison"); 8407 8408 case DefaultedComparisonKind::Equal: { 8409 // C++2a [class.eq]p3: 8410 // [...] compar[e] the corresponding elements [...] until the first 8411 // index i where xi == yi yields [...] false. If no such index exists, 8412 // V is true. Otherwise, V is false. 8413 // 8414 // Join the comparisons with '&&'s and return the result. Use a right 8415 // fold (traversing the conditions right-to-left), because that 8416 // short-circuits more naturally. 8417 auto OldStmts = std::move(Stmts.Stmts); 8418 Stmts.Stmts.clear(); 8419 ExprResult CmpSoFar; 8420 // Finish a particular comparison chain. 8421 auto FinishCmp = [&] { 8422 if (Expr *Prior = CmpSoFar.get()) { 8423 // Convert the last expression to 'return ...;' 8424 if (RetVal.isUnset() && Stmts.Stmts.empty()) 8425 RetVal = CmpSoFar; 8426 // Convert any prior comparison to 'if (!(...)) return false;' 8427 else if (Stmts.add(buildIfNotCondReturnFalse(Prior))) 8428 return true; 8429 CmpSoFar = ExprResult(); 8430 } 8431 return false; 8432 }; 8433 for (Stmt *EAsStmt : llvm::reverse(OldStmts)) { 8434 Expr *E = dyn_cast<Expr>(EAsStmt); 8435 if (!E) { 8436 // Found an array comparison. 8437 if (FinishCmp() || Stmts.add(EAsStmt)) 8438 return StmtError(); 8439 continue; 8440 } 8441 8442 if (CmpSoFar.isUnset()) { 8443 CmpSoFar = E; 8444 continue; 8445 } 8446 CmpSoFar = S.CreateBuiltinBinOp(Loc, BO_LAnd, E, CmpSoFar.get()); 8447 if (CmpSoFar.isInvalid()) 8448 return StmtError(); 8449 } 8450 if (FinishCmp()) 8451 return StmtError(); 8452 std::reverse(Stmts.Stmts.begin(), Stmts.Stmts.end()); 8453 // If no such index exists, V is true. 8454 if (RetVal.isUnset()) 8455 RetVal = S.ActOnCXXBoolLiteral(Loc, tok::kw_true); 8456 break; 8457 } 8458 8459 case DefaultedComparisonKind::ThreeWay: { 8460 // Per C++2a [class.spaceship]p3, as a fallback add: 8461 // return static_cast<R>(std::strong_ordering::equal); 8462 QualType StrongOrdering = S.CheckComparisonCategoryType( 8463 ComparisonCategoryType::StrongOrdering, Loc, 8464 Sema::ComparisonCategoryUsage::DefaultedOperator); 8465 if (StrongOrdering.isNull()) 8466 return StmtError(); 8467 VarDecl *EqualVD = S.Context.CompCategories.getInfoForType(StrongOrdering) 8468 .getValueInfo(ComparisonCategoryResult::Equal) 8469 ->VD; 8470 RetVal = getDecl(EqualVD); 8471 if (RetVal.isInvalid()) 8472 return StmtError(); 8473 RetVal = buildStaticCastToR(RetVal.get()); 8474 break; 8475 } 8476 8477 case DefaultedComparisonKind::NotEqual: 8478 case DefaultedComparisonKind::Relational: 8479 RetVal = cast<Expr>(Stmts.Stmts.pop_back_val()); 8480 break; 8481 } 8482 8483 // Build the final return statement. 8484 if (RetVal.isInvalid()) 8485 return StmtError(); 8486 StmtResult ReturnStmt = S.BuildReturnStmt(Loc, RetVal.get()); 8487 if (ReturnStmt.isInvalid()) 8488 return StmtError(); 8489 Stmts.Stmts.push_back(ReturnStmt.get()); 8490 8491 return S.ActOnCompoundStmt(Loc, Loc, Stmts.Stmts, /*IsStmtExpr=*/false); 8492 } 8493 8494 private: 8495 ExprResult getDecl(ValueDecl *VD) { 8496 return S.BuildDeclarationNameExpr( 8497 CXXScopeSpec(), DeclarationNameInfo(VD->getDeclName(), Loc), VD); 8498 } 8499 8500 ExprResult getParam(unsigned I) { 8501 ParmVarDecl *PD = FD->getParamDecl(I); 8502 return getDecl(PD); 8503 } 8504 8505 ExprPair getCompleteObject() { 8506 unsigned Param = 0; 8507 ExprResult LHS; 8508 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD); 8509 MD && MD->isImplicitObjectMemberFunction()) { 8510 // LHS is '*this'. 8511 LHS = S.ActOnCXXThis(Loc); 8512 if (!LHS.isInvalid()) 8513 LHS = S.CreateBuiltinUnaryOp(Loc, UO_Deref, LHS.get()); 8514 } else { 8515 LHS = getParam(Param++); 8516 } 8517 ExprResult RHS = getParam(Param++); 8518 assert(Param == FD->getNumParams()); 8519 return {LHS, RHS}; 8520 } 8521 8522 ExprPair getBase(CXXBaseSpecifier *Base) { 8523 ExprPair Obj = getCompleteObject(); 8524 if (Obj.first.isInvalid() || Obj.second.isInvalid()) 8525 return {ExprError(), ExprError()}; 8526 CXXCastPath Path = {Base}; 8527 const auto CastToBase = [&](Expr *E) { 8528 QualType ToType = S.Context.getQualifiedType( 8529 Base->getType(), E->getType().getQualifiers()); 8530 return S.ImpCastExprToType(E, ToType, CK_DerivedToBase, VK_LValue, &Path); 8531 }; 8532 return {CastToBase(Obj.first.get()), CastToBase(Obj.second.get())}; 8533 } 8534 8535 ExprPair getField(FieldDecl *Field) { 8536 ExprPair Obj = getCompleteObject(); 8537 if (Obj.first.isInvalid() || Obj.second.isInvalid()) 8538 return {ExprError(), ExprError()}; 8539 8540 DeclAccessPair Found = DeclAccessPair::make(Field, Field->getAccess()); 8541 DeclarationNameInfo NameInfo(Field->getDeclName(), Loc); 8542 return {S.BuildFieldReferenceExpr(Obj.first.get(), /*IsArrow=*/false, Loc, 8543 CXXScopeSpec(), Field, Found, NameInfo), 8544 S.BuildFieldReferenceExpr(Obj.second.get(), /*IsArrow=*/false, Loc, 8545 CXXScopeSpec(), Field, Found, NameInfo)}; 8546 } 8547 8548 // FIXME: When expanding a subobject, register a note in the code synthesis 8549 // stack to say which subobject we're comparing. 8550 8551 StmtResult buildIfNotCondReturnFalse(ExprResult Cond) { 8552 if (Cond.isInvalid()) 8553 return StmtError(); 8554 8555 ExprResult NotCond = S.CreateBuiltinUnaryOp(Loc, UO_LNot, Cond.get()); 8556 if (NotCond.isInvalid()) 8557 return StmtError(); 8558 8559 ExprResult False = S.ActOnCXXBoolLiteral(Loc, tok::kw_false); 8560 assert(!False.isInvalid() && "should never fail"); 8561 StmtResult ReturnFalse = S.BuildReturnStmt(Loc, False.get()); 8562 if (ReturnFalse.isInvalid()) 8563 return StmtError(); 8564 8565 return S.ActOnIfStmt(Loc, IfStatementKind::Ordinary, Loc, nullptr, 8566 S.ActOnCondition(nullptr, Loc, NotCond.get(), 8567 Sema::ConditionKind::Boolean), 8568 Loc, ReturnFalse.get(), SourceLocation(), nullptr); 8569 } 8570 8571 StmtResult visitSubobjectArray(QualType Type, llvm::APInt Size, 8572 ExprPair Subobj) { 8573 QualType SizeType = S.Context.getSizeType(); 8574 Size = Size.zextOrTrunc(S.Context.getTypeSize(SizeType)); 8575 8576 // Build 'size_t i$n = 0'. 8577 IdentifierInfo *IterationVarName = nullptr; 8578 { 8579 SmallString<8> Str; 8580 llvm::raw_svector_ostream OS(Str); 8581 OS << "i" << ArrayDepth; 8582 IterationVarName = &S.Context.Idents.get(OS.str()); 8583 } 8584 VarDecl *IterationVar = VarDecl::Create( 8585 S.Context, S.CurContext, Loc, Loc, IterationVarName, SizeType, 8586 S.Context.getTrivialTypeSourceInfo(SizeType, Loc), SC_None); 8587 llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0); 8588 IterationVar->setInit( 8589 IntegerLiteral::Create(S.Context, Zero, SizeType, Loc)); 8590 Stmt *Init = new (S.Context) DeclStmt(DeclGroupRef(IterationVar), Loc, Loc); 8591 8592 auto IterRef = [&] { 8593 ExprResult Ref = S.BuildDeclarationNameExpr( 8594 CXXScopeSpec(), DeclarationNameInfo(IterationVarName, Loc), 8595 IterationVar); 8596 assert(!Ref.isInvalid() && "can't reference our own variable?"); 8597 return Ref.get(); 8598 }; 8599 8600 // Build 'i$n != Size'. 8601 ExprResult Cond = S.CreateBuiltinBinOp( 8602 Loc, BO_NE, IterRef(), 8603 IntegerLiteral::Create(S.Context, Size, SizeType, Loc)); 8604 assert(!Cond.isInvalid() && "should never fail"); 8605 8606 // Build '++i$n'. 8607 ExprResult Inc = S.CreateBuiltinUnaryOp(Loc, UO_PreInc, IterRef()); 8608 assert(!Inc.isInvalid() && "should never fail"); 8609 8610 // Build 'a[i$n]' and 'b[i$n]'. 8611 auto Index = [&](ExprResult E) { 8612 if (E.isInvalid()) 8613 return ExprError(); 8614 return S.CreateBuiltinArraySubscriptExpr(E.get(), Loc, IterRef(), Loc); 8615 }; 8616 Subobj.first = Index(Subobj.first); 8617 Subobj.second = Index(Subobj.second); 8618 8619 // Compare the array elements. 8620 ++ArrayDepth; 8621 StmtResult Substmt = visitSubobject(Type, Subobj); 8622 --ArrayDepth; 8623 8624 if (Substmt.isInvalid()) 8625 return StmtError(); 8626 8627 // For the inner level of an 'operator==', build 'if (!cmp) return false;'. 8628 // For outer levels or for an 'operator<=>' we already have a suitable 8629 // statement that returns as necessary. 8630 if (Expr *ElemCmp = dyn_cast<Expr>(Substmt.get())) { 8631 assert(DCK == DefaultedComparisonKind::Equal && 8632 "should have non-expression statement"); 8633 Substmt = buildIfNotCondReturnFalse(ElemCmp); 8634 if (Substmt.isInvalid()) 8635 return StmtError(); 8636 } 8637 8638 // Build 'for (...) ...' 8639 return S.ActOnForStmt(Loc, Loc, Init, 8640 S.ActOnCondition(nullptr, Loc, Cond.get(), 8641 Sema::ConditionKind::Boolean), 8642 S.MakeFullDiscardedValueExpr(Inc.get()), Loc, 8643 Substmt.get()); 8644 } 8645 8646 StmtResult visitExpandedSubobject(QualType Type, ExprPair Obj) { 8647 if (Obj.first.isInvalid() || Obj.second.isInvalid()) 8648 return StmtError(); 8649 8650 OverloadedOperatorKind OO = FD->getOverloadedOperator(); 8651 BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(OO); 8652 ExprResult Op; 8653 if (Type->isOverloadableType()) 8654 Op = S.CreateOverloadedBinOp(Loc, Opc, Fns, Obj.first.get(), 8655 Obj.second.get(), /*PerformADL=*/true, 8656 /*AllowRewrittenCandidates=*/true, FD); 8657 else 8658 Op = S.CreateBuiltinBinOp(Loc, Opc, Obj.first.get(), Obj.second.get()); 8659 if (Op.isInvalid()) 8660 return StmtError(); 8661 8662 switch (DCK) { 8663 case DefaultedComparisonKind::None: 8664 llvm_unreachable("not a defaulted comparison"); 8665 8666 case DefaultedComparisonKind::Equal: 8667 // Per C++2a [class.eq]p2, each comparison is individually contextually 8668 // converted to bool. 8669 Op = S.PerformContextuallyConvertToBool(Op.get()); 8670 if (Op.isInvalid()) 8671 return StmtError(); 8672 return Op.get(); 8673 8674 case DefaultedComparisonKind::ThreeWay: { 8675 // Per C++2a [class.spaceship]p3, form: 8676 // if (R cmp = static_cast<R>(op); cmp != 0) 8677 // return cmp; 8678 QualType R = FD->getReturnType(); 8679 Op = buildStaticCastToR(Op.get()); 8680 if (Op.isInvalid()) 8681 return StmtError(); 8682 8683 // R cmp = ...; 8684 IdentifierInfo *Name = &S.Context.Idents.get("cmp"); 8685 VarDecl *VD = 8686 VarDecl::Create(S.Context, S.CurContext, Loc, Loc, Name, R, 8687 S.Context.getTrivialTypeSourceInfo(R, Loc), SC_None); 8688 S.AddInitializerToDecl(VD, Op.get(), /*DirectInit=*/false); 8689 Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(VD), Loc, Loc); 8690 8691 // cmp != 0 8692 ExprResult VDRef = getDecl(VD); 8693 if (VDRef.isInvalid()) 8694 return StmtError(); 8695 llvm::APInt ZeroVal(S.Context.getIntWidth(S.Context.IntTy), 0); 8696 Expr *Zero = 8697 IntegerLiteral::Create(S.Context, ZeroVal, S.Context.IntTy, Loc); 8698 ExprResult Comp; 8699 if (VDRef.get()->getType()->isOverloadableType()) 8700 Comp = S.CreateOverloadedBinOp(Loc, BO_NE, Fns, VDRef.get(), Zero, true, 8701 true, FD); 8702 else 8703 Comp = S.CreateBuiltinBinOp(Loc, BO_NE, VDRef.get(), Zero); 8704 if (Comp.isInvalid()) 8705 return StmtError(); 8706 Sema::ConditionResult Cond = S.ActOnCondition( 8707 nullptr, Loc, Comp.get(), Sema::ConditionKind::Boolean); 8708 if (Cond.isInvalid()) 8709 return StmtError(); 8710 8711 // return cmp; 8712 VDRef = getDecl(VD); 8713 if (VDRef.isInvalid()) 8714 return StmtError(); 8715 StmtResult ReturnStmt = S.BuildReturnStmt(Loc, VDRef.get()); 8716 if (ReturnStmt.isInvalid()) 8717 return StmtError(); 8718 8719 // if (...) 8720 return S.ActOnIfStmt(Loc, IfStatementKind::Ordinary, Loc, InitStmt, Cond, 8721 Loc, ReturnStmt.get(), 8722 /*ElseLoc=*/SourceLocation(), /*Else=*/nullptr); 8723 } 8724 8725 case DefaultedComparisonKind::NotEqual: 8726 case DefaultedComparisonKind::Relational: 8727 // C++2a [class.compare.secondary]p2: 8728 // Otherwise, the operator function yields x @ y. 8729 return Op.get(); 8730 } 8731 llvm_unreachable(""); 8732 } 8733 8734 /// Build "static_cast<R>(E)". 8735 ExprResult buildStaticCastToR(Expr *E) { 8736 QualType R = FD->getReturnType(); 8737 assert(!R->isUndeducedType() && "type should have been deduced already"); 8738 8739 // Don't bother forming a no-op cast in the common case. 8740 if (E->isPRValue() && S.Context.hasSameType(E->getType(), R)) 8741 return E; 8742 return S.BuildCXXNamedCast(Loc, tok::kw_static_cast, 8743 S.Context.getTrivialTypeSourceInfo(R, Loc), E, 8744 SourceRange(Loc, Loc), SourceRange(Loc, Loc)); 8745 } 8746 }; 8747 } 8748 8749 /// Perform the unqualified lookups that might be needed to form a defaulted 8750 /// comparison function for the given operator. 8751 static void lookupOperatorsForDefaultedComparison(Sema &Self, Scope *S, 8752 UnresolvedSetImpl &Operators, 8753 OverloadedOperatorKind Op) { 8754 auto Lookup = [&](OverloadedOperatorKind OO) { 8755 Self.LookupOverloadedOperatorName(OO, S, Operators); 8756 }; 8757 8758 // Every defaulted operator looks up itself. 8759 Lookup(Op); 8760 // ... and the rewritten form of itself, if any. 8761 if (OverloadedOperatorKind ExtraOp = getRewrittenOverloadedOperator(Op)) 8762 Lookup(ExtraOp); 8763 8764 // For 'operator<=>', we also form a 'cmp != 0' expression, and might 8765 // synthesize a three-way comparison from '<' and '=='. In a dependent 8766 // context, we also need to look up '==' in case we implicitly declare a 8767 // defaulted 'operator=='. 8768 if (Op == OO_Spaceship) { 8769 Lookup(OO_ExclaimEqual); 8770 Lookup(OO_Less); 8771 Lookup(OO_EqualEqual); 8772 } 8773 } 8774 8775 bool Sema::CheckExplicitlyDefaultedComparison(Scope *S, FunctionDecl *FD, 8776 DefaultedComparisonKind DCK) { 8777 assert(DCK != DefaultedComparisonKind::None && "not a defaulted comparison"); 8778 8779 // Perform any unqualified lookups we're going to need to default this 8780 // function. 8781 if (S) { 8782 UnresolvedSet<32> Operators; 8783 lookupOperatorsForDefaultedComparison(*this, S, Operators, 8784 FD->getOverloadedOperator()); 8785 FD->setDefaultedOrDeletedInfo( 8786 FunctionDecl::DefaultedOrDeletedFunctionInfo::Create( 8787 Context, Operators.pairs())); 8788 } 8789 8790 // C++2a [class.compare.default]p1: 8791 // A defaulted comparison operator function for some class C shall be a 8792 // non-template function declared in the member-specification of C that is 8793 // -- a non-static const non-volatile member of C having one parameter of 8794 // type const C& and either no ref-qualifier or the ref-qualifier &, or 8795 // -- a friend of C having two parameters of type const C& or two 8796 // parameters of type C. 8797 8798 CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(FD->getLexicalDeclContext()); 8799 bool IsMethod = isa<CXXMethodDecl>(FD); 8800 if (IsMethod) { 8801 auto *MD = cast<CXXMethodDecl>(FD); 8802 assert(!MD->isStatic() && "comparison function cannot be a static member"); 8803 8804 if (MD->getRefQualifier() == RQ_RValue) { 8805 Diag(MD->getLocation(), diag::err_ref_qualifier_comparison_operator); 8806 8807 // Remove the ref qualifier to recover. 8808 const auto *FPT = MD->getType()->castAs<FunctionProtoType>(); 8809 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 8810 EPI.RefQualifier = RQ_None; 8811 MD->setType(Context.getFunctionType(FPT->getReturnType(), 8812 FPT->getParamTypes(), EPI)); 8813 } 8814 8815 // If we're out-of-class, this is the class we're comparing. 8816 if (!RD) 8817 RD = MD->getParent(); 8818 QualType T = MD->getFunctionObjectParameterReferenceType(); 8819 if (!T.getNonReferenceType().isConstQualified() && 8820 (MD->isImplicitObjectMemberFunction() || T->isLValueReferenceType())) { 8821 SourceLocation Loc, InsertLoc; 8822 if (MD->isExplicitObjectMemberFunction()) { 8823 Loc = MD->getParamDecl(0)->getBeginLoc(); 8824 InsertLoc = getLocForEndOfToken( 8825 MD->getParamDecl(0)->getExplicitObjectParamThisLoc()); 8826 } else { 8827 Loc = MD->getLocation(); 8828 if (FunctionTypeLoc Loc = MD->getFunctionTypeLoc()) 8829 InsertLoc = Loc.getRParenLoc(); 8830 } 8831 // Don't diagnose an implicit 'operator=='; we will have diagnosed the 8832 // corresponding defaulted 'operator<=>' already. 8833 if (!MD->isImplicit()) { 8834 Diag(Loc, diag::err_defaulted_comparison_non_const) 8835 << (int)DCK << FixItHint::CreateInsertion(InsertLoc, " const"); 8836 } 8837 8838 // Add the 'const' to the type to recover. 8839 if (MD->isExplicitObjectMemberFunction()) { 8840 assert(T->isLValueReferenceType()); 8841 MD->getParamDecl(0)->setType(Context.getLValueReferenceType( 8842 T.getNonReferenceType().withConst())); 8843 } else { 8844 const auto *FPT = MD->getType()->castAs<FunctionProtoType>(); 8845 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 8846 EPI.TypeQuals.addConst(); 8847 MD->setType(Context.getFunctionType(FPT->getReturnType(), 8848 FPT->getParamTypes(), EPI)); 8849 } 8850 } 8851 8852 if (MD->isVolatile()) { 8853 Diag(MD->getLocation(), diag::err_volatile_comparison_operator); 8854 8855 // Remove the 'volatile' from the type to recover. 8856 const auto *FPT = MD->getType()->castAs<FunctionProtoType>(); 8857 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 8858 EPI.TypeQuals.removeVolatile(); 8859 MD->setType(Context.getFunctionType(FPT->getReturnType(), 8860 FPT->getParamTypes(), EPI)); 8861 } 8862 } 8863 8864 if ((FD->getNumParams() - 8865 (unsigned)FD->hasCXXExplicitFunctionObjectParameter()) != 8866 (IsMethod ? 1 : 2)) { 8867 // Let's not worry about using a variadic template pack here -- who would do 8868 // such a thing? 8869 Diag(FD->getLocation(), diag::err_defaulted_comparison_num_args) 8870 << int(IsMethod) << int(DCK); 8871 return true; 8872 } 8873 8874 const ParmVarDecl *KnownParm = nullptr; 8875 for (const ParmVarDecl *Param : FD->parameters()) { 8876 QualType ParmTy = Param->getType(); 8877 if (!KnownParm) { 8878 auto CTy = ParmTy; 8879 // Is it `T const &`? 8880 bool Ok = !IsMethod || FD->hasCXXExplicitFunctionObjectParameter(); 8881 QualType ExpectedTy; 8882 if (RD) 8883 ExpectedTy = Context.getRecordType(RD); 8884 if (auto *Ref = CTy->getAs<LValueReferenceType>()) { 8885 CTy = Ref->getPointeeType(); 8886 if (RD) 8887 ExpectedTy.addConst(); 8888 Ok = true; 8889 } 8890 8891 // Is T a class? 8892 if (RD) { 8893 Ok &= RD->isDependentType() || Context.hasSameType(CTy, ExpectedTy); 8894 } else { 8895 RD = CTy->getAsCXXRecordDecl(); 8896 Ok &= RD != nullptr; 8897 } 8898 8899 if (Ok) { 8900 KnownParm = Param; 8901 } else { 8902 // Don't diagnose an implicit 'operator=='; we will have diagnosed the 8903 // corresponding defaulted 'operator<=>' already. 8904 if (!FD->isImplicit()) { 8905 if (RD) { 8906 QualType PlainTy = Context.getRecordType(RD); 8907 QualType RefTy = 8908 Context.getLValueReferenceType(PlainTy.withConst()); 8909 Diag(FD->getLocation(), diag::err_defaulted_comparison_param) 8910 << int(DCK) << ParmTy << RefTy << int(!IsMethod) << PlainTy 8911 << Param->getSourceRange(); 8912 } else { 8913 assert(!IsMethod && "should know expected type for method"); 8914 Diag(FD->getLocation(), 8915 diag::err_defaulted_comparison_param_unknown) 8916 << int(DCK) << ParmTy << Param->getSourceRange(); 8917 } 8918 } 8919 return true; 8920 } 8921 } else if (!Context.hasSameType(KnownParm->getType(), ParmTy)) { 8922 Diag(FD->getLocation(), diag::err_defaulted_comparison_param_mismatch) 8923 << int(DCK) << KnownParm->getType() << KnownParm->getSourceRange() 8924 << ParmTy << Param->getSourceRange(); 8925 return true; 8926 } 8927 } 8928 8929 assert(RD && "must have determined class"); 8930 if (IsMethod) { 8931 } else if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 8932 // In-class, must be a friend decl. 8933 assert(FD->getFriendObjectKind() && "expected a friend declaration"); 8934 } else { 8935 // Out of class, require the defaulted comparison to be a friend (of a 8936 // complete type, per CWG2547). 8937 if (RequireCompleteType(FD->getLocation(), Context.getRecordType(RD), 8938 diag::err_defaulted_comparison_not_friend, int(DCK), 8939 int(1))) 8940 return true; 8941 8942 if (llvm::none_of(RD->friends(), [&](const FriendDecl *F) { 8943 return FD->getCanonicalDecl() == 8944 F->getFriendDecl()->getCanonicalDecl(); 8945 })) { 8946 Diag(FD->getLocation(), diag::err_defaulted_comparison_not_friend) 8947 << int(DCK) << int(0) << RD; 8948 Diag(RD->getCanonicalDecl()->getLocation(), diag::note_declared_at); 8949 return true; 8950 } 8951 } 8952 8953 // C++2a [class.eq]p1, [class.rel]p1: 8954 // A [defaulted comparison other than <=>] shall have a declared return 8955 // type bool. 8956 if (DCK != DefaultedComparisonKind::ThreeWay && 8957 !FD->getDeclaredReturnType()->isDependentType() && 8958 !Context.hasSameType(FD->getDeclaredReturnType(), Context.BoolTy)) { 8959 Diag(FD->getLocation(), diag::err_defaulted_comparison_return_type_not_bool) 8960 << (int)DCK << FD->getDeclaredReturnType() << Context.BoolTy 8961 << FD->getReturnTypeSourceRange(); 8962 return true; 8963 } 8964 // C++2a [class.spaceship]p2 [P2002R0]: 8965 // Let R be the declared return type [...]. If R is auto, [...]. Otherwise, 8966 // R shall not contain a placeholder type. 8967 if (QualType RT = FD->getDeclaredReturnType(); 8968 DCK == DefaultedComparisonKind::ThreeWay && 8969 RT->getContainedDeducedType() && 8970 (!Context.hasSameType(RT, Context.getAutoDeductType()) || 8971 RT->getContainedAutoType()->isConstrained())) { 8972 Diag(FD->getLocation(), 8973 diag::err_defaulted_comparison_deduced_return_type_not_auto) 8974 << (int)DCK << FD->getDeclaredReturnType() << Context.AutoDeductTy 8975 << FD->getReturnTypeSourceRange(); 8976 return true; 8977 } 8978 8979 // For a defaulted function in a dependent class, defer all remaining checks 8980 // until instantiation. 8981 if (RD->isDependentType()) 8982 return false; 8983 8984 // Determine whether the function should be defined as deleted. 8985 DefaultedComparisonInfo Info = 8986 DefaultedComparisonAnalyzer(*this, RD, FD, DCK).visit(); 8987 8988 bool First = FD == FD->getCanonicalDecl(); 8989 8990 if (!First) { 8991 if (Info.Deleted) { 8992 // C++11 [dcl.fct.def.default]p4: 8993 // [For a] user-provided explicitly-defaulted function [...] if such a 8994 // function is implicitly defined as deleted, the program is ill-formed. 8995 // 8996 // This is really just a consequence of the general rule that you can 8997 // only delete a function on its first declaration. 8998 Diag(FD->getLocation(), diag::err_non_first_default_compare_deletes) 8999 << FD->isImplicit() << (int)DCK; 9000 DefaultedComparisonAnalyzer(*this, RD, FD, DCK, 9001 DefaultedComparisonAnalyzer::ExplainDeleted) 9002 .visit(); 9003 return true; 9004 } 9005 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 9006 // C++20 [class.compare.default]p1: 9007 // [...] A definition of a comparison operator as defaulted that appears 9008 // in a class shall be the first declaration of that function. 9009 Diag(FD->getLocation(), diag::err_non_first_default_compare_in_class) 9010 << (int)DCK; 9011 Diag(FD->getCanonicalDecl()->getLocation(), 9012 diag::note_previous_declaration); 9013 return true; 9014 } 9015 } 9016 9017 // If we want to delete the function, then do so; there's nothing else to 9018 // check in that case. 9019 if (Info.Deleted) { 9020 SetDeclDeleted(FD, FD->getLocation()); 9021 if (!inTemplateInstantiation() && !FD->isImplicit()) { 9022 Diag(FD->getLocation(), diag::warn_defaulted_comparison_deleted) 9023 << (int)DCK; 9024 DefaultedComparisonAnalyzer(*this, RD, FD, DCK, 9025 DefaultedComparisonAnalyzer::ExplainDeleted) 9026 .visit(); 9027 if (FD->getDefaultLoc().isValid()) 9028 Diag(FD->getDefaultLoc(), diag::note_replace_equals_default_to_delete) 9029 << FixItHint::CreateReplacement(FD->getDefaultLoc(), "delete"); 9030 } 9031 return false; 9032 } 9033 9034 // C++2a [class.spaceship]p2: 9035 // The return type is deduced as the common comparison type of R0, R1, ... 9036 if (DCK == DefaultedComparisonKind::ThreeWay && 9037 FD->getDeclaredReturnType()->isUndeducedAutoType()) { 9038 SourceLocation RetLoc = FD->getReturnTypeSourceRange().getBegin(); 9039 if (RetLoc.isInvalid()) 9040 RetLoc = FD->getBeginLoc(); 9041 // FIXME: Should we really care whether we have the complete type and the 9042 // 'enumerator' constants here? A forward declaration seems sufficient. 9043 QualType Cat = CheckComparisonCategoryType( 9044 Info.Category, RetLoc, ComparisonCategoryUsage::DefaultedOperator); 9045 if (Cat.isNull()) 9046 return true; 9047 Context.adjustDeducedFunctionResultType( 9048 FD, SubstAutoType(FD->getDeclaredReturnType(), Cat)); 9049 } 9050 9051 // C++2a [dcl.fct.def.default]p3 [P2002R0]: 9052 // An explicitly-defaulted function that is not defined as deleted may be 9053 // declared constexpr or consteval only if it is constexpr-compatible. 9054 // C++2a [class.compare.default]p3 [P2002R0]: 9055 // A defaulted comparison function is constexpr-compatible if it satisfies 9056 // the requirements for a constexpr function [...] 9057 // The only relevant requirements are that the parameter and return types are 9058 // literal types. The remaining conditions are checked by the analyzer. 9059 // 9060 // We support P2448R2 in language modes earlier than C++23 as an extension. 9061 // The concept of constexpr-compatible was removed. 9062 // C++23 [dcl.fct.def.default]p3 [P2448R2] 9063 // A function explicitly defaulted on its first declaration is implicitly 9064 // inline, and is implicitly constexpr if it is constexpr-suitable. 9065 // C++23 [dcl.constexpr]p3 9066 // A function is constexpr-suitable if 9067 // - it is not a coroutine, and 9068 // - if the function is a constructor or destructor, its class does not 9069 // have any virtual base classes. 9070 if (FD->isConstexpr()) { 9071 if (!getLangOpts().CPlusPlus23 && 9072 CheckConstexprReturnType(*this, FD, CheckConstexprKind::Diagnose) && 9073 CheckConstexprParameterTypes(*this, FD, CheckConstexprKind::Diagnose) && 9074 !Info.Constexpr) { 9075 Diag(FD->getBeginLoc(), diag::err_defaulted_comparison_constexpr_mismatch) 9076 << FD->isImplicit() << (int)DCK << FD->isConsteval(); 9077 DefaultedComparisonAnalyzer(*this, RD, FD, DCK, 9078 DefaultedComparisonAnalyzer::ExplainConstexpr) 9079 .visit(); 9080 } 9081 } 9082 9083 // C++2a [dcl.fct.def.default]p3 [P2002R0]: 9084 // If a constexpr-compatible function is explicitly defaulted on its first 9085 // declaration, it is implicitly considered to be constexpr. 9086 // FIXME: Only applying this to the first declaration seems problematic, as 9087 // simple reorderings can affect the meaning of the program. 9088 if (First && !FD->isConstexpr() && Info.Constexpr) 9089 FD->setConstexprKind(ConstexprSpecKind::Constexpr); 9090 9091 // C++2a [except.spec]p3: 9092 // If a declaration of a function does not have a noexcept-specifier 9093 // [and] is defaulted on its first declaration, [...] the exception 9094 // specification is as specified below 9095 if (FD->getExceptionSpecType() == EST_None) { 9096 auto *FPT = FD->getType()->castAs<FunctionProtoType>(); 9097 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 9098 EPI.ExceptionSpec.Type = EST_Unevaluated; 9099 EPI.ExceptionSpec.SourceDecl = FD; 9100 FD->setType(Context.getFunctionType(FPT->getReturnType(), 9101 FPT->getParamTypes(), EPI)); 9102 } 9103 9104 return false; 9105 } 9106 9107 void Sema::DeclareImplicitEqualityComparison(CXXRecordDecl *RD, 9108 FunctionDecl *Spaceship) { 9109 Sema::CodeSynthesisContext Ctx; 9110 Ctx.Kind = Sema::CodeSynthesisContext::DeclaringImplicitEqualityComparison; 9111 Ctx.PointOfInstantiation = Spaceship->getEndLoc(); 9112 Ctx.Entity = Spaceship; 9113 pushCodeSynthesisContext(Ctx); 9114 9115 if (FunctionDecl *EqualEqual = SubstSpaceshipAsEqualEqual(RD, Spaceship)) 9116 EqualEqual->setImplicit(); 9117 9118 popCodeSynthesisContext(); 9119 } 9120 9121 void Sema::DefineDefaultedComparison(SourceLocation UseLoc, FunctionDecl *FD, 9122 DefaultedComparisonKind DCK) { 9123 assert(FD->isDefaulted() && !FD->isDeleted() && 9124 !FD->doesThisDeclarationHaveABody()); 9125 if (FD->willHaveBody() || FD->isInvalidDecl()) 9126 return; 9127 9128 SynthesizedFunctionScope Scope(*this, FD); 9129 9130 // Add a context note for diagnostics produced after this point. 9131 Scope.addContextNote(UseLoc); 9132 9133 { 9134 // Build and set up the function body. 9135 // The first parameter has type maybe-ref-to maybe-const T, use that to get 9136 // the type of the class being compared. 9137 auto PT = FD->getParamDecl(0)->getType(); 9138 CXXRecordDecl *RD = PT.getNonReferenceType()->getAsCXXRecordDecl(); 9139 SourceLocation BodyLoc = 9140 FD->getEndLoc().isValid() ? FD->getEndLoc() : FD->getLocation(); 9141 StmtResult Body = 9142 DefaultedComparisonSynthesizer(*this, RD, FD, DCK, BodyLoc).build(); 9143 if (Body.isInvalid()) { 9144 FD->setInvalidDecl(); 9145 return; 9146 } 9147 FD->setBody(Body.get()); 9148 FD->markUsed(Context); 9149 } 9150 9151 // The exception specification is needed because we are defining the 9152 // function. Note that this will reuse the body we just built. 9153 ResolveExceptionSpec(UseLoc, FD->getType()->castAs<FunctionProtoType>()); 9154 9155 if (ASTMutationListener *L = getASTMutationListener()) 9156 L->CompletedImplicitDefinition(FD); 9157 } 9158 9159 static Sema::ImplicitExceptionSpecification 9160 ComputeDefaultedComparisonExceptionSpec(Sema &S, SourceLocation Loc, 9161 FunctionDecl *FD, 9162 Sema::DefaultedComparisonKind DCK) { 9163 ComputingExceptionSpec CES(S, FD, Loc); 9164 Sema::ImplicitExceptionSpecification ExceptSpec(S); 9165 9166 if (FD->isInvalidDecl()) 9167 return ExceptSpec; 9168 9169 // The common case is that we just defined the comparison function. In that 9170 // case, just look at whether the body can throw. 9171 if (FD->hasBody()) { 9172 ExceptSpec.CalledStmt(FD->getBody()); 9173 } else { 9174 // Otherwise, build a body so we can check it. This should ideally only 9175 // happen when we're not actually marking the function referenced. (This is 9176 // only really important for efficiency: we don't want to build and throw 9177 // away bodies for comparison functions more than we strictly need to.) 9178 9179 // Pretend to synthesize the function body in an unevaluated context. 9180 // Note that we can't actually just go ahead and define the function here: 9181 // we are not permitted to mark its callees as referenced. 9182 Sema::SynthesizedFunctionScope Scope(S, FD); 9183 EnterExpressionEvaluationContext Context( 9184 S, Sema::ExpressionEvaluationContext::Unevaluated); 9185 9186 CXXRecordDecl *RD = 9187 cast<CXXRecordDecl>(FD->getFriendObjectKind() == Decl::FOK_None 9188 ? FD->getDeclContext() 9189 : FD->getLexicalDeclContext()); 9190 SourceLocation BodyLoc = 9191 FD->getEndLoc().isValid() ? FD->getEndLoc() : FD->getLocation(); 9192 StmtResult Body = 9193 DefaultedComparisonSynthesizer(S, RD, FD, DCK, BodyLoc).build(); 9194 if (!Body.isInvalid()) 9195 ExceptSpec.CalledStmt(Body.get()); 9196 9197 // FIXME: Can we hold onto this body and just transform it to potentially 9198 // evaluated when we're asked to define the function rather than rebuilding 9199 // it? Either that, or we should only build the bits of the body that we 9200 // need (the expressions, not the statements). 9201 } 9202 9203 return ExceptSpec; 9204 } 9205 9206 void Sema::CheckDelayedMemberExceptionSpecs() { 9207 decltype(DelayedOverridingExceptionSpecChecks) Overriding; 9208 decltype(DelayedEquivalentExceptionSpecChecks) Equivalent; 9209 9210 std::swap(Overriding, DelayedOverridingExceptionSpecChecks); 9211 std::swap(Equivalent, DelayedEquivalentExceptionSpecChecks); 9212 9213 // Perform any deferred checking of exception specifications for virtual 9214 // destructors. 9215 for (auto &Check : Overriding) 9216 CheckOverridingFunctionExceptionSpec(Check.first, Check.second); 9217 9218 // Perform any deferred checking of exception specifications for befriended 9219 // special members. 9220 for (auto &Check : Equivalent) 9221 CheckEquivalentExceptionSpec(Check.second, Check.first); 9222 } 9223 9224 namespace { 9225 /// CRTP base class for visiting operations performed by a special member 9226 /// function (or inherited constructor). 9227 template<typename Derived> 9228 struct SpecialMemberVisitor { 9229 Sema &S; 9230 CXXMethodDecl *MD; 9231 CXXSpecialMemberKind CSM; 9232 Sema::InheritedConstructorInfo *ICI; 9233 9234 // Properties of the special member, computed for convenience. 9235 bool IsConstructor = false, IsAssignment = false, ConstArg = false; 9236 9237 SpecialMemberVisitor(Sema &S, CXXMethodDecl *MD, CXXSpecialMemberKind CSM, 9238 Sema::InheritedConstructorInfo *ICI) 9239 : S(S), MD(MD), CSM(CSM), ICI(ICI) { 9240 switch (CSM) { 9241 case CXXSpecialMemberKind::DefaultConstructor: 9242 case CXXSpecialMemberKind::CopyConstructor: 9243 case CXXSpecialMemberKind::MoveConstructor: 9244 IsConstructor = true; 9245 break; 9246 case CXXSpecialMemberKind::CopyAssignment: 9247 case CXXSpecialMemberKind::MoveAssignment: 9248 IsAssignment = true; 9249 break; 9250 case CXXSpecialMemberKind::Destructor: 9251 break; 9252 case CXXSpecialMemberKind::Invalid: 9253 llvm_unreachable("invalid special member kind"); 9254 } 9255 9256 if (MD->getNumExplicitParams()) { 9257 if (const ReferenceType *RT = 9258 MD->getNonObjectParameter(0)->getType()->getAs<ReferenceType>()) 9259 ConstArg = RT->getPointeeType().isConstQualified(); 9260 } 9261 } 9262 9263 Derived &getDerived() { return static_cast<Derived&>(*this); } 9264 9265 /// Is this a "move" special member? 9266 bool isMove() const { 9267 return CSM == CXXSpecialMemberKind::MoveConstructor || 9268 CSM == CXXSpecialMemberKind::MoveAssignment; 9269 } 9270 9271 /// Look up the corresponding special member in the given class. 9272 Sema::SpecialMemberOverloadResult lookupIn(CXXRecordDecl *Class, 9273 unsigned Quals, bool IsMutable) { 9274 return lookupCallFromSpecialMember(S, Class, CSM, Quals, 9275 ConstArg && !IsMutable); 9276 } 9277 9278 /// Look up the constructor for the specified base class to see if it's 9279 /// overridden due to this being an inherited constructor. 9280 Sema::SpecialMemberOverloadResult lookupInheritedCtor(CXXRecordDecl *Class) { 9281 if (!ICI) 9282 return {}; 9283 assert(CSM == CXXSpecialMemberKind::DefaultConstructor); 9284 auto *BaseCtor = 9285 cast<CXXConstructorDecl>(MD)->getInheritedConstructor().getConstructor(); 9286 if (auto *MD = ICI->findConstructorForBase(Class, BaseCtor).first) 9287 return MD; 9288 return {}; 9289 } 9290 9291 /// A base or member subobject. 9292 typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject; 9293 9294 /// Get the location to use for a subobject in diagnostics. 9295 static SourceLocation getSubobjectLoc(Subobject Subobj) { 9296 // FIXME: For an indirect virtual base, the direct base leading to 9297 // the indirect virtual base would be a more useful choice. 9298 if (auto *B = dyn_cast<CXXBaseSpecifier *>(Subobj)) 9299 return B->getBaseTypeLoc(); 9300 else 9301 return cast<FieldDecl *>(Subobj)->getLocation(); 9302 } 9303 9304 enum BasesToVisit { 9305 /// Visit all non-virtual (direct) bases. 9306 VisitNonVirtualBases, 9307 /// Visit all direct bases, virtual or not. 9308 VisitDirectBases, 9309 /// Visit all non-virtual bases, and all virtual bases if the class 9310 /// is not abstract. 9311 VisitPotentiallyConstructedBases, 9312 /// Visit all direct or virtual bases. 9313 VisitAllBases 9314 }; 9315 9316 // Visit the bases and members of the class. 9317 bool visit(BasesToVisit Bases) { 9318 CXXRecordDecl *RD = MD->getParent(); 9319 9320 if (Bases == VisitPotentiallyConstructedBases) 9321 Bases = RD->isAbstract() ? VisitNonVirtualBases : VisitAllBases; 9322 9323 for (auto &B : RD->bases()) 9324 if ((Bases == VisitDirectBases || !B.isVirtual()) && 9325 getDerived().visitBase(&B)) 9326 return true; 9327 9328 if (Bases == VisitAllBases) 9329 for (auto &B : RD->vbases()) 9330 if (getDerived().visitBase(&B)) 9331 return true; 9332 9333 for (auto *F : RD->fields()) 9334 if (!F->isInvalidDecl() && !F->isUnnamedBitField() && 9335 getDerived().visitField(F)) 9336 return true; 9337 9338 return false; 9339 } 9340 }; 9341 } 9342 9343 namespace { 9344 struct SpecialMemberDeletionInfo 9345 : SpecialMemberVisitor<SpecialMemberDeletionInfo> { 9346 bool Diagnose; 9347 9348 SourceLocation Loc; 9349 9350 bool AllFieldsAreConst; 9351 9352 SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD, 9353 CXXSpecialMemberKind CSM, 9354 Sema::InheritedConstructorInfo *ICI, bool Diagnose) 9355 : SpecialMemberVisitor(S, MD, CSM, ICI), Diagnose(Diagnose), 9356 Loc(MD->getLocation()), AllFieldsAreConst(true) {} 9357 9358 bool inUnion() const { return MD->getParent()->isUnion(); } 9359 9360 CXXSpecialMemberKind getEffectiveCSM() { 9361 return ICI ? CXXSpecialMemberKind::Invalid : CSM; 9362 } 9363 9364 bool shouldDeleteForVariantObjCPtrMember(FieldDecl *FD, QualType FieldType); 9365 9366 bool visitBase(CXXBaseSpecifier *Base) { return shouldDeleteForBase(Base); } 9367 bool visitField(FieldDecl *Field) { return shouldDeleteForField(Field); } 9368 9369 bool shouldDeleteForBase(CXXBaseSpecifier *Base); 9370 bool shouldDeleteForField(FieldDecl *FD); 9371 bool shouldDeleteForAllConstMembers(); 9372 9373 bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj, 9374 unsigned Quals); 9375 bool shouldDeleteForSubobjectCall(Subobject Subobj, 9376 Sema::SpecialMemberOverloadResult SMOR, 9377 bool IsDtorCallInCtor); 9378 9379 bool isAccessible(Subobject Subobj, CXXMethodDecl *D); 9380 }; 9381 } 9382 9383 /// Is the given special member inaccessible when used on the given 9384 /// sub-object. 9385 bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj, 9386 CXXMethodDecl *target) { 9387 /// If we're operating on a base class, the object type is the 9388 /// type of this special member. 9389 QualType objectTy; 9390 AccessSpecifier access = target->getAccess(); 9391 if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) { 9392 objectTy = S.Context.getTypeDeclType(MD->getParent()); 9393 access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access); 9394 9395 // If we're operating on a field, the object type is the type of the field. 9396 } else { 9397 objectTy = S.Context.getTypeDeclType(target->getParent()); 9398 } 9399 9400 return S.isMemberAccessibleForDeletion( 9401 target->getParent(), DeclAccessPair::make(target, access), objectTy); 9402 } 9403 9404 /// Check whether we should delete a special member due to the implicit 9405 /// definition containing a call to a special member of a subobject. 9406 bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall( 9407 Subobject Subobj, Sema::SpecialMemberOverloadResult SMOR, 9408 bool IsDtorCallInCtor) { 9409 CXXMethodDecl *Decl = SMOR.getMethod(); 9410 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>(); 9411 9412 int DiagKind = -1; 9413 9414 if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted) 9415 DiagKind = !Decl ? 0 : 1; 9416 else if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous) 9417 DiagKind = 2; 9418 else if (!isAccessible(Subobj, Decl)) 9419 DiagKind = 3; 9420 else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() && 9421 !Decl->isTrivial()) { 9422 // A member of a union must have a trivial corresponding special member. 9423 // As a weird special case, a destructor call from a union's constructor 9424 // must be accessible and non-deleted, but need not be trivial. Such a 9425 // destructor is never actually called, but is semantically checked as 9426 // if it were. 9427 if (CSM == CXXSpecialMemberKind::DefaultConstructor) { 9428 // [class.default.ctor]p2: 9429 // A defaulted default constructor for class X is defined as deleted if 9430 // - X is a union that has a variant member with a non-trivial default 9431 // constructor and no variant member of X has a default member 9432 // initializer 9433 const auto *RD = cast<CXXRecordDecl>(Field->getParent()); 9434 if (!RD->hasInClassInitializer()) 9435 DiagKind = 4; 9436 } else { 9437 DiagKind = 4; 9438 } 9439 } 9440 9441 if (DiagKind == -1) 9442 return false; 9443 9444 if (Diagnose) { 9445 if (Field) { 9446 S.Diag(Field->getLocation(), 9447 diag::note_deleted_special_member_class_subobject) 9448 << llvm::to_underlying(getEffectiveCSM()) << MD->getParent() 9449 << /*IsField*/ true << Field << DiagKind << IsDtorCallInCtor 9450 << /*IsObjCPtr*/ false; 9451 } else { 9452 CXXBaseSpecifier *Base = cast<CXXBaseSpecifier *>(Subobj); 9453 S.Diag(Base->getBeginLoc(), 9454 diag::note_deleted_special_member_class_subobject) 9455 << llvm::to_underlying(getEffectiveCSM()) << MD->getParent() 9456 << /*IsField*/ false << Base->getType() << DiagKind 9457 << IsDtorCallInCtor << /*IsObjCPtr*/ false; 9458 } 9459 9460 if (DiagKind == 1) 9461 S.NoteDeletedFunction(Decl); 9462 // FIXME: Explain inaccessibility if DiagKind == 3. 9463 } 9464 9465 return true; 9466 } 9467 9468 /// Check whether we should delete a special member function due to having a 9469 /// direct or virtual base class or non-static data member of class type M. 9470 bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject( 9471 CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) { 9472 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>(); 9473 bool IsMutable = Field && Field->isMutable(); 9474 9475 // C++11 [class.ctor]p5: 9476 // -- any direct or virtual base class, or non-static data member with no 9477 // brace-or-equal-initializer, has class type M (or array thereof) and 9478 // either M has no default constructor or overload resolution as applied 9479 // to M's default constructor results in an ambiguity or in a function 9480 // that is deleted or inaccessible 9481 // C++11 [class.copy]p11, C++11 [class.copy]p23: 9482 // -- a direct or virtual base class B that cannot be copied/moved because 9483 // overload resolution, as applied to B's corresponding special member, 9484 // results in an ambiguity or a function that is deleted or inaccessible 9485 // from the defaulted special member 9486 // C++11 [class.dtor]p5: 9487 // -- any direct or virtual base class [...] has a type with a destructor 9488 // that is deleted or inaccessible 9489 if (!(CSM == CXXSpecialMemberKind::DefaultConstructor && Field && 9490 Field->hasInClassInitializer()) && 9491 shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable), 9492 false)) 9493 return true; 9494 9495 // C++11 [class.ctor]p5, C++11 [class.copy]p11: 9496 // -- any direct or virtual base class or non-static data member has a 9497 // type with a destructor that is deleted or inaccessible 9498 if (IsConstructor) { 9499 Sema::SpecialMemberOverloadResult SMOR = 9500 S.LookupSpecialMember(Class, CXXSpecialMemberKind::Destructor, false, 9501 false, false, false, false); 9502 if (shouldDeleteForSubobjectCall(Subobj, SMOR, true)) 9503 return true; 9504 } 9505 9506 return false; 9507 } 9508 9509 bool SpecialMemberDeletionInfo::shouldDeleteForVariantObjCPtrMember( 9510 FieldDecl *FD, QualType FieldType) { 9511 // The defaulted special functions are defined as deleted if this is a variant 9512 // member with a non-trivial ownership type, e.g., ObjC __strong or __weak 9513 // type under ARC. 9514 if (!FieldType.hasNonTrivialObjCLifetime()) 9515 return false; 9516 9517 // Don't make the defaulted default constructor defined as deleted if the 9518 // member has an in-class initializer. 9519 if (CSM == CXXSpecialMemberKind::DefaultConstructor && 9520 FD->hasInClassInitializer()) 9521 return false; 9522 9523 if (Diagnose) { 9524 auto *ParentClass = cast<CXXRecordDecl>(FD->getParent()); 9525 S.Diag(FD->getLocation(), diag::note_deleted_special_member_class_subobject) 9526 << llvm::to_underlying(getEffectiveCSM()) << ParentClass 9527 << /*IsField*/ true << FD << 4 << /*IsDtorCallInCtor*/ false 9528 << /*IsObjCPtr*/ true; 9529 } 9530 9531 return true; 9532 } 9533 9534 /// Check whether we should delete a special member function due to the class 9535 /// having a particular direct or virtual base class. 9536 bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) { 9537 CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl(); 9538 // If program is correct, BaseClass cannot be null, but if it is, the error 9539 // must be reported elsewhere. 9540 if (!BaseClass) 9541 return false; 9542 // If we have an inheriting constructor, check whether we're calling an 9543 // inherited constructor instead of a default constructor. 9544 Sema::SpecialMemberOverloadResult SMOR = lookupInheritedCtor(BaseClass); 9545 if (auto *BaseCtor = SMOR.getMethod()) { 9546 // Note that we do not check access along this path; other than that, 9547 // this is the same as shouldDeleteForSubobjectCall(Base, BaseCtor, false); 9548 // FIXME: Check that the base has a usable destructor! Sink this into 9549 // shouldDeleteForClassSubobject. 9550 if (BaseCtor->isDeleted() && Diagnose) { 9551 S.Diag(Base->getBeginLoc(), 9552 diag::note_deleted_special_member_class_subobject) 9553 << llvm::to_underlying(getEffectiveCSM()) << MD->getParent() 9554 << /*IsField*/ false << Base->getType() << /*Deleted*/ 1 9555 << /*IsDtorCallInCtor*/ false << /*IsObjCPtr*/ false; 9556 S.NoteDeletedFunction(BaseCtor); 9557 } 9558 return BaseCtor->isDeleted(); 9559 } 9560 return shouldDeleteForClassSubobject(BaseClass, Base, 0); 9561 } 9562 9563 /// Check whether we should delete a special member function due to the class 9564 /// having a particular non-static data member. 9565 bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) { 9566 QualType FieldType = S.Context.getBaseElementType(FD->getType()); 9567 CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl(); 9568 9569 if (inUnion() && shouldDeleteForVariantObjCPtrMember(FD, FieldType)) 9570 return true; 9571 9572 if (CSM == CXXSpecialMemberKind::DefaultConstructor) { 9573 // For a default constructor, all references must be initialized in-class 9574 // and, if a union, it must have a non-const member. 9575 if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) { 9576 if (Diagnose) 9577 S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field) 9578 << !!ICI << MD->getParent() << FD << FieldType << /*Reference*/0; 9579 return true; 9580 } 9581 // C++11 [class.ctor]p5 (modified by DR2394): any non-variant non-static 9582 // data member of const-qualified type (or array thereof) with no 9583 // brace-or-equal-initializer is not const-default-constructible. 9584 if (!inUnion() && FieldType.isConstQualified() && 9585 !FD->hasInClassInitializer() && 9586 (!FieldRecord || !FieldRecord->allowConstDefaultInit())) { 9587 if (Diagnose) 9588 S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field) 9589 << !!ICI << MD->getParent() << FD << FD->getType() << /*Const*/1; 9590 return true; 9591 } 9592 9593 if (inUnion() && !FieldType.isConstQualified()) 9594 AllFieldsAreConst = false; 9595 } else if (CSM == CXXSpecialMemberKind::CopyConstructor) { 9596 // For a copy constructor, data members must not be of rvalue reference 9597 // type. 9598 if (FieldType->isRValueReferenceType()) { 9599 if (Diagnose) 9600 S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference) 9601 << MD->getParent() << FD << FieldType; 9602 return true; 9603 } 9604 } else if (IsAssignment) { 9605 // For an assignment operator, data members must not be of reference type. 9606 if (FieldType->isReferenceType()) { 9607 if (Diagnose) 9608 S.Diag(FD->getLocation(), diag::note_deleted_assign_field) 9609 << isMove() << MD->getParent() << FD << FieldType << /*Reference*/0; 9610 return true; 9611 } 9612 if (!FieldRecord && FieldType.isConstQualified()) { 9613 // C++11 [class.copy]p23: 9614 // -- a non-static data member of const non-class type (or array thereof) 9615 if (Diagnose) 9616 S.Diag(FD->getLocation(), diag::note_deleted_assign_field) 9617 << isMove() << MD->getParent() << FD << FD->getType() << /*Const*/1; 9618 return true; 9619 } 9620 } 9621 9622 if (FieldRecord) { 9623 // Some additional restrictions exist on the variant members. 9624 if (!inUnion() && FieldRecord->isUnion() && 9625 FieldRecord->isAnonymousStructOrUnion()) { 9626 bool AllVariantFieldsAreConst = true; 9627 9628 // FIXME: Handle anonymous unions declared within anonymous unions. 9629 for (auto *UI : FieldRecord->fields()) { 9630 QualType UnionFieldType = S.Context.getBaseElementType(UI->getType()); 9631 9632 if (shouldDeleteForVariantObjCPtrMember(&*UI, UnionFieldType)) 9633 return true; 9634 9635 if (!UnionFieldType.isConstQualified()) 9636 AllVariantFieldsAreConst = false; 9637 9638 CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl(); 9639 if (UnionFieldRecord && 9640 shouldDeleteForClassSubobject(UnionFieldRecord, UI, 9641 UnionFieldType.getCVRQualifiers())) 9642 return true; 9643 } 9644 9645 // At least one member in each anonymous union must be non-const 9646 if (CSM == CXXSpecialMemberKind::DefaultConstructor && 9647 AllVariantFieldsAreConst && !FieldRecord->field_empty()) { 9648 if (Diagnose) 9649 S.Diag(FieldRecord->getLocation(), 9650 diag::note_deleted_default_ctor_all_const) 9651 << !!ICI << MD->getParent() << /*anonymous union*/1; 9652 return true; 9653 } 9654 9655 // Don't check the implicit member of the anonymous union type. 9656 // This is technically non-conformant but supported, and we have a 9657 // diagnostic for this elsewhere. 9658 return false; 9659 } 9660 9661 if (shouldDeleteForClassSubobject(FieldRecord, FD, 9662 FieldType.getCVRQualifiers())) 9663 return true; 9664 } 9665 9666 return false; 9667 } 9668 9669 /// C++11 [class.ctor] p5: 9670 /// A defaulted default constructor for a class X is defined as deleted if 9671 /// X is a union and all of its variant members are of const-qualified type. 9672 bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() { 9673 // This is a silly definition, because it gives an empty union a deleted 9674 // default constructor. Don't do that. 9675 if (CSM == CXXSpecialMemberKind::DefaultConstructor && inUnion() && 9676 AllFieldsAreConst) { 9677 bool AnyFields = false; 9678 for (auto *F : MD->getParent()->fields()) 9679 if ((AnyFields = !F->isUnnamedBitField())) 9680 break; 9681 if (!AnyFields) 9682 return false; 9683 if (Diagnose) 9684 S.Diag(MD->getParent()->getLocation(), 9685 diag::note_deleted_default_ctor_all_const) 9686 << !!ICI << MD->getParent() << /*not anonymous union*/0; 9687 return true; 9688 } 9689 return false; 9690 } 9691 9692 /// Determine whether a defaulted special member function should be defined as 9693 /// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11, 9694 /// C++11 [class.copy]p23, and C++11 [class.dtor]p5. 9695 bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, 9696 CXXSpecialMemberKind CSM, 9697 InheritedConstructorInfo *ICI, 9698 bool Diagnose) { 9699 if (MD->isInvalidDecl()) 9700 return false; 9701 CXXRecordDecl *RD = MD->getParent(); 9702 assert(!RD->isDependentType() && "do deletion after instantiation"); 9703 if (!LangOpts.CPlusPlus || (!LangOpts.CPlusPlus11 && !RD->isLambda()) || 9704 RD->isInvalidDecl()) 9705 return false; 9706 9707 // C++11 [expr.lambda.prim]p19: 9708 // The closure type associated with a lambda-expression has a 9709 // deleted (8.4.3) default constructor and a deleted copy 9710 // assignment operator. 9711 // C++2a adds back these operators if the lambda has no lambda-capture. 9712 if (RD->isLambda() && !RD->lambdaIsDefaultConstructibleAndAssignable() && 9713 (CSM == CXXSpecialMemberKind::DefaultConstructor || 9714 CSM == CXXSpecialMemberKind::CopyAssignment)) { 9715 if (Diagnose) 9716 Diag(RD->getLocation(), diag::note_lambda_decl); 9717 return true; 9718 } 9719 9720 // For an anonymous struct or union, the copy and assignment special members 9721 // will never be used, so skip the check. For an anonymous union declared at 9722 // namespace scope, the constructor and destructor are used. 9723 if (CSM != CXXSpecialMemberKind::DefaultConstructor && 9724 CSM != CXXSpecialMemberKind::Destructor && RD->isAnonymousStructOrUnion()) 9725 return false; 9726 9727 // C++11 [class.copy]p7, p18: 9728 // If the class definition declares a move constructor or move assignment 9729 // operator, an implicitly declared copy constructor or copy assignment 9730 // operator is defined as deleted. 9731 if (MD->isImplicit() && (CSM == CXXSpecialMemberKind::CopyConstructor || 9732 CSM == CXXSpecialMemberKind::CopyAssignment)) { 9733 CXXMethodDecl *UserDeclaredMove = nullptr; 9734 9735 // In Microsoft mode up to MSVC 2013, a user-declared move only causes the 9736 // deletion of the corresponding copy operation, not both copy operations. 9737 // MSVC 2015 has adopted the standards conforming behavior. 9738 bool DeletesOnlyMatchingCopy = 9739 getLangOpts().MSVCCompat && 9740 !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015); 9741 9742 if (RD->hasUserDeclaredMoveConstructor() && 9743 (!DeletesOnlyMatchingCopy || 9744 CSM == CXXSpecialMemberKind::CopyConstructor)) { 9745 if (!Diagnose) return true; 9746 9747 // Find any user-declared move constructor. 9748 for (auto *I : RD->ctors()) { 9749 if (I->isMoveConstructor()) { 9750 UserDeclaredMove = I; 9751 break; 9752 } 9753 } 9754 assert(UserDeclaredMove); 9755 } else if (RD->hasUserDeclaredMoveAssignment() && 9756 (!DeletesOnlyMatchingCopy || 9757 CSM == CXXSpecialMemberKind::CopyAssignment)) { 9758 if (!Diagnose) return true; 9759 9760 // Find any user-declared move assignment operator. 9761 for (auto *I : RD->methods()) { 9762 if (I->isMoveAssignmentOperator()) { 9763 UserDeclaredMove = I; 9764 break; 9765 } 9766 } 9767 assert(UserDeclaredMove); 9768 } 9769 9770 if (UserDeclaredMove) { 9771 Diag(UserDeclaredMove->getLocation(), 9772 diag::note_deleted_copy_user_declared_move) 9773 << (CSM == CXXSpecialMemberKind::CopyAssignment) << RD 9774 << UserDeclaredMove->isMoveAssignmentOperator(); 9775 return true; 9776 } 9777 } 9778 9779 // Do access control from the special member function 9780 ContextRAII MethodContext(*this, MD); 9781 9782 // C++11 [class.dtor]p5: 9783 // -- for a virtual destructor, lookup of the non-array deallocation function 9784 // results in an ambiguity or in a function that is deleted or inaccessible 9785 if (CSM == CXXSpecialMemberKind::Destructor && MD->isVirtual()) { 9786 FunctionDecl *OperatorDelete = nullptr; 9787 DeclarationName Name = 9788 Context.DeclarationNames.getCXXOperatorName(OO_Delete); 9789 if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name, 9790 OperatorDelete, /*Diagnose*/false)) { 9791 if (Diagnose) 9792 Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete); 9793 return true; 9794 } 9795 } 9796 9797 SpecialMemberDeletionInfo SMI(*this, MD, CSM, ICI, Diagnose); 9798 9799 // Per DR1611, do not consider virtual bases of constructors of abstract 9800 // classes, since we are not going to construct them. 9801 // Per DR1658, do not consider virtual bases of destructors of abstract 9802 // classes either. 9803 // Per DR2180, for assignment operators we only assign (and thus only 9804 // consider) direct bases. 9805 if (SMI.visit(SMI.IsAssignment ? SMI.VisitDirectBases 9806 : SMI.VisitPotentiallyConstructedBases)) 9807 return true; 9808 9809 if (SMI.shouldDeleteForAllConstMembers()) 9810 return true; 9811 9812 if (getLangOpts().CUDA) { 9813 // We should delete the special member in CUDA mode if target inference 9814 // failed. 9815 // For inherited constructors (non-null ICI), CSM may be passed so that MD 9816 // is treated as certain special member, which may not reflect what special 9817 // member MD really is. However inferTargetForImplicitSpecialMember 9818 // expects CSM to match MD, therefore recalculate CSM. 9819 assert(ICI || CSM == getSpecialMember(MD)); 9820 auto RealCSM = CSM; 9821 if (ICI) 9822 RealCSM = getSpecialMember(MD); 9823 9824 return CUDA().inferTargetForImplicitSpecialMember(RD, RealCSM, MD, 9825 SMI.ConstArg, Diagnose); 9826 } 9827 9828 return false; 9829 } 9830 9831 void Sema::DiagnoseDeletedDefaultedFunction(FunctionDecl *FD) { 9832 DefaultedFunctionKind DFK = getDefaultedFunctionKind(FD); 9833 assert(DFK && "not a defaultable function"); 9834 assert(FD->isDefaulted() && FD->isDeleted() && "not defaulted and deleted"); 9835 9836 if (DFK.isSpecialMember()) { 9837 ShouldDeleteSpecialMember(cast<CXXMethodDecl>(FD), DFK.asSpecialMember(), 9838 nullptr, /*Diagnose=*/true); 9839 } else { 9840 DefaultedComparisonAnalyzer( 9841 *this, cast<CXXRecordDecl>(FD->getLexicalDeclContext()), FD, 9842 DFK.asComparison(), DefaultedComparisonAnalyzer::ExplainDeleted) 9843 .visit(); 9844 } 9845 } 9846 9847 /// Perform lookup for a special member of the specified kind, and determine 9848 /// whether it is trivial. If the triviality can be determined without the 9849 /// lookup, skip it. This is intended for use when determining whether a 9850 /// special member of a containing object is trivial, and thus does not ever 9851 /// perform overload resolution for default constructors. 9852 /// 9853 /// If \p Selected is not \c NULL, \c *Selected will be filled in with the 9854 /// member that was most likely to be intended to be trivial, if any. 9855 /// 9856 /// If \p ForCall is true, look at CXXRecord::HasTrivialSpecialMembersForCall to 9857 /// determine whether the special member is trivial. 9858 static bool findTrivialSpecialMember(Sema &S, CXXRecordDecl *RD, 9859 CXXSpecialMemberKind CSM, unsigned Quals, 9860 bool ConstRHS, 9861 Sema::TrivialABIHandling TAH, 9862 CXXMethodDecl **Selected) { 9863 if (Selected) 9864 *Selected = nullptr; 9865 9866 switch (CSM) { 9867 case CXXSpecialMemberKind::Invalid: 9868 llvm_unreachable("not a special member"); 9869 9870 case CXXSpecialMemberKind::DefaultConstructor: 9871 // C++11 [class.ctor]p5: 9872 // A default constructor is trivial if: 9873 // - all the [direct subobjects] have trivial default constructors 9874 // 9875 // Note, no overload resolution is performed in this case. 9876 if (RD->hasTrivialDefaultConstructor()) 9877 return true; 9878 9879 if (Selected) { 9880 // If there's a default constructor which could have been trivial, dig it 9881 // out. Otherwise, if there's any user-provided default constructor, point 9882 // to that as an example of why there's not a trivial one. 9883 CXXConstructorDecl *DefCtor = nullptr; 9884 if (RD->needsImplicitDefaultConstructor()) 9885 S.DeclareImplicitDefaultConstructor(RD); 9886 for (auto *CI : RD->ctors()) { 9887 if (!CI->isDefaultConstructor()) 9888 continue; 9889 DefCtor = CI; 9890 if (!DefCtor->isUserProvided()) 9891 break; 9892 } 9893 9894 *Selected = DefCtor; 9895 } 9896 9897 return false; 9898 9899 case CXXSpecialMemberKind::Destructor: 9900 // C++11 [class.dtor]p5: 9901 // A destructor is trivial if: 9902 // - all the direct [subobjects] have trivial destructors 9903 if (RD->hasTrivialDestructor() || 9904 (TAH == Sema::TAH_ConsiderTrivialABI && 9905 RD->hasTrivialDestructorForCall())) 9906 return true; 9907 9908 if (Selected) { 9909 if (RD->needsImplicitDestructor()) 9910 S.DeclareImplicitDestructor(RD); 9911 *Selected = RD->getDestructor(); 9912 } 9913 9914 return false; 9915 9916 case CXXSpecialMemberKind::CopyConstructor: 9917 // C++11 [class.copy]p12: 9918 // A copy constructor is trivial if: 9919 // - the constructor selected to copy each direct [subobject] is trivial 9920 if (RD->hasTrivialCopyConstructor() || 9921 (TAH == Sema::TAH_ConsiderTrivialABI && 9922 RD->hasTrivialCopyConstructorForCall())) { 9923 if (Quals == Qualifiers::Const) 9924 // We must either select the trivial copy constructor or reach an 9925 // ambiguity; no need to actually perform overload resolution. 9926 return true; 9927 } else if (!Selected) { 9928 return false; 9929 } 9930 // In C++98, we are not supposed to perform overload resolution here, but we 9931 // treat that as a language defect, as suggested on cxx-abi-dev, to treat 9932 // cases like B as having a non-trivial copy constructor: 9933 // struct A { template<typename T> A(T&); }; 9934 // struct B { mutable A a; }; 9935 goto NeedOverloadResolution; 9936 9937 case CXXSpecialMemberKind::CopyAssignment: 9938 // C++11 [class.copy]p25: 9939 // A copy assignment operator is trivial if: 9940 // - the assignment operator selected to copy each direct [subobject] is 9941 // trivial 9942 if (RD->hasTrivialCopyAssignment()) { 9943 if (Quals == Qualifiers::Const) 9944 return true; 9945 } else if (!Selected) { 9946 return false; 9947 } 9948 // In C++98, we are not supposed to perform overload resolution here, but we 9949 // treat that as a language defect. 9950 goto NeedOverloadResolution; 9951 9952 case CXXSpecialMemberKind::MoveConstructor: 9953 case CXXSpecialMemberKind::MoveAssignment: 9954 NeedOverloadResolution: 9955 Sema::SpecialMemberOverloadResult SMOR = 9956 lookupCallFromSpecialMember(S, RD, CSM, Quals, ConstRHS); 9957 9958 // The standard doesn't describe how to behave if the lookup is ambiguous. 9959 // We treat it as not making the member non-trivial, just like the standard 9960 // mandates for the default constructor. This should rarely matter, because 9961 // the member will also be deleted. 9962 if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous) 9963 return true; 9964 9965 if (!SMOR.getMethod()) { 9966 assert(SMOR.getKind() == 9967 Sema::SpecialMemberOverloadResult::NoMemberOrDeleted); 9968 return false; 9969 } 9970 9971 // We deliberately don't check if we found a deleted special member. We're 9972 // not supposed to! 9973 if (Selected) 9974 *Selected = SMOR.getMethod(); 9975 9976 if (TAH == Sema::TAH_ConsiderTrivialABI && 9977 (CSM == CXXSpecialMemberKind::CopyConstructor || 9978 CSM == CXXSpecialMemberKind::MoveConstructor)) 9979 return SMOR.getMethod()->isTrivialForCall(); 9980 return SMOR.getMethod()->isTrivial(); 9981 } 9982 9983 llvm_unreachable("unknown special method kind"); 9984 } 9985 9986 static CXXConstructorDecl *findUserDeclaredCtor(CXXRecordDecl *RD) { 9987 for (auto *CI : RD->ctors()) 9988 if (!CI->isImplicit()) 9989 return CI; 9990 9991 // Look for constructor templates. 9992 typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl> tmpl_iter; 9993 for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end()); TI != TE; ++TI) { 9994 if (CXXConstructorDecl *CD = 9995 dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl())) 9996 return CD; 9997 } 9998 9999 return nullptr; 10000 } 10001 10002 /// The kind of subobject we are checking for triviality. The values of this 10003 /// enumeration are used in diagnostics. 10004 enum TrivialSubobjectKind { 10005 /// The subobject is a base class. 10006 TSK_BaseClass, 10007 /// The subobject is a non-static data member. 10008 TSK_Field, 10009 /// The object is actually the complete object. 10010 TSK_CompleteObject 10011 }; 10012 10013 /// Check whether the special member selected for a given type would be trivial. 10014 static bool checkTrivialSubobjectCall(Sema &S, SourceLocation SubobjLoc, 10015 QualType SubType, bool ConstRHS, 10016 CXXSpecialMemberKind CSM, 10017 TrivialSubobjectKind Kind, 10018 Sema::TrivialABIHandling TAH, 10019 bool Diagnose) { 10020 CXXRecordDecl *SubRD = SubType->getAsCXXRecordDecl(); 10021 if (!SubRD) 10022 return true; 10023 10024 CXXMethodDecl *Selected; 10025 if (findTrivialSpecialMember(S, SubRD, CSM, SubType.getCVRQualifiers(), 10026 ConstRHS, TAH, Diagnose ? &Selected : nullptr)) 10027 return true; 10028 10029 if (Diagnose) { 10030 if (ConstRHS) 10031 SubType.addConst(); 10032 10033 if (!Selected && CSM == CXXSpecialMemberKind::DefaultConstructor) { 10034 S.Diag(SubobjLoc, diag::note_nontrivial_no_def_ctor) 10035 << Kind << SubType.getUnqualifiedType(); 10036 if (CXXConstructorDecl *CD = findUserDeclaredCtor(SubRD)) 10037 S.Diag(CD->getLocation(), diag::note_user_declared_ctor); 10038 } else if (!Selected) 10039 S.Diag(SubobjLoc, diag::note_nontrivial_no_copy) 10040 << Kind << SubType.getUnqualifiedType() << llvm::to_underlying(CSM) 10041 << SubType; 10042 else if (Selected->isUserProvided()) { 10043 if (Kind == TSK_CompleteObject) 10044 S.Diag(Selected->getLocation(), diag::note_nontrivial_user_provided) 10045 << Kind << SubType.getUnqualifiedType() << llvm::to_underlying(CSM); 10046 else { 10047 S.Diag(SubobjLoc, diag::note_nontrivial_user_provided) 10048 << Kind << SubType.getUnqualifiedType() << llvm::to_underlying(CSM); 10049 S.Diag(Selected->getLocation(), diag::note_declared_at); 10050 } 10051 } else { 10052 if (Kind != TSK_CompleteObject) 10053 S.Diag(SubobjLoc, diag::note_nontrivial_subobject) 10054 << Kind << SubType.getUnqualifiedType() << llvm::to_underlying(CSM); 10055 10056 // Explain why the defaulted or deleted special member isn't trivial. 10057 S.SpecialMemberIsTrivial(Selected, CSM, Sema::TAH_IgnoreTrivialABI, 10058 Diagnose); 10059 } 10060 } 10061 10062 return false; 10063 } 10064 10065 /// Check whether the members of a class type allow a special member to be 10066 /// trivial. 10067 static bool checkTrivialClassMembers(Sema &S, CXXRecordDecl *RD, 10068 CXXSpecialMemberKind CSM, bool ConstArg, 10069 Sema::TrivialABIHandling TAH, 10070 bool Diagnose) { 10071 for (const auto *FI : RD->fields()) { 10072 if (FI->isInvalidDecl() || FI->isUnnamedBitField()) 10073 continue; 10074 10075 QualType FieldType = S.Context.getBaseElementType(FI->getType()); 10076 10077 // Pretend anonymous struct or union members are members of this class. 10078 if (FI->isAnonymousStructOrUnion()) { 10079 if (!checkTrivialClassMembers(S, FieldType->getAsCXXRecordDecl(), 10080 CSM, ConstArg, TAH, Diagnose)) 10081 return false; 10082 continue; 10083 } 10084 10085 // C++11 [class.ctor]p5: 10086 // A default constructor is trivial if [...] 10087 // -- no non-static data member of its class has a 10088 // brace-or-equal-initializer 10089 if (CSM == CXXSpecialMemberKind::DefaultConstructor && 10090 FI->hasInClassInitializer()) { 10091 if (Diagnose) 10092 S.Diag(FI->getLocation(), diag::note_nontrivial_default_member_init) 10093 << FI; 10094 return false; 10095 } 10096 10097 // Objective C ARC 4.3.5: 10098 // [...] nontrivally ownership-qualified types are [...] not trivially 10099 // default constructible, copy constructible, move constructible, copy 10100 // assignable, move assignable, or destructible [...] 10101 if (FieldType.hasNonTrivialObjCLifetime()) { 10102 if (Diagnose) 10103 S.Diag(FI->getLocation(), diag::note_nontrivial_objc_ownership) 10104 << RD << FieldType.getObjCLifetime(); 10105 return false; 10106 } 10107 10108 bool ConstRHS = ConstArg && !FI->isMutable(); 10109 if (!checkTrivialSubobjectCall(S, FI->getLocation(), FieldType, ConstRHS, 10110 CSM, TSK_Field, TAH, Diagnose)) 10111 return false; 10112 } 10113 10114 return true; 10115 } 10116 10117 void Sema::DiagnoseNontrivial(const CXXRecordDecl *RD, 10118 CXXSpecialMemberKind CSM) { 10119 QualType Ty = Context.getRecordType(RD); 10120 10121 bool ConstArg = (CSM == CXXSpecialMemberKind::CopyConstructor || 10122 CSM == CXXSpecialMemberKind::CopyAssignment); 10123 checkTrivialSubobjectCall(*this, RD->getLocation(), Ty, ConstArg, CSM, 10124 TSK_CompleteObject, TAH_IgnoreTrivialABI, 10125 /*Diagnose*/true); 10126 } 10127 10128 bool Sema::SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMemberKind CSM, 10129 TrivialABIHandling TAH, bool Diagnose) { 10130 assert(!MD->isUserProvided() && CSM != CXXSpecialMemberKind::Invalid && 10131 "not special enough"); 10132 10133 CXXRecordDecl *RD = MD->getParent(); 10134 10135 bool ConstArg = false; 10136 10137 // C++11 [class.copy]p12, p25: [DR1593] 10138 // A [special member] is trivial if [...] its parameter-type-list is 10139 // equivalent to the parameter-type-list of an implicit declaration [...] 10140 switch (CSM) { 10141 case CXXSpecialMemberKind::DefaultConstructor: 10142 case CXXSpecialMemberKind::Destructor: 10143 // Trivial default constructors and destructors cannot have parameters. 10144 break; 10145 10146 case CXXSpecialMemberKind::CopyConstructor: 10147 case CXXSpecialMemberKind::CopyAssignment: { 10148 const ParmVarDecl *Param0 = MD->getNonObjectParameter(0); 10149 const ReferenceType *RT = Param0->getType()->getAs<ReferenceType>(); 10150 10151 // When ClangABICompat14 is true, CXX copy constructors will only be trivial 10152 // if they are not user-provided and their parameter-type-list is equivalent 10153 // to the parameter-type-list of an implicit declaration. This maintains the 10154 // behavior before dr2171 was implemented. 10155 // 10156 // Otherwise, if ClangABICompat14 is false, All copy constructors can be 10157 // trivial, if they are not user-provided, regardless of the qualifiers on 10158 // the reference type. 10159 const bool ClangABICompat14 = Context.getLangOpts().getClangABICompat() <= 10160 LangOptions::ClangABI::Ver14; 10161 if (!RT || 10162 ((RT->getPointeeType().getCVRQualifiers() != Qualifiers::Const) && 10163 ClangABICompat14)) { 10164 if (Diagnose) 10165 Diag(Param0->getLocation(), diag::note_nontrivial_param_type) 10166 << Param0->getSourceRange() << Param0->getType() 10167 << Context.getLValueReferenceType( 10168 Context.getRecordType(RD).withConst()); 10169 return false; 10170 } 10171 10172 ConstArg = RT->getPointeeType().isConstQualified(); 10173 break; 10174 } 10175 10176 case CXXSpecialMemberKind::MoveConstructor: 10177 case CXXSpecialMemberKind::MoveAssignment: { 10178 // Trivial move operations always have non-cv-qualified parameters. 10179 const ParmVarDecl *Param0 = MD->getNonObjectParameter(0); 10180 const RValueReferenceType *RT = 10181 Param0->getType()->getAs<RValueReferenceType>(); 10182 if (!RT || RT->getPointeeType().getCVRQualifiers()) { 10183 if (Diagnose) 10184 Diag(Param0->getLocation(), diag::note_nontrivial_param_type) 10185 << Param0->getSourceRange() << Param0->getType() 10186 << Context.getRValueReferenceType(Context.getRecordType(RD)); 10187 return false; 10188 } 10189 break; 10190 } 10191 10192 case CXXSpecialMemberKind::Invalid: 10193 llvm_unreachable("not a special member"); 10194 } 10195 10196 if (MD->getMinRequiredArguments() < MD->getNumParams()) { 10197 if (Diagnose) 10198 Diag(MD->getParamDecl(MD->getMinRequiredArguments())->getLocation(), 10199 diag::note_nontrivial_default_arg) 10200 << MD->getParamDecl(MD->getMinRequiredArguments())->getSourceRange(); 10201 return false; 10202 } 10203 if (MD->isVariadic()) { 10204 if (Diagnose) 10205 Diag(MD->getLocation(), diag::note_nontrivial_variadic); 10206 return false; 10207 } 10208 10209 // C++11 [class.ctor]p5, C++11 [class.dtor]p5: 10210 // A copy/move [constructor or assignment operator] is trivial if 10211 // -- the [member] selected to copy/move each direct base class subobject 10212 // is trivial 10213 // 10214 // C++11 [class.copy]p12, C++11 [class.copy]p25: 10215 // A [default constructor or destructor] is trivial if 10216 // -- all the direct base classes have trivial [default constructors or 10217 // destructors] 10218 for (const auto &BI : RD->bases()) 10219 if (!checkTrivialSubobjectCall(*this, BI.getBeginLoc(), BI.getType(), 10220 ConstArg, CSM, TSK_BaseClass, TAH, Diagnose)) 10221 return false; 10222 10223 // C++11 [class.ctor]p5, C++11 [class.dtor]p5: 10224 // A copy/move [constructor or assignment operator] for a class X is 10225 // trivial if 10226 // -- for each non-static data member of X that is of class type (or array 10227 // thereof), the constructor selected to copy/move that member is 10228 // trivial 10229 // 10230 // C++11 [class.copy]p12, C++11 [class.copy]p25: 10231 // A [default constructor or destructor] is trivial if 10232 // -- for all of the non-static data members of its class that are of class 10233 // type (or array thereof), each such class has a trivial [default 10234 // constructor or destructor] 10235 if (!checkTrivialClassMembers(*this, RD, CSM, ConstArg, TAH, Diagnose)) 10236 return false; 10237 10238 // C++11 [class.dtor]p5: 10239 // A destructor is trivial if [...] 10240 // -- the destructor is not virtual 10241 if (CSM == CXXSpecialMemberKind::Destructor && MD->isVirtual()) { 10242 if (Diagnose) 10243 Diag(MD->getLocation(), diag::note_nontrivial_virtual_dtor) << RD; 10244 return false; 10245 } 10246 10247 // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25: 10248 // A [special member] for class X is trivial if [...] 10249 // -- class X has no virtual functions and no virtual base classes 10250 if (CSM != CXXSpecialMemberKind::Destructor && 10251 MD->getParent()->isDynamicClass()) { 10252 if (!Diagnose) 10253 return false; 10254 10255 if (RD->getNumVBases()) { 10256 // Check for virtual bases. We already know that the corresponding 10257 // member in all bases is trivial, so vbases must all be direct. 10258 CXXBaseSpecifier &BS = *RD->vbases_begin(); 10259 assert(BS.isVirtual()); 10260 Diag(BS.getBeginLoc(), diag::note_nontrivial_has_virtual) << RD << 1; 10261 return false; 10262 } 10263 10264 // Must have a virtual method. 10265 for (const auto *MI : RD->methods()) { 10266 if (MI->isVirtual()) { 10267 SourceLocation MLoc = MI->getBeginLoc(); 10268 Diag(MLoc, diag::note_nontrivial_has_virtual) << RD << 0; 10269 return false; 10270 } 10271 } 10272 10273 llvm_unreachable("dynamic class with no vbases and no virtual functions"); 10274 } 10275 10276 // Looks like it's trivial! 10277 return true; 10278 } 10279 10280 namespace { 10281 struct FindHiddenVirtualMethod { 10282 Sema *S; 10283 CXXMethodDecl *Method; 10284 llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods; 10285 SmallVector<CXXMethodDecl *, 8> OverloadedMethods; 10286 10287 private: 10288 /// Check whether any most overridden method from MD in Methods 10289 static bool CheckMostOverridenMethods( 10290 const CXXMethodDecl *MD, 10291 const llvm::SmallPtrSetImpl<const CXXMethodDecl *> &Methods) { 10292 if (MD->size_overridden_methods() == 0) 10293 return Methods.count(MD->getCanonicalDecl()); 10294 for (const CXXMethodDecl *O : MD->overridden_methods()) 10295 if (CheckMostOverridenMethods(O, Methods)) 10296 return true; 10297 return false; 10298 } 10299 10300 public: 10301 /// Member lookup function that determines whether a given C++ 10302 /// method overloads virtual methods in a base class without overriding any, 10303 /// to be used with CXXRecordDecl::lookupInBases(). 10304 bool operator()(const CXXBaseSpecifier *Specifier, CXXBasePath &Path) { 10305 RecordDecl *BaseRecord = 10306 Specifier->getType()->castAs<RecordType>()->getDecl(); 10307 10308 DeclarationName Name = Method->getDeclName(); 10309 assert(Name.getNameKind() == DeclarationName::Identifier); 10310 10311 bool foundSameNameMethod = false; 10312 SmallVector<CXXMethodDecl *, 8> overloadedMethods; 10313 for (Path.Decls = BaseRecord->lookup(Name).begin(); 10314 Path.Decls != DeclContext::lookup_iterator(); ++Path.Decls) { 10315 NamedDecl *D = *Path.Decls; 10316 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 10317 MD = MD->getCanonicalDecl(); 10318 foundSameNameMethod = true; 10319 // Interested only in hidden virtual methods. 10320 if (!MD->isVirtual()) 10321 continue; 10322 // If the method we are checking overrides a method from its base 10323 // don't warn about the other overloaded methods. Clang deviates from 10324 // GCC by only diagnosing overloads of inherited virtual functions that 10325 // do not override any other virtual functions in the base. GCC's 10326 // -Woverloaded-virtual diagnoses any derived function hiding a virtual 10327 // function from a base class. These cases may be better served by a 10328 // warning (not specific to virtual functions) on call sites when the 10329 // call would select a different function from the base class, were it 10330 // visible. 10331 // See FIXME in test/SemaCXX/warn-overload-virtual.cpp for an example. 10332 if (!S->IsOverload(Method, MD, false)) 10333 return true; 10334 // Collect the overload only if its hidden. 10335 if (!CheckMostOverridenMethods(MD, OverridenAndUsingBaseMethods)) 10336 overloadedMethods.push_back(MD); 10337 } 10338 } 10339 10340 if (foundSameNameMethod) 10341 OverloadedMethods.append(overloadedMethods.begin(), 10342 overloadedMethods.end()); 10343 return foundSameNameMethod; 10344 } 10345 }; 10346 } // end anonymous namespace 10347 10348 /// Add the most overridden methods from MD to Methods 10349 static void AddMostOverridenMethods(const CXXMethodDecl *MD, 10350 llvm::SmallPtrSetImpl<const CXXMethodDecl *>& Methods) { 10351 if (MD->size_overridden_methods() == 0) 10352 Methods.insert(MD->getCanonicalDecl()); 10353 else 10354 for (const CXXMethodDecl *O : MD->overridden_methods()) 10355 AddMostOverridenMethods(O, Methods); 10356 } 10357 10358 void Sema::FindHiddenVirtualMethods(CXXMethodDecl *MD, 10359 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) { 10360 if (!MD->getDeclName().isIdentifier()) 10361 return; 10362 10363 CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases. 10364 /*bool RecordPaths=*/false, 10365 /*bool DetectVirtual=*/false); 10366 FindHiddenVirtualMethod FHVM; 10367 FHVM.Method = MD; 10368 FHVM.S = this; 10369 10370 // Keep the base methods that were overridden or introduced in the subclass 10371 // by 'using' in a set. A base method not in this set is hidden. 10372 CXXRecordDecl *DC = MD->getParent(); 10373 DeclContext::lookup_result R = DC->lookup(MD->getDeclName()); 10374 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) { 10375 NamedDecl *ND = *I; 10376 if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*I)) 10377 ND = shad->getTargetDecl(); 10378 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND)) 10379 AddMostOverridenMethods(MD, FHVM.OverridenAndUsingBaseMethods); 10380 } 10381 10382 if (DC->lookupInBases(FHVM, Paths)) 10383 OverloadedMethods = FHVM.OverloadedMethods; 10384 } 10385 10386 void Sema::NoteHiddenVirtualMethods(CXXMethodDecl *MD, 10387 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) { 10388 for (unsigned i = 0, e = OverloadedMethods.size(); i != e; ++i) { 10389 CXXMethodDecl *overloadedMD = OverloadedMethods[i]; 10390 PartialDiagnostic PD = PDiag( 10391 diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD; 10392 HandleFunctionTypeMismatch(PD, MD->getType(), overloadedMD->getType()); 10393 Diag(overloadedMD->getLocation(), PD); 10394 } 10395 } 10396 10397 void Sema::DiagnoseHiddenVirtualMethods(CXXMethodDecl *MD) { 10398 if (MD->isInvalidDecl()) 10399 return; 10400 10401 if (Diags.isIgnored(diag::warn_overloaded_virtual, MD->getLocation())) 10402 return; 10403 10404 SmallVector<CXXMethodDecl *, 8> OverloadedMethods; 10405 FindHiddenVirtualMethods(MD, OverloadedMethods); 10406 if (!OverloadedMethods.empty()) { 10407 Diag(MD->getLocation(), diag::warn_overloaded_virtual) 10408 << MD << (OverloadedMethods.size() > 1); 10409 10410 NoteHiddenVirtualMethods(MD, OverloadedMethods); 10411 } 10412 } 10413 10414 void Sema::checkIllFormedTrivialABIStruct(CXXRecordDecl &RD) { 10415 auto PrintDiagAndRemoveAttr = [&](unsigned N) { 10416 // No diagnostics if this is a template instantiation. 10417 if (!isTemplateInstantiation(RD.getTemplateSpecializationKind())) { 10418 Diag(RD.getAttr<TrivialABIAttr>()->getLocation(), 10419 diag::ext_cannot_use_trivial_abi) << &RD; 10420 Diag(RD.getAttr<TrivialABIAttr>()->getLocation(), 10421 diag::note_cannot_use_trivial_abi_reason) << &RD << N; 10422 } 10423 RD.dropAttr<TrivialABIAttr>(); 10424 }; 10425 10426 // Ill-formed if the copy and move constructors are deleted. 10427 auto HasNonDeletedCopyOrMoveConstructor = [&]() { 10428 // If the type is dependent, then assume it might have 10429 // implicit copy or move ctor because we won't know yet at this point. 10430 if (RD.isDependentType()) 10431 return true; 10432 if (RD.needsImplicitCopyConstructor() && 10433 !RD.defaultedCopyConstructorIsDeleted()) 10434 return true; 10435 if (RD.needsImplicitMoveConstructor() && 10436 !RD.defaultedMoveConstructorIsDeleted()) 10437 return true; 10438 for (const CXXConstructorDecl *CD : RD.ctors()) 10439 if (CD->isCopyOrMoveConstructor() && !CD->isDeleted()) 10440 return true; 10441 return false; 10442 }; 10443 10444 if (!HasNonDeletedCopyOrMoveConstructor()) { 10445 PrintDiagAndRemoveAttr(0); 10446 return; 10447 } 10448 10449 // Ill-formed if the struct has virtual functions. 10450 if (RD.isPolymorphic()) { 10451 PrintDiagAndRemoveAttr(1); 10452 return; 10453 } 10454 10455 for (const auto &B : RD.bases()) { 10456 // Ill-formed if the base class is non-trivial for the purpose of calls or a 10457 // virtual base. 10458 if (!B.getType()->isDependentType() && 10459 !B.getType()->getAsCXXRecordDecl()->canPassInRegisters()) { 10460 PrintDiagAndRemoveAttr(2); 10461 return; 10462 } 10463 10464 if (B.isVirtual()) { 10465 PrintDiagAndRemoveAttr(3); 10466 return; 10467 } 10468 } 10469 10470 for (const auto *FD : RD.fields()) { 10471 // Ill-formed if the field is an ObjectiveC pointer or of a type that is 10472 // non-trivial for the purpose of calls. 10473 QualType FT = FD->getType(); 10474 if (FT.getObjCLifetime() == Qualifiers::OCL_Weak) { 10475 PrintDiagAndRemoveAttr(4); 10476 return; 10477 } 10478 10479 if (const auto *RT = FT->getBaseElementTypeUnsafe()->getAs<RecordType>()) 10480 if (!RT->isDependentType() && 10481 !cast<CXXRecordDecl>(RT->getDecl())->canPassInRegisters()) { 10482 PrintDiagAndRemoveAttr(5); 10483 return; 10484 } 10485 } 10486 } 10487 10488 void Sema::checkIncorrectVTablePointerAuthenticationAttribute( 10489 CXXRecordDecl &RD) { 10490 if (RequireCompleteType(RD.getLocation(), Context.getRecordType(&RD), 10491 diag::err_incomplete_type_vtable_pointer_auth)) 10492 return; 10493 10494 const CXXRecordDecl *PrimaryBase = &RD; 10495 if (PrimaryBase->hasAnyDependentBases()) 10496 return; 10497 10498 while (1) { 10499 assert(PrimaryBase); 10500 const CXXRecordDecl *Base = nullptr; 10501 for (const CXXBaseSpecifier &BasePtr : PrimaryBase->bases()) { 10502 if (!BasePtr.getType()->getAsCXXRecordDecl()->isDynamicClass()) 10503 continue; 10504 Base = BasePtr.getType()->getAsCXXRecordDecl(); 10505 break; 10506 } 10507 if (!Base || Base == PrimaryBase || !Base->isPolymorphic()) 10508 break; 10509 Diag(RD.getAttr<VTablePointerAuthenticationAttr>()->getLocation(), 10510 diag::err_non_top_level_vtable_pointer_auth) 10511 << &RD << Base; 10512 PrimaryBase = Base; 10513 } 10514 10515 if (!RD.isPolymorphic()) 10516 Diag(RD.getAttr<VTablePointerAuthenticationAttr>()->getLocation(), 10517 diag::err_non_polymorphic_vtable_pointer_auth) 10518 << &RD; 10519 } 10520 10521 void Sema::ActOnFinishCXXMemberSpecification( 10522 Scope *S, SourceLocation RLoc, Decl *TagDecl, SourceLocation LBrac, 10523 SourceLocation RBrac, const ParsedAttributesView &AttrList) { 10524 if (!TagDecl) 10525 return; 10526 10527 AdjustDeclIfTemplate(TagDecl); 10528 10529 for (const ParsedAttr &AL : AttrList) { 10530 if (AL.getKind() != ParsedAttr::AT_Visibility) 10531 continue; 10532 AL.setInvalid(); 10533 Diag(AL.getLoc(), diag::warn_attribute_after_definition_ignored) << AL; 10534 } 10535 10536 ActOnFields(S, RLoc, TagDecl, 10537 llvm::ArrayRef( 10538 // strict aliasing violation! 10539 reinterpret_cast<Decl **>(FieldCollector->getCurFields()), 10540 FieldCollector->getCurNumFields()), 10541 LBrac, RBrac, AttrList); 10542 10543 CheckCompletedCXXClass(S, cast<CXXRecordDecl>(TagDecl)); 10544 } 10545 10546 /// Find the equality comparison functions that should be implicitly declared 10547 /// in a given class definition, per C++2a [class.compare.default]p3. 10548 static void findImplicitlyDeclaredEqualityComparisons( 10549 ASTContext &Ctx, CXXRecordDecl *RD, 10550 llvm::SmallVectorImpl<FunctionDecl *> &Spaceships) { 10551 DeclarationName EqEq = Ctx.DeclarationNames.getCXXOperatorName(OO_EqualEqual); 10552 if (!RD->lookup(EqEq).empty()) 10553 // Member operator== explicitly declared: no implicit operator==s. 10554 return; 10555 10556 // Traverse friends looking for an '==' or a '<=>'. 10557 for (FriendDecl *Friend : RD->friends()) { 10558 FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Friend->getFriendDecl()); 10559 if (!FD) continue; 10560 10561 if (FD->getOverloadedOperator() == OO_EqualEqual) { 10562 // Friend operator== explicitly declared: no implicit operator==s. 10563 Spaceships.clear(); 10564 return; 10565 } 10566 10567 if (FD->getOverloadedOperator() == OO_Spaceship && 10568 FD->isExplicitlyDefaulted()) 10569 Spaceships.push_back(FD); 10570 } 10571 10572 // Look for members named 'operator<=>'. 10573 DeclarationName Cmp = Ctx.DeclarationNames.getCXXOperatorName(OO_Spaceship); 10574 for (NamedDecl *ND : RD->lookup(Cmp)) { 10575 // Note that we could find a non-function here (either a function template 10576 // or a using-declaration). Neither case results in an implicit 10577 // 'operator=='. 10578 if (auto *FD = dyn_cast<FunctionDecl>(ND)) 10579 if (FD->isExplicitlyDefaulted()) 10580 Spaceships.push_back(FD); 10581 } 10582 } 10583 10584 void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) { 10585 // Don't add implicit special members to templated classes. 10586 // FIXME: This means unqualified lookups for 'operator=' within a class 10587 // template don't work properly. 10588 if (!ClassDecl->isDependentType()) { 10589 if (ClassDecl->needsImplicitDefaultConstructor()) { 10590 ++getASTContext().NumImplicitDefaultConstructors; 10591 10592 if (ClassDecl->hasInheritedConstructor()) 10593 DeclareImplicitDefaultConstructor(ClassDecl); 10594 } 10595 10596 if (ClassDecl->needsImplicitCopyConstructor()) { 10597 ++getASTContext().NumImplicitCopyConstructors; 10598 10599 // If the properties or semantics of the copy constructor couldn't be 10600 // determined while the class was being declared, force a declaration 10601 // of it now. 10602 if (ClassDecl->needsOverloadResolutionForCopyConstructor() || 10603 ClassDecl->hasInheritedConstructor()) 10604 DeclareImplicitCopyConstructor(ClassDecl); 10605 // For the MS ABI we need to know whether the copy ctor is deleted. A 10606 // prerequisite for deleting the implicit copy ctor is that the class has 10607 // a move ctor or move assignment that is either user-declared or whose 10608 // semantics are inherited from a subobject. FIXME: We should provide a 10609 // more direct way for CodeGen to ask whether the constructor was deleted. 10610 else if (Context.getTargetInfo().getCXXABI().isMicrosoft() && 10611 (ClassDecl->hasUserDeclaredMoveConstructor() || 10612 ClassDecl->needsOverloadResolutionForMoveConstructor() || 10613 ClassDecl->hasUserDeclaredMoveAssignment() || 10614 ClassDecl->needsOverloadResolutionForMoveAssignment())) 10615 DeclareImplicitCopyConstructor(ClassDecl); 10616 } 10617 10618 if (getLangOpts().CPlusPlus11 && 10619 ClassDecl->needsImplicitMoveConstructor()) { 10620 ++getASTContext().NumImplicitMoveConstructors; 10621 10622 if (ClassDecl->needsOverloadResolutionForMoveConstructor() || 10623 ClassDecl->hasInheritedConstructor()) 10624 DeclareImplicitMoveConstructor(ClassDecl); 10625 } 10626 10627 if (ClassDecl->needsImplicitCopyAssignment()) { 10628 ++getASTContext().NumImplicitCopyAssignmentOperators; 10629 10630 // If we have a dynamic class, then the copy assignment operator may be 10631 // virtual, so we have to declare it immediately. This ensures that, e.g., 10632 // it shows up in the right place in the vtable and that we diagnose 10633 // problems with the implicit exception specification. 10634 if (ClassDecl->isDynamicClass() || 10635 ClassDecl->needsOverloadResolutionForCopyAssignment() || 10636 ClassDecl->hasInheritedAssignment()) 10637 DeclareImplicitCopyAssignment(ClassDecl); 10638 } 10639 10640 if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveAssignment()) { 10641 ++getASTContext().NumImplicitMoveAssignmentOperators; 10642 10643 // Likewise for the move assignment operator. 10644 if (ClassDecl->isDynamicClass() || 10645 ClassDecl->needsOverloadResolutionForMoveAssignment() || 10646 ClassDecl->hasInheritedAssignment()) 10647 DeclareImplicitMoveAssignment(ClassDecl); 10648 } 10649 10650 if (ClassDecl->needsImplicitDestructor()) { 10651 ++getASTContext().NumImplicitDestructors; 10652 10653 // If we have a dynamic class, then the destructor may be virtual, so we 10654 // have to declare the destructor immediately. This ensures that, e.g., it 10655 // shows up in the right place in the vtable and that we diagnose problems 10656 // with the implicit exception specification. 10657 if (ClassDecl->isDynamicClass() || 10658 ClassDecl->needsOverloadResolutionForDestructor()) 10659 DeclareImplicitDestructor(ClassDecl); 10660 } 10661 } 10662 10663 // C++2a [class.compare.default]p3: 10664 // If the member-specification does not explicitly declare any member or 10665 // friend named operator==, an == operator function is declared implicitly 10666 // for each defaulted three-way comparison operator function defined in 10667 // the member-specification 10668 // FIXME: Consider doing this lazily. 10669 // We do this during the initial parse for a class template, not during 10670 // instantiation, so that we can handle unqualified lookups for 'operator==' 10671 // when parsing the template. 10672 if (getLangOpts().CPlusPlus20 && !inTemplateInstantiation()) { 10673 llvm::SmallVector<FunctionDecl *, 4> DefaultedSpaceships; 10674 findImplicitlyDeclaredEqualityComparisons(Context, ClassDecl, 10675 DefaultedSpaceships); 10676 for (auto *FD : DefaultedSpaceships) 10677 DeclareImplicitEqualityComparison(ClassDecl, FD); 10678 } 10679 } 10680 10681 unsigned 10682 Sema::ActOnReenterTemplateScope(Decl *D, 10683 llvm::function_ref<Scope *()> EnterScope) { 10684 if (!D) 10685 return 0; 10686 AdjustDeclIfTemplate(D); 10687 10688 // In order to get name lookup right, reenter template scopes in order from 10689 // outermost to innermost. 10690 SmallVector<TemplateParameterList *, 4> ParameterLists; 10691 DeclContext *LookupDC = dyn_cast<DeclContext>(D); 10692 10693 if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D)) { 10694 for (unsigned i = 0; i < DD->getNumTemplateParameterLists(); ++i) 10695 ParameterLists.push_back(DD->getTemplateParameterList(i)); 10696 10697 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 10698 if (FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate()) 10699 ParameterLists.push_back(FTD->getTemplateParameters()); 10700 } else if (VarDecl *VD = dyn_cast<VarDecl>(D)) { 10701 LookupDC = VD->getDeclContext(); 10702 10703 if (VarTemplateDecl *VTD = VD->getDescribedVarTemplate()) 10704 ParameterLists.push_back(VTD->getTemplateParameters()); 10705 else if (auto *PSD = dyn_cast<VarTemplatePartialSpecializationDecl>(D)) 10706 ParameterLists.push_back(PSD->getTemplateParameters()); 10707 } 10708 } else if (TagDecl *TD = dyn_cast<TagDecl>(D)) { 10709 for (unsigned i = 0; i < TD->getNumTemplateParameterLists(); ++i) 10710 ParameterLists.push_back(TD->getTemplateParameterList(i)); 10711 10712 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD)) { 10713 if (ClassTemplateDecl *CTD = RD->getDescribedClassTemplate()) 10714 ParameterLists.push_back(CTD->getTemplateParameters()); 10715 else if (auto *PSD = dyn_cast<ClassTemplatePartialSpecializationDecl>(D)) 10716 ParameterLists.push_back(PSD->getTemplateParameters()); 10717 } 10718 } 10719 // FIXME: Alias declarations and concepts. 10720 10721 unsigned Count = 0; 10722 Scope *InnermostTemplateScope = nullptr; 10723 for (TemplateParameterList *Params : ParameterLists) { 10724 // Ignore explicit specializations; they don't contribute to the template 10725 // depth. 10726 if (Params->size() == 0) 10727 continue; 10728 10729 InnermostTemplateScope = EnterScope(); 10730 for (NamedDecl *Param : *Params) { 10731 if (Param->getDeclName()) { 10732 InnermostTemplateScope->AddDecl(Param); 10733 IdResolver.AddDecl(Param); 10734 } 10735 } 10736 ++Count; 10737 } 10738 10739 // Associate the new template scopes with the corresponding entities. 10740 if (InnermostTemplateScope) { 10741 assert(LookupDC && "no enclosing DeclContext for template lookup"); 10742 EnterTemplatedContext(InnermostTemplateScope, LookupDC); 10743 } 10744 10745 return Count; 10746 } 10747 10748 void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) { 10749 if (!RecordD) return; 10750 AdjustDeclIfTemplate(RecordD); 10751 CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD); 10752 PushDeclContext(S, Record); 10753 } 10754 10755 void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) { 10756 if (!RecordD) return; 10757 PopDeclContext(); 10758 } 10759 10760 void Sema::ActOnReenterCXXMethodParameter(Scope *S, ParmVarDecl *Param) { 10761 if (!Param) 10762 return; 10763 10764 S->AddDecl(Param); 10765 if (Param->getDeclName()) 10766 IdResolver.AddDecl(Param); 10767 } 10768 10769 void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) { 10770 } 10771 10772 /// ActOnDelayedCXXMethodParameter - We've already started a delayed 10773 /// C++ method declaration. We're (re-)introducing the given 10774 /// function parameter into scope for use in parsing later parts of 10775 /// the method declaration. For example, we could see an 10776 /// ActOnParamDefaultArgument event for this parameter. 10777 void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) { 10778 if (!ParamD) 10779 return; 10780 10781 ParmVarDecl *Param = cast<ParmVarDecl>(ParamD); 10782 10783 S->AddDecl(Param); 10784 if (Param->getDeclName()) 10785 IdResolver.AddDecl(Param); 10786 } 10787 10788 void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) { 10789 if (!MethodD) 10790 return; 10791 10792 AdjustDeclIfTemplate(MethodD); 10793 10794 FunctionDecl *Method = cast<FunctionDecl>(MethodD); 10795 10796 // Now that we have our default arguments, check the constructor 10797 // again. It could produce additional diagnostics or affect whether 10798 // the class has implicitly-declared destructors, among other 10799 // things. 10800 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method)) 10801 CheckConstructor(Constructor); 10802 10803 // Check the default arguments, which we may have added. 10804 if (!Method->isInvalidDecl()) 10805 CheckCXXDefaultArguments(Method); 10806 } 10807 10808 // Emit the given diagnostic for each non-address-space qualifier. 10809 // Common part of CheckConstructorDeclarator and CheckDestructorDeclarator. 10810 static void checkMethodTypeQualifiers(Sema &S, Declarator &D, unsigned DiagID) { 10811 const DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 10812 if (FTI.hasMethodTypeQualifiers() && !D.isInvalidType()) { 10813 bool DiagOccured = false; 10814 FTI.MethodQualifiers->forEachQualifier( 10815 [DiagID, &S, &DiagOccured](DeclSpec::TQ, StringRef QualName, 10816 SourceLocation SL) { 10817 // This diagnostic should be emitted on any qualifier except an addr 10818 // space qualifier. However, forEachQualifier currently doesn't visit 10819 // addr space qualifiers, so there's no way to write this condition 10820 // right now; we just diagnose on everything. 10821 S.Diag(SL, DiagID) << QualName << SourceRange(SL); 10822 DiagOccured = true; 10823 }); 10824 if (DiagOccured) 10825 D.setInvalidType(); 10826 } 10827 } 10828 10829 static void diagnoseInvalidDeclaratorChunks(Sema &S, Declarator &D, 10830 unsigned Kind) { 10831 if (D.isInvalidType() || D.getNumTypeObjects() <= 1) 10832 return; 10833 10834 DeclaratorChunk &Chunk = D.getTypeObject(D.getNumTypeObjects() - 1); 10835 if (Chunk.Kind == DeclaratorChunk::Paren || 10836 Chunk.Kind == DeclaratorChunk::Function) 10837 return; 10838 10839 SourceLocation PointerLoc = Chunk.getSourceRange().getBegin(); 10840 S.Diag(PointerLoc, diag::err_invalid_ctor_dtor_decl) 10841 << Kind << Chunk.getSourceRange(); 10842 D.setInvalidType(); 10843 } 10844 10845 QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R, 10846 StorageClass &SC) { 10847 bool isVirtual = D.getDeclSpec().isVirtualSpecified(); 10848 10849 // C++ [class.ctor]p3: 10850 // A constructor shall not be virtual (10.3) or static (9.4). A 10851 // constructor can be invoked for a const, volatile or const 10852 // volatile object. A constructor shall not be declared const, 10853 // volatile, or const volatile (9.3.2). 10854 if (isVirtual) { 10855 if (!D.isInvalidType()) 10856 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be) 10857 << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc()) 10858 << SourceRange(D.getIdentifierLoc()); 10859 D.setInvalidType(); 10860 } 10861 if (SC == SC_Static) { 10862 if (!D.isInvalidType()) 10863 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be) 10864 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) 10865 << SourceRange(D.getIdentifierLoc()); 10866 D.setInvalidType(); 10867 SC = SC_None; 10868 } 10869 10870 if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) { 10871 diagnoseIgnoredQualifiers( 10872 diag::err_constructor_return_type, TypeQuals, SourceLocation(), 10873 D.getDeclSpec().getConstSpecLoc(), D.getDeclSpec().getVolatileSpecLoc(), 10874 D.getDeclSpec().getRestrictSpecLoc(), 10875 D.getDeclSpec().getAtomicSpecLoc()); 10876 D.setInvalidType(); 10877 } 10878 10879 checkMethodTypeQualifiers(*this, D, diag::err_invalid_qualified_constructor); 10880 diagnoseInvalidDeclaratorChunks(*this, D, /*constructor*/ 0); 10881 10882 // C++0x [class.ctor]p4: 10883 // A constructor shall not be declared with a ref-qualifier. 10884 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 10885 if (FTI.hasRefQualifier()) { 10886 Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor) 10887 << FTI.RefQualifierIsLValueRef 10888 << FixItHint::CreateRemoval(FTI.getRefQualifierLoc()); 10889 D.setInvalidType(); 10890 } 10891 10892 // Rebuild the function type "R" without any type qualifiers (in 10893 // case any of the errors above fired) and with "void" as the 10894 // return type, since constructors don't have return types. 10895 const FunctionProtoType *Proto = R->castAs<FunctionProtoType>(); 10896 if (Proto->getReturnType() == Context.VoidTy && !D.isInvalidType()) 10897 return R; 10898 10899 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo(); 10900 EPI.TypeQuals = Qualifiers(); 10901 EPI.RefQualifier = RQ_None; 10902 10903 return Context.getFunctionType(Context.VoidTy, Proto->getParamTypes(), EPI); 10904 } 10905 10906 void Sema::CheckConstructor(CXXConstructorDecl *Constructor) { 10907 CXXRecordDecl *ClassDecl 10908 = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext()); 10909 if (!ClassDecl) 10910 return Constructor->setInvalidDecl(); 10911 10912 // C++ [class.copy]p3: 10913 // A declaration of a constructor for a class X is ill-formed if 10914 // its first parameter is of type (optionally cv-qualified) X and 10915 // either there are no other parameters or else all other 10916 // parameters have default arguments. 10917 if (!Constructor->isInvalidDecl() && 10918 Constructor->hasOneParamOrDefaultArgs() && 10919 Constructor->getTemplateSpecializationKind() != 10920 TSK_ImplicitInstantiation) { 10921 QualType ParamType = Constructor->getParamDecl(0)->getType(); 10922 QualType ClassTy = Context.getTagDeclType(ClassDecl); 10923 if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) { 10924 SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation(); 10925 const char *ConstRef 10926 = Constructor->getParamDecl(0)->getIdentifier() ? "const &" 10927 : " const &"; 10928 Diag(ParamLoc, diag::err_constructor_byvalue_arg) 10929 << FixItHint::CreateInsertion(ParamLoc, ConstRef); 10930 10931 // FIXME: Rather that making the constructor invalid, we should endeavor 10932 // to fix the type. 10933 Constructor->setInvalidDecl(); 10934 } 10935 } 10936 } 10937 10938 bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) { 10939 CXXRecordDecl *RD = Destructor->getParent(); 10940 10941 if (!Destructor->getOperatorDelete() && Destructor->isVirtual()) { 10942 SourceLocation Loc; 10943 10944 if (!Destructor->isImplicit()) 10945 Loc = Destructor->getLocation(); 10946 else 10947 Loc = RD->getLocation(); 10948 10949 // If we have a virtual destructor, look up the deallocation function 10950 if (FunctionDecl *OperatorDelete = 10951 FindDeallocationFunctionForDestructor(Loc, RD)) { 10952 Expr *ThisArg = nullptr; 10953 10954 // If the notional 'delete this' expression requires a non-trivial 10955 // conversion from 'this' to the type of a destroying operator delete's 10956 // first parameter, perform that conversion now. 10957 if (OperatorDelete->isDestroyingOperatorDelete()) { 10958 QualType ParamType = OperatorDelete->getParamDecl(0)->getType(); 10959 if (!declaresSameEntity(ParamType->getAsCXXRecordDecl(), RD)) { 10960 // C++ [class.dtor]p13: 10961 // ... as if for the expression 'delete this' appearing in a 10962 // non-virtual destructor of the destructor's class. 10963 ContextRAII SwitchContext(*this, Destructor); 10964 ExprResult This = 10965 ActOnCXXThis(OperatorDelete->getParamDecl(0)->getLocation()); 10966 assert(!This.isInvalid() && "couldn't form 'this' expr in dtor?"); 10967 This = PerformImplicitConversion(This.get(), ParamType, 10968 AssignmentAction::Passing); 10969 if (This.isInvalid()) { 10970 // FIXME: Register this as a context note so that it comes out 10971 // in the right order. 10972 Diag(Loc, diag::note_implicit_delete_this_in_destructor_here); 10973 return true; 10974 } 10975 ThisArg = This.get(); 10976 } 10977 } 10978 10979 DiagnoseUseOfDecl(OperatorDelete, Loc); 10980 MarkFunctionReferenced(Loc, OperatorDelete); 10981 Destructor->setOperatorDelete(OperatorDelete, ThisArg); 10982 } 10983 } 10984 10985 return false; 10986 } 10987 10988 QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R, 10989 StorageClass& SC) { 10990 // C++ [class.dtor]p1: 10991 // [...] A typedef-name that names a class is a class-name 10992 // (7.1.3); however, a typedef-name that names a class shall not 10993 // be used as the identifier in the declarator for a destructor 10994 // declaration. 10995 QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName); 10996 if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>()) 10997 Diag(D.getIdentifierLoc(), diag::ext_destructor_typedef_name) 10998 << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl()); 10999 else if (const TemplateSpecializationType *TST = 11000 DeclaratorType->getAs<TemplateSpecializationType>()) 11001 if (TST->isTypeAlias()) 11002 Diag(D.getIdentifierLoc(), diag::ext_destructor_typedef_name) 11003 << DeclaratorType << 1; 11004 11005 // C++ [class.dtor]p2: 11006 // A destructor is used to destroy objects of its class type. A 11007 // destructor takes no parameters, and no return type can be 11008 // specified for it (not even void). The address of a destructor 11009 // shall not be taken. A destructor shall not be static. A 11010 // destructor can be invoked for a const, volatile or const 11011 // volatile object. A destructor shall not be declared const, 11012 // volatile or const volatile (9.3.2). 11013 if (SC == SC_Static) { 11014 if (!D.isInvalidType()) 11015 Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be) 11016 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) 11017 << SourceRange(D.getIdentifierLoc()) 11018 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 11019 11020 SC = SC_None; 11021 } 11022 if (!D.isInvalidType()) { 11023 // Destructors don't have return types, but the parser will 11024 // happily parse something like: 11025 // 11026 // class X { 11027 // float ~X(); 11028 // }; 11029 // 11030 // The return type will be eliminated later. 11031 if (D.getDeclSpec().hasTypeSpecifier()) 11032 Diag(D.getIdentifierLoc(), diag::err_destructor_return_type) 11033 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()) 11034 << SourceRange(D.getIdentifierLoc()); 11035 else if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) { 11036 diagnoseIgnoredQualifiers(diag::err_destructor_return_type, TypeQuals, 11037 SourceLocation(), 11038 D.getDeclSpec().getConstSpecLoc(), 11039 D.getDeclSpec().getVolatileSpecLoc(), 11040 D.getDeclSpec().getRestrictSpecLoc(), 11041 D.getDeclSpec().getAtomicSpecLoc()); 11042 D.setInvalidType(); 11043 } 11044 } 11045 11046 checkMethodTypeQualifiers(*this, D, diag::err_invalid_qualified_destructor); 11047 diagnoseInvalidDeclaratorChunks(*this, D, /*destructor*/ 1); 11048 11049 // C++0x [class.dtor]p2: 11050 // A destructor shall not be declared with a ref-qualifier. 11051 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 11052 if (FTI.hasRefQualifier()) { 11053 Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor) 11054 << FTI.RefQualifierIsLValueRef 11055 << FixItHint::CreateRemoval(FTI.getRefQualifierLoc()); 11056 D.setInvalidType(); 11057 } 11058 11059 // Make sure we don't have any parameters. 11060 if (FTIHasNonVoidParameters(FTI)) { 11061 Diag(D.getIdentifierLoc(), diag::err_destructor_with_params); 11062 11063 // Delete the parameters. 11064 FTI.freeParams(); 11065 D.setInvalidType(); 11066 } 11067 11068 // Make sure the destructor isn't variadic. 11069 if (FTI.isVariadic) { 11070 Diag(D.getIdentifierLoc(), diag::err_destructor_variadic); 11071 D.setInvalidType(); 11072 } 11073 11074 // Rebuild the function type "R" without any type qualifiers or 11075 // parameters (in case any of the errors above fired) and with 11076 // "void" as the return type, since destructors don't have return 11077 // types. 11078 if (!D.isInvalidType()) 11079 return R; 11080 11081 const FunctionProtoType *Proto = R->castAs<FunctionProtoType>(); 11082 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo(); 11083 EPI.Variadic = false; 11084 EPI.TypeQuals = Qualifiers(); 11085 EPI.RefQualifier = RQ_None; 11086 return Context.getFunctionType(Context.VoidTy, {}, EPI); 11087 } 11088 11089 static void extendLeft(SourceRange &R, SourceRange Before) { 11090 if (Before.isInvalid()) 11091 return; 11092 R.setBegin(Before.getBegin()); 11093 if (R.getEnd().isInvalid()) 11094 R.setEnd(Before.getEnd()); 11095 } 11096 11097 static void extendRight(SourceRange &R, SourceRange After) { 11098 if (After.isInvalid()) 11099 return; 11100 if (R.getBegin().isInvalid()) 11101 R.setBegin(After.getBegin()); 11102 R.setEnd(After.getEnd()); 11103 } 11104 11105 void Sema::CheckConversionDeclarator(Declarator &D, QualType &R, 11106 StorageClass& SC) { 11107 // C++ [class.conv.fct]p1: 11108 // Neither parameter types nor return type can be specified. The 11109 // type of a conversion function (8.3.5) is "function taking no 11110 // parameter returning conversion-type-id." 11111 if (SC == SC_Static) { 11112 if (!D.isInvalidType()) 11113 Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member) 11114 << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) 11115 << D.getName().getSourceRange(); 11116 D.setInvalidType(); 11117 SC = SC_None; 11118 } 11119 11120 TypeSourceInfo *ConvTSI = nullptr; 11121 QualType ConvType = 11122 GetTypeFromParser(D.getName().ConversionFunctionId, &ConvTSI); 11123 11124 const DeclSpec &DS = D.getDeclSpec(); 11125 if (DS.hasTypeSpecifier() && !D.isInvalidType()) { 11126 // Conversion functions don't have return types, but the parser will 11127 // happily parse something like: 11128 // 11129 // class X { 11130 // float operator bool(); 11131 // }; 11132 // 11133 // The return type will be changed later anyway. 11134 Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type) 11135 << SourceRange(DS.getTypeSpecTypeLoc()) 11136 << SourceRange(D.getIdentifierLoc()); 11137 D.setInvalidType(); 11138 } else if (DS.getTypeQualifiers() && !D.isInvalidType()) { 11139 // It's also plausible that the user writes type qualifiers in the wrong 11140 // place, such as: 11141 // struct S { const operator int(); }; 11142 // FIXME: we could provide a fixit to move the qualifiers onto the 11143 // conversion type. 11144 Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl) 11145 << SourceRange(D.getIdentifierLoc()) << 0; 11146 D.setInvalidType(); 11147 } 11148 const auto *Proto = R->castAs<FunctionProtoType>(); 11149 // Make sure we don't have any parameters. 11150 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 11151 unsigned NumParam = Proto->getNumParams(); 11152 11153 // [C++2b] 11154 // A conversion function shall have no non-object parameters. 11155 if (NumParam == 1) { 11156 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 11157 if (const auto *First = 11158 dyn_cast_if_present<ParmVarDecl>(FTI.Params[0].Param); 11159 First && First->isExplicitObjectParameter()) 11160 NumParam--; 11161 } 11162 11163 if (NumParam != 0) { 11164 Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params); 11165 // Delete the parameters. 11166 FTI.freeParams(); 11167 D.setInvalidType(); 11168 } else if (Proto->isVariadic()) { 11169 Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic); 11170 D.setInvalidType(); 11171 } 11172 11173 // Diagnose "&operator bool()" and other such nonsense. This 11174 // is actually a gcc extension which we don't support. 11175 if (Proto->getReturnType() != ConvType) { 11176 bool NeedsTypedef = false; 11177 SourceRange Before, After; 11178 11179 // Walk the chunks and extract information on them for our diagnostic. 11180 bool PastFunctionChunk = false; 11181 for (auto &Chunk : D.type_objects()) { 11182 switch (Chunk.Kind) { 11183 case DeclaratorChunk::Function: 11184 if (!PastFunctionChunk) { 11185 if (Chunk.Fun.HasTrailingReturnType) { 11186 TypeSourceInfo *TRT = nullptr; 11187 GetTypeFromParser(Chunk.Fun.getTrailingReturnType(), &TRT); 11188 if (TRT) extendRight(After, TRT->getTypeLoc().getSourceRange()); 11189 } 11190 PastFunctionChunk = true; 11191 break; 11192 } 11193 [[fallthrough]]; 11194 case DeclaratorChunk::Array: 11195 NeedsTypedef = true; 11196 extendRight(After, Chunk.getSourceRange()); 11197 break; 11198 11199 case DeclaratorChunk::Pointer: 11200 case DeclaratorChunk::BlockPointer: 11201 case DeclaratorChunk::Reference: 11202 case DeclaratorChunk::MemberPointer: 11203 case DeclaratorChunk::Pipe: 11204 extendLeft(Before, Chunk.getSourceRange()); 11205 break; 11206 11207 case DeclaratorChunk::Paren: 11208 extendLeft(Before, Chunk.Loc); 11209 extendRight(After, Chunk.EndLoc); 11210 break; 11211 } 11212 } 11213 11214 SourceLocation Loc = Before.isValid() ? Before.getBegin() : 11215 After.isValid() ? After.getBegin() : 11216 D.getIdentifierLoc(); 11217 auto &&DB = Diag(Loc, diag::err_conv_function_with_complex_decl); 11218 DB << Before << After; 11219 11220 if (!NeedsTypedef) { 11221 DB << /*don't need a typedef*/0; 11222 11223 // If we can provide a correct fix-it hint, do so. 11224 if (After.isInvalid() && ConvTSI) { 11225 SourceLocation InsertLoc = 11226 getLocForEndOfToken(ConvTSI->getTypeLoc().getEndLoc()); 11227 DB << FixItHint::CreateInsertion(InsertLoc, " ") 11228 << FixItHint::CreateInsertionFromRange( 11229 InsertLoc, CharSourceRange::getTokenRange(Before)) 11230 << FixItHint::CreateRemoval(Before); 11231 } 11232 } else if (!Proto->getReturnType()->isDependentType()) { 11233 DB << /*typedef*/1 << Proto->getReturnType(); 11234 } else if (getLangOpts().CPlusPlus11) { 11235 DB << /*alias template*/2 << Proto->getReturnType(); 11236 } else { 11237 DB << /*might not be fixable*/3; 11238 } 11239 11240 // Recover by incorporating the other type chunks into the result type. 11241 // Note, this does *not* change the name of the function. This is compatible 11242 // with the GCC extension: 11243 // struct S { &operator int(); } s; 11244 // int &r = s.operator int(); // ok in GCC 11245 // S::operator int&() {} // error in GCC, function name is 'operator int'. 11246 ConvType = Proto->getReturnType(); 11247 } 11248 11249 // C++ [class.conv.fct]p4: 11250 // The conversion-type-id shall not represent a function type nor 11251 // an array type. 11252 if (ConvType->isArrayType()) { 11253 Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array); 11254 ConvType = Context.getPointerType(ConvType); 11255 D.setInvalidType(); 11256 } else if (ConvType->isFunctionType()) { 11257 Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function); 11258 ConvType = Context.getPointerType(ConvType); 11259 D.setInvalidType(); 11260 } 11261 11262 // Rebuild the function type "R" without any parameters (in case any 11263 // of the errors above fired) and with the conversion type as the 11264 // return type. 11265 if (D.isInvalidType()) 11266 R = Context.getFunctionType(ConvType, {}, Proto->getExtProtoInfo()); 11267 11268 // C++0x explicit conversion operators. 11269 if (DS.hasExplicitSpecifier() && !getLangOpts().CPlusPlus20) 11270 Diag(DS.getExplicitSpecLoc(), 11271 getLangOpts().CPlusPlus11 11272 ? diag::warn_cxx98_compat_explicit_conversion_functions 11273 : diag::ext_explicit_conversion_functions) 11274 << SourceRange(DS.getExplicitSpecRange()); 11275 } 11276 11277 Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) { 11278 assert(Conversion && "Expected to receive a conversion function declaration"); 11279 11280 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext()); 11281 11282 // Make sure we aren't redeclaring the conversion function. 11283 QualType ConvType = Context.getCanonicalType(Conversion->getConversionType()); 11284 // C++ [class.conv.fct]p1: 11285 // [...] A conversion function is never used to convert a 11286 // (possibly cv-qualified) object to the (possibly cv-qualified) 11287 // same object type (or a reference to it), to a (possibly 11288 // cv-qualified) base class of that type (or a reference to it), 11289 // or to (possibly cv-qualified) void. 11290 QualType ClassType 11291 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); 11292 if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>()) 11293 ConvType = ConvTypeRef->getPointeeType(); 11294 if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared && 11295 Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) 11296 /* Suppress diagnostics for instantiations. */; 11297 else if (Conversion->size_overridden_methods() != 0) 11298 /* Suppress diagnostics for overriding virtual function in a base class. */; 11299 else if (ConvType->isRecordType()) { 11300 ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType(); 11301 if (ConvType == ClassType) 11302 Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used) 11303 << ClassType; 11304 else if (IsDerivedFrom(Conversion->getLocation(), ClassType, ConvType)) 11305 Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used) 11306 << ClassType << ConvType; 11307 } else if (ConvType->isVoidType()) { 11308 Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used) 11309 << ClassType << ConvType; 11310 } 11311 11312 if (FunctionTemplateDecl *ConversionTemplate = 11313 Conversion->getDescribedFunctionTemplate()) { 11314 if (const auto *ConvTypePtr = ConvType->getAs<PointerType>()) { 11315 ConvType = ConvTypePtr->getPointeeType(); 11316 } 11317 if (ConvType->isUndeducedAutoType()) { 11318 Diag(Conversion->getTypeSpecStartLoc(), diag::err_auto_not_allowed) 11319 << getReturnTypeLoc(Conversion).getSourceRange() 11320 << llvm::to_underlying(ConvType->castAs<AutoType>()->getKeyword()) 11321 << /* in declaration of conversion function template= */ 24; 11322 } 11323 11324 return ConversionTemplate; 11325 } 11326 11327 return Conversion; 11328 } 11329 11330 void Sema::CheckExplicitObjectMemberFunction(DeclContext *DC, Declarator &D, 11331 DeclarationName Name, QualType R) { 11332 CheckExplicitObjectMemberFunction(D, Name, R, false, DC); 11333 } 11334 11335 void Sema::CheckExplicitObjectLambda(Declarator &D) { 11336 CheckExplicitObjectMemberFunction(D, {}, {}, true); 11337 } 11338 11339 void Sema::CheckExplicitObjectMemberFunction(Declarator &D, 11340 DeclarationName Name, QualType R, 11341 bool IsLambda, DeclContext *DC) { 11342 if (!D.isFunctionDeclarator()) 11343 return; 11344 11345 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 11346 if (FTI.NumParams == 0) 11347 return; 11348 ParmVarDecl *ExplicitObjectParam = nullptr; 11349 for (unsigned Idx = 0; Idx < FTI.NumParams; Idx++) { 11350 const auto &ParamInfo = FTI.Params[Idx]; 11351 if (!ParamInfo.Param) 11352 continue; 11353 ParmVarDecl *Param = cast<ParmVarDecl>(ParamInfo.Param); 11354 if (!Param->isExplicitObjectParameter()) 11355 continue; 11356 if (Idx == 0) { 11357 ExplicitObjectParam = Param; 11358 continue; 11359 } else { 11360 Diag(Param->getLocation(), 11361 diag::err_explicit_object_parameter_must_be_first) 11362 << IsLambda << Param->getSourceRange(); 11363 } 11364 } 11365 if (!ExplicitObjectParam) 11366 return; 11367 11368 if (ExplicitObjectParam->hasDefaultArg()) { 11369 Diag(ExplicitObjectParam->getLocation(), 11370 diag::err_explicit_object_default_arg) 11371 << ExplicitObjectParam->getSourceRange(); 11372 } 11373 11374 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static || 11375 (D.getContext() == clang::DeclaratorContext::Member && 11376 D.isStaticMember())) { 11377 Diag(ExplicitObjectParam->getBeginLoc(), 11378 diag::err_explicit_object_parameter_nonmember) 11379 << D.getSourceRange() << /*static=*/0 << IsLambda; 11380 D.setInvalidType(); 11381 } 11382 11383 if (D.getDeclSpec().isVirtualSpecified()) { 11384 Diag(ExplicitObjectParam->getBeginLoc(), 11385 diag::err_explicit_object_parameter_nonmember) 11386 << D.getSourceRange() << /*virtual=*/1 << IsLambda; 11387 D.setInvalidType(); 11388 } 11389 11390 // Friend declarations require some care. Consider: 11391 // 11392 // namespace N { 11393 // struct A{}; 11394 // int f(A); 11395 // } 11396 // 11397 // struct S { 11398 // struct T { 11399 // int f(this T); 11400 // }; 11401 // 11402 // friend int T::f(this T); // Allow this. 11403 // friend int f(this S); // But disallow this. 11404 // friend int N::f(this A); // And disallow this. 11405 // }; 11406 // 11407 // Here, it seems to suffice to check whether the scope 11408 // specifier designates a class type. 11409 if (D.getDeclSpec().isFriendSpecified() && 11410 !isa_and_present<CXXRecordDecl>( 11411 computeDeclContext(D.getCXXScopeSpec()))) { 11412 Diag(ExplicitObjectParam->getBeginLoc(), 11413 diag::err_explicit_object_parameter_nonmember) 11414 << D.getSourceRange() << /*non-member=*/2 << IsLambda; 11415 D.setInvalidType(); 11416 } 11417 11418 if (IsLambda && FTI.hasMutableQualifier()) { 11419 Diag(ExplicitObjectParam->getBeginLoc(), 11420 diag::err_explicit_object_parameter_mutable) 11421 << D.getSourceRange(); 11422 } 11423 11424 if (IsLambda) 11425 return; 11426 11427 if (!DC || !DC->isRecord()) { 11428 assert(D.isInvalidType() && "Explicit object parameter in non-member " 11429 "should have been diagnosed already"); 11430 return; 11431 } 11432 11433 // CWG2674: constructors and destructors cannot have explicit parameters. 11434 if (Name.getNameKind() == DeclarationName::CXXConstructorName || 11435 Name.getNameKind() == DeclarationName::CXXDestructorName) { 11436 Diag(ExplicitObjectParam->getBeginLoc(), 11437 diag::err_explicit_object_parameter_constructor) 11438 << (Name.getNameKind() == DeclarationName::CXXDestructorName) 11439 << D.getSourceRange(); 11440 D.setInvalidType(); 11441 } 11442 } 11443 11444 namespace { 11445 /// Utility class to accumulate and print a diagnostic listing the invalid 11446 /// specifier(s) on a declaration. 11447 struct BadSpecifierDiagnoser { 11448 BadSpecifierDiagnoser(Sema &S, SourceLocation Loc, unsigned DiagID) 11449 : S(S), Diagnostic(S.Diag(Loc, DiagID)) {} 11450 ~BadSpecifierDiagnoser() { 11451 Diagnostic << Specifiers; 11452 } 11453 11454 template<typename T> void check(SourceLocation SpecLoc, T Spec) { 11455 return check(SpecLoc, DeclSpec::getSpecifierName(Spec)); 11456 } 11457 void check(SourceLocation SpecLoc, DeclSpec::TST Spec) { 11458 return check(SpecLoc, 11459 DeclSpec::getSpecifierName(Spec, S.getPrintingPolicy())); 11460 } 11461 void check(SourceLocation SpecLoc, const char *Spec) { 11462 if (SpecLoc.isInvalid()) return; 11463 Diagnostic << SourceRange(SpecLoc, SpecLoc); 11464 if (!Specifiers.empty()) Specifiers += " "; 11465 Specifiers += Spec; 11466 } 11467 11468 Sema &S; 11469 Sema::SemaDiagnosticBuilder Diagnostic; 11470 std::string Specifiers; 11471 }; 11472 } 11473 11474 bool Sema::CheckDeductionGuideDeclarator(Declarator &D, QualType &R, 11475 StorageClass &SC) { 11476 TemplateName GuidedTemplate = D.getName().TemplateName.get().get(); 11477 TemplateDecl *GuidedTemplateDecl = GuidedTemplate.getAsTemplateDecl(); 11478 assert(GuidedTemplateDecl && "missing template decl for deduction guide"); 11479 11480 // C++ [temp.deduct.guide]p3: 11481 // A deduction-gide shall be declared in the same scope as the 11482 // corresponding class template. 11483 if (!CurContext->getRedeclContext()->Equals( 11484 GuidedTemplateDecl->getDeclContext()->getRedeclContext())) { 11485 Diag(D.getIdentifierLoc(), diag::err_deduction_guide_wrong_scope) 11486 << GuidedTemplateDecl; 11487 NoteTemplateLocation(*GuidedTemplateDecl); 11488 } 11489 11490 auto &DS = D.getMutableDeclSpec(); 11491 // We leave 'friend' and 'virtual' to be rejected in the normal way. 11492 if (DS.hasTypeSpecifier() || DS.getTypeQualifiers() || 11493 DS.getStorageClassSpecLoc().isValid() || DS.isInlineSpecified() || 11494 DS.isNoreturnSpecified() || DS.hasConstexprSpecifier()) { 11495 BadSpecifierDiagnoser Diagnoser( 11496 *this, D.getIdentifierLoc(), 11497 diag::err_deduction_guide_invalid_specifier); 11498 11499 Diagnoser.check(DS.getStorageClassSpecLoc(), DS.getStorageClassSpec()); 11500 DS.ClearStorageClassSpecs(); 11501 SC = SC_None; 11502 11503 // 'explicit' is permitted. 11504 Diagnoser.check(DS.getInlineSpecLoc(), "inline"); 11505 Diagnoser.check(DS.getNoreturnSpecLoc(), "_Noreturn"); 11506 Diagnoser.check(DS.getConstexprSpecLoc(), "constexpr"); 11507 DS.ClearConstexprSpec(); 11508 11509 Diagnoser.check(DS.getConstSpecLoc(), "const"); 11510 Diagnoser.check(DS.getRestrictSpecLoc(), "__restrict"); 11511 Diagnoser.check(DS.getVolatileSpecLoc(), "volatile"); 11512 Diagnoser.check(DS.getAtomicSpecLoc(), "_Atomic"); 11513 Diagnoser.check(DS.getUnalignedSpecLoc(), "__unaligned"); 11514 DS.ClearTypeQualifiers(); 11515 11516 Diagnoser.check(DS.getTypeSpecComplexLoc(), DS.getTypeSpecComplex()); 11517 Diagnoser.check(DS.getTypeSpecSignLoc(), DS.getTypeSpecSign()); 11518 Diagnoser.check(DS.getTypeSpecWidthLoc(), DS.getTypeSpecWidth()); 11519 Diagnoser.check(DS.getTypeSpecTypeLoc(), DS.getTypeSpecType()); 11520 DS.ClearTypeSpecType(); 11521 } 11522 11523 if (D.isInvalidType()) 11524 return true; 11525 11526 // Check the declarator is simple enough. 11527 bool FoundFunction = false; 11528 for (const DeclaratorChunk &Chunk : llvm::reverse(D.type_objects())) { 11529 if (Chunk.Kind == DeclaratorChunk::Paren) 11530 continue; 11531 if (Chunk.Kind != DeclaratorChunk::Function || FoundFunction) { 11532 Diag(D.getDeclSpec().getBeginLoc(), 11533 diag::err_deduction_guide_with_complex_decl) 11534 << D.getSourceRange(); 11535 break; 11536 } 11537 if (!Chunk.Fun.hasTrailingReturnType()) 11538 return Diag(D.getName().getBeginLoc(), 11539 diag::err_deduction_guide_no_trailing_return_type); 11540 11541 // Check that the return type is written as a specialization of 11542 // the template specified as the deduction-guide's name. 11543 // The template name may not be qualified. [temp.deduct.guide] 11544 ParsedType TrailingReturnType = Chunk.Fun.getTrailingReturnType(); 11545 TypeSourceInfo *TSI = nullptr; 11546 QualType RetTy = GetTypeFromParser(TrailingReturnType, &TSI); 11547 assert(TSI && "deduction guide has valid type but invalid return type?"); 11548 bool AcceptableReturnType = false; 11549 bool MightInstantiateToSpecialization = false; 11550 if (auto RetTST = 11551 TSI->getTypeLoc().getAsAdjusted<TemplateSpecializationTypeLoc>()) { 11552 TemplateName SpecifiedName = RetTST.getTypePtr()->getTemplateName(); 11553 bool TemplateMatches = Context.hasSameTemplateName( 11554 SpecifiedName, GuidedTemplate, /*IgnoreDeduced=*/true); 11555 11556 const QualifiedTemplateName *Qualifiers = 11557 SpecifiedName.getAsQualifiedTemplateName(); 11558 assert(Qualifiers && "expected QualifiedTemplate"); 11559 bool SimplyWritten = !Qualifiers->hasTemplateKeyword() && 11560 Qualifiers->getQualifier() == nullptr; 11561 if (SimplyWritten && TemplateMatches) 11562 AcceptableReturnType = true; 11563 else { 11564 // This could still instantiate to the right type, unless we know it 11565 // names the wrong class template. 11566 auto *TD = SpecifiedName.getAsTemplateDecl(); 11567 MightInstantiateToSpecialization = 11568 !(TD && isa<ClassTemplateDecl>(TD) && !TemplateMatches); 11569 } 11570 } else if (!RetTy.hasQualifiers() && RetTy->isDependentType()) { 11571 MightInstantiateToSpecialization = true; 11572 } 11573 11574 if (!AcceptableReturnType) 11575 return Diag(TSI->getTypeLoc().getBeginLoc(), 11576 diag::err_deduction_guide_bad_trailing_return_type) 11577 << GuidedTemplate << TSI->getType() 11578 << MightInstantiateToSpecialization 11579 << TSI->getTypeLoc().getSourceRange(); 11580 11581 // Keep going to check that we don't have any inner declarator pieces (we 11582 // could still have a function returning a pointer to a function). 11583 FoundFunction = true; 11584 } 11585 11586 if (D.isFunctionDefinition()) 11587 // we can still create a valid deduction guide here. 11588 Diag(D.getIdentifierLoc(), diag::err_deduction_guide_defines_function); 11589 return false; 11590 } 11591 11592 //===----------------------------------------------------------------------===// 11593 // Namespace Handling 11594 //===----------------------------------------------------------------------===// 11595 11596 /// Diagnose a mismatch in 'inline' qualifiers when a namespace is 11597 /// reopened. 11598 static void DiagnoseNamespaceInlineMismatch(Sema &S, SourceLocation KeywordLoc, 11599 SourceLocation Loc, 11600 IdentifierInfo *II, bool *IsInline, 11601 NamespaceDecl *PrevNS) { 11602 assert(*IsInline != PrevNS->isInline()); 11603 11604 // 'inline' must appear on the original definition, but not necessarily 11605 // on all extension definitions, so the note should point to the first 11606 // definition to avoid confusion. 11607 PrevNS = PrevNS->getFirstDecl(); 11608 11609 if (PrevNS->isInline()) 11610 // The user probably just forgot the 'inline', so suggest that it 11611 // be added back. 11612 S.Diag(Loc, diag::warn_inline_namespace_reopened_noninline) 11613 << FixItHint::CreateInsertion(KeywordLoc, "inline "); 11614 else 11615 S.Diag(Loc, diag::err_inline_namespace_mismatch); 11616 11617 S.Diag(PrevNS->getLocation(), diag::note_previous_definition); 11618 *IsInline = PrevNS->isInline(); 11619 } 11620 11621 /// ActOnStartNamespaceDef - This is called at the start of a namespace 11622 /// definition. 11623 Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope, 11624 SourceLocation InlineLoc, 11625 SourceLocation NamespaceLoc, 11626 SourceLocation IdentLoc, IdentifierInfo *II, 11627 SourceLocation LBrace, 11628 const ParsedAttributesView &AttrList, 11629 UsingDirectiveDecl *&UD, bool IsNested) { 11630 SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc; 11631 // For anonymous namespace, take the location of the left brace. 11632 SourceLocation Loc = II ? IdentLoc : LBrace; 11633 bool IsInline = InlineLoc.isValid(); 11634 bool IsInvalid = false; 11635 bool IsStd = false; 11636 bool AddToKnown = false; 11637 Scope *DeclRegionScope = NamespcScope->getParent(); 11638 11639 NamespaceDecl *PrevNS = nullptr; 11640 if (II) { 11641 // C++ [namespace.std]p7: 11642 // A translation unit shall not declare namespace std to be an inline 11643 // namespace (9.8.2). 11644 // 11645 // Precondition: the std namespace is in the file scope and is declared to 11646 // be inline 11647 auto DiagnoseInlineStdNS = [&]() { 11648 assert(IsInline && II->isStr("std") && 11649 CurContext->getRedeclContext()->isTranslationUnit() && 11650 "Precondition of DiagnoseInlineStdNS not met"); 11651 Diag(InlineLoc, diag::err_inline_namespace_std) 11652 << SourceRange(InlineLoc, InlineLoc.getLocWithOffset(6)); 11653 IsInline = false; 11654 }; 11655 // C++ [namespace.def]p2: 11656 // The identifier in an original-namespace-definition shall not 11657 // have been previously defined in the declarative region in 11658 // which the original-namespace-definition appears. The 11659 // identifier in an original-namespace-definition is the name of 11660 // the namespace. Subsequently in that declarative region, it is 11661 // treated as an original-namespace-name. 11662 // 11663 // Since namespace names are unique in their scope, and we don't 11664 // look through using directives, just look for any ordinary names 11665 // as if by qualified name lookup. 11666 LookupResult R(*this, II, IdentLoc, LookupOrdinaryName, 11667 RedeclarationKind::ForExternalRedeclaration); 11668 LookupQualifiedName(R, CurContext->getRedeclContext()); 11669 NamedDecl *PrevDecl = 11670 R.isSingleResult() ? R.getRepresentativeDecl() : nullptr; 11671 PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl); 11672 11673 if (PrevNS) { 11674 // This is an extended namespace definition. 11675 if (IsInline && II->isStr("std") && 11676 CurContext->getRedeclContext()->isTranslationUnit()) 11677 DiagnoseInlineStdNS(); 11678 else if (IsInline != PrevNS->isInline()) 11679 DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, Loc, II, 11680 &IsInline, PrevNS); 11681 } else if (PrevDecl) { 11682 // This is an invalid name redefinition. 11683 Diag(Loc, diag::err_redefinition_different_kind) 11684 << II; 11685 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 11686 IsInvalid = true; 11687 // Continue on to push Namespc as current DeclContext and return it. 11688 } else if (II->isStr("std") && 11689 CurContext->getRedeclContext()->isTranslationUnit()) { 11690 if (IsInline) 11691 DiagnoseInlineStdNS(); 11692 // This is the first "real" definition of the namespace "std", so update 11693 // our cache of the "std" namespace to point at this definition. 11694 PrevNS = getStdNamespace(); 11695 IsStd = true; 11696 AddToKnown = !IsInline; 11697 } else { 11698 // We've seen this namespace for the first time. 11699 AddToKnown = !IsInline; 11700 } 11701 } else { 11702 // Anonymous namespaces. 11703 11704 // Determine whether the parent already has an anonymous namespace. 11705 DeclContext *Parent = CurContext->getRedeclContext(); 11706 if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) { 11707 PrevNS = TU->getAnonymousNamespace(); 11708 } else { 11709 NamespaceDecl *ND = cast<NamespaceDecl>(Parent); 11710 PrevNS = ND->getAnonymousNamespace(); 11711 } 11712 11713 if (PrevNS && IsInline != PrevNS->isInline()) 11714 DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, NamespaceLoc, II, 11715 &IsInline, PrevNS); 11716 } 11717 11718 NamespaceDecl *Namespc = NamespaceDecl::Create( 11719 Context, CurContext, IsInline, StartLoc, Loc, II, PrevNS, IsNested); 11720 if (IsInvalid) 11721 Namespc->setInvalidDecl(); 11722 11723 ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList); 11724 AddPragmaAttributes(DeclRegionScope, Namespc); 11725 ProcessAPINotes(Namespc); 11726 11727 // FIXME: Should we be merging attributes? 11728 if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>()) 11729 PushNamespaceVisibilityAttr(Attr, Loc); 11730 11731 if (IsStd) 11732 StdNamespace = Namespc; 11733 if (AddToKnown) 11734 KnownNamespaces[Namespc] = false; 11735 11736 if (II) { 11737 PushOnScopeChains(Namespc, DeclRegionScope); 11738 } else { 11739 // Link the anonymous namespace into its parent. 11740 DeclContext *Parent = CurContext->getRedeclContext(); 11741 if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) { 11742 TU->setAnonymousNamespace(Namespc); 11743 } else { 11744 cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc); 11745 } 11746 11747 CurContext->addDecl(Namespc); 11748 11749 // C++ [namespace.unnamed]p1. An unnamed-namespace-definition 11750 // behaves as if it were replaced by 11751 // namespace unique { /* empty body */ } 11752 // using namespace unique; 11753 // namespace unique { namespace-body } 11754 // where all occurrences of 'unique' in a translation unit are 11755 // replaced by the same identifier and this identifier differs 11756 // from all other identifiers in the entire program. 11757 11758 // We just create the namespace with an empty name and then add an 11759 // implicit using declaration, just like the standard suggests. 11760 // 11761 // CodeGen enforces the "universally unique" aspect by giving all 11762 // declarations semantically contained within an anonymous 11763 // namespace internal linkage. 11764 11765 if (!PrevNS) { 11766 UD = UsingDirectiveDecl::Create(Context, Parent, 11767 /* 'using' */ LBrace, 11768 /* 'namespace' */ SourceLocation(), 11769 /* qualifier */ NestedNameSpecifierLoc(), 11770 /* identifier */ SourceLocation(), 11771 Namespc, 11772 /* Ancestor */ Parent); 11773 UD->setImplicit(); 11774 Parent->addDecl(UD); 11775 } 11776 } 11777 11778 ActOnDocumentableDecl(Namespc); 11779 11780 // Although we could have an invalid decl (i.e. the namespace name is a 11781 // redefinition), push it as current DeclContext and try to continue parsing. 11782 // FIXME: We should be able to push Namespc here, so that the each DeclContext 11783 // for the namespace has the declarations that showed up in that particular 11784 // namespace definition. 11785 PushDeclContext(NamespcScope, Namespc); 11786 return Namespc; 11787 } 11788 11789 /// getNamespaceDecl - Returns the namespace a decl represents. If the decl 11790 /// is a namespace alias, returns the namespace it points to. 11791 static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) { 11792 if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D)) 11793 return AD->getNamespace(); 11794 return dyn_cast_or_null<NamespaceDecl>(D); 11795 } 11796 11797 void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) { 11798 NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl); 11799 assert(Namespc && "Invalid parameter, expected NamespaceDecl"); 11800 Namespc->setRBraceLoc(RBrace); 11801 PopDeclContext(); 11802 if (Namespc->hasAttr<VisibilityAttr>()) 11803 PopPragmaVisibility(true, RBrace); 11804 // If this namespace contains an export-declaration, export it now. 11805 if (DeferredExportedNamespaces.erase(Namespc)) 11806 Dcl->setModuleOwnershipKind(Decl::ModuleOwnershipKind::VisibleWhenImported); 11807 } 11808 11809 CXXRecordDecl *Sema::getStdBadAlloc() const { 11810 return cast_or_null<CXXRecordDecl>( 11811 StdBadAlloc.get(Context.getExternalSource())); 11812 } 11813 11814 EnumDecl *Sema::getStdAlignValT() const { 11815 return cast_or_null<EnumDecl>(StdAlignValT.get(Context.getExternalSource())); 11816 } 11817 11818 NamespaceDecl *Sema::getStdNamespace() const { 11819 return cast_or_null<NamespaceDecl>( 11820 StdNamespace.get(Context.getExternalSource())); 11821 } 11822 namespace { 11823 11824 enum UnsupportedSTLSelect { 11825 USS_InvalidMember, 11826 USS_MissingMember, 11827 USS_NonTrivial, 11828 USS_Other 11829 }; 11830 11831 struct InvalidSTLDiagnoser { 11832 Sema &S; 11833 SourceLocation Loc; 11834 QualType TyForDiags; 11835 11836 QualType operator()(UnsupportedSTLSelect Sel = USS_Other, StringRef Name = "", 11837 const VarDecl *VD = nullptr) { 11838 { 11839 auto D = S.Diag(Loc, diag::err_std_compare_type_not_supported) 11840 << TyForDiags << ((int)Sel); 11841 if (Sel == USS_InvalidMember || Sel == USS_MissingMember) { 11842 assert(!Name.empty()); 11843 D << Name; 11844 } 11845 } 11846 if (Sel == USS_InvalidMember) { 11847 S.Diag(VD->getLocation(), diag::note_var_declared_here) 11848 << VD << VD->getSourceRange(); 11849 } 11850 return QualType(); 11851 } 11852 }; 11853 } // namespace 11854 11855 QualType Sema::CheckComparisonCategoryType(ComparisonCategoryType Kind, 11856 SourceLocation Loc, 11857 ComparisonCategoryUsage Usage) { 11858 assert(getLangOpts().CPlusPlus && 11859 "Looking for comparison category type outside of C++."); 11860 11861 // Use an elaborated type for diagnostics which has a name containing the 11862 // prepended 'std' namespace but not any inline namespace names. 11863 auto TyForDiags = [&](ComparisonCategoryInfo *Info) { 11864 auto *NNS = 11865 NestedNameSpecifier::Create(Context, nullptr, getStdNamespace()); 11866 return Context.getElaboratedType(ElaboratedTypeKeyword::None, NNS, 11867 Info->getType()); 11868 }; 11869 11870 // Check if we've already successfully checked the comparison category type 11871 // before. If so, skip checking it again. 11872 ComparisonCategoryInfo *Info = Context.CompCategories.lookupInfo(Kind); 11873 if (Info && FullyCheckedComparisonCategories[static_cast<unsigned>(Kind)]) { 11874 // The only thing we need to check is that the type has a reachable 11875 // definition in the current context. 11876 if (RequireCompleteType(Loc, TyForDiags(Info), diag::err_incomplete_type)) 11877 return QualType(); 11878 11879 return Info->getType(); 11880 } 11881 11882 // If lookup failed 11883 if (!Info) { 11884 std::string NameForDiags = "std::"; 11885 NameForDiags += ComparisonCategories::getCategoryString(Kind); 11886 Diag(Loc, diag::err_implied_comparison_category_type_not_found) 11887 << NameForDiags << (int)Usage; 11888 return QualType(); 11889 } 11890 11891 assert(Info->Kind == Kind); 11892 assert(Info->Record); 11893 11894 // Update the Record decl in case we encountered a forward declaration on our 11895 // first pass. FIXME: This is a bit of a hack. 11896 if (Info->Record->hasDefinition()) 11897 Info->Record = Info->Record->getDefinition(); 11898 11899 if (RequireCompleteType(Loc, TyForDiags(Info), diag::err_incomplete_type)) 11900 return QualType(); 11901 11902 InvalidSTLDiagnoser UnsupportedSTLError{*this, Loc, TyForDiags(Info)}; 11903 11904 if (!Info->Record->isTriviallyCopyable()) 11905 return UnsupportedSTLError(USS_NonTrivial); 11906 11907 for (const CXXBaseSpecifier &BaseSpec : Info->Record->bases()) { 11908 CXXRecordDecl *Base = BaseSpec.getType()->getAsCXXRecordDecl(); 11909 // Tolerate empty base classes. 11910 if (Base->isEmpty()) 11911 continue; 11912 // Reject STL implementations which have at least one non-empty base. 11913 return UnsupportedSTLError(); 11914 } 11915 11916 // Check that the STL has implemented the types using a single integer field. 11917 // This expectation allows better codegen for builtin operators. We require: 11918 // (1) The class has exactly one field. 11919 // (2) The field is an integral or enumeration type. 11920 auto FIt = Info->Record->field_begin(), FEnd = Info->Record->field_end(); 11921 if (std::distance(FIt, FEnd) != 1 || 11922 !FIt->getType()->isIntegralOrEnumerationType()) { 11923 return UnsupportedSTLError(); 11924 } 11925 11926 // Build each of the require values and store them in Info. 11927 for (ComparisonCategoryResult CCR : 11928 ComparisonCategories::getPossibleResultsForType(Kind)) { 11929 StringRef MemName = ComparisonCategories::getResultString(CCR); 11930 ComparisonCategoryInfo::ValueInfo *ValInfo = Info->lookupValueInfo(CCR); 11931 11932 if (!ValInfo) 11933 return UnsupportedSTLError(USS_MissingMember, MemName); 11934 11935 VarDecl *VD = ValInfo->VD; 11936 assert(VD && "should not be null!"); 11937 11938 // Attempt to diagnose reasons why the STL definition of this type 11939 // might be foobar, including it failing to be a constant expression. 11940 // TODO Handle more ways the lookup or result can be invalid. 11941 if (!VD->isStaticDataMember() || 11942 !VD->isUsableInConstantExpressions(Context)) 11943 return UnsupportedSTLError(USS_InvalidMember, MemName, VD); 11944 11945 // Attempt to evaluate the var decl as a constant expression and extract 11946 // the value of its first field as a ICE. If this fails, the STL 11947 // implementation is not supported. 11948 if (!ValInfo->hasValidIntValue()) 11949 return UnsupportedSTLError(); 11950 11951 MarkVariableReferenced(Loc, VD); 11952 } 11953 11954 // We've successfully built the required types and expressions. Update 11955 // the cache and return the newly cached value. 11956 FullyCheckedComparisonCategories[static_cast<unsigned>(Kind)] = true; 11957 return Info->getType(); 11958 } 11959 11960 NamespaceDecl *Sema::getOrCreateStdNamespace() { 11961 if (!StdNamespace) { 11962 // The "std" namespace has not yet been defined, so build one implicitly. 11963 StdNamespace = NamespaceDecl::Create( 11964 Context, Context.getTranslationUnitDecl(), 11965 /*Inline=*/false, SourceLocation(), SourceLocation(), 11966 &PP.getIdentifierTable().get("std"), 11967 /*PrevDecl=*/nullptr, /*Nested=*/false); 11968 getStdNamespace()->setImplicit(true); 11969 // We want the created NamespaceDecl to be available for redeclaration 11970 // lookups, but not for regular name lookups. 11971 Context.getTranslationUnitDecl()->addDecl(getStdNamespace()); 11972 getStdNamespace()->clearIdentifierNamespace(); 11973 } 11974 11975 return getStdNamespace(); 11976 } 11977 11978 bool Sema::isStdInitializerList(QualType Ty, QualType *Element) { 11979 assert(getLangOpts().CPlusPlus && 11980 "Looking for std::initializer_list outside of C++."); 11981 11982 // We're looking for implicit instantiations of 11983 // template <typename E> class std::initializer_list. 11984 11985 if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it. 11986 return false; 11987 11988 ClassTemplateDecl *Template = nullptr; 11989 const TemplateArgument *Arguments = nullptr; 11990 11991 if (const RecordType *RT = Ty->getAs<RecordType>()) { 11992 11993 ClassTemplateSpecializationDecl *Specialization = 11994 dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl()); 11995 if (!Specialization) 11996 return false; 11997 11998 Template = Specialization->getSpecializedTemplate(); 11999 Arguments = Specialization->getTemplateArgs().data(); 12000 } else { 12001 const TemplateSpecializationType *TST = nullptr; 12002 if (auto *ICN = Ty->getAs<InjectedClassNameType>()) 12003 TST = ICN->getInjectedTST(); 12004 else 12005 TST = Ty->getAs<TemplateSpecializationType>(); 12006 if (TST) { 12007 Template = dyn_cast_or_null<ClassTemplateDecl>( 12008 TST->getTemplateName().getAsTemplateDecl()); 12009 Arguments = TST->template_arguments().begin(); 12010 } 12011 } 12012 if (!Template) 12013 return false; 12014 12015 if (!StdInitializerList) { 12016 // Haven't recognized std::initializer_list yet, maybe this is it. 12017 CXXRecordDecl *TemplateClass = Template->getTemplatedDecl(); 12018 if (TemplateClass->getIdentifier() != 12019 &PP.getIdentifierTable().get("initializer_list") || 12020 !getStdNamespace()->InEnclosingNamespaceSetOf( 12021 TemplateClass->getNonTransparentDeclContext())) 12022 return false; 12023 // This is a template called std::initializer_list, but is it the right 12024 // template? 12025 TemplateParameterList *Params = Template->getTemplateParameters(); 12026 if (Params->getMinRequiredArguments() != 1) 12027 return false; 12028 if (!isa<TemplateTypeParmDecl>(Params->getParam(0))) 12029 return false; 12030 12031 // It's the right template. 12032 StdInitializerList = Template; 12033 } 12034 12035 if (Template->getCanonicalDecl() != StdInitializerList->getCanonicalDecl()) 12036 return false; 12037 12038 // This is an instance of std::initializer_list. Find the argument type. 12039 if (Element) 12040 *Element = Arguments[0].getAsType(); 12041 return true; 12042 } 12043 12044 static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){ 12045 NamespaceDecl *Std = S.getStdNamespace(); 12046 if (!Std) { 12047 S.Diag(Loc, diag::err_implied_std_initializer_list_not_found); 12048 return nullptr; 12049 } 12050 12051 LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"), 12052 Loc, Sema::LookupOrdinaryName); 12053 if (!S.LookupQualifiedName(Result, Std)) { 12054 S.Diag(Loc, diag::err_implied_std_initializer_list_not_found); 12055 return nullptr; 12056 } 12057 ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>(); 12058 if (!Template) { 12059 Result.suppressDiagnostics(); 12060 // We found something weird. Complain about the first thing we found. 12061 NamedDecl *Found = *Result.begin(); 12062 S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list); 12063 return nullptr; 12064 } 12065 12066 // We found some template called std::initializer_list. Now verify that it's 12067 // correct. 12068 TemplateParameterList *Params = Template->getTemplateParameters(); 12069 if (Params->getMinRequiredArguments() != 1 || 12070 !isa<TemplateTypeParmDecl>(Params->getParam(0))) { 12071 S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list); 12072 return nullptr; 12073 } 12074 12075 return Template; 12076 } 12077 12078 QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) { 12079 if (!StdInitializerList) { 12080 StdInitializerList = LookupStdInitializerList(*this, Loc); 12081 if (!StdInitializerList) 12082 return QualType(); 12083 } 12084 12085 TemplateArgumentListInfo Args(Loc, Loc); 12086 Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element), 12087 Context.getTrivialTypeSourceInfo(Element, 12088 Loc))); 12089 return Context.getElaboratedType( 12090 ElaboratedTypeKeyword::None, 12091 NestedNameSpecifier::Create(Context, nullptr, getStdNamespace()), 12092 CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args)); 12093 } 12094 12095 bool Sema::isInitListConstructor(const FunctionDecl *Ctor) { 12096 // C++ [dcl.init.list]p2: 12097 // A constructor is an initializer-list constructor if its first parameter 12098 // is of type std::initializer_list<E> or reference to possibly cv-qualified 12099 // std::initializer_list<E> for some type E, and either there are no other 12100 // parameters or else all other parameters have default arguments. 12101 if (!Ctor->hasOneParamOrDefaultArgs()) 12102 return false; 12103 12104 QualType ArgType = Ctor->getParamDecl(0)->getType(); 12105 if (const ReferenceType *RT = ArgType->getAs<ReferenceType>()) 12106 ArgType = RT->getPointeeType().getUnqualifiedType(); 12107 12108 return isStdInitializerList(ArgType, nullptr); 12109 } 12110 12111 /// Determine whether a using statement is in a context where it will be 12112 /// apply in all contexts. 12113 static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) { 12114 switch (CurContext->getDeclKind()) { 12115 case Decl::TranslationUnit: 12116 return true; 12117 case Decl::LinkageSpec: 12118 return IsUsingDirectiveInToplevelContext(CurContext->getParent()); 12119 default: 12120 return false; 12121 } 12122 } 12123 12124 namespace { 12125 12126 // Callback to only accept typo corrections that are namespaces. 12127 class NamespaceValidatorCCC final : public CorrectionCandidateCallback { 12128 public: 12129 bool ValidateCandidate(const TypoCorrection &candidate) override { 12130 if (NamedDecl *ND = candidate.getCorrectionDecl()) 12131 return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND); 12132 return false; 12133 } 12134 12135 std::unique_ptr<CorrectionCandidateCallback> clone() override { 12136 return std::make_unique<NamespaceValidatorCCC>(*this); 12137 } 12138 }; 12139 12140 } 12141 12142 static void DiagnoseInvisibleNamespace(const TypoCorrection &Corrected, 12143 Sema &S) { 12144 auto *ND = cast<NamespaceDecl>(Corrected.getFoundDecl()); 12145 Module *M = ND->getOwningModule(); 12146 assert(M && "hidden namespace definition not in a module?"); 12147 12148 if (M->isExplicitGlobalModule()) 12149 S.Diag(Corrected.getCorrectionRange().getBegin(), 12150 diag::err_module_unimported_use_header) 12151 << (int)Sema::MissingImportKind::Declaration << Corrected.getFoundDecl() 12152 << /*Header Name*/ false; 12153 else 12154 S.Diag(Corrected.getCorrectionRange().getBegin(), 12155 diag::err_module_unimported_use) 12156 << (int)Sema::MissingImportKind::Declaration << Corrected.getFoundDecl() 12157 << M->getTopLevelModuleName(); 12158 } 12159 12160 static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc, 12161 CXXScopeSpec &SS, 12162 SourceLocation IdentLoc, 12163 IdentifierInfo *Ident) { 12164 R.clear(); 12165 NamespaceValidatorCCC CCC{}; 12166 if (TypoCorrection Corrected = 12167 S.CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), Sc, &SS, CCC, 12168 Sema::CTK_ErrorRecovery)) { 12169 // Generally we find it is confusing more than helpful to diagnose the 12170 // invisible namespace. 12171 // See https://github.com/llvm/llvm-project/issues/73893. 12172 // 12173 // However, we should diagnose when the users are trying to using an 12174 // invisible namespace. So we handle the case specially here. 12175 if (isa_and_nonnull<NamespaceDecl>(Corrected.getFoundDecl()) && 12176 Corrected.requiresImport()) { 12177 DiagnoseInvisibleNamespace(Corrected, S); 12178 } else if (DeclContext *DC = S.computeDeclContext(SS, false)) { 12179 std::string CorrectedStr(Corrected.getAsString(S.getLangOpts())); 12180 bool DroppedSpecifier = 12181 Corrected.WillReplaceSpecifier() && Ident->getName() == CorrectedStr; 12182 S.diagnoseTypo(Corrected, 12183 S.PDiag(diag::err_using_directive_member_suggest) 12184 << Ident << DC << DroppedSpecifier << SS.getRange(), 12185 S.PDiag(diag::note_namespace_defined_here)); 12186 } else { 12187 S.diagnoseTypo(Corrected, 12188 S.PDiag(diag::err_using_directive_suggest) << Ident, 12189 S.PDiag(diag::note_namespace_defined_here)); 12190 } 12191 R.addDecl(Corrected.getFoundDecl()); 12192 return true; 12193 } 12194 return false; 12195 } 12196 12197 Decl *Sema::ActOnUsingDirective(Scope *S, SourceLocation UsingLoc, 12198 SourceLocation NamespcLoc, CXXScopeSpec &SS, 12199 SourceLocation IdentLoc, 12200 IdentifierInfo *NamespcName, 12201 const ParsedAttributesView &AttrList) { 12202 assert(!SS.isInvalid() && "Invalid CXXScopeSpec."); 12203 assert(NamespcName && "Invalid NamespcName."); 12204 assert(IdentLoc.isValid() && "Invalid NamespceName location."); 12205 12206 // Get the innermost enclosing declaration scope. 12207 S = S->getDeclParent(); 12208 12209 UsingDirectiveDecl *UDir = nullptr; 12210 NestedNameSpecifier *Qualifier = nullptr; 12211 if (SS.isSet()) 12212 Qualifier = SS.getScopeRep(); 12213 12214 // Lookup namespace name. 12215 LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName); 12216 LookupParsedName(R, S, &SS, /*ObjectType=*/QualType()); 12217 if (R.isAmbiguous()) 12218 return nullptr; 12219 12220 if (R.empty()) { 12221 R.clear(); 12222 // Allow "using namespace std;" or "using namespace ::std;" even if 12223 // "std" hasn't been defined yet, for GCC compatibility. 12224 if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) && 12225 NamespcName->isStr("std")) { 12226 Diag(IdentLoc, diag::ext_using_undefined_std); 12227 R.addDecl(getOrCreateStdNamespace()); 12228 R.resolveKind(); 12229 } 12230 // Otherwise, attempt typo correction. 12231 else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName); 12232 } 12233 12234 if (!R.empty()) { 12235 NamedDecl *Named = R.getRepresentativeDecl(); 12236 NamespaceDecl *NS = R.getAsSingle<NamespaceDecl>(); 12237 assert(NS && "expected namespace decl"); 12238 12239 // The use of a nested name specifier may trigger deprecation warnings. 12240 DiagnoseUseOfDecl(Named, IdentLoc); 12241 12242 // C++ [namespace.udir]p1: 12243 // A using-directive specifies that the names in the nominated 12244 // namespace can be used in the scope in which the 12245 // using-directive appears after the using-directive. During 12246 // unqualified name lookup (3.4.1), the names appear as if they 12247 // were declared in the nearest enclosing namespace which 12248 // contains both the using-directive and the nominated 12249 // namespace. [Note: in this context, "contains" means "contains 12250 // directly or indirectly". ] 12251 12252 // Find enclosing context containing both using-directive and 12253 // nominated namespace. 12254 DeclContext *CommonAncestor = NS; 12255 while (CommonAncestor && !CommonAncestor->Encloses(CurContext)) 12256 CommonAncestor = CommonAncestor->getParent(); 12257 12258 UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc, 12259 SS.getWithLocInContext(Context), 12260 IdentLoc, Named, CommonAncestor); 12261 12262 if (IsUsingDirectiveInToplevelContext(CurContext) && 12263 !SourceMgr.isInMainFile(SourceMgr.getExpansionLoc(IdentLoc))) { 12264 Diag(IdentLoc, diag::warn_using_directive_in_header); 12265 } 12266 12267 PushUsingDirective(S, UDir); 12268 } else { 12269 Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange(); 12270 } 12271 12272 if (UDir) { 12273 ProcessDeclAttributeList(S, UDir, AttrList); 12274 ProcessAPINotes(UDir); 12275 } 12276 12277 return UDir; 12278 } 12279 12280 void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) { 12281 // If the scope has an associated entity and the using directive is at 12282 // namespace or translation unit scope, add the UsingDirectiveDecl into 12283 // its lookup structure so qualified name lookup can find it. 12284 DeclContext *Ctx = S->getEntity(); 12285 if (Ctx && !Ctx->isFunctionOrMethod()) 12286 Ctx->addDecl(UDir); 12287 else 12288 // Otherwise, it is at block scope. The using-directives will affect lookup 12289 // only to the end of the scope. 12290 S->PushUsingDirective(UDir); 12291 } 12292 12293 Decl *Sema::ActOnUsingDeclaration(Scope *S, AccessSpecifier AS, 12294 SourceLocation UsingLoc, 12295 SourceLocation TypenameLoc, CXXScopeSpec &SS, 12296 UnqualifiedId &Name, 12297 SourceLocation EllipsisLoc, 12298 const ParsedAttributesView &AttrList) { 12299 assert(S->getFlags() & Scope::DeclScope && "Invalid Scope."); 12300 12301 if (SS.isEmpty()) { 12302 Diag(Name.getBeginLoc(), diag::err_using_requires_qualname); 12303 return nullptr; 12304 } 12305 12306 switch (Name.getKind()) { 12307 case UnqualifiedIdKind::IK_ImplicitSelfParam: 12308 case UnqualifiedIdKind::IK_Identifier: 12309 case UnqualifiedIdKind::IK_OperatorFunctionId: 12310 case UnqualifiedIdKind::IK_LiteralOperatorId: 12311 case UnqualifiedIdKind::IK_ConversionFunctionId: 12312 break; 12313 12314 case UnqualifiedIdKind::IK_ConstructorName: 12315 case UnqualifiedIdKind::IK_ConstructorTemplateId: 12316 // C++11 inheriting constructors. 12317 Diag(Name.getBeginLoc(), 12318 getLangOpts().CPlusPlus11 12319 ? diag::warn_cxx98_compat_using_decl_constructor 12320 : diag::err_using_decl_constructor) 12321 << SS.getRange(); 12322 12323 if (getLangOpts().CPlusPlus11) break; 12324 12325 return nullptr; 12326 12327 case UnqualifiedIdKind::IK_DestructorName: 12328 Diag(Name.getBeginLoc(), diag::err_using_decl_destructor) << SS.getRange(); 12329 return nullptr; 12330 12331 case UnqualifiedIdKind::IK_TemplateId: 12332 Diag(Name.getBeginLoc(), diag::err_using_decl_template_id) 12333 << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc); 12334 return nullptr; 12335 12336 case UnqualifiedIdKind::IK_DeductionGuideName: 12337 llvm_unreachable("cannot parse qualified deduction guide name"); 12338 } 12339 12340 DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name); 12341 DeclarationName TargetName = TargetNameInfo.getName(); 12342 if (!TargetName) 12343 return nullptr; 12344 12345 // Warn about access declarations. 12346 if (UsingLoc.isInvalid()) { 12347 Diag(Name.getBeginLoc(), getLangOpts().CPlusPlus11 12348 ? diag::err_access_decl 12349 : diag::warn_access_decl_deprecated) 12350 << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using "); 12351 } 12352 12353 if (EllipsisLoc.isInvalid()) { 12354 if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) || 12355 DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration)) 12356 return nullptr; 12357 } else { 12358 if (!SS.getScopeRep()->containsUnexpandedParameterPack() && 12359 !TargetNameInfo.containsUnexpandedParameterPack()) { 12360 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) 12361 << SourceRange(SS.getBeginLoc(), TargetNameInfo.getEndLoc()); 12362 EllipsisLoc = SourceLocation(); 12363 } 12364 } 12365 12366 NamedDecl *UD = 12367 BuildUsingDeclaration(S, AS, UsingLoc, TypenameLoc.isValid(), TypenameLoc, 12368 SS, TargetNameInfo, EllipsisLoc, AttrList, 12369 /*IsInstantiation*/ false, 12370 AttrList.hasAttribute(ParsedAttr::AT_UsingIfExists)); 12371 if (UD) 12372 PushOnScopeChains(UD, S, /*AddToContext*/ false); 12373 12374 return UD; 12375 } 12376 12377 Decl *Sema::ActOnUsingEnumDeclaration(Scope *S, AccessSpecifier AS, 12378 SourceLocation UsingLoc, 12379 SourceLocation EnumLoc, SourceRange TyLoc, 12380 const IdentifierInfo &II, ParsedType Ty, 12381 CXXScopeSpec *SS) { 12382 assert(SS && !SS->isInvalid() && "ScopeSpec is invalid"); 12383 TypeSourceInfo *TSI = nullptr; 12384 SourceLocation IdentLoc = TyLoc.getBegin(); 12385 QualType EnumTy = GetTypeFromParser(Ty, &TSI); 12386 if (EnumTy.isNull()) { 12387 Diag(IdentLoc, isDependentScopeSpecifier(*SS) 12388 ? diag::err_using_enum_is_dependent 12389 : diag::err_unknown_typename) 12390 << II.getName() << SourceRange(SS->getBeginLoc(), TyLoc.getEnd()); 12391 return nullptr; 12392 } 12393 12394 if (EnumTy->isDependentType()) { 12395 Diag(IdentLoc, diag::err_using_enum_is_dependent); 12396 return nullptr; 12397 } 12398 12399 auto *Enum = dyn_cast_if_present<EnumDecl>(EnumTy->getAsTagDecl()); 12400 if (!Enum) { 12401 Diag(IdentLoc, diag::err_using_enum_not_enum) << EnumTy; 12402 return nullptr; 12403 } 12404 12405 if (auto *Def = Enum->getDefinition()) 12406 Enum = Def; 12407 12408 if (TSI == nullptr) 12409 TSI = Context.getTrivialTypeSourceInfo(EnumTy, IdentLoc); 12410 12411 auto *UD = 12412 BuildUsingEnumDeclaration(S, AS, UsingLoc, EnumLoc, IdentLoc, TSI, Enum); 12413 12414 if (UD) 12415 PushOnScopeChains(UD, S, /*AddToContext*/ false); 12416 12417 return UD; 12418 } 12419 12420 /// Determine whether a using declaration considers the given 12421 /// declarations as "equivalent", e.g., if they are redeclarations of 12422 /// the same entity or are both typedefs of the same type. 12423 static bool 12424 IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2) { 12425 if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) 12426 return true; 12427 12428 if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1)) 12429 if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) 12430 return Context.hasSameType(TD1->getUnderlyingType(), 12431 TD2->getUnderlyingType()); 12432 12433 // Two using_if_exists using-declarations are equivalent if both are 12434 // unresolved. 12435 if (isa<UnresolvedUsingIfExistsDecl>(D1) && 12436 isa<UnresolvedUsingIfExistsDecl>(D2)) 12437 return true; 12438 12439 return false; 12440 } 12441 12442 bool Sema::CheckUsingShadowDecl(BaseUsingDecl *BUD, NamedDecl *Orig, 12443 const LookupResult &Previous, 12444 UsingShadowDecl *&PrevShadow) { 12445 // Diagnose finding a decl which is not from a base class of the 12446 // current class. We do this now because there are cases where this 12447 // function will silently decide not to build a shadow decl, which 12448 // will pre-empt further diagnostics. 12449 // 12450 // We don't need to do this in C++11 because we do the check once on 12451 // the qualifier. 12452 // 12453 // FIXME: diagnose the following if we care enough: 12454 // struct A { int foo; }; 12455 // struct B : A { using A::foo; }; 12456 // template <class T> struct C : A {}; 12457 // template <class T> struct D : C<T> { using B::foo; } // <--- 12458 // This is invalid (during instantiation) in C++03 because B::foo 12459 // resolves to the using decl in B, which is not a base class of D<T>. 12460 // We can't diagnose it immediately because C<T> is an unknown 12461 // specialization. The UsingShadowDecl in D<T> then points directly 12462 // to A::foo, which will look well-formed when we instantiate. 12463 // The right solution is to not collapse the shadow-decl chain. 12464 if (!getLangOpts().CPlusPlus11 && CurContext->isRecord()) 12465 if (auto *Using = dyn_cast<UsingDecl>(BUD)) { 12466 DeclContext *OrigDC = Orig->getDeclContext(); 12467 12468 // Handle enums and anonymous structs. 12469 if (isa<EnumDecl>(OrigDC)) 12470 OrigDC = OrigDC->getParent(); 12471 CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC); 12472 while (OrigRec->isAnonymousStructOrUnion()) 12473 OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext()); 12474 12475 if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) { 12476 if (OrigDC == CurContext) { 12477 Diag(Using->getLocation(), 12478 diag::err_using_decl_nested_name_specifier_is_current_class) 12479 << Using->getQualifierLoc().getSourceRange(); 12480 Diag(Orig->getLocation(), diag::note_using_decl_target); 12481 Using->setInvalidDecl(); 12482 return true; 12483 } 12484 12485 Diag(Using->getQualifierLoc().getBeginLoc(), 12486 diag::err_using_decl_nested_name_specifier_is_not_base_class) 12487 << Using->getQualifier() << cast<CXXRecordDecl>(CurContext) 12488 << Using->getQualifierLoc().getSourceRange(); 12489 Diag(Orig->getLocation(), diag::note_using_decl_target); 12490 Using->setInvalidDecl(); 12491 return true; 12492 } 12493 } 12494 12495 if (Previous.empty()) return false; 12496 12497 NamedDecl *Target = Orig; 12498 if (isa<UsingShadowDecl>(Target)) 12499 Target = cast<UsingShadowDecl>(Target)->getTargetDecl(); 12500 12501 // If the target happens to be one of the previous declarations, we 12502 // don't have a conflict. 12503 // 12504 // FIXME: but we might be increasing its access, in which case we 12505 // should redeclare it. 12506 NamedDecl *NonTag = nullptr, *Tag = nullptr; 12507 bool FoundEquivalentDecl = false; 12508 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 12509 I != E; ++I) { 12510 NamedDecl *D = (*I)->getUnderlyingDecl(); 12511 // We can have UsingDecls in our Previous results because we use the same 12512 // LookupResult for checking whether the UsingDecl itself is a valid 12513 // redeclaration. 12514 if (isa<UsingDecl>(D) || isa<UsingPackDecl>(D) || isa<UsingEnumDecl>(D)) 12515 continue; 12516 12517 if (auto *RD = dyn_cast<CXXRecordDecl>(D)) { 12518 // C++ [class.mem]p19: 12519 // If T is the name of a class, then [every named member other than 12520 // a non-static data member] shall have a name different from T 12521 if (RD->isInjectedClassName() && !isa<FieldDecl>(Target) && 12522 !isa<IndirectFieldDecl>(Target) && 12523 !isa<UnresolvedUsingValueDecl>(Target) && 12524 DiagnoseClassNameShadow( 12525 CurContext, 12526 DeclarationNameInfo(BUD->getDeclName(), BUD->getLocation()))) 12527 return true; 12528 } 12529 12530 if (IsEquivalentForUsingDecl(Context, D, Target)) { 12531 if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(*I)) 12532 PrevShadow = Shadow; 12533 FoundEquivalentDecl = true; 12534 } else if (isEquivalentInternalLinkageDeclaration(D, Target)) { 12535 // We don't conflict with an existing using shadow decl of an equivalent 12536 // declaration, but we're not a redeclaration of it. 12537 FoundEquivalentDecl = true; 12538 } 12539 12540 if (isVisible(D)) 12541 (isa<TagDecl>(D) ? Tag : NonTag) = D; 12542 } 12543 12544 if (FoundEquivalentDecl) 12545 return false; 12546 12547 // Always emit a diagnostic for a mismatch between an unresolved 12548 // using_if_exists and a resolved using declaration in either direction. 12549 if (isa<UnresolvedUsingIfExistsDecl>(Target) != 12550 (isa_and_nonnull<UnresolvedUsingIfExistsDecl>(NonTag))) { 12551 if (!NonTag && !Tag) 12552 return false; 12553 Diag(BUD->getLocation(), diag::err_using_decl_conflict); 12554 Diag(Target->getLocation(), diag::note_using_decl_target); 12555 Diag((NonTag ? NonTag : Tag)->getLocation(), 12556 diag::note_using_decl_conflict); 12557 BUD->setInvalidDecl(); 12558 return true; 12559 } 12560 12561 if (FunctionDecl *FD = Target->getAsFunction()) { 12562 NamedDecl *OldDecl = nullptr; 12563 switch (CheckOverload(nullptr, FD, Previous, OldDecl, 12564 /*IsForUsingDecl*/ true)) { 12565 case Ovl_Overload: 12566 return false; 12567 12568 case Ovl_NonFunction: 12569 Diag(BUD->getLocation(), diag::err_using_decl_conflict); 12570 break; 12571 12572 // We found a decl with the exact signature. 12573 case Ovl_Match: 12574 // If we're in a record, we want to hide the target, so we 12575 // return true (without a diagnostic) to tell the caller not to 12576 // build a shadow decl. 12577 if (CurContext->isRecord()) 12578 return true; 12579 12580 // If we're not in a record, this is an error. 12581 Diag(BUD->getLocation(), diag::err_using_decl_conflict); 12582 break; 12583 } 12584 12585 Diag(Target->getLocation(), diag::note_using_decl_target); 12586 Diag(OldDecl->getLocation(), diag::note_using_decl_conflict); 12587 BUD->setInvalidDecl(); 12588 return true; 12589 } 12590 12591 // Target is not a function. 12592 12593 if (isa<TagDecl>(Target)) { 12594 // No conflict between a tag and a non-tag. 12595 if (!Tag) return false; 12596 12597 Diag(BUD->getLocation(), diag::err_using_decl_conflict); 12598 Diag(Target->getLocation(), diag::note_using_decl_target); 12599 Diag(Tag->getLocation(), diag::note_using_decl_conflict); 12600 BUD->setInvalidDecl(); 12601 return true; 12602 } 12603 12604 // No conflict between a tag and a non-tag. 12605 if (!NonTag) return false; 12606 12607 Diag(BUD->getLocation(), diag::err_using_decl_conflict); 12608 Diag(Target->getLocation(), diag::note_using_decl_target); 12609 Diag(NonTag->getLocation(), diag::note_using_decl_conflict); 12610 BUD->setInvalidDecl(); 12611 return true; 12612 } 12613 12614 /// Determine whether a direct base class is a virtual base class. 12615 static bool isVirtualDirectBase(CXXRecordDecl *Derived, CXXRecordDecl *Base) { 12616 if (!Derived->getNumVBases()) 12617 return false; 12618 for (auto &B : Derived->bases()) 12619 if (B.getType()->getAsCXXRecordDecl() == Base) 12620 return B.isVirtual(); 12621 llvm_unreachable("not a direct base class"); 12622 } 12623 12624 UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S, BaseUsingDecl *BUD, 12625 NamedDecl *Orig, 12626 UsingShadowDecl *PrevDecl) { 12627 // If we resolved to another shadow declaration, just coalesce them. 12628 NamedDecl *Target = Orig; 12629 if (isa<UsingShadowDecl>(Target)) { 12630 Target = cast<UsingShadowDecl>(Target)->getTargetDecl(); 12631 assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration"); 12632 } 12633 12634 NamedDecl *NonTemplateTarget = Target; 12635 if (auto *TargetTD = dyn_cast<TemplateDecl>(Target)) 12636 NonTemplateTarget = TargetTD->getTemplatedDecl(); 12637 12638 UsingShadowDecl *Shadow; 12639 if (NonTemplateTarget && isa<CXXConstructorDecl>(NonTemplateTarget)) { 12640 UsingDecl *Using = cast<UsingDecl>(BUD); 12641 bool IsVirtualBase = 12642 isVirtualDirectBase(cast<CXXRecordDecl>(CurContext), 12643 Using->getQualifier()->getAsRecordDecl()); 12644 Shadow = ConstructorUsingShadowDecl::Create( 12645 Context, CurContext, Using->getLocation(), Using, Orig, IsVirtualBase); 12646 } else { 12647 Shadow = UsingShadowDecl::Create(Context, CurContext, BUD->getLocation(), 12648 Target->getDeclName(), BUD, Target); 12649 } 12650 BUD->addShadowDecl(Shadow); 12651 12652 Shadow->setAccess(BUD->getAccess()); 12653 if (Orig->isInvalidDecl() || BUD->isInvalidDecl()) 12654 Shadow->setInvalidDecl(); 12655 12656 Shadow->setPreviousDecl(PrevDecl); 12657 12658 if (S) 12659 PushOnScopeChains(Shadow, S); 12660 else 12661 CurContext->addDecl(Shadow); 12662 12663 12664 return Shadow; 12665 } 12666 12667 void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) { 12668 if (Shadow->getDeclName().getNameKind() == 12669 DeclarationName::CXXConversionFunctionName) 12670 cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow); 12671 12672 // Remove it from the DeclContext... 12673 Shadow->getDeclContext()->removeDecl(Shadow); 12674 12675 // ...and the scope, if applicable... 12676 if (S) { 12677 S->RemoveDecl(Shadow); 12678 IdResolver.RemoveDecl(Shadow); 12679 } 12680 12681 // ...and the using decl. 12682 Shadow->getIntroducer()->removeShadowDecl(Shadow); 12683 12684 // TODO: complain somehow if Shadow was used. It shouldn't 12685 // be possible for this to happen, because...? 12686 } 12687 12688 /// Find the base specifier for a base class with the given type. 12689 static CXXBaseSpecifier *findDirectBaseWithType(CXXRecordDecl *Derived, 12690 QualType DesiredBase, 12691 bool &AnyDependentBases) { 12692 // Check whether the named type is a direct base class. 12693 CanQualType CanonicalDesiredBase = DesiredBase->getCanonicalTypeUnqualified() 12694 .getUnqualifiedType(); 12695 for (auto &Base : Derived->bases()) { 12696 CanQualType BaseType = Base.getType()->getCanonicalTypeUnqualified(); 12697 if (CanonicalDesiredBase == BaseType) 12698 return &Base; 12699 if (BaseType->isDependentType()) 12700 AnyDependentBases = true; 12701 } 12702 return nullptr; 12703 } 12704 12705 namespace { 12706 class UsingValidatorCCC final : public CorrectionCandidateCallback { 12707 public: 12708 UsingValidatorCCC(bool HasTypenameKeyword, bool IsInstantiation, 12709 NestedNameSpecifier *NNS, CXXRecordDecl *RequireMemberOf) 12710 : HasTypenameKeyword(HasTypenameKeyword), 12711 IsInstantiation(IsInstantiation), OldNNS(NNS), 12712 RequireMemberOf(RequireMemberOf) {} 12713 12714 bool ValidateCandidate(const TypoCorrection &Candidate) override { 12715 NamedDecl *ND = Candidate.getCorrectionDecl(); 12716 12717 // Keywords are not valid here. 12718 if (!ND || isa<NamespaceDecl>(ND)) 12719 return false; 12720 12721 // Completely unqualified names are invalid for a 'using' declaration. 12722 if (Candidate.WillReplaceSpecifier() && !Candidate.getCorrectionSpecifier()) 12723 return false; 12724 12725 // FIXME: Don't correct to a name that CheckUsingDeclRedeclaration would 12726 // reject. 12727 12728 if (RequireMemberOf) { 12729 auto *FoundRecord = dyn_cast<CXXRecordDecl>(ND); 12730 if (FoundRecord && FoundRecord->isInjectedClassName()) { 12731 // No-one ever wants a using-declaration to name an injected-class-name 12732 // of a base class, unless they're declaring an inheriting constructor. 12733 ASTContext &Ctx = ND->getASTContext(); 12734 if (!Ctx.getLangOpts().CPlusPlus11) 12735 return false; 12736 QualType FoundType = Ctx.getRecordType(FoundRecord); 12737 12738 // Check that the injected-class-name is named as a member of its own 12739 // type; we don't want to suggest 'using Derived::Base;', since that 12740 // means something else. 12741 NestedNameSpecifier *Specifier = 12742 Candidate.WillReplaceSpecifier() 12743 ? Candidate.getCorrectionSpecifier() 12744 : OldNNS; 12745 if (!Specifier->getAsType() || 12746 !Ctx.hasSameType(QualType(Specifier->getAsType(), 0), FoundType)) 12747 return false; 12748 12749 // Check that this inheriting constructor declaration actually names a 12750 // direct base class of the current class. 12751 bool AnyDependentBases = false; 12752 if (!findDirectBaseWithType(RequireMemberOf, 12753 Ctx.getRecordType(FoundRecord), 12754 AnyDependentBases) && 12755 !AnyDependentBases) 12756 return false; 12757 } else { 12758 auto *RD = dyn_cast<CXXRecordDecl>(ND->getDeclContext()); 12759 if (!RD || RequireMemberOf->isProvablyNotDerivedFrom(RD)) 12760 return false; 12761 12762 // FIXME: Check that the base class member is accessible? 12763 } 12764 } else { 12765 auto *FoundRecord = dyn_cast<CXXRecordDecl>(ND); 12766 if (FoundRecord && FoundRecord->isInjectedClassName()) 12767 return false; 12768 } 12769 12770 if (isa<TypeDecl>(ND)) 12771 return HasTypenameKeyword || !IsInstantiation; 12772 12773 return !HasTypenameKeyword; 12774 } 12775 12776 std::unique_ptr<CorrectionCandidateCallback> clone() override { 12777 return std::make_unique<UsingValidatorCCC>(*this); 12778 } 12779 12780 private: 12781 bool HasTypenameKeyword; 12782 bool IsInstantiation; 12783 NestedNameSpecifier *OldNNS; 12784 CXXRecordDecl *RequireMemberOf; 12785 }; 12786 } // end anonymous namespace 12787 12788 void Sema::FilterUsingLookup(Scope *S, LookupResult &Previous) { 12789 // It is really dumb that we have to do this. 12790 LookupResult::Filter F = Previous.makeFilter(); 12791 while (F.hasNext()) { 12792 NamedDecl *D = F.next(); 12793 if (!isDeclInScope(D, CurContext, S)) 12794 F.erase(); 12795 // If we found a local extern declaration that's not ordinarily visible, 12796 // and this declaration is being added to a non-block scope, ignore it. 12797 // We're only checking for scope conflicts here, not also for violations 12798 // of the linkage rules. 12799 else if (!CurContext->isFunctionOrMethod() && D->isLocalExternDecl() && 12800 !(D->getIdentifierNamespace() & Decl::IDNS_Ordinary)) 12801 F.erase(); 12802 } 12803 F.done(); 12804 } 12805 12806 NamedDecl *Sema::BuildUsingDeclaration( 12807 Scope *S, AccessSpecifier AS, SourceLocation UsingLoc, 12808 bool HasTypenameKeyword, SourceLocation TypenameLoc, CXXScopeSpec &SS, 12809 DeclarationNameInfo NameInfo, SourceLocation EllipsisLoc, 12810 const ParsedAttributesView &AttrList, bool IsInstantiation, 12811 bool IsUsingIfExists) { 12812 assert(!SS.isInvalid() && "Invalid CXXScopeSpec."); 12813 SourceLocation IdentLoc = NameInfo.getLoc(); 12814 assert(IdentLoc.isValid() && "Invalid TargetName location."); 12815 12816 // FIXME: We ignore attributes for now. 12817 12818 // For an inheriting constructor declaration, the name of the using 12819 // declaration is the name of a constructor in this class, not in the 12820 // base class. 12821 DeclarationNameInfo UsingName = NameInfo; 12822 if (UsingName.getName().getNameKind() == DeclarationName::CXXConstructorName) 12823 if (auto *RD = dyn_cast<CXXRecordDecl>(CurContext)) 12824 UsingName.setName(Context.DeclarationNames.getCXXConstructorName( 12825 Context.getCanonicalType(Context.getRecordType(RD)))); 12826 12827 // Do the redeclaration lookup in the current scope. 12828 LookupResult Previous(*this, UsingName, LookupUsingDeclName, 12829 RedeclarationKind::ForVisibleRedeclaration); 12830 Previous.setHideTags(false); 12831 if (S) { 12832 LookupName(Previous, S); 12833 12834 FilterUsingLookup(S, Previous); 12835 } else { 12836 assert(IsInstantiation && "no scope in non-instantiation"); 12837 if (CurContext->isRecord()) 12838 LookupQualifiedName(Previous, CurContext); 12839 else { 12840 // No redeclaration check is needed here; in non-member contexts we 12841 // diagnosed all possible conflicts with other using-declarations when 12842 // building the template: 12843 // 12844 // For a dependent non-type using declaration, the only valid case is 12845 // if we instantiate to a single enumerator. We check for conflicts 12846 // between shadow declarations we introduce, and we check in the template 12847 // definition for conflicts between a non-type using declaration and any 12848 // other declaration, which together covers all cases. 12849 // 12850 // A dependent typename using declaration will never successfully 12851 // instantiate, since it will always name a class member, so we reject 12852 // that in the template definition. 12853 } 12854 } 12855 12856 // Check for invalid redeclarations. 12857 if (CheckUsingDeclRedeclaration(UsingLoc, HasTypenameKeyword, 12858 SS, IdentLoc, Previous)) 12859 return nullptr; 12860 12861 // 'using_if_exists' doesn't make sense on an inherited constructor. 12862 if (IsUsingIfExists && UsingName.getName().getNameKind() == 12863 DeclarationName::CXXConstructorName) { 12864 Diag(UsingLoc, diag::err_using_if_exists_on_ctor); 12865 return nullptr; 12866 } 12867 12868 DeclContext *LookupContext = computeDeclContext(SS); 12869 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 12870 if (!LookupContext || EllipsisLoc.isValid()) { 12871 NamedDecl *D; 12872 // Dependent scope, or an unexpanded pack 12873 if (!LookupContext && CheckUsingDeclQualifier(UsingLoc, HasTypenameKeyword, 12874 SS, NameInfo, IdentLoc)) 12875 return nullptr; 12876 12877 if (HasTypenameKeyword) { 12878 // FIXME: not all declaration name kinds are legal here 12879 D = UnresolvedUsingTypenameDecl::Create(Context, CurContext, 12880 UsingLoc, TypenameLoc, 12881 QualifierLoc, 12882 IdentLoc, NameInfo.getName(), 12883 EllipsisLoc); 12884 } else { 12885 D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc, 12886 QualifierLoc, NameInfo, EllipsisLoc); 12887 } 12888 D->setAccess(AS); 12889 CurContext->addDecl(D); 12890 ProcessDeclAttributeList(S, D, AttrList); 12891 return D; 12892 } 12893 12894 auto Build = [&](bool Invalid) { 12895 UsingDecl *UD = 12896 UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc, 12897 UsingName, HasTypenameKeyword); 12898 UD->setAccess(AS); 12899 CurContext->addDecl(UD); 12900 ProcessDeclAttributeList(S, UD, AttrList); 12901 UD->setInvalidDecl(Invalid); 12902 return UD; 12903 }; 12904 auto BuildInvalid = [&]{ return Build(true); }; 12905 auto BuildValid = [&]{ return Build(false); }; 12906 12907 if (RequireCompleteDeclContext(SS, LookupContext)) 12908 return BuildInvalid(); 12909 12910 // Look up the target name. 12911 LookupResult R(*this, NameInfo, LookupOrdinaryName); 12912 12913 // Unlike most lookups, we don't always want to hide tag 12914 // declarations: tag names are visible through the using declaration 12915 // even if hidden by ordinary names, *except* in a dependent context 12916 // where they may be used by two-phase lookup. 12917 if (!IsInstantiation) 12918 R.setHideTags(false); 12919 12920 // For the purposes of this lookup, we have a base object type 12921 // equal to that of the current context. 12922 if (CurContext->isRecord()) { 12923 R.setBaseObjectType( 12924 Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext))); 12925 } 12926 12927 LookupQualifiedName(R, LookupContext); 12928 12929 // Validate the context, now we have a lookup 12930 if (CheckUsingDeclQualifier(UsingLoc, HasTypenameKeyword, SS, NameInfo, 12931 IdentLoc, &R)) 12932 return nullptr; 12933 12934 if (R.empty() && IsUsingIfExists) 12935 R.addDecl(UnresolvedUsingIfExistsDecl::Create(Context, CurContext, UsingLoc, 12936 UsingName.getName()), 12937 AS_public); 12938 12939 // Try to correct typos if possible. If constructor name lookup finds no 12940 // results, that means the named class has no explicit constructors, and we 12941 // suppressed declaring implicit ones (probably because it's dependent or 12942 // invalid). 12943 if (R.empty() && 12944 NameInfo.getName().getNameKind() != DeclarationName::CXXConstructorName) { 12945 // HACK 2017-01-08: Work around an issue with libstdc++'s detection of 12946 // ::gets. Sometimes it believes that glibc provides a ::gets in cases where 12947 // it does not. The issue was fixed in libstdc++ 6.3 (2016-12-21) and later. 12948 auto *II = NameInfo.getName().getAsIdentifierInfo(); 12949 if (getLangOpts().CPlusPlus14 && II && II->isStr("gets") && 12950 CurContext->isStdNamespace() && 12951 isa<TranslationUnitDecl>(LookupContext) && 12952 getSourceManager().isInSystemHeader(UsingLoc)) 12953 return nullptr; 12954 UsingValidatorCCC CCC(HasTypenameKeyword, IsInstantiation, SS.getScopeRep(), 12955 dyn_cast<CXXRecordDecl>(CurContext)); 12956 if (TypoCorrection Corrected = 12957 CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS, CCC, 12958 CTK_ErrorRecovery)) { 12959 // We reject candidates where DroppedSpecifier == true, hence the 12960 // literal '0' below. 12961 diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest) 12962 << NameInfo.getName() << LookupContext << 0 12963 << SS.getRange()); 12964 12965 // If we picked a correction with no attached Decl we can't do anything 12966 // useful with it, bail out. 12967 NamedDecl *ND = Corrected.getCorrectionDecl(); 12968 if (!ND) 12969 return BuildInvalid(); 12970 12971 // If we corrected to an inheriting constructor, handle it as one. 12972 auto *RD = dyn_cast<CXXRecordDecl>(ND); 12973 if (RD && RD->isInjectedClassName()) { 12974 // The parent of the injected class name is the class itself. 12975 RD = cast<CXXRecordDecl>(RD->getParent()); 12976 12977 // Fix up the information we'll use to build the using declaration. 12978 if (Corrected.WillReplaceSpecifier()) { 12979 NestedNameSpecifierLocBuilder Builder; 12980 Builder.MakeTrivial(Context, Corrected.getCorrectionSpecifier(), 12981 QualifierLoc.getSourceRange()); 12982 QualifierLoc = Builder.getWithLocInContext(Context); 12983 } 12984 12985 // In this case, the name we introduce is the name of a derived class 12986 // constructor. 12987 auto *CurClass = cast<CXXRecordDecl>(CurContext); 12988 UsingName.setName(Context.DeclarationNames.getCXXConstructorName( 12989 Context.getCanonicalType(Context.getRecordType(CurClass)))); 12990 UsingName.setNamedTypeInfo(nullptr); 12991 for (auto *Ctor : LookupConstructors(RD)) 12992 R.addDecl(Ctor); 12993 R.resolveKind(); 12994 } else { 12995 // FIXME: Pick up all the declarations if we found an overloaded 12996 // function. 12997 UsingName.setName(ND->getDeclName()); 12998 R.addDecl(ND); 12999 } 13000 } else { 13001 Diag(IdentLoc, diag::err_no_member) 13002 << NameInfo.getName() << LookupContext << SS.getRange(); 13003 return BuildInvalid(); 13004 } 13005 } 13006 13007 if (R.isAmbiguous()) 13008 return BuildInvalid(); 13009 13010 if (HasTypenameKeyword) { 13011 // If we asked for a typename and got a non-type decl, error out. 13012 if (!R.getAsSingle<TypeDecl>() && 13013 !R.getAsSingle<UnresolvedUsingIfExistsDecl>()) { 13014 Diag(IdentLoc, diag::err_using_typename_non_type); 13015 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) 13016 Diag((*I)->getUnderlyingDecl()->getLocation(), 13017 diag::note_using_decl_target); 13018 return BuildInvalid(); 13019 } 13020 } else { 13021 // If we asked for a non-typename and we got a type, error out, 13022 // but only if this is an instantiation of an unresolved using 13023 // decl. Otherwise just silently find the type name. 13024 if (IsInstantiation && R.getAsSingle<TypeDecl>()) { 13025 Diag(IdentLoc, diag::err_using_dependent_value_is_type); 13026 Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target); 13027 return BuildInvalid(); 13028 } 13029 } 13030 13031 // C++14 [namespace.udecl]p6: 13032 // A using-declaration shall not name a namespace. 13033 if (R.getAsSingle<NamespaceDecl>()) { 13034 Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace) 13035 << SS.getRange(); 13036 // Suggest using 'using namespace ...' instead. 13037 Diag(SS.getBeginLoc(), diag::note_namespace_using_decl) 13038 << FixItHint::CreateInsertion(SS.getBeginLoc(), "namespace "); 13039 return BuildInvalid(); 13040 } 13041 13042 UsingDecl *UD = BuildValid(); 13043 13044 // Some additional rules apply to inheriting constructors. 13045 if (UsingName.getName().getNameKind() == 13046 DeclarationName::CXXConstructorName) { 13047 // Suppress access diagnostics; the access check is instead performed at the 13048 // point of use for an inheriting constructor. 13049 R.suppressDiagnostics(); 13050 if (CheckInheritingConstructorUsingDecl(UD)) 13051 return UD; 13052 } 13053 13054 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { 13055 UsingShadowDecl *PrevDecl = nullptr; 13056 if (!CheckUsingShadowDecl(UD, *I, Previous, PrevDecl)) 13057 BuildUsingShadowDecl(S, UD, *I, PrevDecl); 13058 } 13059 13060 return UD; 13061 } 13062 13063 NamedDecl *Sema::BuildUsingEnumDeclaration(Scope *S, AccessSpecifier AS, 13064 SourceLocation UsingLoc, 13065 SourceLocation EnumLoc, 13066 SourceLocation NameLoc, 13067 TypeSourceInfo *EnumType, 13068 EnumDecl *ED) { 13069 bool Invalid = false; 13070 13071 if (CurContext->getRedeclContext()->isRecord()) { 13072 /// In class scope, check if this is a duplicate, for better a diagnostic. 13073 DeclarationNameInfo UsingEnumName(ED->getDeclName(), NameLoc); 13074 LookupResult Previous(*this, UsingEnumName, LookupUsingDeclName, 13075 RedeclarationKind::ForVisibleRedeclaration); 13076 13077 LookupName(Previous, S); 13078 13079 for (NamedDecl *D : Previous) 13080 if (UsingEnumDecl *UED = dyn_cast<UsingEnumDecl>(D)) 13081 if (UED->getEnumDecl() == ED) { 13082 Diag(UsingLoc, diag::err_using_enum_decl_redeclaration) 13083 << SourceRange(EnumLoc, NameLoc); 13084 Diag(D->getLocation(), diag::note_using_enum_decl) << 1; 13085 Invalid = true; 13086 break; 13087 } 13088 } 13089 13090 if (RequireCompleteEnumDecl(ED, NameLoc)) 13091 Invalid = true; 13092 13093 UsingEnumDecl *UD = UsingEnumDecl::Create(Context, CurContext, UsingLoc, 13094 EnumLoc, NameLoc, EnumType); 13095 UD->setAccess(AS); 13096 CurContext->addDecl(UD); 13097 13098 if (Invalid) { 13099 UD->setInvalidDecl(); 13100 return UD; 13101 } 13102 13103 // Create the shadow decls for each enumerator 13104 for (EnumConstantDecl *EC : ED->enumerators()) { 13105 UsingShadowDecl *PrevDecl = nullptr; 13106 DeclarationNameInfo DNI(EC->getDeclName(), EC->getLocation()); 13107 LookupResult Previous(*this, DNI, LookupOrdinaryName, 13108 RedeclarationKind::ForVisibleRedeclaration); 13109 LookupName(Previous, S); 13110 FilterUsingLookup(S, Previous); 13111 13112 if (!CheckUsingShadowDecl(UD, EC, Previous, PrevDecl)) 13113 BuildUsingShadowDecl(S, UD, EC, PrevDecl); 13114 } 13115 13116 return UD; 13117 } 13118 13119 NamedDecl *Sema::BuildUsingPackDecl(NamedDecl *InstantiatedFrom, 13120 ArrayRef<NamedDecl *> Expansions) { 13121 assert(isa<UnresolvedUsingValueDecl>(InstantiatedFrom) || 13122 isa<UnresolvedUsingTypenameDecl>(InstantiatedFrom) || 13123 isa<UsingPackDecl>(InstantiatedFrom)); 13124 13125 auto *UPD = 13126 UsingPackDecl::Create(Context, CurContext, InstantiatedFrom, Expansions); 13127 UPD->setAccess(InstantiatedFrom->getAccess()); 13128 CurContext->addDecl(UPD); 13129 return UPD; 13130 } 13131 13132 bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) { 13133 assert(!UD->hasTypename() && "expecting a constructor name"); 13134 13135 const Type *SourceType = UD->getQualifier()->getAsType(); 13136 assert(SourceType && 13137 "Using decl naming constructor doesn't have type in scope spec."); 13138 CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext); 13139 13140 // Check whether the named type is a direct base class. 13141 bool AnyDependentBases = false; 13142 auto *Base = findDirectBaseWithType(TargetClass, QualType(SourceType, 0), 13143 AnyDependentBases); 13144 if (!Base && !AnyDependentBases) { 13145 Diag(UD->getUsingLoc(), 13146 diag::err_using_decl_constructor_not_in_direct_base) 13147 << UD->getNameInfo().getSourceRange() 13148 << QualType(SourceType, 0) << TargetClass; 13149 UD->setInvalidDecl(); 13150 return true; 13151 } 13152 13153 if (Base) 13154 Base->setInheritConstructors(); 13155 13156 return false; 13157 } 13158 13159 bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc, 13160 bool HasTypenameKeyword, 13161 const CXXScopeSpec &SS, 13162 SourceLocation NameLoc, 13163 const LookupResult &Prev) { 13164 NestedNameSpecifier *Qual = SS.getScopeRep(); 13165 13166 // C++03 [namespace.udecl]p8: 13167 // C++0x [namespace.udecl]p10: 13168 // A using-declaration is a declaration and can therefore be used 13169 // repeatedly where (and only where) multiple declarations are 13170 // allowed. 13171 // 13172 // That's in non-member contexts. 13173 if (!CurContext->getRedeclContext()->isRecord()) { 13174 // A dependent qualifier outside a class can only ever resolve to an 13175 // enumeration type. Therefore it conflicts with any other non-type 13176 // declaration in the same scope. 13177 // FIXME: How should we check for dependent type-type conflicts at block 13178 // scope? 13179 if (Qual->isDependent() && !HasTypenameKeyword) { 13180 for (auto *D : Prev) { 13181 if (!isa<TypeDecl>(D) && !isa<UsingDecl>(D) && !isa<UsingPackDecl>(D)) { 13182 bool OldCouldBeEnumerator = 13183 isa<UnresolvedUsingValueDecl>(D) || isa<EnumConstantDecl>(D); 13184 Diag(NameLoc, 13185 OldCouldBeEnumerator ? diag::err_redefinition 13186 : diag::err_redefinition_different_kind) 13187 << Prev.getLookupName(); 13188 Diag(D->getLocation(), diag::note_previous_definition); 13189 return true; 13190 } 13191 } 13192 } 13193 return false; 13194 } 13195 13196 const NestedNameSpecifier *CNNS = 13197 Context.getCanonicalNestedNameSpecifier(Qual); 13198 for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) { 13199 NamedDecl *D = *I; 13200 13201 bool DTypename; 13202 NestedNameSpecifier *DQual; 13203 if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) { 13204 DTypename = UD->hasTypename(); 13205 DQual = UD->getQualifier(); 13206 } else if (UnresolvedUsingValueDecl *UD 13207 = dyn_cast<UnresolvedUsingValueDecl>(D)) { 13208 DTypename = false; 13209 DQual = UD->getQualifier(); 13210 } else if (UnresolvedUsingTypenameDecl *UD 13211 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) { 13212 DTypename = true; 13213 DQual = UD->getQualifier(); 13214 } else continue; 13215 13216 // using decls differ if one says 'typename' and the other doesn't. 13217 // FIXME: non-dependent using decls? 13218 if (HasTypenameKeyword != DTypename) continue; 13219 13220 // using decls differ if they name different scopes (but note that 13221 // template instantiation can cause this check to trigger when it 13222 // didn't before instantiation). 13223 if (CNNS != Context.getCanonicalNestedNameSpecifier(DQual)) 13224 continue; 13225 13226 Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange(); 13227 Diag(D->getLocation(), diag::note_using_decl) << 1; 13228 return true; 13229 } 13230 13231 return false; 13232 } 13233 13234 bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc, bool HasTypename, 13235 const CXXScopeSpec &SS, 13236 const DeclarationNameInfo &NameInfo, 13237 SourceLocation NameLoc, 13238 const LookupResult *R, const UsingDecl *UD) { 13239 DeclContext *NamedContext = computeDeclContext(SS); 13240 assert(bool(NamedContext) == (R || UD) && !(R && UD) && 13241 "resolvable context must have exactly one set of decls"); 13242 13243 // C++ 20 permits using an enumerator that does not have a class-hierarchy 13244 // relationship. 13245 bool Cxx20Enumerator = false; 13246 if (NamedContext) { 13247 EnumConstantDecl *EC = nullptr; 13248 if (R) 13249 EC = R->getAsSingle<EnumConstantDecl>(); 13250 else if (UD && UD->shadow_size() == 1) 13251 EC = dyn_cast<EnumConstantDecl>(UD->shadow_begin()->getTargetDecl()); 13252 if (EC) 13253 Cxx20Enumerator = getLangOpts().CPlusPlus20; 13254 13255 if (auto *ED = dyn_cast<EnumDecl>(NamedContext)) { 13256 // C++14 [namespace.udecl]p7: 13257 // A using-declaration shall not name a scoped enumerator. 13258 // C++20 p1099 permits enumerators. 13259 if (EC && R && ED->isScoped()) 13260 Diag(SS.getBeginLoc(), 13261 getLangOpts().CPlusPlus20 13262 ? diag::warn_cxx17_compat_using_decl_scoped_enumerator 13263 : diag::ext_using_decl_scoped_enumerator) 13264 << SS.getRange(); 13265 13266 // We want to consider the scope of the enumerator 13267 NamedContext = ED->getDeclContext(); 13268 } 13269 } 13270 13271 if (!CurContext->isRecord()) { 13272 // C++03 [namespace.udecl]p3: 13273 // C++0x [namespace.udecl]p8: 13274 // A using-declaration for a class member shall be a member-declaration. 13275 // C++20 [namespace.udecl]p7 13276 // ... other than an enumerator ... 13277 13278 // If we weren't able to compute a valid scope, it might validly be a 13279 // dependent class or enumeration scope. If we have a 'typename' keyword, 13280 // the scope must resolve to a class type. 13281 if (NamedContext ? !NamedContext->getRedeclContext()->isRecord() 13282 : !HasTypename) 13283 return false; // OK 13284 13285 Diag(NameLoc, 13286 Cxx20Enumerator 13287 ? diag::warn_cxx17_compat_using_decl_class_member_enumerator 13288 : diag::err_using_decl_can_not_refer_to_class_member) 13289 << SS.getRange(); 13290 13291 if (Cxx20Enumerator) 13292 return false; // OK 13293 13294 auto *RD = NamedContext 13295 ? cast<CXXRecordDecl>(NamedContext->getRedeclContext()) 13296 : nullptr; 13297 if (RD && !RequireCompleteDeclContext(const_cast<CXXScopeSpec &>(SS), RD)) { 13298 // See if there's a helpful fixit 13299 13300 if (!R) { 13301 // We will have already diagnosed the problem on the template 13302 // definition, Maybe we should do so again? 13303 } else if (R->getAsSingle<TypeDecl>()) { 13304 if (getLangOpts().CPlusPlus11) { 13305 // Convert 'using X::Y;' to 'using Y = X::Y;'. 13306 Diag(SS.getBeginLoc(), diag::note_using_decl_class_member_workaround) 13307 << diag::MemClassWorkaround::AliasDecl 13308 << FixItHint::CreateInsertion(SS.getBeginLoc(), 13309 NameInfo.getName().getAsString() + 13310 " = "); 13311 } else { 13312 // Convert 'using X::Y;' to 'typedef X::Y Y;'. 13313 SourceLocation InsertLoc = getLocForEndOfToken(NameInfo.getEndLoc()); 13314 Diag(InsertLoc, diag::note_using_decl_class_member_workaround) 13315 << diag::MemClassWorkaround::TypedefDecl 13316 << FixItHint::CreateReplacement(UsingLoc, "typedef") 13317 << FixItHint::CreateInsertion( 13318 InsertLoc, " " + NameInfo.getName().getAsString()); 13319 } 13320 } else if (R->getAsSingle<VarDecl>()) { 13321 // Don't provide a fixit outside C++11 mode; we don't want to suggest 13322 // repeating the type of the static data member here. 13323 FixItHint FixIt; 13324 if (getLangOpts().CPlusPlus11) { 13325 // Convert 'using X::Y;' to 'auto &Y = X::Y;'. 13326 FixIt = FixItHint::CreateReplacement( 13327 UsingLoc, "auto &" + NameInfo.getName().getAsString() + " = "); 13328 } 13329 13330 Diag(UsingLoc, diag::note_using_decl_class_member_workaround) 13331 << diag::MemClassWorkaround::ReferenceDecl << FixIt; 13332 } else if (R->getAsSingle<EnumConstantDecl>()) { 13333 // Don't provide a fixit outside C++11 mode; we don't want to suggest 13334 // repeating the type of the enumeration here, and we can't do so if 13335 // the type is anonymous. 13336 FixItHint FixIt; 13337 if (getLangOpts().CPlusPlus11) { 13338 // Convert 'using X::Y;' to 'auto &Y = X::Y;'. 13339 FixIt = FixItHint::CreateReplacement( 13340 UsingLoc, 13341 "constexpr auto " + NameInfo.getName().getAsString() + " = "); 13342 } 13343 13344 Diag(UsingLoc, diag::note_using_decl_class_member_workaround) 13345 << (getLangOpts().CPlusPlus11 13346 ? diag::MemClassWorkaround::ConstexprVar 13347 : diag::MemClassWorkaround::ConstVar) 13348 << FixIt; 13349 } 13350 } 13351 13352 return true; // Fail 13353 } 13354 13355 // If the named context is dependent, we can't decide much. 13356 if (!NamedContext) { 13357 // FIXME: in C++0x, we can diagnose if we can prove that the 13358 // nested-name-specifier does not refer to a base class, which is 13359 // still possible in some cases. 13360 13361 // Otherwise we have to conservatively report that things might be 13362 // okay. 13363 return false; 13364 } 13365 13366 // The current scope is a record. 13367 if (!NamedContext->isRecord()) { 13368 // Ideally this would point at the last name in the specifier, 13369 // but we don't have that level of source info. 13370 Diag(SS.getBeginLoc(), 13371 Cxx20Enumerator 13372 ? diag::warn_cxx17_compat_using_decl_non_member_enumerator 13373 : diag::err_using_decl_nested_name_specifier_is_not_class) 13374 << SS.getScopeRep() << SS.getRange(); 13375 13376 if (Cxx20Enumerator) 13377 return false; // OK 13378 13379 return true; 13380 } 13381 13382 if (!NamedContext->isDependentContext() && 13383 RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext)) 13384 return true; 13385 13386 if (getLangOpts().CPlusPlus11) { 13387 // C++11 [namespace.udecl]p3: 13388 // In a using-declaration used as a member-declaration, the 13389 // nested-name-specifier shall name a base class of the class 13390 // being defined. 13391 13392 if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom( 13393 cast<CXXRecordDecl>(NamedContext))) { 13394 13395 if (Cxx20Enumerator) { 13396 Diag(NameLoc, diag::warn_cxx17_compat_using_decl_non_member_enumerator) 13397 << SS.getRange(); 13398 return false; 13399 } 13400 13401 if (CurContext == NamedContext) { 13402 Diag(SS.getBeginLoc(), 13403 diag::err_using_decl_nested_name_specifier_is_current_class) 13404 << SS.getRange(); 13405 return !getLangOpts().CPlusPlus20; 13406 } 13407 13408 if (!cast<CXXRecordDecl>(NamedContext)->isInvalidDecl()) { 13409 Diag(SS.getBeginLoc(), 13410 diag::err_using_decl_nested_name_specifier_is_not_base_class) 13411 << SS.getScopeRep() << cast<CXXRecordDecl>(CurContext) 13412 << SS.getRange(); 13413 } 13414 return true; 13415 } 13416 13417 return false; 13418 } 13419 13420 // C++03 [namespace.udecl]p4: 13421 // A using-declaration used as a member-declaration shall refer 13422 // to a member of a base class of the class being defined [etc.]. 13423 13424 // Salient point: SS doesn't have to name a base class as long as 13425 // lookup only finds members from base classes. Therefore we can 13426 // diagnose here only if we can prove that can't happen, 13427 // i.e. if the class hierarchies provably don't intersect. 13428 13429 // TODO: it would be nice if "definitely valid" results were cached 13430 // in the UsingDecl and UsingShadowDecl so that these checks didn't 13431 // need to be repeated. 13432 13433 llvm::SmallPtrSet<const CXXRecordDecl *, 4> Bases; 13434 auto Collect = [&Bases](const CXXRecordDecl *Base) { 13435 Bases.insert(Base); 13436 return true; 13437 }; 13438 13439 // Collect all bases. Return false if we find a dependent base. 13440 if (!cast<CXXRecordDecl>(CurContext)->forallBases(Collect)) 13441 return false; 13442 13443 // Returns true if the base is dependent or is one of the accumulated base 13444 // classes. 13445 auto IsNotBase = [&Bases](const CXXRecordDecl *Base) { 13446 return !Bases.count(Base); 13447 }; 13448 13449 // Return false if the class has a dependent base or if it or one 13450 // of its bases is present in the base set of the current context. 13451 if (Bases.count(cast<CXXRecordDecl>(NamedContext)) || 13452 !cast<CXXRecordDecl>(NamedContext)->forallBases(IsNotBase)) 13453 return false; 13454 13455 Diag(SS.getRange().getBegin(), 13456 diag::err_using_decl_nested_name_specifier_is_not_base_class) 13457 << SS.getScopeRep() 13458 << cast<CXXRecordDecl>(CurContext) 13459 << SS.getRange(); 13460 13461 return true; 13462 } 13463 13464 Decl *Sema::ActOnAliasDeclaration(Scope *S, AccessSpecifier AS, 13465 MultiTemplateParamsArg TemplateParamLists, 13466 SourceLocation UsingLoc, UnqualifiedId &Name, 13467 const ParsedAttributesView &AttrList, 13468 TypeResult Type, Decl *DeclFromDeclSpec) { 13469 13470 if (Type.isInvalid()) 13471 return nullptr; 13472 13473 bool Invalid = false; 13474 DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name); 13475 TypeSourceInfo *TInfo = nullptr; 13476 GetTypeFromParser(Type.get(), &TInfo); 13477 13478 if (DiagnoseClassNameShadow(CurContext, NameInfo)) 13479 return nullptr; 13480 13481 if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo, 13482 UPPC_DeclarationType)) { 13483 Invalid = true; 13484 TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy, 13485 TInfo->getTypeLoc().getBeginLoc()); 13486 } 13487 13488 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, 13489 TemplateParamLists.size() 13490 ? forRedeclarationInCurContext() 13491 : RedeclarationKind::ForVisibleRedeclaration); 13492 LookupName(Previous, S); 13493 13494 // Warn about shadowing the name of a template parameter. 13495 if (Previous.isSingleResult() && 13496 Previous.getFoundDecl()->isTemplateParameter()) { 13497 DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl()); 13498 Previous.clear(); 13499 } 13500 13501 assert(Name.getKind() == UnqualifiedIdKind::IK_Identifier && 13502 "name in alias declaration must be an identifier"); 13503 TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc, 13504 Name.StartLocation, 13505 Name.Identifier, TInfo); 13506 13507 NewTD->setAccess(AS); 13508 13509 if (Invalid) 13510 NewTD->setInvalidDecl(); 13511 13512 ProcessDeclAttributeList(S, NewTD, AttrList); 13513 AddPragmaAttributes(S, NewTD); 13514 ProcessAPINotes(NewTD); 13515 13516 CheckTypedefForVariablyModifiedType(S, NewTD); 13517 Invalid |= NewTD->isInvalidDecl(); 13518 13519 // Get the innermost enclosing declaration scope. 13520 S = S->getDeclParent(); 13521 13522 bool Redeclaration = false; 13523 13524 NamedDecl *NewND; 13525 if (TemplateParamLists.size()) { 13526 TypeAliasTemplateDecl *OldDecl = nullptr; 13527 TemplateParameterList *OldTemplateParams = nullptr; 13528 13529 if (TemplateParamLists.size() != 1) { 13530 Diag(UsingLoc, diag::err_alias_template_extra_headers) 13531 << SourceRange(TemplateParamLists[1]->getTemplateLoc(), 13532 TemplateParamLists[TemplateParamLists.size()-1]->getRAngleLoc()); 13533 Invalid = true; 13534 } 13535 TemplateParameterList *TemplateParams = TemplateParamLists[0]; 13536 13537 // Check that we can declare a template here. 13538 if (CheckTemplateDeclScope(S, TemplateParams)) 13539 return nullptr; 13540 13541 // Only consider previous declarations in the same scope. 13542 FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false, 13543 /*ExplicitInstantiationOrSpecialization*/false); 13544 if (!Previous.empty()) { 13545 Redeclaration = true; 13546 13547 OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>(); 13548 if (!OldDecl && !Invalid) { 13549 Diag(UsingLoc, diag::err_redefinition_different_kind) 13550 << Name.Identifier; 13551 13552 NamedDecl *OldD = Previous.getRepresentativeDecl(); 13553 if (OldD->getLocation().isValid()) 13554 Diag(OldD->getLocation(), diag::note_previous_definition); 13555 13556 Invalid = true; 13557 } 13558 13559 if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) { 13560 if (TemplateParameterListsAreEqual(TemplateParams, 13561 OldDecl->getTemplateParameters(), 13562 /*Complain=*/true, 13563 TPL_TemplateMatch)) 13564 OldTemplateParams = 13565 OldDecl->getMostRecentDecl()->getTemplateParameters(); 13566 else 13567 Invalid = true; 13568 13569 TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl(); 13570 if (!Invalid && 13571 !Context.hasSameType(OldTD->getUnderlyingType(), 13572 NewTD->getUnderlyingType())) { 13573 // FIXME: The C++0x standard does not clearly say this is ill-formed, 13574 // but we can't reasonably accept it. 13575 Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef) 13576 << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType(); 13577 if (OldTD->getLocation().isValid()) 13578 Diag(OldTD->getLocation(), diag::note_previous_definition); 13579 Invalid = true; 13580 } 13581 } 13582 } 13583 13584 // Merge any previous default template arguments into our parameters, 13585 // and check the parameter list. 13586 if (CheckTemplateParameterList(TemplateParams, OldTemplateParams, 13587 TPC_TypeAliasTemplate)) 13588 return nullptr; 13589 13590 TypeAliasTemplateDecl *NewDecl = 13591 TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc, 13592 Name.Identifier, TemplateParams, 13593 NewTD); 13594 NewTD->setDescribedAliasTemplate(NewDecl); 13595 13596 NewDecl->setAccess(AS); 13597 13598 if (Invalid) 13599 NewDecl->setInvalidDecl(); 13600 else if (OldDecl) { 13601 NewDecl->setPreviousDecl(OldDecl); 13602 CheckRedeclarationInModule(NewDecl, OldDecl); 13603 } 13604 13605 NewND = NewDecl; 13606 } else { 13607 if (auto *TD = dyn_cast_or_null<TagDecl>(DeclFromDeclSpec)) { 13608 setTagNameForLinkagePurposes(TD, NewTD); 13609 handleTagNumbering(TD, S); 13610 } 13611 ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration); 13612 NewND = NewTD; 13613 } 13614 13615 PushOnScopeChains(NewND, S); 13616 ActOnDocumentableDecl(NewND); 13617 return NewND; 13618 } 13619 13620 Decl *Sema::ActOnNamespaceAliasDef(Scope *S, SourceLocation NamespaceLoc, 13621 SourceLocation AliasLoc, 13622 IdentifierInfo *Alias, CXXScopeSpec &SS, 13623 SourceLocation IdentLoc, 13624 IdentifierInfo *Ident) { 13625 13626 // Lookup the namespace name. 13627 LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName); 13628 LookupParsedName(R, S, &SS, /*ObjectType=*/QualType()); 13629 13630 if (R.isAmbiguous()) 13631 return nullptr; 13632 13633 if (R.empty()) { 13634 if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) { 13635 Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange(); 13636 return nullptr; 13637 } 13638 } 13639 assert(!R.isAmbiguous() && !R.empty()); 13640 NamedDecl *ND = R.getRepresentativeDecl(); 13641 13642 // Check if we have a previous declaration with the same name. 13643 LookupResult PrevR(*this, Alias, AliasLoc, LookupOrdinaryName, 13644 RedeclarationKind::ForVisibleRedeclaration); 13645 LookupName(PrevR, S); 13646 13647 // Check we're not shadowing a template parameter. 13648 if (PrevR.isSingleResult() && PrevR.getFoundDecl()->isTemplateParameter()) { 13649 DiagnoseTemplateParameterShadow(AliasLoc, PrevR.getFoundDecl()); 13650 PrevR.clear(); 13651 } 13652 13653 // Filter out any other lookup result from an enclosing scope. 13654 FilterLookupForScope(PrevR, CurContext, S, /*ConsiderLinkage*/false, 13655 /*AllowInlineNamespace*/false); 13656 13657 // Find the previous declaration and check that we can redeclare it. 13658 NamespaceAliasDecl *Prev = nullptr; 13659 if (PrevR.isSingleResult()) { 13660 NamedDecl *PrevDecl = PrevR.getRepresentativeDecl(); 13661 if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) { 13662 // We already have an alias with the same name that points to the same 13663 // namespace; check that it matches. 13664 if (AD->getNamespace()->Equals(getNamespaceDecl(ND))) { 13665 Prev = AD; 13666 } else if (isVisible(PrevDecl)) { 13667 Diag(AliasLoc, diag::err_redefinition_different_namespace_alias) 13668 << Alias; 13669 Diag(AD->getLocation(), diag::note_previous_namespace_alias) 13670 << AD->getNamespace(); 13671 return nullptr; 13672 } 13673 } else if (isVisible(PrevDecl)) { 13674 unsigned DiagID = isa<NamespaceDecl>(PrevDecl->getUnderlyingDecl()) 13675 ? diag::err_redefinition 13676 : diag::err_redefinition_different_kind; 13677 Diag(AliasLoc, DiagID) << Alias; 13678 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 13679 return nullptr; 13680 } 13681 } 13682 13683 // The use of a nested name specifier may trigger deprecation warnings. 13684 DiagnoseUseOfDecl(ND, IdentLoc); 13685 13686 NamespaceAliasDecl *AliasDecl = 13687 NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc, 13688 Alias, SS.getWithLocInContext(Context), 13689 IdentLoc, ND); 13690 if (Prev) 13691 AliasDecl->setPreviousDecl(Prev); 13692 13693 PushOnScopeChains(AliasDecl, S); 13694 return AliasDecl; 13695 } 13696 13697 namespace { 13698 struct SpecialMemberExceptionSpecInfo 13699 : SpecialMemberVisitor<SpecialMemberExceptionSpecInfo> { 13700 SourceLocation Loc; 13701 Sema::ImplicitExceptionSpecification ExceptSpec; 13702 13703 SpecialMemberExceptionSpecInfo(Sema &S, CXXMethodDecl *MD, 13704 CXXSpecialMemberKind CSM, 13705 Sema::InheritedConstructorInfo *ICI, 13706 SourceLocation Loc) 13707 : SpecialMemberVisitor(S, MD, CSM, ICI), Loc(Loc), ExceptSpec(S) {} 13708 13709 bool visitBase(CXXBaseSpecifier *Base); 13710 bool visitField(FieldDecl *FD); 13711 13712 void visitClassSubobject(CXXRecordDecl *Class, Subobject Subobj, 13713 unsigned Quals); 13714 13715 void visitSubobjectCall(Subobject Subobj, 13716 Sema::SpecialMemberOverloadResult SMOR); 13717 }; 13718 } 13719 13720 bool SpecialMemberExceptionSpecInfo::visitBase(CXXBaseSpecifier *Base) { 13721 auto *RT = Base->getType()->getAs<RecordType>(); 13722 if (!RT) 13723 return false; 13724 13725 auto *BaseClass = cast<CXXRecordDecl>(RT->getDecl()); 13726 Sema::SpecialMemberOverloadResult SMOR = lookupInheritedCtor(BaseClass); 13727 if (auto *BaseCtor = SMOR.getMethod()) { 13728 visitSubobjectCall(Base, BaseCtor); 13729 return false; 13730 } 13731 13732 visitClassSubobject(BaseClass, Base, 0); 13733 return false; 13734 } 13735 13736 bool SpecialMemberExceptionSpecInfo::visitField(FieldDecl *FD) { 13737 if (CSM == CXXSpecialMemberKind::DefaultConstructor && 13738 FD->hasInClassInitializer()) { 13739 Expr *E = FD->getInClassInitializer(); 13740 if (!E) 13741 // FIXME: It's a little wasteful to build and throw away a 13742 // CXXDefaultInitExpr here. 13743 // FIXME: We should have a single context note pointing at Loc, and 13744 // this location should be MD->getLocation() instead, since that's 13745 // the location where we actually use the default init expression. 13746 E = S.BuildCXXDefaultInitExpr(Loc, FD).get(); 13747 if (E) 13748 ExceptSpec.CalledExpr(E); 13749 } else if (auto *RT = S.Context.getBaseElementType(FD->getType()) 13750 ->getAs<RecordType>()) { 13751 visitClassSubobject(cast<CXXRecordDecl>(RT->getDecl()), FD, 13752 FD->getType().getCVRQualifiers()); 13753 } 13754 return false; 13755 } 13756 13757 void SpecialMemberExceptionSpecInfo::visitClassSubobject(CXXRecordDecl *Class, 13758 Subobject Subobj, 13759 unsigned Quals) { 13760 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>(); 13761 bool IsMutable = Field && Field->isMutable(); 13762 visitSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable)); 13763 } 13764 13765 void SpecialMemberExceptionSpecInfo::visitSubobjectCall( 13766 Subobject Subobj, Sema::SpecialMemberOverloadResult SMOR) { 13767 // Note, if lookup fails, it doesn't matter what exception specification we 13768 // choose because the special member will be deleted. 13769 if (CXXMethodDecl *MD = SMOR.getMethod()) 13770 ExceptSpec.CalledDecl(getSubobjectLoc(Subobj), MD); 13771 } 13772 13773 bool Sema::tryResolveExplicitSpecifier(ExplicitSpecifier &ExplicitSpec) { 13774 llvm::APSInt Result; 13775 ExprResult Converted = CheckConvertedConstantExpression( 13776 ExplicitSpec.getExpr(), Context.BoolTy, Result, CCEK_ExplicitBool); 13777 ExplicitSpec.setExpr(Converted.get()); 13778 if (Converted.isUsable() && !Converted.get()->isValueDependent()) { 13779 ExplicitSpec.setKind(Result.getBoolValue() 13780 ? ExplicitSpecKind::ResolvedTrue 13781 : ExplicitSpecKind::ResolvedFalse); 13782 return true; 13783 } 13784 ExplicitSpec.setKind(ExplicitSpecKind::Unresolved); 13785 return false; 13786 } 13787 13788 ExplicitSpecifier Sema::ActOnExplicitBoolSpecifier(Expr *ExplicitExpr) { 13789 ExplicitSpecifier ES(ExplicitExpr, ExplicitSpecKind::Unresolved); 13790 if (!ExplicitExpr->isTypeDependent()) 13791 tryResolveExplicitSpecifier(ES); 13792 return ES; 13793 } 13794 13795 static Sema::ImplicitExceptionSpecification 13796 ComputeDefaultedSpecialMemberExceptionSpec( 13797 Sema &S, SourceLocation Loc, CXXMethodDecl *MD, CXXSpecialMemberKind CSM, 13798 Sema::InheritedConstructorInfo *ICI) { 13799 ComputingExceptionSpec CES(S, MD, Loc); 13800 13801 CXXRecordDecl *ClassDecl = MD->getParent(); 13802 13803 // C++ [except.spec]p14: 13804 // An implicitly declared special member function (Clause 12) shall have an 13805 // exception-specification. [...] 13806 SpecialMemberExceptionSpecInfo Info(S, MD, CSM, ICI, MD->getLocation()); 13807 if (ClassDecl->isInvalidDecl()) 13808 return Info.ExceptSpec; 13809 13810 // FIXME: If this diagnostic fires, we're probably missing a check for 13811 // attempting to resolve an exception specification before it's known 13812 // at a higher level. 13813 if (S.RequireCompleteType(MD->getLocation(), 13814 S.Context.getRecordType(ClassDecl), 13815 diag::err_exception_spec_incomplete_type)) 13816 return Info.ExceptSpec; 13817 13818 // C++1z [except.spec]p7: 13819 // [Look for exceptions thrown by] a constructor selected [...] to 13820 // initialize a potentially constructed subobject, 13821 // C++1z [except.spec]p8: 13822 // The exception specification for an implicitly-declared destructor, or a 13823 // destructor without a noexcept-specifier, is potentially-throwing if and 13824 // only if any of the destructors for any of its potentially constructed 13825 // subojects is potentially throwing. 13826 // FIXME: We respect the first rule but ignore the "potentially constructed" 13827 // in the second rule to resolve a core issue (no number yet) that would have 13828 // us reject: 13829 // struct A { virtual void f() = 0; virtual ~A() noexcept(false) = 0; }; 13830 // struct B : A {}; 13831 // struct C : B { void f(); }; 13832 // ... due to giving B::~B() a non-throwing exception specification. 13833 Info.visit(Info.IsConstructor ? Info.VisitPotentiallyConstructedBases 13834 : Info.VisitAllBases); 13835 13836 return Info.ExceptSpec; 13837 } 13838 13839 namespace { 13840 /// RAII object to register a special member as being currently declared. 13841 struct DeclaringSpecialMember { 13842 Sema &S; 13843 Sema::SpecialMemberDecl D; 13844 Sema::ContextRAII SavedContext; 13845 bool WasAlreadyBeingDeclared; 13846 13847 DeclaringSpecialMember(Sema &S, CXXRecordDecl *RD, CXXSpecialMemberKind CSM) 13848 : S(S), D(RD, CSM), SavedContext(S, RD) { 13849 WasAlreadyBeingDeclared = !S.SpecialMembersBeingDeclared.insert(D).second; 13850 if (WasAlreadyBeingDeclared) 13851 // This almost never happens, but if it does, ensure that our cache 13852 // doesn't contain a stale result. 13853 S.SpecialMemberCache.clear(); 13854 else { 13855 // Register a note to be produced if we encounter an error while 13856 // declaring the special member. 13857 Sema::CodeSynthesisContext Ctx; 13858 Ctx.Kind = Sema::CodeSynthesisContext::DeclaringSpecialMember; 13859 // FIXME: We don't have a location to use here. Using the class's 13860 // location maintains the fiction that we declare all special members 13861 // with the class, but (1) it's not clear that lying about that helps our 13862 // users understand what's going on, and (2) there may be outer contexts 13863 // on the stack (some of which are relevant) and printing them exposes 13864 // our lies. 13865 Ctx.PointOfInstantiation = RD->getLocation(); 13866 Ctx.Entity = RD; 13867 Ctx.SpecialMember = CSM; 13868 S.pushCodeSynthesisContext(Ctx); 13869 } 13870 } 13871 ~DeclaringSpecialMember() { 13872 if (!WasAlreadyBeingDeclared) { 13873 S.SpecialMembersBeingDeclared.erase(D); 13874 S.popCodeSynthesisContext(); 13875 } 13876 } 13877 13878 /// Are we already trying to declare this special member? 13879 bool isAlreadyBeingDeclared() const { 13880 return WasAlreadyBeingDeclared; 13881 } 13882 }; 13883 } 13884 13885 void Sema::CheckImplicitSpecialMemberDeclaration(Scope *S, FunctionDecl *FD) { 13886 // Look up any existing declarations, but don't trigger declaration of all 13887 // implicit special members with this name. 13888 DeclarationName Name = FD->getDeclName(); 13889 LookupResult R(*this, Name, SourceLocation(), LookupOrdinaryName, 13890 RedeclarationKind::ForExternalRedeclaration); 13891 for (auto *D : FD->getParent()->lookup(Name)) 13892 if (auto *Acceptable = R.getAcceptableDecl(D)) 13893 R.addDecl(Acceptable); 13894 R.resolveKind(); 13895 R.suppressDiagnostics(); 13896 13897 CheckFunctionDeclaration(S, FD, R, /*IsMemberSpecialization*/ false, 13898 FD->isThisDeclarationADefinition()); 13899 } 13900 13901 void Sema::setupImplicitSpecialMemberType(CXXMethodDecl *SpecialMem, 13902 QualType ResultTy, 13903 ArrayRef<QualType> Args) { 13904 // Build an exception specification pointing back at this constructor. 13905 FunctionProtoType::ExtProtoInfo EPI = getImplicitMethodEPI(*this, SpecialMem); 13906 13907 LangAS AS = getDefaultCXXMethodAddrSpace(); 13908 if (AS != LangAS::Default) { 13909 EPI.TypeQuals.addAddressSpace(AS); 13910 } 13911 13912 auto QT = Context.getFunctionType(ResultTy, Args, EPI); 13913 SpecialMem->setType(QT); 13914 13915 // During template instantiation of implicit special member functions we need 13916 // a reliable TypeSourceInfo for the function prototype in order to allow 13917 // functions to be substituted. 13918 if (inTemplateInstantiation() && isLambdaMethod(SpecialMem)) { 13919 TypeSourceInfo *TSI = 13920 Context.getTrivialTypeSourceInfo(SpecialMem->getType()); 13921 SpecialMem->setTypeSourceInfo(TSI); 13922 } 13923 } 13924 13925 CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor( 13926 CXXRecordDecl *ClassDecl) { 13927 // C++ [class.ctor]p5: 13928 // A default constructor for a class X is a constructor of class X 13929 // that can be called without an argument. If there is no 13930 // user-declared constructor for class X, a default constructor is 13931 // implicitly declared. An implicitly-declared default constructor 13932 // is an inline public member of its class. 13933 assert(ClassDecl->needsImplicitDefaultConstructor() && 13934 "Should not build implicit default constructor!"); 13935 13936 DeclaringSpecialMember DSM(*this, ClassDecl, 13937 CXXSpecialMemberKind::DefaultConstructor); 13938 if (DSM.isAlreadyBeingDeclared()) 13939 return nullptr; 13940 13941 bool Constexpr = defaultedSpecialMemberIsConstexpr( 13942 *this, ClassDecl, CXXSpecialMemberKind::DefaultConstructor, false); 13943 13944 // Create the actual constructor declaration. 13945 CanQualType ClassType 13946 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); 13947 SourceLocation ClassLoc = ClassDecl->getLocation(); 13948 DeclarationName Name 13949 = Context.DeclarationNames.getCXXConstructorName(ClassType); 13950 DeclarationNameInfo NameInfo(Name, ClassLoc); 13951 CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create( 13952 Context, ClassDecl, ClassLoc, NameInfo, /*Type*/ QualType(), 13953 /*TInfo=*/nullptr, ExplicitSpecifier(), 13954 getCurFPFeatures().isFPConstrained(), 13955 /*isInline=*/true, /*isImplicitlyDeclared=*/true, 13956 Constexpr ? ConstexprSpecKind::Constexpr 13957 : ConstexprSpecKind::Unspecified); 13958 DefaultCon->setAccess(AS_public); 13959 DefaultCon->setDefaulted(); 13960 13961 setupImplicitSpecialMemberType(DefaultCon, Context.VoidTy, {}); 13962 13963 if (getLangOpts().CUDA) 13964 CUDA().inferTargetForImplicitSpecialMember( 13965 ClassDecl, CXXSpecialMemberKind::DefaultConstructor, DefaultCon, 13966 /* ConstRHS */ false, 13967 /* Diagnose */ false); 13968 13969 // We don't need to use SpecialMemberIsTrivial here; triviality for default 13970 // constructors is easy to compute. 13971 DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor()); 13972 13973 // Note that we have declared this constructor. 13974 ++getASTContext().NumImplicitDefaultConstructorsDeclared; 13975 13976 Scope *S = getScopeForContext(ClassDecl); 13977 CheckImplicitSpecialMemberDeclaration(S, DefaultCon); 13978 13979 if (ShouldDeleteSpecialMember(DefaultCon, 13980 CXXSpecialMemberKind::DefaultConstructor)) 13981 SetDeclDeleted(DefaultCon, ClassLoc); 13982 13983 if (S) 13984 PushOnScopeChains(DefaultCon, S, false); 13985 ClassDecl->addDecl(DefaultCon); 13986 13987 return DefaultCon; 13988 } 13989 13990 void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation, 13991 CXXConstructorDecl *Constructor) { 13992 assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() && 13993 !Constructor->doesThisDeclarationHaveABody() && 13994 !Constructor->isDeleted()) && 13995 "DefineImplicitDefaultConstructor - call it for implicit default ctor"); 13996 if (Constructor->willHaveBody() || Constructor->isInvalidDecl()) 13997 return; 13998 13999 CXXRecordDecl *ClassDecl = Constructor->getParent(); 14000 assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor"); 14001 if (ClassDecl->isInvalidDecl()) { 14002 return; 14003 } 14004 14005 SynthesizedFunctionScope Scope(*this, Constructor); 14006 14007 // The exception specification is needed because we are defining the 14008 // function. 14009 ResolveExceptionSpec(CurrentLocation, 14010 Constructor->getType()->castAs<FunctionProtoType>()); 14011 MarkVTableUsed(CurrentLocation, ClassDecl); 14012 14013 // Add a context note for diagnostics produced after this point. 14014 Scope.addContextNote(CurrentLocation); 14015 14016 if (SetCtorInitializers(Constructor, /*AnyErrors=*/false)) { 14017 Constructor->setInvalidDecl(); 14018 return; 14019 } 14020 14021 SourceLocation Loc = Constructor->getEndLoc().isValid() 14022 ? Constructor->getEndLoc() 14023 : Constructor->getLocation(); 14024 Constructor->setBody(new (Context) CompoundStmt(Loc)); 14025 Constructor->markUsed(Context); 14026 14027 if (ASTMutationListener *L = getASTMutationListener()) { 14028 L->CompletedImplicitDefinition(Constructor); 14029 } 14030 14031 DiagnoseUninitializedFields(*this, Constructor); 14032 } 14033 14034 void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) { 14035 // Perform any delayed checks on exception specifications. 14036 CheckDelayedMemberExceptionSpecs(); 14037 } 14038 14039 /// Find or create the fake constructor we synthesize to model constructing an 14040 /// object of a derived class via a constructor of a base class. 14041 CXXConstructorDecl * 14042 Sema::findInheritingConstructor(SourceLocation Loc, 14043 CXXConstructorDecl *BaseCtor, 14044 ConstructorUsingShadowDecl *Shadow) { 14045 CXXRecordDecl *Derived = Shadow->getParent(); 14046 SourceLocation UsingLoc = Shadow->getLocation(); 14047 14048 // FIXME: Add a new kind of DeclarationName for an inherited constructor. 14049 // For now we use the name of the base class constructor as a member of the 14050 // derived class to indicate a (fake) inherited constructor name. 14051 DeclarationName Name = BaseCtor->getDeclName(); 14052 14053 // Check to see if we already have a fake constructor for this inherited 14054 // constructor call. 14055 for (NamedDecl *Ctor : Derived->lookup(Name)) 14056 if (declaresSameEntity(cast<CXXConstructorDecl>(Ctor) 14057 ->getInheritedConstructor() 14058 .getConstructor(), 14059 BaseCtor)) 14060 return cast<CXXConstructorDecl>(Ctor); 14061 14062 DeclarationNameInfo NameInfo(Name, UsingLoc); 14063 TypeSourceInfo *TInfo = 14064 Context.getTrivialTypeSourceInfo(BaseCtor->getType(), UsingLoc); 14065 FunctionProtoTypeLoc ProtoLoc = 14066 TInfo->getTypeLoc().IgnoreParens().castAs<FunctionProtoTypeLoc>(); 14067 14068 // Check the inherited constructor is valid and find the list of base classes 14069 // from which it was inherited. 14070 InheritedConstructorInfo ICI(*this, Loc, Shadow); 14071 14072 bool Constexpr = BaseCtor->isConstexpr() && 14073 defaultedSpecialMemberIsConstexpr( 14074 *this, Derived, CXXSpecialMemberKind::DefaultConstructor, 14075 false, BaseCtor, &ICI); 14076 14077 CXXConstructorDecl *DerivedCtor = CXXConstructorDecl::Create( 14078 Context, Derived, UsingLoc, NameInfo, TInfo->getType(), TInfo, 14079 BaseCtor->getExplicitSpecifier(), getCurFPFeatures().isFPConstrained(), 14080 /*isInline=*/true, 14081 /*isImplicitlyDeclared=*/true, 14082 Constexpr ? BaseCtor->getConstexprKind() : ConstexprSpecKind::Unspecified, 14083 InheritedConstructor(Shadow, BaseCtor), 14084 BaseCtor->getTrailingRequiresClause()); 14085 if (Shadow->isInvalidDecl()) 14086 DerivedCtor->setInvalidDecl(); 14087 14088 // Build an unevaluated exception specification for this fake constructor. 14089 const FunctionProtoType *FPT = TInfo->getType()->castAs<FunctionProtoType>(); 14090 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 14091 EPI.ExceptionSpec.Type = EST_Unevaluated; 14092 EPI.ExceptionSpec.SourceDecl = DerivedCtor; 14093 DerivedCtor->setType(Context.getFunctionType(FPT->getReturnType(), 14094 FPT->getParamTypes(), EPI)); 14095 14096 // Build the parameter declarations. 14097 SmallVector<ParmVarDecl *, 16> ParamDecls; 14098 for (unsigned I = 0, N = FPT->getNumParams(); I != N; ++I) { 14099 TypeSourceInfo *TInfo = 14100 Context.getTrivialTypeSourceInfo(FPT->getParamType(I), UsingLoc); 14101 ParmVarDecl *PD = ParmVarDecl::Create( 14102 Context, DerivedCtor, UsingLoc, UsingLoc, /*IdentifierInfo=*/nullptr, 14103 FPT->getParamType(I), TInfo, SC_None, /*DefArg=*/nullptr); 14104 PD->setScopeInfo(0, I); 14105 PD->setImplicit(); 14106 // Ensure attributes are propagated onto parameters (this matters for 14107 // format, pass_object_size, ...). 14108 mergeDeclAttributes(PD, BaseCtor->getParamDecl(I)); 14109 ParamDecls.push_back(PD); 14110 ProtoLoc.setParam(I, PD); 14111 } 14112 14113 // Set up the new constructor. 14114 assert(!BaseCtor->isDeleted() && "should not use deleted constructor"); 14115 DerivedCtor->setAccess(BaseCtor->getAccess()); 14116 DerivedCtor->setParams(ParamDecls); 14117 Derived->addDecl(DerivedCtor); 14118 14119 if (ShouldDeleteSpecialMember(DerivedCtor, 14120 CXXSpecialMemberKind::DefaultConstructor, &ICI)) 14121 SetDeclDeleted(DerivedCtor, UsingLoc); 14122 14123 return DerivedCtor; 14124 } 14125 14126 void Sema::NoteDeletedInheritingConstructor(CXXConstructorDecl *Ctor) { 14127 InheritedConstructorInfo ICI(*this, Ctor->getLocation(), 14128 Ctor->getInheritedConstructor().getShadowDecl()); 14129 ShouldDeleteSpecialMember(Ctor, CXXSpecialMemberKind::DefaultConstructor, 14130 &ICI, 14131 /*Diagnose*/ true); 14132 } 14133 14134 void Sema::DefineInheritingConstructor(SourceLocation CurrentLocation, 14135 CXXConstructorDecl *Constructor) { 14136 CXXRecordDecl *ClassDecl = Constructor->getParent(); 14137 assert(Constructor->getInheritedConstructor() && 14138 !Constructor->doesThisDeclarationHaveABody() && 14139 !Constructor->isDeleted()); 14140 if (Constructor->willHaveBody() || Constructor->isInvalidDecl()) 14141 return; 14142 14143 // Initializations are performed "as if by a defaulted default constructor", 14144 // so enter the appropriate scope. 14145 SynthesizedFunctionScope Scope(*this, Constructor); 14146 14147 // The exception specification is needed because we are defining the 14148 // function. 14149 ResolveExceptionSpec(CurrentLocation, 14150 Constructor->getType()->castAs<FunctionProtoType>()); 14151 MarkVTableUsed(CurrentLocation, ClassDecl); 14152 14153 // Add a context note for diagnostics produced after this point. 14154 Scope.addContextNote(CurrentLocation); 14155 14156 ConstructorUsingShadowDecl *Shadow = 14157 Constructor->getInheritedConstructor().getShadowDecl(); 14158 CXXConstructorDecl *InheritedCtor = 14159 Constructor->getInheritedConstructor().getConstructor(); 14160 14161 // [class.inhctor.init]p1: 14162 // initialization proceeds as if a defaulted default constructor is used to 14163 // initialize the D object and each base class subobject from which the 14164 // constructor was inherited 14165 14166 InheritedConstructorInfo ICI(*this, CurrentLocation, Shadow); 14167 CXXRecordDecl *RD = Shadow->getParent(); 14168 SourceLocation InitLoc = Shadow->getLocation(); 14169 14170 // Build explicit initializers for all base classes from which the 14171 // constructor was inherited. 14172 SmallVector<CXXCtorInitializer*, 8> Inits; 14173 for (bool VBase : {false, true}) { 14174 for (CXXBaseSpecifier &B : VBase ? RD->vbases() : RD->bases()) { 14175 if (B.isVirtual() != VBase) 14176 continue; 14177 14178 auto *BaseRD = B.getType()->getAsCXXRecordDecl(); 14179 if (!BaseRD) 14180 continue; 14181 14182 auto BaseCtor = ICI.findConstructorForBase(BaseRD, InheritedCtor); 14183 if (!BaseCtor.first) 14184 continue; 14185 14186 MarkFunctionReferenced(CurrentLocation, BaseCtor.first); 14187 ExprResult Init = new (Context) CXXInheritedCtorInitExpr( 14188 InitLoc, B.getType(), BaseCtor.first, VBase, BaseCtor.second); 14189 14190 auto *TInfo = Context.getTrivialTypeSourceInfo(B.getType(), InitLoc); 14191 Inits.push_back(new (Context) CXXCtorInitializer( 14192 Context, TInfo, VBase, InitLoc, Init.get(), InitLoc, 14193 SourceLocation())); 14194 } 14195 } 14196 14197 // We now proceed as if for a defaulted default constructor, with the relevant 14198 // initializers replaced. 14199 14200 if (SetCtorInitializers(Constructor, /*AnyErrors*/false, Inits)) { 14201 Constructor->setInvalidDecl(); 14202 return; 14203 } 14204 14205 Constructor->setBody(new (Context) CompoundStmt(InitLoc)); 14206 Constructor->markUsed(Context); 14207 14208 if (ASTMutationListener *L = getASTMutationListener()) { 14209 L->CompletedImplicitDefinition(Constructor); 14210 } 14211 14212 DiagnoseUninitializedFields(*this, Constructor); 14213 } 14214 14215 CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) { 14216 // C++ [class.dtor]p2: 14217 // If a class has no user-declared destructor, a destructor is 14218 // declared implicitly. An implicitly-declared destructor is an 14219 // inline public member of its class. 14220 assert(ClassDecl->needsImplicitDestructor()); 14221 14222 DeclaringSpecialMember DSM(*this, ClassDecl, 14223 CXXSpecialMemberKind::Destructor); 14224 if (DSM.isAlreadyBeingDeclared()) 14225 return nullptr; 14226 14227 bool Constexpr = defaultedSpecialMemberIsConstexpr( 14228 *this, ClassDecl, CXXSpecialMemberKind::Destructor, false); 14229 14230 // Create the actual destructor declaration. 14231 CanQualType ClassType 14232 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); 14233 SourceLocation ClassLoc = ClassDecl->getLocation(); 14234 DeclarationName Name 14235 = Context.DeclarationNames.getCXXDestructorName(ClassType); 14236 DeclarationNameInfo NameInfo(Name, ClassLoc); 14237 CXXDestructorDecl *Destructor = CXXDestructorDecl::Create( 14238 Context, ClassDecl, ClassLoc, NameInfo, QualType(), nullptr, 14239 getCurFPFeatures().isFPConstrained(), 14240 /*isInline=*/true, 14241 /*isImplicitlyDeclared=*/true, 14242 Constexpr ? ConstexprSpecKind::Constexpr 14243 : ConstexprSpecKind::Unspecified); 14244 Destructor->setAccess(AS_public); 14245 Destructor->setDefaulted(); 14246 14247 setupImplicitSpecialMemberType(Destructor, Context.VoidTy, {}); 14248 14249 if (getLangOpts().CUDA) 14250 CUDA().inferTargetForImplicitSpecialMember( 14251 ClassDecl, CXXSpecialMemberKind::Destructor, Destructor, 14252 /* ConstRHS */ false, 14253 /* Diagnose */ false); 14254 14255 // We don't need to use SpecialMemberIsTrivial here; triviality for 14256 // destructors is easy to compute. 14257 Destructor->setTrivial(ClassDecl->hasTrivialDestructor()); 14258 Destructor->setTrivialForCall(ClassDecl->hasAttr<TrivialABIAttr>() || 14259 ClassDecl->hasTrivialDestructorForCall()); 14260 14261 // Note that we have declared this destructor. 14262 ++getASTContext().NumImplicitDestructorsDeclared; 14263 14264 Scope *S = getScopeForContext(ClassDecl); 14265 CheckImplicitSpecialMemberDeclaration(S, Destructor); 14266 14267 // We can't check whether an implicit destructor is deleted before we complete 14268 // the definition of the class, because its validity depends on the alignment 14269 // of the class. We'll check this from ActOnFields once the class is complete. 14270 if (ClassDecl->isCompleteDefinition() && 14271 ShouldDeleteSpecialMember(Destructor, CXXSpecialMemberKind::Destructor)) 14272 SetDeclDeleted(Destructor, ClassLoc); 14273 14274 // Introduce this destructor into its scope. 14275 if (S) 14276 PushOnScopeChains(Destructor, S, false); 14277 ClassDecl->addDecl(Destructor); 14278 14279 return Destructor; 14280 } 14281 14282 void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation, 14283 CXXDestructorDecl *Destructor) { 14284 assert((Destructor->isDefaulted() && 14285 !Destructor->doesThisDeclarationHaveABody() && 14286 !Destructor->isDeleted()) && 14287 "DefineImplicitDestructor - call it for implicit default dtor"); 14288 if (Destructor->willHaveBody() || Destructor->isInvalidDecl()) 14289 return; 14290 14291 CXXRecordDecl *ClassDecl = Destructor->getParent(); 14292 assert(ClassDecl && "DefineImplicitDestructor - invalid destructor"); 14293 14294 SynthesizedFunctionScope Scope(*this, Destructor); 14295 14296 // The exception specification is needed because we are defining the 14297 // function. 14298 ResolveExceptionSpec(CurrentLocation, 14299 Destructor->getType()->castAs<FunctionProtoType>()); 14300 MarkVTableUsed(CurrentLocation, ClassDecl); 14301 14302 // Add a context note for diagnostics produced after this point. 14303 Scope.addContextNote(CurrentLocation); 14304 14305 MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(), 14306 Destructor->getParent()); 14307 14308 if (CheckDestructor(Destructor)) { 14309 Destructor->setInvalidDecl(); 14310 return; 14311 } 14312 14313 SourceLocation Loc = Destructor->getEndLoc().isValid() 14314 ? Destructor->getEndLoc() 14315 : Destructor->getLocation(); 14316 Destructor->setBody(new (Context) CompoundStmt(Loc)); 14317 Destructor->markUsed(Context); 14318 14319 if (ASTMutationListener *L = getASTMutationListener()) { 14320 L->CompletedImplicitDefinition(Destructor); 14321 } 14322 } 14323 14324 void Sema::CheckCompleteDestructorVariant(SourceLocation CurrentLocation, 14325 CXXDestructorDecl *Destructor) { 14326 if (Destructor->isInvalidDecl()) 14327 return; 14328 14329 CXXRecordDecl *ClassDecl = Destructor->getParent(); 14330 assert(Context.getTargetInfo().getCXXABI().isMicrosoft() && 14331 "implicit complete dtors unneeded outside MS ABI"); 14332 assert(ClassDecl->getNumVBases() > 0 && 14333 "complete dtor only exists for classes with vbases"); 14334 14335 SynthesizedFunctionScope Scope(*this, Destructor); 14336 14337 // Add a context note for diagnostics produced after this point. 14338 Scope.addContextNote(CurrentLocation); 14339 14340 MarkVirtualBaseDestructorsReferenced(Destructor->getLocation(), ClassDecl); 14341 } 14342 14343 void Sema::ActOnFinishCXXMemberDecls() { 14344 // If the context is an invalid C++ class, just suppress these checks. 14345 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(CurContext)) { 14346 if (Record->isInvalidDecl()) { 14347 DelayedOverridingExceptionSpecChecks.clear(); 14348 DelayedEquivalentExceptionSpecChecks.clear(); 14349 return; 14350 } 14351 checkForMultipleExportedDefaultConstructors(*this, Record); 14352 } 14353 } 14354 14355 void Sema::ActOnFinishCXXNonNestedClass() { 14356 referenceDLLExportedClassMethods(); 14357 14358 if (!DelayedDllExportMemberFunctions.empty()) { 14359 SmallVector<CXXMethodDecl*, 4> WorkList; 14360 std::swap(DelayedDllExportMemberFunctions, WorkList); 14361 for (CXXMethodDecl *M : WorkList) { 14362 DefineDefaultedFunction(*this, M, M->getLocation()); 14363 14364 // Pass the method to the consumer to get emitted. This is not necessary 14365 // for explicit instantiation definitions, as they will get emitted 14366 // anyway. 14367 if (M->getParent()->getTemplateSpecializationKind() != 14368 TSK_ExplicitInstantiationDefinition) 14369 ActOnFinishInlineFunctionDef(M); 14370 } 14371 } 14372 } 14373 14374 void Sema::referenceDLLExportedClassMethods() { 14375 if (!DelayedDllExportClasses.empty()) { 14376 // Calling ReferenceDllExportedMembers might cause the current function to 14377 // be called again, so use a local copy of DelayedDllExportClasses. 14378 SmallVector<CXXRecordDecl *, 4> WorkList; 14379 std::swap(DelayedDllExportClasses, WorkList); 14380 for (CXXRecordDecl *Class : WorkList) 14381 ReferenceDllExportedMembers(*this, Class); 14382 } 14383 } 14384 14385 void Sema::AdjustDestructorExceptionSpec(CXXDestructorDecl *Destructor) { 14386 assert(getLangOpts().CPlusPlus11 && 14387 "adjusting dtor exception specs was introduced in c++11"); 14388 14389 if (Destructor->isDependentContext()) 14390 return; 14391 14392 // C++11 [class.dtor]p3: 14393 // A declaration of a destructor that does not have an exception- 14394 // specification is implicitly considered to have the same exception- 14395 // specification as an implicit declaration. 14396 const auto *DtorType = Destructor->getType()->castAs<FunctionProtoType>(); 14397 if (DtorType->hasExceptionSpec()) 14398 return; 14399 14400 // Replace the destructor's type, building off the existing one. Fortunately, 14401 // the only thing of interest in the destructor type is its extended info. 14402 // The return and arguments are fixed. 14403 FunctionProtoType::ExtProtoInfo EPI = DtorType->getExtProtoInfo(); 14404 EPI.ExceptionSpec.Type = EST_Unevaluated; 14405 EPI.ExceptionSpec.SourceDecl = Destructor; 14406 Destructor->setType(Context.getFunctionType(Context.VoidTy, {}, EPI)); 14407 14408 // FIXME: If the destructor has a body that could throw, and the newly created 14409 // spec doesn't allow exceptions, we should emit a warning, because this 14410 // change in behavior can break conforming C++03 programs at runtime. 14411 // However, we don't have a body or an exception specification yet, so it 14412 // needs to be done somewhere else. 14413 } 14414 14415 namespace { 14416 /// An abstract base class for all helper classes used in building the 14417 // copy/move operators. These classes serve as factory functions and help us 14418 // avoid using the same Expr* in the AST twice. 14419 class ExprBuilder { 14420 ExprBuilder(const ExprBuilder&) = delete; 14421 ExprBuilder &operator=(const ExprBuilder&) = delete; 14422 14423 protected: 14424 static Expr *assertNotNull(Expr *E) { 14425 assert(E && "Expression construction must not fail."); 14426 return E; 14427 } 14428 14429 public: 14430 ExprBuilder() {} 14431 virtual ~ExprBuilder() {} 14432 14433 virtual Expr *build(Sema &S, SourceLocation Loc) const = 0; 14434 }; 14435 14436 class RefBuilder: public ExprBuilder { 14437 VarDecl *Var; 14438 QualType VarType; 14439 14440 public: 14441 Expr *build(Sema &S, SourceLocation Loc) const override { 14442 return assertNotNull(S.BuildDeclRefExpr(Var, VarType, VK_LValue, Loc)); 14443 } 14444 14445 RefBuilder(VarDecl *Var, QualType VarType) 14446 : Var(Var), VarType(VarType) {} 14447 }; 14448 14449 class ThisBuilder: public ExprBuilder { 14450 public: 14451 Expr *build(Sema &S, SourceLocation Loc) const override { 14452 return assertNotNull(S.ActOnCXXThis(Loc).getAs<Expr>()); 14453 } 14454 }; 14455 14456 class CastBuilder: public ExprBuilder { 14457 const ExprBuilder &Builder; 14458 QualType Type; 14459 ExprValueKind Kind; 14460 const CXXCastPath &Path; 14461 14462 public: 14463 Expr *build(Sema &S, SourceLocation Loc) const override { 14464 return assertNotNull(S.ImpCastExprToType(Builder.build(S, Loc), Type, 14465 CK_UncheckedDerivedToBase, Kind, 14466 &Path).get()); 14467 } 14468 14469 CastBuilder(const ExprBuilder &Builder, QualType Type, ExprValueKind Kind, 14470 const CXXCastPath &Path) 14471 : Builder(Builder), Type(Type), Kind(Kind), Path(Path) {} 14472 }; 14473 14474 class DerefBuilder: public ExprBuilder { 14475 const ExprBuilder &Builder; 14476 14477 public: 14478 Expr *build(Sema &S, SourceLocation Loc) const override { 14479 return assertNotNull( 14480 S.CreateBuiltinUnaryOp(Loc, UO_Deref, Builder.build(S, Loc)).get()); 14481 } 14482 14483 DerefBuilder(const ExprBuilder &Builder) : Builder(Builder) {} 14484 }; 14485 14486 class MemberBuilder: public ExprBuilder { 14487 const ExprBuilder &Builder; 14488 QualType Type; 14489 CXXScopeSpec SS; 14490 bool IsArrow; 14491 LookupResult &MemberLookup; 14492 14493 public: 14494 Expr *build(Sema &S, SourceLocation Loc) const override { 14495 return assertNotNull(S.BuildMemberReferenceExpr( 14496 Builder.build(S, Loc), Type, Loc, IsArrow, SS, SourceLocation(), 14497 nullptr, MemberLookup, nullptr, nullptr).get()); 14498 } 14499 14500 MemberBuilder(const ExprBuilder &Builder, QualType Type, bool IsArrow, 14501 LookupResult &MemberLookup) 14502 : Builder(Builder), Type(Type), IsArrow(IsArrow), 14503 MemberLookup(MemberLookup) {} 14504 }; 14505 14506 class MoveCastBuilder: public ExprBuilder { 14507 const ExprBuilder &Builder; 14508 14509 public: 14510 Expr *build(Sema &S, SourceLocation Loc) const override { 14511 return assertNotNull(CastForMoving(S, Builder.build(S, Loc))); 14512 } 14513 14514 MoveCastBuilder(const ExprBuilder &Builder) : Builder(Builder) {} 14515 }; 14516 14517 class LvalueConvBuilder: public ExprBuilder { 14518 const ExprBuilder &Builder; 14519 14520 public: 14521 Expr *build(Sema &S, SourceLocation Loc) const override { 14522 return assertNotNull( 14523 S.DefaultLvalueConversion(Builder.build(S, Loc)).get()); 14524 } 14525 14526 LvalueConvBuilder(const ExprBuilder &Builder) : Builder(Builder) {} 14527 }; 14528 14529 class SubscriptBuilder: public ExprBuilder { 14530 const ExprBuilder &Base; 14531 const ExprBuilder &Index; 14532 14533 public: 14534 Expr *build(Sema &S, SourceLocation Loc) const override { 14535 return assertNotNull(S.CreateBuiltinArraySubscriptExpr( 14536 Base.build(S, Loc), Loc, Index.build(S, Loc), Loc).get()); 14537 } 14538 14539 SubscriptBuilder(const ExprBuilder &Base, const ExprBuilder &Index) 14540 : Base(Base), Index(Index) {} 14541 }; 14542 14543 } // end anonymous namespace 14544 14545 /// When generating a defaulted copy or move assignment operator, if a field 14546 /// should be copied with __builtin_memcpy rather than via explicit assignments, 14547 /// do so. This optimization only applies for arrays of scalars, and for arrays 14548 /// of class type where the selected copy/move-assignment operator is trivial. 14549 static StmtResult 14550 buildMemcpyForAssignmentOp(Sema &S, SourceLocation Loc, QualType T, 14551 const ExprBuilder &ToB, const ExprBuilder &FromB) { 14552 // Compute the size of the memory buffer to be copied. 14553 QualType SizeType = S.Context.getSizeType(); 14554 llvm::APInt Size(S.Context.getTypeSize(SizeType), 14555 S.Context.getTypeSizeInChars(T).getQuantity()); 14556 14557 // Take the address of the field references for "from" and "to". We 14558 // directly construct UnaryOperators here because semantic analysis 14559 // does not permit us to take the address of an xvalue. 14560 Expr *From = FromB.build(S, Loc); 14561 From = UnaryOperator::Create( 14562 S.Context, From, UO_AddrOf, S.Context.getPointerType(From->getType()), 14563 VK_PRValue, OK_Ordinary, Loc, false, S.CurFPFeatureOverrides()); 14564 Expr *To = ToB.build(S, Loc); 14565 To = UnaryOperator::Create( 14566 S.Context, To, UO_AddrOf, S.Context.getPointerType(To->getType()), 14567 VK_PRValue, OK_Ordinary, Loc, false, S.CurFPFeatureOverrides()); 14568 14569 const Type *E = T->getBaseElementTypeUnsafe(); 14570 bool NeedsCollectableMemCpy = 14571 E->isRecordType() && 14572 E->castAs<RecordType>()->getDecl()->hasObjectMember(); 14573 14574 // Create a reference to the __builtin_objc_memmove_collectable function 14575 StringRef MemCpyName = NeedsCollectableMemCpy ? 14576 "__builtin_objc_memmove_collectable" : 14577 "__builtin_memcpy"; 14578 LookupResult R(S, &S.Context.Idents.get(MemCpyName), Loc, 14579 Sema::LookupOrdinaryName); 14580 S.LookupName(R, S.TUScope, true); 14581 14582 FunctionDecl *MemCpy = R.getAsSingle<FunctionDecl>(); 14583 if (!MemCpy) 14584 // Something went horribly wrong earlier, and we will have complained 14585 // about it. 14586 return StmtError(); 14587 14588 ExprResult MemCpyRef = S.BuildDeclRefExpr(MemCpy, S.Context.BuiltinFnTy, 14589 VK_PRValue, Loc, nullptr); 14590 assert(MemCpyRef.isUsable() && "Builtin reference cannot fail"); 14591 14592 Expr *CallArgs[] = { 14593 To, From, IntegerLiteral::Create(S.Context, Size, SizeType, Loc) 14594 }; 14595 ExprResult Call = S.BuildCallExpr(/*Scope=*/nullptr, MemCpyRef.get(), 14596 Loc, CallArgs, Loc); 14597 14598 assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!"); 14599 return Call.getAs<Stmt>(); 14600 } 14601 14602 /// Builds a statement that copies/moves the given entity from \p From to 14603 /// \c To. 14604 /// 14605 /// This routine is used to copy/move the members of a class with an 14606 /// implicitly-declared copy/move assignment operator. When the entities being 14607 /// copied are arrays, this routine builds for loops to copy them. 14608 /// 14609 /// \param S The Sema object used for type-checking. 14610 /// 14611 /// \param Loc The location where the implicit copy/move is being generated. 14612 /// 14613 /// \param T The type of the expressions being copied/moved. Both expressions 14614 /// must have this type. 14615 /// 14616 /// \param To The expression we are copying/moving to. 14617 /// 14618 /// \param From The expression we are copying/moving from. 14619 /// 14620 /// \param CopyingBaseSubobject Whether we're copying/moving a base subobject. 14621 /// Otherwise, it's a non-static member subobject. 14622 /// 14623 /// \param Copying Whether we're copying or moving. 14624 /// 14625 /// \param Depth Internal parameter recording the depth of the recursion. 14626 /// 14627 /// \returns A statement or a loop that copies the expressions, or StmtResult(0) 14628 /// if a memcpy should be used instead. 14629 static StmtResult 14630 buildSingleCopyAssignRecursively(Sema &S, SourceLocation Loc, QualType T, 14631 const ExprBuilder &To, const ExprBuilder &From, 14632 bool CopyingBaseSubobject, bool Copying, 14633 unsigned Depth = 0) { 14634 // C++11 [class.copy]p28: 14635 // Each subobject is assigned in the manner appropriate to its type: 14636 // 14637 // - if the subobject is of class type, as if by a call to operator= with 14638 // the subobject as the object expression and the corresponding 14639 // subobject of x as a single function argument (as if by explicit 14640 // qualification; that is, ignoring any possible virtual overriding 14641 // functions in more derived classes); 14642 // 14643 // C++03 [class.copy]p13: 14644 // - if the subobject is of class type, the copy assignment operator for 14645 // the class is used (as if by explicit qualification; that is, 14646 // ignoring any possible virtual overriding functions in more derived 14647 // classes); 14648 if (const RecordType *RecordTy = T->getAs<RecordType>()) { 14649 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl()); 14650 14651 // Look for operator=. 14652 DeclarationName Name 14653 = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal); 14654 LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName); 14655 S.LookupQualifiedName(OpLookup, ClassDecl, false); 14656 14657 // Prior to C++11, filter out any result that isn't a copy/move-assignment 14658 // operator. 14659 if (!S.getLangOpts().CPlusPlus11) { 14660 LookupResult::Filter F = OpLookup.makeFilter(); 14661 while (F.hasNext()) { 14662 NamedDecl *D = F.next(); 14663 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) 14664 if (Method->isCopyAssignmentOperator() || 14665 (!Copying && Method->isMoveAssignmentOperator())) 14666 continue; 14667 14668 F.erase(); 14669 } 14670 F.done(); 14671 } 14672 14673 // Suppress the protected check (C++ [class.protected]) for each of the 14674 // assignment operators we found. This strange dance is required when 14675 // we're assigning via a base classes's copy-assignment operator. To 14676 // ensure that we're getting the right base class subobject (without 14677 // ambiguities), we need to cast "this" to that subobject type; to 14678 // ensure that we don't go through the virtual call mechanism, we need 14679 // to qualify the operator= name with the base class (see below). However, 14680 // this means that if the base class has a protected copy assignment 14681 // operator, the protected member access check will fail. So, we 14682 // rewrite "protected" access to "public" access in this case, since we 14683 // know by construction that we're calling from a derived class. 14684 if (CopyingBaseSubobject) { 14685 for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end(); 14686 L != LEnd; ++L) { 14687 if (L.getAccess() == AS_protected) 14688 L.setAccess(AS_public); 14689 } 14690 } 14691 14692 // Create the nested-name-specifier that will be used to qualify the 14693 // reference to operator=; this is required to suppress the virtual 14694 // call mechanism. 14695 CXXScopeSpec SS; 14696 const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr()); 14697 SS.MakeTrivial(S.Context, 14698 NestedNameSpecifier::Create(S.Context, nullptr, false, 14699 CanonicalT), 14700 Loc); 14701 14702 // Create the reference to operator=. 14703 ExprResult OpEqualRef 14704 = S.BuildMemberReferenceExpr(To.build(S, Loc), T, Loc, /*IsArrow=*/false, 14705 SS, /*TemplateKWLoc=*/SourceLocation(), 14706 /*FirstQualifierInScope=*/nullptr, 14707 OpLookup, 14708 /*TemplateArgs=*/nullptr, /*S*/nullptr, 14709 /*SuppressQualifierCheck=*/true); 14710 if (OpEqualRef.isInvalid()) 14711 return StmtError(); 14712 14713 // Build the call to the assignment operator. 14714 14715 Expr *FromInst = From.build(S, Loc); 14716 ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/nullptr, 14717 OpEqualRef.getAs<Expr>(), 14718 Loc, FromInst, Loc); 14719 if (Call.isInvalid()) 14720 return StmtError(); 14721 14722 // If we built a call to a trivial 'operator=' while copying an array, 14723 // bail out. We'll replace the whole shebang with a memcpy. 14724 CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Call.get()); 14725 if (CE && CE->getMethodDecl()->isTrivial() && Depth) 14726 return StmtResult((Stmt*)nullptr); 14727 14728 // Convert to an expression-statement, and clean up any produced 14729 // temporaries. 14730 return S.ActOnExprStmt(Call); 14731 } 14732 14733 // - if the subobject is of scalar type, the built-in assignment 14734 // operator is used. 14735 const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T); 14736 if (!ArrayTy) { 14737 ExprResult Assignment = S.CreateBuiltinBinOp( 14738 Loc, BO_Assign, To.build(S, Loc), From.build(S, Loc)); 14739 if (Assignment.isInvalid()) 14740 return StmtError(); 14741 return S.ActOnExprStmt(Assignment); 14742 } 14743 14744 // - if the subobject is an array, each element is assigned, in the 14745 // manner appropriate to the element type; 14746 14747 // Construct a loop over the array bounds, e.g., 14748 // 14749 // for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0) 14750 // 14751 // that will copy each of the array elements. 14752 QualType SizeType = S.Context.getSizeType(); 14753 14754 // Create the iteration variable. 14755 IdentifierInfo *IterationVarName = nullptr; 14756 { 14757 SmallString<8> Str; 14758 llvm::raw_svector_ostream OS(Str); 14759 OS << "__i" << Depth; 14760 IterationVarName = &S.Context.Idents.get(OS.str()); 14761 } 14762 VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc, 14763 IterationVarName, SizeType, 14764 S.Context.getTrivialTypeSourceInfo(SizeType, Loc), 14765 SC_None); 14766 14767 // Initialize the iteration variable to zero. 14768 llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0); 14769 IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc)); 14770 14771 // Creates a reference to the iteration variable. 14772 RefBuilder IterationVarRef(IterationVar, SizeType); 14773 LvalueConvBuilder IterationVarRefRVal(IterationVarRef); 14774 14775 // Create the DeclStmt that holds the iteration variable. 14776 Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc); 14777 14778 // Subscript the "from" and "to" expressions with the iteration variable. 14779 SubscriptBuilder FromIndexCopy(From, IterationVarRefRVal); 14780 MoveCastBuilder FromIndexMove(FromIndexCopy); 14781 const ExprBuilder *FromIndex; 14782 if (Copying) 14783 FromIndex = &FromIndexCopy; 14784 else 14785 FromIndex = &FromIndexMove; 14786 14787 SubscriptBuilder ToIndex(To, IterationVarRefRVal); 14788 14789 // Build the copy/move for an individual element of the array. 14790 StmtResult Copy = 14791 buildSingleCopyAssignRecursively(S, Loc, ArrayTy->getElementType(), 14792 ToIndex, *FromIndex, CopyingBaseSubobject, 14793 Copying, Depth + 1); 14794 // Bail out if copying fails or if we determined that we should use memcpy. 14795 if (Copy.isInvalid() || !Copy.get()) 14796 return Copy; 14797 14798 // Create the comparison against the array bound. 14799 llvm::APInt Upper 14800 = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType)); 14801 Expr *Comparison = BinaryOperator::Create( 14802 S.Context, IterationVarRefRVal.build(S, Loc), 14803 IntegerLiteral::Create(S.Context, Upper, SizeType, Loc), BO_NE, 14804 S.Context.BoolTy, VK_PRValue, OK_Ordinary, Loc, 14805 S.CurFPFeatureOverrides()); 14806 14807 // Create the pre-increment of the iteration variable. We can determine 14808 // whether the increment will overflow based on the value of the array 14809 // bound. 14810 Expr *Increment = UnaryOperator::Create( 14811 S.Context, IterationVarRef.build(S, Loc), UO_PreInc, SizeType, VK_LValue, 14812 OK_Ordinary, Loc, Upper.isMaxValue(), S.CurFPFeatureOverrides()); 14813 14814 // Construct the loop that copies all elements of this array. 14815 return S.ActOnForStmt( 14816 Loc, Loc, InitStmt, 14817 S.ActOnCondition(nullptr, Loc, Comparison, Sema::ConditionKind::Boolean), 14818 S.MakeFullDiscardedValueExpr(Increment), Loc, Copy.get()); 14819 } 14820 14821 static StmtResult 14822 buildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T, 14823 const ExprBuilder &To, const ExprBuilder &From, 14824 bool CopyingBaseSubobject, bool Copying) { 14825 // Maybe we should use a memcpy? 14826 if (T->isArrayType() && !T.isConstQualified() && !T.isVolatileQualified() && 14827 T.isTriviallyCopyableType(S.Context)) 14828 return buildMemcpyForAssignmentOp(S, Loc, T, To, From); 14829 14830 StmtResult Result(buildSingleCopyAssignRecursively(S, Loc, T, To, From, 14831 CopyingBaseSubobject, 14832 Copying, 0)); 14833 14834 // If we ended up picking a trivial assignment operator for an array of a 14835 // non-trivially-copyable class type, just emit a memcpy. 14836 if (!Result.isInvalid() && !Result.get()) 14837 return buildMemcpyForAssignmentOp(S, Loc, T, To, From); 14838 14839 return Result; 14840 } 14841 14842 CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) { 14843 // Note: The following rules are largely analoguous to the copy 14844 // constructor rules. Note that virtual bases are not taken into account 14845 // for determining the argument type of the operator. Note also that 14846 // operators taking an object instead of a reference are allowed. 14847 assert(ClassDecl->needsImplicitCopyAssignment()); 14848 14849 DeclaringSpecialMember DSM(*this, ClassDecl, 14850 CXXSpecialMemberKind::CopyAssignment); 14851 if (DSM.isAlreadyBeingDeclared()) 14852 return nullptr; 14853 14854 QualType ArgType = Context.getTypeDeclType(ClassDecl); 14855 ArgType = Context.getElaboratedType(ElaboratedTypeKeyword::None, nullptr, 14856 ArgType, nullptr); 14857 LangAS AS = getDefaultCXXMethodAddrSpace(); 14858 if (AS != LangAS::Default) 14859 ArgType = Context.getAddrSpaceQualType(ArgType, AS); 14860 QualType RetType = Context.getLValueReferenceType(ArgType); 14861 bool Const = ClassDecl->implicitCopyAssignmentHasConstParam(); 14862 if (Const) 14863 ArgType = ArgType.withConst(); 14864 14865 ArgType = Context.getLValueReferenceType(ArgType); 14866 14867 bool Constexpr = defaultedSpecialMemberIsConstexpr( 14868 *this, ClassDecl, CXXSpecialMemberKind::CopyAssignment, Const); 14869 14870 // An implicitly-declared copy assignment operator is an inline public 14871 // member of its class. 14872 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal); 14873 SourceLocation ClassLoc = ClassDecl->getLocation(); 14874 DeclarationNameInfo NameInfo(Name, ClassLoc); 14875 CXXMethodDecl *CopyAssignment = CXXMethodDecl::Create( 14876 Context, ClassDecl, ClassLoc, NameInfo, QualType(), 14877 /*TInfo=*/nullptr, /*StorageClass=*/SC_None, 14878 getCurFPFeatures().isFPConstrained(), 14879 /*isInline=*/true, 14880 Constexpr ? ConstexprSpecKind::Constexpr : ConstexprSpecKind::Unspecified, 14881 SourceLocation()); 14882 CopyAssignment->setAccess(AS_public); 14883 CopyAssignment->setDefaulted(); 14884 CopyAssignment->setImplicit(); 14885 14886 setupImplicitSpecialMemberType(CopyAssignment, RetType, ArgType); 14887 14888 if (getLangOpts().CUDA) 14889 CUDA().inferTargetForImplicitSpecialMember( 14890 ClassDecl, CXXSpecialMemberKind::CopyAssignment, CopyAssignment, 14891 /* ConstRHS */ Const, 14892 /* Diagnose */ false); 14893 14894 // Add the parameter to the operator. 14895 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment, 14896 ClassLoc, ClassLoc, 14897 /*Id=*/nullptr, ArgType, 14898 /*TInfo=*/nullptr, SC_None, 14899 nullptr); 14900 CopyAssignment->setParams(FromParam); 14901 14902 CopyAssignment->setTrivial( 14903 ClassDecl->needsOverloadResolutionForCopyAssignment() 14904 ? SpecialMemberIsTrivial(CopyAssignment, 14905 CXXSpecialMemberKind::CopyAssignment) 14906 : ClassDecl->hasTrivialCopyAssignment()); 14907 14908 // Note that we have added this copy-assignment operator. 14909 ++getASTContext().NumImplicitCopyAssignmentOperatorsDeclared; 14910 14911 Scope *S = getScopeForContext(ClassDecl); 14912 CheckImplicitSpecialMemberDeclaration(S, CopyAssignment); 14913 14914 if (ShouldDeleteSpecialMember(CopyAssignment, 14915 CXXSpecialMemberKind::CopyAssignment)) { 14916 ClassDecl->setImplicitCopyAssignmentIsDeleted(); 14917 SetDeclDeleted(CopyAssignment, ClassLoc); 14918 } 14919 14920 if (S) 14921 PushOnScopeChains(CopyAssignment, S, false); 14922 ClassDecl->addDecl(CopyAssignment); 14923 14924 return CopyAssignment; 14925 } 14926 14927 /// Diagnose an implicit copy operation for a class which is odr-used, but 14928 /// which is deprecated because the class has a user-declared copy constructor, 14929 /// copy assignment operator, or destructor. 14930 static void diagnoseDeprecatedCopyOperation(Sema &S, CXXMethodDecl *CopyOp) { 14931 assert(CopyOp->isImplicit()); 14932 14933 CXXRecordDecl *RD = CopyOp->getParent(); 14934 CXXMethodDecl *UserDeclaredOperation = nullptr; 14935 14936 if (RD->hasUserDeclaredDestructor()) { 14937 UserDeclaredOperation = RD->getDestructor(); 14938 } else if (!isa<CXXConstructorDecl>(CopyOp) && 14939 RD->hasUserDeclaredCopyConstructor()) { 14940 // Find any user-declared copy constructor. 14941 for (auto *I : RD->ctors()) { 14942 if (I->isCopyConstructor()) { 14943 UserDeclaredOperation = I; 14944 break; 14945 } 14946 } 14947 assert(UserDeclaredOperation); 14948 } else if (isa<CXXConstructorDecl>(CopyOp) && 14949 RD->hasUserDeclaredCopyAssignment()) { 14950 // Find any user-declared move assignment operator. 14951 for (auto *I : RD->methods()) { 14952 if (I->isCopyAssignmentOperator()) { 14953 UserDeclaredOperation = I; 14954 break; 14955 } 14956 } 14957 assert(UserDeclaredOperation); 14958 } 14959 14960 if (UserDeclaredOperation) { 14961 bool UDOIsUserProvided = UserDeclaredOperation->isUserProvided(); 14962 bool UDOIsDestructor = isa<CXXDestructorDecl>(UserDeclaredOperation); 14963 bool IsCopyAssignment = !isa<CXXConstructorDecl>(CopyOp); 14964 unsigned DiagID = 14965 (UDOIsUserProvided && UDOIsDestructor) 14966 ? diag::warn_deprecated_copy_with_user_provided_dtor 14967 : (UDOIsUserProvided && !UDOIsDestructor) 14968 ? diag::warn_deprecated_copy_with_user_provided_copy 14969 : (!UDOIsUserProvided && UDOIsDestructor) 14970 ? diag::warn_deprecated_copy_with_dtor 14971 : diag::warn_deprecated_copy; 14972 S.Diag(UserDeclaredOperation->getLocation(), DiagID) 14973 << RD << IsCopyAssignment; 14974 } 14975 } 14976 14977 void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation, 14978 CXXMethodDecl *CopyAssignOperator) { 14979 assert((CopyAssignOperator->isDefaulted() && 14980 CopyAssignOperator->isOverloadedOperator() && 14981 CopyAssignOperator->getOverloadedOperator() == OO_Equal && 14982 !CopyAssignOperator->doesThisDeclarationHaveABody() && 14983 !CopyAssignOperator->isDeleted()) && 14984 "DefineImplicitCopyAssignment called for wrong function"); 14985 if (CopyAssignOperator->willHaveBody() || CopyAssignOperator->isInvalidDecl()) 14986 return; 14987 14988 CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent(); 14989 if (ClassDecl->isInvalidDecl()) { 14990 CopyAssignOperator->setInvalidDecl(); 14991 return; 14992 } 14993 14994 SynthesizedFunctionScope Scope(*this, CopyAssignOperator); 14995 14996 // The exception specification is needed because we are defining the 14997 // function. 14998 ResolveExceptionSpec(CurrentLocation, 14999 CopyAssignOperator->getType()->castAs<FunctionProtoType>()); 15000 15001 // Add a context note for diagnostics produced after this point. 15002 Scope.addContextNote(CurrentLocation); 15003 15004 // C++11 [class.copy]p18: 15005 // The [definition of an implicitly declared copy assignment operator] is 15006 // deprecated if the class has a user-declared copy constructor or a 15007 // user-declared destructor. 15008 if (getLangOpts().CPlusPlus11 && CopyAssignOperator->isImplicit()) 15009 diagnoseDeprecatedCopyOperation(*this, CopyAssignOperator); 15010 15011 // C++0x [class.copy]p30: 15012 // The implicitly-defined or explicitly-defaulted copy assignment operator 15013 // for a non-union class X performs memberwise copy assignment of its 15014 // subobjects. The direct base classes of X are assigned first, in the 15015 // order of their declaration in the base-specifier-list, and then the 15016 // immediate non-static data members of X are assigned, in the order in 15017 // which they were declared in the class definition. 15018 15019 // The statements that form the synthesized function body. 15020 SmallVector<Stmt*, 8> Statements; 15021 15022 // The parameter for the "other" object, which we are copying from. 15023 ParmVarDecl *Other = CopyAssignOperator->getNonObjectParameter(0); 15024 Qualifiers OtherQuals = Other->getType().getQualifiers(); 15025 QualType OtherRefType = Other->getType(); 15026 if (OtherRefType->isLValueReferenceType()) { 15027 OtherRefType = OtherRefType->getPointeeType(); 15028 OtherQuals = OtherRefType.getQualifiers(); 15029 } 15030 15031 // Our location for everything implicitly-generated. 15032 SourceLocation Loc = CopyAssignOperator->getEndLoc().isValid() 15033 ? CopyAssignOperator->getEndLoc() 15034 : CopyAssignOperator->getLocation(); 15035 15036 // Builds a DeclRefExpr for the "other" object. 15037 RefBuilder OtherRef(Other, OtherRefType); 15038 15039 // Builds the function object parameter. 15040 std::optional<ThisBuilder> This; 15041 std::optional<DerefBuilder> DerefThis; 15042 std::optional<RefBuilder> ExplicitObject; 15043 bool IsArrow = false; 15044 QualType ObjectType; 15045 if (CopyAssignOperator->isExplicitObjectMemberFunction()) { 15046 ObjectType = CopyAssignOperator->getParamDecl(0)->getType(); 15047 if (ObjectType->isReferenceType()) 15048 ObjectType = ObjectType->getPointeeType(); 15049 ExplicitObject.emplace(CopyAssignOperator->getParamDecl(0), ObjectType); 15050 } else { 15051 ObjectType = getCurrentThisType(); 15052 This.emplace(); 15053 DerefThis.emplace(*This); 15054 IsArrow = !LangOpts.HLSL; 15055 } 15056 ExprBuilder &ObjectParameter = 15057 ExplicitObject ? static_cast<ExprBuilder &>(*ExplicitObject) 15058 : static_cast<ExprBuilder &>(*This); 15059 15060 // Assign base classes. 15061 bool Invalid = false; 15062 for (auto &Base : ClassDecl->bases()) { 15063 // Form the assignment: 15064 // static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other)); 15065 QualType BaseType = Base.getType().getUnqualifiedType(); 15066 if (!BaseType->isRecordType()) { 15067 Invalid = true; 15068 continue; 15069 } 15070 15071 CXXCastPath BasePath; 15072 BasePath.push_back(&Base); 15073 15074 // Construct the "from" expression, which is an implicit cast to the 15075 // appropriately-qualified base type. 15076 CastBuilder From(OtherRef, Context.getQualifiedType(BaseType, OtherQuals), 15077 VK_LValue, BasePath); 15078 15079 // Dereference "this". 15080 CastBuilder To( 15081 ExplicitObject ? static_cast<ExprBuilder &>(*ExplicitObject) 15082 : static_cast<ExprBuilder &>(*DerefThis), 15083 Context.getQualifiedType(BaseType, ObjectType.getQualifiers()), 15084 VK_LValue, BasePath); 15085 15086 // Build the copy. 15087 StmtResult Copy = buildSingleCopyAssign(*this, Loc, BaseType, 15088 To, From, 15089 /*CopyingBaseSubobject=*/true, 15090 /*Copying=*/true); 15091 if (Copy.isInvalid()) { 15092 CopyAssignOperator->setInvalidDecl(); 15093 return; 15094 } 15095 15096 // Success! Record the copy. 15097 Statements.push_back(Copy.getAs<Expr>()); 15098 } 15099 15100 // Assign non-static members. 15101 for (auto *Field : ClassDecl->fields()) { 15102 // FIXME: We should form some kind of AST representation for the implied 15103 // memcpy in a union copy operation. 15104 if (Field->isUnnamedBitField() || Field->getParent()->isUnion()) 15105 continue; 15106 15107 if (Field->isInvalidDecl()) { 15108 Invalid = true; 15109 continue; 15110 } 15111 15112 // Check for members of reference type; we can't copy those. 15113 if (Field->getType()->isReferenceType()) { 15114 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) 15115 << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName(); 15116 Diag(Field->getLocation(), diag::note_declared_at); 15117 Invalid = true; 15118 continue; 15119 } 15120 15121 // Check for members of const-qualified, non-class type. 15122 QualType BaseType = Context.getBaseElementType(Field->getType()); 15123 if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) { 15124 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) 15125 << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName(); 15126 Diag(Field->getLocation(), diag::note_declared_at); 15127 Invalid = true; 15128 continue; 15129 } 15130 15131 // Suppress assigning zero-width bitfields. 15132 if (Field->isZeroLengthBitField()) 15133 continue; 15134 15135 QualType FieldType = Field->getType().getNonReferenceType(); 15136 if (FieldType->isIncompleteArrayType()) { 15137 assert(ClassDecl->hasFlexibleArrayMember() && 15138 "Incomplete array type is not valid"); 15139 continue; 15140 } 15141 15142 // Build references to the field in the object we're copying from and to. 15143 CXXScopeSpec SS; // Intentionally empty 15144 LookupResult MemberLookup(*this, Field->getDeclName(), Loc, 15145 LookupMemberName); 15146 MemberLookup.addDecl(Field); 15147 MemberLookup.resolveKind(); 15148 15149 MemberBuilder From(OtherRef, OtherRefType, /*IsArrow=*/false, MemberLookup); 15150 MemberBuilder To(ObjectParameter, ObjectType, IsArrow, MemberLookup); 15151 // Build the copy of this field. 15152 StmtResult Copy = buildSingleCopyAssign(*this, Loc, FieldType, 15153 To, From, 15154 /*CopyingBaseSubobject=*/false, 15155 /*Copying=*/true); 15156 if (Copy.isInvalid()) { 15157 CopyAssignOperator->setInvalidDecl(); 15158 return; 15159 } 15160 15161 // Success! Record the copy. 15162 Statements.push_back(Copy.getAs<Stmt>()); 15163 } 15164 15165 if (!Invalid) { 15166 // Add a "return *this;" 15167 Expr *ThisExpr = 15168 (ExplicitObject ? static_cast<ExprBuilder &>(*ExplicitObject) 15169 : LangOpts.HLSL ? static_cast<ExprBuilder &>(*This) 15170 : static_cast<ExprBuilder &>(*DerefThis)) 15171 .build(*this, Loc); 15172 StmtResult Return = BuildReturnStmt(Loc, ThisExpr); 15173 if (Return.isInvalid()) 15174 Invalid = true; 15175 else 15176 Statements.push_back(Return.getAs<Stmt>()); 15177 } 15178 15179 if (Invalid) { 15180 CopyAssignOperator->setInvalidDecl(); 15181 return; 15182 } 15183 15184 StmtResult Body; 15185 { 15186 CompoundScopeRAII CompoundScope(*this); 15187 Body = ActOnCompoundStmt(Loc, Loc, Statements, 15188 /*isStmtExpr=*/false); 15189 assert(!Body.isInvalid() && "Compound statement creation cannot fail"); 15190 } 15191 CopyAssignOperator->setBody(Body.getAs<Stmt>()); 15192 CopyAssignOperator->markUsed(Context); 15193 15194 if (ASTMutationListener *L = getASTMutationListener()) { 15195 L->CompletedImplicitDefinition(CopyAssignOperator); 15196 } 15197 } 15198 15199 CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) { 15200 assert(ClassDecl->needsImplicitMoveAssignment()); 15201 15202 DeclaringSpecialMember DSM(*this, ClassDecl, 15203 CXXSpecialMemberKind::MoveAssignment); 15204 if (DSM.isAlreadyBeingDeclared()) 15205 return nullptr; 15206 15207 // Note: The following rules are largely analoguous to the move 15208 // constructor rules. 15209 15210 QualType ArgType = Context.getTypeDeclType(ClassDecl); 15211 ArgType = Context.getElaboratedType(ElaboratedTypeKeyword::None, nullptr, 15212 ArgType, nullptr); 15213 LangAS AS = getDefaultCXXMethodAddrSpace(); 15214 if (AS != LangAS::Default) 15215 ArgType = Context.getAddrSpaceQualType(ArgType, AS); 15216 QualType RetType = Context.getLValueReferenceType(ArgType); 15217 ArgType = Context.getRValueReferenceType(ArgType); 15218 15219 bool Constexpr = defaultedSpecialMemberIsConstexpr( 15220 *this, ClassDecl, CXXSpecialMemberKind::MoveAssignment, false); 15221 15222 // An implicitly-declared move assignment operator is an inline public 15223 // member of its class. 15224 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal); 15225 SourceLocation ClassLoc = ClassDecl->getLocation(); 15226 DeclarationNameInfo NameInfo(Name, ClassLoc); 15227 CXXMethodDecl *MoveAssignment = CXXMethodDecl::Create( 15228 Context, ClassDecl, ClassLoc, NameInfo, QualType(), 15229 /*TInfo=*/nullptr, /*StorageClass=*/SC_None, 15230 getCurFPFeatures().isFPConstrained(), 15231 /*isInline=*/true, 15232 Constexpr ? ConstexprSpecKind::Constexpr : ConstexprSpecKind::Unspecified, 15233 SourceLocation()); 15234 MoveAssignment->setAccess(AS_public); 15235 MoveAssignment->setDefaulted(); 15236 MoveAssignment->setImplicit(); 15237 15238 setupImplicitSpecialMemberType(MoveAssignment, RetType, ArgType); 15239 15240 if (getLangOpts().CUDA) 15241 CUDA().inferTargetForImplicitSpecialMember( 15242 ClassDecl, CXXSpecialMemberKind::MoveAssignment, MoveAssignment, 15243 /* ConstRHS */ false, 15244 /* Diagnose */ false); 15245 15246 // Add the parameter to the operator. 15247 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment, 15248 ClassLoc, ClassLoc, 15249 /*Id=*/nullptr, ArgType, 15250 /*TInfo=*/nullptr, SC_None, 15251 nullptr); 15252 MoveAssignment->setParams(FromParam); 15253 15254 MoveAssignment->setTrivial( 15255 ClassDecl->needsOverloadResolutionForMoveAssignment() 15256 ? SpecialMemberIsTrivial(MoveAssignment, 15257 CXXSpecialMemberKind::MoveAssignment) 15258 : ClassDecl->hasTrivialMoveAssignment()); 15259 15260 // Note that we have added this copy-assignment operator. 15261 ++getASTContext().NumImplicitMoveAssignmentOperatorsDeclared; 15262 15263 Scope *S = getScopeForContext(ClassDecl); 15264 CheckImplicitSpecialMemberDeclaration(S, MoveAssignment); 15265 15266 if (ShouldDeleteSpecialMember(MoveAssignment, 15267 CXXSpecialMemberKind::MoveAssignment)) { 15268 ClassDecl->setImplicitMoveAssignmentIsDeleted(); 15269 SetDeclDeleted(MoveAssignment, ClassLoc); 15270 } 15271 15272 if (S) 15273 PushOnScopeChains(MoveAssignment, S, false); 15274 ClassDecl->addDecl(MoveAssignment); 15275 15276 return MoveAssignment; 15277 } 15278 15279 /// Check if we're implicitly defining a move assignment operator for a class 15280 /// with virtual bases. Such a move assignment might move-assign the virtual 15281 /// base multiple times. 15282 static void checkMoveAssignmentForRepeatedMove(Sema &S, CXXRecordDecl *Class, 15283 SourceLocation CurrentLocation) { 15284 assert(!Class->isDependentContext() && "should not define dependent move"); 15285 15286 // Only a virtual base could get implicitly move-assigned multiple times. 15287 // Only a non-trivial move assignment can observe this. We only want to 15288 // diagnose if we implicitly define an assignment operator that assigns 15289 // two base classes, both of which move-assign the same virtual base. 15290 if (Class->getNumVBases() == 0 || Class->hasTrivialMoveAssignment() || 15291 Class->getNumBases() < 2) 15292 return; 15293 15294 llvm::SmallVector<CXXBaseSpecifier *, 16> Worklist; 15295 typedef llvm::DenseMap<CXXRecordDecl*, CXXBaseSpecifier*> VBaseMap; 15296 VBaseMap VBases; 15297 15298 for (auto &BI : Class->bases()) { 15299 Worklist.push_back(&BI); 15300 while (!Worklist.empty()) { 15301 CXXBaseSpecifier *BaseSpec = Worklist.pop_back_val(); 15302 CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl(); 15303 15304 // If the base has no non-trivial move assignment operators, 15305 // we don't care about moves from it. 15306 if (!Base->hasNonTrivialMoveAssignment()) 15307 continue; 15308 15309 // If there's nothing virtual here, skip it. 15310 if (!BaseSpec->isVirtual() && !Base->getNumVBases()) 15311 continue; 15312 15313 // If we're not actually going to call a move assignment for this base, 15314 // or the selected move assignment is trivial, skip it. 15315 Sema::SpecialMemberOverloadResult SMOR = 15316 S.LookupSpecialMember(Base, CXXSpecialMemberKind::MoveAssignment, 15317 /*ConstArg*/ false, /*VolatileArg*/ false, 15318 /*RValueThis*/ true, /*ConstThis*/ false, 15319 /*VolatileThis*/ false); 15320 if (!SMOR.getMethod() || SMOR.getMethod()->isTrivial() || 15321 !SMOR.getMethod()->isMoveAssignmentOperator()) 15322 continue; 15323 15324 if (BaseSpec->isVirtual()) { 15325 // We're going to move-assign this virtual base, and its move 15326 // assignment operator is not trivial. If this can happen for 15327 // multiple distinct direct bases of Class, diagnose it. (If it 15328 // only happens in one base, we'll diagnose it when synthesizing 15329 // that base class's move assignment operator.) 15330 CXXBaseSpecifier *&Existing = 15331 VBases.insert(std::make_pair(Base->getCanonicalDecl(), &BI)) 15332 .first->second; 15333 if (Existing && Existing != &BI) { 15334 S.Diag(CurrentLocation, diag::warn_vbase_moved_multiple_times) 15335 << Class << Base; 15336 S.Diag(Existing->getBeginLoc(), diag::note_vbase_moved_here) 15337 << (Base->getCanonicalDecl() == 15338 Existing->getType()->getAsCXXRecordDecl()->getCanonicalDecl()) 15339 << Base << Existing->getType() << Existing->getSourceRange(); 15340 S.Diag(BI.getBeginLoc(), diag::note_vbase_moved_here) 15341 << (Base->getCanonicalDecl() == 15342 BI.getType()->getAsCXXRecordDecl()->getCanonicalDecl()) 15343 << Base << BI.getType() << BaseSpec->getSourceRange(); 15344 15345 // Only diagnose each vbase once. 15346 Existing = nullptr; 15347 } 15348 } else { 15349 // Only walk over bases that have defaulted move assignment operators. 15350 // We assume that any user-provided move assignment operator handles 15351 // the multiple-moves-of-vbase case itself somehow. 15352 if (!SMOR.getMethod()->isDefaulted()) 15353 continue; 15354 15355 // We're going to move the base classes of Base. Add them to the list. 15356 llvm::append_range(Worklist, llvm::make_pointer_range(Base->bases())); 15357 } 15358 } 15359 } 15360 } 15361 15362 void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation, 15363 CXXMethodDecl *MoveAssignOperator) { 15364 assert((MoveAssignOperator->isDefaulted() && 15365 MoveAssignOperator->isOverloadedOperator() && 15366 MoveAssignOperator->getOverloadedOperator() == OO_Equal && 15367 !MoveAssignOperator->doesThisDeclarationHaveABody() && 15368 !MoveAssignOperator->isDeleted()) && 15369 "DefineImplicitMoveAssignment called for wrong function"); 15370 if (MoveAssignOperator->willHaveBody() || MoveAssignOperator->isInvalidDecl()) 15371 return; 15372 15373 CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent(); 15374 if (ClassDecl->isInvalidDecl()) { 15375 MoveAssignOperator->setInvalidDecl(); 15376 return; 15377 } 15378 15379 // C++0x [class.copy]p28: 15380 // The implicitly-defined or move assignment operator for a non-union class 15381 // X performs memberwise move assignment of its subobjects. The direct base 15382 // classes of X are assigned first, in the order of their declaration in the 15383 // base-specifier-list, and then the immediate non-static data members of X 15384 // are assigned, in the order in which they were declared in the class 15385 // definition. 15386 15387 // Issue a warning if our implicit move assignment operator will move 15388 // from a virtual base more than once. 15389 checkMoveAssignmentForRepeatedMove(*this, ClassDecl, CurrentLocation); 15390 15391 SynthesizedFunctionScope Scope(*this, MoveAssignOperator); 15392 15393 // The exception specification is needed because we are defining the 15394 // function. 15395 ResolveExceptionSpec(CurrentLocation, 15396 MoveAssignOperator->getType()->castAs<FunctionProtoType>()); 15397 15398 // Add a context note for diagnostics produced after this point. 15399 Scope.addContextNote(CurrentLocation); 15400 15401 // The statements that form the synthesized function body. 15402 SmallVector<Stmt*, 8> Statements; 15403 15404 // The parameter for the "other" object, which we are move from. 15405 ParmVarDecl *Other = MoveAssignOperator->getNonObjectParameter(0); 15406 QualType OtherRefType = 15407 Other->getType()->castAs<RValueReferenceType>()->getPointeeType(); 15408 15409 // Our location for everything implicitly-generated. 15410 SourceLocation Loc = MoveAssignOperator->getEndLoc().isValid() 15411 ? MoveAssignOperator->getEndLoc() 15412 : MoveAssignOperator->getLocation(); 15413 15414 // Builds a reference to the "other" object. 15415 RefBuilder OtherRef(Other, OtherRefType); 15416 // Cast to rvalue. 15417 MoveCastBuilder MoveOther(OtherRef); 15418 15419 // Builds the function object parameter. 15420 std::optional<ThisBuilder> This; 15421 std::optional<DerefBuilder> DerefThis; 15422 std::optional<RefBuilder> ExplicitObject; 15423 QualType ObjectType; 15424 bool IsArrow = false; 15425 if (MoveAssignOperator->isExplicitObjectMemberFunction()) { 15426 ObjectType = MoveAssignOperator->getParamDecl(0)->getType(); 15427 if (ObjectType->isReferenceType()) 15428 ObjectType = ObjectType->getPointeeType(); 15429 ExplicitObject.emplace(MoveAssignOperator->getParamDecl(0), ObjectType); 15430 } else { 15431 ObjectType = getCurrentThisType(); 15432 This.emplace(); 15433 DerefThis.emplace(*This); 15434 IsArrow = !getLangOpts().HLSL; 15435 } 15436 ExprBuilder &ObjectParameter = 15437 ExplicitObject ? *ExplicitObject : static_cast<ExprBuilder &>(*This); 15438 15439 // Assign base classes. 15440 bool Invalid = false; 15441 for (auto &Base : ClassDecl->bases()) { 15442 // C++11 [class.copy]p28: 15443 // It is unspecified whether subobjects representing virtual base classes 15444 // are assigned more than once by the implicitly-defined copy assignment 15445 // operator. 15446 // FIXME: Do not assign to a vbase that will be assigned by some other base 15447 // class. For a move-assignment, this can result in the vbase being moved 15448 // multiple times. 15449 15450 // Form the assignment: 15451 // static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other)); 15452 QualType BaseType = Base.getType().getUnqualifiedType(); 15453 if (!BaseType->isRecordType()) { 15454 Invalid = true; 15455 continue; 15456 } 15457 15458 CXXCastPath BasePath; 15459 BasePath.push_back(&Base); 15460 15461 // Construct the "from" expression, which is an implicit cast to the 15462 // appropriately-qualified base type. 15463 CastBuilder From(OtherRef, BaseType, VK_XValue, BasePath); 15464 15465 // Implicitly cast "this" to the appropriately-qualified base type. 15466 // Dereference "this". 15467 CastBuilder To( 15468 ExplicitObject ? static_cast<ExprBuilder &>(*ExplicitObject) 15469 : static_cast<ExprBuilder &>(*DerefThis), 15470 Context.getQualifiedType(BaseType, ObjectType.getQualifiers()), 15471 VK_LValue, BasePath); 15472 15473 // Build the move. 15474 StmtResult Move = buildSingleCopyAssign(*this, Loc, BaseType, 15475 To, From, 15476 /*CopyingBaseSubobject=*/true, 15477 /*Copying=*/false); 15478 if (Move.isInvalid()) { 15479 MoveAssignOperator->setInvalidDecl(); 15480 return; 15481 } 15482 15483 // Success! Record the move. 15484 Statements.push_back(Move.getAs<Expr>()); 15485 } 15486 15487 // Assign non-static members. 15488 for (auto *Field : ClassDecl->fields()) { 15489 // FIXME: We should form some kind of AST representation for the implied 15490 // memcpy in a union copy operation. 15491 if (Field->isUnnamedBitField() || Field->getParent()->isUnion()) 15492 continue; 15493 15494 if (Field->isInvalidDecl()) { 15495 Invalid = true; 15496 continue; 15497 } 15498 15499 // Check for members of reference type; we can't move those. 15500 if (Field->getType()->isReferenceType()) { 15501 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) 15502 << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName(); 15503 Diag(Field->getLocation(), diag::note_declared_at); 15504 Invalid = true; 15505 continue; 15506 } 15507 15508 // Check for members of const-qualified, non-class type. 15509 QualType BaseType = Context.getBaseElementType(Field->getType()); 15510 if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) { 15511 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) 15512 << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName(); 15513 Diag(Field->getLocation(), diag::note_declared_at); 15514 Invalid = true; 15515 continue; 15516 } 15517 15518 // Suppress assigning zero-width bitfields. 15519 if (Field->isZeroLengthBitField()) 15520 continue; 15521 15522 QualType FieldType = Field->getType().getNonReferenceType(); 15523 if (FieldType->isIncompleteArrayType()) { 15524 assert(ClassDecl->hasFlexibleArrayMember() && 15525 "Incomplete array type is not valid"); 15526 continue; 15527 } 15528 15529 // Build references to the field in the object we're copying from and to. 15530 LookupResult MemberLookup(*this, Field->getDeclName(), Loc, 15531 LookupMemberName); 15532 MemberLookup.addDecl(Field); 15533 MemberLookup.resolveKind(); 15534 MemberBuilder From(MoveOther, OtherRefType, 15535 /*IsArrow=*/false, MemberLookup); 15536 MemberBuilder To(ObjectParameter, ObjectType, IsArrow, MemberLookup); 15537 15538 assert(!From.build(*this, Loc)->isLValue() && // could be xvalue or prvalue 15539 "Member reference with rvalue base must be rvalue except for reference " 15540 "members, which aren't allowed for move assignment."); 15541 15542 // Build the move of this field. 15543 StmtResult Move = buildSingleCopyAssign(*this, Loc, FieldType, 15544 To, From, 15545 /*CopyingBaseSubobject=*/false, 15546 /*Copying=*/false); 15547 if (Move.isInvalid()) { 15548 MoveAssignOperator->setInvalidDecl(); 15549 return; 15550 } 15551 15552 // Success! Record the copy. 15553 Statements.push_back(Move.getAs<Stmt>()); 15554 } 15555 15556 if (!Invalid) { 15557 // Add a "return *this;" 15558 Expr *ThisExpr = 15559 (ExplicitObject ? static_cast<ExprBuilder &>(*ExplicitObject) 15560 : LangOpts.HLSL ? static_cast<ExprBuilder &>(*This) 15561 : static_cast<ExprBuilder &>(*DerefThis)) 15562 .build(*this, Loc); 15563 15564 StmtResult Return = BuildReturnStmt(Loc, ThisExpr); 15565 if (Return.isInvalid()) 15566 Invalid = true; 15567 else 15568 Statements.push_back(Return.getAs<Stmt>()); 15569 } 15570 15571 if (Invalid) { 15572 MoveAssignOperator->setInvalidDecl(); 15573 return; 15574 } 15575 15576 StmtResult Body; 15577 { 15578 CompoundScopeRAII CompoundScope(*this); 15579 Body = ActOnCompoundStmt(Loc, Loc, Statements, 15580 /*isStmtExpr=*/false); 15581 assert(!Body.isInvalid() && "Compound statement creation cannot fail"); 15582 } 15583 MoveAssignOperator->setBody(Body.getAs<Stmt>()); 15584 MoveAssignOperator->markUsed(Context); 15585 15586 if (ASTMutationListener *L = getASTMutationListener()) { 15587 L->CompletedImplicitDefinition(MoveAssignOperator); 15588 } 15589 } 15590 15591 CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor( 15592 CXXRecordDecl *ClassDecl) { 15593 // C++ [class.copy]p4: 15594 // If the class definition does not explicitly declare a copy 15595 // constructor, one is declared implicitly. 15596 assert(ClassDecl->needsImplicitCopyConstructor()); 15597 15598 DeclaringSpecialMember DSM(*this, ClassDecl, 15599 CXXSpecialMemberKind::CopyConstructor); 15600 if (DSM.isAlreadyBeingDeclared()) 15601 return nullptr; 15602 15603 QualType ClassType = Context.getTypeDeclType(ClassDecl); 15604 QualType ArgType = ClassType; 15605 ArgType = Context.getElaboratedType(ElaboratedTypeKeyword::None, nullptr, 15606 ArgType, nullptr); 15607 bool Const = ClassDecl->implicitCopyConstructorHasConstParam(); 15608 if (Const) 15609 ArgType = ArgType.withConst(); 15610 15611 LangAS AS = getDefaultCXXMethodAddrSpace(); 15612 if (AS != LangAS::Default) 15613 ArgType = Context.getAddrSpaceQualType(ArgType, AS); 15614 15615 ArgType = Context.getLValueReferenceType(ArgType); 15616 15617 bool Constexpr = defaultedSpecialMemberIsConstexpr( 15618 *this, ClassDecl, CXXSpecialMemberKind::CopyConstructor, Const); 15619 15620 DeclarationName Name 15621 = Context.DeclarationNames.getCXXConstructorName( 15622 Context.getCanonicalType(ClassType)); 15623 SourceLocation ClassLoc = ClassDecl->getLocation(); 15624 DeclarationNameInfo NameInfo(Name, ClassLoc); 15625 15626 // An implicitly-declared copy constructor is an inline public 15627 // member of its class. 15628 CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create( 15629 Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr, 15630 ExplicitSpecifier(), getCurFPFeatures().isFPConstrained(), 15631 /*isInline=*/true, 15632 /*isImplicitlyDeclared=*/true, 15633 Constexpr ? ConstexprSpecKind::Constexpr 15634 : ConstexprSpecKind::Unspecified); 15635 CopyConstructor->setAccess(AS_public); 15636 CopyConstructor->setDefaulted(); 15637 15638 setupImplicitSpecialMemberType(CopyConstructor, Context.VoidTy, ArgType); 15639 15640 if (getLangOpts().CUDA) 15641 CUDA().inferTargetForImplicitSpecialMember( 15642 ClassDecl, CXXSpecialMemberKind::CopyConstructor, CopyConstructor, 15643 /* ConstRHS */ Const, 15644 /* Diagnose */ false); 15645 15646 // During template instantiation of special member functions we need a 15647 // reliable TypeSourceInfo for the parameter types in order to allow functions 15648 // to be substituted. 15649 TypeSourceInfo *TSI = nullptr; 15650 if (inTemplateInstantiation() && ClassDecl->isLambda()) 15651 TSI = Context.getTrivialTypeSourceInfo(ArgType); 15652 15653 // Add the parameter to the constructor. 15654 ParmVarDecl *FromParam = 15655 ParmVarDecl::Create(Context, CopyConstructor, ClassLoc, ClassLoc, 15656 /*IdentifierInfo=*/nullptr, ArgType, 15657 /*TInfo=*/TSI, SC_None, nullptr); 15658 CopyConstructor->setParams(FromParam); 15659 15660 CopyConstructor->setTrivial( 15661 ClassDecl->needsOverloadResolutionForCopyConstructor() 15662 ? SpecialMemberIsTrivial(CopyConstructor, 15663 CXXSpecialMemberKind::CopyConstructor) 15664 : ClassDecl->hasTrivialCopyConstructor()); 15665 15666 CopyConstructor->setTrivialForCall( 15667 ClassDecl->hasAttr<TrivialABIAttr>() || 15668 (ClassDecl->needsOverloadResolutionForCopyConstructor() 15669 ? SpecialMemberIsTrivial(CopyConstructor, 15670 CXXSpecialMemberKind::CopyConstructor, 15671 TAH_ConsiderTrivialABI) 15672 : ClassDecl->hasTrivialCopyConstructorForCall())); 15673 15674 // Note that we have declared this constructor. 15675 ++getASTContext().NumImplicitCopyConstructorsDeclared; 15676 15677 Scope *S = getScopeForContext(ClassDecl); 15678 CheckImplicitSpecialMemberDeclaration(S, CopyConstructor); 15679 15680 if (ShouldDeleteSpecialMember(CopyConstructor, 15681 CXXSpecialMemberKind::CopyConstructor)) { 15682 ClassDecl->setImplicitCopyConstructorIsDeleted(); 15683 SetDeclDeleted(CopyConstructor, ClassLoc); 15684 } 15685 15686 if (S) 15687 PushOnScopeChains(CopyConstructor, S, false); 15688 ClassDecl->addDecl(CopyConstructor); 15689 15690 return CopyConstructor; 15691 } 15692 15693 void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation, 15694 CXXConstructorDecl *CopyConstructor) { 15695 assert((CopyConstructor->isDefaulted() && 15696 CopyConstructor->isCopyConstructor() && 15697 !CopyConstructor->doesThisDeclarationHaveABody() && 15698 !CopyConstructor->isDeleted()) && 15699 "DefineImplicitCopyConstructor - call it for implicit copy ctor"); 15700 if (CopyConstructor->willHaveBody() || CopyConstructor->isInvalidDecl()) 15701 return; 15702 15703 CXXRecordDecl *ClassDecl = CopyConstructor->getParent(); 15704 assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor"); 15705 15706 SynthesizedFunctionScope Scope(*this, CopyConstructor); 15707 15708 // The exception specification is needed because we are defining the 15709 // function. 15710 ResolveExceptionSpec(CurrentLocation, 15711 CopyConstructor->getType()->castAs<FunctionProtoType>()); 15712 MarkVTableUsed(CurrentLocation, ClassDecl); 15713 15714 // Add a context note for diagnostics produced after this point. 15715 Scope.addContextNote(CurrentLocation); 15716 15717 // C++11 [class.copy]p7: 15718 // The [definition of an implicitly declared copy constructor] is 15719 // deprecated if the class has a user-declared copy assignment operator 15720 // or a user-declared destructor. 15721 if (getLangOpts().CPlusPlus11 && CopyConstructor->isImplicit()) 15722 diagnoseDeprecatedCopyOperation(*this, CopyConstructor); 15723 15724 if (SetCtorInitializers(CopyConstructor, /*AnyErrors=*/false)) { 15725 CopyConstructor->setInvalidDecl(); 15726 } else { 15727 SourceLocation Loc = CopyConstructor->getEndLoc().isValid() 15728 ? CopyConstructor->getEndLoc() 15729 : CopyConstructor->getLocation(); 15730 Sema::CompoundScopeRAII CompoundScope(*this); 15731 CopyConstructor->setBody( 15732 ActOnCompoundStmt(Loc, Loc, {}, /*isStmtExpr=*/false).getAs<Stmt>()); 15733 CopyConstructor->markUsed(Context); 15734 } 15735 15736 if (ASTMutationListener *L = getASTMutationListener()) { 15737 L->CompletedImplicitDefinition(CopyConstructor); 15738 } 15739 } 15740 15741 CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor( 15742 CXXRecordDecl *ClassDecl) { 15743 assert(ClassDecl->needsImplicitMoveConstructor()); 15744 15745 DeclaringSpecialMember DSM(*this, ClassDecl, 15746 CXXSpecialMemberKind::MoveConstructor); 15747 if (DSM.isAlreadyBeingDeclared()) 15748 return nullptr; 15749 15750 QualType ClassType = Context.getTypeDeclType(ClassDecl); 15751 15752 QualType ArgType = ClassType; 15753 ArgType = Context.getElaboratedType(ElaboratedTypeKeyword::None, nullptr, 15754 ArgType, nullptr); 15755 LangAS AS = getDefaultCXXMethodAddrSpace(); 15756 if (AS != LangAS::Default) 15757 ArgType = Context.getAddrSpaceQualType(ClassType, AS); 15758 ArgType = Context.getRValueReferenceType(ArgType); 15759 15760 bool Constexpr = defaultedSpecialMemberIsConstexpr( 15761 *this, ClassDecl, CXXSpecialMemberKind::MoveConstructor, false); 15762 15763 DeclarationName Name 15764 = Context.DeclarationNames.getCXXConstructorName( 15765 Context.getCanonicalType(ClassType)); 15766 SourceLocation ClassLoc = ClassDecl->getLocation(); 15767 DeclarationNameInfo NameInfo(Name, ClassLoc); 15768 15769 // C++11 [class.copy]p11: 15770 // An implicitly-declared copy/move constructor is an inline public 15771 // member of its class. 15772 CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create( 15773 Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr, 15774 ExplicitSpecifier(), getCurFPFeatures().isFPConstrained(), 15775 /*isInline=*/true, 15776 /*isImplicitlyDeclared=*/true, 15777 Constexpr ? ConstexprSpecKind::Constexpr 15778 : ConstexprSpecKind::Unspecified); 15779 MoveConstructor->setAccess(AS_public); 15780 MoveConstructor->setDefaulted(); 15781 15782 setupImplicitSpecialMemberType(MoveConstructor, Context.VoidTy, ArgType); 15783 15784 if (getLangOpts().CUDA) 15785 CUDA().inferTargetForImplicitSpecialMember( 15786 ClassDecl, CXXSpecialMemberKind::MoveConstructor, MoveConstructor, 15787 /* ConstRHS */ false, 15788 /* Diagnose */ false); 15789 15790 // Add the parameter to the constructor. 15791 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor, 15792 ClassLoc, ClassLoc, 15793 /*IdentifierInfo=*/nullptr, 15794 ArgType, /*TInfo=*/nullptr, 15795 SC_None, nullptr); 15796 MoveConstructor->setParams(FromParam); 15797 15798 MoveConstructor->setTrivial( 15799 ClassDecl->needsOverloadResolutionForMoveConstructor() 15800 ? SpecialMemberIsTrivial(MoveConstructor, 15801 CXXSpecialMemberKind::MoveConstructor) 15802 : ClassDecl->hasTrivialMoveConstructor()); 15803 15804 MoveConstructor->setTrivialForCall( 15805 ClassDecl->hasAttr<TrivialABIAttr>() || 15806 (ClassDecl->needsOverloadResolutionForMoveConstructor() 15807 ? SpecialMemberIsTrivial(MoveConstructor, 15808 CXXSpecialMemberKind::MoveConstructor, 15809 TAH_ConsiderTrivialABI) 15810 : ClassDecl->hasTrivialMoveConstructorForCall())); 15811 15812 // Note that we have declared this constructor. 15813 ++getASTContext().NumImplicitMoveConstructorsDeclared; 15814 15815 Scope *S = getScopeForContext(ClassDecl); 15816 CheckImplicitSpecialMemberDeclaration(S, MoveConstructor); 15817 15818 if (ShouldDeleteSpecialMember(MoveConstructor, 15819 CXXSpecialMemberKind::MoveConstructor)) { 15820 ClassDecl->setImplicitMoveConstructorIsDeleted(); 15821 SetDeclDeleted(MoveConstructor, ClassLoc); 15822 } 15823 15824 if (S) 15825 PushOnScopeChains(MoveConstructor, S, false); 15826 ClassDecl->addDecl(MoveConstructor); 15827 15828 return MoveConstructor; 15829 } 15830 15831 void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation, 15832 CXXConstructorDecl *MoveConstructor) { 15833 assert((MoveConstructor->isDefaulted() && 15834 MoveConstructor->isMoveConstructor() && 15835 !MoveConstructor->doesThisDeclarationHaveABody() && 15836 !MoveConstructor->isDeleted()) && 15837 "DefineImplicitMoveConstructor - call it for implicit move ctor"); 15838 if (MoveConstructor->willHaveBody() || MoveConstructor->isInvalidDecl()) 15839 return; 15840 15841 CXXRecordDecl *ClassDecl = MoveConstructor->getParent(); 15842 assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor"); 15843 15844 SynthesizedFunctionScope Scope(*this, MoveConstructor); 15845 15846 // The exception specification is needed because we are defining the 15847 // function. 15848 ResolveExceptionSpec(CurrentLocation, 15849 MoveConstructor->getType()->castAs<FunctionProtoType>()); 15850 MarkVTableUsed(CurrentLocation, ClassDecl); 15851 15852 // Add a context note for diagnostics produced after this point. 15853 Scope.addContextNote(CurrentLocation); 15854 15855 if (SetCtorInitializers(MoveConstructor, /*AnyErrors=*/false)) { 15856 MoveConstructor->setInvalidDecl(); 15857 } else { 15858 SourceLocation Loc = MoveConstructor->getEndLoc().isValid() 15859 ? MoveConstructor->getEndLoc() 15860 : MoveConstructor->getLocation(); 15861 Sema::CompoundScopeRAII CompoundScope(*this); 15862 MoveConstructor->setBody( 15863 ActOnCompoundStmt(Loc, Loc, {}, /*isStmtExpr=*/false).getAs<Stmt>()); 15864 MoveConstructor->markUsed(Context); 15865 } 15866 15867 if (ASTMutationListener *L = getASTMutationListener()) { 15868 L->CompletedImplicitDefinition(MoveConstructor); 15869 } 15870 } 15871 15872 bool Sema::isImplicitlyDeleted(FunctionDecl *FD) { 15873 return FD->isDeleted() && FD->isDefaulted() && isa<CXXMethodDecl>(FD); 15874 } 15875 15876 void Sema::DefineImplicitLambdaToFunctionPointerConversion( 15877 SourceLocation CurrentLocation, 15878 CXXConversionDecl *Conv) { 15879 SynthesizedFunctionScope Scope(*this, Conv); 15880 assert(!Conv->getReturnType()->isUndeducedType()); 15881 15882 QualType ConvRT = Conv->getType()->castAs<FunctionType>()->getReturnType(); 15883 CallingConv CC = 15884 ConvRT->getPointeeType()->castAs<FunctionType>()->getCallConv(); 15885 15886 CXXRecordDecl *Lambda = Conv->getParent(); 15887 FunctionDecl *CallOp = Lambda->getLambdaCallOperator(); 15888 FunctionDecl *Invoker = 15889 CallOp->hasCXXExplicitFunctionObjectParameter() || CallOp->isStatic() 15890 ? CallOp 15891 : Lambda->getLambdaStaticInvoker(CC); 15892 15893 if (auto *TemplateArgs = Conv->getTemplateSpecializationArgs()) { 15894 CallOp = InstantiateFunctionDeclaration( 15895 CallOp->getDescribedFunctionTemplate(), TemplateArgs, CurrentLocation); 15896 if (!CallOp) 15897 return; 15898 15899 if (CallOp != Invoker) { 15900 Invoker = InstantiateFunctionDeclaration( 15901 Invoker->getDescribedFunctionTemplate(), TemplateArgs, 15902 CurrentLocation); 15903 if (!Invoker) 15904 return; 15905 } 15906 } 15907 15908 if (CallOp->isInvalidDecl()) 15909 return; 15910 15911 // Mark the call operator referenced (and add to pending instantiations 15912 // if necessary). 15913 // For both the conversion and static-invoker template specializations 15914 // we construct their body's in this function, so no need to add them 15915 // to the PendingInstantiations. 15916 MarkFunctionReferenced(CurrentLocation, CallOp); 15917 15918 if (Invoker != CallOp) { 15919 // Fill in the __invoke function with a dummy implementation. IR generation 15920 // will fill in the actual details. Update its type in case it contained 15921 // an 'auto'. 15922 Invoker->markUsed(Context); 15923 Invoker->setReferenced(); 15924 Invoker->setType(Conv->getReturnType()->getPointeeType()); 15925 Invoker->setBody(new (Context) CompoundStmt(Conv->getLocation())); 15926 } 15927 15928 // Construct the body of the conversion function { return __invoke; }. 15929 Expr *FunctionRef = BuildDeclRefExpr(Invoker, Invoker->getType(), VK_LValue, 15930 Conv->getLocation()); 15931 assert(FunctionRef && "Can't refer to __invoke function?"); 15932 Stmt *Return = BuildReturnStmt(Conv->getLocation(), FunctionRef).get(); 15933 Conv->setBody(CompoundStmt::Create(Context, Return, FPOptionsOverride(), 15934 Conv->getLocation(), Conv->getLocation())); 15935 Conv->markUsed(Context); 15936 Conv->setReferenced(); 15937 15938 if (ASTMutationListener *L = getASTMutationListener()) { 15939 L->CompletedImplicitDefinition(Conv); 15940 if (Invoker != CallOp) 15941 L->CompletedImplicitDefinition(Invoker); 15942 } 15943 } 15944 15945 void Sema::DefineImplicitLambdaToBlockPointerConversion( 15946 SourceLocation CurrentLocation, CXXConversionDecl *Conv) { 15947 assert(!Conv->getParent()->isGenericLambda()); 15948 15949 SynthesizedFunctionScope Scope(*this, Conv); 15950 15951 // Copy-initialize the lambda object as needed to capture it. 15952 Expr *This = ActOnCXXThis(CurrentLocation).get(); 15953 Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).get(); 15954 15955 ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation, 15956 Conv->getLocation(), 15957 Conv, DerefThis); 15958 15959 // If we're not under ARC, make sure we still get the _Block_copy/autorelease 15960 // behavior. Note that only the general conversion function does this 15961 // (since it's unusable otherwise); in the case where we inline the 15962 // block literal, it has block literal lifetime semantics. 15963 if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount) 15964 BuildBlock = ImplicitCastExpr::Create( 15965 Context, BuildBlock.get()->getType(), CK_CopyAndAutoreleaseBlockObject, 15966 BuildBlock.get(), nullptr, VK_PRValue, FPOptionsOverride()); 15967 15968 if (BuildBlock.isInvalid()) { 15969 Diag(CurrentLocation, diag::note_lambda_to_block_conv); 15970 Conv->setInvalidDecl(); 15971 return; 15972 } 15973 15974 // Create the return statement that returns the block from the conversion 15975 // function. 15976 StmtResult Return = BuildReturnStmt(Conv->getLocation(), BuildBlock.get()); 15977 if (Return.isInvalid()) { 15978 Diag(CurrentLocation, diag::note_lambda_to_block_conv); 15979 Conv->setInvalidDecl(); 15980 return; 15981 } 15982 15983 // Set the body of the conversion function. 15984 Stmt *ReturnS = Return.get(); 15985 Conv->setBody(CompoundStmt::Create(Context, ReturnS, FPOptionsOverride(), 15986 Conv->getLocation(), Conv->getLocation())); 15987 Conv->markUsed(Context); 15988 15989 // We're done; notify the mutation listener, if any. 15990 if (ASTMutationListener *L = getASTMutationListener()) { 15991 L->CompletedImplicitDefinition(Conv); 15992 } 15993 } 15994 15995 /// Determine whether the given list arguments contains exactly one 15996 /// "real" (non-default) argument. 15997 static bool hasOneRealArgument(MultiExprArg Args) { 15998 switch (Args.size()) { 15999 case 0: 16000 return false; 16001 16002 default: 16003 if (!Args[1]->isDefaultArgument()) 16004 return false; 16005 16006 [[fallthrough]]; 16007 case 1: 16008 return !Args[0]->isDefaultArgument(); 16009 } 16010 16011 return false; 16012 } 16013 16014 ExprResult Sema::BuildCXXConstructExpr( 16015 SourceLocation ConstructLoc, QualType DeclInitType, NamedDecl *FoundDecl, 16016 CXXConstructorDecl *Constructor, MultiExprArg ExprArgs, 16017 bool HadMultipleCandidates, bool IsListInitialization, 16018 bool IsStdInitListInitialization, bool RequiresZeroInit, 16019 CXXConstructionKind ConstructKind, SourceRange ParenRange) { 16020 bool Elidable = false; 16021 16022 // C++0x [class.copy]p34: 16023 // When certain criteria are met, an implementation is allowed to 16024 // omit the copy/move construction of a class object, even if the 16025 // copy/move constructor and/or destructor for the object have 16026 // side effects. [...] 16027 // - when a temporary class object that has not been bound to a 16028 // reference (12.2) would be copied/moved to a class object 16029 // with the same cv-unqualified type, the copy/move operation 16030 // can be omitted by constructing the temporary object 16031 // directly into the target of the omitted copy/move 16032 if (ConstructKind == CXXConstructionKind::Complete && Constructor && 16033 // FIXME: Converting constructors should also be accepted. 16034 // But to fix this, the logic that digs down into a CXXConstructExpr 16035 // to find the source object needs to handle it. 16036 // Right now it assumes the source object is passed directly as the 16037 // first argument. 16038 Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) { 16039 Expr *SubExpr = ExprArgs[0]; 16040 // FIXME: Per above, this is also incorrect if we want to accept 16041 // converting constructors, as isTemporaryObject will 16042 // reject temporaries with different type from the 16043 // CXXRecord itself. 16044 Elidable = SubExpr->isTemporaryObject( 16045 Context, cast<CXXRecordDecl>(FoundDecl->getDeclContext())); 16046 } 16047 16048 return BuildCXXConstructExpr(ConstructLoc, DeclInitType, 16049 FoundDecl, Constructor, 16050 Elidable, ExprArgs, HadMultipleCandidates, 16051 IsListInitialization, 16052 IsStdInitListInitialization, RequiresZeroInit, 16053 ConstructKind, ParenRange); 16054 } 16055 16056 ExprResult Sema::BuildCXXConstructExpr( 16057 SourceLocation ConstructLoc, QualType DeclInitType, NamedDecl *FoundDecl, 16058 CXXConstructorDecl *Constructor, bool Elidable, MultiExprArg ExprArgs, 16059 bool HadMultipleCandidates, bool IsListInitialization, 16060 bool IsStdInitListInitialization, bool RequiresZeroInit, 16061 CXXConstructionKind ConstructKind, SourceRange ParenRange) { 16062 if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl)) { 16063 Constructor = findInheritingConstructor(ConstructLoc, Constructor, Shadow); 16064 // The only way to get here is if we did overload resolution to find the 16065 // shadow decl, so we don't need to worry about re-checking the trailing 16066 // requires clause. 16067 if (DiagnoseUseOfOverloadedDecl(Constructor, ConstructLoc)) 16068 return ExprError(); 16069 } 16070 16071 return BuildCXXConstructExpr( 16072 ConstructLoc, DeclInitType, Constructor, Elidable, ExprArgs, 16073 HadMultipleCandidates, IsListInitialization, IsStdInitListInitialization, 16074 RequiresZeroInit, ConstructKind, ParenRange); 16075 } 16076 16077 /// BuildCXXConstructExpr - Creates a complete call to a constructor, 16078 /// including handling of its default argument expressions. 16079 ExprResult Sema::BuildCXXConstructExpr( 16080 SourceLocation ConstructLoc, QualType DeclInitType, 16081 CXXConstructorDecl *Constructor, bool Elidable, MultiExprArg ExprArgs, 16082 bool HadMultipleCandidates, bool IsListInitialization, 16083 bool IsStdInitListInitialization, bool RequiresZeroInit, 16084 CXXConstructionKind ConstructKind, SourceRange ParenRange) { 16085 assert(declaresSameEntity( 16086 Constructor->getParent(), 16087 DeclInitType->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) && 16088 "given constructor for wrong type"); 16089 MarkFunctionReferenced(ConstructLoc, Constructor); 16090 if (getLangOpts().CUDA && !CUDA().CheckCall(ConstructLoc, Constructor)) 16091 return ExprError(); 16092 16093 return CheckForImmediateInvocation( 16094 CXXConstructExpr::Create( 16095 Context, DeclInitType, ConstructLoc, Constructor, Elidable, ExprArgs, 16096 HadMultipleCandidates, IsListInitialization, 16097 IsStdInitListInitialization, RequiresZeroInit, 16098 static_cast<CXXConstructionKind>(ConstructKind), ParenRange), 16099 Constructor); 16100 } 16101 16102 void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) { 16103 if (VD->isInvalidDecl()) return; 16104 // If initializing the variable failed, don't also diagnose problems with 16105 // the destructor, they're likely related. 16106 if (VD->getInit() && VD->getInit()->containsErrors()) 16107 return; 16108 16109 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl()); 16110 if (ClassDecl->isInvalidDecl()) return; 16111 if (ClassDecl->hasIrrelevantDestructor()) return; 16112 if (ClassDecl->isDependentContext()) return; 16113 16114 if (VD->isNoDestroy(getASTContext())) 16115 return; 16116 16117 CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl); 16118 // The result of `LookupDestructor` might be nullptr if the destructor is 16119 // invalid, in which case it is marked as `IneligibleOrNotSelected` and 16120 // will not be selected by `CXXRecordDecl::getDestructor()`. 16121 if (!Destructor) 16122 return; 16123 // If this is an array, we'll require the destructor during initialization, so 16124 // we can skip over this. We still want to emit exit-time destructor warnings 16125 // though. 16126 if (!VD->getType()->isArrayType()) { 16127 MarkFunctionReferenced(VD->getLocation(), Destructor); 16128 CheckDestructorAccess(VD->getLocation(), Destructor, 16129 PDiag(diag::err_access_dtor_var) 16130 << VD->getDeclName() << VD->getType()); 16131 DiagnoseUseOfDecl(Destructor, VD->getLocation()); 16132 } 16133 16134 if (Destructor->isTrivial()) return; 16135 16136 // If the destructor is constexpr, check whether the variable has constant 16137 // destruction now. 16138 if (Destructor->isConstexpr()) { 16139 bool HasConstantInit = false; 16140 if (VD->getInit() && !VD->getInit()->isValueDependent()) 16141 HasConstantInit = VD->evaluateValue(); 16142 SmallVector<PartialDiagnosticAt, 8> Notes; 16143 if (!VD->evaluateDestruction(Notes) && VD->isConstexpr() && 16144 HasConstantInit) { 16145 Diag(VD->getLocation(), 16146 diag::err_constexpr_var_requires_const_destruction) << VD; 16147 for (unsigned I = 0, N = Notes.size(); I != N; ++I) 16148 Diag(Notes[I].first, Notes[I].second); 16149 } 16150 } 16151 16152 if (!VD->hasGlobalStorage() || !VD->needsDestruction(Context)) 16153 return; 16154 16155 // Emit warning for non-trivial dtor in global scope (a real global, 16156 // class-static, function-static). 16157 if (!VD->hasAttr<AlwaysDestroyAttr>()) 16158 Diag(VD->getLocation(), diag::warn_exit_time_destructor); 16159 16160 // TODO: this should be re-enabled for static locals by !CXAAtExit 16161 if (!VD->isStaticLocal()) 16162 Diag(VD->getLocation(), diag::warn_global_destructor); 16163 } 16164 16165 bool Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor, 16166 QualType DeclInitType, MultiExprArg ArgsPtr, 16167 SourceLocation Loc, 16168 SmallVectorImpl<Expr *> &ConvertedArgs, 16169 bool AllowExplicit, 16170 bool IsListInitialization) { 16171 // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall. 16172 unsigned NumArgs = ArgsPtr.size(); 16173 Expr **Args = ArgsPtr.data(); 16174 16175 const auto *Proto = Constructor->getType()->castAs<FunctionProtoType>(); 16176 unsigned NumParams = Proto->getNumParams(); 16177 16178 // If too few arguments are available, we'll fill in the rest with defaults. 16179 if (NumArgs < NumParams) 16180 ConvertedArgs.reserve(NumParams); 16181 else 16182 ConvertedArgs.reserve(NumArgs); 16183 16184 VariadicCallType CallType = 16185 Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply; 16186 SmallVector<Expr *, 8> AllArgs; 16187 bool Invalid = GatherArgumentsForCall( 16188 Loc, Constructor, Proto, 0, llvm::ArrayRef(Args, NumArgs), AllArgs, 16189 CallType, AllowExplicit, IsListInitialization); 16190 ConvertedArgs.append(AllArgs.begin(), AllArgs.end()); 16191 16192 DiagnoseSentinelCalls(Constructor, Loc, AllArgs); 16193 16194 CheckConstructorCall(Constructor, DeclInitType, 16195 llvm::ArrayRef(AllArgs.data(), AllArgs.size()), Proto, 16196 Loc); 16197 16198 return Invalid; 16199 } 16200 16201 static inline bool 16202 CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef, 16203 const FunctionDecl *FnDecl) { 16204 const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext(); 16205 if (isa<NamespaceDecl>(DC)) { 16206 return SemaRef.Diag(FnDecl->getLocation(), 16207 diag::err_operator_new_delete_declared_in_namespace) 16208 << FnDecl->getDeclName(); 16209 } 16210 16211 if (isa<TranslationUnitDecl>(DC) && 16212 FnDecl->getStorageClass() == SC_Static) { 16213 return SemaRef.Diag(FnDecl->getLocation(), 16214 diag::err_operator_new_delete_declared_static) 16215 << FnDecl->getDeclName(); 16216 } 16217 16218 return false; 16219 } 16220 16221 static CanQualType RemoveAddressSpaceFromPtr(Sema &SemaRef, 16222 const PointerType *PtrTy) { 16223 auto &Ctx = SemaRef.Context; 16224 Qualifiers PtrQuals = PtrTy->getPointeeType().getQualifiers(); 16225 PtrQuals.removeAddressSpace(); 16226 return Ctx.getPointerType(Ctx.getCanonicalType(Ctx.getQualifiedType( 16227 PtrTy->getPointeeType().getUnqualifiedType(), PtrQuals))); 16228 } 16229 16230 static inline bool 16231 CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl, 16232 CanQualType ExpectedResultType, 16233 CanQualType ExpectedFirstParamType, 16234 unsigned DependentParamTypeDiag, 16235 unsigned InvalidParamTypeDiag) { 16236 QualType ResultType = 16237 FnDecl->getType()->castAs<FunctionType>()->getReturnType(); 16238 16239 if (SemaRef.getLangOpts().OpenCLCPlusPlus) { 16240 // The operator is valid on any address space for OpenCL. 16241 // Drop address space from actual and expected result types. 16242 if (const auto *PtrTy = ResultType->getAs<PointerType>()) 16243 ResultType = RemoveAddressSpaceFromPtr(SemaRef, PtrTy); 16244 16245 if (auto ExpectedPtrTy = ExpectedResultType->getAs<PointerType>()) 16246 ExpectedResultType = RemoveAddressSpaceFromPtr(SemaRef, ExpectedPtrTy); 16247 } 16248 16249 // Check that the result type is what we expect. 16250 if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType) { 16251 // Reject even if the type is dependent; an operator delete function is 16252 // required to have a non-dependent result type. 16253 return SemaRef.Diag( 16254 FnDecl->getLocation(), 16255 ResultType->isDependentType() 16256 ? diag::err_operator_new_delete_dependent_result_type 16257 : diag::err_operator_new_delete_invalid_result_type) 16258 << FnDecl->getDeclName() << ExpectedResultType; 16259 } 16260 16261 // A function template must have at least 2 parameters. 16262 if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2) 16263 return SemaRef.Diag(FnDecl->getLocation(), 16264 diag::err_operator_new_delete_template_too_few_parameters) 16265 << FnDecl->getDeclName(); 16266 16267 // The function decl must have at least 1 parameter. 16268 if (FnDecl->getNumParams() == 0) 16269 return SemaRef.Diag(FnDecl->getLocation(), 16270 diag::err_operator_new_delete_too_few_parameters) 16271 << FnDecl->getDeclName(); 16272 16273 QualType FirstParamType = FnDecl->getParamDecl(0)->getType(); 16274 if (SemaRef.getLangOpts().OpenCLCPlusPlus) { 16275 // The operator is valid on any address space for OpenCL. 16276 // Drop address space from actual and expected first parameter types. 16277 if (const auto *PtrTy = 16278 FnDecl->getParamDecl(0)->getType()->getAs<PointerType>()) 16279 FirstParamType = RemoveAddressSpaceFromPtr(SemaRef, PtrTy); 16280 16281 if (auto ExpectedPtrTy = ExpectedFirstParamType->getAs<PointerType>()) 16282 ExpectedFirstParamType = 16283 RemoveAddressSpaceFromPtr(SemaRef, ExpectedPtrTy); 16284 } 16285 16286 // Check that the first parameter type is what we expect. 16287 if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() != 16288 ExpectedFirstParamType) { 16289 // The first parameter type is not allowed to be dependent. As a tentative 16290 // DR resolution, we allow a dependent parameter type if it is the right 16291 // type anyway, to allow destroying operator delete in class templates. 16292 return SemaRef.Diag(FnDecl->getLocation(), FirstParamType->isDependentType() 16293 ? DependentParamTypeDiag 16294 : InvalidParamTypeDiag) 16295 << FnDecl->getDeclName() << ExpectedFirstParamType; 16296 } 16297 16298 return false; 16299 } 16300 16301 static bool 16302 CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) { 16303 // C++ [basic.stc.dynamic.allocation]p1: 16304 // A program is ill-formed if an allocation function is declared in a 16305 // namespace scope other than global scope or declared static in global 16306 // scope. 16307 if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl)) 16308 return true; 16309 16310 CanQualType SizeTy = 16311 SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType()); 16312 16313 // C++ [basic.stc.dynamic.allocation]p1: 16314 // The return type shall be void*. The first parameter shall have type 16315 // std::size_t. 16316 if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy, 16317 SizeTy, 16318 diag::err_operator_new_dependent_param_type, 16319 diag::err_operator_new_param_type)) 16320 return true; 16321 16322 // C++ [basic.stc.dynamic.allocation]p1: 16323 // The first parameter shall not have an associated default argument. 16324 if (FnDecl->getParamDecl(0)->hasDefaultArg()) 16325 return SemaRef.Diag(FnDecl->getLocation(), 16326 diag::err_operator_new_default_arg) 16327 << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange(); 16328 16329 return false; 16330 } 16331 16332 static bool 16333 CheckOperatorDeleteDeclaration(Sema &SemaRef, FunctionDecl *FnDecl) { 16334 // C++ [basic.stc.dynamic.deallocation]p1: 16335 // A program is ill-formed if deallocation functions are declared in a 16336 // namespace scope other than global scope or declared static in global 16337 // scope. 16338 if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl)) 16339 return true; 16340 16341 auto *MD = dyn_cast<CXXMethodDecl>(FnDecl); 16342 16343 // C++ P0722: 16344 // Within a class C, the first parameter of a destroying operator delete 16345 // shall be of type C *. The first parameter of any other deallocation 16346 // function shall be of type void *. 16347 CanQualType ExpectedFirstParamType = 16348 MD && MD->isDestroyingOperatorDelete() 16349 ? SemaRef.Context.getCanonicalType(SemaRef.Context.getPointerType( 16350 SemaRef.Context.getRecordType(MD->getParent()))) 16351 : SemaRef.Context.VoidPtrTy; 16352 16353 // C++ [basic.stc.dynamic.deallocation]p2: 16354 // Each deallocation function shall return void 16355 if (CheckOperatorNewDeleteTypes( 16356 SemaRef, FnDecl, SemaRef.Context.VoidTy, ExpectedFirstParamType, 16357 diag::err_operator_delete_dependent_param_type, 16358 diag::err_operator_delete_param_type)) 16359 return true; 16360 16361 // C++ P0722: 16362 // A destroying operator delete shall be a usual deallocation function. 16363 if (MD && !MD->getParent()->isDependentContext() && 16364 MD->isDestroyingOperatorDelete() && 16365 !SemaRef.isUsualDeallocationFunction(MD)) { 16366 SemaRef.Diag(MD->getLocation(), 16367 diag::err_destroying_operator_delete_not_usual); 16368 return true; 16369 } 16370 16371 return false; 16372 } 16373 16374 bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) { 16375 assert(FnDecl && FnDecl->isOverloadedOperator() && 16376 "Expected an overloaded operator declaration"); 16377 16378 OverloadedOperatorKind Op = FnDecl->getOverloadedOperator(); 16379 16380 // C++ [over.oper]p5: 16381 // The allocation and deallocation functions, operator new, 16382 // operator new[], operator delete and operator delete[], are 16383 // described completely in 3.7.3. The attributes and restrictions 16384 // found in the rest of this subclause do not apply to them unless 16385 // explicitly stated in 3.7.3. 16386 if (Op == OO_Delete || Op == OO_Array_Delete) 16387 return CheckOperatorDeleteDeclaration(*this, FnDecl); 16388 16389 if (Op == OO_New || Op == OO_Array_New) 16390 return CheckOperatorNewDeclaration(*this, FnDecl); 16391 16392 // C++ [over.oper]p7: 16393 // An operator function shall either be a member function or 16394 // be a non-member function and have at least one parameter 16395 // whose type is a class, a reference to a class, an enumeration, 16396 // or a reference to an enumeration. 16397 // Note: Before C++23, a member function could not be static. The only member 16398 // function allowed to be static is the call operator function. 16399 if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) { 16400 if (MethodDecl->isStatic()) { 16401 if (Op == OO_Call || Op == OO_Subscript) 16402 Diag(FnDecl->getLocation(), 16403 (LangOpts.CPlusPlus23 16404 ? diag::warn_cxx20_compat_operator_overload_static 16405 : diag::ext_operator_overload_static)) 16406 << FnDecl; 16407 else 16408 return Diag(FnDecl->getLocation(), diag::err_operator_overload_static) 16409 << FnDecl; 16410 } 16411 } else { 16412 bool ClassOrEnumParam = false; 16413 for (auto *Param : FnDecl->parameters()) { 16414 QualType ParamType = Param->getType().getNonReferenceType(); 16415 if (ParamType->isDependentType() || ParamType->isRecordType() || 16416 ParamType->isEnumeralType()) { 16417 ClassOrEnumParam = true; 16418 break; 16419 } 16420 } 16421 16422 if (!ClassOrEnumParam) 16423 return Diag(FnDecl->getLocation(), 16424 diag::err_operator_overload_needs_class_or_enum) 16425 << FnDecl->getDeclName(); 16426 } 16427 16428 // C++ [over.oper]p8: 16429 // An operator function cannot have default arguments (8.3.6), 16430 // except where explicitly stated below. 16431 // 16432 // Only the function-call operator (C++ [over.call]p1) and the subscript 16433 // operator (CWG2507) allow default arguments. 16434 if (Op != OO_Call) { 16435 ParmVarDecl *FirstDefaultedParam = nullptr; 16436 for (auto *Param : FnDecl->parameters()) { 16437 if (Param->hasDefaultArg()) { 16438 FirstDefaultedParam = Param; 16439 break; 16440 } 16441 } 16442 if (FirstDefaultedParam) { 16443 if (Op == OO_Subscript) { 16444 Diag(FnDecl->getLocation(), LangOpts.CPlusPlus23 16445 ? diag::ext_subscript_overload 16446 : diag::error_subscript_overload) 16447 << FnDecl->getDeclName() << 1 16448 << FirstDefaultedParam->getDefaultArgRange(); 16449 } else { 16450 return Diag(FirstDefaultedParam->getLocation(), 16451 diag::err_operator_overload_default_arg) 16452 << FnDecl->getDeclName() 16453 << FirstDefaultedParam->getDefaultArgRange(); 16454 } 16455 } 16456 } 16457 16458 static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = { 16459 { false, false, false } 16460 #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \ 16461 , { Unary, Binary, MemberOnly } 16462 #include "clang/Basic/OperatorKinds.def" 16463 }; 16464 16465 bool CanBeUnaryOperator = OperatorUses[Op][0]; 16466 bool CanBeBinaryOperator = OperatorUses[Op][1]; 16467 bool MustBeMemberOperator = OperatorUses[Op][2]; 16468 16469 // C++ [over.oper]p8: 16470 // [...] Operator functions cannot have more or fewer parameters 16471 // than the number required for the corresponding operator, as 16472 // described in the rest of this subclause. 16473 unsigned NumParams = FnDecl->getNumParams() + 16474 (isa<CXXMethodDecl>(FnDecl) && 16475 !FnDecl->hasCXXExplicitFunctionObjectParameter() 16476 ? 1 16477 : 0); 16478 if (Op != OO_Call && Op != OO_Subscript && 16479 ((NumParams == 1 && !CanBeUnaryOperator) || 16480 (NumParams == 2 && !CanBeBinaryOperator) || (NumParams < 1) || 16481 (NumParams > 2))) { 16482 // We have the wrong number of parameters. 16483 unsigned ErrorKind; 16484 if (CanBeUnaryOperator && CanBeBinaryOperator) { 16485 ErrorKind = 2; // 2 -> unary or binary. 16486 } else if (CanBeUnaryOperator) { 16487 ErrorKind = 0; // 0 -> unary 16488 } else { 16489 assert(CanBeBinaryOperator && 16490 "All non-call overloaded operators are unary or binary!"); 16491 ErrorKind = 1; // 1 -> binary 16492 } 16493 return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be) 16494 << FnDecl->getDeclName() << NumParams << ErrorKind; 16495 } 16496 16497 if (Op == OO_Subscript && NumParams != 2) { 16498 Diag(FnDecl->getLocation(), LangOpts.CPlusPlus23 16499 ? diag::ext_subscript_overload 16500 : diag::error_subscript_overload) 16501 << FnDecl->getDeclName() << (NumParams == 1 ? 0 : 2); 16502 } 16503 16504 // Overloaded operators other than operator() and operator[] cannot be 16505 // variadic. 16506 if (Op != OO_Call && 16507 FnDecl->getType()->castAs<FunctionProtoType>()->isVariadic()) { 16508 return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic) 16509 << FnDecl->getDeclName(); 16510 } 16511 16512 // Some operators must be member functions. 16513 if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) { 16514 return Diag(FnDecl->getLocation(), 16515 diag::err_operator_overload_must_be_member) 16516 << FnDecl->getDeclName(); 16517 } 16518 16519 // C++ [over.inc]p1: 16520 // The user-defined function called operator++ implements the 16521 // prefix and postfix ++ operator. If this function is a member 16522 // function with no parameters, or a non-member function with one 16523 // parameter of class or enumeration type, it defines the prefix 16524 // increment operator ++ for objects of that type. If the function 16525 // is a member function with one parameter (which shall be of type 16526 // int) or a non-member function with two parameters (the second 16527 // of which shall be of type int), it defines the postfix 16528 // increment operator ++ for objects of that type. 16529 if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) { 16530 ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1); 16531 QualType ParamType = LastParam->getType(); 16532 16533 if (!ParamType->isSpecificBuiltinType(BuiltinType::Int) && 16534 !ParamType->isDependentType()) 16535 return Diag(LastParam->getLocation(), 16536 diag::err_operator_overload_post_incdec_must_be_int) 16537 << LastParam->getType() << (Op == OO_MinusMinus); 16538 } 16539 16540 return false; 16541 } 16542 16543 static bool 16544 checkLiteralOperatorTemplateParameterList(Sema &SemaRef, 16545 FunctionTemplateDecl *TpDecl) { 16546 TemplateParameterList *TemplateParams = TpDecl->getTemplateParameters(); 16547 16548 // Must have one or two template parameters. 16549 if (TemplateParams->size() == 1) { 16550 NonTypeTemplateParmDecl *PmDecl = 16551 dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(0)); 16552 16553 // The template parameter must be a char parameter pack. 16554 if (PmDecl && PmDecl->isTemplateParameterPack() && 16555 SemaRef.Context.hasSameType(PmDecl->getType(), SemaRef.Context.CharTy)) 16556 return false; 16557 16558 // C++20 [over.literal]p5: 16559 // A string literal operator template is a literal operator template 16560 // whose template-parameter-list comprises a single non-type 16561 // template-parameter of class type. 16562 // 16563 // As a DR resolution, we also allow placeholders for deduced class 16564 // template specializations. 16565 if (SemaRef.getLangOpts().CPlusPlus20 && PmDecl && 16566 !PmDecl->isTemplateParameterPack() && 16567 (PmDecl->getType()->isRecordType() || 16568 PmDecl->getType()->getAs<DeducedTemplateSpecializationType>())) 16569 return false; 16570 } else if (TemplateParams->size() == 2) { 16571 TemplateTypeParmDecl *PmType = 16572 dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(0)); 16573 NonTypeTemplateParmDecl *PmArgs = 16574 dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(1)); 16575 16576 // The second template parameter must be a parameter pack with the 16577 // first template parameter as its type. 16578 if (PmType && PmArgs && !PmType->isTemplateParameterPack() && 16579 PmArgs->isTemplateParameterPack()) { 16580 const TemplateTypeParmType *TArgs = 16581 PmArgs->getType()->getAs<TemplateTypeParmType>(); 16582 if (TArgs && TArgs->getDepth() == PmType->getDepth() && 16583 TArgs->getIndex() == PmType->getIndex()) { 16584 if (!SemaRef.inTemplateInstantiation()) 16585 SemaRef.Diag(TpDecl->getLocation(), 16586 diag::ext_string_literal_operator_template); 16587 return false; 16588 } 16589 } 16590 } 16591 16592 SemaRef.Diag(TpDecl->getTemplateParameters()->getSourceRange().getBegin(), 16593 diag::err_literal_operator_template) 16594 << TpDecl->getTemplateParameters()->getSourceRange(); 16595 return true; 16596 } 16597 16598 bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) { 16599 if (isa<CXXMethodDecl>(FnDecl)) { 16600 Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace) 16601 << FnDecl->getDeclName(); 16602 return true; 16603 } 16604 16605 if (FnDecl->isExternC()) { 16606 Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c); 16607 if (const LinkageSpecDecl *LSD = 16608 FnDecl->getDeclContext()->getExternCContext()) 16609 Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here); 16610 return true; 16611 } 16612 16613 // This might be the definition of a literal operator template. 16614 FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate(); 16615 16616 // This might be a specialization of a literal operator template. 16617 if (!TpDecl) 16618 TpDecl = FnDecl->getPrimaryTemplate(); 16619 16620 // template <char...> type operator "" name() and 16621 // template <class T, T...> type operator "" name() are the only valid 16622 // template signatures, and the only valid signatures with no parameters. 16623 // 16624 // C++20 also allows template <SomeClass T> type operator "" name(). 16625 if (TpDecl) { 16626 if (FnDecl->param_size() != 0) { 16627 Diag(FnDecl->getLocation(), 16628 diag::err_literal_operator_template_with_params); 16629 return true; 16630 } 16631 16632 if (checkLiteralOperatorTemplateParameterList(*this, TpDecl)) 16633 return true; 16634 16635 } else if (FnDecl->param_size() == 1) { 16636 const ParmVarDecl *Param = FnDecl->getParamDecl(0); 16637 16638 QualType ParamType = Param->getType().getUnqualifiedType(); 16639 16640 // Only unsigned long long int, long double, any character type, and const 16641 // char * are allowed as the only parameters. 16642 if (ParamType->isSpecificBuiltinType(BuiltinType::ULongLong) || 16643 ParamType->isSpecificBuiltinType(BuiltinType::LongDouble) || 16644 Context.hasSameType(ParamType, Context.CharTy) || 16645 Context.hasSameType(ParamType, Context.WideCharTy) || 16646 Context.hasSameType(ParamType, Context.Char8Ty) || 16647 Context.hasSameType(ParamType, Context.Char16Ty) || 16648 Context.hasSameType(ParamType, Context.Char32Ty)) { 16649 } else if (const PointerType *Ptr = ParamType->getAs<PointerType>()) { 16650 QualType InnerType = Ptr->getPointeeType(); 16651 16652 // Pointer parameter must be a const char *. 16653 if (!(Context.hasSameType(InnerType.getUnqualifiedType(), 16654 Context.CharTy) && 16655 InnerType.isConstQualified() && !InnerType.isVolatileQualified())) { 16656 Diag(Param->getSourceRange().getBegin(), 16657 diag::err_literal_operator_param) 16658 << ParamType << "'const char *'" << Param->getSourceRange(); 16659 return true; 16660 } 16661 16662 } else if (ParamType->isRealFloatingType()) { 16663 Diag(Param->getSourceRange().getBegin(), diag::err_literal_operator_param) 16664 << ParamType << Context.LongDoubleTy << Param->getSourceRange(); 16665 return true; 16666 16667 } else if (ParamType->isIntegerType()) { 16668 Diag(Param->getSourceRange().getBegin(), diag::err_literal_operator_param) 16669 << ParamType << Context.UnsignedLongLongTy << Param->getSourceRange(); 16670 return true; 16671 16672 } else { 16673 Diag(Param->getSourceRange().getBegin(), 16674 diag::err_literal_operator_invalid_param) 16675 << ParamType << Param->getSourceRange(); 16676 return true; 16677 } 16678 16679 } else if (FnDecl->param_size() == 2) { 16680 FunctionDecl::param_iterator Param = FnDecl->param_begin(); 16681 16682 // First, verify that the first parameter is correct. 16683 16684 QualType FirstParamType = (*Param)->getType().getUnqualifiedType(); 16685 16686 // Two parameter function must have a pointer to const as a 16687 // first parameter; let's strip those qualifiers. 16688 const PointerType *PT = FirstParamType->getAs<PointerType>(); 16689 16690 if (!PT) { 16691 Diag((*Param)->getSourceRange().getBegin(), 16692 diag::err_literal_operator_param) 16693 << FirstParamType << "'const char *'" << (*Param)->getSourceRange(); 16694 return true; 16695 } 16696 16697 QualType PointeeType = PT->getPointeeType(); 16698 // First parameter must be const 16699 if (!PointeeType.isConstQualified() || PointeeType.isVolatileQualified()) { 16700 Diag((*Param)->getSourceRange().getBegin(), 16701 diag::err_literal_operator_param) 16702 << FirstParamType << "'const char *'" << (*Param)->getSourceRange(); 16703 return true; 16704 } 16705 16706 QualType InnerType = PointeeType.getUnqualifiedType(); 16707 // Only const char *, const wchar_t*, const char8_t*, const char16_t*, and 16708 // const char32_t* are allowed as the first parameter to a two-parameter 16709 // function 16710 if (!(Context.hasSameType(InnerType, Context.CharTy) || 16711 Context.hasSameType(InnerType, Context.WideCharTy) || 16712 Context.hasSameType(InnerType, Context.Char8Ty) || 16713 Context.hasSameType(InnerType, Context.Char16Ty) || 16714 Context.hasSameType(InnerType, Context.Char32Ty))) { 16715 Diag((*Param)->getSourceRange().getBegin(), 16716 diag::err_literal_operator_param) 16717 << FirstParamType << "'const char *'" << (*Param)->getSourceRange(); 16718 return true; 16719 } 16720 16721 // Move on to the second and final parameter. 16722 ++Param; 16723 16724 // The second parameter must be a std::size_t. 16725 QualType SecondParamType = (*Param)->getType().getUnqualifiedType(); 16726 if (!Context.hasSameType(SecondParamType, Context.getSizeType())) { 16727 Diag((*Param)->getSourceRange().getBegin(), 16728 diag::err_literal_operator_param) 16729 << SecondParamType << Context.getSizeType() 16730 << (*Param)->getSourceRange(); 16731 return true; 16732 } 16733 } else { 16734 Diag(FnDecl->getLocation(), diag::err_literal_operator_bad_param_count); 16735 return true; 16736 } 16737 16738 // Parameters are good. 16739 16740 // A parameter-declaration-clause containing a default argument is not 16741 // equivalent to any of the permitted forms. 16742 for (auto *Param : FnDecl->parameters()) { 16743 if (Param->hasDefaultArg()) { 16744 Diag(Param->getDefaultArgRange().getBegin(), 16745 diag::err_literal_operator_default_argument) 16746 << Param->getDefaultArgRange(); 16747 break; 16748 } 16749 } 16750 16751 const IdentifierInfo *II = FnDecl->getDeclName().getCXXLiteralIdentifier(); 16752 ReservedLiteralSuffixIdStatus Status = II->isReservedLiteralSuffixId(); 16753 if (Status != ReservedLiteralSuffixIdStatus::NotReserved && 16754 !getSourceManager().isInSystemHeader(FnDecl->getLocation())) { 16755 // C++23 [usrlit.suffix]p1: 16756 // Literal suffix identifiers that do not start with an underscore are 16757 // reserved for future standardization. Literal suffix identifiers that 16758 // contain a double underscore __ are reserved for use by C++ 16759 // implementations. 16760 Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved) 16761 << static_cast<int>(Status) 16762 << StringLiteralParser::isValidUDSuffix(getLangOpts(), II->getName()); 16763 } 16764 16765 return false; 16766 } 16767 16768 Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc, 16769 Expr *LangStr, 16770 SourceLocation LBraceLoc) { 16771 StringLiteral *Lit = cast<StringLiteral>(LangStr); 16772 assert(Lit->isUnevaluated() && "Unexpected string literal kind"); 16773 16774 StringRef Lang = Lit->getString(); 16775 LinkageSpecLanguageIDs Language; 16776 if (Lang == "C") 16777 Language = LinkageSpecLanguageIDs::C; 16778 else if (Lang == "C++") 16779 Language = LinkageSpecLanguageIDs::CXX; 16780 else { 16781 Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_unknown) 16782 << LangStr->getSourceRange(); 16783 return nullptr; 16784 } 16785 16786 // FIXME: Add all the various semantics of linkage specifications 16787 16788 LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext, ExternLoc, 16789 LangStr->getExprLoc(), Language, 16790 LBraceLoc.isValid()); 16791 16792 /// C++ [module.unit]p7.2.3 16793 /// - Otherwise, if the declaration 16794 /// - ... 16795 /// - ... 16796 /// - appears within a linkage-specification, 16797 /// it is attached to the global module. 16798 /// 16799 /// If the declaration is already in global module fragment, we don't 16800 /// need to attach it again. 16801 if (getLangOpts().CPlusPlusModules && isCurrentModulePurview()) { 16802 Module *GlobalModule = PushImplicitGlobalModuleFragment(ExternLoc); 16803 D->setLocalOwningModule(GlobalModule); 16804 } 16805 16806 CurContext->addDecl(D); 16807 PushDeclContext(S, D); 16808 return D; 16809 } 16810 16811 Decl *Sema::ActOnFinishLinkageSpecification(Scope *S, 16812 Decl *LinkageSpec, 16813 SourceLocation RBraceLoc) { 16814 if (RBraceLoc.isValid()) { 16815 LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec); 16816 LSDecl->setRBraceLoc(RBraceLoc); 16817 } 16818 16819 // If the current module doesn't has Parent, it implies that the 16820 // LinkageSpec isn't in the module created by itself. So we don't 16821 // need to pop it. 16822 if (getLangOpts().CPlusPlusModules && getCurrentModule() && 16823 getCurrentModule()->isImplicitGlobalModule() && 16824 getCurrentModule()->Parent) 16825 PopImplicitGlobalModuleFragment(); 16826 16827 PopDeclContext(); 16828 return LinkageSpec; 16829 } 16830 16831 Decl *Sema::ActOnEmptyDeclaration(Scope *S, 16832 const ParsedAttributesView &AttrList, 16833 SourceLocation SemiLoc) { 16834 Decl *ED = EmptyDecl::Create(Context, CurContext, SemiLoc); 16835 // Attribute declarations appertain to empty declaration so we handle 16836 // them here. 16837 ProcessDeclAttributeList(S, ED, AttrList); 16838 16839 CurContext->addDecl(ED); 16840 return ED; 16841 } 16842 16843 VarDecl *Sema::BuildExceptionDeclaration(Scope *S, TypeSourceInfo *TInfo, 16844 SourceLocation StartLoc, 16845 SourceLocation Loc, 16846 const IdentifierInfo *Name) { 16847 bool Invalid = false; 16848 QualType ExDeclType = TInfo->getType(); 16849 16850 // Arrays and functions decay. 16851 if (ExDeclType->isArrayType()) 16852 ExDeclType = Context.getArrayDecayedType(ExDeclType); 16853 else if (ExDeclType->isFunctionType()) 16854 ExDeclType = Context.getPointerType(ExDeclType); 16855 16856 // C++ 15.3p1: The exception-declaration shall not denote an incomplete type. 16857 // The exception-declaration shall not denote a pointer or reference to an 16858 // incomplete type, other than [cv] void*. 16859 // N2844 forbids rvalue references. 16860 if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) { 16861 Diag(Loc, diag::err_catch_rvalue_ref); 16862 Invalid = true; 16863 } 16864 16865 if (ExDeclType->isVariablyModifiedType()) { 16866 Diag(Loc, diag::err_catch_variably_modified) << ExDeclType; 16867 Invalid = true; 16868 } 16869 16870 QualType BaseType = ExDeclType; 16871 int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference 16872 unsigned DK = diag::err_catch_incomplete; 16873 if (const PointerType *Ptr = BaseType->getAs<PointerType>()) { 16874 BaseType = Ptr->getPointeeType(); 16875 Mode = 1; 16876 DK = diag::err_catch_incomplete_ptr; 16877 } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) { 16878 // For the purpose of error recovery, we treat rvalue refs like lvalue refs. 16879 BaseType = Ref->getPointeeType(); 16880 Mode = 2; 16881 DK = diag::err_catch_incomplete_ref; 16882 } 16883 if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) && 16884 !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK)) 16885 Invalid = true; 16886 16887 if (!Invalid && BaseType.isWebAssemblyReferenceType()) { 16888 Diag(Loc, diag::err_wasm_reftype_tc) << 1; 16889 Invalid = true; 16890 } 16891 16892 if (!Invalid && Mode != 1 && BaseType->isSizelessType()) { 16893 Diag(Loc, diag::err_catch_sizeless) << (Mode == 2 ? 1 : 0) << BaseType; 16894 Invalid = true; 16895 } 16896 16897 if (!Invalid && !ExDeclType->isDependentType() && 16898 RequireNonAbstractType(Loc, ExDeclType, 16899 diag::err_abstract_type_in_decl, 16900 AbstractVariableType)) 16901 Invalid = true; 16902 16903 // Only the non-fragile NeXT runtime currently supports C++ catches 16904 // of ObjC types, and no runtime supports catching ObjC types by value. 16905 if (!Invalid && getLangOpts().ObjC) { 16906 QualType T = ExDeclType; 16907 if (const ReferenceType *RT = T->getAs<ReferenceType>()) 16908 T = RT->getPointeeType(); 16909 16910 if (T->isObjCObjectType()) { 16911 Diag(Loc, diag::err_objc_object_catch); 16912 Invalid = true; 16913 } else if (T->isObjCObjectPointerType()) { 16914 // FIXME: should this be a test for macosx-fragile specifically? 16915 if (getLangOpts().ObjCRuntime.isFragile()) 16916 Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile); 16917 } 16918 } 16919 16920 VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name, 16921 ExDeclType, TInfo, SC_None); 16922 ExDecl->setExceptionVariable(true); 16923 16924 // In ARC, infer 'retaining' for variables of retainable type. 16925 if (getLangOpts().ObjCAutoRefCount && ObjC().inferObjCARCLifetime(ExDecl)) 16926 Invalid = true; 16927 16928 if (!Invalid && !ExDeclType->isDependentType()) { 16929 if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) { 16930 // Insulate this from anything else we might currently be parsing. 16931 EnterExpressionEvaluationContext scope( 16932 *this, ExpressionEvaluationContext::PotentiallyEvaluated); 16933 16934 // C++ [except.handle]p16: 16935 // The object declared in an exception-declaration or, if the 16936 // exception-declaration does not specify a name, a temporary (12.2) is 16937 // copy-initialized (8.5) from the exception object. [...] 16938 // The object is destroyed when the handler exits, after the destruction 16939 // of any automatic objects initialized within the handler. 16940 // 16941 // We just pretend to initialize the object with itself, then make sure 16942 // it can be destroyed later. 16943 QualType initType = Context.getExceptionObjectType(ExDeclType); 16944 16945 InitializedEntity entity = 16946 InitializedEntity::InitializeVariable(ExDecl); 16947 InitializationKind initKind = 16948 InitializationKind::CreateCopy(Loc, SourceLocation()); 16949 16950 Expr *opaqueValue = 16951 new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary); 16952 InitializationSequence sequence(*this, entity, initKind, opaqueValue); 16953 ExprResult result = sequence.Perform(*this, entity, initKind, opaqueValue); 16954 if (result.isInvalid()) 16955 Invalid = true; 16956 else { 16957 // If the constructor used was non-trivial, set this as the 16958 // "initializer". 16959 CXXConstructExpr *construct = result.getAs<CXXConstructExpr>(); 16960 if (!construct->getConstructor()->isTrivial()) { 16961 Expr *init = MaybeCreateExprWithCleanups(construct); 16962 ExDecl->setInit(init); 16963 } 16964 16965 // And make sure it's destructable. 16966 FinalizeVarWithDestructor(ExDecl, recordType); 16967 } 16968 } 16969 } 16970 16971 if (Invalid) 16972 ExDecl->setInvalidDecl(); 16973 16974 return ExDecl; 16975 } 16976 16977 Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) { 16978 TypeSourceInfo *TInfo = GetTypeForDeclarator(D); 16979 bool Invalid = D.isInvalidType(); 16980 16981 // Check for unexpanded parameter packs. 16982 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, 16983 UPPC_ExceptionType)) { 16984 TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy, 16985 D.getIdentifierLoc()); 16986 Invalid = true; 16987 } 16988 16989 const IdentifierInfo *II = D.getIdentifier(); 16990 if (NamedDecl *PrevDecl = 16991 LookupSingleName(S, II, D.getIdentifierLoc(), LookupOrdinaryName, 16992 RedeclarationKind::ForVisibleRedeclaration)) { 16993 // The scope should be freshly made just for us. There is just no way 16994 // it contains any previous declaration, except for function parameters in 16995 // a function-try-block's catch statement. 16996 assert(!S->isDeclScope(PrevDecl)); 16997 if (isDeclInScope(PrevDecl, CurContext, S)) { 16998 Diag(D.getIdentifierLoc(), diag::err_redefinition) 16999 << D.getIdentifier(); 17000 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 17001 Invalid = true; 17002 } else if (PrevDecl->isTemplateParameter()) 17003 // Maybe we will complain about the shadowed template parameter. 17004 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); 17005 } 17006 17007 if (D.getCXXScopeSpec().isSet() && !Invalid) { 17008 Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator) 17009 << D.getCXXScopeSpec().getRange(); 17010 Invalid = true; 17011 } 17012 17013 VarDecl *ExDecl = BuildExceptionDeclaration( 17014 S, TInfo, D.getBeginLoc(), D.getIdentifierLoc(), D.getIdentifier()); 17015 if (Invalid) 17016 ExDecl->setInvalidDecl(); 17017 17018 // Add the exception declaration into this scope. 17019 if (II) 17020 PushOnScopeChains(ExDecl, S); 17021 else 17022 CurContext->addDecl(ExDecl); 17023 17024 ProcessDeclAttributes(S, ExDecl, D); 17025 return ExDecl; 17026 } 17027 17028 Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc, 17029 Expr *AssertExpr, 17030 Expr *AssertMessageExpr, 17031 SourceLocation RParenLoc) { 17032 if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression)) 17033 return nullptr; 17034 17035 return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr, 17036 AssertMessageExpr, RParenLoc, false); 17037 } 17038 17039 static void WriteCharTypePrefix(BuiltinType::Kind BTK, llvm::raw_ostream &OS) { 17040 switch (BTK) { 17041 case BuiltinType::Char_S: 17042 case BuiltinType::Char_U: 17043 break; 17044 case BuiltinType::Char8: 17045 OS << "u8"; 17046 break; 17047 case BuiltinType::Char16: 17048 OS << 'u'; 17049 break; 17050 case BuiltinType::Char32: 17051 OS << 'U'; 17052 break; 17053 case BuiltinType::WChar_S: 17054 case BuiltinType::WChar_U: 17055 OS << 'L'; 17056 break; 17057 default: 17058 llvm_unreachable("Non-character type"); 17059 } 17060 } 17061 17062 /// Convert character's value, interpreted as a code unit, to a string. 17063 /// The value needs to be zero-extended to 32-bits. 17064 /// FIXME: This assumes Unicode literal encodings 17065 static void WriteCharValueForDiagnostic(uint32_t Value, const BuiltinType *BTy, 17066 unsigned TyWidth, 17067 SmallVectorImpl<char> &Str) { 17068 char Arr[UNI_MAX_UTF8_BYTES_PER_CODE_POINT]; 17069 char *Ptr = Arr; 17070 BuiltinType::Kind K = BTy->getKind(); 17071 llvm::raw_svector_ostream OS(Str); 17072 17073 // This should catch Char_S, Char_U, Char8, and use of escaped characters in 17074 // other types. 17075 if (K == BuiltinType::Char_S || K == BuiltinType::Char_U || 17076 K == BuiltinType::Char8 || Value <= 0x7F) { 17077 StringRef Escaped = escapeCStyle<EscapeChar::Single>(Value); 17078 if (!Escaped.empty()) 17079 EscapeStringForDiagnostic(Escaped, Str); 17080 else 17081 OS << static_cast<char>(Value); 17082 return; 17083 } 17084 17085 switch (K) { 17086 case BuiltinType::Char16: 17087 case BuiltinType::Char32: 17088 case BuiltinType::WChar_S: 17089 case BuiltinType::WChar_U: { 17090 if (llvm::ConvertCodePointToUTF8(Value, Ptr)) 17091 EscapeStringForDiagnostic(StringRef(Arr, Ptr - Arr), Str); 17092 else 17093 OS << "\\x" 17094 << llvm::format_hex_no_prefix(Value, TyWidth / 4, /*Upper=*/true); 17095 break; 17096 } 17097 default: 17098 llvm_unreachable("Non-character type is passed"); 17099 } 17100 } 17101 17102 /// Convert \V to a string we can present to the user in a diagnostic 17103 /// \T is the type of the expression that has been evaluated into \V 17104 static bool ConvertAPValueToString(const APValue &V, QualType T, 17105 SmallVectorImpl<char> &Str, 17106 ASTContext &Context) { 17107 if (!V.hasValue()) 17108 return false; 17109 17110 switch (V.getKind()) { 17111 case APValue::ValueKind::Int: 17112 if (T->isBooleanType()) { 17113 // Bools are reduced to ints during evaluation, but for 17114 // diagnostic purposes we want to print them as 17115 // true or false. 17116 int64_t BoolValue = V.getInt().getExtValue(); 17117 assert((BoolValue == 0 || BoolValue == 1) && 17118 "Bool type, but value is not 0 or 1"); 17119 llvm::raw_svector_ostream OS(Str); 17120 OS << (BoolValue ? "true" : "false"); 17121 } else { 17122 llvm::raw_svector_ostream OS(Str); 17123 // Same is true for chars. 17124 // We want to print the character representation for textual types 17125 const auto *BTy = T->getAs<BuiltinType>(); 17126 if (BTy) { 17127 switch (BTy->getKind()) { 17128 case BuiltinType::Char_S: 17129 case BuiltinType::Char_U: 17130 case BuiltinType::Char8: 17131 case BuiltinType::Char16: 17132 case BuiltinType::Char32: 17133 case BuiltinType::WChar_S: 17134 case BuiltinType::WChar_U: { 17135 unsigned TyWidth = Context.getIntWidth(T); 17136 assert(8 <= TyWidth && TyWidth <= 32 && "Unexpected integer width"); 17137 uint32_t CodeUnit = static_cast<uint32_t>(V.getInt().getZExtValue()); 17138 WriteCharTypePrefix(BTy->getKind(), OS); 17139 OS << '\''; 17140 WriteCharValueForDiagnostic(CodeUnit, BTy, TyWidth, Str); 17141 OS << "' (0x" 17142 << llvm::format_hex_no_prefix(CodeUnit, /*Width=*/2, 17143 /*Upper=*/true) 17144 << ", " << V.getInt() << ')'; 17145 return true; 17146 } 17147 default: 17148 break; 17149 } 17150 } 17151 V.getInt().toString(Str); 17152 } 17153 17154 break; 17155 17156 case APValue::ValueKind::Float: 17157 V.getFloat().toString(Str); 17158 break; 17159 17160 case APValue::ValueKind::LValue: 17161 if (V.isNullPointer()) { 17162 llvm::raw_svector_ostream OS(Str); 17163 OS << "nullptr"; 17164 } else 17165 return false; 17166 break; 17167 17168 case APValue::ValueKind::ComplexFloat: { 17169 llvm::raw_svector_ostream OS(Str); 17170 OS << '('; 17171 V.getComplexFloatReal().toString(Str); 17172 OS << " + "; 17173 V.getComplexFloatImag().toString(Str); 17174 OS << "i)"; 17175 } break; 17176 17177 case APValue::ValueKind::ComplexInt: { 17178 llvm::raw_svector_ostream OS(Str); 17179 OS << '('; 17180 V.getComplexIntReal().toString(Str); 17181 OS << " + "; 17182 V.getComplexIntImag().toString(Str); 17183 OS << "i)"; 17184 } break; 17185 17186 default: 17187 return false; 17188 } 17189 17190 return true; 17191 } 17192 17193 /// Some Expression types are not useful to print notes about, 17194 /// e.g. literals and values that have already been expanded 17195 /// before such as int-valued template parameters. 17196 static bool UsefulToPrintExpr(const Expr *E) { 17197 E = E->IgnoreParenImpCasts(); 17198 // Literals are pretty easy for humans to understand. 17199 if (isa<IntegerLiteral, FloatingLiteral, CharacterLiteral, CXXBoolLiteralExpr, 17200 CXXNullPtrLiteralExpr, FixedPointLiteral, ImaginaryLiteral>(E)) 17201 return false; 17202 17203 // These have been substituted from template parameters 17204 // and appear as literals in the static assert error. 17205 if (isa<SubstNonTypeTemplateParmExpr>(E)) 17206 return false; 17207 17208 // -5 is also simple to understand. 17209 if (const auto *UnaryOp = dyn_cast<UnaryOperator>(E)) 17210 return UsefulToPrintExpr(UnaryOp->getSubExpr()); 17211 17212 // Only print nested arithmetic operators. 17213 if (const auto *BO = dyn_cast<BinaryOperator>(E)) 17214 return (BO->isShiftOp() || BO->isAdditiveOp() || BO->isMultiplicativeOp() || 17215 BO->isBitwiseOp()); 17216 17217 return true; 17218 } 17219 17220 void Sema::DiagnoseStaticAssertDetails(const Expr *E) { 17221 if (const auto *Op = dyn_cast<BinaryOperator>(E); 17222 Op && Op->getOpcode() != BO_LOr) { 17223 const Expr *LHS = Op->getLHS()->IgnoreParenImpCasts(); 17224 const Expr *RHS = Op->getRHS()->IgnoreParenImpCasts(); 17225 17226 // Ignore comparisons of boolean expressions with a boolean literal. 17227 if ((isa<CXXBoolLiteralExpr>(LHS) && RHS->getType()->isBooleanType()) || 17228 (isa<CXXBoolLiteralExpr>(RHS) && LHS->getType()->isBooleanType())) 17229 return; 17230 17231 // Don't print obvious expressions. 17232 if (!UsefulToPrintExpr(LHS) && !UsefulToPrintExpr(RHS)) 17233 return; 17234 17235 struct { 17236 const clang::Expr *Cond; 17237 Expr::EvalResult Result; 17238 SmallString<12> ValueString; 17239 bool Print; 17240 } DiagSide[2] = {{LHS, Expr::EvalResult(), {}, false}, 17241 {RHS, Expr::EvalResult(), {}, false}}; 17242 for (unsigned I = 0; I < 2; I++) { 17243 const Expr *Side = DiagSide[I].Cond; 17244 17245 Side->EvaluateAsRValue(DiagSide[I].Result, Context, true); 17246 17247 DiagSide[I].Print = 17248 ConvertAPValueToString(DiagSide[I].Result.Val, Side->getType(), 17249 DiagSide[I].ValueString, Context); 17250 } 17251 if (DiagSide[0].Print && DiagSide[1].Print) { 17252 Diag(Op->getExprLoc(), diag::note_expr_evaluates_to) 17253 << DiagSide[0].ValueString << Op->getOpcodeStr() 17254 << DiagSide[1].ValueString << Op->getSourceRange(); 17255 } 17256 } 17257 } 17258 17259 bool Sema::EvaluateStaticAssertMessageAsString(Expr *Message, 17260 std::string &Result, 17261 ASTContext &Ctx, 17262 bool ErrorOnInvalidMessage) { 17263 assert(Message); 17264 assert(!Message->isTypeDependent() && !Message->isValueDependent() && 17265 "can't evaluate a dependant static assert message"); 17266 17267 if (const auto *SL = dyn_cast<StringLiteral>(Message)) { 17268 assert(SL->isUnevaluated() && "expected an unevaluated string"); 17269 Result.assign(SL->getString().begin(), SL->getString().end()); 17270 return true; 17271 } 17272 17273 SourceLocation Loc = Message->getBeginLoc(); 17274 QualType T = Message->getType().getNonReferenceType(); 17275 auto *RD = T->getAsCXXRecordDecl(); 17276 if (!RD) { 17277 Diag(Loc, diag::err_static_assert_invalid_message); 17278 return false; 17279 } 17280 17281 auto FindMember = [&](StringRef Member, bool &Empty, 17282 bool Diag = false) -> std::optional<LookupResult> { 17283 DeclarationName DN = PP.getIdentifierInfo(Member); 17284 LookupResult MemberLookup(*this, DN, Loc, Sema::LookupMemberName); 17285 LookupQualifiedName(MemberLookup, RD); 17286 Empty = MemberLookup.empty(); 17287 OverloadCandidateSet Candidates(MemberLookup.getNameLoc(), 17288 OverloadCandidateSet::CSK_Normal); 17289 if (MemberLookup.empty()) 17290 return std::nullopt; 17291 return std::move(MemberLookup); 17292 }; 17293 17294 bool SizeNotFound, DataNotFound; 17295 std::optional<LookupResult> SizeMember = FindMember("size", SizeNotFound); 17296 std::optional<LookupResult> DataMember = FindMember("data", DataNotFound); 17297 if (SizeNotFound || DataNotFound) { 17298 Diag(Loc, diag::err_static_assert_missing_member_function) 17299 << ((SizeNotFound && DataNotFound) ? 2 17300 : SizeNotFound ? 0 17301 : 1); 17302 return false; 17303 } 17304 17305 if (!SizeMember || !DataMember) { 17306 if (!SizeMember) 17307 FindMember("size", SizeNotFound, /*Diag=*/true); 17308 if (!DataMember) 17309 FindMember("data", DataNotFound, /*Diag=*/true); 17310 return false; 17311 } 17312 17313 auto BuildExpr = [&](LookupResult &LR) { 17314 ExprResult Res = BuildMemberReferenceExpr( 17315 Message, Message->getType(), Message->getBeginLoc(), false, 17316 CXXScopeSpec(), SourceLocation(), nullptr, LR, nullptr, nullptr); 17317 if (Res.isInvalid()) 17318 return ExprError(); 17319 Res = BuildCallExpr(nullptr, Res.get(), Loc, {}, Loc, nullptr, false, true); 17320 if (Res.isInvalid()) 17321 return ExprError(); 17322 if (Res.get()->isTypeDependent() || Res.get()->isValueDependent()) 17323 return ExprError(); 17324 return TemporaryMaterializationConversion(Res.get()); 17325 }; 17326 17327 ExprResult SizeE = BuildExpr(*SizeMember); 17328 ExprResult DataE = BuildExpr(*DataMember); 17329 17330 QualType SizeT = Context.getSizeType(); 17331 QualType ConstCharPtr = 17332 Context.getPointerType(Context.getConstType(Context.CharTy)); 17333 17334 ExprResult EvaluatedSize = 17335 SizeE.isInvalid() ? ExprError() 17336 : BuildConvertedConstantExpression( 17337 SizeE.get(), SizeT, CCEK_StaticAssertMessageSize); 17338 if (EvaluatedSize.isInvalid()) { 17339 Diag(Loc, diag::err_static_assert_invalid_mem_fn_ret_ty) << /*size*/ 0; 17340 return false; 17341 } 17342 17343 ExprResult EvaluatedData = 17344 DataE.isInvalid() 17345 ? ExprError() 17346 : BuildConvertedConstantExpression(DataE.get(), ConstCharPtr, 17347 CCEK_StaticAssertMessageData); 17348 if (EvaluatedData.isInvalid()) { 17349 Diag(Loc, diag::err_static_assert_invalid_mem_fn_ret_ty) << /*data*/ 1; 17350 return false; 17351 } 17352 17353 if (!ErrorOnInvalidMessage && 17354 Diags.isIgnored(diag::warn_static_assert_message_constexpr, Loc)) 17355 return true; 17356 17357 Expr::EvalResult Status; 17358 SmallVector<PartialDiagnosticAt, 8> Notes; 17359 Status.Diag = &Notes; 17360 if (!Message->EvaluateCharRangeAsString(Result, EvaluatedSize.get(), 17361 EvaluatedData.get(), Ctx, Status) || 17362 !Notes.empty()) { 17363 Diag(Message->getBeginLoc(), 17364 ErrorOnInvalidMessage ? diag::err_static_assert_message_constexpr 17365 : diag::warn_static_assert_message_constexpr); 17366 for (const auto &Note : Notes) 17367 Diag(Note.first, Note.second); 17368 return !ErrorOnInvalidMessage; 17369 } 17370 return true; 17371 } 17372 17373 Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc, 17374 Expr *AssertExpr, Expr *AssertMessage, 17375 SourceLocation RParenLoc, 17376 bool Failed) { 17377 assert(AssertExpr != nullptr && "Expected non-null condition"); 17378 if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() && 17379 (!AssertMessage || (!AssertMessage->isTypeDependent() && 17380 !AssertMessage->isValueDependent())) && 17381 !Failed) { 17382 // In a static_assert-declaration, the constant-expression shall be a 17383 // constant expression that can be contextually converted to bool. 17384 ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr); 17385 if (Converted.isInvalid()) 17386 Failed = true; 17387 17388 ExprResult FullAssertExpr = 17389 ActOnFinishFullExpr(Converted.get(), StaticAssertLoc, 17390 /*DiscardedValue*/ false, 17391 /*IsConstexpr*/ true); 17392 if (FullAssertExpr.isInvalid()) 17393 Failed = true; 17394 else 17395 AssertExpr = FullAssertExpr.get(); 17396 17397 llvm::APSInt Cond; 17398 Expr *BaseExpr = AssertExpr; 17399 AllowFoldKind FoldKind = NoFold; 17400 17401 if (!getLangOpts().CPlusPlus) { 17402 // In C mode, allow folding as an extension for better compatibility with 17403 // C++ in terms of expressions like static_assert("test") or 17404 // static_assert(nullptr). 17405 FoldKind = AllowFold; 17406 } 17407 17408 if (!Failed && VerifyIntegerConstantExpression( 17409 BaseExpr, &Cond, 17410 diag::err_static_assert_expression_is_not_constant, 17411 FoldKind).isInvalid()) 17412 Failed = true; 17413 17414 // If the static_assert passes, only verify that 17415 // the message is grammatically valid without evaluating it. 17416 if (!Failed && AssertMessage && Cond.getBoolValue()) { 17417 std::string Str; 17418 EvaluateStaticAssertMessageAsString(AssertMessage, Str, Context, 17419 /*ErrorOnInvalidMessage=*/false); 17420 } 17421 17422 // CWG2518 17423 // [dcl.pre]/p10 If [...] the expression is evaluated in the context of a 17424 // template definition, the declaration has no effect. 17425 bool InTemplateDefinition = 17426 getLangOpts().CPlusPlus && CurContext->isDependentContext(); 17427 17428 if (!Failed && !Cond && !InTemplateDefinition) { 17429 SmallString<256> MsgBuffer; 17430 llvm::raw_svector_ostream Msg(MsgBuffer); 17431 bool HasMessage = AssertMessage; 17432 if (AssertMessage) { 17433 std::string Str; 17434 HasMessage = 17435 EvaluateStaticAssertMessageAsString( 17436 AssertMessage, Str, Context, /*ErrorOnInvalidMessage=*/true) || 17437 !Str.empty(); 17438 Msg << Str; 17439 } 17440 Expr *InnerCond = nullptr; 17441 std::string InnerCondDescription; 17442 std::tie(InnerCond, InnerCondDescription) = 17443 findFailedBooleanCondition(Converted.get()); 17444 if (InnerCond && isa<ConceptSpecializationExpr>(InnerCond)) { 17445 // Drill down into concept specialization expressions to see why they 17446 // weren't satisfied. 17447 Diag(AssertExpr->getBeginLoc(), diag::err_static_assert_failed) 17448 << !HasMessage << Msg.str() << AssertExpr->getSourceRange(); 17449 ConstraintSatisfaction Satisfaction; 17450 if (!CheckConstraintSatisfaction(InnerCond, Satisfaction)) 17451 DiagnoseUnsatisfiedConstraint(Satisfaction); 17452 } else if (InnerCond && !isa<CXXBoolLiteralExpr>(InnerCond) 17453 && !isa<IntegerLiteral>(InnerCond)) { 17454 Diag(InnerCond->getBeginLoc(), 17455 diag::err_static_assert_requirement_failed) 17456 << InnerCondDescription << !HasMessage << Msg.str() 17457 << InnerCond->getSourceRange(); 17458 DiagnoseStaticAssertDetails(InnerCond); 17459 } else { 17460 Diag(AssertExpr->getBeginLoc(), diag::err_static_assert_failed) 17461 << !HasMessage << Msg.str() << AssertExpr->getSourceRange(); 17462 PrintContextStack(); 17463 } 17464 Failed = true; 17465 } 17466 } else { 17467 ExprResult FullAssertExpr = ActOnFinishFullExpr(AssertExpr, StaticAssertLoc, 17468 /*DiscardedValue*/false, 17469 /*IsConstexpr*/true); 17470 if (FullAssertExpr.isInvalid()) 17471 Failed = true; 17472 else 17473 AssertExpr = FullAssertExpr.get(); 17474 } 17475 17476 Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc, 17477 AssertExpr, AssertMessage, RParenLoc, 17478 Failed); 17479 17480 CurContext->addDecl(Decl); 17481 return Decl; 17482 } 17483 17484 DeclResult Sema::ActOnTemplatedFriendTag( 17485 Scope *S, SourceLocation FriendLoc, unsigned TagSpec, SourceLocation TagLoc, 17486 CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc, 17487 SourceLocation EllipsisLoc, const ParsedAttributesView &Attr, 17488 MultiTemplateParamsArg TempParamLists) { 17489 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 17490 17491 bool IsMemberSpecialization = false; 17492 bool Invalid = false; 17493 17494 if (TemplateParameterList *TemplateParams = 17495 MatchTemplateParametersToScopeSpecifier( 17496 TagLoc, NameLoc, SS, nullptr, TempParamLists, /*friend*/ true, 17497 IsMemberSpecialization, Invalid)) { 17498 if (TemplateParams->size() > 0) { 17499 // This is a declaration of a class template. 17500 if (Invalid) 17501 return true; 17502 17503 return CheckClassTemplate(S, TagSpec, TagUseKind::Friend, TagLoc, SS, 17504 Name, NameLoc, Attr, TemplateParams, AS_public, 17505 /*ModulePrivateLoc=*/SourceLocation(), 17506 FriendLoc, TempParamLists.size() - 1, 17507 TempParamLists.data()) 17508 .get(); 17509 } else { 17510 // The "template<>" header is extraneous. 17511 Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams) 17512 << TypeWithKeyword::getTagTypeKindName(Kind) << Name; 17513 IsMemberSpecialization = true; 17514 } 17515 } 17516 17517 if (Invalid) return true; 17518 17519 bool isAllExplicitSpecializations = true; 17520 for (unsigned I = TempParamLists.size(); I-- > 0; ) { 17521 if (TempParamLists[I]->size()) { 17522 isAllExplicitSpecializations = false; 17523 break; 17524 } 17525 } 17526 17527 // FIXME: don't ignore attributes. 17528 17529 // If it's explicit specializations all the way down, just forget 17530 // about the template header and build an appropriate non-templated 17531 // friend. TODO: for source fidelity, remember the headers. 17532 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 17533 if (isAllExplicitSpecializations) { 17534 if (SS.isEmpty()) { 17535 bool Owned = false; 17536 bool IsDependent = false; 17537 return ActOnTag(S, TagSpec, TagUseKind::Friend, TagLoc, SS, Name, NameLoc, 17538 Attr, AS_public, 17539 /*ModulePrivateLoc=*/SourceLocation(), 17540 MultiTemplateParamsArg(), Owned, IsDependent, 17541 /*ScopedEnumKWLoc=*/SourceLocation(), 17542 /*ScopedEnumUsesClassTag=*/false, 17543 /*UnderlyingType=*/TypeResult(), 17544 /*IsTypeSpecifier=*/false, 17545 /*IsTemplateParamOrArg=*/false, /*OOK=*/OOK_Outside); 17546 } 17547 17548 ElaboratedTypeKeyword Keyword 17549 = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 17550 QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc, 17551 *Name, NameLoc); 17552 if (T.isNull()) 17553 return true; 17554 17555 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 17556 if (isa<DependentNameType>(T)) { 17557 DependentNameTypeLoc TL = 17558 TSI->getTypeLoc().castAs<DependentNameTypeLoc>(); 17559 TL.setElaboratedKeywordLoc(TagLoc); 17560 TL.setQualifierLoc(QualifierLoc); 17561 TL.setNameLoc(NameLoc); 17562 } else { 17563 ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>(); 17564 TL.setElaboratedKeywordLoc(TagLoc); 17565 TL.setQualifierLoc(QualifierLoc); 17566 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(NameLoc); 17567 } 17568 17569 FriendDecl *Friend = 17570 FriendDecl::Create(Context, CurContext, NameLoc, TSI, FriendLoc, 17571 EllipsisLoc, TempParamLists); 17572 Friend->setAccess(AS_public); 17573 CurContext->addDecl(Friend); 17574 return Friend; 17575 } 17576 17577 assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?"); 17578 17579 // CWG 2917: if it (= the friend-type-specifier) is a pack expansion 17580 // (13.7.4 [temp.variadic]), any packs expanded by that pack expansion 17581 // shall not have been introduced by the template-declaration. 17582 SmallVector<UnexpandedParameterPack, 1> Unexpanded; 17583 collectUnexpandedParameterPacks(QualifierLoc, Unexpanded); 17584 unsigned FriendDeclDepth = TempParamLists.front()->getDepth(); 17585 for (UnexpandedParameterPack &U : Unexpanded) { 17586 if (getDepthAndIndex(U).first >= FriendDeclDepth) { 17587 auto *ND = dyn_cast<NamedDecl *>(U.first); 17588 if (!ND) 17589 ND = cast<const TemplateTypeParmType *>(U.first)->getDecl(); 17590 Diag(U.second, diag::friend_template_decl_malformed_pack_expansion) 17591 << ND->getDeclName() << SourceRange(SS.getBeginLoc(), EllipsisLoc); 17592 return true; 17593 } 17594 } 17595 17596 // Handle the case of a templated-scope friend class. e.g. 17597 // template <class T> class A<T>::B; 17598 // FIXME: we don't support these right now. 17599 Diag(NameLoc, diag::warn_template_qualified_friend_unsupported) 17600 << SS.getScopeRep() << SS.getRange() << cast<CXXRecordDecl>(CurContext); 17601 ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 17602 QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name); 17603 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 17604 DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>(); 17605 TL.setElaboratedKeywordLoc(TagLoc); 17606 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 17607 TL.setNameLoc(NameLoc); 17608 17609 FriendDecl *Friend = 17610 FriendDecl::Create(Context, CurContext, NameLoc, TSI, FriendLoc, 17611 EllipsisLoc, TempParamLists); 17612 Friend->setAccess(AS_public); 17613 Friend->setUnsupportedFriend(true); 17614 CurContext->addDecl(Friend); 17615 return Friend; 17616 } 17617 17618 Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS, 17619 MultiTemplateParamsArg TempParams, 17620 SourceLocation EllipsisLoc) { 17621 SourceLocation Loc = DS.getBeginLoc(); 17622 SourceLocation FriendLoc = DS.getFriendSpecLoc(); 17623 17624 assert(DS.isFriendSpecified()); 17625 assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified); 17626 17627 // C++ [class.friend]p3: 17628 // A friend declaration that does not declare a function shall have one of 17629 // the following forms: 17630 // friend elaborated-type-specifier ; 17631 // friend simple-type-specifier ; 17632 // friend typename-specifier ; 17633 // 17634 // If the friend keyword isn't first, or if the declarations has any type 17635 // qualifiers, then the declaration doesn't have that form. 17636 if (getLangOpts().CPlusPlus11 && !DS.isFriendSpecifiedFirst()) 17637 Diag(FriendLoc, diag::err_friend_not_first_in_declaration); 17638 if (DS.getTypeQualifiers()) { 17639 if (DS.getTypeQualifiers() & DeclSpec::TQ_const) 17640 Diag(DS.getConstSpecLoc(), diag::err_friend_decl_spec) << "const"; 17641 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile) 17642 Diag(DS.getVolatileSpecLoc(), diag::err_friend_decl_spec) << "volatile"; 17643 if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict) 17644 Diag(DS.getRestrictSpecLoc(), diag::err_friend_decl_spec) << "restrict"; 17645 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic) 17646 Diag(DS.getAtomicSpecLoc(), diag::err_friend_decl_spec) << "_Atomic"; 17647 if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned) 17648 Diag(DS.getUnalignedSpecLoc(), diag::err_friend_decl_spec) << "__unaligned"; 17649 } 17650 17651 // Try to convert the decl specifier to a type. This works for 17652 // friend templates because ActOnTag never produces a ClassTemplateDecl 17653 // for a TagUseKind::Friend. 17654 Declarator TheDeclarator(DS, ParsedAttributesView::none(), 17655 DeclaratorContext::Member); 17656 TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator); 17657 QualType T = TSI->getType(); 17658 if (TheDeclarator.isInvalidType()) 17659 return nullptr; 17660 17661 // If '...' is present, the type must contain an unexpanded parameter 17662 // pack, and vice versa. 17663 bool Invalid = false; 17664 if (EllipsisLoc.isInvalid() && 17665 DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration)) 17666 return nullptr; 17667 if (EllipsisLoc.isValid() && 17668 !TSI->getType()->containsUnexpandedParameterPack()) { 17669 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) 17670 << TSI->getTypeLoc().getSourceRange(); 17671 Invalid = true; 17672 } 17673 17674 if (!T->isElaboratedTypeSpecifier()) { 17675 if (TempParams.size()) { 17676 // C++23 [dcl.pre]p5: 17677 // In a simple-declaration, the optional init-declarator-list can be 17678 // omitted only when declaring a class or enumeration, that is, when 17679 // the decl-specifier-seq contains either a class-specifier, an 17680 // elaborated-type-specifier with a class-key, or an enum-specifier. 17681 // 17682 // The declaration of a template-declaration or explicit-specialization 17683 // is never a member-declaration, so this must be a simple-declaration 17684 // with no init-declarator-list. Therefore, this is ill-formed. 17685 Diag(Loc, diag::err_tagless_friend_type_template) << DS.getSourceRange(); 17686 return nullptr; 17687 } else if (const RecordDecl *RD = T->getAsRecordDecl()) { 17688 SmallString<16> InsertionText(" "); 17689 InsertionText += RD->getKindName(); 17690 17691 Diag(Loc, getLangOpts().CPlusPlus11 17692 ? diag::warn_cxx98_compat_unelaborated_friend_type 17693 : diag::ext_unelaborated_friend_type) 17694 << (unsigned)RD->getTagKind() << T 17695 << FixItHint::CreateInsertion(getLocForEndOfToken(FriendLoc), 17696 InsertionText); 17697 } else { 17698 Diag(FriendLoc, getLangOpts().CPlusPlus11 17699 ? diag::warn_cxx98_compat_nonclass_type_friend 17700 : diag::ext_nonclass_type_friend) 17701 << T << DS.getSourceRange(); 17702 } 17703 } 17704 17705 // C++98 [class.friend]p1: A friend of a class is a function 17706 // or class that is not a member of the class . . . 17707 // This is fixed in DR77, which just barely didn't make the C++03 17708 // deadline. It's also a very silly restriction that seriously 17709 // affects inner classes and which nobody else seems to implement; 17710 // thus we never diagnose it, not even in -pedantic. 17711 // 17712 // But note that we could warn about it: it's always useless to 17713 // friend one of your own members (it's not, however, worthless to 17714 // friend a member of an arbitrary specialization of your template). 17715 17716 Decl *D; 17717 if (!TempParams.empty()) 17718 // TODO: Support variadic friend template decls? 17719 D = FriendTemplateDecl::Create(Context, CurContext, Loc, TempParams, TSI, 17720 FriendLoc); 17721 else 17722 D = FriendDecl::Create(Context, CurContext, TSI->getTypeLoc().getBeginLoc(), 17723 TSI, FriendLoc, EllipsisLoc); 17724 17725 if (!D) 17726 return nullptr; 17727 17728 D->setAccess(AS_public); 17729 CurContext->addDecl(D); 17730 17731 if (Invalid) 17732 D->setInvalidDecl(); 17733 17734 return D; 17735 } 17736 17737 NamedDecl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D, 17738 MultiTemplateParamsArg TemplateParams) { 17739 const DeclSpec &DS = D.getDeclSpec(); 17740 17741 assert(DS.isFriendSpecified()); 17742 assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified); 17743 17744 SourceLocation Loc = D.getIdentifierLoc(); 17745 TypeSourceInfo *TInfo = GetTypeForDeclarator(D); 17746 17747 // C++ [class.friend]p1 17748 // A friend of a class is a function or class.... 17749 // Note that this sees through typedefs, which is intended. 17750 // It *doesn't* see through dependent types, which is correct 17751 // according to [temp.arg.type]p3: 17752 // If a declaration acquires a function type through a 17753 // type dependent on a template-parameter and this causes 17754 // a declaration that does not use the syntactic form of a 17755 // function declarator to have a function type, the program 17756 // is ill-formed. 17757 if (!TInfo->getType()->isFunctionType()) { 17758 Diag(Loc, diag::err_unexpected_friend); 17759 17760 // It might be worthwhile to try to recover by creating an 17761 // appropriate declaration. 17762 return nullptr; 17763 } 17764 17765 // C++ [namespace.memdef]p3 17766 // - If a friend declaration in a non-local class first declares a 17767 // class or function, the friend class or function is a member 17768 // of the innermost enclosing namespace. 17769 // - The name of the friend is not found by simple name lookup 17770 // until a matching declaration is provided in that namespace 17771 // scope (either before or after the class declaration granting 17772 // friendship). 17773 // - If a friend function is called, its name may be found by the 17774 // name lookup that considers functions from namespaces and 17775 // classes associated with the types of the function arguments. 17776 // - When looking for a prior declaration of a class or a function 17777 // declared as a friend, scopes outside the innermost enclosing 17778 // namespace scope are not considered. 17779 17780 CXXScopeSpec &SS = D.getCXXScopeSpec(); 17781 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 17782 assert(NameInfo.getName()); 17783 17784 // Check for unexpanded parameter packs. 17785 if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) || 17786 DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) || 17787 DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration)) 17788 return nullptr; 17789 17790 // The context we found the declaration in, or in which we should 17791 // create the declaration. 17792 DeclContext *DC; 17793 Scope *DCScope = S; 17794 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, 17795 RedeclarationKind::ForExternalRedeclaration); 17796 17797 bool isTemplateId = D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId; 17798 17799 // There are five cases here. 17800 // - There's no scope specifier and we're in a local class. Only look 17801 // for functions declared in the immediately-enclosing block scope. 17802 // We recover from invalid scope qualifiers as if they just weren't there. 17803 FunctionDecl *FunctionContainingLocalClass = nullptr; 17804 if ((SS.isInvalid() || !SS.isSet()) && 17805 (FunctionContainingLocalClass = 17806 cast<CXXRecordDecl>(CurContext)->isLocalClass())) { 17807 // C++11 [class.friend]p11: 17808 // If a friend declaration appears in a local class and the name 17809 // specified is an unqualified name, a prior declaration is 17810 // looked up without considering scopes that are outside the 17811 // innermost enclosing non-class scope. For a friend function 17812 // declaration, if there is no prior declaration, the program is 17813 // ill-formed. 17814 17815 // Find the innermost enclosing non-class scope. This is the block 17816 // scope containing the local class definition (or for a nested class, 17817 // the outer local class). 17818 DCScope = S->getFnParent(); 17819 17820 // Look up the function name in the scope. 17821 Previous.clear(LookupLocalFriendName); 17822 LookupName(Previous, S, /*AllowBuiltinCreation*/false); 17823 17824 if (!Previous.empty()) { 17825 // All possible previous declarations must have the same context: 17826 // either they were declared at block scope or they are members of 17827 // one of the enclosing local classes. 17828 DC = Previous.getRepresentativeDecl()->getDeclContext(); 17829 } else { 17830 // This is ill-formed, but provide the context that we would have 17831 // declared the function in, if we were permitted to, for error recovery. 17832 DC = FunctionContainingLocalClass; 17833 } 17834 adjustContextForLocalExternDecl(DC); 17835 17836 // - There's no scope specifier, in which case we just go to the 17837 // appropriate scope and look for a function or function template 17838 // there as appropriate. 17839 } else if (SS.isInvalid() || !SS.isSet()) { 17840 // C++11 [namespace.memdef]p3: 17841 // If the name in a friend declaration is neither qualified nor 17842 // a template-id and the declaration is a function or an 17843 // elaborated-type-specifier, the lookup to determine whether 17844 // the entity has been previously declared shall not consider 17845 // any scopes outside the innermost enclosing namespace. 17846 17847 // Find the appropriate context according to the above. 17848 DC = CurContext; 17849 17850 // Skip class contexts. If someone can cite chapter and verse 17851 // for this behavior, that would be nice --- it's what GCC and 17852 // EDG do, and it seems like a reasonable intent, but the spec 17853 // really only says that checks for unqualified existing 17854 // declarations should stop at the nearest enclosing namespace, 17855 // not that they should only consider the nearest enclosing 17856 // namespace. 17857 while (DC->isRecord()) 17858 DC = DC->getParent(); 17859 17860 DeclContext *LookupDC = DC->getNonTransparentContext(); 17861 while (true) { 17862 LookupQualifiedName(Previous, LookupDC); 17863 17864 if (!Previous.empty()) { 17865 DC = LookupDC; 17866 break; 17867 } 17868 17869 if (isTemplateId) { 17870 if (isa<TranslationUnitDecl>(LookupDC)) break; 17871 } else { 17872 if (LookupDC->isFileContext()) break; 17873 } 17874 LookupDC = LookupDC->getParent(); 17875 } 17876 17877 DCScope = getScopeForDeclContext(S, DC); 17878 17879 // - There's a non-dependent scope specifier, in which case we 17880 // compute it and do a previous lookup there for a function 17881 // or function template. 17882 } else if (!SS.getScopeRep()->isDependent()) { 17883 DC = computeDeclContext(SS); 17884 if (!DC) return nullptr; 17885 17886 if (RequireCompleteDeclContext(SS, DC)) return nullptr; 17887 17888 LookupQualifiedName(Previous, DC); 17889 17890 // C++ [class.friend]p1: A friend of a class is a function or 17891 // class that is not a member of the class . . . 17892 if (DC->Equals(CurContext)) 17893 Diag(DS.getFriendSpecLoc(), 17894 getLangOpts().CPlusPlus11 ? 17895 diag::warn_cxx98_compat_friend_is_member : 17896 diag::err_friend_is_member); 17897 17898 // - There's a scope specifier that does not match any template 17899 // parameter lists, in which case we use some arbitrary context, 17900 // create a method or method template, and wait for instantiation. 17901 // - There's a scope specifier that does match some template 17902 // parameter lists, which we don't handle right now. 17903 } else { 17904 DC = CurContext; 17905 assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?"); 17906 } 17907 17908 if (!DC->isRecord()) { 17909 int DiagArg = -1; 17910 switch (D.getName().getKind()) { 17911 case UnqualifiedIdKind::IK_ConstructorTemplateId: 17912 case UnqualifiedIdKind::IK_ConstructorName: 17913 DiagArg = 0; 17914 break; 17915 case UnqualifiedIdKind::IK_DestructorName: 17916 DiagArg = 1; 17917 break; 17918 case UnqualifiedIdKind::IK_ConversionFunctionId: 17919 DiagArg = 2; 17920 break; 17921 case UnqualifiedIdKind::IK_DeductionGuideName: 17922 DiagArg = 3; 17923 break; 17924 case UnqualifiedIdKind::IK_Identifier: 17925 case UnqualifiedIdKind::IK_ImplicitSelfParam: 17926 case UnqualifiedIdKind::IK_LiteralOperatorId: 17927 case UnqualifiedIdKind::IK_OperatorFunctionId: 17928 case UnqualifiedIdKind::IK_TemplateId: 17929 break; 17930 } 17931 // This implies that it has to be an operator or function. 17932 if (DiagArg >= 0) { 17933 Diag(Loc, diag::err_introducing_special_friend) << DiagArg; 17934 return nullptr; 17935 } 17936 } 17937 17938 // FIXME: This is an egregious hack to cope with cases where the scope stack 17939 // does not contain the declaration context, i.e., in an out-of-line 17940 // definition of a class. 17941 Scope FakeDCScope(S, Scope::DeclScope, Diags); 17942 if (!DCScope) { 17943 FakeDCScope.setEntity(DC); 17944 DCScope = &FakeDCScope; 17945 } 17946 17947 bool AddToScope = true; 17948 NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous, 17949 TemplateParams, AddToScope); 17950 if (!ND) return nullptr; 17951 17952 assert(ND->getLexicalDeclContext() == CurContext); 17953 17954 // If we performed typo correction, we might have added a scope specifier 17955 // and changed the decl context. 17956 DC = ND->getDeclContext(); 17957 17958 // Add the function declaration to the appropriate lookup tables, 17959 // adjusting the redeclarations list as necessary. We don't 17960 // want to do this yet if the friending class is dependent. 17961 // 17962 // Also update the scope-based lookup if the target context's 17963 // lookup context is in lexical scope. 17964 if (!CurContext->isDependentContext()) { 17965 DC = DC->getRedeclContext(); 17966 DC->makeDeclVisibleInContext(ND); 17967 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 17968 PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false); 17969 } 17970 17971 FriendDecl *FrD = FriendDecl::Create(Context, CurContext, 17972 D.getIdentifierLoc(), ND, 17973 DS.getFriendSpecLoc()); 17974 FrD->setAccess(AS_public); 17975 CurContext->addDecl(FrD); 17976 17977 if (ND->isInvalidDecl()) { 17978 FrD->setInvalidDecl(); 17979 } else { 17980 if (DC->isRecord()) CheckFriendAccess(ND); 17981 17982 FunctionDecl *FD; 17983 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND)) 17984 FD = FTD->getTemplatedDecl(); 17985 else 17986 FD = cast<FunctionDecl>(ND); 17987 17988 // C++ [class.friend]p6: 17989 // A function may be defined in a friend declaration of a class if and 17990 // only if the class is a non-local class, and the function name is 17991 // unqualified. 17992 if (D.isFunctionDefinition()) { 17993 // Qualified friend function definition. 17994 if (SS.isNotEmpty()) { 17995 // FIXME: We should only do this if the scope specifier names the 17996 // innermost enclosing namespace; otherwise the fixit changes the 17997 // meaning of the code. 17998 SemaDiagnosticBuilder DB = 17999 Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def); 18000 18001 DB << SS.getScopeRep(); 18002 if (DC->isFileContext()) 18003 DB << FixItHint::CreateRemoval(SS.getRange()); 18004 18005 // Friend function defined in a local class. 18006 } else if (FunctionContainingLocalClass) { 18007 Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class); 18008 18009 // Per [basic.pre]p4, a template-id is not a name. Therefore, if we have 18010 // a template-id, the function name is not unqualified because these is 18011 // no name. While the wording requires some reading in-between the 18012 // lines, GCC, MSVC, and EDG all consider a friend function 18013 // specialization definitions // to be de facto explicit specialization 18014 // and diagnose them as such. 18015 } else if (isTemplateId) { 18016 Diag(NameInfo.getBeginLoc(), diag::err_friend_specialization_def); 18017 } 18018 } 18019 18020 // C++11 [dcl.fct.default]p4: If a friend declaration specifies a 18021 // default argument expression, that declaration shall be a definition 18022 // and shall be the only declaration of the function or function 18023 // template in the translation unit. 18024 if (functionDeclHasDefaultArgument(FD)) { 18025 // We can't look at FD->getPreviousDecl() because it may not have been set 18026 // if we're in a dependent context. If the function is known to be a 18027 // redeclaration, we will have narrowed Previous down to the right decl. 18028 if (D.isRedeclaration()) { 18029 Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_redeclared); 18030 Diag(Previous.getRepresentativeDecl()->getLocation(), 18031 diag::note_previous_declaration); 18032 } else if (!D.isFunctionDefinition()) 18033 Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_must_be_def); 18034 } 18035 18036 // Mark templated-scope function declarations as unsupported. 18037 if (FD->getNumTemplateParameterLists() && SS.isValid()) { 18038 Diag(FD->getLocation(), diag::warn_template_qualified_friend_unsupported) 18039 << SS.getScopeRep() << SS.getRange() 18040 << cast<CXXRecordDecl>(CurContext); 18041 FrD->setUnsupportedFriend(true); 18042 } 18043 } 18044 18045 warnOnReservedIdentifier(ND); 18046 18047 return ND; 18048 } 18049 18050 void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc, 18051 StringLiteral *Message) { 18052 AdjustDeclIfTemplate(Dcl); 18053 18054 FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(Dcl); 18055 if (!Fn) { 18056 Diag(DelLoc, diag::err_deleted_non_function); 18057 return; 18058 } 18059 18060 // Deleted function does not have a body. 18061 Fn->setWillHaveBody(false); 18062 18063 if (const FunctionDecl *Prev = Fn->getPreviousDecl()) { 18064 // Don't consider the implicit declaration we generate for explicit 18065 // specializations. FIXME: Do not generate these implicit declarations. 18066 if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization || 18067 Prev->getPreviousDecl()) && 18068 !Prev->isDefined()) { 18069 Diag(DelLoc, diag::err_deleted_decl_not_first); 18070 Diag(Prev->getLocation().isInvalid() ? DelLoc : Prev->getLocation(), 18071 Prev->isImplicit() ? diag::note_previous_implicit_declaration 18072 : diag::note_previous_declaration); 18073 // We can't recover from this; the declaration might have already 18074 // been used. 18075 Fn->setInvalidDecl(); 18076 return; 18077 } 18078 18079 // To maintain the invariant that functions are only deleted on their first 18080 // declaration, mark the implicitly-instantiated declaration of the 18081 // explicitly-specialized function as deleted instead of marking the 18082 // instantiated redeclaration. 18083 Fn = Fn->getCanonicalDecl(); 18084 } 18085 18086 // dllimport/dllexport cannot be deleted. 18087 if (const InheritableAttr *DLLAttr = getDLLAttr(Fn)) { 18088 Diag(Fn->getLocation(), diag::err_attribute_dll_deleted) << DLLAttr; 18089 Fn->setInvalidDecl(); 18090 } 18091 18092 // C++11 [basic.start.main]p3: 18093 // A program that defines main as deleted [...] is ill-formed. 18094 if (Fn->isMain()) 18095 Diag(DelLoc, diag::err_deleted_main); 18096 18097 // C++11 [dcl.fct.def.delete]p4: 18098 // A deleted function is implicitly inline. 18099 Fn->setImplicitlyInline(); 18100 Fn->setDeletedAsWritten(true, Message); 18101 } 18102 18103 void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) { 18104 if (!Dcl || Dcl->isInvalidDecl()) 18105 return; 18106 18107 auto *FD = dyn_cast<FunctionDecl>(Dcl); 18108 if (!FD) { 18109 if (auto *FTD = dyn_cast<FunctionTemplateDecl>(Dcl)) { 18110 if (getDefaultedFunctionKind(FTD->getTemplatedDecl()).isComparison()) { 18111 Diag(DefaultLoc, diag::err_defaulted_comparison_template); 18112 return; 18113 } 18114 } 18115 18116 Diag(DefaultLoc, diag::err_default_special_members) 18117 << getLangOpts().CPlusPlus20; 18118 return; 18119 } 18120 18121 // Reject if this can't possibly be a defaultable function. 18122 DefaultedFunctionKind DefKind = getDefaultedFunctionKind(FD); 18123 if (!DefKind && 18124 // A dependent function that doesn't locally look defaultable can 18125 // still instantiate to a defaultable function if it's a constructor 18126 // or assignment operator. 18127 (!FD->isDependentContext() || 18128 (!isa<CXXConstructorDecl>(FD) && 18129 FD->getDeclName().getCXXOverloadedOperator() != OO_Equal))) { 18130 Diag(DefaultLoc, diag::err_default_special_members) 18131 << getLangOpts().CPlusPlus20; 18132 return; 18133 } 18134 18135 // Issue compatibility warning. We already warned if the operator is 18136 // 'operator<=>' when parsing the '<=>' token. 18137 if (DefKind.isComparison() && 18138 DefKind.asComparison() != DefaultedComparisonKind::ThreeWay) { 18139 Diag(DefaultLoc, getLangOpts().CPlusPlus20 18140 ? diag::warn_cxx17_compat_defaulted_comparison 18141 : diag::ext_defaulted_comparison); 18142 } 18143 18144 FD->setDefaulted(); 18145 FD->setExplicitlyDefaulted(); 18146 FD->setDefaultLoc(DefaultLoc); 18147 18148 // Defer checking functions that are defaulted in a dependent context. 18149 if (FD->isDependentContext()) 18150 return; 18151 18152 // Unset that we will have a body for this function. We might not, 18153 // if it turns out to be trivial, and we don't need this marking now 18154 // that we've marked it as defaulted. 18155 FD->setWillHaveBody(false); 18156 18157 if (DefKind.isComparison()) { 18158 // If this comparison's defaulting occurs within the definition of its 18159 // lexical class context, we have to do the checking when complete. 18160 if (auto const *RD = dyn_cast<CXXRecordDecl>(FD->getLexicalDeclContext())) 18161 if (!RD->isCompleteDefinition()) 18162 return; 18163 } 18164 18165 // If this member fn was defaulted on its first declaration, we will have 18166 // already performed the checking in CheckCompletedCXXClass. Such a 18167 // declaration doesn't trigger an implicit definition. 18168 if (isa<CXXMethodDecl>(FD)) { 18169 const FunctionDecl *Primary = FD; 18170 if (const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern()) 18171 // Ask the template instantiation pattern that actually had the 18172 // '= default' on it. 18173 Primary = Pattern; 18174 if (Primary->getCanonicalDecl()->isDefaulted()) 18175 return; 18176 } 18177 18178 if (DefKind.isComparison()) { 18179 if (CheckExplicitlyDefaultedComparison(nullptr, FD, DefKind.asComparison())) 18180 FD->setInvalidDecl(); 18181 else 18182 DefineDefaultedComparison(DefaultLoc, FD, DefKind.asComparison()); 18183 } else { 18184 auto *MD = cast<CXXMethodDecl>(FD); 18185 18186 if (CheckExplicitlyDefaultedSpecialMember(MD, DefKind.asSpecialMember(), 18187 DefaultLoc)) 18188 MD->setInvalidDecl(); 18189 else 18190 DefineDefaultedFunction(*this, MD, DefaultLoc); 18191 } 18192 } 18193 18194 static void SearchForReturnInStmt(Sema &Self, Stmt *S) { 18195 for (Stmt *SubStmt : S->children()) { 18196 if (!SubStmt) 18197 continue; 18198 if (isa<ReturnStmt>(SubStmt)) 18199 Self.Diag(SubStmt->getBeginLoc(), 18200 diag::err_return_in_constructor_handler); 18201 if (!isa<Expr>(SubStmt)) 18202 SearchForReturnInStmt(Self, SubStmt); 18203 } 18204 } 18205 18206 void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) { 18207 for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) { 18208 CXXCatchStmt *Handler = TryBlock->getHandler(I); 18209 SearchForReturnInStmt(*this, Handler); 18210 } 18211 } 18212 18213 void Sema::SetFunctionBodyKind(Decl *D, SourceLocation Loc, FnBodyKind BodyKind, 18214 StringLiteral *DeletedMessage) { 18215 switch (BodyKind) { 18216 case FnBodyKind::Delete: 18217 SetDeclDeleted(D, Loc, DeletedMessage); 18218 break; 18219 case FnBodyKind::Default: 18220 SetDeclDefaulted(D, Loc); 18221 break; 18222 case FnBodyKind::Other: 18223 llvm_unreachable( 18224 "Parsed function body should be '= delete;' or '= default;'"); 18225 } 18226 } 18227 18228 bool Sema::CheckOverridingFunctionAttributes(CXXMethodDecl *New, 18229 const CXXMethodDecl *Old) { 18230 const auto *NewFT = New->getType()->castAs<FunctionProtoType>(); 18231 const auto *OldFT = Old->getType()->castAs<FunctionProtoType>(); 18232 18233 if (OldFT->hasExtParameterInfos()) { 18234 for (unsigned I = 0, E = OldFT->getNumParams(); I != E; ++I) 18235 // A parameter of the overriding method should be annotated with noescape 18236 // if the corresponding parameter of the overridden method is annotated. 18237 if (OldFT->getExtParameterInfo(I).isNoEscape() && 18238 !NewFT->getExtParameterInfo(I).isNoEscape()) { 18239 Diag(New->getParamDecl(I)->getLocation(), 18240 diag::warn_overriding_method_missing_noescape); 18241 Diag(Old->getParamDecl(I)->getLocation(), 18242 diag::note_overridden_marked_noescape); 18243 } 18244 } 18245 18246 // SME attributes must match when overriding a function declaration. 18247 if (IsInvalidSMECallConversion(Old->getType(), New->getType())) { 18248 Diag(New->getLocation(), diag::err_conflicting_overriding_attributes) 18249 << New << New->getType() << Old->getType(); 18250 Diag(Old->getLocation(), diag::note_overridden_virtual_function); 18251 return true; 18252 } 18253 18254 // Virtual overrides must have the same code_seg. 18255 const auto *OldCSA = Old->getAttr<CodeSegAttr>(); 18256 const auto *NewCSA = New->getAttr<CodeSegAttr>(); 18257 if ((NewCSA || OldCSA) && 18258 (!OldCSA || !NewCSA || NewCSA->getName() != OldCSA->getName())) { 18259 Diag(New->getLocation(), diag::err_mismatched_code_seg_override); 18260 Diag(Old->getLocation(), diag::note_previous_declaration); 18261 return true; 18262 } 18263 18264 // Virtual overrides: check for matching effects. 18265 if (Context.hasAnyFunctionEffects()) { 18266 const auto OldFX = Old->getFunctionEffects(); 18267 const auto NewFXOrig = New->getFunctionEffects(); 18268 18269 if (OldFX != NewFXOrig) { 18270 FunctionEffectSet NewFX(NewFXOrig); 18271 const auto Diffs = FunctionEffectDiffVector(OldFX, NewFX); 18272 FunctionEffectSet::Conflicts Errs; 18273 for (const auto &Diff : Diffs) { 18274 switch (Diff.shouldDiagnoseMethodOverride(*Old, OldFX, *New, NewFX)) { 18275 case FunctionEffectDiff::OverrideResult::NoAction: 18276 break; 18277 case FunctionEffectDiff::OverrideResult::Warn: 18278 Diag(New->getLocation(), diag::warn_mismatched_func_effect_override) 18279 << Diff.effectName(); 18280 Diag(Old->getLocation(), diag::note_overridden_virtual_function) 18281 << Old->getReturnTypeSourceRange(); 18282 break; 18283 case FunctionEffectDiff::OverrideResult::Merge: { 18284 NewFX.insert(Diff.Old.value(), Errs); 18285 const auto *NewFT = New->getType()->castAs<FunctionProtoType>(); 18286 FunctionProtoType::ExtProtoInfo EPI = NewFT->getExtProtoInfo(); 18287 EPI.FunctionEffects = FunctionEffectsRef(NewFX); 18288 QualType ModQT = Context.getFunctionType(NewFT->getReturnType(), 18289 NewFT->getParamTypes(), EPI); 18290 New->setType(ModQT); 18291 break; 18292 } 18293 } 18294 } 18295 if (!Errs.empty()) 18296 diagnoseFunctionEffectMergeConflicts(Errs, New->getLocation(), 18297 Old->getLocation()); 18298 } 18299 } 18300 18301 CallingConv NewCC = NewFT->getCallConv(), OldCC = OldFT->getCallConv(); 18302 18303 // If the calling conventions match, everything is fine 18304 if (NewCC == OldCC) 18305 return false; 18306 18307 // If the calling conventions mismatch because the new function is static, 18308 // suppress the calling convention mismatch error; the error about static 18309 // function override (err_static_overrides_virtual from 18310 // Sema::CheckFunctionDeclaration) is more clear. 18311 if (New->getStorageClass() == SC_Static) 18312 return false; 18313 18314 Diag(New->getLocation(), 18315 diag::err_conflicting_overriding_cc_attributes) 18316 << New->getDeclName() << New->getType() << Old->getType(); 18317 Diag(Old->getLocation(), diag::note_overridden_virtual_function); 18318 return true; 18319 } 18320 18321 bool Sema::CheckExplicitObjectOverride(CXXMethodDecl *New, 18322 const CXXMethodDecl *Old) { 18323 // CWG2553 18324 // A virtual function shall not be an explicit object member function. 18325 if (!New->isExplicitObjectMemberFunction()) 18326 return true; 18327 Diag(New->getParamDecl(0)->getBeginLoc(), 18328 diag::err_explicit_object_parameter_nonmember) 18329 << New->getSourceRange() << /*virtual*/ 1 << /*IsLambda*/ false; 18330 Diag(Old->getLocation(), diag::note_overridden_virtual_function); 18331 New->setInvalidDecl(); 18332 return false; 18333 } 18334 18335 bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New, 18336 const CXXMethodDecl *Old) { 18337 QualType NewTy = New->getType()->castAs<FunctionType>()->getReturnType(); 18338 QualType OldTy = Old->getType()->castAs<FunctionType>()->getReturnType(); 18339 18340 if (Context.hasSameType(NewTy, OldTy) || 18341 NewTy->isDependentType() || OldTy->isDependentType()) 18342 return false; 18343 18344 // Check if the return types are covariant 18345 QualType NewClassTy, OldClassTy; 18346 18347 /// Both types must be pointers or references to classes. 18348 if (const PointerType *NewPT = NewTy->getAs<PointerType>()) { 18349 if (const PointerType *OldPT = OldTy->getAs<PointerType>()) { 18350 NewClassTy = NewPT->getPointeeType(); 18351 OldClassTy = OldPT->getPointeeType(); 18352 } 18353 } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) { 18354 if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) { 18355 if (NewRT->getTypeClass() == OldRT->getTypeClass()) { 18356 NewClassTy = NewRT->getPointeeType(); 18357 OldClassTy = OldRT->getPointeeType(); 18358 } 18359 } 18360 } 18361 18362 // The return types aren't either both pointers or references to a class type. 18363 if (NewClassTy.isNull() || !NewClassTy->isStructureOrClassType()) { 18364 Diag(New->getLocation(), 18365 diag::err_different_return_type_for_overriding_virtual_function) 18366 << New->getDeclName() << NewTy << OldTy 18367 << New->getReturnTypeSourceRange(); 18368 Diag(Old->getLocation(), diag::note_overridden_virtual_function) 18369 << Old->getReturnTypeSourceRange(); 18370 18371 return true; 18372 } 18373 18374 if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) { 18375 // C++14 [class.virtual]p8: 18376 // If the class type in the covariant return type of D::f differs from 18377 // that of B::f, the class type in the return type of D::f shall be 18378 // complete at the point of declaration of D::f or shall be the class 18379 // type D. 18380 if (const RecordType *RT = NewClassTy->getAs<RecordType>()) { 18381 if (!RT->isBeingDefined() && 18382 RequireCompleteType(New->getLocation(), NewClassTy, 18383 diag::err_covariant_return_incomplete, 18384 New->getDeclName())) 18385 return true; 18386 } 18387 18388 // Check if the new class derives from the old class. 18389 if (!IsDerivedFrom(New->getLocation(), NewClassTy, OldClassTy)) { 18390 Diag(New->getLocation(), diag::err_covariant_return_not_derived) 18391 << New->getDeclName() << NewTy << OldTy 18392 << New->getReturnTypeSourceRange(); 18393 Diag(Old->getLocation(), diag::note_overridden_virtual_function) 18394 << Old->getReturnTypeSourceRange(); 18395 return true; 18396 } 18397 18398 // Check if we the conversion from derived to base is valid. 18399 if (CheckDerivedToBaseConversion( 18400 NewClassTy, OldClassTy, 18401 diag::err_covariant_return_inaccessible_base, 18402 diag::err_covariant_return_ambiguous_derived_to_base_conv, 18403 New->getLocation(), New->getReturnTypeSourceRange(), 18404 New->getDeclName(), nullptr)) { 18405 // FIXME: this note won't trigger for delayed access control 18406 // diagnostics, and it's impossible to get an undelayed error 18407 // here from access control during the original parse because 18408 // the ParsingDeclSpec/ParsingDeclarator are still in scope. 18409 Diag(Old->getLocation(), diag::note_overridden_virtual_function) 18410 << Old->getReturnTypeSourceRange(); 18411 return true; 18412 } 18413 } 18414 18415 // The qualifiers of the return types must be the same. 18416 if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) { 18417 Diag(New->getLocation(), 18418 diag::err_covariant_return_type_different_qualifications) 18419 << New->getDeclName() << NewTy << OldTy 18420 << New->getReturnTypeSourceRange(); 18421 Diag(Old->getLocation(), diag::note_overridden_virtual_function) 18422 << Old->getReturnTypeSourceRange(); 18423 return true; 18424 } 18425 18426 18427 // The new class type must have the same or less qualifiers as the old type. 18428 if (!OldClassTy.isAtLeastAsQualifiedAs(NewClassTy, getASTContext())) { 18429 Diag(New->getLocation(), 18430 diag::err_covariant_return_type_class_type_not_same_or_less_qualified) 18431 << New->getDeclName() << NewTy << OldTy 18432 << New->getReturnTypeSourceRange(); 18433 Diag(Old->getLocation(), diag::note_overridden_virtual_function) 18434 << Old->getReturnTypeSourceRange(); 18435 return true; 18436 } 18437 18438 return false; 18439 } 18440 18441 bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) { 18442 SourceLocation EndLoc = InitRange.getEnd(); 18443 if (EndLoc.isValid()) 18444 Method->setRangeEnd(EndLoc); 18445 18446 if (Method->isVirtual() || Method->getParent()->isDependentContext()) { 18447 Method->setIsPureVirtual(); 18448 return false; 18449 } 18450 18451 if (!Method->isInvalidDecl()) 18452 Diag(Method->getLocation(), diag::err_non_virtual_pure) 18453 << Method->getDeclName() << InitRange; 18454 return true; 18455 } 18456 18457 void Sema::ActOnPureSpecifier(Decl *D, SourceLocation ZeroLoc) { 18458 if (D->getFriendObjectKind()) 18459 Diag(D->getLocation(), diag::err_pure_friend); 18460 else if (auto *M = dyn_cast<CXXMethodDecl>(D)) 18461 CheckPureMethod(M, ZeroLoc); 18462 else 18463 Diag(D->getLocation(), diag::err_illegal_initializer); 18464 } 18465 18466 /// Invoked when we are about to parse an initializer for the declaration 18467 /// 'Dcl'. 18468 /// 18469 /// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a 18470 /// static data member of class X, names should be looked up in the scope of 18471 /// class X. If the declaration had a scope specifier, a scope will have 18472 /// been created and passed in for this purpose. Otherwise, S will be null. 18473 void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) { 18474 assert(D && !D->isInvalidDecl()); 18475 18476 // We will always have a nested name specifier here, but this declaration 18477 // might not be out of line if the specifier names the current namespace: 18478 // extern int n; 18479 // int ::n = 0; 18480 if (S && D->isOutOfLine()) 18481 EnterDeclaratorContext(S, D->getDeclContext()); 18482 18483 PushExpressionEvaluationContext( 18484 ExpressionEvaluationContext::PotentiallyEvaluated, D); 18485 } 18486 18487 void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) { 18488 assert(D); 18489 18490 if (S && D->isOutOfLine()) 18491 ExitDeclaratorContext(S); 18492 18493 if (getLangOpts().CPlusPlus23) { 18494 // An expression or conversion is 'manifestly constant-evaluated' if it is: 18495 // [...] 18496 // - the initializer of a variable that is usable in constant expressions or 18497 // has constant initialization. 18498 if (auto *VD = dyn_cast<VarDecl>(D); 18499 VD && (VD->isUsableInConstantExpressions(Context) || 18500 VD->hasConstantInitialization())) { 18501 // An expression or conversion is in an 'immediate function context' if it 18502 // is potentially evaluated and either: 18503 // [...] 18504 // - it is a subexpression of a manifestly constant-evaluated expression 18505 // or conversion. 18506 ExprEvalContexts.back().InImmediateFunctionContext = true; 18507 } 18508 } 18509 18510 // Unless the initializer is in an immediate function context (as determined 18511 // above), this will evaluate all contained immediate function calls as 18512 // constant expressions. If the initializer IS an immediate function context, 18513 // the initializer has been determined to be a constant expression, and all 18514 // such evaluations will be elided (i.e., as if we "knew the whole time" that 18515 // it was a constant expression). 18516 PopExpressionEvaluationContext(); 18517 } 18518 18519 DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) { 18520 // C++ 6.4p2: 18521 // The declarator shall not specify a function or an array. 18522 // The type-specifier-seq shall not contain typedef and shall not declare a 18523 // new class or enumeration. 18524 assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef && 18525 "Parser allowed 'typedef' as storage class of condition decl."); 18526 18527 Decl *Dcl = ActOnDeclarator(S, D); 18528 if (!Dcl) 18529 return true; 18530 18531 if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function. 18532 Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type) 18533 << D.getSourceRange(); 18534 return true; 18535 } 18536 18537 if (auto *VD = dyn_cast<VarDecl>(Dcl)) 18538 VD->setCXXCondDecl(); 18539 18540 return Dcl; 18541 } 18542 18543 void Sema::LoadExternalVTableUses() { 18544 if (!ExternalSource) 18545 return; 18546 18547 SmallVector<ExternalVTableUse, 4> VTables; 18548 ExternalSource->ReadUsedVTables(VTables); 18549 SmallVector<VTableUse, 4> NewUses; 18550 for (unsigned I = 0, N = VTables.size(); I != N; ++I) { 18551 llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos 18552 = VTablesUsed.find(VTables[I].Record); 18553 // Even if a definition wasn't required before, it may be required now. 18554 if (Pos != VTablesUsed.end()) { 18555 if (!Pos->second && VTables[I].DefinitionRequired) 18556 Pos->second = true; 18557 continue; 18558 } 18559 18560 VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired; 18561 NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location)); 18562 } 18563 18564 VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end()); 18565 } 18566 18567 void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class, 18568 bool DefinitionRequired) { 18569 // Ignore any vtable uses in unevaluated operands or for classes that do 18570 // not have a vtable. 18571 if (!Class->isDynamicClass() || Class->isDependentContext() || 18572 CurContext->isDependentContext() || isUnevaluatedContext()) 18573 return; 18574 // Do not mark as used if compiling for the device outside of the target 18575 // region. 18576 if (TUKind != TU_Prefix && LangOpts.OpenMP && LangOpts.OpenMPIsTargetDevice && 18577 !OpenMP().isInOpenMPDeclareTargetContext() && 18578 !OpenMP().isInOpenMPTargetExecutionDirective()) { 18579 if (!DefinitionRequired) 18580 MarkVirtualMembersReferenced(Loc, Class); 18581 return; 18582 } 18583 18584 // Try to insert this class into the map. 18585 LoadExternalVTableUses(); 18586 Class = Class->getCanonicalDecl(); 18587 std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool> 18588 Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired)); 18589 if (!Pos.second) { 18590 // If we already had an entry, check to see if we are promoting this vtable 18591 // to require a definition. If so, we need to reappend to the VTableUses 18592 // list, since we may have already processed the first entry. 18593 if (DefinitionRequired && !Pos.first->second) { 18594 Pos.first->second = true; 18595 } else { 18596 // Otherwise, we can early exit. 18597 return; 18598 } 18599 } else { 18600 // The Microsoft ABI requires that we perform the destructor body 18601 // checks (i.e. operator delete() lookup) when the vtable is marked used, as 18602 // the deleting destructor is emitted with the vtable, not with the 18603 // destructor definition as in the Itanium ABI. 18604 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 18605 CXXDestructorDecl *DD = Class->getDestructor(); 18606 if (DD && DD->isVirtual() && !DD->isDeleted()) { 18607 if (Class->hasUserDeclaredDestructor() && !DD->isDefined()) { 18608 // If this is an out-of-line declaration, marking it referenced will 18609 // not do anything. Manually call CheckDestructor to look up operator 18610 // delete(). 18611 ContextRAII SavedContext(*this, DD); 18612 CheckDestructor(DD); 18613 } else { 18614 MarkFunctionReferenced(Loc, Class->getDestructor()); 18615 } 18616 } 18617 } 18618 } 18619 18620 // Local classes need to have their virtual members marked 18621 // immediately. For all other classes, we mark their virtual members 18622 // at the end of the translation unit. 18623 if (Class->isLocalClass()) 18624 MarkVirtualMembersReferenced(Loc, Class->getDefinition()); 18625 else 18626 VTableUses.push_back(std::make_pair(Class, Loc)); 18627 } 18628 18629 bool Sema::DefineUsedVTables() { 18630 LoadExternalVTableUses(); 18631 if (VTableUses.empty()) 18632 return false; 18633 18634 // Note: The VTableUses vector could grow as a result of marking 18635 // the members of a class as "used", so we check the size each 18636 // time through the loop and prefer indices (which are stable) to 18637 // iterators (which are not). 18638 bool DefinedAnything = false; 18639 for (unsigned I = 0; I != VTableUses.size(); ++I) { 18640 CXXRecordDecl *Class = VTableUses[I].first->getDefinition(); 18641 if (!Class) 18642 continue; 18643 TemplateSpecializationKind ClassTSK = 18644 Class->getTemplateSpecializationKind(); 18645 18646 SourceLocation Loc = VTableUses[I].second; 18647 18648 bool DefineVTable = true; 18649 18650 const CXXMethodDecl *KeyFunction = Context.getCurrentKeyFunction(Class); 18651 // V-tables for non-template classes with an owning module are always 18652 // uniquely emitted in that module. 18653 if (Class->isInCurrentModuleUnit()) { 18654 DefineVTable = true; 18655 } else if (KeyFunction && !KeyFunction->hasBody()) { 18656 // If this class has a key function, but that key function is 18657 // defined in another translation unit, we don't need to emit the 18658 // vtable even though we're using it. 18659 // The key function is in another translation unit. 18660 DefineVTable = false; 18661 TemplateSpecializationKind TSK = 18662 KeyFunction->getTemplateSpecializationKind(); 18663 assert(TSK != TSK_ExplicitInstantiationDefinition && 18664 TSK != TSK_ImplicitInstantiation && 18665 "Instantiations don't have key functions"); 18666 (void)TSK; 18667 } else if (!KeyFunction) { 18668 // If we have a class with no key function that is the subject 18669 // of an explicit instantiation declaration, suppress the 18670 // vtable; it will live with the explicit instantiation 18671 // definition. 18672 bool IsExplicitInstantiationDeclaration = 18673 ClassTSK == TSK_ExplicitInstantiationDeclaration; 18674 for (auto *R : Class->redecls()) { 18675 TemplateSpecializationKind TSK 18676 = cast<CXXRecordDecl>(R)->getTemplateSpecializationKind(); 18677 if (TSK == TSK_ExplicitInstantiationDeclaration) 18678 IsExplicitInstantiationDeclaration = true; 18679 else if (TSK == TSK_ExplicitInstantiationDefinition) { 18680 IsExplicitInstantiationDeclaration = false; 18681 break; 18682 } 18683 } 18684 18685 if (IsExplicitInstantiationDeclaration) 18686 DefineVTable = false; 18687 } 18688 18689 // The exception specifications for all virtual members may be needed even 18690 // if we are not providing an authoritative form of the vtable in this TU. 18691 // We may choose to emit it available_externally anyway. 18692 if (!DefineVTable) { 18693 MarkVirtualMemberExceptionSpecsNeeded(Loc, Class); 18694 continue; 18695 } 18696 18697 // Mark all of the virtual members of this class as referenced, so 18698 // that we can build a vtable. Then, tell the AST consumer that a 18699 // vtable for this class is required. 18700 DefinedAnything = true; 18701 MarkVirtualMembersReferenced(Loc, Class); 18702 CXXRecordDecl *Canonical = Class->getCanonicalDecl(); 18703 if (VTablesUsed[Canonical] && !Class->shouldEmitInExternalSource()) 18704 Consumer.HandleVTable(Class); 18705 18706 // Warn if we're emitting a weak vtable. The vtable will be weak if there is 18707 // no key function or the key function is inlined. Don't warn in C++ ABIs 18708 // that lack key functions, since the user won't be able to make one. 18709 if (Context.getTargetInfo().getCXXABI().hasKeyFunctions() && 18710 Class->isExternallyVisible() && ClassTSK != TSK_ImplicitInstantiation && 18711 ClassTSK != TSK_ExplicitInstantiationDefinition) { 18712 const FunctionDecl *KeyFunctionDef = nullptr; 18713 if (!KeyFunction || (KeyFunction->hasBody(KeyFunctionDef) && 18714 KeyFunctionDef->isInlined())) 18715 Diag(Class->getLocation(), diag::warn_weak_vtable) << Class; 18716 } 18717 } 18718 VTableUses.clear(); 18719 18720 return DefinedAnything; 18721 } 18722 18723 void Sema::MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc, 18724 const CXXRecordDecl *RD) { 18725 for (const auto *I : RD->methods()) 18726 if (I->isVirtual() && !I->isPureVirtual()) 18727 ResolveExceptionSpec(Loc, I->getType()->castAs<FunctionProtoType>()); 18728 } 18729 18730 void Sema::MarkVirtualMembersReferenced(SourceLocation Loc, 18731 const CXXRecordDecl *RD, 18732 bool ConstexprOnly) { 18733 // Mark all functions which will appear in RD's vtable as used. 18734 CXXFinalOverriderMap FinalOverriders; 18735 RD->getFinalOverriders(FinalOverriders); 18736 for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(), 18737 E = FinalOverriders.end(); 18738 I != E; ++I) { 18739 for (OverridingMethods::const_iterator OI = I->second.begin(), 18740 OE = I->second.end(); 18741 OI != OE; ++OI) { 18742 assert(OI->second.size() > 0 && "no final overrider"); 18743 CXXMethodDecl *Overrider = OI->second.front().Method; 18744 18745 // C++ [basic.def.odr]p2: 18746 // [...] A virtual member function is used if it is not pure. [...] 18747 if (!Overrider->isPureVirtual() && 18748 (!ConstexprOnly || Overrider->isConstexpr())) 18749 MarkFunctionReferenced(Loc, Overrider); 18750 } 18751 } 18752 18753 // Only classes that have virtual bases need a VTT. 18754 if (RD->getNumVBases() == 0) 18755 return; 18756 18757 for (const auto &I : RD->bases()) { 18758 const auto *Base = 18759 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 18760 if (Base->getNumVBases() == 0) 18761 continue; 18762 MarkVirtualMembersReferenced(Loc, Base); 18763 } 18764 } 18765 18766 static 18767 void DelegatingCycleHelper(CXXConstructorDecl* Ctor, 18768 llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Valid, 18769 llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Invalid, 18770 llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Current, 18771 Sema &S) { 18772 if (Ctor->isInvalidDecl()) 18773 return; 18774 18775 CXXConstructorDecl *Target = Ctor->getTargetConstructor(); 18776 18777 // Target may not be determinable yet, for instance if this is a dependent 18778 // call in an uninstantiated template. 18779 if (Target) { 18780 const FunctionDecl *FNTarget = nullptr; 18781 (void)Target->hasBody(FNTarget); 18782 Target = const_cast<CXXConstructorDecl*>( 18783 cast_or_null<CXXConstructorDecl>(FNTarget)); 18784 } 18785 18786 CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(), 18787 // Avoid dereferencing a null pointer here. 18788 *TCanonical = Target? Target->getCanonicalDecl() : nullptr; 18789 18790 if (!Current.insert(Canonical).second) 18791 return; 18792 18793 // We know that beyond here, we aren't chaining into a cycle. 18794 if (!Target || !Target->isDelegatingConstructor() || 18795 Target->isInvalidDecl() || Valid.count(TCanonical)) { 18796 Valid.insert(Current.begin(), Current.end()); 18797 Current.clear(); 18798 // We've hit a cycle. 18799 } else if (TCanonical == Canonical || Invalid.count(TCanonical) || 18800 Current.count(TCanonical)) { 18801 // If we haven't diagnosed this cycle yet, do so now. 18802 if (!Invalid.count(TCanonical)) { 18803 S.Diag((*Ctor->init_begin())->getSourceLocation(), 18804 diag::warn_delegating_ctor_cycle) 18805 << Ctor; 18806 18807 // Don't add a note for a function delegating directly to itself. 18808 if (TCanonical != Canonical) 18809 S.Diag(Target->getLocation(), diag::note_it_delegates_to); 18810 18811 CXXConstructorDecl *C = Target; 18812 while (C->getCanonicalDecl() != Canonical) { 18813 const FunctionDecl *FNTarget = nullptr; 18814 (void)C->getTargetConstructor()->hasBody(FNTarget); 18815 assert(FNTarget && "Ctor cycle through bodiless function"); 18816 18817 C = const_cast<CXXConstructorDecl*>( 18818 cast<CXXConstructorDecl>(FNTarget)); 18819 S.Diag(C->getLocation(), diag::note_which_delegates_to); 18820 } 18821 } 18822 18823 Invalid.insert(Current.begin(), Current.end()); 18824 Current.clear(); 18825 } else { 18826 DelegatingCycleHelper(Target, Valid, Invalid, Current, S); 18827 } 18828 } 18829 18830 18831 void Sema::CheckDelegatingCtorCycles() { 18832 llvm::SmallPtrSet<CXXConstructorDecl*, 4> Valid, Invalid, Current; 18833 18834 for (DelegatingCtorDeclsType::iterator 18835 I = DelegatingCtorDecls.begin(ExternalSource.get()), 18836 E = DelegatingCtorDecls.end(); 18837 I != E; ++I) 18838 DelegatingCycleHelper(*I, Valid, Invalid, Current, *this); 18839 18840 for (auto CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI) 18841 (*CI)->setInvalidDecl(); 18842 } 18843 18844 namespace { 18845 /// AST visitor that finds references to the 'this' expression. 18846 class FindCXXThisExpr : public DynamicRecursiveASTVisitor { 18847 Sema &S; 18848 18849 public: 18850 explicit FindCXXThisExpr(Sema &S) : S(S) {} 18851 18852 bool VisitCXXThisExpr(CXXThisExpr *E) override { 18853 S.Diag(E->getLocation(), diag::err_this_static_member_func) 18854 << E->isImplicit(); 18855 return false; 18856 } 18857 }; 18858 } 18859 18860 bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) { 18861 TypeSourceInfo *TSInfo = Method->getTypeSourceInfo(); 18862 if (!TSInfo) 18863 return false; 18864 18865 TypeLoc TL = TSInfo->getTypeLoc(); 18866 FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>(); 18867 if (!ProtoTL) 18868 return false; 18869 18870 // C++11 [expr.prim.general]p3: 18871 // [The expression this] shall not appear before the optional 18872 // cv-qualifier-seq and it shall not appear within the declaration of a 18873 // static member function (although its type and value category are defined 18874 // within a static member function as they are within a non-static member 18875 // function). [ Note: this is because declaration matching does not occur 18876 // until the complete declarator is known. - end note ] 18877 const FunctionProtoType *Proto = ProtoTL.getTypePtr(); 18878 FindCXXThisExpr Finder(*this); 18879 18880 // If the return type came after the cv-qualifier-seq, check it now. 18881 if (Proto->hasTrailingReturn() && 18882 !Finder.TraverseTypeLoc(ProtoTL.getReturnLoc())) 18883 return true; 18884 18885 // Check the exception specification. 18886 if (checkThisInStaticMemberFunctionExceptionSpec(Method)) 18887 return true; 18888 18889 // Check the trailing requires clause 18890 if (Expr *E = Method->getTrailingRequiresClause()) 18891 if (!Finder.TraverseStmt(E)) 18892 return true; 18893 18894 return checkThisInStaticMemberFunctionAttributes(Method); 18895 } 18896 18897 bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) { 18898 TypeSourceInfo *TSInfo = Method->getTypeSourceInfo(); 18899 if (!TSInfo) 18900 return false; 18901 18902 TypeLoc TL = TSInfo->getTypeLoc(); 18903 FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>(); 18904 if (!ProtoTL) 18905 return false; 18906 18907 const FunctionProtoType *Proto = ProtoTL.getTypePtr(); 18908 FindCXXThisExpr Finder(*this); 18909 18910 switch (Proto->getExceptionSpecType()) { 18911 case EST_Unparsed: 18912 case EST_Uninstantiated: 18913 case EST_Unevaluated: 18914 case EST_BasicNoexcept: 18915 case EST_NoThrow: 18916 case EST_DynamicNone: 18917 case EST_MSAny: 18918 case EST_None: 18919 break; 18920 18921 case EST_DependentNoexcept: 18922 case EST_NoexceptFalse: 18923 case EST_NoexceptTrue: 18924 if (!Finder.TraverseStmt(Proto->getNoexceptExpr())) 18925 return true; 18926 [[fallthrough]]; 18927 18928 case EST_Dynamic: 18929 for (const auto &E : Proto->exceptions()) { 18930 if (!Finder.TraverseType(E)) 18931 return true; 18932 } 18933 break; 18934 } 18935 18936 return false; 18937 } 18938 18939 bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) { 18940 FindCXXThisExpr Finder(*this); 18941 18942 // Check attributes. 18943 for (const auto *A : Method->attrs()) { 18944 // FIXME: This should be emitted by tblgen. 18945 Expr *Arg = nullptr; 18946 ArrayRef<Expr *> Args; 18947 if (const auto *G = dyn_cast<GuardedByAttr>(A)) 18948 Arg = G->getArg(); 18949 else if (const auto *G = dyn_cast<PtGuardedByAttr>(A)) 18950 Arg = G->getArg(); 18951 else if (const auto *AA = dyn_cast<AcquiredAfterAttr>(A)) 18952 Args = llvm::ArrayRef(AA->args_begin(), AA->args_size()); 18953 else if (const auto *AB = dyn_cast<AcquiredBeforeAttr>(A)) 18954 Args = llvm::ArrayRef(AB->args_begin(), AB->args_size()); 18955 else if (const auto *ETLF = dyn_cast<ExclusiveTrylockFunctionAttr>(A)) { 18956 Arg = ETLF->getSuccessValue(); 18957 Args = llvm::ArrayRef(ETLF->args_begin(), ETLF->args_size()); 18958 } else if (const auto *STLF = dyn_cast<SharedTrylockFunctionAttr>(A)) { 18959 Arg = STLF->getSuccessValue(); 18960 Args = llvm::ArrayRef(STLF->args_begin(), STLF->args_size()); 18961 } else if (const auto *LR = dyn_cast<LockReturnedAttr>(A)) 18962 Arg = LR->getArg(); 18963 else if (const auto *LE = dyn_cast<LocksExcludedAttr>(A)) 18964 Args = llvm::ArrayRef(LE->args_begin(), LE->args_size()); 18965 else if (const auto *RC = dyn_cast<RequiresCapabilityAttr>(A)) 18966 Args = llvm::ArrayRef(RC->args_begin(), RC->args_size()); 18967 else if (const auto *AC = dyn_cast<AcquireCapabilityAttr>(A)) 18968 Args = llvm::ArrayRef(AC->args_begin(), AC->args_size()); 18969 else if (const auto *AC = dyn_cast<TryAcquireCapabilityAttr>(A)) 18970 Args = llvm::ArrayRef(AC->args_begin(), AC->args_size()); 18971 else if (const auto *RC = dyn_cast<ReleaseCapabilityAttr>(A)) 18972 Args = llvm::ArrayRef(RC->args_begin(), RC->args_size()); 18973 18974 if (Arg && !Finder.TraverseStmt(Arg)) 18975 return true; 18976 18977 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 18978 if (!Finder.TraverseStmt(Args[I])) 18979 return true; 18980 } 18981 } 18982 18983 return false; 18984 } 18985 18986 void Sema::checkExceptionSpecification( 18987 bool IsTopLevel, ExceptionSpecificationType EST, 18988 ArrayRef<ParsedType> DynamicExceptions, 18989 ArrayRef<SourceRange> DynamicExceptionRanges, Expr *NoexceptExpr, 18990 SmallVectorImpl<QualType> &Exceptions, 18991 FunctionProtoType::ExceptionSpecInfo &ESI) { 18992 Exceptions.clear(); 18993 ESI.Type = EST; 18994 if (EST == EST_Dynamic) { 18995 Exceptions.reserve(DynamicExceptions.size()); 18996 for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) { 18997 // FIXME: Preserve type source info. 18998 QualType ET = GetTypeFromParser(DynamicExceptions[ei]); 18999 19000 if (IsTopLevel) { 19001 SmallVector<UnexpandedParameterPack, 2> Unexpanded; 19002 collectUnexpandedParameterPacks(ET, Unexpanded); 19003 if (!Unexpanded.empty()) { 19004 DiagnoseUnexpandedParameterPacks( 19005 DynamicExceptionRanges[ei].getBegin(), UPPC_ExceptionType, 19006 Unexpanded); 19007 continue; 19008 } 19009 } 19010 19011 // Check that the type is valid for an exception spec, and 19012 // drop it if not. 19013 if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei])) 19014 Exceptions.push_back(ET); 19015 } 19016 ESI.Exceptions = Exceptions; 19017 return; 19018 } 19019 19020 if (isComputedNoexcept(EST)) { 19021 assert((NoexceptExpr->isTypeDependent() || 19022 NoexceptExpr->getType()->getCanonicalTypeUnqualified() == 19023 Context.BoolTy) && 19024 "Parser should have made sure that the expression is boolean"); 19025 if (IsTopLevel && DiagnoseUnexpandedParameterPack(NoexceptExpr)) { 19026 ESI.Type = EST_BasicNoexcept; 19027 return; 19028 } 19029 19030 ESI.NoexceptExpr = NoexceptExpr; 19031 return; 19032 } 19033 } 19034 19035 void Sema::actOnDelayedExceptionSpecification( 19036 Decl *D, ExceptionSpecificationType EST, SourceRange SpecificationRange, 19037 ArrayRef<ParsedType> DynamicExceptions, 19038 ArrayRef<SourceRange> DynamicExceptionRanges, Expr *NoexceptExpr) { 19039 if (!D) 19040 return; 19041 19042 // Dig out the function we're referring to. 19043 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D)) 19044 D = FTD->getTemplatedDecl(); 19045 19046 FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 19047 if (!FD) 19048 return; 19049 19050 // Check the exception specification. 19051 llvm::SmallVector<QualType, 4> Exceptions; 19052 FunctionProtoType::ExceptionSpecInfo ESI; 19053 checkExceptionSpecification(/*IsTopLevel=*/true, EST, DynamicExceptions, 19054 DynamicExceptionRanges, NoexceptExpr, Exceptions, 19055 ESI); 19056 19057 // Update the exception specification on the function type. 19058 Context.adjustExceptionSpec(FD, ESI, /*AsWritten=*/true); 19059 19060 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 19061 if (MD->isStatic()) 19062 checkThisInStaticMemberFunctionExceptionSpec(MD); 19063 19064 if (MD->isVirtual()) { 19065 // Check overrides, which we previously had to delay. 19066 for (const CXXMethodDecl *O : MD->overridden_methods()) 19067 CheckOverridingFunctionExceptionSpec(MD, O); 19068 } 19069 } 19070 } 19071 19072 /// HandleMSProperty - Analyze a __delcspec(property) field of a C++ class. 19073 /// 19074 MSPropertyDecl *Sema::HandleMSProperty(Scope *S, RecordDecl *Record, 19075 SourceLocation DeclStart, Declarator &D, 19076 Expr *BitWidth, 19077 InClassInitStyle InitStyle, 19078 AccessSpecifier AS, 19079 const ParsedAttr &MSPropertyAttr) { 19080 const IdentifierInfo *II = D.getIdentifier(); 19081 if (!II) { 19082 Diag(DeclStart, diag::err_anonymous_property); 19083 return nullptr; 19084 } 19085 SourceLocation Loc = D.getIdentifierLoc(); 19086 19087 TypeSourceInfo *TInfo = GetTypeForDeclarator(D); 19088 QualType T = TInfo->getType(); 19089 if (getLangOpts().CPlusPlus) { 19090 CheckExtraCXXDefaultArguments(D); 19091 19092 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, 19093 UPPC_DataMemberType)) { 19094 D.setInvalidType(); 19095 T = Context.IntTy; 19096 TInfo = Context.getTrivialTypeSourceInfo(T, Loc); 19097 } 19098 } 19099 19100 DiagnoseFunctionSpecifiers(D.getDeclSpec()); 19101 19102 if (D.getDeclSpec().isInlineSpecified()) 19103 Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function) 19104 << getLangOpts().CPlusPlus17; 19105 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) 19106 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), 19107 diag::err_invalid_thread) 19108 << DeclSpec::getSpecifierName(TSCS); 19109 19110 // Check to see if this name was declared as a member previously 19111 NamedDecl *PrevDecl = nullptr; 19112 LookupResult Previous(*this, II, Loc, LookupMemberName, 19113 RedeclarationKind::ForVisibleRedeclaration); 19114 LookupName(Previous, S); 19115 switch (Previous.getResultKind()) { 19116 case LookupResult::Found: 19117 case LookupResult::FoundUnresolvedValue: 19118 PrevDecl = Previous.getAsSingle<NamedDecl>(); 19119 break; 19120 19121 case LookupResult::FoundOverloaded: 19122 PrevDecl = Previous.getRepresentativeDecl(); 19123 break; 19124 19125 case LookupResult::NotFound: 19126 case LookupResult::NotFoundInCurrentInstantiation: 19127 case LookupResult::Ambiguous: 19128 break; 19129 } 19130 19131 if (PrevDecl && PrevDecl->isTemplateParameter()) { 19132 // Maybe we will complain about the shadowed template parameter. 19133 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); 19134 // Just pretend that we didn't see the previous declaration. 19135 PrevDecl = nullptr; 19136 } 19137 19138 if (PrevDecl && !isDeclInScope(PrevDecl, Record, S)) 19139 PrevDecl = nullptr; 19140 19141 SourceLocation TSSL = D.getBeginLoc(); 19142 MSPropertyDecl *NewPD = 19143 MSPropertyDecl::Create(Context, Record, Loc, II, T, TInfo, TSSL, 19144 MSPropertyAttr.getPropertyDataGetter(), 19145 MSPropertyAttr.getPropertyDataSetter()); 19146 ProcessDeclAttributes(TUScope, NewPD, D); 19147 NewPD->setAccess(AS); 19148 19149 if (NewPD->isInvalidDecl()) 19150 Record->setInvalidDecl(); 19151 19152 if (D.getDeclSpec().isModulePrivateSpecified()) 19153 NewPD->setModulePrivate(); 19154 19155 if (NewPD->isInvalidDecl() && PrevDecl) { 19156 // Don't introduce NewFD into scope; there's already something 19157 // with the same name in the same scope. 19158 } else if (II) { 19159 PushOnScopeChains(NewPD, S); 19160 } else 19161 Record->addDecl(NewPD); 19162 19163 return NewPD; 19164 } 19165 19166 void Sema::ActOnStartFunctionDeclarationDeclarator( 19167 Declarator &Declarator, unsigned TemplateParameterDepth) { 19168 auto &Info = InventedParameterInfos.emplace_back(); 19169 TemplateParameterList *ExplicitParams = nullptr; 19170 ArrayRef<TemplateParameterList *> ExplicitLists = 19171 Declarator.getTemplateParameterLists(); 19172 if (!ExplicitLists.empty()) { 19173 bool IsMemberSpecialization, IsInvalid; 19174 ExplicitParams = MatchTemplateParametersToScopeSpecifier( 19175 Declarator.getBeginLoc(), Declarator.getIdentifierLoc(), 19176 Declarator.getCXXScopeSpec(), /*TemplateId=*/nullptr, 19177 ExplicitLists, /*IsFriend=*/false, IsMemberSpecialization, IsInvalid, 19178 /*SuppressDiagnostic=*/true); 19179 } 19180 // C++23 [dcl.fct]p23: 19181 // An abbreviated function template can have a template-head. The invented 19182 // template-parameters are appended to the template-parameter-list after 19183 // the explicitly declared template-parameters. 19184 // 19185 // A template-head must have one or more template-parameters (read: 19186 // 'template<>' is *not* a template-head). Only append the invented 19187 // template parameters if we matched the nested-name-specifier to a non-empty 19188 // TemplateParameterList. 19189 if (ExplicitParams && !ExplicitParams->empty()) { 19190 Info.AutoTemplateParameterDepth = ExplicitParams->getDepth(); 19191 llvm::append_range(Info.TemplateParams, *ExplicitParams); 19192 Info.NumExplicitTemplateParams = ExplicitParams->size(); 19193 } else { 19194 Info.AutoTemplateParameterDepth = TemplateParameterDepth; 19195 Info.NumExplicitTemplateParams = 0; 19196 } 19197 } 19198 19199 void Sema::ActOnFinishFunctionDeclarationDeclarator(Declarator &Declarator) { 19200 auto &FSI = InventedParameterInfos.back(); 19201 if (FSI.TemplateParams.size() > FSI.NumExplicitTemplateParams) { 19202 if (FSI.NumExplicitTemplateParams != 0) { 19203 TemplateParameterList *ExplicitParams = 19204 Declarator.getTemplateParameterLists().back(); 19205 Declarator.setInventedTemplateParameterList( 19206 TemplateParameterList::Create( 19207 Context, ExplicitParams->getTemplateLoc(), 19208 ExplicitParams->getLAngleLoc(), FSI.TemplateParams, 19209 ExplicitParams->getRAngleLoc(), 19210 ExplicitParams->getRequiresClause())); 19211 } else { 19212 Declarator.setInventedTemplateParameterList( 19213 TemplateParameterList::Create( 19214 Context, SourceLocation(), SourceLocation(), FSI.TemplateParams, 19215 SourceLocation(), /*RequiresClause=*/nullptr)); 19216 } 19217 } 19218 InventedParameterInfos.pop_back(); 19219 } 19220