1 //===--- Driver.cpp - Clang GCC Compatible Driver -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "clang/Driver/Driver.h"
10 #include "InputInfo.h"
11 #include "ToolChains/AIX.h"
12 #include "ToolChains/AMDGPU.h"
13 #include "ToolChains/AMDGPUOpenMP.h"
14 #include "ToolChains/AVR.h"
15 #include "ToolChains/Ananas.h"
16 #include "ToolChains/BareMetal.h"
17 #include "ToolChains/Clang.h"
18 #include "ToolChains/CloudABI.h"
19 #include "ToolChains/Contiki.h"
20 #include "ToolChains/CrossWindows.h"
21 #include "ToolChains/Cuda.h"
22 #include "ToolChains/Darwin.h"
23 #include "ToolChains/DragonFly.h"
24 #include "ToolChains/FreeBSD.h"
25 #include "ToolChains/Fuchsia.h"
26 #include "ToolChains/Gnu.h"
27 #include "ToolChains/HIP.h"
28 #include "ToolChains/Haiku.h"
29 #include "ToolChains/Hexagon.h"
30 #include "ToolChains/Hurd.h"
31 #include "ToolChains/Lanai.h"
32 #include "ToolChains/Linux.h"
33 #include "ToolChains/MSP430.h"
34 #include "ToolChains/MSVC.h"
35 #include "ToolChains/MinGW.h"
36 #include "ToolChains/Minix.h"
37 #include "ToolChains/MipsLinux.h"
38 #include "ToolChains/Myriad.h"
39 #include "ToolChains/NaCl.h"
40 #include "ToolChains/NetBSD.h"
41 #include "ToolChains/OpenBSD.h"
42 #include "ToolChains/PPCLinux.h"
43 #include "ToolChains/PS4CPU.h"
44 #include "ToolChains/RISCVToolchain.h"
45 #include "ToolChains/Solaris.h"
46 #include "ToolChains/TCE.h"
47 #include "ToolChains/VEToolchain.h"
48 #include "ToolChains/WebAssembly.h"
49 #include "ToolChains/XCore.h"
50 #include "ToolChains/ZOS.h"
51 #include "clang/Basic/TargetID.h"
52 #include "clang/Basic/Version.h"
53 #include "clang/Config/config.h"
54 #include "clang/Driver/Action.h"
55 #include "clang/Driver/Compilation.h"
56 #include "clang/Driver/DriverDiagnostic.h"
57 #include "clang/Driver/Job.h"
58 #include "clang/Driver/Options.h"
59 #include "clang/Driver/SanitizerArgs.h"
60 #include "clang/Driver/Tool.h"
61 #include "clang/Driver/ToolChain.h"
62 #include "llvm/ADT/ArrayRef.h"
63 #include "llvm/ADT/STLExtras.h"
64 #include "llvm/ADT/SmallSet.h"
65 #include "llvm/ADT/StringExtras.h"
66 #include "llvm/ADT/StringSet.h"
67 #include "llvm/ADT/StringSwitch.h"
68 #include "llvm/Config/llvm-config.h"
69 #include "llvm/Option/Arg.h"
70 #include "llvm/Option/ArgList.h"
71 #include "llvm/Option/OptSpecifier.h"
72 #include "llvm/Option/OptTable.h"
73 #include "llvm/Option/Option.h"
74 #include "llvm/Support/CommandLine.h"
75 #include "llvm/Support/ErrorHandling.h"
76 #include "llvm/Support/ExitCodes.h"
77 #include "llvm/Support/FileSystem.h"
78 #include "llvm/Support/FormatVariadic.h"
79 #include "llvm/Support/Host.h"
80 #include "llvm/Support/MD5.h"
81 #include "llvm/Support/Path.h"
82 #include "llvm/Support/PrettyStackTrace.h"
83 #include "llvm/Support/Process.h"
84 #include "llvm/Support/Program.h"
85 #include "llvm/Support/StringSaver.h"
86 #include "llvm/Support/TargetRegistry.h"
87 #include "llvm/Support/VirtualFileSystem.h"
88 #include "llvm/Support/raw_ostream.h"
89 #include <map>
90 #include <memory>
91 #include <utility>
92 #if LLVM_ON_UNIX
93 #include <unistd.h> // getpid
94 #endif
95
96 using namespace clang::driver;
97 using namespace clang;
98 using namespace llvm::opt;
99
getHIPOffloadTargetTriple()100 static llvm::Triple getHIPOffloadTargetTriple() {
101 static const llvm::Triple T("amdgcn-amd-amdhsa");
102 return T;
103 }
104
105 // static
GetResourcesPath(StringRef BinaryPath,StringRef CustomResourceDir)106 std::string Driver::GetResourcesPath(StringRef BinaryPath,
107 StringRef CustomResourceDir) {
108 // Since the resource directory is embedded in the module hash, it's important
109 // that all places that need it call this function, so that they get the
110 // exact same string ("a/../b/" and "b/" get different hashes, for example).
111
112 // Dir is bin/ or lib/, depending on where BinaryPath is.
113 std::string Dir = std::string(llvm::sys::path::parent_path(BinaryPath));
114
115 SmallString<128> P(Dir);
116 if (CustomResourceDir != "") {
117 llvm::sys::path::append(P, CustomResourceDir);
118 } else {
119 // On Windows, libclang.dll is in bin/.
120 // On non-Windows, libclang.so/.dylib is in lib/.
121 // With a static-library build of libclang, LibClangPath will contain the
122 // path of the embedding binary, which for LLVM binaries will be in bin/.
123 // ../lib gets us to lib/ in both cases.
124 P = llvm::sys::path::parent_path(Dir);
125 llvm::sys::path::append(P, Twine("lib") + CLANG_LIBDIR_SUFFIX, "clang",
126 CLANG_VERSION_STRING);
127 }
128
129 return std::string(P.str());
130 }
131
Driver(StringRef ClangExecutable,StringRef TargetTriple,DiagnosticsEngine & Diags,std::string Title,IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS)132 Driver::Driver(StringRef ClangExecutable, StringRef TargetTriple,
133 DiagnosticsEngine &Diags, std::string Title,
134 IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS)
135 : Diags(Diags), VFS(std::move(VFS)), Mode(GCCMode),
136 SaveTemps(SaveTempsNone), BitcodeEmbed(EmbedNone), LTOMode(LTOK_None),
137 ClangExecutable(ClangExecutable), SysRoot(DEFAULT_SYSROOT),
138 DriverTitle(Title), CCPrintStatReportFilename(), CCPrintOptionsFilename(),
139 CCPrintHeadersFilename(), CCLogDiagnosticsFilename(),
140 CCCPrintBindings(false), CCPrintOptions(false), CCPrintHeaders(false),
141 CCLogDiagnostics(false), CCGenDiagnostics(false),
142 CCPrintProcessStats(false), TargetTriple(TargetTriple),
143 CCCGenericGCCName(""), Saver(Alloc), CheckInputsExist(true),
144 GenReproducer(false), SuppressMissingInputWarning(false) {
145 // Provide a sane fallback if no VFS is specified.
146 if (!this->VFS)
147 this->VFS = llvm::vfs::getRealFileSystem();
148
149 Name = std::string(llvm::sys::path::filename(ClangExecutable));
150 Dir = std::string(llvm::sys::path::parent_path(ClangExecutable));
151 InstalledDir = Dir; // Provide a sensible default installed dir.
152
153 if ((!SysRoot.empty()) && llvm::sys::path::is_relative(SysRoot)) {
154 // Prepend InstalledDir if SysRoot is relative
155 SmallString<128> P(InstalledDir);
156 llvm::sys::path::append(P, SysRoot);
157 SysRoot = std::string(P);
158 }
159
160 #if defined(CLANG_CONFIG_FILE_SYSTEM_DIR)
161 SystemConfigDir = CLANG_CONFIG_FILE_SYSTEM_DIR;
162 #endif
163 #if defined(CLANG_CONFIG_FILE_USER_DIR)
164 UserConfigDir = CLANG_CONFIG_FILE_USER_DIR;
165 #endif
166
167 // Compute the path to the resource directory.
168 ResourceDir = GetResourcesPath(ClangExecutable, CLANG_RESOURCE_DIR);
169 }
170
ParseDriverMode(StringRef ProgramName,ArrayRef<const char * > Args)171 void Driver::ParseDriverMode(StringRef ProgramName,
172 ArrayRef<const char *> Args) {
173 if (ClangNameParts.isEmpty())
174 ClangNameParts = ToolChain::getTargetAndModeFromProgramName(ProgramName);
175 setDriverModeFromOption(ClangNameParts.DriverMode);
176
177 for (const char *ArgPtr : Args) {
178 // Ignore nullptrs, they are the response file's EOL markers.
179 if (ArgPtr == nullptr)
180 continue;
181 const StringRef Arg = ArgPtr;
182 setDriverModeFromOption(Arg);
183 }
184 }
185
setDriverModeFromOption(StringRef Opt)186 void Driver::setDriverModeFromOption(StringRef Opt) {
187 const std::string OptName =
188 getOpts().getOption(options::OPT_driver_mode).getPrefixedName();
189 if (!Opt.startswith(OptName))
190 return;
191 StringRef Value = Opt.drop_front(OptName.size());
192
193 if (auto M = llvm::StringSwitch<llvm::Optional<DriverMode>>(Value)
194 .Case("gcc", GCCMode)
195 .Case("g++", GXXMode)
196 .Case("cpp", CPPMode)
197 .Case("cl", CLMode)
198 .Case("flang", FlangMode)
199 .Default(None))
200 Mode = *M;
201 else
202 Diag(diag::err_drv_unsupported_option_argument) << OptName << Value;
203 }
204
ParseArgStrings(ArrayRef<const char * > ArgStrings,bool IsClCompatMode,bool & ContainsError)205 InputArgList Driver::ParseArgStrings(ArrayRef<const char *> ArgStrings,
206 bool IsClCompatMode,
207 bool &ContainsError) {
208 llvm::PrettyStackTraceString CrashInfo("Command line argument parsing");
209 ContainsError = false;
210
211 unsigned IncludedFlagsBitmask;
212 unsigned ExcludedFlagsBitmask;
213 std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
214 getIncludeExcludeOptionFlagMasks(IsClCompatMode);
215
216 // Make sure that Flang-only options don't pollute the Clang output
217 // TODO: Make sure that Clang-only options don't pollute Flang output
218 if (!IsFlangMode())
219 ExcludedFlagsBitmask |= options::FlangOnlyOption;
220
221 unsigned MissingArgIndex, MissingArgCount;
222 InputArgList Args =
223 getOpts().ParseArgs(ArgStrings, MissingArgIndex, MissingArgCount,
224 IncludedFlagsBitmask, ExcludedFlagsBitmask);
225
226 // Check for missing argument error.
227 if (MissingArgCount) {
228 Diag(diag::err_drv_missing_argument)
229 << Args.getArgString(MissingArgIndex) << MissingArgCount;
230 ContainsError |=
231 Diags.getDiagnosticLevel(diag::err_drv_missing_argument,
232 SourceLocation()) > DiagnosticsEngine::Warning;
233 }
234
235 // Check for unsupported options.
236 for (const Arg *A : Args) {
237 if (A->getOption().hasFlag(options::Unsupported)) {
238 unsigned DiagID;
239 auto ArgString = A->getAsString(Args);
240 std::string Nearest;
241 if (getOpts().findNearest(
242 ArgString, Nearest, IncludedFlagsBitmask,
243 ExcludedFlagsBitmask | options::Unsupported) > 1) {
244 DiagID = diag::err_drv_unsupported_opt;
245 Diag(DiagID) << ArgString;
246 } else {
247 DiagID = diag::err_drv_unsupported_opt_with_suggestion;
248 Diag(DiagID) << ArgString << Nearest;
249 }
250 ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) >
251 DiagnosticsEngine::Warning;
252 continue;
253 }
254
255 // Warn about -mcpu= without an argument.
256 if (A->getOption().matches(options::OPT_mcpu_EQ) && A->containsValue("")) {
257 Diag(diag::warn_drv_empty_joined_argument) << A->getAsString(Args);
258 ContainsError |= Diags.getDiagnosticLevel(
259 diag::warn_drv_empty_joined_argument,
260 SourceLocation()) > DiagnosticsEngine::Warning;
261 }
262 }
263
264 for (const Arg *A : Args.filtered(options::OPT_UNKNOWN)) {
265 unsigned DiagID;
266 auto ArgString = A->getAsString(Args);
267 std::string Nearest;
268 if (getOpts().findNearest(
269 ArgString, Nearest, IncludedFlagsBitmask, ExcludedFlagsBitmask) > 1) {
270 DiagID = IsCLMode() ? diag::warn_drv_unknown_argument_clang_cl
271 : diag::err_drv_unknown_argument;
272 Diags.Report(DiagID) << ArgString;
273 } else {
274 DiagID = IsCLMode()
275 ? diag::warn_drv_unknown_argument_clang_cl_with_suggestion
276 : diag::err_drv_unknown_argument_with_suggestion;
277 Diags.Report(DiagID) << ArgString << Nearest;
278 }
279 ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) >
280 DiagnosticsEngine::Warning;
281 }
282
283 return Args;
284 }
285
286 // Determine which compilation mode we are in. We look for options which
287 // affect the phase, starting with the earliest phases, and record which
288 // option we used to determine the final phase.
getFinalPhase(const DerivedArgList & DAL,Arg ** FinalPhaseArg) const289 phases::ID Driver::getFinalPhase(const DerivedArgList &DAL,
290 Arg **FinalPhaseArg) const {
291 Arg *PhaseArg = nullptr;
292 phases::ID FinalPhase;
293
294 // -{E,EP,P,M,MM} only run the preprocessor.
295 if (CCCIsCPP() || (PhaseArg = DAL.getLastArg(options::OPT_E)) ||
296 (PhaseArg = DAL.getLastArg(options::OPT__SLASH_EP)) ||
297 (PhaseArg = DAL.getLastArg(options::OPT_M, options::OPT_MM)) ||
298 (PhaseArg = DAL.getLastArg(options::OPT__SLASH_P))) {
299 FinalPhase = phases::Preprocess;
300
301 // --precompile only runs up to precompilation.
302 } else if ((PhaseArg = DAL.getLastArg(options::OPT__precompile))) {
303 FinalPhase = phases::Precompile;
304
305 // -{fsyntax-only,-analyze,emit-ast} only run up to the compiler.
306 } else if ((PhaseArg = DAL.getLastArg(options::OPT_fsyntax_only)) ||
307 (PhaseArg = DAL.getLastArg(options::OPT_print_supported_cpus)) ||
308 (PhaseArg = DAL.getLastArg(options::OPT_module_file_info)) ||
309 (PhaseArg = DAL.getLastArg(options::OPT_verify_pch)) ||
310 (PhaseArg = DAL.getLastArg(options::OPT_rewrite_objc)) ||
311 (PhaseArg = DAL.getLastArg(options::OPT_rewrite_legacy_objc)) ||
312 (PhaseArg = DAL.getLastArg(options::OPT__migrate)) ||
313 (PhaseArg = DAL.getLastArg(options::OPT__analyze)) ||
314 (PhaseArg = DAL.getLastArg(options::OPT_emit_ast))) {
315 FinalPhase = phases::Compile;
316
317 // -S only runs up to the backend.
318 } else if ((PhaseArg = DAL.getLastArg(options::OPT_S))) {
319 FinalPhase = phases::Backend;
320
321 // -c compilation only runs up to the assembler.
322 } else if ((PhaseArg = DAL.getLastArg(options::OPT_c))) {
323 FinalPhase = phases::Assemble;
324
325 // Otherwise do everything.
326 } else
327 FinalPhase = phases::Link;
328
329 if (FinalPhaseArg)
330 *FinalPhaseArg = PhaseArg;
331
332 return FinalPhase;
333 }
334
MakeInputArg(DerivedArgList & Args,const OptTable & Opts,StringRef Value,bool Claim=true)335 static Arg *MakeInputArg(DerivedArgList &Args, const OptTable &Opts,
336 StringRef Value, bool Claim = true) {
337 Arg *A = new Arg(Opts.getOption(options::OPT_INPUT), Value,
338 Args.getBaseArgs().MakeIndex(Value), Value.data());
339 Args.AddSynthesizedArg(A);
340 if (Claim)
341 A->claim();
342 return A;
343 }
344
TranslateInputArgs(const InputArgList & Args) const345 DerivedArgList *Driver::TranslateInputArgs(const InputArgList &Args) const {
346 const llvm::opt::OptTable &Opts = getOpts();
347 DerivedArgList *DAL = new DerivedArgList(Args);
348
349 bool HasNostdlib = Args.hasArg(options::OPT_nostdlib);
350 bool HasNostdlibxx = Args.hasArg(options::OPT_nostdlibxx);
351 bool HasNodefaultlib = Args.hasArg(options::OPT_nodefaultlibs);
352 for (Arg *A : Args) {
353 // Unfortunately, we have to parse some forwarding options (-Xassembler,
354 // -Xlinker, -Xpreprocessor) because we either integrate their functionality
355 // (assembler and preprocessor), or bypass a previous driver ('collect2').
356
357 // Rewrite linker options, to replace --no-demangle with a custom internal
358 // option.
359 if ((A->getOption().matches(options::OPT_Wl_COMMA) ||
360 A->getOption().matches(options::OPT_Xlinker)) &&
361 A->containsValue("--no-demangle")) {
362 // Add the rewritten no-demangle argument.
363 DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_Xlinker__no_demangle));
364
365 // Add the remaining values as Xlinker arguments.
366 for (StringRef Val : A->getValues())
367 if (Val != "--no-demangle")
368 DAL->AddSeparateArg(A, Opts.getOption(options::OPT_Xlinker), Val);
369
370 continue;
371 }
372
373 // Rewrite preprocessor options, to replace -Wp,-MD,FOO which is used by
374 // some build systems. We don't try to be complete here because we don't
375 // care to encourage this usage model.
376 if (A->getOption().matches(options::OPT_Wp_COMMA) &&
377 (A->getValue(0) == StringRef("-MD") ||
378 A->getValue(0) == StringRef("-MMD"))) {
379 // Rewrite to -MD/-MMD along with -MF.
380 if (A->getValue(0) == StringRef("-MD"))
381 DAL->AddFlagArg(A, Opts.getOption(options::OPT_MD));
382 else
383 DAL->AddFlagArg(A, Opts.getOption(options::OPT_MMD));
384 if (A->getNumValues() == 2)
385 DAL->AddSeparateArg(A, Opts.getOption(options::OPT_MF), A->getValue(1));
386 continue;
387 }
388
389 // Rewrite reserved library names.
390 if (A->getOption().matches(options::OPT_l)) {
391 StringRef Value = A->getValue();
392
393 // Rewrite unless -nostdlib is present.
394 if (!HasNostdlib && !HasNodefaultlib && !HasNostdlibxx &&
395 Value == "stdc++") {
396 DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_reserved_lib_stdcxx));
397 continue;
398 }
399
400 // Rewrite unconditionally.
401 if (Value == "cc_kext") {
402 DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_reserved_lib_cckext));
403 continue;
404 }
405 }
406
407 // Pick up inputs via the -- option.
408 if (A->getOption().matches(options::OPT__DASH_DASH)) {
409 A->claim();
410 for (StringRef Val : A->getValues())
411 DAL->append(MakeInputArg(*DAL, Opts, Val, false));
412 continue;
413 }
414
415 DAL->append(A);
416 }
417
418 // Enforce -static if -miamcu is present.
419 if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false))
420 DAL->AddFlagArg(0, Opts.getOption(options::OPT_static));
421
422 // Add a default value of -mlinker-version=, if one was given and the user
423 // didn't specify one.
424 #if defined(HOST_LINK_VERSION)
425 if (!Args.hasArg(options::OPT_mlinker_version_EQ) &&
426 strlen(HOST_LINK_VERSION) > 0) {
427 DAL->AddJoinedArg(0, Opts.getOption(options::OPT_mlinker_version_EQ),
428 HOST_LINK_VERSION);
429 DAL->getLastArg(options::OPT_mlinker_version_EQ)->claim();
430 }
431 #endif
432
433 return DAL;
434 }
435
436 /// Compute target triple from args.
437 ///
438 /// This routine provides the logic to compute a target triple from various
439 /// args passed to the driver and the default triple string.
computeTargetTriple(const Driver & D,StringRef TargetTriple,const ArgList & Args,StringRef DarwinArchName="")440 static llvm::Triple computeTargetTriple(const Driver &D,
441 StringRef TargetTriple,
442 const ArgList &Args,
443 StringRef DarwinArchName = "") {
444 // FIXME: Already done in Compilation *Driver::BuildCompilation
445 if (const Arg *A = Args.getLastArg(options::OPT_target))
446 TargetTriple = A->getValue();
447
448 llvm::Triple Target(llvm::Triple::normalize(TargetTriple));
449
450 // GNU/Hurd's triples should have been -hurd-gnu*, but were historically made
451 // -gnu* only, and we can not change this, so we have to detect that case as
452 // being the Hurd OS.
453 if (TargetTriple.find("-unknown-gnu") != StringRef::npos ||
454 TargetTriple.find("-pc-gnu") != StringRef::npos)
455 Target.setOSName("hurd");
456
457 // Handle Apple-specific options available here.
458 if (Target.isOSBinFormatMachO()) {
459 // If an explicit Darwin arch name is given, that trumps all.
460 if (!DarwinArchName.empty()) {
461 tools::darwin::setTripleTypeForMachOArchName(Target, DarwinArchName);
462 return Target;
463 }
464
465 // Handle the Darwin '-arch' flag.
466 if (Arg *A = Args.getLastArg(options::OPT_arch)) {
467 StringRef ArchName = A->getValue();
468 tools::darwin::setTripleTypeForMachOArchName(Target, ArchName);
469 }
470 }
471
472 // Handle pseudo-target flags '-mlittle-endian'/'-EL' and
473 // '-mbig-endian'/'-EB'.
474 if (Arg *A = Args.getLastArg(options::OPT_mlittle_endian,
475 options::OPT_mbig_endian)) {
476 if (A->getOption().matches(options::OPT_mlittle_endian)) {
477 llvm::Triple LE = Target.getLittleEndianArchVariant();
478 if (LE.getArch() != llvm::Triple::UnknownArch)
479 Target = std::move(LE);
480 } else {
481 llvm::Triple BE = Target.getBigEndianArchVariant();
482 if (BE.getArch() != llvm::Triple::UnknownArch)
483 Target = std::move(BE);
484 }
485 }
486
487 // Skip further flag support on OSes which don't support '-m32' or '-m64'.
488 if (Target.getArch() == llvm::Triple::tce ||
489 Target.getOS() == llvm::Triple::Minix)
490 return Target;
491
492 // On AIX, the env OBJECT_MODE may affect the resulting arch variant.
493 if (Target.isOSAIX()) {
494 if (Optional<std::string> ObjectModeValue =
495 llvm::sys::Process::GetEnv("OBJECT_MODE")) {
496 StringRef ObjectMode = *ObjectModeValue;
497 llvm::Triple::ArchType AT = llvm::Triple::UnknownArch;
498
499 if (ObjectMode.equals("64")) {
500 AT = Target.get64BitArchVariant().getArch();
501 } else if (ObjectMode.equals("32")) {
502 AT = Target.get32BitArchVariant().getArch();
503 } else {
504 D.Diag(diag::err_drv_invalid_object_mode) << ObjectMode;
505 }
506
507 if (AT != llvm::Triple::UnknownArch && AT != Target.getArch())
508 Target.setArch(AT);
509 }
510 }
511
512 // Handle pseudo-target flags '-m64', '-mx32', '-m32' and '-m16'.
513 Arg *A = Args.getLastArg(options::OPT_m64, options::OPT_mx32,
514 options::OPT_m32, options::OPT_m16);
515 if (A) {
516 llvm::Triple::ArchType AT = llvm::Triple::UnknownArch;
517
518 if (A->getOption().matches(options::OPT_m64)) {
519 AT = Target.get64BitArchVariant().getArch();
520 if (Target.getEnvironment() == llvm::Triple::GNUX32)
521 Target.setEnvironment(llvm::Triple::GNU);
522 } else if (A->getOption().matches(options::OPT_mx32) &&
523 Target.get64BitArchVariant().getArch() == llvm::Triple::x86_64) {
524 AT = llvm::Triple::x86_64;
525 Target.setEnvironment(llvm::Triple::GNUX32);
526 } else if (A->getOption().matches(options::OPT_m32)) {
527 AT = Target.get32BitArchVariant().getArch();
528 if (Target.getEnvironment() == llvm::Triple::GNUX32)
529 Target.setEnvironment(llvm::Triple::GNU);
530 } else if (A->getOption().matches(options::OPT_m16) &&
531 Target.get32BitArchVariant().getArch() == llvm::Triple::x86) {
532 AT = llvm::Triple::x86;
533 Target.setEnvironment(llvm::Triple::CODE16);
534 }
535
536 if (AT != llvm::Triple::UnknownArch && AT != Target.getArch())
537 Target.setArch(AT);
538 }
539
540 // Handle -miamcu flag.
541 if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false)) {
542 if (Target.get32BitArchVariant().getArch() != llvm::Triple::x86)
543 D.Diag(diag::err_drv_unsupported_opt_for_target) << "-miamcu"
544 << Target.str();
545
546 if (A && !A->getOption().matches(options::OPT_m32))
547 D.Diag(diag::err_drv_argument_not_allowed_with)
548 << "-miamcu" << A->getBaseArg().getAsString(Args);
549
550 Target.setArch(llvm::Triple::x86);
551 Target.setArchName("i586");
552 Target.setEnvironment(llvm::Triple::UnknownEnvironment);
553 Target.setEnvironmentName("");
554 Target.setOS(llvm::Triple::ELFIAMCU);
555 Target.setVendor(llvm::Triple::UnknownVendor);
556 Target.setVendorName("intel");
557 }
558
559 // If target is MIPS adjust the target triple
560 // accordingly to provided ABI name.
561 A = Args.getLastArg(options::OPT_mabi_EQ);
562 if (A && Target.isMIPS()) {
563 StringRef ABIName = A->getValue();
564 if (ABIName == "32") {
565 Target = Target.get32BitArchVariant();
566 if (Target.getEnvironment() == llvm::Triple::GNUABI64 ||
567 Target.getEnvironment() == llvm::Triple::GNUABIN32)
568 Target.setEnvironment(llvm::Triple::GNU);
569 } else if (ABIName == "n32") {
570 Target = Target.get64BitArchVariant();
571 if (Target.getEnvironment() == llvm::Triple::GNU ||
572 Target.getEnvironment() == llvm::Triple::GNUABI64)
573 Target.setEnvironment(llvm::Triple::GNUABIN32);
574 } else if (ABIName == "64") {
575 Target = Target.get64BitArchVariant();
576 if (Target.getEnvironment() == llvm::Triple::GNU ||
577 Target.getEnvironment() == llvm::Triple::GNUABIN32)
578 Target.setEnvironment(llvm::Triple::GNUABI64);
579 }
580 }
581
582 // If target is RISC-V adjust the target triple according to
583 // provided architecture name
584 A = Args.getLastArg(options::OPT_march_EQ);
585 if (A && Target.isRISCV()) {
586 StringRef ArchName = A->getValue();
587 if (ArchName.startswith_lower("rv32"))
588 Target.setArch(llvm::Triple::riscv32);
589 else if (ArchName.startswith_lower("rv64"))
590 Target.setArch(llvm::Triple::riscv64);
591 }
592
593 return Target;
594 }
595
596 // Parse the LTO options and record the type of LTO compilation
597 // based on which -f(no-)?lto(=.*)? or -f(no-)?offload-lto(=.*)?
598 // option occurs last.
599 static llvm::Optional<driver::LTOKind>
parseLTOMode(Driver & D,const llvm::opt::ArgList & Args,OptSpecifier OptPos,OptSpecifier OptNeg,OptSpecifier OptEq,bool IsOffload)600 parseLTOMode(Driver &D, const llvm::opt::ArgList &Args, OptSpecifier OptPos,
601 OptSpecifier OptNeg, OptSpecifier OptEq, bool IsOffload) {
602 driver::LTOKind LTOMode = LTOK_None;
603 // Non-offload LTO allows -flto=auto and -flto=jobserver. Offload LTO does
604 // not support those options.
605 if (!Args.hasFlag(OptPos, OptEq, OptNeg, false) &&
606 (IsOffload ||
607 (!Args.hasFlag(options::OPT_flto_EQ_auto, options::OPT_fno_lto, false) &&
608 !Args.hasFlag(options::OPT_flto_EQ_jobserver, options::OPT_fno_lto,
609 false))))
610 return None;
611
612 StringRef LTOName("full");
613
614 const Arg *A = Args.getLastArg(OptEq);
615 if (A)
616 LTOName = A->getValue();
617
618 LTOMode = llvm::StringSwitch<LTOKind>(LTOName)
619 .Case("full", LTOK_Full)
620 .Case("thin", LTOK_Thin)
621 .Default(LTOK_Unknown);
622
623 if (LTOMode == LTOK_Unknown) {
624 assert(A);
625 D.Diag(diag::err_drv_unsupported_option_argument)
626 << A->getOption().getName() << A->getValue();
627 return None;
628 }
629 return LTOMode;
630 }
631
632 // Parse the LTO options.
setLTOMode(const llvm::opt::ArgList & Args)633 void Driver::setLTOMode(const llvm::opt::ArgList &Args) {
634 LTOMode = LTOK_None;
635 if (auto M = parseLTOMode(*this, Args, options::OPT_flto,
636 options::OPT_fno_lto, options::OPT_flto_EQ,
637 /*IsOffload=*/false))
638 LTOMode = M.getValue();
639
640 OffloadLTOMode = LTOK_None;
641 if (auto M = parseLTOMode(*this, Args, options::OPT_foffload_lto,
642 options::OPT_fno_offload_lto,
643 options::OPT_foffload_lto_EQ,
644 /*IsOffload=*/true))
645 OffloadLTOMode = M.getValue();
646 }
647
648 /// Compute the desired OpenMP runtime from the flags provided.
getOpenMPRuntime(const ArgList & Args) const649 Driver::OpenMPRuntimeKind Driver::getOpenMPRuntime(const ArgList &Args) const {
650 StringRef RuntimeName(CLANG_DEFAULT_OPENMP_RUNTIME);
651
652 const Arg *A = Args.getLastArg(options::OPT_fopenmp_EQ);
653 if (A)
654 RuntimeName = A->getValue();
655
656 auto RT = llvm::StringSwitch<OpenMPRuntimeKind>(RuntimeName)
657 .Case("libomp", OMPRT_OMP)
658 .Case("libgomp", OMPRT_GOMP)
659 .Case("libiomp5", OMPRT_IOMP5)
660 .Default(OMPRT_Unknown);
661
662 if (RT == OMPRT_Unknown) {
663 if (A)
664 Diag(diag::err_drv_unsupported_option_argument)
665 << A->getOption().getName() << A->getValue();
666 else
667 // FIXME: We could use a nicer diagnostic here.
668 Diag(diag::err_drv_unsupported_opt) << "-fopenmp";
669 }
670
671 return RT;
672 }
673
CreateOffloadingDeviceToolChains(Compilation & C,InputList & Inputs)674 void Driver::CreateOffloadingDeviceToolChains(Compilation &C,
675 InputList &Inputs) {
676
677 //
678 // CUDA/HIP
679 //
680 // We need to generate a CUDA/HIP toolchain if any of the inputs has a CUDA
681 // or HIP type. However, mixed CUDA/HIP compilation is not supported.
682 bool IsCuda =
683 llvm::any_of(Inputs, [](std::pair<types::ID, const llvm::opt::Arg *> &I) {
684 return types::isCuda(I.first);
685 });
686 bool IsHIP =
687 llvm::any_of(Inputs,
688 [](std::pair<types::ID, const llvm::opt::Arg *> &I) {
689 return types::isHIP(I.first);
690 }) ||
691 C.getInputArgs().hasArg(options::OPT_hip_link);
692 if (IsCuda && IsHIP) {
693 Diag(clang::diag::err_drv_mix_cuda_hip);
694 return;
695 }
696 if (IsCuda) {
697 const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
698 const llvm::Triple &HostTriple = HostTC->getTriple();
699 StringRef DeviceTripleStr;
700 auto OFK = Action::OFK_Cuda;
701 DeviceTripleStr =
702 HostTriple.isArch64Bit() ? "nvptx64-nvidia-cuda" : "nvptx-nvidia-cuda";
703 llvm::Triple CudaTriple(DeviceTripleStr);
704 // Use the CUDA and host triples as the key into the ToolChains map,
705 // because the device toolchain we create depends on both.
706 auto &CudaTC = ToolChains[CudaTriple.str() + "/" + HostTriple.str()];
707 if (!CudaTC) {
708 CudaTC = std::make_unique<toolchains::CudaToolChain>(
709 *this, CudaTriple, *HostTC, C.getInputArgs(), OFK);
710 }
711 C.addOffloadDeviceToolChain(CudaTC.get(), OFK);
712 } else if (IsHIP) {
713 const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
714 const llvm::Triple &HostTriple = HostTC->getTriple();
715 auto OFK = Action::OFK_HIP;
716 llvm::Triple HIPTriple = getHIPOffloadTargetTriple();
717 // Use the HIP and host triples as the key into the ToolChains map,
718 // because the device toolchain we create depends on both.
719 auto &HIPTC = ToolChains[HIPTriple.str() + "/" + HostTriple.str()];
720 if (!HIPTC) {
721 HIPTC = std::make_unique<toolchains::HIPToolChain>(
722 *this, HIPTriple, *HostTC, C.getInputArgs());
723 }
724 C.addOffloadDeviceToolChain(HIPTC.get(), OFK);
725 }
726
727 //
728 // OpenMP
729 //
730 // We need to generate an OpenMP toolchain if the user specified targets with
731 // the -fopenmp-targets option.
732 if (Arg *OpenMPTargets =
733 C.getInputArgs().getLastArg(options::OPT_fopenmp_targets_EQ)) {
734 if (OpenMPTargets->getNumValues()) {
735 // We expect that -fopenmp-targets is always used in conjunction with the
736 // option -fopenmp specifying a valid runtime with offloading support,
737 // i.e. libomp or libiomp.
738 bool HasValidOpenMPRuntime = C.getInputArgs().hasFlag(
739 options::OPT_fopenmp, options::OPT_fopenmp_EQ,
740 options::OPT_fno_openmp, false);
741 if (HasValidOpenMPRuntime) {
742 OpenMPRuntimeKind OpenMPKind = getOpenMPRuntime(C.getInputArgs());
743 HasValidOpenMPRuntime =
744 OpenMPKind == OMPRT_OMP || OpenMPKind == OMPRT_IOMP5;
745 }
746
747 if (HasValidOpenMPRuntime) {
748 llvm::StringMap<const char *> FoundNormalizedTriples;
749 for (const char *Val : OpenMPTargets->getValues()) {
750 llvm::Triple TT(Val);
751 std::string NormalizedName = TT.normalize();
752
753 // Make sure we don't have a duplicate triple.
754 auto Duplicate = FoundNormalizedTriples.find(NormalizedName);
755 if (Duplicate != FoundNormalizedTriples.end()) {
756 Diag(clang::diag::warn_drv_omp_offload_target_duplicate)
757 << Val << Duplicate->second;
758 continue;
759 }
760
761 // Store the current triple so that we can check for duplicates in the
762 // following iterations.
763 FoundNormalizedTriples[NormalizedName] = Val;
764
765 // If the specified target is invalid, emit a diagnostic.
766 if (TT.getArch() == llvm::Triple::UnknownArch)
767 Diag(clang::diag::err_drv_invalid_omp_target) << Val;
768 else {
769 const ToolChain *TC;
770 // Device toolchains have to be selected differently. They pair host
771 // and device in their implementation.
772 if (TT.isNVPTX() || TT.isAMDGCN()) {
773 const ToolChain *HostTC =
774 C.getSingleOffloadToolChain<Action::OFK_Host>();
775 assert(HostTC && "Host toolchain should be always defined.");
776 auto &DeviceTC =
777 ToolChains[TT.str() + "/" + HostTC->getTriple().normalize()];
778 if (!DeviceTC) {
779 if (TT.isNVPTX())
780 DeviceTC = std::make_unique<toolchains::CudaToolChain>(
781 *this, TT, *HostTC, C.getInputArgs(), Action::OFK_OpenMP);
782 else if (TT.isAMDGCN())
783 DeviceTC =
784 std::make_unique<toolchains::AMDGPUOpenMPToolChain>(
785 *this, TT, *HostTC, C.getInputArgs());
786 else
787 assert(DeviceTC && "Device toolchain not defined.");
788 }
789
790 TC = DeviceTC.get();
791 } else
792 TC = &getToolChain(C.getInputArgs(), TT);
793 C.addOffloadDeviceToolChain(TC, Action::OFK_OpenMP);
794 }
795 }
796 } else
797 Diag(clang::diag::err_drv_expecting_fopenmp_with_fopenmp_targets);
798 } else
799 Diag(clang::diag::warn_drv_empty_joined_argument)
800 << OpenMPTargets->getAsString(C.getInputArgs());
801 }
802
803 //
804 // TODO: Add support for other offloading programming models here.
805 //
806 }
807
808 /// Looks the given directories for the specified file.
809 ///
810 /// \param[out] FilePath File path, if the file was found.
811 /// \param[in] Dirs Directories used for the search.
812 /// \param[in] FileName Name of the file to search for.
813 /// \return True if file was found.
814 ///
815 /// Looks for file specified by FileName sequentially in directories specified
816 /// by Dirs.
817 ///
searchForFile(SmallVectorImpl<char> & FilePath,ArrayRef<StringRef> Dirs,StringRef FileName)818 static bool searchForFile(SmallVectorImpl<char> &FilePath,
819 ArrayRef<StringRef> Dirs, StringRef FileName) {
820 SmallString<128> WPath;
821 for (const StringRef &Dir : Dirs) {
822 if (Dir.empty())
823 continue;
824 WPath.clear();
825 llvm::sys::path::append(WPath, Dir, FileName);
826 llvm::sys::path::native(WPath);
827 if (llvm::sys::fs::is_regular_file(WPath)) {
828 FilePath = std::move(WPath);
829 return true;
830 }
831 }
832 return false;
833 }
834
readConfigFile(StringRef FileName)835 bool Driver::readConfigFile(StringRef FileName) {
836 // Try reading the given file.
837 SmallVector<const char *, 32> NewCfgArgs;
838 if (!llvm::cl::readConfigFile(FileName, Saver, NewCfgArgs)) {
839 Diag(diag::err_drv_cannot_read_config_file) << FileName;
840 return true;
841 }
842
843 // Read options from config file.
844 llvm::SmallString<128> CfgFileName(FileName);
845 llvm::sys::path::native(CfgFileName);
846 ConfigFile = std::string(CfgFileName);
847 bool ContainErrors;
848 CfgOptions = std::make_unique<InputArgList>(
849 ParseArgStrings(NewCfgArgs, IsCLMode(), ContainErrors));
850 if (ContainErrors) {
851 CfgOptions.reset();
852 return true;
853 }
854
855 if (CfgOptions->hasArg(options::OPT_config)) {
856 CfgOptions.reset();
857 Diag(diag::err_drv_nested_config_file);
858 return true;
859 }
860
861 // Claim all arguments that come from a configuration file so that the driver
862 // does not warn on any that is unused.
863 for (Arg *A : *CfgOptions)
864 A->claim();
865 return false;
866 }
867
loadConfigFile()868 bool Driver::loadConfigFile() {
869 std::string CfgFileName;
870 bool FileSpecifiedExplicitly = false;
871
872 // Process options that change search path for config files.
873 if (CLOptions) {
874 if (CLOptions->hasArg(options::OPT_config_system_dir_EQ)) {
875 SmallString<128> CfgDir;
876 CfgDir.append(
877 CLOptions->getLastArgValue(options::OPT_config_system_dir_EQ));
878 if (!CfgDir.empty()) {
879 if (llvm::sys::fs::make_absolute(CfgDir).value() != 0)
880 SystemConfigDir.clear();
881 else
882 SystemConfigDir = std::string(CfgDir.begin(), CfgDir.end());
883 }
884 }
885 if (CLOptions->hasArg(options::OPT_config_user_dir_EQ)) {
886 SmallString<128> CfgDir;
887 CfgDir.append(
888 CLOptions->getLastArgValue(options::OPT_config_user_dir_EQ));
889 if (!CfgDir.empty()) {
890 if (llvm::sys::fs::make_absolute(CfgDir).value() != 0)
891 UserConfigDir.clear();
892 else
893 UserConfigDir = std::string(CfgDir.begin(), CfgDir.end());
894 }
895 }
896 }
897
898 // First try to find config file specified in command line.
899 if (CLOptions) {
900 std::vector<std::string> ConfigFiles =
901 CLOptions->getAllArgValues(options::OPT_config);
902 if (ConfigFiles.size() > 1) {
903 if (!std::all_of(ConfigFiles.begin(), ConfigFiles.end(),
904 [ConfigFiles](const std::string &s) {
905 return s == ConfigFiles[0];
906 })) {
907 Diag(diag::err_drv_duplicate_config);
908 return true;
909 }
910 }
911
912 if (!ConfigFiles.empty()) {
913 CfgFileName = ConfigFiles.front();
914 assert(!CfgFileName.empty());
915
916 // If argument contains directory separator, treat it as a path to
917 // configuration file.
918 if (llvm::sys::path::has_parent_path(CfgFileName)) {
919 SmallString<128> CfgFilePath;
920 if (llvm::sys::path::is_relative(CfgFileName))
921 llvm::sys::fs::current_path(CfgFilePath);
922 llvm::sys::path::append(CfgFilePath, CfgFileName);
923 if (!llvm::sys::fs::is_regular_file(CfgFilePath)) {
924 Diag(diag::err_drv_config_file_not_exist) << CfgFilePath;
925 return true;
926 }
927 return readConfigFile(CfgFilePath);
928 }
929
930 FileSpecifiedExplicitly = true;
931 }
932 }
933
934 // If config file is not specified explicitly, try to deduce configuration
935 // from executable name. For instance, an executable 'armv7l-clang' will
936 // search for config file 'armv7l-clang.cfg'.
937 if (CfgFileName.empty() && !ClangNameParts.TargetPrefix.empty())
938 CfgFileName = ClangNameParts.TargetPrefix + '-' + ClangNameParts.ModeSuffix;
939
940 if (CfgFileName.empty())
941 return false;
942
943 // Determine architecture part of the file name, if it is present.
944 StringRef CfgFileArch = CfgFileName;
945 size_t ArchPrefixLen = CfgFileArch.find('-');
946 if (ArchPrefixLen == StringRef::npos)
947 ArchPrefixLen = CfgFileArch.size();
948 llvm::Triple CfgTriple;
949 CfgFileArch = CfgFileArch.take_front(ArchPrefixLen);
950 CfgTriple = llvm::Triple(llvm::Triple::normalize(CfgFileArch));
951 if (CfgTriple.getArch() == llvm::Triple::ArchType::UnknownArch)
952 ArchPrefixLen = 0;
953
954 if (!StringRef(CfgFileName).endswith(".cfg"))
955 CfgFileName += ".cfg";
956
957 // If config file starts with architecture name and command line options
958 // redefine architecture (with options like -m32 -LE etc), try finding new
959 // config file with that architecture.
960 SmallString<128> FixedConfigFile;
961 size_t FixedArchPrefixLen = 0;
962 if (ArchPrefixLen) {
963 // Get architecture name from config file name like 'i386.cfg' or
964 // 'armv7l-clang.cfg'.
965 // Check if command line options changes effective triple.
966 llvm::Triple EffectiveTriple = computeTargetTriple(*this,
967 CfgTriple.getTriple(), *CLOptions);
968 if (CfgTriple.getArch() != EffectiveTriple.getArch()) {
969 FixedConfigFile = EffectiveTriple.getArchName();
970 FixedArchPrefixLen = FixedConfigFile.size();
971 // Append the rest of original file name so that file name transforms
972 // like: i386-clang.cfg -> x86_64-clang.cfg.
973 if (ArchPrefixLen < CfgFileName.size())
974 FixedConfigFile += CfgFileName.substr(ArchPrefixLen);
975 }
976 }
977
978 // Prepare list of directories where config file is searched for.
979 StringRef CfgFileSearchDirs[] = {UserConfigDir, SystemConfigDir, Dir};
980
981 // Try to find config file. First try file with corrected architecture.
982 llvm::SmallString<128> CfgFilePath;
983 if (!FixedConfigFile.empty()) {
984 if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile))
985 return readConfigFile(CfgFilePath);
986 // If 'x86_64-clang.cfg' was not found, try 'x86_64.cfg'.
987 FixedConfigFile.resize(FixedArchPrefixLen);
988 FixedConfigFile.append(".cfg");
989 if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile))
990 return readConfigFile(CfgFilePath);
991 }
992
993 // Then try original file name.
994 if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName))
995 return readConfigFile(CfgFilePath);
996
997 // Finally try removing driver mode part: 'x86_64-clang.cfg' -> 'x86_64.cfg'.
998 if (!ClangNameParts.ModeSuffix.empty() &&
999 !ClangNameParts.TargetPrefix.empty()) {
1000 CfgFileName.assign(ClangNameParts.TargetPrefix);
1001 CfgFileName.append(".cfg");
1002 if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName))
1003 return readConfigFile(CfgFilePath);
1004 }
1005
1006 // Report error but only if config file was specified explicitly, by option
1007 // --config. If it was deduced from executable name, it is not an error.
1008 if (FileSpecifiedExplicitly) {
1009 Diag(diag::err_drv_config_file_not_found) << CfgFileName;
1010 for (const StringRef &SearchDir : CfgFileSearchDirs)
1011 if (!SearchDir.empty())
1012 Diag(diag::note_drv_config_file_searched_in) << SearchDir;
1013 return true;
1014 }
1015
1016 return false;
1017 }
1018
BuildCompilation(ArrayRef<const char * > ArgList)1019 Compilation *Driver::BuildCompilation(ArrayRef<const char *> ArgList) {
1020 llvm::PrettyStackTraceString CrashInfo("Compilation construction");
1021
1022 // FIXME: Handle environment options which affect driver behavior, somewhere
1023 // (client?). GCC_EXEC_PREFIX, LPATH, CC_PRINT_OPTIONS.
1024
1025 // We look for the driver mode option early, because the mode can affect
1026 // how other options are parsed.
1027 ParseDriverMode(ClangExecutable, ArgList.slice(1));
1028
1029 // FIXME: What are we going to do with -V and -b?
1030
1031 // Arguments specified in command line.
1032 bool ContainsError;
1033 CLOptions = std::make_unique<InputArgList>(
1034 ParseArgStrings(ArgList.slice(1), IsCLMode(), ContainsError));
1035
1036 // Try parsing configuration file.
1037 if (!ContainsError)
1038 ContainsError = loadConfigFile();
1039 bool HasConfigFile = !ContainsError && (CfgOptions.get() != nullptr);
1040
1041 // All arguments, from both config file and command line.
1042 InputArgList Args = std::move(HasConfigFile ? std::move(*CfgOptions)
1043 : std::move(*CLOptions));
1044
1045 // The args for config files or /clang: flags belong to different InputArgList
1046 // objects than Args. This copies an Arg from one of those other InputArgLists
1047 // to the ownership of Args.
1048 auto appendOneArg = [&Args](const Arg *Opt, const Arg *BaseArg) {
1049 unsigned Index = Args.MakeIndex(Opt->getSpelling());
1050 Arg *Copy = new llvm::opt::Arg(Opt->getOption(), Args.getArgString(Index),
1051 Index, BaseArg);
1052 Copy->getValues() = Opt->getValues();
1053 if (Opt->isClaimed())
1054 Copy->claim();
1055 Copy->setOwnsValues(Opt->getOwnsValues());
1056 Opt->setOwnsValues(false);
1057 Args.append(Copy);
1058 };
1059
1060 if (HasConfigFile)
1061 for (auto *Opt : *CLOptions) {
1062 if (Opt->getOption().matches(options::OPT_config))
1063 continue;
1064 const Arg *BaseArg = &Opt->getBaseArg();
1065 if (BaseArg == Opt)
1066 BaseArg = nullptr;
1067 appendOneArg(Opt, BaseArg);
1068 }
1069
1070 // In CL mode, look for any pass-through arguments
1071 if (IsCLMode() && !ContainsError) {
1072 SmallVector<const char *, 16> CLModePassThroughArgList;
1073 for (const auto *A : Args.filtered(options::OPT__SLASH_clang)) {
1074 A->claim();
1075 CLModePassThroughArgList.push_back(A->getValue());
1076 }
1077
1078 if (!CLModePassThroughArgList.empty()) {
1079 // Parse any pass through args using default clang processing rather
1080 // than clang-cl processing.
1081 auto CLModePassThroughOptions = std::make_unique<InputArgList>(
1082 ParseArgStrings(CLModePassThroughArgList, false, ContainsError));
1083
1084 if (!ContainsError)
1085 for (auto *Opt : *CLModePassThroughOptions) {
1086 appendOneArg(Opt, nullptr);
1087 }
1088 }
1089 }
1090
1091 // Check for working directory option before accessing any files
1092 if (Arg *WD = Args.getLastArg(options::OPT_working_directory))
1093 if (VFS->setCurrentWorkingDirectory(WD->getValue()))
1094 Diag(diag::err_drv_unable_to_set_working_directory) << WD->getValue();
1095
1096 // FIXME: This stuff needs to go into the Compilation, not the driver.
1097 bool CCCPrintPhases;
1098
1099 // Silence driver warnings if requested
1100 Diags.setIgnoreAllWarnings(Args.hasArg(options::OPT_w));
1101
1102 // -no-canonical-prefixes is used very early in main.
1103 Args.ClaimAllArgs(options::OPT_no_canonical_prefixes);
1104
1105 // f(no-)integated-cc1 is also used very early in main.
1106 Args.ClaimAllArgs(options::OPT_fintegrated_cc1);
1107 Args.ClaimAllArgs(options::OPT_fno_integrated_cc1);
1108
1109 // Ignore -pipe.
1110 Args.ClaimAllArgs(options::OPT_pipe);
1111
1112 // Extract -ccc args.
1113 //
1114 // FIXME: We need to figure out where this behavior should live. Most of it
1115 // should be outside in the client; the parts that aren't should have proper
1116 // options, either by introducing new ones or by overloading gcc ones like -V
1117 // or -b.
1118 CCCPrintPhases = Args.hasArg(options::OPT_ccc_print_phases);
1119 CCCPrintBindings = Args.hasArg(options::OPT_ccc_print_bindings);
1120 if (const Arg *A = Args.getLastArg(options::OPT_ccc_gcc_name))
1121 CCCGenericGCCName = A->getValue();
1122 GenReproducer = Args.hasFlag(options::OPT_gen_reproducer,
1123 options::OPT_fno_crash_diagnostics,
1124 !!::getenv("FORCE_CLANG_DIAGNOSTICS_CRASH"));
1125
1126 // Process -fproc-stat-report options.
1127 if (const Arg *A = Args.getLastArg(options::OPT_fproc_stat_report_EQ)) {
1128 CCPrintProcessStats = true;
1129 CCPrintStatReportFilename = A->getValue();
1130 }
1131 if (Args.hasArg(options::OPT_fproc_stat_report))
1132 CCPrintProcessStats = true;
1133
1134 // FIXME: TargetTriple is used by the target-prefixed calls to as/ld
1135 // and getToolChain is const.
1136 if (IsCLMode()) {
1137 // clang-cl targets MSVC-style Win32.
1138 llvm::Triple T(TargetTriple);
1139 T.setOS(llvm::Triple::Win32);
1140 T.setVendor(llvm::Triple::PC);
1141 T.setEnvironment(llvm::Triple::MSVC);
1142 T.setObjectFormat(llvm::Triple::COFF);
1143 TargetTriple = T.str();
1144 }
1145 if (const Arg *A = Args.getLastArg(options::OPT_target))
1146 TargetTriple = A->getValue();
1147 if (const Arg *A = Args.getLastArg(options::OPT_ccc_install_dir))
1148 Dir = InstalledDir = A->getValue();
1149 for (const Arg *A : Args.filtered(options::OPT_B)) {
1150 A->claim();
1151 PrefixDirs.push_back(A->getValue(0));
1152 }
1153 if (Optional<std::string> CompilerPathValue =
1154 llvm::sys::Process::GetEnv("COMPILER_PATH")) {
1155 StringRef CompilerPath = *CompilerPathValue;
1156 while (!CompilerPath.empty()) {
1157 std::pair<StringRef, StringRef> Split =
1158 CompilerPath.split(llvm::sys::EnvPathSeparator);
1159 PrefixDirs.push_back(std::string(Split.first));
1160 CompilerPath = Split.second;
1161 }
1162 }
1163 if (const Arg *A = Args.getLastArg(options::OPT__sysroot_EQ))
1164 SysRoot = A->getValue();
1165 if (const Arg *A = Args.getLastArg(options::OPT__dyld_prefix_EQ))
1166 DyldPrefix = A->getValue();
1167
1168 if (const Arg *A = Args.getLastArg(options::OPT_resource_dir))
1169 ResourceDir = A->getValue();
1170
1171 if (const Arg *A = Args.getLastArg(options::OPT_save_temps_EQ)) {
1172 SaveTemps = llvm::StringSwitch<SaveTempsMode>(A->getValue())
1173 .Case("cwd", SaveTempsCwd)
1174 .Case("obj", SaveTempsObj)
1175 .Default(SaveTempsCwd);
1176 }
1177
1178 setLTOMode(Args);
1179
1180 // Process -fembed-bitcode= flags.
1181 if (Arg *A = Args.getLastArg(options::OPT_fembed_bitcode_EQ)) {
1182 StringRef Name = A->getValue();
1183 unsigned Model = llvm::StringSwitch<unsigned>(Name)
1184 .Case("off", EmbedNone)
1185 .Case("all", EmbedBitcode)
1186 .Case("bitcode", EmbedBitcode)
1187 .Case("marker", EmbedMarker)
1188 .Default(~0U);
1189 if (Model == ~0U) {
1190 Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args)
1191 << Name;
1192 } else
1193 BitcodeEmbed = static_cast<BitcodeEmbedMode>(Model);
1194 }
1195
1196 std::unique_ptr<llvm::opt::InputArgList> UArgs =
1197 std::make_unique<InputArgList>(std::move(Args));
1198
1199 // Perform the default argument translations.
1200 DerivedArgList *TranslatedArgs = TranslateInputArgs(*UArgs);
1201
1202 // Owned by the host.
1203 const ToolChain &TC = getToolChain(
1204 *UArgs, computeTargetTriple(*this, TargetTriple, *UArgs));
1205
1206 // The compilation takes ownership of Args.
1207 Compilation *C = new Compilation(*this, TC, UArgs.release(), TranslatedArgs,
1208 ContainsError);
1209
1210 if (!HandleImmediateArgs(*C))
1211 return C;
1212
1213 // Construct the list of inputs.
1214 InputList Inputs;
1215 BuildInputs(C->getDefaultToolChain(), *TranslatedArgs, Inputs);
1216
1217 // Populate the tool chains for the offloading devices, if any.
1218 CreateOffloadingDeviceToolChains(*C, Inputs);
1219
1220 // Construct the list of abstract actions to perform for this compilation. On
1221 // MachO targets this uses the driver-driver and universal actions.
1222 if (TC.getTriple().isOSBinFormatMachO())
1223 BuildUniversalActions(*C, C->getDefaultToolChain(), Inputs);
1224 else
1225 BuildActions(*C, C->getArgs(), Inputs, C->getActions());
1226
1227 if (CCCPrintPhases) {
1228 PrintActions(*C);
1229 return C;
1230 }
1231
1232 BuildJobs(*C);
1233
1234 return C;
1235 }
1236
printArgList(raw_ostream & OS,const llvm::opt::ArgList & Args)1237 static void printArgList(raw_ostream &OS, const llvm::opt::ArgList &Args) {
1238 llvm::opt::ArgStringList ASL;
1239 for (const auto *A : Args)
1240 A->render(Args, ASL);
1241
1242 for (auto I = ASL.begin(), E = ASL.end(); I != E; ++I) {
1243 if (I != ASL.begin())
1244 OS << ' ';
1245 llvm::sys::printArg(OS, *I, true);
1246 }
1247 OS << '\n';
1248 }
1249
getCrashDiagnosticFile(StringRef ReproCrashFilename,SmallString<128> & CrashDiagDir)1250 bool Driver::getCrashDiagnosticFile(StringRef ReproCrashFilename,
1251 SmallString<128> &CrashDiagDir) {
1252 using namespace llvm::sys;
1253 assert(llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin() &&
1254 "Only knows about .crash files on Darwin");
1255
1256 // The .crash file can be found on at ~/Library/Logs/DiagnosticReports/
1257 // (or /Library/Logs/DiagnosticReports for root) and has the filename pattern
1258 // clang-<VERSION>_<YYYY-MM-DD-HHMMSS>_<hostname>.crash.
1259 path::home_directory(CrashDiagDir);
1260 if (CrashDiagDir.startswith("/var/root"))
1261 CrashDiagDir = "/";
1262 path::append(CrashDiagDir, "Library/Logs/DiagnosticReports");
1263 int PID =
1264 #if LLVM_ON_UNIX
1265 getpid();
1266 #else
1267 0;
1268 #endif
1269 std::error_code EC;
1270 fs::file_status FileStatus;
1271 TimePoint<> LastAccessTime;
1272 SmallString<128> CrashFilePath;
1273 // Lookup the .crash files and get the one generated by a subprocess spawned
1274 // by this driver invocation.
1275 for (fs::directory_iterator File(CrashDiagDir, EC), FileEnd;
1276 File != FileEnd && !EC; File.increment(EC)) {
1277 StringRef FileName = path::filename(File->path());
1278 if (!FileName.startswith(Name))
1279 continue;
1280 if (fs::status(File->path(), FileStatus))
1281 continue;
1282 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> CrashFile =
1283 llvm::MemoryBuffer::getFile(File->path());
1284 if (!CrashFile)
1285 continue;
1286 // The first line should start with "Process:", otherwise this isn't a real
1287 // .crash file.
1288 StringRef Data = CrashFile.get()->getBuffer();
1289 if (!Data.startswith("Process:"))
1290 continue;
1291 // Parse parent process pid line, e.g: "Parent Process: clang-4.0 [79141]"
1292 size_t ParentProcPos = Data.find("Parent Process:");
1293 if (ParentProcPos == StringRef::npos)
1294 continue;
1295 size_t LineEnd = Data.find_first_of("\n", ParentProcPos);
1296 if (LineEnd == StringRef::npos)
1297 continue;
1298 StringRef ParentProcess = Data.slice(ParentProcPos+15, LineEnd).trim();
1299 int OpenBracket = -1, CloseBracket = -1;
1300 for (size_t i = 0, e = ParentProcess.size(); i < e; ++i) {
1301 if (ParentProcess[i] == '[')
1302 OpenBracket = i;
1303 if (ParentProcess[i] == ']')
1304 CloseBracket = i;
1305 }
1306 // Extract the parent process PID from the .crash file and check whether
1307 // it matches this driver invocation pid.
1308 int CrashPID;
1309 if (OpenBracket < 0 || CloseBracket < 0 ||
1310 ParentProcess.slice(OpenBracket + 1, CloseBracket)
1311 .getAsInteger(10, CrashPID) || CrashPID != PID) {
1312 continue;
1313 }
1314
1315 // Found a .crash file matching the driver pid. To avoid getting an older
1316 // and misleading crash file, continue looking for the most recent.
1317 // FIXME: the driver can dispatch multiple cc1 invocations, leading to
1318 // multiple crashes poiting to the same parent process. Since the driver
1319 // does not collect pid information for the dispatched invocation there's
1320 // currently no way to distinguish among them.
1321 const auto FileAccessTime = FileStatus.getLastModificationTime();
1322 if (FileAccessTime > LastAccessTime) {
1323 CrashFilePath.assign(File->path());
1324 LastAccessTime = FileAccessTime;
1325 }
1326 }
1327
1328 // If found, copy it over to the location of other reproducer files.
1329 if (!CrashFilePath.empty()) {
1330 EC = fs::copy_file(CrashFilePath, ReproCrashFilename);
1331 if (EC)
1332 return false;
1333 return true;
1334 }
1335
1336 return false;
1337 }
1338
1339 // When clang crashes, produce diagnostic information including the fully
1340 // preprocessed source file(s). Request that the developer attach the
1341 // diagnostic information to a bug report.
generateCompilationDiagnostics(Compilation & C,const Command & FailingCommand,StringRef AdditionalInformation,CompilationDiagnosticReport * Report)1342 void Driver::generateCompilationDiagnostics(
1343 Compilation &C, const Command &FailingCommand,
1344 StringRef AdditionalInformation, CompilationDiagnosticReport *Report) {
1345 if (C.getArgs().hasArg(options::OPT_fno_crash_diagnostics))
1346 return;
1347
1348 // Don't try to generate diagnostics for link or dsymutil jobs.
1349 if (FailingCommand.getCreator().isLinkJob() ||
1350 FailingCommand.getCreator().isDsymutilJob())
1351 return;
1352
1353 // Print the version of the compiler.
1354 PrintVersion(C, llvm::errs());
1355
1356 // Suppress driver output and emit preprocessor output to temp file.
1357 Mode = CPPMode;
1358 CCGenDiagnostics = true;
1359
1360 // Save the original job command(s).
1361 Command Cmd = FailingCommand;
1362
1363 // Keep track of whether we produce any errors while trying to produce
1364 // preprocessed sources.
1365 DiagnosticErrorTrap Trap(Diags);
1366
1367 // Suppress tool output.
1368 C.initCompilationForDiagnostics();
1369
1370 // Construct the list of inputs.
1371 InputList Inputs;
1372 BuildInputs(C.getDefaultToolChain(), C.getArgs(), Inputs);
1373
1374 for (InputList::iterator it = Inputs.begin(), ie = Inputs.end(); it != ie;) {
1375 bool IgnoreInput = false;
1376
1377 // Ignore input from stdin or any inputs that cannot be preprocessed.
1378 // Check type first as not all linker inputs have a value.
1379 if (types::getPreprocessedType(it->first) == types::TY_INVALID) {
1380 IgnoreInput = true;
1381 } else if (!strcmp(it->second->getValue(), "-")) {
1382 Diag(clang::diag::note_drv_command_failed_diag_msg)
1383 << "Error generating preprocessed source(s) - "
1384 "ignoring input from stdin.";
1385 IgnoreInput = true;
1386 }
1387
1388 if (IgnoreInput) {
1389 it = Inputs.erase(it);
1390 ie = Inputs.end();
1391 } else {
1392 ++it;
1393 }
1394 }
1395
1396 if (Inputs.empty()) {
1397 Diag(clang::diag::note_drv_command_failed_diag_msg)
1398 << "Error generating preprocessed source(s) - "
1399 "no preprocessable inputs.";
1400 return;
1401 }
1402
1403 // Don't attempt to generate preprocessed files if multiple -arch options are
1404 // used, unless they're all duplicates.
1405 llvm::StringSet<> ArchNames;
1406 for (const Arg *A : C.getArgs()) {
1407 if (A->getOption().matches(options::OPT_arch)) {
1408 StringRef ArchName = A->getValue();
1409 ArchNames.insert(ArchName);
1410 }
1411 }
1412 if (ArchNames.size() > 1) {
1413 Diag(clang::diag::note_drv_command_failed_diag_msg)
1414 << "Error generating preprocessed source(s) - cannot generate "
1415 "preprocessed source with multiple -arch options.";
1416 return;
1417 }
1418
1419 // Construct the list of abstract actions to perform for this compilation. On
1420 // Darwin OSes this uses the driver-driver and builds universal actions.
1421 const ToolChain &TC = C.getDefaultToolChain();
1422 if (TC.getTriple().isOSBinFormatMachO())
1423 BuildUniversalActions(C, TC, Inputs);
1424 else
1425 BuildActions(C, C.getArgs(), Inputs, C.getActions());
1426
1427 BuildJobs(C);
1428
1429 // If there were errors building the compilation, quit now.
1430 if (Trap.hasErrorOccurred()) {
1431 Diag(clang::diag::note_drv_command_failed_diag_msg)
1432 << "Error generating preprocessed source(s).";
1433 return;
1434 }
1435
1436 // Generate preprocessed output.
1437 SmallVector<std::pair<int, const Command *>, 4> FailingCommands;
1438 C.ExecuteJobs(C.getJobs(), FailingCommands);
1439
1440 // If any of the preprocessing commands failed, clean up and exit.
1441 if (!FailingCommands.empty()) {
1442 Diag(clang::diag::note_drv_command_failed_diag_msg)
1443 << "Error generating preprocessed source(s).";
1444 return;
1445 }
1446
1447 const ArgStringList &TempFiles = C.getTempFiles();
1448 if (TempFiles.empty()) {
1449 Diag(clang::diag::note_drv_command_failed_diag_msg)
1450 << "Error generating preprocessed source(s).";
1451 return;
1452 }
1453
1454 Diag(clang::diag::note_drv_command_failed_diag_msg)
1455 << "\n********************\n\n"
1456 "PLEASE ATTACH THE FOLLOWING FILES TO THE BUG REPORT:\n"
1457 "Preprocessed source(s) and associated run script(s) are located at:";
1458
1459 SmallString<128> VFS;
1460 SmallString<128> ReproCrashFilename;
1461 for (const char *TempFile : TempFiles) {
1462 Diag(clang::diag::note_drv_command_failed_diag_msg) << TempFile;
1463 if (Report)
1464 Report->TemporaryFiles.push_back(TempFile);
1465 if (ReproCrashFilename.empty()) {
1466 ReproCrashFilename = TempFile;
1467 llvm::sys::path::replace_extension(ReproCrashFilename, ".crash");
1468 }
1469 if (StringRef(TempFile).endswith(".cache")) {
1470 // In some cases (modules) we'll dump extra data to help with reproducing
1471 // the crash into a directory next to the output.
1472 VFS = llvm::sys::path::filename(TempFile);
1473 llvm::sys::path::append(VFS, "vfs", "vfs.yaml");
1474 }
1475 }
1476
1477 // Assume associated files are based off of the first temporary file.
1478 CrashReportInfo CrashInfo(TempFiles[0], VFS);
1479
1480 llvm::SmallString<128> Script(CrashInfo.Filename);
1481 llvm::sys::path::replace_extension(Script, "sh");
1482 std::error_code EC;
1483 llvm::raw_fd_ostream ScriptOS(Script, EC, llvm::sys::fs::CD_CreateNew,
1484 llvm::sys::fs::FA_Write,
1485 llvm::sys::fs::OF_Text);
1486 if (EC) {
1487 Diag(clang::diag::note_drv_command_failed_diag_msg)
1488 << "Error generating run script: " << Script << " " << EC.message();
1489 } else {
1490 ScriptOS << "# Crash reproducer for " << getClangFullVersion() << "\n"
1491 << "# Driver args: ";
1492 printArgList(ScriptOS, C.getInputArgs());
1493 ScriptOS << "# Original command: ";
1494 Cmd.Print(ScriptOS, "\n", /*Quote=*/true);
1495 Cmd.Print(ScriptOS, "\n", /*Quote=*/true, &CrashInfo);
1496 if (!AdditionalInformation.empty())
1497 ScriptOS << "\n# Additional information: " << AdditionalInformation
1498 << "\n";
1499 if (Report)
1500 Report->TemporaryFiles.push_back(std::string(Script.str()));
1501 Diag(clang::diag::note_drv_command_failed_diag_msg) << Script;
1502 }
1503
1504 // On darwin, provide information about the .crash diagnostic report.
1505 if (llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin()) {
1506 SmallString<128> CrashDiagDir;
1507 if (getCrashDiagnosticFile(ReproCrashFilename, CrashDiagDir)) {
1508 Diag(clang::diag::note_drv_command_failed_diag_msg)
1509 << ReproCrashFilename.str();
1510 } else { // Suggest a directory for the user to look for .crash files.
1511 llvm::sys::path::append(CrashDiagDir, Name);
1512 CrashDiagDir += "_<YYYY-MM-DD-HHMMSS>_<hostname>.crash";
1513 Diag(clang::diag::note_drv_command_failed_diag_msg)
1514 << "Crash backtrace is located in";
1515 Diag(clang::diag::note_drv_command_failed_diag_msg)
1516 << CrashDiagDir.str();
1517 Diag(clang::diag::note_drv_command_failed_diag_msg)
1518 << "(choose the .crash file that corresponds to your crash)";
1519 }
1520 }
1521
1522 for (const auto &A : C.getArgs().filtered(options::OPT_frewrite_map_file_EQ))
1523 Diag(clang::diag::note_drv_command_failed_diag_msg) << A->getValue();
1524
1525 Diag(clang::diag::note_drv_command_failed_diag_msg)
1526 << "\n\n********************";
1527 }
1528
setUpResponseFiles(Compilation & C,Command & Cmd)1529 void Driver::setUpResponseFiles(Compilation &C, Command &Cmd) {
1530 // Since commandLineFitsWithinSystemLimits() may underestimate system's
1531 // capacity if the tool does not support response files, there is a chance/
1532 // that things will just work without a response file, so we silently just
1533 // skip it.
1534 if (Cmd.getResponseFileSupport().ResponseKind ==
1535 ResponseFileSupport::RF_None ||
1536 llvm::sys::commandLineFitsWithinSystemLimits(Cmd.getExecutable(),
1537 Cmd.getArguments()))
1538 return;
1539
1540 std::string TmpName = GetTemporaryPath("response", "txt");
1541 Cmd.setResponseFile(C.addTempFile(C.getArgs().MakeArgString(TmpName)));
1542 }
1543
ExecuteCompilation(Compilation & C,SmallVectorImpl<std::pair<int,const Command * >> & FailingCommands)1544 int Driver::ExecuteCompilation(
1545 Compilation &C,
1546 SmallVectorImpl<std::pair<int, const Command *>> &FailingCommands) {
1547 // Just print if -### was present.
1548 if (C.getArgs().hasArg(options::OPT__HASH_HASH_HASH)) {
1549 C.getJobs().Print(llvm::errs(), "\n", true);
1550 return 0;
1551 }
1552
1553 // If there were errors building the compilation, quit now.
1554 if (Diags.hasErrorOccurred())
1555 return 1;
1556
1557 // Set up response file names for each command, if necessary
1558 for (auto &Job : C.getJobs())
1559 setUpResponseFiles(C, Job);
1560
1561 C.ExecuteJobs(C.getJobs(), FailingCommands);
1562
1563 // If the command succeeded, we are done.
1564 if (FailingCommands.empty())
1565 return 0;
1566
1567 // Otherwise, remove result files and print extra information about abnormal
1568 // failures.
1569 int Res = 0;
1570 for (const auto &CmdPair : FailingCommands) {
1571 int CommandRes = CmdPair.first;
1572 const Command *FailingCommand = CmdPair.second;
1573
1574 // Remove result files if we're not saving temps.
1575 if (!isSaveTempsEnabled()) {
1576 const JobAction *JA = cast<JobAction>(&FailingCommand->getSource());
1577 C.CleanupFileMap(C.getResultFiles(), JA, true);
1578
1579 // Failure result files are valid unless we crashed.
1580 if (CommandRes < 0)
1581 C.CleanupFileMap(C.getFailureResultFiles(), JA, true);
1582 }
1583
1584 #if LLVM_ON_UNIX
1585 // llvm/lib/Support/Unix/Signals.inc will exit with a special return code
1586 // for SIGPIPE. Do not print diagnostics for this case.
1587 if (CommandRes == EX_IOERR) {
1588 Res = CommandRes;
1589 continue;
1590 }
1591 #endif
1592
1593 // Print extra information about abnormal failures, if possible.
1594 //
1595 // This is ad-hoc, but we don't want to be excessively noisy. If the result
1596 // status was 1, assume the command failed normally. In particular, if it
1597 // was the compiler then assume it gave a reasonable error code. Failures
1598 // in other tools are less common, and they generally have worse
1599 // diagnostics, so always print the diagnostic there.
1600 const Tool &FailingTool = FailingCommand->getCreator();
1601
1602 if (!FailingCommand->getCreator().hasGoodDiagnostics() || CommandRes != 1) {
1603 // FIXME: See FIXME above regarding result code interpretation.
1604 if (CommandRes < 0)
1605 Diag(clang::diag::err_drv_command_signalled)
1606 << FailingTool.getShortName();
1607 else
1608 Diag(clang::diag::err_drv_command_failed)
1609 << FailingTool.getShortName() << CommandRes;
1610 }
1611 }
1612 return Res;
1613 }
1614
PrintHelp(bool ShowHidden) const1615 void Driver::PrintHelp(bool ShowHidden) const {
1616 unsigned IncludedFlagsBitmask;
1617 unsigned ExcludedFlagsBitmask;
1618 std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
1619 getIncludeExcludeOptionFlagMasks(IsCLMode());
1620
1621 ExcludedFlagsBitmask |= options::NoDriverOption;
1622 if (!ShowHidden)
1623 ExcludedFlagsBitmask |= HelpHidden;
1624
1625 if (IsFlangMode())
1626 IncludedFlagsBitmask |= options::FlangOption;
1627 else
1628 ExcludedFlagsBitmask |= options::FlangOnlyOption;
1629
1630 std::string Usage = llvm::formatv("{0} [options] file...", Name).str();
1631 getOpts().PrintHelp(llvm::outs(), Usage.c_str(), DriverTitle.c_str(),
1632 IncludedFlagsBitmask, ExcludedFlagsBitmask,
1633 /*ShowAllAliases=*/false);
1634 }
1635
PrintVersion(const Compilation & C,raw_ostream & OS) const1636 void Driver::PrintVersion(const Compilation &C, raw_ostream &OS) const {
1637 if (IsFlangMode()) {
1638 OS << getClangToolFullVersion("flang-new") << '\n';
1639 } else {
1640 // FIXME: The following handlers should use a callback mechanism, we don't
1641 // know what the client would like to do.
1642 OS << getClangFullVersion() << '\n';
1643 }
1644 const ToolChain &TC = C.getDefaultToolChain();
1645 OS << "Target: " << TC.getTripleString() << '\n';
1646
1647 // Print the threading model.
1648 if (Arg *A = C.getArgs().getLastArg(options::OPT_mthread_model)) {
1649 // Don't print if the ToolChain would have barfed on it already
1650 if (TC.isThreadModelSupported(A->getValue()))
1651 OS << "Thread model: " << A->getValue();
1652 } else
1653 OS << "Thread model: " << TC.getThreadModel();
1654 OS << '\n';
1655
1656 // Print out the install directory.
1657 OS << "InstalledDir: " << InstalledDir << '\n';
1658
1659 // If configuration file was used, print its path.
1660 if (!ConfigFile.empty())
1661 OS << "Configuration file: " << ConfigFile << '\n';
1662 }
1663
1664 /// PrintDiagnosticCategories - Implement the --print-diagnostic-categories
1665 /// option.
PrintDiagnosticCategories(raw_ostream & OS)1666 static void PrintDiagnosticCategories(raw_ostream &OS) {
1667 // Skip the empty category.
1668 for (unsigned i = 1, max = DiagnosticIDs::getNumberOfCategories(); i != max;
1669 ++i)
1670 OS << i << ',' << DiagnosticIDs::getCategoryNameFromID(i) << '\n';
1671 }
1672
HandleAutocompletions(StringRef PassedFlags) const1673 void Driver::HandleAutocompletions(StringRef PassedFlags) const {
1674 if (PassedFlags == "")
1675 return;
1676 // Print out all options that start with a given argument. This is used for
1677 // shell autocompletion.
1678 std::vector<std::string> SuggestedCompletions;
1679 std::vector<std::string> Flags;
1680
1681 unsigned int DisableFlags =
1682 options::NoDriverOption | options::Unsupported | options::Ignored;
1683
1684 // Make sure that Flang-only options don't pollute the Clang output
1685 // TODO: Make sure that Clang-only options don't pollute Flang output
1686 if (!IsFlangMode())
1687 DisableFlags |= options::FlangOnlyOption;
1688
1689 // Distinguish "--autocomplete=-someflag" and "--autocomplete=-someflag,"
1690 // because the latter indicates that the user put space before pushing tab
1691 // which should end up in a file completion.
1692 const bool HasSpace = PassedFlags.endswith(",");
1693
1694 // Parse PassedFlags by "," as all the command-line flags are passed to this
1695 // function separated by ","
1696 StringRef TargetFlags = PassedFlags;
1697 while (TargetFlags != "") {
1698 StringRef CurFlag;
1699 std::tie(CurFlag, TargetFlags) = TargetFlags.split(",");
1700 Flags.push_back(std::string(CurFlag));
1701 }
1702
1703 // We want to show cc1-only options only when clang is invoked with -cc1 or
1704 // -Xclang.
1705 if (llvm::is_contained(Flags, "-Xclang") || llvm::is_contained(Flags, "-cc1"))
1706 DisableFlags &= ~options::NoDriverOption;
1707
1708 const llvm::opt::OptTable &Opts = getOpts();
1709 StringRef Cur;
1710 Cur = Flags.at(Flags.size() - 1);
1711 StringRef Prev;
1712 if (Flags.size() >= 2) {
1713 Prev = Flags.at(Flags.size() - 2);
1714 SuggestedCompletions = Opts.suggestValueCompletions(Prev, Cur);
1715 }
1716
1717 if (SuggestedCompletions.empty())
1718 SuggestedCompletions = Opts.suggestValueCompletions(Cur, "");
1719
1720 // If Flags were empty, it means the user typed `clang [tab]` where we should
1721 // list all possible flags. If there was no value completion and the user
1722 // pressed tab after a space, we should fall back to a file completion.
1723 // We're printing a newline to be consistent with what we print at the end of
1724 // this function.
1725 if (SuggestedCompletions.empty() && HasSpace && !Flags.empty()) {
1726 llvm::outs() << '\n';
1727 return;
1728 }
1729
1730 // When flag ends with '=' and there was no value completion, return empty
1731 // string and fall back to the file autocompletion.
1732 if (SuggestedCompletions.empty() && !Cur.endswith("=")) {
1733 // If the flag is in the form of "--autocomplete=-foo",
1734 // we were requested to print out all option names that start with "-foo".
1735 // For example, "--autocomplete=-fsyn" is expanded to "-fsyntax-only".
1736 SuggestedCompletions = Opts.findByPrefix(Cur, DisableFlags);
1737
1738 // We have to query the -W flags manually as they're not in the OptTable.
1739 // TODO: Find a good way to add them to OptTable instead and them remove
1740 // this code.
1741 for (StringRef S : DiagnosticIDs::getDiagnosticFlags())
1742 if (S.startswith(Cur))
1743 SuggestedCompletions.push_back(std::string(S));
1744 }
1745
1746 // Sort the autocomplete candidates so that shells print them out in a
1747 // deterministic order. We could sort in any way, but we chose
1748 // case-insensitive sorting for consistency with the -help option
1749 // which prints out options in the case-insensitive alphabetical order.
1750 llvm::sort(SuggestedCompletions, [](StringRef A, StringRef B) {
1751 if (int X = A.compare_lower(B))
1752 return X < 0;
1753 return A.compare(B) > 0;
1754 });
1755
1756 llvm::outs() << llvm::join(SuggestedCompletions, "\n") << '\n';
1757 }
1758
HandleImmediateArgs(const Compilation & C)1759 bool Driver::HandleImmediateArgs(const Compilation &C) {
1760 // The order these options are handled in gcc is all over the place, but we
1761 // don't expect inconsistencies w.r.t. that to matter in practice.
1762
1763 if (C.getArgs().hasArg(options::OPT_dumpmachine)) {
1764 llvm::outs() << C.getDefaultToolChain().getTripleString() << '\n';
1765 return false;
1766 }
1767
1768 if (C.getArgs().hasArg(options::OPT_dumpversion)) {
1769 // Since -dumpversion is only implemented for pedantic GCC compatibility, we
1770 // return an answer which matches our definition of __VERSION__.
1771 llvm::outs() << CLANG_VERSION_STRING << "\n";
1772 return false;
1773 }
1774
1775 if (C.getArgs().hasArg(options::OPT__print_diagnostic_categories)) {
1776 PrintDiagnosticCategories(llvm::outs());
1777 return false;
1778 }
1779
1780 if (C.getArgs().hasArg(options::OPT_help) ||
1781 C.getArgs().hasArg(options::OPT__help_hidden)) {
1782 PrintHelp(C.getArgs().hasArg(options::OPT__help_hidden));
1783 return false;
1784 }
1785
1786 if (C.getArgs().hasArg(options::OPT__version)) {
1787 // Follow gcc behavior and use stdout for --version and stderr for -v.
1788 PrintVersion(C, llvm::outs());
1789 return false;
1790 }
1791
1792 if (C.getArgs().hasArg(options::OPT_v) ||
1793 C.getArgs().hasArg(options::OPT__HASH_HASH_HASH) ||
1794 C.getArgs().hasArg(options::OPT_print_supported_cpus)) {
1795 PrintVersion(C, llvm::errs());
1796 SuppressMissingInputWarning = true;
1797 }
1798
1799 if (C.getArgs().hasArg(options::OPT_v)) {
1800 if (!SystemConfigDir.empty())
1801 llvm::errs() << "System configuration file directory: "
1802 << SystemConfigDir << "\n";
1803 if (!UserConfigDir.empty())
1804 llvm::errs() << "User configuration file directory: "
1805 << UserConfigDir << "\n";
1806 }
1807
1808 const ToolChain &TC = C.getDefaultToolChain();
1809
1810 if (C.getArgs().hasArg(options::OPT_v))
1811 TC.printVerboseInfo(llvm::errs());
1812
1813 if (C.getArgs().hasArg(options::OPT_print_resource_dir)) {
1814 llvm::outs() << ResourceDir << '\n';
1815 return false;
1816 }
1817
1818 if (C.getArgs().hasArg(options::OPT_print_search_dirs)) {
1819 llvm::outs() << "programs: =";
1820 bool separator = false;
1821 // Print -B and COMPILER_PATH.
1822 for (const std::string &Path : PrefixDirs) {
1823 if (separator)
1824 llvm::outs() << llvm::sys::EnvPathSeparator;
1825 llvm::outs() << Path;
1826 separator = true;
1827 }
1828 for (const std::string &Path : TC.getProgramPaths()) {
1829 if (separator)
1830 llvm::outs() << llvm::sys::EnvPathSeparator;
1831 llvm::outs() << Path;
1832 separator = true;
1833 }
1834 llvm::outs() << "\n";
1835 llvm::outs() << "libraries: =" << ResourceDir;
1836
1837 StringRef sysroot = C.getSysRoot();
1838
1839 for (const std::string &Path : TC.getFilePaths()) {
1840 // Always print a separator. ResourceDir was the first item shown.
1841 llvm::outs() << llvm::sys::EnvPathSeparator;
1842 // Interpretation of leading '=' is needed only for NetBSD.
1843 if (Path[0] == '=')
1844 llvm::outs() << sysroot << Path.substr(1);
1845 else
1846 llvm::outs() << Path;
1847 }
1848 llvm::outs() << "\n";
1849 return false;
1850 }
1851
1852 if (C.getArgs().hasArg(options::OPT_print_runtime_dir)) {
1853 std::string CandidateRuntimePath = TC.getRuntimePath();
1854 if (getVFS().exists(CandidateRuntimePath))
1855 llvm::outs() << CandidateRuntimePath << '\n';
1856 else
1857 llvm::outs() << TC.getCompilerRTPath() << '\n';
1858 return false;
1859 }
1860
1861 // FIXME: The following handlers should use a callback mechanism, we don't
1862 // know what the client would like to do.
1863 if (Arg *A = C.getArgs().getLastArg(options::OPT_print_file_name_EQ)) {
1864 llvm::outs() << GetFilePath(A->getValue(), TC) << "\n";
1865 return false;
1866 }
1867
1868 if (Arg *A = C.getArgs().getLastArg(options::OPT_print_prog_name_EQ)) {
1869 StringRef ProgName = A->getValue();
1870
1871 // Null program name cannot have a path.
1872 if (! ProgName.empty())
1873 llvm::outs() << GetProgramPath(ProgName, TC);
1874
1875 llvm::outs() << "\n";
1876 return false;
1877 }
1878
1879 if (Arg *A = C.getArgs().getLastArg(options::OPT_autocomplete)) {
1880 StringRef PassedFlags = A->getValue();
1881 HandleAutocompletions(PassedFlags);
1882 return false;
1883 }
1884
1885 if (C.getArgs().hasArg(options::OPT_print_libgcc_file_name)) {
1886 ToolChain::RuntimeLibType RLT = TC.GetRuntimeLibType(C.getArgs());
1887 const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs()));
1888 RegisterEffectiveTriple TripleRAII(TC, Triple);
1889 switch (RLT) {
1890 case ToolChain::RLT_CompilerRT:
1891 llvm::outs() << TC.getCompilerRT(C.getArgs(), "builtins") << "\n";
1892 break;
1893 case ToolChain::RLT_Libgcc:
1894 llvm::outs() << GetFilePath("libgcc.a", TC) << "\n";
1895 break;
1896 }
1897 return false;
1898 }
1899
1900 if (C.getArgs().hasArg(options::OPT_print_multi_lib)) {
1901 for (const Multilib &Multilib : TC.getMultilibs())
1902 llvm::outs() << Multilib << "\n";
1903 return false;
1904 }
1905
1906 if (C.getArgs().hasArg(options::OPT_print_multi_directory)) {
1907 const Multilib &Multilib = TC.getMultilib();
1908 if (Multilib.gccSuffix().empty())
1909 llvm::outs() << ".\n";
1910 else {
1911 StringRef Suffix(Multilib.gccSuffix());
1912 assert(Suffix.front() == '/');
1913 llvm::outs() << Suffix.substr(1) << "\n";
1914 }
1915 return false;
1916 }
1917
1918 if (C.getArgs().hasArg(options::OPT_print_target_triple)) {
1919 llvm::outs() << TC.getTripleString() << "\n";
1920 return false;
1921 }
1922
1923 if (C.getArgs().hasArg(options::OPT_print_effective_triple)) {
1924 const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs()));
1925 llvm::outs() << Triple.getTriple() << "\n";
1926 return false;
1927 }
1928
1929 if (C.getArgs().hasArg(options::OPT_print_multiarch)) {
1930 llvm::outs() << TC.getMultiarchTriple(*this, TC.getTriple(), SysRoot)
1931 << "\n";
1932 return false;
1933 }
1934
1935 if (C.getArgs().hasArg(options::OPT_print_targets)) {
1936 llvm::TargetRegistry::printRegisteredTargetsForVersion(llvm::outs());
1937 return false;
1938 }
1939
1940 return true;
1941 }
1942
1943 enum {
1944 TopLevelAction = 0,
1945 HeadSibAction = 1,
1946 OtherSibAction = 2,
1947 };
1948
1949 // Display an action graph human-readably. Action A is the "sink" node
1950 // and latest-occuring action. Traversal is in pre-order, visiting the
1951 // inputs to each action before printing the action itself.
PrintActions1(const Compilation & C,Action * A,std::map<Action *,unsigned> & Ids,Twine Indent={},int Kind=TopLevelAction)1952 static unsigned PrintActions1(const Compilation &C, Action *A,
1953 std::map<Action *, unsigned> &Ids,
1954 Twine Indent = {}, int Kind = TopLevelAction) {
1955 if (Ids.count(A)) // A was already visited.
1956 return Ids[A];
1957
1958 std::string str;
1959 llvm::raw_string_ostream os(str);
1960
__anon51bf6f8c0702(int K) 1961 auto getSibIndent = [](int K) -> Twine {
1962 return (K == HeadSibAction) ? " " : (K == OtherSibAction) ? "| " : "";
1963 };
1964
1965 Twine SibIndent = Indent + getSibIndent(Kind);
1966 int SibKind = HeadSibAction;
1967 os << Action::getClassName(A->getKind()) << ", ";
1968 if (InputAction *IA = dyn_cast<InputAction>(A)) {
1969 os << "\"" << IA->getInputArg().getValue() << "\"";
1970 } else if (BindArchAction *BIA = dyn_cast<BindArchAction>(A)) {
1971 os << '"' << BIA->getArchName() << '"' << ", {"
1972 << PrintActions1(C, *BIA->input_begin(), Ids, SibIndent, SibKind) << "}";
1973 } else if (OffloadAction *OA = dyn_cast<OffloadAction>(A)) {
1974 bool IsFirst = true;
1975 OA->doOnEachDependence(
__anon51bf6f8c0802(Action *A, const ToolChain *TC, const char *BoundArch) 1976 [&](Action *A, const ToolChain *TC, const char *BoundArch) {
1977 assert(TC && "Unknown host toolchain");
1978 // E.g. for two CUDA device dependences whose bound arch is sm_20 and
1979 // sm_35 this will generate:
1980 // "cuda-device" (nvptx64-nvidia-cuda:sm_20) {#ID}, "cuda-device"
1981 // (nvptx64-nvidia-cuda:sm_35) {#ID}
1982 if (!IsFirst)
1983 os << ", ";
1984 os << '"';
1985 os << A->getOffloadingKindPrefix();
1986 os << " (";
1987 os << TC->getTriple().normalize();
1988 if (BoundArch)
1989 os << ":" << BoundArch;
1990 os << ")";
1991 os << '"';
1992 os << " {" << PrintActions1(C, A, Ids, SibIndent, SibKind) << "}";
1993 IsFirst = false;
1994 SibKind = OtherSibAction;
1995 });
1996 } else {
1997 const ActionList *AL = &A->getInputs();
1998
1999 if (AL->size()) {
2000 const char *Prefix = "{";
2001 for (Action *PreRequisite : *AL) {
2002 os << Prefix << PrintActions1(C, PreRequisite, Ids, SibIndent, SibKind);
2003 Prefix = ", ";
2004 SibKind = OtherSibAction;
2005 }
2006 os << "}";
2007 } else
2008 os << "{}";
2009 }
2010
2011 // Append offload info for all options other than the offloading action
2012 // itself (e.g. (cuda-device, sm_20) or (cuda-host)).
2013 std::string offload_str;
2014 llvm::raw_string_ostream offload_os(offload_str);
2015 if (!isa<OffloadAction>(A)) {
2016 auto S = A->getOffloadingKindPrefix();
2017 if (!S.empty()) {
2018 offload_os << ", (" << S;
2019 if (A->getOffloadingArch())
2020 offload_os << ", " << A->getOffloadingArch();
2021 offload_os << ")";
2022 }
2023 }
2024
__anon51bf6f8c0902(int K) 2025 auto getSelfIndent = [](int K) -> Twine {
2026 return (K == HeadSibAction) ? "+- " : (K == OtherSibAction) ? "|- " : "";
2027 };
2028
2029 unsigned Id = Ids.size();
2030 Ids[A] = Id;
2031 llvm::errs() << Indent + getSelfIndent(Kind) << Id << ": " << os.str() << ", "
2032 << types::getTypeName(A->getType()) << offload_os.str() << "\n";
2033
2034 return Id;
2035 }
2036
2037 // Print the action graphs in a compilation C.
2038 // For example "clang -c file1.c file2.c" is composed of two subgraphs.
PrintActions(const Compilation & C) const2039 void Driver::PrintActions(const Compilation &C) const {
2040 std::map<Action *, unsigned> Ids;
2041 for (Action *A : C.getActions())
2042 PrintActions1(C, A, Ids);
2043 }
2044
2045 /// Check whether the given input tree contains any compilation or
2046 /// assembly actions.
ContainsCompileOrAssembleAction(const Action * A)2047 static bool ContainsCompileOrAssembleAction(const Action *A) {
2048 if (isa<CompileJobAction>(A) || isa<BackendJobAction>(A) ||
2049 isa<AssembleJobAction>(A))
2050 return true;
2051
2052 for (const Action *Input : A->inputs())
2053 if (ContainsCompileOrAssembleAction(Input))
2054 return true;
2055
2056 return false;
2057 }
2058
BuildUniversalActions(Compilation & C,const ToolChain & TC,const InputList & BAInputs) const2059 void Driver::BuildUniversalActions(Compilation &C, const ToolChain &TC,
2060 const InputList &BAInputs) const {
2061 DerivedArgList &Args = C.getArgs();
2062 ActionList &Actions = C.getActions();
2063 llvm::PrettyStackTraceString CrashInfo("Building universal build actions");
2064 // Collect the list of architectures. Duplicates are allowed, but should only
2065 // be handled once (in the order seen).
2066 llvm::StringSet<> ArchNames;
2067 SmallVector<const char *, 4> Archs;
2068 for (Arg *A : Args) {
2069 if (A->getOption().matches(options::OPT_arch)) {
2070 // Validate the option here; we don't save the type here because its
2071 // particular spelling may participate in other driver choices.
2072 llvm::Triple::ArchType Arch =
2073 tools::darwin::getArchTypeForMachOArchName(A->getValue());
2074 if (Arch == llvm::Triple::UnknownArch) {
2075 Diag(clang::diag::err_drv_invalid_arch_name) << A->getAsString(Args);
2076 continue;
2077 }
2078
2079 A->claim();
2080 if (ArchNames.insert(A->getValue()).second)
2081 Archs.push_back(A->getValue());
2082 }
2083 }
2084
2085 // When there is no explicit arch for this platform, make sure we still bind
2086 // the architecture (to the default) so that -Xarch_ is handled correctly.
2087 if (!Archs.size())
2088 Archs.push_back(Args.MakeArgString(TC.getDefaultUniversalArchName()));
2089
2090 ActionList SingleActions;
2091 BuildActions(C, Args, BAInputs, SingleActions);
2092
2093 // Add in arch bindings for every top level action, as well as lipo and
2094 // dsymutil steps if needed.
2095 for (Action* Act : SingleActions) {
2096 // Make sure we can lipo this kind of output. If not (and it is an actual
2097 // output) then we disallow, since we can't create an output file with the
2098 // right name without overwriting it. We could remove this oddity by just
2099 // changing the output names to include the arch, which would also fix
2100 // -save-temps. Compatibility wins for now.
2101
2102 if (Archs.size() > 1 && !types::canLipoType(Act->getType()))
2103 Diag(clang::diag::err_drv_invalid_output_with_multiple_archs)
2104 << types::getTypeName(Act->getType());
2105
2106 ActionList Inputs;
2107 for (unsigned i = 0, e = Archs.size(); i != e; ++i)
2108 Inputs.push_back(C.MakeAction<BindArchAction>(Act, Archs[i]));
2109
2110 // Lipo if necessary, we do it this way because we need to set the arch flag
2111 // so that -Xarch_ gets overwritten.
2112 if (Inputs.size() == 1 || Act->getType() == types::TY_Nothing)
2113 Actions.append(Inputs.begin(), Inputs.end());
2114 else
2115 Actions.push_back(C.MakeAction<LipoJobAction>(Inputs, Act->getType()));
2116
2117 // Handle debug info queries.
2118 Arg *A = Args.getLastArg(options::OPT_g_Group);
2119 bool enablesDebugInfo = A && !A->getOption().matches(options::OPT_g0) &&
2120 !A->getOption().matches(options::OPT_gstabs);
2121 if ((enablesDebugInfo || willEmitRemarks(Args)) &&
2122 ContainsCompileOrAssembleAction(Actions.back())) {
2123
2124 // Add a 'dsymutil' step if necessary, when debug info is enabled and we
2125 // have a compile input. We need to run 'dsymutil' ourselves in such cases
2126 // because the debug info will refer to a temporary object file which
2127 // will be removed at the end of the compilation process.
2128 if (Act->getType() == types::TY_Image) {
2129 ActionList Inputs;
2130 Inputs.push_back(Actions.back());
2131 Actions.pop_back();
2132 Actions.push_back(
2133 C.MakeAction<DsymutilJobAction>(Inputs, types::TY_dSYM));
2134 }
2135
2136 // Verify the debug info output.
2137 if (Args.hasArg(options::OPT_verify_debug_info)) {
2138 Action* LastAction = Actions.back();
2139 Actions.pop_back();
2140 Actions.push_back(C.MakeAction<VerifyDebugInfoJobAction>(
2141 LastAction, types::TY_Nothing));
2142 }
2143 }
2144 }
2145 }
2146
DiagnoseInputExistence(const DerivedArgList & Args,StringRef Value,types::ID Ty,bool TypoCorrect) const2147 bool Driver::DiagnoseInputExistence(const DerivedArgList &Args, StringRef Value,
2148 types::ID Ty, bool TypoCorrect) const {
2149 if (!getCheckInputsExist())
2150 return true;
2151
2152 // stdin always exists.
2153 if (Value == "-")
2154 return true;
2155
2156 if (getVFS().exists(Value))
2157 return true;
2158
2159 if (IsCLMode()) {
2160 if (!llvm::sys::path::is_absolute(Twine(Value)) &&
2161 llvm::sys::Process::FindInEnvPath("LIB", Value, ';'))
2162 return true;
2163
2164 if (Args.hasArg(options::OPT__SLASH_link) && Ty == types::TY_Object) {
2165 // Arguments to the /link flag might cause the linker to search for object
2166 // and library files in paths we don't know about. Don't error in such
2167 // cases.
2168 return true;
2169 }
2170 }
2171
2172 if (TypoCorrect) {
2173 // Check if the filename is a typo for an option flag. OptTable thinks
2174 // that all args that are not known options and that start with / are
2175 // filenames, but e.g. `/diagnostic:caret` is more likely a typo for
2176 // the option `/diagnostics:caret` than a reference to a file in the root
2177 // directory.
2178 unsigned IncludedFlagsBitmask;
2179 unsigned ExcludedFlagsBitmask;
2180 std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
2181 getIncludeExcludeOptionFlagMasks(IsCLMode());
2182 std::string Nearest;
2183 if (getOpts().findNearest(Value, Nearest, IncludedFlagsBitmask,
2184 ExcludedFlagsBitmask) <= 1) {
2185 Diag(clang::diag::err_drv_no_such_file_with_suggestion)
2186 << Value << Nearest;
2187 return false;
2188 }
2189 }
2190
2191 Diag(clang::diag::err_drv_no_such_file) << Value;
2192 return false;
2193 }
2194
2195 // Construct a the list of inputs and their types.
BuildInputs(const ToolChain & TC,DerivedArgList & Args,InputList & Inputs) const2196 void Driver::BuildInputs(const ToolChain &TC, DerivedArgList &Args,
2197 InputList &Inputs) const {
2198 const llvm::opt::OptTable &Opts = getOpts();
2199 // Track the current user specified (-x) input. We also explicitly track the
2200 // argument used to set the type; we only want to claim the type when we
2201 // actually use it, so we warn about unused -x arguments.
2202 types::ID InputType = types::TY_Nothing;
2203 Arg *InputTypeArg = nullptr;
2204
2205 // The last /TC or /TP option sets the input type to C or C++ globally.
2206 if (Arg *TCTP = Args.getLastArgNoClaim(options::OPT__SLASH_TC,
2207 options::OPT__SLASH_TP)) {
2208 InputTypeArg = TCTP;
2209 InputType = TCTP->getOption().matches(options::OPT__SLASH_TC)
2210 ? types::TY_C
2211 : types::TY_CXX;
2212
2213 Arg *Previous = nullptr;
2214 bool ShowNote = false;
2215 for (Arg *A :
2216 Args.filtered(options::OPT__SLASH_TC, options::OPT__SLASH_TP)) {
2217 if (Previous) {
2218 Diag(clang::diag::warn_drv_overriding_flag_option)
2219 << Previous->getSpelling() << A->getSpelling();
2220 ShowNote = true;
2221 }
2222 Previous = A;
2223 }
2224 if (ShowNote)
2225 Diag(clang::diag::note_drv_t_option_is_global);
2226
2227 // No driver mode exposes -x and /TC or /TP; we don't support mixing them.
2228 assert(!Args.hasArg(options::OPT_x) && "-x and /TC or /TP is not allowed");
2229 }
2230
2231 for (Arg *A : Args) {
2232 if (A->getOption().getKind() == Option::InputClass) {
2233 const char *Value = A->getValue();
2234 types::ID Ty = types::TY_INVALID;
2235
2236 // Infer the input type if necessary.
2237 if (InputType == types::TY_Nothing) {
2238 // If there was an explicit arg for this, claim it.
2239 if (InputTypeArg)
2240 InputTypeArg->claim();
2241
2242 // stdin must be handled specially.
2243 if (memcmp(Value, "-", 2) == 0) {
2244 if (IsFlangMode()) {
2245 Ty = types::TY_Fortran;
2246 } else {
2247 // If running with -E, treat as a C input (this changes the
2248 // builtin macros, for example). This may be overridden by -ObjC
2249 // below.
2250 //
2251 // Otherwise emit an error but still use a valid type to avoid
2252 // spurious errors (e.g., no inputs).
2253 if (!Args.hasArgNoClaim(options::OPT_E) && !CCCIsCPP())
2254 Diag(IsCLMode() ? clang::diag::err_drv_unknown_stdin_type_clang_cl
2255 : clang::diag::err_drv_unknown_stdin_type);
2256 Ty = types::TY_C;
2257 }
2258 } else {
2259 // Otherwise lookup by extension.
2260 // Fallback is C if invoked as C preprocessor, C++ if invoked with
2261 // clang-cl /E, or Object otherwise.
2262 // We use a host hook here because Darwin at least has its own
2263 // idea of what .s is.
2264 if (const char *Ext = strrchr(Value, '.'))
2265 Ty = TC.LookupTypeForExtension(Ext + 1);
2266
2267 if (Ty == types::TY_INVALID) {
2268 if (CCCIsCPP())
2269 Ty = types::TY_C;
2270 else if (IsCLMode() && Args.hasArgNoClaim(options::OPT_E))
2271 Ty = types::TY_CXX;
2272 else
2273 Ty = types::TY_Object;
2274 }
2275
2276 // If the driver is invoked as C++ compiler (like clang++ or c++) it
2277 // should autodetect some input files as C++ for g++ compatibility.
2278 if (CCCIsCXX()) {
2279 types::ID OldTy = Ty;
2280 Ty = types::lookupCXXTypeForCType(Ty);
2281
2282 if (Ty != OldTy)
2283 Diag(clang::diag::warn_drv_treating_input_as_cxx)
2284 << getTypeName(OldTy) << getTypeName(Ty);
2285 }
2286
2287 // If running with -fthinlto-index=, extensions that normally identify
2288 // native object files actually identify LLVM bitcode files.
2289 if (Args.hasArgNoClaim(options::OPT_fthinlto_index_EQ) &&
2290 Ty == types::TY_Object)
2291 Ty = types::TY_LLVM_BC;
2292 }
2293
2294 // -ObjC and -ObjC++ override the default language, but only for "source
2295 // files". We just treat everything that isn't a linker input as a
2296 // source file.
2297 //
2298 // FIXME: Clean this up if we move the phase sequence into the type.
2299 if (Ty != types::TY_Object) {
2300 if (Args.hasArg(options::OPT_ObjC))
2301 Ty = types::TY_ObjC;
2302 else if (Args.hasArg(options::OPT_ObjCXX))
2303 Ty = types::TY_ObjCXX;
2304 }
2305 } else {
2306 assert(InputTypeArg && "InputType set w/o InputTypeArg");
2307 if (!InputTypeArg->getOption().matches(options::OPT_x)) {
2308 // If emulating cl.exe, make sure that /TC and /TP don't affect input
2309 // object files.
2310 const char *Ext = strrchr(Value, '.');
2311 if (Ext && TC.LookupTypeForExtension(Ext + 1) == types::TY_Object)
2312 Ty = types::TY_Object;
2313 }
2314 if (Ty == types::TY_INVALID) {
2315 Ty = InputType;
2316 InputTypeArg->claim();
2317 }
2318 }
2319
2320 if (DiagnoseInputExistence(Args, Value, Ty, /*TypoCorrect=*/true))
2321 Inputs.push_back(std::make_pair(Ty, A));
2322
2323 } else if (A->getOption().matches(options::OPT__SLASH_Tc)) {
2324 StringRef Value = A->getValue();
2325 if (DiagnoseInputExistence(Args, Value, types::TY_C,
2326 /*TypoCorrect=*/false)) {
2327 Arg *InputArg = MakeInputArg(Args, Opts, A->getValue());
2328 Inputs.push_back(std::make_pair(types::TY_C, InputArg));
2329 }
2330 A->claim();
2331 } else if (A->getOption().matches(options::OPT__SLASH_Tp)) {
2332 StringRef Value = A->getValue();
2333 if (DiagnoseInputExistence(Args, Value, types::TY_CXX,
2334 /*TypoCorrect=*/false)) {
2335 Arg *InputArg = MakeInputArg(Args, Opts, A->getValue());
2336 Inputs.push_back(std::make_pair(types::TY_CXX, InputArg));
2337 }
2338 A->claim();
2339 } else if (A->getOption().hasFlag(options::LinkerInput)) {
2340 // Just treat as object type, we could make a special type for this if
2341 // necessary.
2342 Inputs.push_back(std::make_pair(types::TY_Object, A));
2343
2344 } else if (A->getOption().matches(options::OPT_x)) {
2345 InputTypeArg = A;
2346 InputType = types::lookupTypeForTypeSpecifier(A->getValue());
2347 A->claim();
2348
2349 // Follow gcc behavior and treat as linker input for invalid -x
2350 // options. Its not clear why we shouldn't just revert to unknown; but
2351 // this isn't very important, we might as well be bug compatible.
2352 if (!InputType) {
2353 Diag(clang::diag::err_drv_unknown_language) << A->getValue();
2354 InputType = types::TY_Object;
2355 }
2356 } else if (A->getOption().getID() == options::OPT_U) {
2357 assert(A->getNumValues() == 1 && "The /U option has one value.");
2358 StringRef Val = A->getValue(0);
2359 if (Val.find_first_of("/\\") != StringRef::npos) {
2360 // Warn about e.g. "/Users/me/myfile.c".
2361 Diag(diag::warn_slash_u_filename) << Val;
2362 Diag(diag::note_use_dashdash);
2363 }
2364 }
2365 }
2366 if (CCCIsCPP() && Inputs.empty()) {
2367 // If called as standalone preprocessor, stdin is processed
2368 // if no other input is present.
2369 Arg *A = MakeInputArg(Args, Opts, "-");
2370 Inputs.push_back(std::make_pair(types::TY_C, A));
2371 }
2372 }
2373
2374 namespace {
2375 /// Provides a convenient interface for different programming models to generate
2376 /// the required device actions.
2377 class OffloadingActionBuilder final {
2378 /// Flag used to trace errors in the builder.
2379 bool IsValid = false;
2380
2381 /// The compilation that is using this builder.
2382 Compilation &C;
2383
2384 /// Map between an input argument and the offload kinds used to process it.
2385 std::map<const Arg *, unsigned> InputArgToOffloadKindMap;
2386
2387 /// Builder interface. It doesn't build anything or keep any state.
2388 class DeviceActionBuilder {
2389 public:
2390 typedef const llvm::SmallVectorImpl<phases::ID> PhasesTy;
2391
2392 enum ActionBuilderReturnCode {
2393 // The builder acted successfully on the current action.
2394 ABRT_Success,
2395 // The builder didn't have to act on the current action.
2396 ABRT_Inactive,
2397 // The builder was successful and requested the host action to not be
2398 // generated.
2399 ABRT_Ignore_Host,
2400 };
2401
2402 protected:
2403 /// Compilation associated with this builder.
2404 Compilation &C;
2405
2406 /// Tool chains associated with this builder. The same programming
2407 /// model may have associated one or more tool chains.
2408 SmallVector<const ToolChain *, 2> ToolChains;
2409
2410 /// The derived arguments associated with this builder.
2411 DerivedArgList &Args;
2412
2413 /// The inputs associated with this builder.
2414 const Driver::InputList &Inputs;
2415
2416 /// The associated offload kind.
2417 Action::OffloadKind AssociatedOffloadKind = Action::OFK_None;
2418
2419 public:
DeviceActionBuilder(Compilation & C,DerivedArgList & Args,const Driver::InputList & Inputs,Action::OffloadKind AssociatedOffloadKind)2420 DeviceActionBuilder(Compilation &C, DerivedArgList &Args,
2421 const Driver::InputList &Inputs,
2422 Action::OffloadKind AssociatedOffloadKind)
2423 : C(C), Args(Args), Inputs(Inputs),
2424 AssociatedOffloadKind(AssociatedOffloadKind) {}
~DeviceActionBuilder()2425 virtual ~DeviceActionBuilder() {}
2426
2427 /// Fill up the array \a DA with all the device dependences that should be
2428 /// added to the provided host action \a HostAction. By default it is
2429 /// inactive.
2430 virtual ActionBuilderReturnCode
getDeviceDependences(OffloadAction::DeviceDependences & DA,phases::ID CurPhase,phases::ID FinalPhase,PhasesTy & Phases)2431 getDeviceDependences(OffloadAction::DeviceDependences &DA,
2432 phases::ID CurPhase, phases::ID FinalPhase,
2433 PhasesTy &Phases) {
2434 return ABRT_Inactive;
2435 }
2436
2437 /// Update the state to include the provided host action \a HostAction as a
2438 /// dependency of the current device action. By default it is inactive.
addDeviceDepences(Action * HostAction)2439 virtual ActionBuilderReturnCode addDeviceDepences(Action *HostAction) {
2440 return ABRT_Inactive;
2441 }
2442
2443 /// Append top level actions generated by the builder.
appendTopLevelActions(ActionList & AL)2444 virtual void appendTopLevelActions(ActionList &AL) {}
2445
2446 /// Append linker device actions generated by the builder.
appendLinkDeviceActions(ActionList & AL)2447 virtual void appendLinkDeviceActions(ActionList &AL) {}
2448
2449 /// Append linker host action generated by the builder.
appendLinkHostActions(ActionList & AL)2450 virtual Action* appendLinkHostActions(ActionList &AL) { return nullptr; }
2451
2452 /// Append linker actions generated by the builder.
appendLinkDependences(OffloadAction::DeviceDependences & DA)2453 virtual void appendLinkDependences(OffloadAction::DeviceDependences &DA) {}
2454
2455 /// Initialize the builder. Return true if any initialization errors are
2456 /// found.
initialize()2457 virtual bool initialize() { return false; }
2458
2459 /// Return true if the builder can use bundling/unbundling.
canUseBundlerUnbundler() const2460 virtual bool canUseBundlerUnbundler() const { return false; }
2461
2462 /// Return true if this builder is valid. We have a valid builder if we have
2463 /// associated device tool chains.
isValid()2464 bool isValid() { return !ToolChains.empty(); }
2465
2466 /// Return the associated offload kind.
getAssociatedOffloadKind()2467 Action::OffloadKind getAssociatedOffloadKind() {
2468 return AssociatedOffloadKind;
2469 }
2470 };
2471
2472 /// Base class for CUDA/HIP action builder. It injects device code in
2473 /// the host backend action.
2474 class CudaActionBuilderBase : public DeviceActionBuilder {
2475 protected:
2476 /// Flags to signal if the user requested host-only or device-only
2477 /// compilation.
2478 bool CompileHostOnly = false;
2479 bool CompileDeviceOnly = false;
2480 bool EmitLLVM = false;
2481 bool EmitAsm = false;
2482
2483 /// ID to identify each device compilation. For CUDA it is simply the
2484 /// GPU arch string. For HIP it is either the GPU arch string or GPU
2485 /// arch string plus feature strings delimited by a plus sign, e.g.
2486 /// gfx906+xnack.
2487 struct TargetID {
2488 /// Target ID string which is persistent throughout the compilation.
2489 const char *ID;
TargetID__anon51bf6f8c0a11::OffloadingActionBuilder::CudaActionBuilderBase::TargetID2490 TargetID(CudaArch Arch) { ID = CudaArchToString(Arch); }
TargetID__anon51bf6f8c0a11::OffloadingActionBuilder::CudaActionBuilderBase::TargetID2491 TargetID(const char *ID) : ID(ID) {}
operator const char*__anon51bf6f8c0a11::OffloadingActionBuilder::CudaActionBuilderBase::TargetID2492 operator const char *() { return ID; }
operator StringRef__anon51bf6f8c0a11::OffloadingActionBuilder::CudaActionBuilderBase::TargetID2493 operator StringRef() { return StringRef(ID); }
2494 };
2495 /// List of GPU architectures to use in this compilation.
2496 SmallVector<TargetID, 4> GpuArchList;
2497
2498 /// The CUDA actions for the current input.
2499 ActionList CudaDeviceActions;
2500
2501 /// The CUDA fat binary if it was generated for the current input.
2502 Action *CudaFatBinary = nullptr;
2503
2504 /// Flag that is set to true if this builder acted on the current input.
2505 bool IsActive = false;
2506
2507 /// Flag for -fgpu-rdc.
2508 bool Relocatable = false;
2509
2510 /// Default GPU architecture if there's no one specified.
2511 CudaArch DefaultCudaArch = CudaArch::UNKNOWN;
2512
2513 /// Method to generate compilation unit ID specified by option
2514 /// '-fuse-cuid='.
2515 enum UseCUIDKind { CUID_Hash, CUID_Random, CUID_None, CUID_Invalid };
2516 UseCUIDKind UseCUID = CUID_Hash;
2517
2518 /// Compilation unit ID specified by option '-cuid='.
2519 StringRef FixedCUID;
2520
2521 public:
CudaActionBuilderBase(Compilation & C,DerivedArgList & Args,const Driver::InputList & Inputs,Action::OffloadKind OFKind)2522 CudaActionBuilderBase(Compilation &C, DerivedArgList &Args,
2523 const Driver::InputList &Inputs,
2524 Action::OffloadKind OFKind)
2525 : DeviceActionBuilder(C, Args, Inputs, OFKind) {}
2526
addDeviceDepences(Action * HostAction)2527 ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override {
2528 // While generating code for CUDA, we only depend on the host input action
2529 // to trigger the creation of all the CUDA device actions.
2530
2531 // If we are dealing with an input action, replicate it for each GPU
2532 // architecture. If we are in host-only mode we return 'success' so that
2533 // the host uses the CUDA offload kind.
2534 if (auto *IA = dyn_cast<InputAction>(HostAction)) {
2535 assert(!GpuArchList.empty() &&
2536 "We should have at least one GPU architecture.");
2537
2538 // If the host input is not CUDA or HIP, we don't need to bother about
2539 // this input.
2540 if (!(IA->getType() == types::TY_CUDA ||
2541 IA->getType() == types::TY_HIP ||
2542 IA->getType() == types::TY_PP_HIP)) {
2543 // The builder will ignore this input.
2544 IsActive = false;
2545 return ABRT_Inactive;
2546 }
2547
2548 // Set the flag to true, so that the builder acts on the current input.
2549 IsActive = true;
2550
2551 if (CompileHostOnly)
2552 return ABRT_Success;
2553
2554 // Replicate inputs for each GPU architecture.
2555 auto Ty = IA->getType() == types::TY_HIP ? types::TY_HIP_DEVICE
2556 : types::TY_CUDA_DEVICE;
2557 std::string CUID = FixedCUID.str();
2558 if (CUID.empty()) {
2559 if (UseCUID == CUID_Random)
2560 CUID = llvm::utohexstr(llvm::sys::Process::GetRandomNumber(),
2561 /*LowerCase=*/true);
2562 else if (UseCUID == CUID_Hash) {
2563 llvm::MD5 Hasher;
2564 llvm::MD5::MD5Result Hash;
2565 SmallString<256> RealPath;
2566 llvm::sys::fs::real_path(IA->getInputArg().getValue(), RealPath,
2567 /*expand_tilde=*/true);
2568 Hasher.update(RealPath);
2569 for (auto *A : Args) {
2570 if (A->getOption().matches(options::OPT_INPUT))
2571 continue;
2572 Hasher.update(A->getAsString(Args));
2573 }
2574 Hasher.final(Hash);
2575 CUID = llvm::utohexstr(Hash.low(), /*LowerCase=*/true);
2576 }
2577 }
2578 IA->setId(CUID);
2579
2580 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
2581 CudaDeviceActions.push_back(
2582 C.MakeAction<InputAction>(IA->getInputArg(), Ty, IA->getId()));
2583 }
2584
2585 return ABRT_Success;
2586 }
2587
2588 // If this is an unbundling action use it as is for each CUDA toolchain.
2589 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) {
2590
2591 // If -fgpu-rdc is disabled, should not unbundle since there is no
2592 // device code to link.
2593 if (UA->getType() == types::TY_Object && !Relocatable)
2594 return ABRT_Inactive;
2595
2596 CudaDeviceActions.clear();
2597 auto *IA = cast<InputAction>(UA->getInputs().back());
2598 std::string FileName = IA->getInputArg().getAsString(Args);
2599 // Check if the type of the file is the same as the action. Do not
2600 // unbundle it if it is not. Do not unbundle .so files, for example,
2601 // which are not object files.
2602 if (IA->getType() == types::TY_Object &&
2603 (!llvm::sys::path::has_extension(FileName) ||
2604 types::lookupTypeForExtension(
2605 llvm::sys::path::extension(FileName).drop_front()) !=
2606 types::TY_Object))
2607 return ABRT_Inactive;
2608
2609 for (auto Arch : GpuArchList) {
2610 CudaDeviceActions.push_back(UA);
2611 UA->registerDependentActionInfo(ToolChains[0], Arch,
2612 AssociatedOffloadKind);
2613 }
2614 return ABRT_Success;
2615 }
2616
2617 return IsActive ? ABRT_Success : ABRT_Inactive;
2618 }
2619
appendTopLevelActions(ActionList & AL)2620 void appendTopLevelActions(ActionList &AL) override {
2621 // Utility to append actions to the top level list.
2622 auto AddTopLevel = [&](Action *A, TargetID TargetID) {
2623 OffloadAction::DeviceDependences Dep;
2624 Dep.add(*A, *ToolChains.front(), TargetID, AssociatedOffloadKind);
2625 AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType()));
2626 };
2627
2628 // If we have a fat binary, add it to the list.
2629 if (CudaFatBinary) {
2630 AddTopLevel(CudaFatBinary, CudaArch::UNUSED);
2631 CudaDeviceActions.clear();
2632 CudaFatBinary = nullptr;
2633 return;
2634 }
2635
2636 if (CudaDeviceActions.empty())
2637 return;
2638
2639 // If we have CUDA actions at this point, that's because we have a have
2640 // partial compilation, so we should have an action for each GPU
2641 // architecture.
2642 assert(CudaDeviceActions.size() == GpuArchList.size() &&
2643 "Expecting one action per GPU architecture.");
2644 assert(ToolChains.size() == 1 &&
2645 "Expecting to have a sing CUDA toolchain.");
2646 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I)
2647 AddTopLevel(CudaDeviceActions[I], GpuArchList[I]);
2648
2649 CudaDeviceActions.clear();
2650 }
2651
2652 /// Get canonicalized offload arch option. \returns empty StringRef if the
2653 /// option is invalid.
2654 virtual StringRef getCanonicalOffloadArch(StringRef Arch) = 0;
2655
2656 virtual llvm::Optional<std::pair<llvm::StringRef, llvm::StringRef>>
2657 getConflictOffloadArchCombination(const std::set<StringRef> &GpuArchs) = 0;
2658
initialize()2659 bool initialize() override {
2660 assert(AssociatedOffloadKind == Action::OFK_Cuda ||
2661 AssociatedOffloadKind == Action::OFK_HIP);
2662
2663 // We don't need to support CUDA.
2664 if (AssociatedOffloadKind == Action::OFK_Cuda &&
2665 !C.hasOffloadToolChain<Action::OFK_Cuda>())
2666 return false;
2667
2668 // We don't need to support HIP.
2669 if (AssociatedOffloadKind == Action::OFK_HIP &&
2670 !C.hasOffloadToolChain<Action::OFK_HIP>())
2671 return false;
2672
2673 Relocatable = Args.hasFlag(options::OPT_fgpu_rdc,
2674 options::OPT_fno_gpu_rdc, /*Default=*/false);
2675
2676 const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
2677 assert(HostTC && "No toolchain for host compilation.");
2678 if (HostTC->getTriple().isNVPTX() ||
2679 HostTC->getTriple().getArch() == llvm::Triple::amdgcn) {
2680 // We do not support targeting NVPTX/AMDGCN for host compilation. Throw
2681 // an error and abort pipeline construction early so we don't trip
2682 // asserts that assume device-side compilation.
2683 C.getDriver().Diag(diag::err_drv_cuda_host_arch)
2684 << HostTC->getTriple().getArchName();
2685 return true;
2686 }
2687
2688 ToolChains.push_back(
2689 AssociatedOffloadKind == Action::OFK_Cuda
2690 ? C.getSingleOffloadToolChain<Action::OFK_Cuda>()
2691 : C.getSingleOffloadToolChain<Action::OFK_HIP>());
2692
2693 Arg *PartialCompilationArg = Args.getLastArg(
2694 options::OPT_cuda_host_only, options::OPT_cuda_device_only,
2695 options::OPT_cuda_compile_host_device);
2696 CompileHostOnly = PartialCompilationArg &&
2697 PartialCompilationArg->getOption().matches(
2698 options::OPT_cuda_host_only);
2699 CompileDeviceOnly = PartialCompilationArg &&
2700 PartialCompilationArg->getOption().matches(
2701 options::OPT_cuda_device_only);
2702 EmitLLVM = Args.getLastArg(options::OPT_emit_llvm);
2703 EmitAsm = Args.getLastArg(options::OPT_S);
2704 FixedCUID = Args.getLastArgValue(options::OPT_cuid_EQ);
2705 if (Arg *A = Args.getLastArg(options::OPT_fuse_cuid_EQ)) {
2706 StringRef UseCUIDStr = A->getValue();
2707 UseCUID = llvm::StringSwitch<UseCUIDKind>(UseCUIDStr)
2708 .Case("hash", CUID_Hash)
2709 .Case("random", CUID_Random)
2710 .Case("none", CUID_None)
2711 .Default(CUID_Invalid);
2712 if (UseCUID == CUID_Invalid) {
2713 C.getDriver().Diag(diag::err_drv_invalid_value)
2714 << A->getAsString(Args) << UseCUIDStr;
2715 C.setContainsError();
2716 return true;
2717 }
2718 }
2719
2720 // Collect all cuda_gpu_arch parameters, removing duplicates.
2721 std::set<StringRef> GpuArchs;
2722 bool Error = false;
2723 for (Arg *A : Args) {
2724 if (!(A->getOption().matches(options::OPT_offload_arch_EQ) ||
2725 A->getOption().matches(options::OPT_no_offload_arch_EQ)))
2726 continue;
2727 A->claim();
2728
2729 StringRef ArchStr = A->getValue();
2730 if (A->getOption().matches(options::OPT_no_offload_arch_EQ) &&
2731 ArchStr == "all") {
2732 GpuArchs.clear();
2733 continue;
2734 }
2735 ArchStr = getCanonicalOffloadArch(ArchStr);
2736 if (ArchStr.empty()) {
2737 Error = true;
2738 } else if (A->getOption().matches(options::OPT_offload_arch_EQ))
2739 GpuArchs.insert(ArchStr);
2740 else if (A->getOption().matches(options::OPT_no_offload_arch_EQ))
2741 GpuArchs.erase(ArchStr);
2742 else
2743 llvm_unreachable("Unexpected option.");
2744 }
2745
2746 auto &&ConflictingArchs = getConflictOffloadArchCombination(GpuArchs);
2747 if (ConflictingArchs) {
2748 C.getDriver().Diag(clang::diag::err_drv_bad_offload_arch_combo)
2749 << ConflictingArchs.getValue().first
2750 << ConflictingArchs.getValue().second;
2751 C.setContainsError();
2752 return true;
2753 }
2754
2755 // Collect list of GPUs remaining in the set.
2756 for (auto Arch : GpuArchs)
2757 GpuArchList.push_back(Arch.data());
2758
2759 // Default to sm_20 which is the lowest common denominator for
2760 // supported GPUs. sm_20 code should work correctly, if
2761 // suboptimally, on all newer GPUs.
2762 if (GpuArchList.empty())
2763 GpuArchList.push_back(DefaultCudaArch);
2764
2765 return Error;
2766 }
2767 };
2768
2769 /// \brief CUDA action builder. It injects device code in the host backend
2770 /// action.
2771 class CudaActionBuilder final : public CudaActionBuilderBase {
2772 public:
CudaActionBuilder(Compilation & C,DerivedArgList & Args,const Driver::InputList & Inputs)2773 CudaActionBuilder(Compilation &C, DerivedArgList &Args,
2774 const Driver::InputList &Inputs)
2775 : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_Cuda) {
2776 DefaultCudaArch = CudaArch::SM_20;
2777 }
2778
getCanonicalOffloadArch(StringRef ArchStr)2779 StringRef getCanonicalOffloadArch(StringRef ArchStr) override {
2780 CudaArch Arch = StringToCudaArch(ArchStr);
2781 if (Arch == CudaArch::UNKNOWN) {
2782 C.getDriver().Diag(clang::diag::err_drv_cuda_bad_gpu_arch) << ArchStr;
2783 return StringRef();
2784 }
2785 return CudaArchToString(Arch);
2786 }
2787
2788 llvm::Optional<std::pair<llvm::StringRef, llvm::StringRef>>
getConflictOffloadArchCombination(const std::set<StringRef> & GpuArchs)2789 getConflictOffloadArchCombination(
2790 const std::set<StringRef> &GpuArchs) override {
2791 return llvm::None;
2792 }
2793
2794 ActionBuilderReturnCode
getDeviceDependences(OffloadAction::DeviceDependences & DA,phases::ID CurPhase,phases::ID FinalPhase,PhasesTy & Phases)2795 getDeviceDependences(OffloadAction::DeviceDependences &DA,
2796 phases::ID CurPhase, phases::ID FinalPhase,
2797 PhasesTy &Phases) override {
2798 if (!IsActive)
2799 return ABRT_Inactive;
2800
2801 // If we don't have more CUDA actions, we don't have any dependences to
2802 // create for the host.
2803 if (CudaDeviceActions.empty())
2804 return ABRT_Success;
2805
2806 assert(CudaDeviceActions.size() == GpuArchList.size() &&
2807 "Expecting one action per GPU architecture.");
2808 assert(!CompileHostOnly &&
2809 "Not expecting CUDA actions in host-only compilation.");
2810
2811 // If we are generating code for the device or we are in a backend phase,
2812 // we attempt to generate the fat binary. We compile each arch to ptx and
2813 // assemble to cubin, then feed the cubin *and* the ptx into a device
2814 // "link" action, which uses fatbinary to combine these cubins into one
2815 // fatbin. The fatbin is then an input to the host action if not in
2816 // device-only mode.
2817 if (CompileDeviceOnly || CurPhase == phases::Backend) {
2818 ActionList DeviceActions;
2819 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
2820 // Produce the device action from the current phase up to the assemble
2821 // phase.
2822 for (auto Ph : Phases) {
2823 // Skip the phases that were already dealt with.
2824 if (Ph < CurPhase)
2825 continue;
2826 // We have to be consistent with the host final phase.
2827 if (Ph > FinalPhase)
2828 break;
2829
2830 CudaDeviceActions[I] = C.getDriver().ConstructPhaseAction(
2831 C, Args, Ph, CudaDeviceActions[I], Action::OFK_Cuda);
2832
2833 if (Ph == phases::Assemble)
2834 break;
2835 }
2836
2837 // If we didn't reach the assemble phase, we can't generate the fat
2838 // binary. We don't need to generate the fat binary if we are not in
2839 // device-only mode.
2840 if (!isa<AssembleJobAction>(CudaDeviceActions[I]) ||
2841 CompileDeviceOnly)
2842 continue;
2843
2844 Action *AssembleAction = CudaDeviceActions[I];
2845 assert(AssembleAction->getType() == types::TY_Object);
2846 assert(AssembleAction->getInputs().size() == 1);
2847
2848 Action *BackendAction = AssembleAction->getInputs()[0];
2849 assert(BackendAction->getType() == types::TY_PP_Asm);
2850
2851 for (auto &A : {AssembleAction, BackendAction}) {
2852 OffloadAction::DeviceDependences DDep;
2853 DDep.add(*A, *ToolChains.front(), GpuArchList[I], Action::OFK_Cuda);
2854 DeviceActions.push_back(
2855 C.MakeAction<OffloadAction>(DDep, A->getType()));
2856 }
2857 }
2858
2859 // We generate the fat binary if we have device input actions.
2860 if (!DeviceActions.empty()) {
2861 CudaFatBinary =
2862 C.MakeAction<LinkJobAction>(DeviceActions, types::TY_CUDA_FATBIN);
2863
2864 if (!CompileDeviceOnly) {
2865 DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr,
2866 Action::OFK_Cuda);
2867 // Clear the fat binary, it is already a dependence to an host
2868 // action.
2869 CudaFatBinary = nullptr;
2870 }
2871
2872 // Remove the CUDA actions as they are already connected to an host
2873 // action or fat binary.
2874 CudaDeviceActions.clear();
2875 }
2876
2877 // We avoid creating host action in device-only mode.
2878 return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
2879 } else if (CurPhase > phases::Backend) {
2880 // If we are past the backend phase and still have a device action, we
2881 // don't have to do anything as this action is already a device
2882 // top-level action.
2883 return ABRT_Success;
2884 }
2885
2886 assert(CurPhase < phases::Backend && "Generating single CUDA "
2887 "instructions should only occur "
2888 "before the backend phase!");
2889
2890 // By default, we produce an action for each device arch.
2891 for (Action *&A : CudaDeviceActions)
2892 A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A);
2893
2894 return ABRT_Success;
2895 }
2896 };
2897 /// \brief HIP action builder. It injects device code in the host backend
2898 /// action.
2899 class HIPActionBuilder final : public CudaActionBuilderBase {
2900 /// The linker inputs obtained for each device arch.
2901 SmallVector<ActionList, 8> DeviceLinkerInputs;
2902 bool GPUSanitize;
2903
2904 public:
HIPActionBuilder(Compilation & C,DerivedArgList & Args,const Driver::InputList & Inputs)2905 HIPActionBuilder(Compilation &C, DerivedArgList &Args,
2906 const Driver::InputList &Inputs)
2907 : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_HIP) {
2908 DefaultCudaArch = CudaArch::GFX803;
2909 GPUSanitize = Args.hasFlag(options::OPT_fgpu_sanitize,
2910 options::OPT_fno_gpu_sanitize, false);
2911 }
2912
canUseBundlerUnbundler() const2913 bool canUseBundlerUnbundler() const override { return true; }
2914
getCanonicalOffloadArch(StringRef IdStr)2915 StringRef getCanonicalOffloadArch(StringRef IdStr) override {
2916 llvm::StringMap<bool> Features;
2917 auto ArchStr =
2918 parseTargetID(getHIPOffloadTargetTriple(), IdStr, &Features);
2919 if (!ArchStr) {
2920 C.getDriver().Diag(clang::diag::err_drv_bad_target_id) << IdStr;
2921 C.setContainsError();
2922 return StringRef();
2923 }
2924 auto CanId = getCanonicalTargetID(ArchStr.getValue(), Features);
2925 return Args.MakeArgStringRef(CanId);
2926 };
2927
2928 llvm::Optional<std::pair<llvm::StringRef, llvm::StringRef>>
getConflictOffloadArchCombination(const std::set<StringRef> & GpuArchs)2929 getConflictOffloadArchCombination(
2930 const std::set<StringRef> &GpuArchs) override {
2931 return getConflictTargetIDCombination(GpuArchs);
2932 }
2933
2934 ActionBuilderReturnCode
getDeviceDependences(OffloadAction::DeviceDependences & DA,phases::ID CurPhase,phases::ID FinalPhase,PhasesTy & Phases)2935 getDeviceDependences(OffloadAction::DeviceDependences &DA,
2936 phases::ID CurPhase, phases::ID FinalPhase,
2937 PhasesTy &Phases) override {
2938 // amdgcn does not support linking of object files, therefore we skip
2939 // backend and assemble phases to output LLVM IR. Except for generating
2940 // non-relocatable device coee, where we generate fat binary for device
2941 // code and pass to host in Backend phase.
2942 if (CudaDeviceActions.empty())
2943 return ABRT_Success;
2944
2945 assert(((CurPhase == phases::Link && Relocatable) ||
2946 CudaDeviceActions.size() == GpuArchList.size()) &&
2947 "Expecting one action per GPU architecture.");
2948 assert(!CompileHostOnly &&
2949 "Not expecting CUDA actions in host-only compilation.");
2950
2951 if (!Relocatable && CurPhase == phases::Backend && !EmitLLVM &&
2952 !EmitAsm) {
2953 // If we are in backend phase, we attempt to generate the fat binary.
2954 // We compile each arch to IR and use a link action to generate code
2955 // object containing ISA. Then we use a special "link" action to create
2956 // a fat binary containing all the code objects for different GPU's.
2957 // The fat binary is then an input to the host action.
2958 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
2959 if (GPUSanitize || C.getDriver().isUsingLTO(/*IsOffload=*/true)) {
2960 // When GPU sanitizer is enabled, since we need to link in the
2961 // the sanitizer runtime library after the sanitize pass, we have
2962 // to skip the backend and assemble phases and use lld to link
2963 // the bitcode. The same happens if users request to use LTO
2964 // explicitly.
2965 ActionList AL;
2966 AL.push_back(CudaDeviceActions[I]);
2967 // Create a link action to link device IR with device library
2968 // and generate ISA.
2969 CudaDeviceActions[I] =
2970 C.MakeAction<LinkJobAction>(AL, types::TY_Image);
2971 } else {
2972 // When GPU sanitizer is not enabled, we follow the conventional
2973 // compiler phases, including backend and assemble phases.
2974 ActionList AL;
2975 auto BackendAction = C.getDriver().ConstructPhaseAction(
2976 C, Args, phases::Backend, CudaDeviceActions[I],
2977 AssociatedOffloadKind);
2978 auto AssembleAction = C.getDriver().ConstructPhaseAction(
2979 C, Args, phases::Assemble, BackendAction,
2980 AssociatedOffloadKind);
2981 AL.push_back(AssembleAction);
2982 // Create a link action to link device IR with device library
2983 // and generate ISA.
2984 CudaDeviceActions[I] =
2985 C.MakeAction<LinkJobAction>(AL, types::TY_Image);
2986 }
2987
2988 // OffloadingActionBuilder propagates device arch until an offload
2989 // action. Since the next action for creating fatbin does
2990 // not have device arch, whereas the above link action and its input
2991 // have device arch, an offload action is needed to stop the null
2992 // device arch of the next action being propagated to the above link
2993 // action.
2994 OffloadAction::DeviceDependences DDep;
2995 DDep.add(*CudaDeviceActions[I], *ToolChains.front(), GpuArchList[I],
2996 AssociatedOffloadKind);
2997 CudaDeviceActions[I] = C.MakeAction<OffloadAction>(
2998 DDep, CudaDeviceActions[I]->getType());
2999 }
3000 // Create HIP fat binary with a special "link" action.
3001 CudaFatBinary =
3002 C.MakeAction<LinkJobAction>(CudaDeviceActions,
3003 types::TY_HIP_FATBIN);
3004
3005 if (!CompileDeviceOnly) {
3006 DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr,
3007 AssociatedOffloadKind);
3008 // Clear the fat binary, it is already a dependence to an host
3009 // action.
3010 CudaFatBinary = nullptr;
3011 }
3012
3013 // Remove the CUDA actions as they are already connected to an host
3014 // action or fat binary.
3015 CudaDeviceActions.clear();
3016
3017 return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
3018 } else if (CurPhase == phases::Link) {
3019 // Save CudaDeviceActions to DeviceLinkerInputs for each GPU subarch.
3020 // This happens to each device action originated from each input file.
3021 // Later on, device actions in DeviceLinkerInputs are used to create
3022 // device link actions in appendLinkDependences and the created device
3023 // link actions are passed to the offload action as device dependence.
3024 DeviceLinkerInputs.resize(CudaDeviceActions.size());
3025 auto LI = DeviceLinkerInputs.begin();
3026 for (auto *A : CudaDeviceActions) {
3027 LI->push_back(A);
3028 ++LI;
3029 }
3030
3031 // We will pass the device action as a host dependence, so we don't
3032 // need to do anything else with them.
3033 CudaDeviceActions.clear();
3034 return ABRT_Success;
3035 }
3036
3037 // By default, we produce an action for each device arch.
3038 for (Action *&A : CudaDeviceActions)
3039 A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A,
3040 AssociatedOffloadKind);
3041
3042 return (CompileDeviceOnly && CurPhase == FinalPhase) ? ABRT_Ignore_Host
3043 : ABRT_Success;
3044 }
3045
appendLinkDeviceActions(ActionList & AL)3046 void appendLinkDeviceActions(ActionList &AL) override {
3047 if (DeviceLinkerInputs.size() == 0)
3048 return;
3049
3050 assert(DeviceLinkerInputs.size() == GpuArchList.size() &&
3051 "Linker inputs and GPU arch list sizes do not match.");
3052
3053 // Append a new link action for each device.
3054 unsigned I = 0;
3055 for (auto &LI : DeviceLinkerInputs) {
3056 // Each entry in DeviceLinkerInputs corresponds to a GPU arch.
3057 auto *DeviceLinkAction =
3058 C.MakeAction<LinkJobAction>(LI, types::TY_Image);
3059 // Linking all inputs for the current GPU arch.
3060 // LI contains all the inputs for the linker.
3061 OffloadAction::DeviceDependences DeviceLinkDeps;
3062 DeviceLinkDeps.add(*DeviceLinkAction, *ToolChains[0],
3063 GpuArchList[I], AssociatedOffloadKind);
3064 AL.push_back(C.MakeAction<OffloadAction>(DeviceLinkDeps,
3065 DeviceLinkAction->getType()));
3066 ++I;
3067 }
3068 DeviceLinkerInputs.clear();
3069
3070 // Create a host object from all the device images by embedding them
3071 // in a fat binary.
3072 OffloadAction::DeviceDependences DDeps;
3073 auto *TopDeviceLinkAction =
3074 C.MakeAction<LinkJobAction>(AL, types::TY_Object);
3075 DDeps.add(*TopDeviceLinkAction, *ToolChains[0],
3076 nullptr, AssociatedOffloadKind);
3077
3078 // Offload the host object to the host linker.
3079 AL.push_back(C.MakeAction<OffloadAction>(DDeps, TopDeviceLinkAction->getType()));
3080 }
3081
appendLinkHostActions(ActionList & AL)3082 Action* appendLinkHostActions(ActionList &AL) override { return AL.back(); }
3083
appendLinkDependences(OffloadAction::DeviceDependences & DA)3084 void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {}
3085 };
3086
3087 /// OpenMP action builder. The host bitcode is passed to the device frontend
3088 /// and all the device linked images are passed to the host link phase.
3089 class OpenMPActionBuilder final : public DeviceActionBuilder {
3090 /// The OpenMP actions for the current input.
3091 ActionList OpenMPDeviceActions;
3092
3093 /// The linker inputs obtained for each toolchain.
3094 SmallVector<ActionList, 8> DeviceLinkerInputs;
3095
3096 public:
OpenMPActionBuilder(Compilation & C,DerivedArgList & Args,const Driver::InputList & Inputs)3097 OpenMPActionBuilder(Compilation &C, DerivedArgList &Args,
3098 const Driver::InputList &Inputs)
3099 : DeviceActionBuilder(C, Args, Inputs, Action::OFK_OpenMP) {}
3100
3101 ActionBuilderReturnCode
getDeviceDependences(OffloadAction::DeviceDependences & DA,phases::ID CurPhase,phases::ID FinalPhase,PhasesTy & Phases)3102 getDeviceDependences(OffloadAction::DeviceDependences &DA,
3103 phases::ID CurPhase, phases::ID FinalPhase,
3104 PhasesTy &Phases) override {
3105 if (OpenMPDeviceActions.empty())
3106 return ABRT_Inactive;
3107
3108 // We should always have an action for each input.
3109 assert(OpenMPDeviceActions.size() == ToolChains.size() &&
3110 "Number of OpenMP actions and toolchains do not match.");
3111
3112 // The host only depends on device action in the linking phase, when all
3113 // the device images have to be embedded in the host image.
3114 if (CurPhase == phases::Link) {
3115 assert(ToolChains.size() == DeviceLinkerInputs.size() &&
3116 "Toolchains and linker inputs sizes do not match.");
3117 auto LI = DeviceLinkerInputs.begin();
3118 for (auto *A : OpenMPDeviceActions) {
3119 LI->push_back(A);
3120 ++LI;
3121 }
3122
3123 // We passed the device action as a host dependence, so we don't need to
3124 // do anything else with them.
3125 OpenMPDeviceActions.clear();
3126 return ABRT_Success;
3127 }
3128
3129 // By default, we produce an action for each device arch.
3130 for (Action *&A : OpenMPDeviceActions)
3131 A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A);
3132
3133 return ABRT_Success;
3134 }
3135
addDeviceDepences(Action * HostAction)3136 ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override {
3137
3138 // If this is an input action replicate it for each OpenMP toolchain.
3139 if (auto *IA = dyn_cast<InputAction>(HostAction)) {
3140 OpenMPDeviceActions.clear();
3141 for (unsigned I = 0; I < ToolChains.size(); ++I)
3142 OpenMPDeviceActions.push_back(
3143 C.MakeAction<InputAction>(IA->getInputArg(), IA->getType()));
3144 return ABRT_Success;
3145 }
3146
3147 // If this is an unbundling action use it as is for each OpenMP toolchain.
3148 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) {
3149 OpenMPDeviceActions.clear();
3150 auto *IA = cast<InputAction>(UA->getInputs().back());
3151 std::string FileName = IA->getInputArg().getAsString(Args);
3152 // Check if the type of the file is the same as the action. Do not
3153 // unbundle it if it is not. Do not unbundle .so files, for example,
3154 // which are not object files.
3155 if (IA->getType() == types::TY_Object &&
3156 (!llvm::sys::path::has_extension(FileName) ||
3157 types::lookupTypeForExtension(
3158 llvm::sys::path::extension(FileName).drop_front()) !=
3159 types::TY_Object))
3160 return ABRT_Inactive;
3161 for (unsigned I = 0; I < ToolChains.size(); ++I) {
3162 OpenMPDeviceActions.push_back(UA);
3163 UA->registerDependentActionInfo(
3164 ToolChains[I], /*BoundArch=*/StringRef(), Action::OFK_OpenMP);
3165 }
3166 return ABRT_Success;
3167 }
3168
3169 // When generating code for OpenMP we use the host compile phase result as
3170 // a dependence to the device compile phase so that it can learn what
3171 // declarations should be emitted. However, this is not the only use for
3172 // the host action, so we prevent it from being collapsed.
3173 if (isa<CompileJobAction>(HostAction)) {
3174 HostAction->setCannotBeCollapsedWithNextDependentAction();
3175 assert(ToolChains.size() == OpenMPDeviceActions.size() &&
3176 "Toolchains and device action sizes do not match.");
3177 OffloadAction::HostDependence HDep(
3178 *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
3179 /*BoundArch=*/nullptr, Action::OFK_OpenMP);
3180 auto TC = ToolChains.begin();
3181 for (Action *&A : OpenMPDeviceActions) {
3182 assert(isa<CompileJobAction>(A));
3183 OffloadAction::DeviceDependences DDep;
3184 DDep.add(*A, **TC, /*BoundArch=*/nullptr, Action::OFK_OpenMP);
3185 A = C.MakeAction<OffloadAction>(HDep, DDep);
3186 ++TC;
3187 }
3188 }
3189 return ABRT_Success;
3190 }
3191
appendTopLevelActions(ActionList & AL)3192 void appendTopLevelActions(ActionList &AL) override {
3193 if (OpenMPDeviceActions.empty())
3194 return;
3195
3196 // We should always have an action for each input.
3197 assert(OpenMPDeviceActions.size() == ToolChains.size() &&
3198 "Number of OpenMP actions and toolchains do not match.");
3199
3200 // Append all device actions followed by the proper offload action.
3201 auto TI = ToolChains.begin();
3202 for (auto *A : OpenMPDeviceActions) {
3203 OffloadAction::DeviceDependences Dep;
3204 Dep.add(*A, **TI, /*BoundArch=*/nullptr, Action::OFK_OpenMP);
3205 AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType()));
3206 ++TI;
3207 }
3208 // We no longer need the action stored in this builder.
3209 OpenMPDeviceActions.clear();
3210 }
3211
appendLinkDeviceActions(ActionList & AL)3212 void appendLinkDeviceActions(ActionList &AL) override {
3213 assert(ToolChains.size() == DeviceLinkerInputs.size() &&
3214 "Toolchains and linker inputs sizes do not match.");
3215
3216 // Append a new link action for each device.
3217 auto TC = ToolChains.begin();
3218 for (auto &LI : DeviceLinkerInputs) {
3219 auto *DeviceLinkAction =
3220 C.MakeAction<LinkJobAction>(LI, types::TY_Image);
3221 OffloadAction::DeviceDependences DeviceLinkDeps;
3222 DeviceLinkDeps.add(*DeviceLinkAction, **TC, /*BoundArch=*/nullptr,
3223 Action::OFK_OpenMP);
3224 AL.push_back(C.MakeAction<OffloadAction>(DeviceLinkDeps,
3225 DeviceLinkAction->getType()));
3226 ++TC;
3227 }
3228 DeviceLinkerInputs.clear();
3229 }
3230
appendLinkHostActions(ActionList & AL)3231 Action* appendLinkHostActions(ActionList &AL) override {
3232 // Create wrapper bitcode from the result of device link actions and compile
3233 // it to an object which will be added to the host link command.
3234 auto *BC = C.MakeAction<OffloadWrapperJobAction>(AL, types::TY_LLVM_BC);
3235 auto *ASM = C.MakeAction<BackendJobAction>(BC, types::TY_PP_Asm);
3236 return C.MakeAction<AssembleJobAction>(ASM, types::TY_Object);
3237 }
3238
appendLinkDependences(OffloadAction::DeviceDependences & DA)3239 void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {}
3240
initialize()3241 bool initialize() override {
3242 // Get the OpenMP toolchains. If we don't get any, the action builder will
3243 // know there is nothing to do related to OpenMP offloading.
3244 auto OpenMPTCRange = C.getOffloadToolChains<Action::OFK_OpenMP>();
3245 for (auto TI = OpenMPTCRange.first, TE = OpenMPTCRange.second; TI != TE;
3246 ++TI)
3247 ToolChains.push_back(TI->second);
3248
3249 DeviceLinkerInputs.resize(ToolChains.size());
3250 return false;
3251 }
3252
canUseBundlerUnbundler() const3253 bool canUseBundlerUnbundler() const override {
3254 // OpenMP should use bundled files whenever possible.
3255 return true;
3256 }
3257 };
3258
3259 ///
3260 /// TODO: Add the implementation for other specialized builders here.
3261 ///
3262
3263 /// Specialized builders being used by this offloading action builder.
3264 SmallVector<DeviceActionBuilder *, 4> SpecializedBuilders;
3265
3266 /// Flag set to true if all valid builders allow file bundling/unbundling.
3267 bool CanUseBundler;
3268
3269 public:
OffloadingActionBuilder(Compilation & C,DerivedArgList & Args,const Driver::InputList & Inputs)3270 OffloadingActionBuilder(Compilation &C, DerivedArgList &Args,
3271 const Driver::InputList &Inputs)
3272 : C(C) {
3273 // Create a specialized builder for each device toolchain.
3274
3275 IsValid = true;
3276
3277 // Create a specialized builder for CUDA.
3278 SpecializedBuilders.push_back(new CudaActionBuilder(C, Args, Inputs));
3279
3280 // Create a specialized builder for HIP.
3281 SpecializedBuilders.push_back(new HIPActionBuilder(C, Args, Inputs));
3282
3283 // Create a specialized builder for OpenMP.
3284 SpecializedBuilders.push_back(new OpenMPActionBuilder(C, Args, Inputs));
3285
3286 //
3287 // TODO: Build other specialized builders here.
3288 //
3289
3290 // Initialize all the builders, keeping track of errors. If all valid
3291 // builders agree that we can use bundling, set the flag to true.
3292 unsigned ValidBuilders = 0u;
3293 unsigned ValidBuildersSupportingBundling = 0u;
3294 for (auto *SB : SpecializedBuilders) {
3295 IsValid = IsValid && !SB->initialize();
3296
3297 // Update the counters if the builder is valid.
3298 if (SB->isValid()) {
3299 ++ValidBuilders;
3300 if (SB->canUseBundlerUnbundler())
3301 ++ValidBuildersSupportingBundling;
3302 }
3303 }
3304 CanUseBundler =
3305 ValidBuilders && ValidBuilders == ValidBuildersSupportingBundling;
3306 }
3307
~OffloadingActionBuilder()3308 ~OffloadingActionBuilder() {
3309 for (auto *SB : SpecializedBuilders)
3310 delete SB;
3311 }
3312
3313 /// Generate an action that adds device dependences (if any) to a host action.
3314 /// If no device dependence actions exist, just return the host action \a
3315 /// HostAction. If an error is found or if no builder requires the host action
3316 /// to be generated, return nullptr.
3317 Action *
addDeviceDependencesToHostAction(Action * HostAction,const Arg * InputArg,phases::ID CurPhase,phases::ID FinalPhase,DeviceActionBuilder::PhasesTy & Phases)3318 addDeviceDependencesToHostAction(Action *HostAction, const Arg *InputArg,
3319 phases::ID CurPhase, phases::ID FinalPhase,
3320 DeviceActionBuilder::PhasesTy &Phases) {
3321 if (!IsValid)
3322 return nullptr;
3323
3324 if (SpecializedBuilders.empty())
3325 return HostAction;
3326
3327 assert(HostAction && "Invalid host action!");
3328
3329 OffloadAction::DeviceDependences DDeps;
3330 // Check if all the programming models agree we should not emit the host
3331 // action. Also, keep track of the offloading kinds employed.
3332 auto &OffloadKind = InputArgToOffloadKindMap[InputArg];
3333 unsigned InactiveBuilders = 0u;
3334 unsigned IgnoringBuilders = 0u;
3335 for (auto *SB : SpecializedBuilders) {
3336 if (!SB->isValid()) {
3337 ++InactiveBuilders;
3338 continue;
3339 }
3340
3341 auto RetCode =
3342 SB->getDeviceDependences(DDeps, CurPhase, FinalPhase, Phases);
3343
3344 // If the builder explicitly says the host action should be ignored,
3345 // we need to increment the variable that tracks the builders that request
3346 // the host object to be ignored.
3347 if (RetCode == DeviceActionBuilder::ABRT_Ignore_Host)
3348 ++IgnoringBuilders;
3349
3350 // Unless the builder was inactive for this action, we have to record the
3351 // offload kind because the host will have to use it.
3352 if (RetCode != DeviceActionBuilder::ABRT_Inactive)
3353 OffloadKind |= SB->getAssociatedOffloadKind();
3354 }
3355
3356 // If all builders agree that the host object should be ignored, just return
3357 // nullptr.
3358 if (IgnoringBuilders &&
3359 SpecializedBuilders.size() == (InactiveBuilders + IgnoringBuilders))
3360 return nullptr;
3361
3362 if (DDeps.getActions().empty())
3363 return HostAction;
3364
3365 // We have dependences we need to bundle together. We use an offload action
3366 // for that.
3367 OffloadAction::HostDependence HDep(
3368 *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
3369 /*BoundArch=*/nullptr, DDeps);
3370 return C.MakeAction<OffloadAction>(HDep, DDeps);
3371 }
3372
3373 /// Generate an action that adds a host dependence to a device action. The
3374 /// results will be kept in this action builder. Return true if an error was
3375 /// found.
addHostDependenceToDeviceActions(Action * & HostAction,const Arg * InputArg)3376 bool addHostDependenceToDeviceActions(Action *&HostAction,
3377 const Arg *InputArg) {
3378 if (!IsValid)
3379 return true;
3380
3381 // If we are supporting bundling/unbundling and the current action is an
3382 // input action of non-source file, we replace the host action by the
3383 // unbundling action. The bundler tool has the logic to detect if an input
3384 // is a bundle or not and if the input is not a bundle it assumes it is a
3385 // host file. Therefore it is safe to create an unbundling action even if
3386 // the input is not a bundle.
3387 if (CanUseBundler && isa<InputAction>(HostAction) &&
3388 InputArg->getOption().getKind() == llvm::opt::Option::InputClass &&
3389 (!types::isSrcFile(HostAction->getType()) ||
3390 HostAction->getType() == types::TY_PP_HIP)) {
3391 auto UnbundlingHostAction =
3392 C.MakeAction<OffloadUnbundlingJobAction>(HostAction);
3393 UnbundlingHostAction->registerDependentActionInfo(
3394 C.getSingleOffloadToolChain<Action::OFK_Host>(),
3395 /*BoundArch=*/StringRef(), Action::OFK_Host);
3396 HostAction = UnbundlingHostAction;
3397 }
3398
3399 assert(HostAction && "Invalid host action!");
3400
3401 // Register the offload kinds that are used.
3402 auto &OffloadKind = InputArgToOffloadKindMap[InputArg];
3403 for (auto *SB : SpecializedBuilders) {
3404 if (!SB->isValid())
3405 continue;
3406
3407 auto RetCode = SB->addDeviceDepences(HostAction);
3408
3409 // Host dependences for device actions are not compatible with that same
3410 // action being ignored.
3411 assert(RetCode != DeviceActionBuilder::ABRT_Ignore_Host &&
3412 "Host dependence not expected to be ignored.!");
3413
3414 // Unless the builder was inactive for this action, we have to record the
3415 // offload kind because the host will have to use it.
3416 if (RetCode != DeviceActionBuilder::ABRT_Inactive)
3417 OffloadKind |= SB->getAssociatedOffloadKind();
3418 }
3419
3420 // Do not use unbundler if the Host does not depend on device action.
3421 if (OffloadKind == Action::OFK_None && CanUseBundler)
3422 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction))
3423 HostAction = UA->getInputs().back();
3424
3425 return false;
3426 }
3427
3428 /// Add the offloading top level actions to the provided action list. This
3429 /// function can replace the host action by a bundling action if the
3430 /// programming models allow it.
appendTopLevelActions(ActionList & AL,Action * HostAction,const Arg * InputArg)3431 bool appendTopLevelActions(ActionList &AL, Action *HostAction,
3432 const Arg *InputArg) {
3433 // Get the device actions to be appended.
3434 ActionList OffloadAL;
3435 for (auto *SB : SpecializedBuilders) {
3436 if (!SB->isValid())
3437 continue;
3438 SB->appendTopLevelActions(OffloadAL);
3439 }
3440
3441 // If we can use the bundler, replace the host action by the bundling one in
3442 // the resulting list. Otherwise, just append the device actions. For
3443 // device only compilation, HostAction is a null pointer, therefore only do
3444 // this when HostAction is not a null pointer.
3445 if (CanUseBundler && HostAction &&
3446 HostAction->getType() != types::TY_Nothing && !OffloadAL.empty()) {
3447 // Add the host action to the list in order to create the bundling action.
3448 OffloadAL.push_back(HostAction);
3449
3450 // We expect that the host action was just appended to the action list
3451 // before this method was called.
3452 assert(HostAction == AL.back() && "Host action not in the list??");
3453 HostAction = C.MakeAction<OffloadBundlingJobAction>(OffloadAL);
3454 AL.back() = HostAction;
3455 } else
3456 AL.append(OffloadAL.begin(), OffloadAL.end());
3457
3458 // Propagate to the current host action (if any) the offload information
3459 // associated with the current input.
3460 if (HostAction)
3461 HostAction->propagateHostOffloadInfo(InputArgToOffloadKindMap[InputArg],
3462 /*BoundArch=*/nullptr);
3463 return false;
3464 }
3465
makeHostLinkAction()3466 Action* makeHostLinkAction() {
3467 // Build a list of device linking actions.
3468 ActionList DeviceAL;
3469 for (DeviceActionBuilder *SB : SpecializedBuilders) {
3470 if (!SB->isValid())
3471 continue;
3472 SB->appendLinkDeviceActions(DeviceAL);
3473 }
3474
3475 if (DeviceAL.empty())
3476 return nullptr;
3477
3478 // Let builders add host linking actions.
3479 Action* HA = nullptr;
3480 for (DeviceActionBuilder *SB : SpecializedBuilders) {
3481 if (!SB->isValid())
3482 continue;
3483 HA = SB->appendLinkHostActions(DeviceAL);
3484 }
3485 return HA;
3486 }
3487
3488 /// Processes the host linker action. This currently consists of replacing it
3489 /// with an offload action if there are device link objects and propagate to
3490 /// the host action all the offload kinds used in the current compilation. The
3491 /// resulting action is returned.
processHostLinkAction(Action * HostAction)3492 Action *processHostLinkAction(Action *HostAction) {
3493 // Add all the dependences from the device linking actions.
3494 OffloadAction::DeviceDependences DDeps;
3495 for (auto *SB : SpecializedBuilders) {
3496 if (!SB->isValid())
3497 continue;
3498
3499 SB->appendLinkDependences(DDeps);
3500 }
3501
3502 // Calculate all the offload kinds used in the current compilation.
3503 unsigned ActiveOffloadKinds = 0u;
3504 for (auto &I : InputArgToOffloadKindMap)
3505 ActiveOffloadKinds |= I.second;
3506
3507 // If we don't have device dependencies, we don't have to create an offload
3508 // action.
3509 if (DDeps.getActions().empty()) {
3510 // Propagate all the active kinds to host action. Given that it is a link
3511 // action it is assumed to depend on all actions generated so far.
3512 HostAction->propagateHostOffloadInfo(ActiveOffloadKinds,
3513 /*BoundArch=*/nullptr);
3514 return HostAction;
3515 }
3516
3517 // Create the offload action with all dependences. When an offload action
3518 // is created the kinds are propagated to the host action, so we don't have
3519 // to do that explicitly here.
3520 OffloadAction::HostDependence HDep(
3521 *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
3522 /*BoundArch*/ nullptr, ActiveOffloadKinds);
3523 return C.MakeAction<OffloadAction>(HDep, DDeps);
3524 }
3525 };
3526 } // anonymous namespace.
3527
handleArguments(Compilation & C,DerivedArgList & Args,const InputList & Inputs,ActionList & Actions) const3528 void Driver::handleArguments(Compilation &C, DerivedArgList &Args,
3529 const InputList &Inputs,
3530 ActionList &Actions) const {
3531
3532 // Ignore /Yc/Yu if both /Yc and /Yu passed but with different filenames.
3533 Arg *YcArg = Args.getLastArg(options::OPT__SLASH_Yc);
3534 Arg *YuArg = Args.getLastArg(options::OPT__SLASH_Yu);
3535 if (YcArg && YuArg && strcmp(YcArg->getValue(), YuArg->getValue()) != 0) {
3536 Diag(clang::diag::warn_drv_ycyu_different_arg_clang_cl);
3537 Args.eraseArg(options::OPT__SLASH_Yc);
3538 Args.eraseArg(options::OPT__SLASH_Yu);
3539 YcArg = YuArg = nullptr;
3540 }
3541 if (YcArg && Inputs.size() > 1) {
3542 Diag(clang::diag::warn_drv_yc_multiple_inputs_clang_cl);
3543 Args.eraseArg(options::OPT__SLASH_Yc);
3544 YcArg = nullptr;
3545 }
3546
3547 Arg *FinalPhaseArg;
3548 phases::ID FinalPhase = getFinalPhase(Args, &FinalPhaseArg);
3549
3550 if (FinalPhase == phases::Link) {
3551 if (Args.hasArg(options::OPT_emit_llvm))
3552 Diag(clang::diag::err_drv_emit_llvm_link);
3553 if (IsCLMode() && LTOMode != LTOK_None &&
3554 !Args.getLastArgValue(options::OPT_fuse_ld_EQ).equals_lower("lld"))
3555 Diag(clang::diag::err_drv_lto_without_lld);
3556 }
3557
3558 if (FinalPhase == phases::Preprocess || Args.hasArg(options::OPT__SLASH_Y_)) {
3559 // If only preprocessing or /Y- is used, all pch handling is disabled.
3560 // Rather than check for it everywhere, just remove clang-cl pch-related
3561 // flags here.
3562 Args.eraseArg(options::OPT__SLASH_Fp);
3563 Args.eraseArg(options::OPT__SLASH_Yc);
3564 Args.eraseArg(options::OPT__SLASH_Yu);
3565 YcArg = YuArg = nullptr;
3566 }
3567
3568 unsigned LastPLSize = 0;
3569 for (auto &I : Inputs) {
3570 types::ID InputType = I.first;
3571 const Arg *InputArg = I.second;
3572
3573 auto PL = types::getCompilationPhases(InputType);
3574 LastPLSize = PL.size();
3575
3576 // If the first step comes after the final phase we are doing as part of
3577 // this compilation, warn the user about it.
3578 phases::ID InitialPhase = PL[0];
3579 if (InitialPhase > FinalPhase) {
3580 if (InputArg->isClaimed())
3581 continue;
3582
3583 // Claim here to avoid the more general unused warning.
3584 InputArg->claim();
3585
3586 // Suppress all unused style warnings with -Qunused-arguments
3587 if (Args.hasArg(options::OPT_Qunused_arguments))
3588 continue;
3589
3590 // Special case when final phase determined by binary name, rather than
3591 // by a command-line argument with a corresponding Arg.
3592 if (CCCIsCPP())
3593 Diag(clang::diag::warn_drv_input_file_unused_by_cpp)
3594 << InputArg->getAsString(Args) << getPhaseName(InitialPhase);
3595 // Special case '-E' warning on a previously preprocessed file to make
3596 // more sense.
3597 else if (InitialPhase == phases::Compile &&
3598 (Args.getLastArg(options::OPT__SLASH_EP,
3599 options::OPT__SLASH_P) ||
3600 Args.getLastArg(options::OPT_E) ||
3601 Args.getLastArg(options::OPT_M, options::OPT_MM)) &&
3602 getPreprocessedType(InputType) == types::TY_INVALID)
3603 Diag(clang::diag::warn_drv_preprocessed_input_file_unused)
3604 << InputArg->getAsString(Args) << !!FinalPhaseArg
3605 << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
3606 else
3607 Diag(clang::diag::warn_drv_input_file_unused)
3608 << InputArg->getAsString(Args) << getPhaseName(InitialPhase)
3609 << !!FinalPhaseArg
3610 << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
3611 continue;
3612 }
3613
3614 if (YcArg) {
3615 // Add a separate precompile phase for the compile phase.
3616 if (FinalPhase >= phases::Compile) {
3617 const types::ID HeaderType = lookupHeaderTypeForSourceType(InputType);
3618 // Build the pipeline for the pch file.
3619 Action *ClangClPch = C.MakeAction<InputAction>(*InputArg, HeaderType);
3620 for (phases::ID Phase : types::getCompilationPhases(HeaderType))
3621 ClangClPch = ConstructPhaseAction(C, Args, Phase, ClangClPch);
3622 assert(ClangClPch);
3623 Actions.push_back(ClangClPch);
3624 // The driver currently exits after the first failed command. This
3625 // relies on that behavior, to make sure if the pch generation fails,
3626 // the main compilation won't run.
3627 // FIXME: If the main compilation fails, the PCH generation should
3628 // probably not be considered successful either.
3629 }
3630 }
3631 }
3632
3633 // If we are linking, claim any options which are obviously only used for
3634 // compilation.
3635 // FIXME: Understand why the last Phase List length is used here.
3636 if (FinalPhase == phases::Link && LastPLSize == 1) {
3637 Args.ClaimAllArgs(options::OPT_CompileOnly_Group);
3638 Args.ClaimAllArgs(options::OPT_cl_compile_Group);
3639 }
3640 }
3641
BuildActions(Compilation & C,DerivedArgList & Args,const InputList & Inputs,ActionList & Actions) const3642 void Driver::BuildActions(Compilation &C, DerivedArgList &Args,
3643 const InputList &Inputs, ActionList &Actions) const {
3644 llvm::PrettyStackTraceString CrashInfo("Building compilation actions");
3645
3646 if (!SuppressMissingInputWarning && Inputs.empty()) {
3647 Diag(clang::diag::err_drv_no_input_files);
3648 return;
3649 }
3650
3651 // Reject -Z* at the top level, these options should never have been exposed
3652 // by gcc.
3653 if (Arg *A = Args.getLastArg(options::OPT_Z_Joined))
3654 Diag(clang::diag::err_drv_use_of_Z_option) << A->getAsString(Args);
3655
3656 // Diagnose misuse of /Fo.
3657 if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fo)) {
3658 StringRef V = A->getValue();
3659 if (Inputs.size() > 1 && !V.empty() &&
3660 !llvm::sys::path::is_separator(V.back())) {
3661 // Check whether /Fo tries to name an output file for multiple inputs.
3662 Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
3663 << A->getSpelling() << V;
3664 Args.eraseArg(options::OPT__SLASH_Fo);
3665 }
3666 }
3667
3668 // Diagnose misuse of /Fa.
3669 if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fa)) {
3670 StringRef V = A->getValue();
3671 if (Inputs.size() > 1 && !V.empty() &&
3672 !llvm::sys::path::is_separator(V.back())) {
3673 // Check whether /Fa tries to name an asm file for multiple inputs.
3674 Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
3675 << A->getSpelling() << V;
3676 Args.eraseArg(options::OPT__SLASH_Fa);
3677 }
3678 }
3679
3680 // Diagnose misuse of /o.
3681 if (Arg *A = Args.getLastArg(options::OPT__SLASH_o)) {
3682 if (A->getValue()[0] == '\0') {
3683 // It has to have a value.
3684 Diag(clang::diag::err_drv_missing_argument) << A->getSpelling() << 1;
3685 Args.eraseArg(options::OPT__SLASH_o);
3686 }
3687 }
3688
3689 handleArguments(C, Args, Inputs, Actions);
3690
3691 // Builder to be used to build offloading actions.
3692 OffloadingActionBuilder OffloadBuilder(C, Args, Inputs);
3693
3694 // Construct the actions to perform.
3695 HeaderModulePrecompileJobAction *HeaderModuleAction = nullptr;
3696 ActionList LinkerInputs;
3697 ActionList MergerInputs;
3698
3699 for (auto &I : Inputs) {
3700 types::ID InputType = I.first;
3701 const Arg *InputArg = I.second;
3702
3703 auto PL = types::getCompilationPhases(*this, Args, InputType);
3704 if (PL.empty())
3705 continue;
3706
3707 auto FullPL = types::getCompilationPhases(InputType);
3708
3709 // Build the pipeline for this file.
3710 Action *Current = C.MakeAction<InputAction>(*InputArg, InputType);
3711
3712 // Use the current host action in any of the offloading actions, if
3713 // required.
3714 if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg))
3715 break;
3716
3717 for (phases::ID Phase : PL) {
3718
3719 // Add any offload action the host action depends on.
3720 Current = OffloadBuilder.addDeviceDependencesToHostAction(
3721 Current, InputArg, Phase, PL.back(), FullPL);
3722 if (!Current)
3723 break;
3724
3725 // Queue linker inputs.
3726 if (Phase == phases::Link) {
3727 assert(Phase == PL.back() && "linking must be final compilation step.");
3728 LinkerInputs.push_back(Current);
3729 Current = nullptr;
3730 break;
3731 }
3732
3733 // TODO: Consider removing this because the merged may not end up being
3734 // the final Phase in the pipeline. Perhaps the merged could just merge
3735 // and then pass an artifact of some sort to the Link Phase.
3736 // Queue merger inputs.
3737 if (Phase == phases::IfsMerge) {
3738 assert(Phase == PL.back() && "merging must be final compilation step.");
3739 MergerInputs.push_back(Current);
3740 Current = nullptr;
3741 break;
3742 }
3743
3744 // Each precompiled header file after a module file action is a module
3745 // header of that same module file, rather than being compiled to a
3746 // separate PCH.
3747 if (Phase == phases::Precompile && HeaderModuleAction &&
3748 getPrecompiledType(InputType) == types::TY_PCH) {
3749 HeaderModuleAction->addModuleHeaderInput(Current);
3750 Current = nullptr;
3751 break;
3752 }
3753
3754 // FIXME: Should we include any prior module file outputs as inputs of
3755 // later actions in the same command line?
3756
3757 // Otherwise construct the appropriate action.
3758 Action *NewCurrent = ConstructPhaseAction(C, Args, Phase, Current);
3759
3760 // We didn't create a new action, so we will just move to the next phase.
3761 if (NewCurrent == Current)
3762 continue;
3763
3764 if (auto *HMA = dyn_cast<HeaderModulePrecompileJobAction>(NewCurrent))
3765 HeaderModuleAction = HMA;
3766
3767 Current = NewCurrent;
3768
3769 // Use the current host action in any of the offloading actions, if
3770 // required.
3771 if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg))
3772 break;
3773
3774 if (Current->getType() == types::TY_Nothing)
3775 break;
3776 }
3777
3778 // If we ended with something, add to the output list.
3779 if (Current)
3780 Actions.push_back(Current);
3781
3782 // Add any top level actions generated for offloading.
3783 OffloadBuilder.appendTopLevelActions(Actions, Current, InputArg);
3784 }
3785
3786 // Add a link action if necessary.
3787 if (!LinkerInputs.empty()) {
3788 if (Action *Wrapper = OffloadBuilder.makeHostLinkAction())
3789 LinkerInputs.push_back(Wrapper);
3790 Action *LA;
3791 // Check if this Linker Job should emit a static library.
3792 if (ShouldEmitStaticLibrary(Args)) {
3793 LA = C.MakeAction<StaticLibJobAction>(LinkerInputs, types::TY_Image);
3794 } else {
3795 LA = C.MakeAction<LinkJobAction>(LinkerInputs, types::TY_Image);
3796 }
3797 LA = OffloadBuilder.processHostLinkAction(LA);
3798 Actions.push_back(LA);
3799 }
3800
3801 // Add an interface stubs merge action if necessary.
3802 if (!MergerInputs.empty())
3803 Actions.push_back(
3804 C.MakeAction<IfsMergeJobAction>(MergerInputs, types::TY_Image));
3805
3806 if (Args.hasArg(options::OPT_emit_interface_stubs)) {
3807 auto PhaseList = types::getCompilationPhases(
3808 types::TY_IFS_CPP,
3809 Args.hasArg(options::OPT_c) ? phases::Compile : phases::LastPhase);
3810
3811 ActionList MergerInputs;
3812
3813 for (auto &I : Inputs) {
3814 types::ID InputType = I.first;
3815 const Arg *InputArg = I.second;
3816
3817 // Currently clang and the llvm assembler do not support generating symbol
3818 // stubs from assembly, so we skip the input on asm files. For ifs files
3819 // we rely on the normal pipeline setup in the pipeline setup code above.
3820 if (InputType == types::TY_IFS || InputType == types::TY_PP_Asm ||
3821 InputType == types::TY_Asm)
3822 continue;
3823
3824 Action *Current = C.MakeAction<InputAction>(*InputArg, InputType);
3825
3826 for (auto Phase : PhaseList) {
3827 switch (Phase) {
3828 default:
3829 llvm_unreachable(
3830 "IFS Pipeline can only consist of Compile followed by IfsMerge.");
3831 case phases::Compile: {
3832 // Only IfsMerge (llvm-ifs) can handle .o files by looking for ifs
3833 // files where the .o file is located. The compile action can not
3834 // handle this.
3835 if (InputType == types::TY_Object)
3836 break;
3837
3838 Current = C.MakeAction<CompileJobAction>(Current, types::TY_IFS_CPP);
3839 break;
3840 }
3841 case phases::IfsMerge: {
3842 assert(Phase == PhaseList.back() &&
3843 "merging must be final compilation step.");
3844 MergerInputs.push_back(Current);
3845 Current = nullptr;
3846 break;
3847 }
3848 }
3849 }
3850
3851 // If we ended with something, add to the output list.
3852 if (Current)
3853 Actions.push_back(Current);
3854 }
3855
3856 // Add an interface stubs merge action if necessary.
3857 if (!MergerInputs.empty())
3858 Actions.push_back(
3859 C.MakeAction<IfsMergeJobAction>(MergerInputs, types::TY_Image));
3860 }
3861
3862 // If --print-supported-cpus, -mcpu=? or -mtune=? is specified, build a custom
3863 // Compile phase that prints out supported cpu models and quits.
3864 if (Arg *A = Args.getLastArg(options::OPT_print_supported_cpus)) {
3865 // Use the -mcpu=? flag as the dummy input to cc1.
3866 Actions.clear();
3867 Action *InputAc = C.MakeAction<InputAction>(*A, types::TY_C);
3868 Actions.push_back(
3869 C.MakeAction<PrecompileJobAction>(InputAc, types::TY_Nothing));
3870 for (auto &I : Inputs)
3871 I.second->claim();
3872 }
3873
3874 // Claim ignored clang-cl options.
3875 Args.ClaimAllArgs(options::OPT_cl_ignored_Group);
3876
3877 // Claim --cuda-host-only and --cuda-compile-host-device, which may be passed
3878 // to non-CUDA compilations and should not trigger warnings there.
3879 Args.ClaimAllArgs(options::OPT_cuda_host_only);
3880 Args.ClaimAllArgs(options::OPT_cuda_compile_host_device);
3881 }
3882
ConstructPhaseAction(Compilation & C,const ArgList & Args,phases::ID Phase,Action * Input,Action::OffloadKind TargetDeviceOffloadKind) const3883 Action *Driver::ConstructPhaseAction(
3884 Compilation &C, const ArgList &Args, phases::ID Phase, Action *Input,
3885 Action::OffloadKind TargetDeviceOffloadKind) const {
3886 llvm::PrettyStackTraceString CrashInfo("Constructing phase actions");
3887
3888 // Some types skip the assembler phase (e.g., llvm-bc), but we can't
3889 // encode this in the steps because the intermediate type depends on
3890 // arguments. Just special case here.
3891 if (Phase == phases::Assemble && Input->getType() != types::TY_PP_Asm)
3892 return Input;
3893
3894 // Build the appropriate action.
3895 switch (Phase) {
3896 case phases::Link:
3897 llvm_unreachable("link action invalid here.");
3898 case phases::IfsMerge:
3899 llvm_unreachable("ifsmerge action invalid here.");
3900 case phases::Preprocess: {
3901 types::ID OutputTy;
3902 // -M and -MM specify the dependency file name by altering the output type,
3903 // -if -MD and -MMD are not specified.
3904 if (Args.hasArg(options::OPT_M, options::OPT_MM) &&
3905 !Args.hasArg(options::OPT_MD, options::OPT_MMD)) {
3906 OutputTy = types::TY_Dependencies;
3907 } else {
3908 OutputTy = Input->getType();
3909 if (!Args.hasFlag(options::OPT_frewrite_includes,
3910 options::OPT_fno_rewrite_includes, false) &&
3911 !Args.hasFlag(options::OPT_frewrite_imports,
3912 options::OPT_fno_rewrite_imports, false) &&
3913 !CCGenDiagnostics)
3914 OutputTy = types::getPreprocessedType(OutputTy);
3915 assert(OutputTy != types::TY_INVALID &&
3916 "Cannot preprocess this input type!");
3917 }
3918 return C.MakeAction<PreprocessJobAction>(Input, OutputTy);
3919 }
3920 case phases::Precompile: {
3921 types::ID OutputTy = getPrecompiledType(Input->getType());
3922 assert(OutputTy != types::TY_INVALID &&
3923 "Cannot precompile this input type!");
3924
3925 // If we're given a module name, precompile header file inputs as a
3926 // module, not as a precompiled header.
3927 const char *ModName = nullptr;
3928 if (OutputTy == types::TY_PCH) {
3929 if (Arg *A = Args.getLastArg(options::OPT_fmodule_name_EQ))
3930 ModName = A->getValue();
3931 if (ModName)
3932 OutputTy = types::TY_ModuleFile;
3933 }
3934
3935 if (Args.hasArg(options::OPT_fsyntax_only)) {
3936 // Syntax checks should not emit a PCH file
3937 OutputTy = types::TY_Nothing;
3938 }
3939
3940 if (ModName)
3941 return C.MakeAction<HeaderModulePrecompileJobAction>(Input, OutputTy,
3942 ModName);
3943 return C.MakeAction<PrecompileJobAction>(Input, OutputTy);
3944 }
3945 case phases::Compile: {
3946 if (Args.hasArg(options::OPT_fsyntax_only))
3947 return C.MakeAction<CompileJobAction>(Input, types::TY_Nothing);
3948 if (Args.hasArg(options::OPT_rewrite_objc))
3949 return C.MakeAction<CompileJobAction>(Input, types::TY_RewrittenObjC);
3950 if (Args.hasArg(options::OPT_rewrite_legacy_objc))
3951 return C.MakeAction<CompileJobAction>(Input,
3952 types::TY_RewrittenLegacyObjC);
3953 if (Args.hasArg(options::OPT__analyze))
3954 return C.MakeAction<AnalyzeJobAction>(Input, types::TY_Plist);
3955 if (Args.hasArg(options::OPT__migrate))
3956 return C.MakeAction<MigrateJobAction>(Input, types::TY_Remap);
3957 if (Args.hasArg(options::OPT_emit_ast))
3958 return C.MakeAction<CompileJobAction>(Input, types::TY_AST);
3959 if (Args.hasArg(options::OPT_module_file_info))
3960 return C.MakeAction<CompileJobAction>(Input, types::TY_ModuleFile);
3961 if (Args.hasArg(options::OPT_verify_pch))
3962 return C.MakeAction<VerifyPCHJobAction>(Input, types::TY_Nothing);
3963 return C.MakeAction<CompileJobAction>(Input, types::TY_LLVM_BC);
3964 }
3965 case phases::Backend: {
3966 if (isUsingLTO() && TargetDeviceOffloadKind == Action::OFK_None) {
3967 types::ID Output =
3968 Args.hasArg(options::OPT_S) ? types::TY_LTO_IR : types::TY_LTO_BC;
3969 return C.MakeAction<BackendJobAction>(Input, Output);
3970 }
3971 if (Args.hasArg(options::OPT_emit_llvm) ||
3972 (TargetDeviceOffloadKind == Action::OFK_HIP &&
3973 Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc,
3974 false))) {
3975 types::ID Output =
3976 Args.hasArg(options::OPT_S) ? types::TY_LLVM_IR : types::TY_LLVM_BC;
3977 return C.MakeAction<BackendJobAction>(Input, Output);
3978 }
3979 return C.MakeAction<BackendJobAction>(Input, types::TY_PP_Asm);
3980 }
3981 case phases::Assemble:
3982 return C.MakeAction<AssembleJobAction>(std::move(Input), types::TY_Object);
3983 }
3984
3985 llvm_unreachable("invalid phase in ConstructPhaseAction");
3986 }
3987
BuildJobs(Compilation & C) const3988 void Driver::BuildJobs(Compilation &C) const {
3989 llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
3990
3991 Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
3992
3993 // It is an error to provide a -o option if we are making multiple output
3994 // files. There are exceptions:
3995 //
3996 // IfsMergeJob: when generating interface stubs enabled we want to be able to
3997 // generate the stub file at the same time that we generate the real
3998 // library/a.out. So when a .o, .so, etc are the output, with clang interface
3999 // stubs there will also be a .ifs and .ifso at the same location.
4000 //
4001 // CompileJob of type TY_IFS_CPP: when generating interface stubs is enabled
4002 // and -c is passed, we still want to be able to generate a .ifs file while
4003 // we are also generating .o files. So we allow more than one output file in
4004 // this case as well.
4005 //
4006 if (FinalOutput) {
4007 unsigned NumOutputs = 0;
4008 unsigned NumIfsOutputs = 0;
4009 for (const Action *A : C.getActions())
4010 if (A->getType() != types::TY_Nothing &&
4011 !(A->getKind() == Action::IfsMergeJobClass ||
4012 (A->getType() == clang::driver::types::TY_IFS_CPP &&
4013 A->getKind() == clang::driver::Action::CompileJobClass &&
4014 0 == NumIfsOutputs++) ||
4015 (A->getKind() == Action::BindArchClass && A->getInputs().size() &&
4016 A->getInputs().front()->getKind() == Action::IfsMergeJobClass)))
4017 ++NumOutputs;
4018
4019 if (NumOutputs > 1) {
4020 Diag(clang::diag::err_drv_output_argument_with_multiple_files);
4021 FinalOutput = nullptr;
4022 }
4023 }
4024
4025 const llvm::Triple &RawTriple = C.getDefaultToolChain().getTriple();
4026 if (RawTriple.isOSAIX()) {
4027 if (Arg *A = C.getArgs().getLastArg(options::OPT_G))
4028 Diag(diag::err_drv_unsupported_opt_for_target)
4029 << A->getSpelling() << RawTriple.str();
4030 if (LTOMode == LTOK_Thin)
4031 Diag(diag::err_drv_clang_unsupported) << "thinLTO on AIX";
4032 }
4033
4034 // Collect the list of architectures.
4035 llvm::StringSet<> ArchNames;
4036 if (RawTriple.isOSBinFormatMachO())
4037 for (const Arg *A : C.getArgs())
4038 if (A->getOption().matches(options::OPT_arch))
4039 ArchNames.insert(A->getValue());
4040
4041 // Set of (Action, canonical ToolChain triple) pairs we've built jobs for.
4042 std::map<std::pair<const Action *, std::string>, InputInfo> CachedResults;
4043 for (Action *A : C.getActions()) {
4044 // If we are linking an image for multiple archs then the linker wants
4045 // -arch_multiple and -final_output <final image name>. Unfortunately, this
4046 // doesn't fit in cleanly because we have to pass this information down.
4047 //
4048 // FIXME: This is a hack; find a cleaner way to integrate this into the
4049 // process.
4050 const char *LinkingOutput = nullptr;
4051 if (isa<LipoJobAction>(A)) {
4052 if (FinalOutput)
4053 LinkingOutput = FinalOutput->getValue();
4054 else
4055 LinkingOutput = getDefaultImageName();
4056 }
4057
4058 BuildJobsForAction(C, A, &C.getDefaultToolChain(),
4059 /*BoundArch*/ StringRef(),
4060 /*AtTopLevel*/ true,
4061 /*MultipleArchs*/ ArchNames.size() > 1,
4062 /*LinkingOutput*/ LinkingOutput, CachedResults,
4063 /*TargetDeviceOffloadKind*/ Action::OFK_None);
4064 }
4065
4066 // If we have more than one job, then disable integrated-cc1 for now. Do this
4067 // also when we need to report process execution statistics.
4068 if (C.getJobs().size() > 1 || CCPrintProcessStats)
4069 for (auto &J : C.getJobs())
4070 J.InProcess = false;
4071
4072 if (CCPrintProcessStats) {
4073 C.setPostCallback([=](const Command &Cmd, int Res) {
4074 Optional<llvm::sys::ProcessStatistics> ProcStat =
4075 Cmd.getProcessStatistics();
4076 if (!ProcStat)
4077 return;
4078
4079 const char *LinkingOutput = nullptr;
4080 if (FinalOutput)
4081 LinkingOutput = FinalOutput->getValue();
4082 else if (!Cmd.getOutputFilenames().empty())
4083 LinkingOutput = Cmd.getOutputFilenames().front().c_str();
4084 else
4085 LinkingOutput = getDefaultImageName();
4086
4087 if (CCPrintStatReportFilename.empty()) {
4088 using namespace llvm;
4089 // Human readable output.
4090 outs() << sys::path::filename(Cmd.getExecutable()) << ": "
4091 << "output=" << LinkingOutput;
4092 outs() << ", total="
4093 << format("%.3f", ProcStat->TotalTime.count() / 1000.) << " ms"
4094 << ", user="
4095 << format("%.3f", ProcStat->UserTime.count() / 1000.) << " ms"
4096 << ", mem=" << ProcStat->PeakMemory << " Kb\n";
4097 } else {
4098 // CSV format.
4099 std::string Buffer;
4100 llvm::raw_string_ostream Out(Buffer);
4101 llvm::sys::printArg(Out, llvm::sys::path::filename(Cmd.getExecutable()),
4102 /*Quote*/ true);
4103 Out << ',';
4104 llvm::sys::printArg(Out, LinkingOutput, true);
4105 Out << ',' << ProcStat->TotalTime.count() << ','
4106 << ProcStat->UserTime.count() << ',' << ProcStat->PeakMemory
4107 << '\n';
4108 Out.flush();
4109 std::error_code EC;
4110 llvm::raw_fd_ostream OS(CCPrintStatReportFilename.c_str(), EC,
4111 llvm::sys::fs::OF_Append |
4112 llvm::sys::fs::OF_Text);
4113 if (EC)
4114 return;
4115 auto L = OS.lock();
4116 if (!L) {
4117 llvm::errs() << "ERROR: Cannot lock file "
4118 << CCPrintStatReportFilename << ": "
4119 << toString(L.takeError()) << "\n";
4120 return;
4121 }
4122 OS << Buffer;
4123 OS.flush();
4124 }
4125 });
4126 }
4127
4128 // If the user passed -Qunused-arguments or there were errors, don't warn
4129 // about any unused arguments.
4130 if (Diags.hasErrorOccurred() ||
4131 C.getArgs().hasArg(options::OPT_Qunused_arguments))
4132 return;
4133
4134 // Claim -### here.
4135 (void)C.getArgs().hasArg(options::OPT__HASH_HASH_HASH);
4136
4137 // Claim --driver-mode, --rsp-quoting, it was handled earlier.
4138 (void)C.getArgs().hasArg(options::OPT_driver_mode);
4139 (void)C.getArgs().hasArg(options::OPT_rsp_quoting);
4140
4141 for (Arg *A : C.getArgs()) {
4142 // FIXME: It would be nice to be able to send the argument to the
4143 // DiagnosticsEngine, so that extra values, position, and so on could be
4144 // printed.
4145 if (!A->isClaimed()) {
4146 if (A->getOption().hasFlag(options::NoArgumentUnused))
4147 continue;
4148
4149 // Suppress the warning automatically if this is just a flag, and it is an
4150 // instance of an argument we already claimed.
4151 const Option &Opt = A->getOption();
4152 if (Opt.getKind() == Option::FlagClass) {
4153 bool DuplicateClaimed = false;
4154
4155 for (const Arg *AA : C.getArgs().filtered(&Opt)) {
4156 if (AA->isClaimed()) {
4157 DuplicateClaimed = true;
4158 break;
4159 }
4160 }
4161
4162 if (DuplicateClaimed)
4163 continue;
4164 }
4165
4166 // In clang-cl, don't mention unknown arguments here since they have
4167 // already been warned about.
4168 if (!IsCLMode() || !A->getOption().matches(options::OPT_UNKNOWN))
4169 Diag(clang::diag::warn_drv_unused_argument)
4170 << A->getAsString(C.getArgs());
4171 }
4172 }
4173 }
4174
4175 namespace {
4176 /// Utility class to control the collapse of dependent actions and select the
4177 /// tools accordingly.
4178 class ToolSelector final {
4179 /// The tool chain this selector refers to.
4180 const ToolChain &TC;
4181
4182 /// The compilation this selector refers to.
4183 const Compilation &C;
4184
4185 /// The base action this selector refers to.
4186 const JobAction *BaseAction;
4187
4188 /// Set to true if the current toolchain refers to host actions.
4189 bool IsHostSelector;
4190
4191 /// Set to true if save-temps and embed-bitcode functionalities are active.
4192 bool SaveTemps;
4193 bool EmbedBitcode;
4194
4195 /// Get previous dependent action or null if that does not exist. If
4196 /// \a CanBeCollapsed is false, that action must be legal to collapse or
4197 /// null will be returned.
getPrevDependentAction(const ActionList & Inputs,ActionList & SavedOffloadAction,bool CanBeCollapsed=true)4198 const JobAction *getPrevDependentAction(const ActionList &Inputs,
4199 ActionList &SavedOffloadAction,
4200 bool CanBeCollapsed = true) {
4201 // An option can be collapsed only if it has a single input.
4202 if (Inputs.size() != 1)
4203 return nullptr;
4204
4205 Action *CurAction = *Inputs.begin();
4206 if (CanBeCollapsed &&
4207 !CurAction->isCollapsingWithNextDependentActionLegal())
4208 return nullptr;
4209
4210 // If the input action is an offload action. Look through it and save any
4211 // offload action that can be dropped in the event of a collapse.
4212 if (auto *OA = dyn_cast<OffloadAction>(CurAction)) {
4213 // If the dependent action is a device action, we will attempt to collapse
4214 // only with other device actions. Otherwise, we would do the same but
4215 // with host actions only.
4216 if (!IsHostSelector) {
4217 if (OA->hasSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)) {
4218 CurAction =
4219 OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true);
4220 if (CanBeCollapsed &&
4221 !CurAction->isCollapsingWithNextDependentActionLegal())
4222 return nullptr;
4223 SavedOffloadAction.push_back(OA);
4224 return dyn_cast<JobAction>(CurAction);
4225 }
4226 } else if (OA->hasHostDependence()) {
4227 CurAction = OA->getHostDependence();
4228 if (CanBeCollapsed &&
4229 !CurAction->isCollapsingWithNextDependentActionLegal())
4230 return nullptr;
4231 SavedOffloadAction.push_back(OA);
4232 return dyn_cast<JobAction>(CurAction);
4233 }
4234 return nullptr;
4235 }
4236
4237 return dyn_cast<JobAction>(CurAction);
4238 }
4239
4240 /// Return true if an assemble action can be collapsed.
canCollapseAssembleAction() const4241 bool canCollapseAssembleAction() const {
4242 return TC.useIntegratedAs() && !SaveTemps &&
4243 !C.getArgs().hasArg(options::OPT_via_file_asm) &&
4244 !C.getArgs().hasArg(options::OPT__SLASH_FA) &&
4245 !C.getArgs().hasArg(options::OPT__SLASH_Fa);
4246 }
4247
4248 /// Return true if a preprocessor action can be collapsed.
canCollapsePreprocessorAction() const4249 bool canCollapsePreprocessorAction() const {
4250 return !C.getArgs().hasArg(options::OPT_no_integrated_cpp) &&
4251 !C.getArgs().hasArg(options::OPT_traditional_cpp) && !SaveTemps &&
4252 !C.getArgs().hasArg(options::OPT_rewrite_objc);
4253 }
4254
4255 /// Struct that relates an action with the offload actions that would be
4256 /// collapsed with it.
4257 struct JobActionInfo final {
4258 /// The action this info refers to.
4259 const JobAction *JA = nullptr;
4260 /// The offload actions we need to take care off if this action is
4261 /// collapsed.
4262 ActionList SavedOffloadAction;
4263 };
4264
4265 /// Append collapsed offload actions from the give nnumber of elements in the
4266 /// action info array.
AppendCollapsedOffloadAction(ActionList & CollapsedOffloadAction,ArrayRef<JobActionInfo> & ActionInfo,unsigned ElementNum)4267 static void AppendCollapsedOffloadAction(ActionList &CollapsedOffloadAction,
4268 ArrayRef<JobActionInfo> &ActionInfo,
4269 unsigned ElementNum) {
4270 assert(ElementNum <= ActionInfo.size() && "Invalid number of elements.");
4271 for (unsigned I = 0; I < ElementNum; ++I)
4272 CollapsedOffloadAction.append(ActionInfo[I].SavedOffloadAction.begin(),
4273 ActionInfo[I].SavedOffloadAction.end());
4274 }
4275
4276 /// Functions that attempt to perform the combining. They detect if that is
4277 /// legal, and if so they update the inputs \a Inputs and the offload action
4278 /// that were collapsed in \a CollapsedOffloadAction. A tool that deals with
4279 /// the combined action is returned. If the combining is not legal or if the
4280 /// tool does not exist, null is returned.
4281 /// Currently three kinds of collapsing are supported:
4282 /// - Assemble + Backend + Compile;
4283 /// - Assemble + Backend ;
4284 /// - Backend + Compile.
4285 const Tool *
combineAssembleBackendCompile(ArrayRef<JobActionInfo> ActionInfo,ActionList & Inputs,ActionList & CollapsedOffloadAction)4286 combineAssembleBackendCompile(ArrayRef<JobActionInfo> ActionInfo,
4287 ActionList &Inputs,
4288 ActionList &CollapsedOffloadAction) {
4289 if (ActionInfo.size() < 3 || !canCollapseAssembleAction())
4290 return nullptr;
4291 auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA);
4292 auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA);
4293 auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[2].JA);
4294 if (!AJ || !BJ || !CJ)
4295 return nullptr;
4296
4297 // Get compiler tool.
4298 const Tool *T = TC.SelectTool(*CJ);
4299 if (!T)
4300 return nullptr;
4301
4302 // When using -fembed-bitcode, it is required to have the same tool (clang)
4303 // for both CompilerJA and BackendJA. Otherwise, combine two stages.
4304 if (EmbedBitcode) {
4305 const Tool *BT = TC.SelectTool(*BJ);
4306 if (BT == T)
4307 return nullptr;
4308 }
4309
4310 if (!T->hasIntegratedAssembler())
4311 return nullptr;
4312
4313 Inputs = CJ->getInputs();
4314 AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
4315 /*NumElements=*/3);
4316 return T;
4317 }
combineAssembleBackend(ArrayRef<JobActionInfo> ActionInfo,ActionList & Inputs,ActionList & CollapsedOffloadAction)4318 const Tool *combineAssembleBackend(ArrayRef<JobActionInfo> ActionInfo,
4319 ActionList &Inputs,
4320 ActionList &CollapsedOffloadAction) {
4321 if (ActionInfo.size() < 2 || !canCollapseAssembleAction())
4322 return nullptr;
4323 auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA);
4324 auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA);
4325 if (!AJ || !BJ)
4326 return nullptr;
4327
4328 // Get backend tool.
4329 const Tool *T = TC.SelectTool(*BJ);
4330 if (!T)
4331 return nullptr;
4332
4333 if (!T->hasIntegratedAssembler())
4334 return nullptr;
4335
4336 Inputs = BJ->getInputs();
4337 AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
4338 /*NumElements=*/2);
4339 return T;
4340 }
combineBackendCompile(ArrayRef<JobActionInfo> ActionInfo,ActionList & Inputs,ActionList & CollapsedOffloadAction)4341 const Tool *combineBackendCompile(ArrayRef<JobActionInfo> ActionInfo,
4342 ActionList &Inputs,
4343 ActionList &CollapsedOffloadAction) {
4344 if (ActionInfo.size() < 2)
4345 return nullptr;
4346 auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[0].JA);
4347 auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[1].JA);
4348 if (!BJ || !CJ)
4349 return nullptr;
4350
4351 // Check if the initial input (to the compile job or its predessor if one
4352 // exists) is LLVM bitcode. In that case, no preprocessor step is required
4353 // and we can still collapse the compile and backend jobs when we have
4354 // -save-temps. I.e. there is no need for a separate compile job just to
4355 // emit unoptimized bitcode.
4356 bool InputIsBitcode = true;
4357 for (size_t i = 1; i < ActionInfo.size(); i++)
4358 if (ActionInfo[i].JA->getType() != types::TY_LLVM_BC &&
4359 ActionInfo[i].JA->getType() != types::TY_LTO_BC) {
4360 InputIsBitcode = false;
4361 break;
4362 }
4363 if (!InputIsBitcode && !canCollapsePreprocessorAction())
4364 return nullptr;
4365
4366 // Get compiler tool.
4367 const Tool *T = TC.SelectTool(*CJ);
4368 if (!T)
4369 return nullptr;
4370
4371 if (T->canEmitIR() && ((SaveTemps && !InputIsBitcode) || EmbedBitcode))
4372 return nullptr;
4373
4374 Inputs = CJ->getInputs();
4375 AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
4376 /*NumElements=*/2);
4377 return T;
4378 }
4379
4380 /// Updates the inputs if the obtained tool supports combining with
4381 /// preprocessor action, and the current input is indeed a preprocessor
4382 /// action. If combining results in the collapse of offloading actions, those
4383 /// are appended to \a CollapsedOffloadAction.
combineWithPreprocessor(const Tool * T,ActionList & Inputs,ActionList & CollapsedOffloadAction)4384 void combineWithPreprocessor(const Tool *T, ActionList &Inputs,
4385 ActionList &CollapsedOffloadAction) {
4386 if (!T || !canCollapsePreprocessorAction() || !T->hasIntegratedCPP())
4387 return;
4388
4389 // Attempt to get a preprocessor action dependence.
4390 ActionList PreprocessJobOffloadActions;
4391 ActionList NewInputs;
4392 for (Action *A : Inputs) {
4393 auto *PJ = getPrevDependentAction({A}, PreprocessJobOffloadActions);
4394 if (!PJ || !isa<PreprocessJobAction>(PJ)) {
4395 NewInputs.push_back(A);
4396 continue;
4397 }
4398
4399 // This is legal to combine. Append any offload action we found and add the
4400 // current input to preprocessor inputs.
4401 CollapsedOffloadAction.append(PreprocessJobOffloadActions.begin(),
4402 PreprocessJobOffloadActions.end());
4403 NewInputs.append(PJ->input_begin(), PJ->input_end());
4404 }
4405 Inputs = NewInputs;
4406 }
4407
4408 public:
ToolSelector(const JobAction * BaseAction,const ToolChain & TC,const Compilation & C,bool SaveTemps,bool EmbedBitcode)4409 ToolSelector(const JobAction *BaseAction, const ToolChain &TC,
4410 const Compilation &C, bool SaveTemps, bool EmbedBitcode)
4411 : TC(TC), C(C), BaseAction(BaseAction), SaveTemps(SaveTemps),
4412 EmbedBitcode(EmbedBitcode) {
4413 assert(BaseAction && "Invalid base action.");
4414 IsHostSelector = BaseAction->getOffloadingDeviceKind() == Action::OFK_None;
4415 }
4416
4417 /// Check if a chain of actions can be combined and return the tool that can
4418 /// handle the combination of actions. The pointer to the current inputs \a
4419 /// Inputs and the list of offload actions \a CollapsedOffloadActions
4420 /// connected to collapsed actions are updated accordingly. The latter enables
4421 /// the caller of the selector to process them afterwards instead of just
4422 /// dropping them. If no suitable tool is found, null will be returned.
getTool(ActionList & Inputs,ActionList & CollapsedOffloadAction)4423 const Tool *getTool(ActionList &Inputs,
4424 ActionList &CollapsedOffloadAction) {
4425 //
4426 // Get the largest chain of actions that we could combine.
4427 //
4428
4429 SmallVector<JobActionInfo, 5> ActionChain(1);
4430 ActionChain.back().JA = BaseAction;
4431 while (ActionChain.back().JA) {
4432 const Action *CurAction = ActionChain.back().JA;
4433
4434 // Grow the chain by one element.
4435 ActionChain.resize(ActionChain.size() + 1);
4436 JobActionInfo &AI = ActionChain.back();
4437
4438 // Attempt to fill it with the
4439 AI.JA =
4440 getPrevDependentAction(CurAction->getInputs(), AI.SavedOffloadAction);
4441 }
4442
4443 // Pop the last action info as it could not be filled.
4444 ActionChain.pop_back();
4445
4446 //
4447 // Attempt to combine actions. If all combining attempts failed, just return
4448 // the tool of the provided action. At the end we attempt to combine the
4449 // action with any preprocessor action it may depend on.
4450 //
4451
4452 const Tool *T = combineAssembleBackendCompile(ActionChain, Inputs,
4453 CollapsedOffloadAction);
4454 if (!T)
4455 T = combineAssembleBackend(ActionChain, Inputs, CollapsedOffloadAction);
4456 if (!T)
4457 T = combineBackendCompile(ActionChain, Inputs, CollapsedOffloadAction);
4458 if (!T) {
4459 Inputs = BaseAction->getInputs();
4460 T = TC.SelectTool(*BaseAction);
4461 }
4462
4463 combineWithPreprocessor(T, Inputs, CollapsedOffloadAction);
4464 return T;
4465 }
4466 };
4467 }
4468
4469 /// Return a string that uniquely identifies the result of a job. The bound arch
4470 /// is not necessarily represented in the toolchain's triple -- for example,
4471 /// armv7 and armv7s both map to the same triple -- so we need both in our map.
4472 /// Also, we need to add the offloading device kind, as the same tool chain can
4473 /// be used for host and device for some programming models, e.g. OpenMP.
GetTriplePlusArchString(const ToolChain * TC,StringRef BoundArch,Action::OffloadKind OffloadKind)4474 static std::string GetTriplePlusArchString(const ToolChain *TC,
4475 StringRef BoundArch,
4476 Action::OffloadKind OffloadKind) {
4477 std::string TriplePlusArch = TC->getTriple().normalize();
4478 if (!BoundArch.empty()) {
4479 TriplePlusArch += "-";
4480 TriplePlusArch += BoundArch;
4481 }
4482 TriplePlusArch += "-";
4483 TriplePlusArch += Action::GetOffloadKindName(OffloadKind);
4484 return TriplePlusArch;
4485 }
4486
BuildJobsForAction(Compilation & C,const Action * A,const ToolChain * TC,StringRef BoundArch,bool AtTopLevel,bool MultipleArchs,const char * LinkingOutput,std::map<std::pair<const Action *,std::string>,InputInfo> & CachedResults,Action::OffloadKind TargetDeviceOffloadKind) const4487 InputInfo Driver::BuildJobsForAction(
4488 Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch,
4489 bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
4490 std::map<std::pair<const Action *, std::string>, InputInfo> &CachedResults,
4491 Action::OffloadKind TargetDeviceOffloadKind) const {
4492 std::pair<const Action *, std::string> ActionTC = {
4493 A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
4494 auto CachedResult = CachedResults.find(ActionTC);
4495 if (CachedResult != CachedResults.end()) {
4496 return CachedResult->second;
4497 }
4498 InputInfo Result = BuildJobsForActionNoCache(
4499 C, A, TC, BoundArch, AtTopLevel, MultipleArchs, LinkingOutput,
4500 CachedResults, TargetDeviceOffloadKind);
4501 CachedResults[ActionTC] = Result;
4502 return Result;
4503 }
4504
BuildJobsForActionNoCache(Compilation & C,const Action * A,const ToolChain * TC,StringRef BoundArch,bool AtTopLevel,bool MultipleArchs,const char * LinkingOutput,std::map<std::pair<const Action *,std::string>,InputInfo> & CachedResults,Action::OffloadKind TargetDeviceOffloadKind) const4505 InputInfo Driver::BuildJobsForActionNoCache(
4506 Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch,
4507 bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
4508 std::map<std::pair<const Action *, std::string>, InputInfo> &CachedResults,
4509 Action::OffloadKind TargetDeviceOffloadKind) const {
4510 llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
4511
4512 InputInfoList OffloadDependencesInputInfo;
4513 bool BuildingForOffloadDevice = TargetDeviceOffloadKind != Action::OFK_None;
4514 if (const OffloadAction *OA = dyn_cast<OffloadAction>(A)) {
4515 // The 'Darwin' toolchain is initialized only when its arguments are
4516 // computed. Get the default arguments for OFK_None to ensure that
4517 // initialization is performed before processing the offload action.
4518 // FIXME: Remove when darwin's toolchain is initialized during construction.
4519 C.getArgsForToolChain(TC, BoundArch, Action::OFK_None);
4520
4521 // The offload action is expected to be used in four different situations.
4522 //
4523 // a) Set a toolchain/architecture/kind for a host action:
4524 // Host Action 1 -> OffloadAction -> Host Action 2
4525 //
4526 // b) Set a toolchain/architecture/kind for a device action;
4527 // Device Action 1 -> OffloadAction -> Device Action 2
4528 //
4529 // c) Specify a device dependence to a host action;
4530 // Device Action 1 _
4531 // \
4532 // Host Action 1 ---> OffloadAction -> Host Action 2
4533 //
4534 // d) Specify a host dependence to a device action.
4535 // Host Action 1 _
4536 // \
4537 // Device Action 1 ---> OffloadAction -> Device Action 2
4538 //
4539 // For a) and b), we just return the job generated for the dependence. For
4540 // c) and d) we override the current action with the host/device dependence
4541 // if the current toolchain is host/device and set the offload dependences
4542 // info with the jobs obtained from the device/host dependence(s).
4543
4544 // If there is a single device option, just generate the job for it.
4545 if (OA->hasSingleDeviceDependence()) {
4546 InputInfo DevA;
4547 OA->doOnEachDeviceDependence([&](Action *DepA, const ToolChain *DepTC,
4548 const char *DepBoundArch) {
4549 DevA =
4550 BuildJobsForAction(C, DepA, DepTC, DepBoundArch, AtTopLevel,
4551 /*MultipleArchs*/ !!DepBoundArch, LinkingOutput,
4552 CachedResults, DepA->getOffloadingDeviceKind());
4553 });
4554 return DevA;
4555 }
4556
4557 // If 'Action 2' is host, we generate jobs for the device dependences and
4558 // override the current action with the host dependence. Otherwise, we
4559 // generate the host dependences and override the action with the device
4560 // dependence. The dependences can't therefore be a top-level action.
4561 OA->doOnEachDependence(
4562 /*IsHostDependence=*/BuildingForOffloadDevice,
4563 [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) {
4564 OffloadDependencesInputInfo.push_back(BuildJobsForAction(
4565 C, DepA, DepTC, DepBoundArch, /*AtTopLevel=*/false,
4566 /*MultipleArchs*/ !!DepBoundArch, LinkingOutput, CachedResults,
4567 DepA->getOffloadingDeviceKind()));
4568 });
4569
4570 A = BuildingForOffloadDevice
4571 ? OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)
4572 : OA->getHostDependence();
4573 }
4574
4575 if (const InputAction *IA = dyn_cast<InputAction>(A)) {
4576 // FIXME: It would be nice to not claim this here; maybe the old scheme of
4577 // just using Args was better?
4578 const Arg &Input = IA->getInputArg();
4579 Input.claim();
4580 if (Input.getOption().matches(options::OPT_INPUT)) {
4581 const char *Name = Input.getValue();
4582 return InputInfo(A, Name, /* _BaseInput = */ Name);
4583 }
4584 return InputInfo(A, &Input, /* _BaseInput = */ "");
4585 }
4586
4587 if (const BindArchAction *BAA = dyn_cast<BindArchAction>(A)) {
4588 const ToolChain *TC;
4589 StringRef ArchName = BAA->getArchName();
4590
4591 if (!ArchName.empty())
4592 TC = &getToolChain(C.getArgs(),
4593 computeTargetTriple(*this, TargetTriple,
4594 C.getArgs(), ArchName));
4595 else
4596 TC = &C.getDefaultToolChain();
4597
4598 return BuildJobsForAction(C, *BAA->input_begin(), TC, ArchName, AtTopLevel,
4599 MultipleArchs, LinkingOutput, CachedResults,
4600 TargetDeviceOffloadKind);
4601 }
4602
4603
4604 ActionList Inputs = A->getInputs();
4605
4606 const JobAction *JA = cast<JobAction>(A);
4607 ActionList CollapsedOffloadActions;
4608
4609 ToolSelector TS(JA, *TC, C, isSaveTempsEnabled(),
4610 embedBitcodeInObject() && !isUsingLTO());
4611 const Tool *T = TS.getTool(Inputs, CollapsedOffloadActions);
4612
4613 if (!T)
4614 return InputInfo();
4615
4616 if (BuildingForOffloadDevice &&
4617 A->getOffloadingDeviceKind() == Action::OFK_OpenMP) {
4618 if (TC->getTriple().isAMDGCN()) {
4619 // AMDGCN treats backend and assemble actions as no-op because
4620 // linker does not support object files.
4621 if (const BackendJobAction *BA = dyn_cast<BackendJobAction>(A)) {
4622 return BuildJobsForAction(C, *BA->input_begin(), TC, BoundArch,
4623 AtTopLevel, MultipleArchs, LinkingOutput,
4624 CachedResults, TargetDeviceOffloadKind);
4625 }
4626
4627 if (const AssembleJobAction *AA = dyn_cast<AssembleJobAction>(A)) {
4628 return BuildJobsForAction(C, *AA->input_begin(), TC, BoundArch,
4629 AtTopLevel, MultipleArchs, LinkingOutput,
4630 CachedResults, TargetDeviceOffloadKind);
4631 }
4632 }
4633 }
4634
4635 // If we've collapsed action list that contained OffloadAction we
4636 // need to build jobs for host/device-side inputs it may have held.
4637 for (const auto *OA : CollapsedOffloadActions)
4638 cast<OffloadAction>(OA)->doOnEachDependence(
4639 /*IsHostDependence=*/BuildingForOffloadDevice,
4640 [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) {
4641 OffloadDependencesInputInfo.push_back(BuildJobsForAction(
4642 C, DepA, DepTC, DepBoundArch, /* AtTopLevel */ false,
4643 /*MultipleArchs=*/!!DepBoundArch, LinkingOutput, CachedResults,
4644 DepA->getOffloadingDeviceKind()));
4645 });
4646
4647 // Only use pipes when there is exactly one input.
4648 InputInfoList InputInfos;
4649 for (const Action *Input : Inputs) {
4650 // Treat dsymutil and verify sub-jobs as being at the top-level too, they
4651 // shouldn't get temporary output names.
4652 // FIXME: Clean this up.
4653 bool SubJobAtTopLevel =
4654 AtTopLevel && (isa<DsymutilJobAction>(A) || isa<VerifyJobAction>(A));
4655 InputInfos.push_back(BuildJobsForAction(
4656 C, Input, TC, BoundArch, SubJobAtTopLevel, MultipleArchs, LinkingOutput,
4657 CachedResults, A->getOffloadingDeviceKind()));
4658 }
4659
4660 // Always use the first input as the base input.
4661 const char *BaseInput = InputInfos[0].getBaseInput();
4662
4663 // ... except dsymutil actions, which use their actual input as the base
4664 // input.
4665 if (JA->getType() == types::TY_dSYM)
4666 BaseInput = InputInfos[0].getFilename();
4667
4668 // ... and in header module compilations, which use the module name.
4669 if (auto *ModuleJA = dyn_cast<HeaderModulePrecompileJobAction>(JA))
4670 BaseInput = ModuleJA->getModuleName();
4671
4672 // Append outputs of offload device jobs to the input list
4673 if (!OffloadDependencesInputInfo.empty())
4674 InputInfos.append(OffloadDependencesInputInfo.begin(),
4675 OffloadDependencesInputInfo.end());
4676
4677 // Set the effective triple of the toolchain for the duration of this job.
4678 llvm::Triple EffectiveTriple;
4679 const ToolChain &ToolTC = T->getToolChain();
4680 const ArgList &Args =
4681 C.getArgsForToolChain(TC, BoundArch, A->getOffloadingDeviceKind());
4682 if (InputInfos.size() != 1) {
4683 EffectiveTriple = llvm::Triple(ToolTC.ComputeEffectiveClangTriple(Args));
4684 } else {
4685 // Pass along the input type if it can be unambiguously determined.
4686 EffectiveTriple = llvm::Triple(
4687 ToolTC.ComputeEffectiveClangTriple(Args, InputInfos[0].getType()));
4688 }
4689 RegisterEffectiveTriple TripleRAII(ToolTC, EffectiveTriple);
4690
4691 // Determine the place to write output to, if any.
4692 InputInfo Result;
4693 InputInfoList UnbundlingResults;
4694 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(JA)) {
4695 // If we have an unbundling job, we need to create results for all the
4696 // outputs. We also update the results cache so that other actions using
4697 // this unbundling action can get the right results.
4698 for (auto &UI : UA->getDependentActionsInfo()) {
4699 assert(UI.DependentOffloadKind != Action::OFK_None &&
4700 "Unbundling with no offloading??");
4701
4702 // Unbundling actions are never at the top level. When we generate the
4703 // offloading prefix, we also do that for the host file because the
4704 // unbundling action does not change the type of the output which can
4705 // cause a overwrite.
4706 std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix(
4707 UI.DependentOffloadKind,
4708 UI.DependentToolChain->getTriple().normalize(),
4709 /*CreatePrefixForHost=*/true);
4710 auto CurI = InputInfo(
4711 UA,
4712 GetNamedOutputPath(C, *UA, BaseInput, UI.DependentBoundArch,
4713 /*AtTopLevel=*/false,
4714 MultipleArchs ||
4715 UI.DependentOffloadKind == Action::OFK_HIP,
4716 OffloadingPrefix),
4717 BaseInput);
4718 // Save the unbundling result.
4719 UnbundlingResults.push_back(CurI);
4720
4721 // Get the unique string identifier for this dependence and cache the
4722 // result.
4723 StringRef Arch;
4724 if (TargetDeviceOffloadKind == Action::OFK_HIP) {
4725 if (UI.DependentOffloadKind == Action::OFK_Host)
4726 Arch = StringRef();
4727 else
4728 Arch = UI.DependentBoundArch;
4729 } else
4730 Arch = BoundArch;
4731
4732 CachedResults[{A, GetTriplePlusArchString(UI.DependentToolChain, Arch,
4733 UI.DependentOffloadKind)}] =
4734 CurI;
4735 }
4736
4737 // Now that we have all the results generated, select the one that should be
4738 // returned for the current depending action.
4739 std::pair<const Action *, std::string> ActionTC = {
4740 A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
4741 assert(CachedResults.find(ActionTC) != CachedResults.end() &&
4742 "Result does not exist??");
4743 Result = CachedResults[ActionTC];
4744 } else if (JA->getType() == types::TY_Nothing)
4745 Result = InputInfo(A, BaseInput);
4746 else {
4747 // We only have to generate a prefix for the host if this is not a top-level
4748 // action.
4749 std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix(
4750 A->getOffloadingDeviceKind(), TC->getTriple().normalize(),
4751 /*CreatePrefixForHost=*/!!A->getOffloadingHostActiveKinds() &&
4752 !AtTopLevel);
4753 if (isa<OffloadWrapperJobAction>(JA)) {
4754 if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o))
4755 BaseInput = FinalOutput->getValue();
4756 else
4757 BaseInput = getDefaultImageName();
4758 BaseInput =
4759 C.getArgs().MakeArgString(std::string(BaseInput) + "-wrapper");
4760 }
4761 Result = InputInfo(A, GetNamedOutputPath(C, *JA, BaseInput, BoundArch,
4762 AtTopLevel, MultipleArchs,
4763 OffloadingPrefix),
4764 BaseInput);
4765 }
4766
4767 if (CCCPrintBindings && !CCGenDiagnostics) {
4768 llvm::errs() << "# \"" << T->getToolChain().getTripleString() << '"'
4769 << " - \"" << T->getName() << "\", inputs: [";
4770 for (unsigned i = 0, e = InputInfos.size(); i != e; ++i) {
4771 llvm::errs() << InputInfos[i].getAsString();
4772 if (i + 1 != e)
4773 llvm::errs() << ", ";
4774 }
4775 if (UnbundlingResults.empty())
4776 llvm::errs() << "], output: " << Result.getAsString() << "\n";
4777 else {
4778 llvm::errs() << "], outputs: [";
4779 for (unsigned i = 0, e = UnbundlingResults.size(); i != e; ++i) {
4780 llvm::errs() << UnbundlingResults[i].getAsString();
4781 if (i + 1 != e)
4782 llvm::errs() << ", ";
4783 }
4784 llvm::errs() << "] \n";
4785 }
4786 } else {
4787 if (UnbundlingResults.empty())
4788 T->ConstructJob(
4789 C, *JA, Result, InputInfos,
4790 C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()),
4791 LinkingOutput);
4792 else
4793 T->ConstructJobMultipleOutputs(
4794 C, *JA, UnbundlingResults, InputInfos,
4795 C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()),
4796 LinkingOutput);
4797 }
4798 return Result;
4799 }
4800
getDefaultImageName() const4801 const char *Driver::getDefaultImageName() const {
4802 llvm::Triple Target(llvm::Triple::normalize(TargetTriple));
4803 return Target.isOSWindows() ? "a.exe" : "a.out";
4804 }
4805
4806 /// Create output filename based on ArgValue, which could either be a
4807 /// full filename, filename without extension, or a directory. If ArgValue
4808 /// does not provide a filename, then use BaseName, and use the extension
4809 /// suitable for FileType.
MakeCLOutputFilename(const ArgList & Args,StringRef ArgValue,StringRef BaseName,types::ID FileType)4810 static const char *MakeCLOutputFilename(const ArgList &Args, StringRef ArgValue,
4811 StringRef BaseName,
4812 types::ID FileType) {
4813 SmallString<128> Filename = ArgValue;
4814
4815 if (ArgValue.empty()) {
4816 // If the argument is empty, output to BaseName in the current dir.
4817 Filename = BaseName;
4818 } else if (llvm::sys::path::is_separator(Filename.back())) {
4819 // If the argument is a directory, output to BaseName in that dir.
4820 llvm::sys::path::append(Filename, BaseName);
4821 }
4822
4823 if (!llvm::sys::path::has_extension(ArgValue)) {
4824 // If the argument didn't provide an extension, then set it.
4825 const char *Extension = types::getTypeTempSuffix(FileType, true);
4826
4827 if (FileType == types::TY_Image &&
4828 Args.hasArg(options::OPT__SLASH_LD, options::OPT__SLASH_LDd)) {
4829 // The output file is a dll.
4830 Extension = "dll";
4831 }
4832
4833 llvm::sys::path::replace_extension(Filename, Extension);
4834 }
4835
4836 return Args.MakeArgString(Filename.c_str());
4837 }
4838
HasPreprocessOutput(const Action & JA)4839 static bool HasPreprocessOutput(const Action &JA) {
4840 if (isa<PreprocessJobAction>(JA))
4841 return true;
4842 if (isa<OffloadAction>(JA) && isa<PreprocessJobAction>(JA.getInputs()[0]))
4843 return true;
4844 if (isa<OffloadBundlingJobAction>(JA) &&
4845 HasPreprocessOutput(*(JA.getInputs()[0])))
4846 return true;
4847 return false;
4848 }
4849
GetNamedOutputPath(Compilation & C,const JobAction & JA,const char * BaseInput,StringRef OrigBoundArch,bool AtTopLevel,bool MultipleArchs,StringRef OffloadingPrefix) const4850 const char *Driver::GetNamedOutputPath(Compilation &C, const JobAction &JA,
4851 const char *BaseInput,
4852 StringRef OrigBoundArch, bool AtTopLevel,
4853 bool MultipleArchs,
4854 StringRef OffloadingPrefix) const {
4855 std::string BoundArch = OrigBoundArch.str();
4856 #if defined(_WIN32)
4857 // BoundArch may contains ':', which is invalid in file names on Windows,
4858 // therefore replace it with '%'.
4859 std::replace(BoundArch.begin(), BoundArch.end(), ':', '@');
4860 #endif
4861
4862 llvm::PrettyStackTraceString CrashInfo("Computing output path");
4863 // Output to a user requested destination?
4864 if (AtTopLevel && !isa<DsymutilJobAction>(JA) && !isa<VerifyJobAction>(JA)) {
4865 if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o))
4866 return C.addResultFile(FinalOutput->getValue(), &JA);
4867 }
4868
4869 // For /P, preprocess to file named after BaseInput.
4870 if (C.getArgs().hasArg(options::OPT__SLASH_P)) {
4871 assert(AtTopLevel && isa<PreprocessJobAction>(JA));
4872 StringRef BaseName = llvm::sys::path::filename(BaseInput);
4873 StringRef NameArg;
4874 if (Arg *A = C.getArgs().getLastArg(options::OPT__SLASH_Fi))
4875 NameArg = A->getValue();
4876 return C.addResultFile(
4877 MakeCLOutputFilename(C.getArgs(), NameArg, BaseName, types::TY_PP_C),
4878 &JA);
4879 }
4880
4881 // Default to writing to stdout?
4882 if (AtTopLevel && !CCGenDiagnostics && HasPreprocessOutput(JA)) {
4883 return "-";
4884 }
4885
4886 // Is this the assembly listing for /FA?
4887 if (JA.getType() == types::TY_PP_Asm &&
4888 (C.getArgs().hasArg(options::OPT__SLASH_FA) ||
4889 C.getArgs().hasArg(options::OPT__SLASH_Fa))) {
4890 // Use /Fa and the input filename to determine the asm file name.
4891 StringRef BaseName = llvm::sys::path::filename(BaseInput);
4892 StringRef FaValue = C.getArgs().getLastArgValue(options::OPT__SLASH_Fa);
4893 return C.addResultFile(
4894 MakeCLOutputFilename(C.getArgs(), FaValue, BaseName, JA.getType()),
4895 &JA);
4896 }
4897
4898 // Output to a temporary file?
4899 if ((!AtTopLevel && !isSaveTempsEnabled() &&
4900 !C.getArgs().hasArg(options::OPT__SLASH_Fo)) ||
4901 CCGenDiagnostics) {
4902 StringRef Name = llvm::sys::path::filename(BaseInput);
4903 std::pair<StringRef, StringRef> Split = Name.split('.');
4904 SmallString<128> TmpName;
4905 const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode());
4906 Arg *A = C.getArgs().getLastArg(options::OPT_fcrash_diagnostics_dir);
4907 if (CCGenDiagnostics && A) {
4908 SmallString<128> CrashDirectory(A->getValue());
4909 if (!getVFS().exists(CrashDirectory))
4910 llvm::sys::fs::create_directories(CrashDirectory);
4911 llvm::sys::path::append(CrashDirectory, Split.first);
4912 const char *Middle = Suffix ? "-%%%%%%." : "-%%%%%%";
4913 std::error_code EC = llvm::sys::fs::createUniqueFile(
4914 CrashDirectory + Middle + Suffix, TmpName);
4915 if (EC) {
4916 Diag(clang::diag::err_unable_to_make_temp) << EC.message();
4917 return "";
4918 }
4919 } else {
4920 TmpName = GetTemporaryPath(Split.first, Suffix);
4921 }
4922 return C.addTempFile(C.getArgs().MakeArgString(TmpName));
4923 }
4924
4925 SmallString<128> BasePath(BaseInput);
4926 SmallString<128> ExternalPath("");
4927 StringRef BaseName;
4928
4929 // Dsymutil actions should use the full path.
4930 if (isa<DsymutilJobAction>(JA) && C.getArgs().hasArg(options::OPT_dsym_dir)) {
4931 ExternalPath += C.getArgs().getLastArg(options::OPT_dsym_dir)->getValue();
4932 // We use posix style here because the tests (specifically
4933 // darwin-dsymutil.c) demonstrate that posix style paths are acceptable
4934 // even on Windows and if we don't then the similar test covering this
4935 // fails.
4936 llvm::sys::path::append(ExternalPath, llvm::sys::path::Style::posix,
4937 llvm::sys::path::filename(BasePath));
4938 BaseName = ExternalPath;
4939 } else if (isa<DsymutilJobAction>(JA) || isa<VerifyJobAction>(JA))
4940 BaseName = BasePath;
4941 else
4942 BaseName = llvm::sys::path::filename(BasePath);
4943
4944 // Determine what the derived output name should be.
4945 const char *NamedOutput;
4946
4947 if ((JA.getType() == types::TY_Object || JA.getType() == types::TY_LTO_BC) &&
4948 C.getArgs().hasArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)) {
4949 // The /Fo or /o flag decides the object filename.
4950 StringRef Val =
4951 C.getArgs()
4952 .getLastArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)
4953 ->getValue();
4954 NamedOutput =
4955 MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Object);
4956 } else if (JA.getType() == types::TY_Image &&
4957 C.getArgs().hasArg(options::OPT__SLASH_Fe,
4958 options::OPT__SLASH_o)) {
4959 // The /Fe or /o flag names the linked file.
4960 StringRef Val =
4961 C.getArgs()
4962 .getLastArg(options::OPT__SLASH_Fe, options::OPT__SLASH_o)
4963 ->getValue();
4964 NamedOutput =
4965 MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Image);
4966 } else if (JA.getType() == types::TY_Image) {
4967 if (IsCLMode()) {
4968 // clang-cl uses BaseName for the executable name.
4969 NamedOutput =
4970 MakeCLOutputFilename(C.getArgs(), "", BaseName, types::TY_Image);
4971 } else {
4972 SmallString<128> Output(getDefaultImageName());
4973 // HIP image for device compilation with -fno-gpu-rdc is per compilation
4974 // unit.
4975 bool IsHIPNoRDC = JA.getOffloadingDeviceKind() == Action::OFK_HIP &&
4976 !C.getArgs().hasFlag(options::OPT_fgpu_rdc,
4977 options::OPT_fno_gpu_rdc, false);
4978 if (IsHIPNoRDC) {
4979 Output = BaseName;
4980 llvm::sys::path::replace_extension(Output, "");
4981 }
4982 Output += OffloadingPrefix;
4983 if (MultipleArchs && !BoundArch.empty()) {
4984 Output += "-";
4985 Output.append(BoundArch);
4986 }
4987 if (IsHIPNoRDC)
4988 Output += ".out";
4989 NamedOutput = C.getArgs().MakeArgString(Output.c_str());
4990 }
4991 } else if (JA.getType() == types::TY_PCH && IsCLMode()) {
4992 NamedOutput = C.getArgs().MakeArgString(GetClPchPath(C, BaseName));
4993 } else {
4994 const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode());
4995 assert(Suffix && "All types used for output should have a suffix.");
4996
4997 std::string::size_type End = std::string::npos;
4998 if (!types::appendSuffixForType(JA.getType()))
4999 End = BaseName.rfind('.');
5000 SmallString<128> Suffixed(BaseName.substr(0, End));
5001 Suffixed += OffloadingPrefix;
5002 if (MultipleArchs && !BoundArch.empty()) {
5003 Suffixed += "-";
5004 Suffixed.append(BoundArch);
5005 }
5006 // When using both -save-temps and -emit-llvm, use a ".tmp.bc" suffix for
5007 // the unoptimized bitcode so that it does not get overwritten by the ".bc"
5008 // optimized bitcode output.
5009 auto IsHIPRDCInCompilePhase = [](const JobAction &JA,
5010 const llvm::opt::DerivedArgList &Args) {
5011 // The relocatable compilation in HIP implies -emit-llvm. Similarly, use a
5012 // ".tmp.bc" suffix for the unoptimized bitcode (generated in the compile
5013 // phase.)
5014 return isa<CompileJobAction>(JA) &&
5015 JA.getOffloadingDeviceKind() == Action::OFK_HIP &&
5016 Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc,
5017 false);
5018 };
5019 if (!AtTopLevel && JA.getType() == types::TY_LLVM_BC &&
5020 (C.getArgs().hasArg(options::OPT_emit_llvm) ||
5021 IsHIPRDCInCompilePhase(JA, C.getArgs())))
5022 Suffixed += ".tmp";
5023 Suffixed += '.';
5024 Suffixed += Suffix;
5025 NamedOutput = C.getArgs().MakeArgString(Suffixed.c_str());
5026 }
5027
5028 // Prepend object file path if -save-temps=obj
5029 if (!AtTopLevel && isSaveTempsObj() && C.getArgs().hasArg(options::OPT_o) &&
5030 JA.getType() != types::TY_PCH) {
5031 Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
5032 SmallString<128> TempPath(FinalOutput->getValue());
5033 llvm::sys::path::remove_filename(TempPath);
5034 StringRef OutputFileName = llvm::sys::path::filename(NamedOutput);
5035 llvm::sys::path::append(TempPath, OutputFileName);
5036 NamedOutput = C.getArgs().MakeArgString(TempPath.c_str());
5037 }
5038
5039 // If we're saving temps and the temp file conflicts with the input file,
5040 // then avoid overwriting input file.
5041 if (!AtTopLevel && isSaveTempsEnabled() && NamedOutput == BaseName) {
5042 bool SameFile = false;
5043 SmallString<256> Result;
5044 llvm::sys::fs::current_path(Result);
5045 llvm::sys::path::append(Result, BaseName);
5046 llvm::sys::fs::equivalent(BaseInput, Result.c_str(), SameFile);
5047 // Must share the same path to conflict.
5048 if (SameFile) {
5049 StringRef Name = llvm::sys::path::filename(BaseInput);
5050 std::pair<StringRef, StringRef> Split = Name.split('.');
5051 std::string TmpName = GetTemporaryPath(
5052 Split.first, types::getTypeTempSuffix(JA.getType(), IsCLMode()));
5053 return C.addTempFile(C.getArgs().MakeArgString(TmpName));
5054 }
5055 }
5056
5057 // As an annoying special case, PCH generation doesn't strip the pathname.
5058 if (JA.getType() == types::TY_PCH && !IsCLMode()) {
5059 llvm::sys::path::remove_filename(BasePath);
5060 if (BasePath.empty())
5061 BasePath = NamedOutput;
5062 else
5063 llvm::sys::path::append(BasePath, NamedOutput);
5064 return C.addResultFile(C.getArgs().MakeArgString(BasePath.c_str()), &JA);
5065 } else {
5066 return C.addResultFile(NamedOutput, &JA);
5067 }
5068 }
5069
GetFilePath(StringRef Name,const ToolChain & TC) const5070 std::string Driver::GetFilePath(StringRef Name, const ToolChain &TC) const {
5071 // Search for Name in a list of paths.
5072 auto SearchPaths = [&](const llvm::SmallVectorImpl<std::string> &P)
5073 -> llvm::Optional<std::string> {
5074 // Respect a limited subset of the '-Bprefix' functionality in GCC by
5075 // attempting to use this prefix when looking for file paths.
5076 for (const auto &Dir : P) {
5077 if (Dir.empty())
5078 continue;
5079 SmallString<128> P(Dir[0] == '=' ? SysRoot + Dir.substr(1) : Dir);
5080 llvm::sys::path::append(P, Name);
5081 if (llvm::sys::fs::exists(Twine(P)))
5082 return std::string(P);
5083 }
5084 return None;
5085 };
5086
5087 if (auto P = SearchPaths(PrefixDirs))
5088 return *P;
5089
5090 SmallString<128> R(ResourceDir);
5091 llvm::sys::path::append(R, Name);
5092 if (llvm::sys::fs::exists(Twine(R)))
5093 return std::string(R.str());
5094
5095 SmallString<128> P(TC.getCompilerRTPath());
5096 llvm::sys::path::append(P, Name);
5097 if (llvm::sys::fs::exists(Twine(P)))
5098 return std::string(P.str());
5099
5100 SmallString<128> D(Dir);
5101 llvm::sys::path::append(D, "..", Name);
5102 if (llvm::sys::fs::exists(Twine(D)))
5103 return std::string(D.str());
5104
5105 if (auto P = SearchPaths(TC.getLibraryPaths()))
5106 return *P;
5107
5108 if (auto P = SearchPaths(TC.getFilePaths()))
5109 return *P;
5110
5111 return std::string(Name);
5112 }
5113
generatePrefixedToolNames(StringRef Tool,const ToolChain & TC,SmallVectorImpl<std::string> & Names) const5114 void Driver::generatePrefixedToolNames(
5115 StringRef Tool, const ToolChain &TC,
5116 SmallVectorImpl<std::string> &Names) const {
5117 // FIXME: Needs a better variable than TargetTriple
5118 Names.emplace_back((TargetTriple + "-" + Tool).str());
5119 Names.emplace_back(Tool);
5120 }
5121
ScanDirForExecutable(SmallString<128> & Dir,StringRef Name)5122 static bool ScanDirForExecutable(SmallString<128> &Dir, StringRef Name) {
5123 llvm::sys::path::append(Dir, Name);
5124 if (llvm::sys::fs::can_execute(Twine(Dir)))
5125 return true;
5126 llvm::sys::path::remove_filename(Dir);
5127 return false;
5128 }
5129
GetProgramPath(StringRef Name,const ToolChain & TC) const5130 std::string Driver::GetProgramPath(StringRef Name, const ToolChain &TC) const {
5131 SmallVector<std::string, 2> TargetSpecificExecutables;
5132 generatePrefixedToolNames(Name, TC, TargetSpecificExecutables);
5133
5134 // Respect a limited subset of the '-Bprefix' functionality in GCC by
5135 // attempting to use this prefix when looking for program paths.
5136 for (const auto &PrefixDir : PrefixDirs) {
5137 if (llvm::sys::fs::is_directory(PrefixDir)) {
5138 SmallString<128> P(PrefixDir);
5139 if (ScanDirForExecutable(P, Name))
5140 return std::string(P.str());
5141 } else {
5142 SmallString<128> P((PrefixDir + Name).str());
5143 if (llvm::sys::fs::can_execute(Twine(P)))
5144 return std::string(P.str());
5145 }
5146 }
5147
5148 const ToolChain::path_list &List = TC.getProgramPaths();
5149 for (const auto &TargetSpecificExecutable : TargetSpecificExecutables) {
5150 // For each possible name of the tool look for it in
5151 // program paths first, then the path.
5152 // Higher priority names will be first, meaning that
5153 // a higher priority name in the path will be found
5154 // instead of a lower priority name in the program path.
5155 // E.g. <triple>-gcc on the path will be found instead
5156 // of gcc in the program path
5157 for (const auto &Path : List) {
5158 SmallString<128> P(Path);
5159 if (ScanDirForExecutable(P, TargetSpecificExecutable))
5160 return std::string(P.str());
5161 }
5162
5163 // Fall back to the path
5164 if (llvm::ErrorOr<std::string> P =
5165 llvm::sys::findProgramByName(TargetSpecificExecutable))
5166 return *P;
5167 }
5168
5169 return std::string(Name);
5170 }
5171
GetTemporaryPath(StringRef Prefix,StringRef Suffix) const5172 std::string Driver::GetTemporaryPath(StringRef Prefix, StringRef Suffix) const {
5173 SmallString<128> Path;
5174 std::error_code EC = llvm::sys::fs::createTemporaryFile(Prefix, Suffix, Path);
5175 if (EC) {
5176 Diag(clang::diag::err_unable_to_make_temp) << EC.message();
5177 return "";
5178 }
5179
5180 return std::string(Path.str());
5181 }
5182
GetTemporaryDirectory(StringRef Prefix) const5183 std::string Driver::GetTemporaryDirectory(StringRef Prefix) const {
5184 SmallString<128> Path;
5185 std::error_code EC = llvm::sys::fs::createUniqueDirectory(Prefix, Path);
5186 if (EC) {
5187 Diag(clang::diag::err_unable_to_make_temp) << EC.message();
5188 return "";
5189 }
5190
5191 return std::string(Path.str());
5192 }
5193
GetClPchPath(Compilation & C,StringRef BaseName) const5194 std::string Driver::GetClPchPath(Compilation &C, StringRef BaseName) const {
5195 SmallString<128> Output;
5196 if (Arg *FpArg = C.getArgs().getLastArg(options::OPT__SLASH_Fp)) {
5197 // FIXME: If anybody needs it, implement this obscure rule:
5198 // "If you specify a directory without a file name, the default file name
5199 // is VCx0.pch., where x is the major version of Visual C++ in use."
5200 Output = FpArg->getValue();
5201
5202 // "If you do not specify an extension as part of the path name, an
5203 // extension of .pch is assumed. "
5204 if (!llvm::sys::path::has_extension(Output))
5205 Output += ".pch";
5206 } else {
5207 if (Arg *YcArg = C.getArgs().getLastArg(options::OPT__SLASH_Yc))
5208 Output = YcArg->getValue();
5209 if (Output.empty())
5210 Output = BaseName;
5211 llvm::sys::path::replace_extension(Output, ".pch");
5212 }
5213 return std::string(Output.str());
5214 }
5215
getToolChain(const ArgList & Args,const llvm::Triple & Target) const5216 const ToolChain &Driver::getToolChain(const ArgList &Args,
5217 const llvm::Triple &Target) const {
5218
5219 auto &TC = ToolChains[Target.str()];
5220 if (!TC) {
5221 switch (Target.getOS()) {
5222 case llvm::Triple::AIX:
5223 TC = std::make_unique<toolchains::AIX>(*this, Target, Args);
5224 break;
5225 case llvm::Triple::Haiku:
5226 TC = std::make_unique<toolchains::Haiku>(*this, Target, Args);
5227 break;
5228 case llvm::Triple::Ananas:
5229 TC = std::make_unique<toolchains::Ananas>(*this, Target, Args);
5230 break;
5231 case llvm::Triple::CloudABI:
5232 TC = std::make_unique<toolchains::CloudABI>(*this, Target, Args);
5233 break;
5234 case llvm::Triple::Darwin:
5235 case llvm::Triple::MacOSX:
5236 case llvm::Triple::IOS:
5237 case llvm::Triple::TvOS:
5238 case llvm::Triple::WatchOS:
5239 TC = std::make_unique<toolchains::DarwinClang>(*this, Target, Args);
5240 break;
5241 case llvm::Triple::DragonFly:
5242 TC = std::make_unique<toolchains::DragonFly>(*this, Target, Args);
5243 break;
5244 case llvm::Triple::OpenBSD:
5245 TC = std::make_unique<toolchains::OpenBSD>(*this, Target, Args);
5246 break;
5247 case llvm::Triple::NetBSD:
5248 TC = std::make_unique<toolchains::NetBSD>(*this, Target, Args);
5249 break;
5250 case llvm::Triple::FreeBSD:
5251 TC = std::make_unique<toolchains::FreeBSD>(*this, Target, Args);
5252 break;
5253 case llvm::Triple::Minix:
5254 TC = std::make_unique<toolchains::Minix>(*this, Target, Args);
5255 break;
5256 case llvm::Triple::Linux:
5257 case llvm::Triple::ELFIAMCU:
5258 if (Target.getArch() == llvm::Triple::hexagon)
5259 TC = std::make_unique<toolchains::HexagonToolChain>(*this, Target,
5260 Args);
5261 else if ((Target.getVendor() == llvm::Triple::MipsTechnologies) &&
5262 !Target.hasEnvironment())
5263 TC = std::make_unique<toolchains::MipsLLVMToolChain>(*this, Target,
5264 Args);
5265 else if (Target.isPPC())
5266 TC = std::make_unique<toolchains::PPCLinuxToolChain>(*this, Target,
5267 Args);
5268 else if (Target.getArch() == llvm::Triple::ve)
5269 TC = std::make_unique<toolchains::VEToolChain>(*this, Target, Args);
5270
5271 else
5272 TC = std::make_unique<toolchains::Linux>(*this, Target, Args);
5273 break;
5274 case llvm::Triple::NaCl:
5275 TC = std::make_unique<toolchains::NaClToolChain>(*this, Target, Args);
5276 break;
5277 case llvm::Triple::Fuchsia:
5278 TC = std::make_unique<toolchains::Fuchsia>(*this, Target, Args);
5279 break;
5280 case llvm::Triple::Solaris:
5281 TC = std::make_unique<toolchains::Solaris>(*this, Target, Args);
5282 break;
5283 case llvm::Triple::AMDHSA:
5284 TC = std::make_unique<toolchains::ROCMToolChain>(*this, Target, Args);
5285 break;
5286 case llvm::Triple::AMDPAL:
5287 case llvm::Triple::Mesa3D:
5288 TC = std::make_unique<toolchains::AMDGPUToolChain>(*this, Target, Args);
5289 break;
5290 case llvm::Triple::Win32:
5291 switch (Target.getEnvironment()) {
5292 default:
5293 if (Target.isOSBinFormatELF())
5294 TC = std::make_unique<toolchains::Generic_ELF>(*this, Target, Args);
5295 else if (Target.isOSBinFormatMachO())
5296 TC = std::make_unique<toolchains::MachO>(*this, Target, Args);
5297 else
5298 TC = std::make_unique<toolchains::Generic_GCC>(*this, Target, Args);
5299 break;
5300 case llvm::Triple::GNU:
5301 TC = std::make_unique<toolchains::MinGW>(*this, Target, Args);
5302 break;
5303 case llvm::Triple::Itanium:
5304 TC = std::make_unique<toolchains::CrossWindowsToolChain>(*this, Target,
5305 Args);
5306 break;
5307 case llvm::Triple::MSVC:
5308 case llvm::Triple::UnknownEnvironment:
5309 if (Args.getLastArgValue(options::OPT_fuse_ld_EQ)
5310 .startswith_lower("bfd"))
5311 TC = std::make_unique<toolchains::CrossWindowsToolChain>(
5312 *this, Target, Args);
5313 else
5314 TC =
5315 std::make_unique<toolchains::MSVCToolChain>(*this, Target, Args);
5316 break;
5317 }
5318 break;
5319 case llvm::Triple::PS4:
5320 TC = std::make_unique<toolchains::PS4CPU>(*this, Target, Args);
5321 break;
5322 case llvm::Triple::Contiki:
5323 TC = std::make_unique<toolchains::Contiki>(*this, Target, Args);
5324 break;
5325 case llvm::Triple::Hurd:
5326 TC = std::make_unique<toolchains::Hurd>(*this, Target, Args);
5327 break;
5328 case llvm::Triple::ZOS:
5329 TC = std::make_unique<toolchains::ZOS>(*this, Target, Args);
5330 break;
5331 default:
5332 // Of these targets, Hexagon is the only one that might have
5333 // an OS of Linux, in which case it got handled above already.
5334 switch (Target.getArch()) {
5335 case llvm::Triple::tce:
5336 TC = std::make_unique<toolchains::TCEToolChain>(*this, Target, Args);
5337 break;
5338 case llvm::Triple::tcele:
5339 TC = std::make_unique<toolchains::TCELEToolChain>(*this, Target, Args);
5340 break;
5341 case llvm::Triple::hexagon:
5342 TC = std::make_unique<toolchains::HexagonToolChain>(*this, Target,
5343 Args);
5344 break;
5345 case llvm::Triple::lanai:
5346 TC = std::make_unique<toolchains::LanaiToolChain>(*this, Target, Args);
5347 break;
5348 case llvm::Triple::xcore:
5349 TC = std::make_unique<toolchains::XCoreToolChain>(*this, Target, Args);
5350 break;
5351 case llvm::Triple::wasm32:
5352 case llvm::Triple::wasm64:
5353 TC = std::make_unique<toolchains::WebAssembly>(*this, Target, Args);
5354 break;
5355 case llvm::Triple::avr:
5356 TC = std::make_unique<toolchains::AVRToolChain>(*this, Target, Args);
5357 break;
5358 case llvm::Triple::msp430:
5359 TC =
5360 std::make_unique<toolchains::MSP430ToolChain>(*this, Target, Args);
5361 break;
5362 case llvm::Triple::riscv32:
5363 case llvm::Triple::riscv64:
5364 if (toolchains::RISCVToolChain::hasGCCToolchain(*this, Args))
5365 TC =
5366 std::make_unique<toolchains::RISCVToolChain>(*this, Target, Args);
5367 else
5368 TC = std::make_unique<toolchains::BareMetal>(*this, Target, Args);
5369 break;
5370 case llvm::Triple::ve:
5371 TC = std::make_unique<toolchains::VEToolChain>(*this, Target, Args);
5372 break;
5373 default:
5374 if (Target.getVendor() == llvm::Triple::Myriad)
5375 TC = std::make_unique<toolchains::MyriadToolChain>(*this, Target,
5376 Args);
5377 else if (toolchains::BareMetal::handlesTarget(Target))
5378 TC = std::make_unique<toolchains::BareMetal>(*this, Target, Args);
5379 else if (Target.isOSBinFormatELF())
5380 TC = std::make_unique<toolchains::Generic_ELF>(*this, Target, Args);
5381 else if (Target.isOSBinFormatMachO())
5382 TC = std::make_unique<toolchains::MachO>(*this, Target, Args);
5383 else
5384 TC = std::make_unique<toolchains::Generic_GCC>(*this, Target, Args);
5385 }
5386 }
5387 }
5388
5389 // Intentionally omitted from the switch above: llvm::Triple::CUDA. CUDA
5390 // compiles always need two toolchains, the CUDA toolchain and the host
5391 // toolchain. So the only valid way to create a CUDA toolchain is via
5392 // CreateOffloadingDeviceToolChains.
5393
5394 return *TC;
5395 }
5396
ShouldUseClangCompiler(const JobAction & JA) const5397 bool Driver::ShouldUseClangCompiler(const JobAction &JA) const {
5398 // Say "no" if there is not exactly one input of a type clang understands.
5399 if (JA.size() != 1 ||
5400 !types::isAcceptedByClang((*JA.input_begin())->getType()))
5401 return false;
5402
5403 // And say "no" if this is not a kind of action clang understands.
5404 if (!isa<PreprocessJobAction>(JA) && !isa<PrecompileJobAction>(JA) &&
5405 !isa<CompileJobAction>(JA) && !isa<BackendJobAction>(JA))
5406 return false;
5407
5408 return true;
5409 }
5410
ShouldUseFlangCompiler(const JobAction & JA) const5411 bool Driver::ShouldUseFlangCompiler(const JobAction &JA) const {
5412 // Say "no" if there is not exactly one input of a type flang understands.
5413 if (JA.size() != 1 ||
5414 !types::isFortran((*JA.input_begin())->getType()))
5415 return false;
5416
5417 // And say "no" if this is not a kind of action flang understands.
5418 if (!isa<PreprocessJobAction>(JA) && !isa<CompileJobAction>(JA) && !isa<BackendJobAction>(JA))
5419 return false;
5420
5421 return true;
5422 }
5423
ShouldEmitStaticLibrary(const ArgList & Args) const5424 bool Driver::ShouldEmitStaticLibrary(const ArgList &Args) const {
5425 // Only emit static library if the flag is set explicitly.
5426 if (Args.hasArg(options::OPT_emit_static_lib))
5427 return true;
5428 return false;
5429 }
5430
5431 /// GetReleaseVersion - Parse (([0-9]+)(.([0-9]+)(.([0-9]+)?))?)? and return the
5432 /// grouped values as integers. Numbers which are not provided are set to 0.
5433 ///
5434 /// \return True if the entire string was parsed (9.2), or all groups were
5435 /// parsed (10.3.5extrastuff).
GetReleaseVersion(StringRef Str,unsigned & Major,unsigned & Minor,unsigned & Micro,bool & HadExtra)5436 bool Driver::GetReleaseVersion(StringRef Str, unsigned &Major, unsigned &Minor,
5437 unsigned &Micro, bool &HadExtra) {
5438 HadExtra = false;
5439
5440 Major = Minor = Micro = 0;
5441 if (Str.empty())
5442 return false;
5443
5444 if (Str.consumeInteger(10, Major))
5445 return false;
5446 if (Str.empty())
5447 return true;
5448 if (Str[0] != '.')
5449 return false;
5450
5451 Str = Str.drop_front(1);
5452
5453 if (Str.consumeInteger(10, Minor))
5454 return false;
5455 if (Str.empty())
5456 return true;
5457 if (Str[0] != '.')
5458 return false;
5459 Str = Str.drop_front(1);
5460
5461 if (Str.consumeInteger(10, Micro))
5462 return false;
5463 if (!Str.empty())
5464 HadExtra = true;
5465 return true;
5466 }
5467
5468 /// Parse digits from a string \p Str and fulfill \p Digits with
5469 /// the parsed numbers. This method assumes that the max number of
5470 /// digits to look for is equal to Digits.size().
5471 ///
5472 /// \return True if the entire string was parsed and there are
5473 /// no extra characters remaining at the end.
GetReleaseVersion(StringRef Str,MutableArrayRef<unsigned> Digits)5474 bool Driver::GetReleaseVersion(StringRef Str,
5475 MutableArrayRef<unsigned> Digits) {
5476 if (Str.empty())
5477 return false;
5478
5479 unsigned CurDigit = 0;
5480 while (CurDigit < Digits.size()) {
5481 unsigned Digit;
5482 if (Str.consumeInteger(10, Digit))
5483 return false;
5484 Digits[CurDigit] = Digit;
5485 if (Str.empty())
5486 return true;
5487 if (Str[0] != '.')
5488 return false;
5489 Str = Str.drop_front(1);
5490 CurDigit++;
5491 }
5492
5493 // More digits than requested, bail out...
5494 return false;
5495 }
5496
5497 std::pair<unsigned, unsigned>
getIncludeExcludeOptionFlagMasks(bool IsClCompatMode) const5498 Driver::getIncludeExcludeOptionFlagMasks(bool IsClCompatMode) const {
5499 unsigned IncludedFlagsBitmask = 0;
5500 unsigned ExcludedFlagsBitmask = options::NoDriverOption;
5501
5502 if (IsClCompatMode) {
5503 // Include CL and Core options.
5504 IncludedFlagsBitmask |= options::CLOption;
5505 IncludedFlagsBitmask |= options::CoreOption;
5506 } else {
5507 ExcludedFlagsBitmask |= options::CLOption;
5508 }
5509
5510 return std::make_pair(IncludedFlagsBitmask, ExcludedFlagsBitmask);
5511 }
5512
isOptimizationLevelFast(const ArgList & Args)5513 bool clang::driver::isOptimizationLevelFast(const ArgList &Args) {
5514 return Args.hasFlag(options::OPT_Ofast, options::OPT_O_Group, false);
5515 }
5516
willEmitRemarks(const ArgList & Args)5517 bool clang::driver::willEmitRemarks(const ArgList &Args) {
5518 // -fsave-optimization-record enables it.
5519 if (Args.hasFlag(options::OPT_fsave_optimization_record,
5520 options::OPT_fno_save_optimization_record, false))
5521 return true;
5522
5523 // -fsave-optimization-record=<format> enables it as well.
5524 if (Args.hasFlag(options::OPT_fsave_optimization_record_EQ,
5525 options::OPT_fno_save_optimization_record, false))
5526 return true;
5527
5528 // -foptimization-record-file alone enables it too.
5529 if (Args.hasFlag(options::OPT_foptimization_record_file_EQ,
5530 options::OPT_fno_save_optimization_record, false))
5531 return true;
5532
5533 // -foptimization-record-passes alone enables it too.
5534 if (Args.hasFlag(options::OPT_foptimization_record_passes_EQ,
5535 options::OPT_fno_save_optimization_record, false))
5536 return true;
5537 return false;
5538 }
5539