1 //===--- SemaLambda.cpp - Semantic Analysis for C++11 Lambdas -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for C++ lambda expressions. 10 // 11 //===----------------------------------------------------------------------===// 12 #include "clang/Sema/SemaLambda.h" 13 #include "TypeLocBuilder.h" 14 #include "clang/AST/ASTLambda.h" 15 #include "clang/AST/CXXInheritance.h" 16 #include "clang/AST/ExprCXX.h" 17 #include "clang/AST/MangleNumberingContext.h" 18 #include "clang/Basic/TargetInfo.h" 19 #include "clang/Sema/DeclSpec.h" 20 #include "clang/Sema/Initialization.h" 21 #include "clang/Sema/Lookup.h" 22 #include "clang/Sema/Scope.h" 23 #include "clang/Sema/ScopeInfo.h" 24 #include "clang/Sema/SemaARM.h" 25 #include "clang/Sema/SemaCUDA.h" 26 #include "clang/Sema/SemaInternal.h" 27 #include "clang/Sema/SemaOpenMP.h" 28 #include "clang/Sema/SemaSYCL.h" 29 #include "clang/Sema/Template.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include <optional> 32 using namespace clang; 33 using namespace sema; 34 35 /// Examines the FunctionScopeInfo stack to determine the nearest 36 /// enclosing lambda (to the current lambda) that is 'capture-ready' for 37 /// the variable referenced in the current lambda (i.e. \p VarToCapture). 38 /// If successful, returns the index into Sema's FunctionScopeInfo stack 39 /// of the capture-ready lambda's LambdaScopeInfo. 40 /// 41 /// Climbs down the stack of lambdas (deepest nested lambda - i.e. current 42 /// lambda - is on top) to determine the index of the nearest enclosing/outer 43 /// lambda that is ready to capture the \p VarToCapture being referenced in 44 /// the current lambda. 45 /// As we climb down the stack, we want the index of the first such lambda - 46 /// that is the lambda with the highest index that is 'capture-ready'. 47 /// 48 /// A lambda 'L' is capture-ready for 'V' (var or this) if: 49 /// - its enclosing context is non-dependent 50 /// - and if the chain of lambdas between L and the lambda in which 51 /// V is potentially used (i.e. the lambda at the top of the scope info 52 /// stack), can all capture or have already captured V. 53 /// If \p VarToCapture is 'null' then we are trying to capture 'this'. 54 /// 55 /// Note that a lambda that is deemed 'capture-ready' still needs to be checked 56 /// for whether it is 'capture-capable' (see 57 /// getStackIndexOfNearestEnclosingCaptureCapableLambda), before it can truly 58 /// capture. 59 /// 60 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a 61 /// LambdaScopeInfo inherits from). The current/deepest/innermost lambda 62 /// is at the top of the stack and has the highest index. 63 /// \param VarToCapture - the variable to capture. If NULL, capture 'this'. 64 /// 65 /// \returns An std::optional<unsigned> Index that if evaluates to 'true' 66 /// contains the index (into Sema's FunctionScopeInfo stack) of the innermost 67 /// lambda which is capture-ready. If the return value evaluates to 'false' 68 /// then no lambda is capture-ready for \p VarToCapture. 69 70 static inline std::optional<unsigned> 71 getStackIndexOfNearestEnclosingCaptureReadyLambda( 72 ArrayRef<const clang::sema::FunctionScopeInfo *> FunctionScopes, 73 ValueDecl *VarToCapture) { 74 // Label failure to capture. 75 const std::optional<unsigned> NoLambdaIsCaptureReady; 76 77 // Ignore all inner captured regions. 78 unsigned CurScopeIndex = FunctionScopes.size() - 1; 79 while (CurScopeIndex > 0 && isa<clang::sema::CapturedRegionScopeInfo>( 80 FunctionScopes[CurScopeIndex])) 81 --CurScopeIndex; 82 assert( 83 isa<clang::sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]) && 84 "The function on the top of sema's function-info stack must be a lambda"); 85 86 // If VarToCapture is null, we are attempting to capture 'this'. 87 const bool IsCapturingThis = !VarToCapture; 88 const bool IsCapturingVariable = !IsCapturingThis; 89 90 // Start with the current lambda at the top of the stack (highest index). 91 DeclContext *EnclosingDC = 92 cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex])->CallOperator; 93 94 do { 95 const clang::sema::LambdaScopeInfo *LSI = 96 cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]); 97 // IF we have climbed down to an intervening enclosing lambda that contains 98 // the variable declaration - it obviously can/must not capture the 99 // variable. 100 // Since its enclosing DC is dependent, all the lambdas between it and the 101 // innermost nested lambda are dependent (otherwise we wouldn't have 102 // arrived here) - so we don't yet have a lambda that can capture the 103 // variable. 104 if (IsCapturingVariable && 105 VarToCapture->getDeclContext()->Equals(EnclosingDC)) 106 return NoLambdaIsCaptureReady; 107 108 // For an enclosing lambda to be capture ready for an entity, all 109 // intervening lambda's have to be able to capture that entity. If even 110 // one of the intervening lambda's is not capable of capturing the entity 111 // then no enclosing lambda can ever capture that entity. 112 // For e.g. 113 // const int x = 10; 114 // [=](auto a) { #1 115 // [](auto b) { #2 <-- an intervening lambda that can never capture 'x' 116 // [=](auto c) { #3 117 // f(x, c); <-- can not lead to x's speculative capture by #1 or #2 118 // }; }; }; 119 // If they do not have a default implicit capture, check to see 120 // if the entity has already been explicitly captured. 121 // If even a single dependent enclosing lambda lacks the capability 122 // to ever capture this variable, there is no further enclosing 123 // non-dependent lambda that can capture this variable. 124 if (LSI->ImpCaptureStyle == sema::LambdaScopeInfo::ImpCap_None) { 125 if (IsCapturingVariable && !LSI->isCaptured(VarToCapture)) 126 return NoLambdaIsCaptureReady; 127 if (IsCapturingThis && !LSI->isCXXThisCaptured()) 128 return NoLambdaIsCaptureReady; 129 } 130 EnclosingDC = getLambdaAwareParentOfDeclContext(EnclosingDC); 131 132 assert(CurScopeIndex); 133 --CurScopeIndex; 134 } while (!EnclosingDC->isTranslationUnit() && 135 EnclosingDC->isDependentContext() && 136 isLambdaCallOperator(EnclosingDC)); 137 138 assert(CurScopeIndex < (FunctionScopes.size() - 1)); 139 // If the enclosingDC is not dependent, then the immediately nested lambda 140 // (one index above) is capture-ready. 141 if (!EnclosingDC->isDependentContext()) 142 return CurScopeIndex + 1; 143 return NoLambdaIsCaptureReady; 144 } 145 146 /// Examines the FunctionScopeInfo stack to determine the nearest 147 /// enclosing lambda (to the current lambda) that is 'capture-capable' for 148 /// the variable referenced in the current lambda (i.e. \p VarToCapture). 149 /// If successful, returns the index into Sema's FunctionScopeInfo stack 150 /// of the capture-capable lambda's LambdaScopeInfo. 151 /// 152 /// Given the current stack of lambdas being processed by Sema and 153 /// the variable of interest, to identify the nearest enclosing lambda (to the 154 /// current lambda at the top of the stack) that can truly capture 155 /// a variable, it has to have the following two properties: 156 /// a) 'capture-ready' - be the innermost lambda that is 'capture-ready': 157 /// - climb down the stack (i.e. starting from the innermost and examining 158 /// each outer lambda step by step) checking if each enclosing 159 /// lambda can either implicitly or explicitly capture the variable. 160 /// Record the first such lambda that is enclosed in a non-dependent 161 /// context. If no such lambda currently exists return failure. 162 /// b) 'capture-capable' - make sure the 'capture-ready' lambda can truly 163 /// capture the variable by checking all its enclosing lambdas: 164 /// - check if all outer lambdas enclosing the 'capture-ready' lambda 165 /// identified above in 'a' can also capture the variable (this is done 166 /// via tryCaptureVariable for variables and CheckCXXThisCapture for 167 /// 'this' by passing in the index of the Lambda identified in step 'a') 168 /// 169 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a 170 /// LambdaScopeInfo inherits from). The current/deepest/innermost lambda 171 /// is at the top of the stack. 172 /// 173 /// \param VarToCapture - the variable to capture. If NULL, capture 'this'. 174 /// 175 /// 176 /// \returns An std::optional<unsigned> Index that if evaluates to 'true' 177 /// contains the index (into Sema's FunctionScopeInfo stack) of the innermost 178 /// lambda which is capture-capable. If the return value evaluates to 'false' 179 /// then no lambda is capture-capable for \p VarToCapture. 180 181 std::optional<unsigned> 182 clang::getStackIndexOfNearestEnclosingCaptureCapableLambda( 183 ArrayRef<const sema::FunctionScopeInfo *> FunctionScopes, 184 ValueDecl *VarToCapture, Sema &S) { 185 186 const std::optional<unsigned> NoLambdaIsCaptureCapable; 187 188 const std::optional<unsigned> OptionalStackIndex = 189 getStackIndexOfNearestEnclosingCaptureReadyLambda(FunctionScopes, 190 VarToCapture); 191 if (!OptionalStackIndex) 192 return NoLambdaIsCaptureCapable; 193 194 const unsigned IndexOfCaptureReadyLambda = *OptionalStackIndex; 195 assert(((IndexOfCaptureReadyLambda != (FunctionScopes.size() - 1)) || 196 S.getCurGenericLambda()) && 197 "The capture ready lambda for a potential capture can only be the " 198 "current lambda if it is a generic lambda"); 199 200 const sema::LambdaScopeInfo *const CaptureReadyLambdaLSI = 201 cast<sema::LambdaScopeInfo>(FunctionScopes[IndexOfCaptureReadyLambda]); 202 203 // If VarToCapture is null, we are attempting to capture 'this' 204 const bool IsCapturingThis = !VarToCapture; 205 const bool IsCapturingVariable = !IsCapturingThis; 206 207 if (IsCapturingVariable) { 208 // Check if the capture-ready lambda can truly capture the variable, by 209 // checking whether all enclosing lambdas of the capture-ready lambda allow 210 // the capture - i.e. make sure it is capture-capable. 211 QualType CaptureType, DeclRefType; 212 const bool CanCaptureVariable = 213 !S.tryCaptureVariable(VarToCapture, 214 /*ExprVarIsUsedInLoc*/ SourceLocation(), 215 clang::Sema::TryCapture_Implicit, 216 /*EllipsisLoc*/ SourceLocation(), 217 /*BuildAndDiagnose*/ false, CaptureType, 218 DeclRefType, &IndexOfCaptureReadyLambda); 219 if (!CanCaptureVariable) 220 return NoLambdaIsCaptureCapable; 221 } else { 222 // Check if the capture-ready lambda can truly capture 'this' by checking 223 // whether all enclosing lambdas of the capture-ready lambda can capture 224 // 'this'. 225 const bool CanCaptureThis = 226 !S.CheckCXXThisCapture( 227 CaptureReadyLambdaLSI->PotentialThisCaptureLocation, 228 /*Explicit*/ false, /*BuildAndDiagnose*/ false, 229 &IndexOfCaptureReadyLambda); 230 if (!CanCaptureThis) 231 return NoLambdaIsCaptureCapable; 232 } 233 return IndexOfCaptureReadyLambda; 234 } 235 236 static inline TemplateParameterList * 237 getGenericLambdaTemplateParameterList(LambdaScopeInfo *LSI, Sema &SemaRef) { 238 if (!LSI->GLTemplateParameterList && !LSI->TemplateParams.empty()) { 239 LSI->GLTemplateParameterList = TemplateParameterList::Create( 240 SemaRef.Context, 241 /*Template kw loc*/ SourceLocation(), 242 /*L angle loc*/ LSI->ExplicitTemplateParamsRange.getBegin(), 243 LSI->TemplateParams, 244 /*R angle loc*/LSI->ExplicitTemplateParamsRange.getEnd(), 245 LSI->RequiresClause.get()); 246 } 247 return LSI->GLTemplateParameterList; 248 } 249 250 CXXRecordDecl * 251 Sema::createLambdaClosureType(SourceRange IntroducerRange, TypeSourceInfo *Info, 252 unsigned LambdaDependencyKind, 253 LambdaCaptureDefault CaptureDefault) { 254 DeclContext *DC = CurContext; 255 while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext())) 256 DC = DC->getParent(); 257 258 bool IsGenericLambda = 259 Info && getGenericLambdaTemplateParameterList(getCurLambda(), *this); 260 // Start constructing the lambda class. 261 CXXRecordDecl *Class = CXXRecordDecl::CreateLambda( 262 Context, DC, Info, IntroducerRange.getBegin(), LambdaDependencyKind, 263 IsGenericLambda, CaptureDefault); 264 DC->addDecl(Class); 265 266 return Class; 267 } 268 269 /// Determine whether the given context is or is enclosed in an inline 270 /// function. 271 static bool isInInlineFunction(const DeclContext *DC) { 272 while (!DC->isFileContext()) { 273 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DC)) 274 if (FD->isInlined()) 275 return true; 276 277 DC = DC->getLexicalParent(); 278 } 279 280 return false; 281 } 282 283 std::tuple<MangleNumberingContext *, Decl *> 284 Sema::getCurrentMangleNumberContext(const DeclContext *DC) { 285 // Compute the context for allocating mangling numbers in the current 286 // expression, if the ABI requires them. 287 Decl *ManglingContextDecl = ExprEvalContexts.back().ManglingContextDecl; 288 289 enum ContextKind { 290 Normal, 291 DefaultArgument, 292 DataMember, 293 InlineVariable, 294 TemplatedVariable, 295 Concept 296 } Kind = Normal; 297 298 bool IsInNonspecializedTemplate = 299 inTemplateInstantiation() || CurContext->isDependentContext(); 300 301 // Default arguments of member function parameters that appear in a class 302 // definition, as well as the initializers of data members, receive special 303 // treatment. Identify them. 304 if (ManglingContextDecl) { 305 if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(ManglingContextDecl)) { 306 if (const DeclContext *LexicalDC 307 = Param->getDeclContext()->getLexicalParent()) 308 if (LexicalDC->isRecord()) 309 Kind = DefaultArgument; 310 } else if (VarDecl *Var = dyn_cast<VarDecl>(ManglingContextDecl)) { 311 if (Var->getMostRecentDecl()->isInline()) 312 Kind = InlineVariable; 313 else if (Var->getDeclContext()->isRecord() && IsInNonspecializedTemplate) 314 Kind = TemplatedVariable; 315 else if (Var->getDescribedVarTemplate()) 316 Kind = TemplatedVariable; 317 else if (auto *VTS = dyn_cast<VarTemplateSpecializationDecl>(Var)) { 318 if (!VTS->isExplicitSpecialization()) 319 Kind = TemplatedVariable; 320 } 321 } else if (isa<FieldDecl>(ManglingContextDecl)) { 322 Kind = DataMember; 323 } else if (isa<ImplicitConceptSpecializationDecl>(ManglingContextDecl)) { 324 Kind = Concept; 325 } 326 } 327 328 // Itanium ABI [5.1.7]: 329 // In the following contexts [...] the one-definition rule requires closure 330 // types in different translation units to "correspond": 331 switch (Kind) { 332 case Normal: { 333 // -- the bodies of inline or templated functions 334 if ((IsInNonspecializedTemplate && 335 !(ManglingContextDecl && isa<ParmVarDecl>(ManglingContextDecl))) || 336 isInInlineFunction(CurContext)) { 337 while (auto *CD = dyn_cast<CapturedDecl>(DC)) 338 DC = CD->getParent(); 339 return std::make_tuple(&Context.getManglingNumberContext(DC), nullptr); 340 } 341 342 return std::make_tuple(nullptr, nullptr); 343 } 344 345 case Concept: 346 // Concept definitions aren't code generated and thus aren't mangled, 347 // however the ManglingContextDecl is important for the purposes of 348 // re-forming the template argument list of the lambda for constraint 349 // evaluation. 350 case DataMember: 351 // -- default member initializers 352 case DefaultArgument: 353 // -- default arguments appearing in class definitions 354 case InlineVariable: 355 case TemplatedVariable: 356 // -- the initializers of inline or templated variables 357 return std::make_tuple( 358 &Context.getManglingNumberContext(ASTContext::NeedExtraManglingDecl, 359 ManglingContextDecl), 360 ManglingContextDecl); 361 } 362 363 llvm_unreachable("unexpected context"); 364 } 365 366 static QualType 367 buildTypeForLambdaCallOperator(Sema &S, clang::CXXRecordDecl *Class, 368 TemplateParameterList *TemplateParams, 369 TypeSourceInfo *MethodTypeInfo) { 370 assert(MethodTypeInfo && "expected a non null type"); 371 372 QualType MethodType = MethodTypeInfo->getType(); 373 // If a lambda appears in a dependent context or is a generic lambda (has 374 // template parameters) and has an 'auto' return type, deduce it to a 375 // dependent type. 376 if (Class->isDependentContext() || TemplateParams) { 377 const FunctionProtoType *FPT = MethodType->castAs<FunctionProtoType>(); 378 QualType Result = FPT->getReturnType(); 379 if (Result->isUndeducedType()) { 380 Result = S.SubstAutoTypeDependent(Result); 381 MethodType = S.Context.getFunctionType(Result, FPT->getParamTypes(), 382 FPT->getExtProtoInfo()); 383 } 384 } 385 return MethodType; 386 } 387 388 // [C++2b] [expr.prim.lambda.closure] p4 389 // Given a lambda with a lambda-capture, the type of the explicit object 390 // parameter, if any, of the lambda's function call operator (possibly 391 // instantiated from a function call operator template) shall be either: 392 // - the closure type, 393 // - class type publicly and unambiguously derived from the closure type, or 394 // - a reference to a possibly cv-qualified such type. 395 bool Sema::DiagnoseInvalidExplicitObjectParameterInLambda( 396 CXXMethodDecl *Method, SourceLocation CallLoc) { 397 if (!isLambdaCallWithExplicitObjectParameter(Method)) 398 return false; 399 CXXRecordDecl *RD = Method->getParent(); 400 if (Method->getType()->isDependentType()) 401 return false; 402 if (RD->isCapturelessLambda()) 403 return false; 404 405 ParmVarDecl *Param = Method->getParamDecl(0); 406 QualType ExplicitObjectParameterType = Param->getType() 407 .getNonReferenceType() 408 .getUnqualifiedType() 409 .getDesugaredType(getASTContext()); 410 QualType LambdaType = getASTContext().getRecordType(RD); 411 if (LambdaType == ExplicitObjectParameterType) 412 return false; 413 414 // Don't check the same instantiation twice. 415 // 416 // If this call operator is ill-formed, there is no point in issuing 417 // a diagnostic every time it is called because the problem is in the 418 // definition of the derived type, not at the call site. 419 // 420 // FIXME: Move this check to where we instantiate the method? This should 421 // be possible, but the naive approach of just marking the method as invalid 422 // leads to us emitting more diagnostics than we should have to for this case 423 // (1 error here *and* 1 error about there being no matching overload at the 424 // call site). It might be possible to avoid that by also checking if there 425 // is an empty cast path for the method stored in the context (signalling that 426 // we've already diagnosed it) and then just not building the call, but that 427 // doesn't really seem any simpler than diagnosing it at the call site... 428 auto [It, Inserted] = Context.LambdaCastPaths.try_emplace(Method); 429 if (!Inserted) 430 return It->second.empty(); 431 432 CXXCastPath &Path = It->second; 433 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 434 /*DetectVirtual=*/false); 435 if (!IsDerivedFrom(RD->getLocation(), ExplicitObjectParameterType, LambdaType, 436 Paths)) { 437 Diag(Param->getLocation(), diag::err_invalid_explicit_object_type_in_lambda) 438 << ExplicitObjectParameterType; 439 return true; 440 } 441 442 if (Paths.isAmbiguous(LambdaType->getCanonicalTypeUnqualified())) { 443 std::string PathsDisplay = getAmbiguousPathsDisplayString(Paths); 444 Diag(CallLoc, diag::err_explicit_object_lambda_ambiguous_base) 445 << LambdaType << PathsDisplay; 446 return true; 447 } 448 449 if (CheckBaseClassAccess(CallLoc, LambdaType, ExplicitObjectParameterType, 450 Paths.front(), 451 diag::err_explicit_object_lambda_inaccessible_base)) 452 return true; 453 454 BuildBasePathArray(Paths, Path); 455 return false; 456 } 457 458 void Sema::handleLambdaNumbering( 459 CXXRecordDecl *Class, CXXMethodDecl *Method, 460 std::optional<CXXRecordDecl::LambdaNumbering> NumberingOverride) { 461 if (NumberingOverride) { 462 Class->setLambdaNumbering(*NumberingOverride); 463 return; 464 } 465 466 ContextRAII ManglingContext(*this, Class->getDeclContext()); 467 468 auto getMangleNumberingContext = 469 [this](CXXRecordDecl *Class, 470 Decl *ManglingContextDecl) -> MangleNumberingContext * { 471 // Get mangle numbering context if there's any extra decl context. 472 if (ManglingContextDecl) 473 return &Context.getManglingNumberContext( 474 ASTContext::NeedExtraManglingDecl, ManglingContextDecl); 475 // Otherwise, from that lambda's decl context. 476 auto DC = Class->getDeclContext(); 477 while (auto *CD = dyn_cast<CapturedDecl>(DC)) 478 DC = CD->getParent(); 479 return &Context.getManglingNumberContext(DC); 480 }; 481 482 CXXRecordDecl::LambdaNumbering Numbering; 483 MangleNumberingContext *MCtx; 484 std::tie(MCtx, Numbering.ContextDecl) = 485 getCurrentMangleNumberContext(Class->getDeclContext()); 486 if (!MCtx && (getLangOpts().CUDA || getLangOpts().SYCLIsDevice || 487 getLangOpts().SYCLIsHost)) { 488 // Force lambda numbering in CUDA/HIP as we need to name lambdas following 489 // ODR. Both device- and host-compilation need to have a consistent naming 490 // on kernel functions. As lambdas are potential part of these `__global__` 491 // function names, they needs numbering following ODR. 492 // Also force for SYCL, since we need this for the 493 // __builtin_sycl_unique_stable_name implementation, which depends on lambda 494 // mangling. 495 MCtx = getMangleNumberingContext(Class, Numbering.ContextDecl); 496 assert(MCtx && "Retrieving mangle numbering context failed!"); 497 Numbering.HasKnownInternalLinkage = true; 498 } 499 if (MCtx) { 500 Numbering.IndexInContext = MCtx->getNextLambdaIndex(); 501 Numbering.ManglingNumber = MCtx->getManglingNumber(Method); 502 Numbering.DeviceManglingNumber = MCtx->getDeviceManglingNumber(Method); 503 Class->setLambdaNumbering(Numbering); 504 505 if (auto *Source = 506 dyn_cast_or_null<ExternalSemaSource>(Context.getExternalSource())) 507 Source->AssignedLambdaNumbering(Class); 508 } 509 } 510 511 static void buildLambdaScopeReturnType(Sema &S, LambdaScopeInfo *LSI, 512 CXXMethodDecl *CallOperator, 513 bool ExplicitResultType) { 514 if (ExplicitResultType) { 515 LSI->HasImplicitReturnType = false; 516 LSI->ReturnType = CallOperator->getReturnType(); 517 if (!LSI->ReturnType->isDependentType() && !LSI->ReturnType->isVoidType()) 518 S.RequireCompleteType(CallOperator->getBeginLoc(), LSI->ReturnType, 519 diag::err_lambda_incomplete_result); 520 } else { 521 LSI->HasImplicitReturnType = true; 522 } 523 } 524 525 void Sema::buildLambdaScope(LambdaScopeInfo *LSI, CXXMethodDecl *CallOperator, 526 SourceRange IntroducerRange, 527 LambdaCaptureDefault CaptureDefault, 528 SourceLocation CaptureDefaultLoc, 529 bool ExplicitParams, bool Mutable) { 530 LSI->CallOperator = CallOperator; 531 CXXRecordDecl *LambdaClass = CallOperator->getParent(); 532 LSI->Lambda = LambdaClass; 533 if (CaptureDefault == LCD_ByCopy) 534 LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByval; 535 else if (CaptureDefault == LCD_ByRef) 536 LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByref; 537 LSI->CaptureDefaultLoc = CaptureDefaultLoc; 538 LSI->IntroducerRange = IntroducerRange; 539 LSI->ExplicitParams = ExplicitParams; 540 LSI->Mutable = Mutable; 541 } 542 543 void Sema::finishLambdaExplicitCaptures(LambdaScopeInfo *LSI) { 544 LSI->finishedExplicitCaptures(); 545 } 546 547 void Sema::ActOnLambdaExplicitTemplateParameterList( 548 LambdaIntroducer &Intro, SourceLocation LAngleLoc, 549 ArrayRef<NamedDecl *> TParams, SourceLocation RAngleLoc, 550 ExprResult RequiresClause) { 551 LambdaScopeInfo *LSI = getCurLambda(); 552 assert(LSI && "Expected a lambda scope"); 553 assert(LSI->NumExplicitTemplateParams == 0 && 554 "Already acted on explicit template parameters"); 555 assert(LSI->TemplateParams.empty() && 556 "Explicit template parameters should come " 557 "before invented (auto) ones"); 558 assert(!TParams.empty() && 559 "No template parameters to act on"); 560 LSI->TemplateParams.append(TParams.begin(), TParams.end()); 561 LSI->NumExplicitTemplateParams = TParams.size(); 562 LSI->ExplicitTemplateParamsRange = {LAngleLoc, RAngleLoc}; 563 LSI->RequiresClause = RequiresClause; 564 } 565 566 /// If this expression is an enumerator-like expression of some type 567 /// T, return the type T; otherwise, return null. 568 /// 569 /// Pointer comparisons on the result here should always work because 570 /// it's derived from either the parent of an EnumConstantDecl 571 /// (i.e. the definition) or the declaration returned by 572 /// EnumType::getDecl() (i.e. the definition). 573 static EnumDecl *findEnumForBlockReturn(Expr *E) { 574 // An expression is an enumerator-like expression of type T if, 575 // ignoring parens and parens-like expressions: 576 E = E->IgnoreParens(); 577 578 // - it is an enumerator whose enum type is T or 579 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 580 if (EnumConstantDecl *D 581 = dyn_cast<EnumConstantDecl>(DRE->getDecl())) { 582 return cast<EnumDecl>(D->getDeclContext()); 583 } 584 return nullptr; 585 } 586 587 // - it is a comma expression whose RHS is an enumerator-like 588 // expression of type T or 589 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 590 if (BO->getOpcode() == BO_Comma) 591 return findEnumForBlockReturn(BO->getRHS()); 592 return nullptr; 593 } 594 595 // - it is a statement-expression whose value expression is an 596 // enumerator-like expression of type T or 597 if (StmtExpr *SE = dyn_cast<StmtExpr>(E)) { 598 if (Expr *last = dyn_cast_or_null<Expr>(SE->getSubStmt()->body_back())) 599 return findEnumForBlockReturn(last); 600 return nullptr; 601 } 602 603 // - it is a ternary conditional operator (not the GNU ?: 604 // extension) whose second and third operands are 605 // enumerator-like expressions of type T or 606 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { 607 if (EnumDecl *ED = findEnumForBlockReturn(CO->getTrueExpr())) 608 if (ED == findEnumForBlockReturn(CO->getFalseExpr())) 609 return ED; 610 return nullptr; 611 } 612 613 // (implicitly:) 614 // - it is an implicit integral conversion applied to an 615 // enumerator-like expression of type T or 616 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 617 // We can sometimes see integral conversions in valid 618 // enumerator-like expressions. 619 if (ICE->getCastKind() == CK_IntegralCast) 620 return findEnumForBlockReturn(ICE->getSubExpr()); 621 622 // Otherwise, just rely on the type. 623 } 624 625 // - it is an expression of that formal enum type. 626 if (const EnumType *ET = E->getType()->getAs<EnumType>()) { 627 return ET->getDecl(); 628 } 629 630 // Otherwise, nope. 631 return nullptr; 632 } 633 634 /// Attempt to find a type T for which the returned expression of the 635 /// given statement is an enumerator-like expression of that type. 636 static EnumDecl *findEnumForBlockReturn(ReturnStmt *ret) { 637 if (Expr *retValue = ret->getRetValue()) 638 return findEnumForBlockReturn(retValue); 639 return nullptr; 640 } 641 642 /// Attempt to find a common type T for which all of the returned 643 /// expressions in a block are enumerator-like expressions of that 644 /// type. 645 static EnumDecl *findCommonEnumForBlockReturns(ArrayRef<ReturnStmt*> returns) { 646 ArrayRef<ReturnStmt*>::iterator i = returns.begin(), e = returns.end(); 647 648 // Try to find one for the first return. 649 EnumDecl *ED = findEnumForBlockReturn(*i); 650 if (!ED) return nullptr; 651 652 // Check that the rest of the returns have the same enum. 653 for (++i; i != e; ++i) { 654 if (findEnumForBlockReturn(*i) != ED) 655 return nullptr; 656 } 657 658 // Never infer an anonymous enum type. 659 if (!ED->hasNameForLinkage()) return nullptr; 660 661 return ED; 662 } 663 664 /// Adjust the given return statements so that they formally return 665 /// the given type. It should require, at most, an IntegralCast. 666 static void adjustBlockReturnsToEnum(Sema &S, ArrayRef<ReturnStmt*> returns, 667 QualType returnType) { 668 for (ArrayRef<ReturnStmt*>::iterator 669 i = returns.begin(), e = returns.end(); i != e; ++i) { 670 ReturnStmt *ret = *i; 671 Expr *retValue = ret->getRetValue(); 672 if (S.Context.hasSameType(retValue->getType(), returnType)) 673 continue; 674 675 // Right now we only support integral fixup casts. 676 assert(returnType->isIntegralOrUnscopedEnumerationType()); 677 assert(retValue->getType()->isIntegralOrUnscopedEnumerationType()); 678 679 ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(retValue); 680 681 Expr *E = (cleanups ? cleanups->getSubExpr() : retValue); 682 E = ImplicitCastExpr::Create(S.Context, returnType, CK_IntegralCast, E, 683 /*base path*/ nullptr, VK_PRValue, 684 FPOptionsOverride()); 685 if (cleanups) { 686 cleanups->setSubExpr(E); 687 } else { 688 ret->setRetValue(E); 689 } 690 } 691 } 692 693 void Sema::deduceClosureReturnType(CapturingScopeInfo &CSI) { 694 assert(CSI.HasImplicitReturnType); 695 // If it was ever a placeholder, it had to been deduced to DependentTy. 696 assert(CSI.ReturnType.isNull() || !CSI.ReturnType->isUndeducedType()); 697 assert((!isa<LambdaScopeInfo>(CSI) || !getLangOpts().CPlusPlus14) && 698 "lambda expressions use auto deduction in C++14 onwards"); 699 700 // C++ core issue 975: 701 // If a lambda-expression does not include a trailing-return-type, 702 // it is as if the trailing-return-type denotes the following type: 703 // - if there are no return statements in the compound-statement, 704 // or all return statements return either an expression of type 705 // void or no expression or braced-init-list, the type void; 706 // - otherwise, if all return statements return an expression 707 // and the types of the returned expressions after 708 // lvalue-to-rvalue conversion (4.1 [conv.lval]), 709 // array-to-pointer conversion (4.2 [conv.array]), and 710 // function-to-pointer conversion (4.3 [conv.func]) are the 711 // same, that common type; 712 // - otherwise, the program is ill-formed. 713 // 714 // C++ core issue 1048 additionally removes top-level cv-qualifiers 715 // from the types of returned expressions to match the C++14 auto 716 // deduction rules. 717 // 718 // In addition, in blocks in non-C++ modes, if all of the return 719 // statements are enumerator-like expressions of some type T, where 720 // T has a name for linkage, then we infer the return type of the 721 // block to be that type. 722 723 // First case: no return statements, implicit void return type. 724 ASTContext &Ctx = getASTContext(); 725 if (CSI.Returns.empty()) { 726 // It's possible there were simply no /valid/ return statements. 727 // In this case, the first one we found may have at least given us a type. 728 if (CSI.ReturnType.isNull()) 729 CSI.ReturnType = Ctx.VoidTy; 730 return; 731 } 732 733 // Second case: at least one return statement has dependent type. 734 // Delay type checking until instantiation. 735 assert(!CSI.ReturnType.isNull() && "We should have a tentative return type."); 736 if (CSI.ReturnType->isDependentType()) 737 return; 738 739 // Try to apply the enum-fuzz rule. 740 if (!getLangOpts().CPlusPlus) { 741 assert(isa<BlockScopeInfo>(CSI)); 742 const EnumDecl *ED = findCommonEnumForBlockReturns(CSI.Returns); 743 if (ED) { 744 CSI.ReturnType = Context.getTypeDeclType(ED); 745 adjustBlockReturnsToEnum(*this, CSI.Returns, CSI.ReturnType); 746 return; 747 } 748 } 749 750 // Third case: only one return statement. Don't bother doing extra work! 751 if (CSI.Returns.size() == 1) 752 return; 753 754 // General case: many return statements. 755 // Check that they all have compatible return types. 756 757 // We require the return types to strictly match here. 758 // Note that we've already done the required promotions as part of 759 // processing the return statement. 760 for (const ReturnStmt *RS : CSI.Returns) { 761 const Expr *RetE = RS->getRetValue(); 762 763 QualType ReturnType = 764 (RetE ? RetE->getType() : Context.VoidTy).getUnqualifiedType(); 765 if (Context.getCanonicalFunctionResultType(ReturnType) == 766 Context.getCanonicalFunctionResultType(CSI.ReturnType)) { 767 // Use the return type with the strictest possible nullability annotation. 768 auto RetTyNullability = ReturnType->getNullability(); 769 auto BlockNullability = CSI.ReturnType->getNullability(); 770 if (BlockNullability && 771 (!RetTyNullability || 772 hasWeakerNullability(*RetTyNullability, *BlockNullability))) 773 CSI.ReturnType = ReturnType; 774 continue; 775 } 776 777 // FIXME: This is a poor diagnostic for ReturnStmts without expressions. 778 // TODO: It's possible that the *first* return is the divergent one. 779 Diag(RS->getBeginLoc(), 780 diag::err_typecheck_missing_return_type_incompatible) 781 << ReturnType << CSI.ReturnType << isa<LambdaScopeInfo>(CSI); 782 // Continue iterating so that we keep emitting diagnostics. 783 } 784 } 785 786 QualType Sema::buildLambdaInitCaptureInitialization( 787 SourceLocation Loc, bool ByRef, SourceLocation EllipsisLoc, 788 std::optional<unsigned> NumExpansions, IdentifierInfo *Id, 789 bool IsDirectInit, Expr *&Init) { 790 // Create an 'auto' or 'auto&' TypeSourceInfo that we can use to 791 // deduce against. 792 QualType DeductType = Context.getAutoDeductType(); 793 TypeLocBuilder TLB; 794 AutoTypeLoc TL = TLB.push<AutoTypeLoc>(DeductType); 795 TL.setNameLoc(Loc); 796 if (ByRef) { 797 DeductType = BuildReferenceType(DeductType, true, Loc, Id); 798 assert(!DeductType.isNull() && "can't build reference to auto"); 799 TLB.push<ReferenceTypeLoc>(DeductType).setSigilLoc(Loc); 800 } 801 if (EllipsisLoc.isValid()) { 802 if (Init->containsUnexpandedParameterPack()) { 803 Diag(EllipsisLoc, getLangOpts().CPlusPlus20 804 ? diag::warn_cxx17_compat_init_capture_pack 805 : diag::ext_init_capture_pack); 806 DeductType = Context.getPackExpansionType(DeductType, NumExpansions, 807 /*ExpectPackInType=*/false); 808 TLB.push<PackExpansionTypeLoc>(DeductType).setEllipsisLoc(EllipsisLoc); 809 } else { 810 // Just ignore the ellipsis for now and form a non-pack variable. We'll 811 // diagnose this later when we try to capture it. 812 } 813 } 814 TypeSourceInfo *TSI = TLB.getTypeSourceInfo(Context, DeductType); 815 816 // Deduce the type of the init capture. 817 QualType DeducedType = deduceVarTypeFromInitializer( 818 /*VarDecl*/nullptr, DeclarationName(Id), DeductType, TSI, 819 SourceRange(Loc, Loc), IsDirectInit, Init); 820 if (DeducedType.isNull()) 821 return QualType(); 822 823 // Are we a non-list direct initialization? 824 ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init); 825 826 // Perform initialization analysis and ensure any implicit conversions 827 // (such as lvalue-to-rvalue) are enforced. 828 InitializedEntity Entity = 829 InitializedEntity::InitializeLambdaCapture(Id, DeducedType, Loc); 830 InitializationKind Kind = 831 IsDirectInit 832 ? (CXXDirectInit ? InitializationKind::CreateDirect( 833 Loc, Init->getBeginLoc(), Init->getEndLoc()) 834 : InitializationKind::CreateDirectList(Loc)) 835 : InitializationKind::CreateCopy(Loc, Init->getBeginLoc()); 836 837 MultiExprArg Args = Init; 838 if (CXXDirectInit) 839 Args = 840 MultiExprArg(CXXDirectInit->getExprs(), CXXDirectInit->getNumExprs()); 841 QualType DclT; 842 InitializationSequence InitSeq(*this, Entity, Kind, Args); 843 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT); 844 845 if (Result.isInvalid()) 846 return QualType(); 847 848 Init = Result.getAs<Expr>(); 849 return DeducedType; 850 } 851 852 VarDecl *Sema::createLambdaInitCaptureVarDecl( 853 SourceLocation Loc, QualType InitCaptureType, SourceLocation EllipsisLoc, 854 IdentifierInfo *Id, unsigned InitStyle, Expr *Init, DeclContext *DeclCtx) { 855 // FIXME: Retain the TypeSourceInfo from buildLambdaInitCaptureInitialization 856 // rather than reconstructing it here. 857 TypeSourceInfo *TSI = Context.getTrivialTypeSourceInfo(InitCaptureType, Loc); 858 if (auto PETL = TSI->getTypeLoc().getAs<PackExpansionTypeLoc>()) 859 PETL.setEllipsisLoc(EllipsisLoc); 860 861 // Create a dummy variable representing the init-capture. This is not actually 862 // used as a variable, and only exists as a way to name and refer to the 863 // init-capture. 864 // FIXME: Pass in separate source locations for '&' and identifier. 865 VarDecl *NewVD = VarDecl::Create(Context, DeclCtx, Loc, Loc, Id, 866 InitCaptureType, TSI, SC_Auto); 867 NewVD->setInitCapture(true); 868 NewVD->setReferenced(true); 869 // FIXME: Pass in a VarDecl::InitializationStyle. 870 NewVD->setInitStyle(static_cast<VarDecl::InitializationStyle>(InitStyle)); 871 NewVD->markUsed(Context); 872 NewVD->setInit(Init); 873 if (NewVD->isParameterPack()) 874 getCurLambda()->LocalPacks.push_back(NewVD); 875 return NewVD; 876 } 877 878 void Sema::addInitCapture(LambdaScopeInfo *LSI, VarDecl *Var, bool ByRef) { 879 assert(Var->isInitCapture() && "init capture flag should be set"); 880 LSI->addCapture(Var, /*isBlock=*/false, ByRef, 881 /*isNested=*/false, Var->getLocation(), SourceLocation(), 882 Var->getType(), /*Invalid=*/false); 883 } 884 885 // Unlike getCurLambda, getCurrentLambdaScopeUnsafe doesn't 886 // check that the current lambda is in a consistent or fully constructed state. 887 static LambdaScopeInfo *getCurrentLambdaScopeUnsafe(Sema &S) { 888 assert(!S.FunctionScopes.empty()); 889 return cast<LambdaScopeInfo>(S.FunctionScopes[S.FunctionScopes.size() - 1]); 890 } 891 892 static TypeSourceInfo * 893 getDummyLambdaType(Sema &S, SourceLocation Loc = SourceLocation()) { 894 // C++11 [expr.prim.lambda]p4: 895 // If a lambda-expression does not include a lambda-declarator, it is as 896 // if the lambda-declarator were (). 897 FunctionProtoType::ExtProtoInfo EPI(S.Context.getDefaultCallingConvention( 898 /*IsVariadic=*/false, /*IsCXXMethod=*/true)); 899 EPI.HasTrailingReturn = true; 900 EPI.TypeQuals.addConst(); 901 LangAS AS = S.getDefaultCXXMethodAddrSpace(); 902 if (AS != LangAS::Default) 903 EPI.TypeQuals.addAddressSpace(AS); 904 905 // C++1y [expr.prim.lambda]: 906 // The lambda return type is 'auto', which is replaced by the 907 // trailing-return type if provided and/or deduced from 'return' 908 // statements 909 // We don't do this before C++1y, because we don't support deduced return 910 // types there. 911 QualType DefaultTypeForNoTrailingReturn = S.getLangOpts().CPlusPlus14 912 ? S.Context.getAutoDeductType() 913 : S.Context.DependentTy; 914 QualType MethodTy = 915 S.Context.getFunctionType(DefaultTypeForNoTrailingReturn, {}, EPI); 916 return S.Context.getTrivialTypeSourceInfo(MethodTy, Loc); 917 } 918 919 static TypeSourceInfo *getLambdaType(Sema &S, LambdaIntroducer &Intro, 920 Declarator &ParamInfo, Scope *CurScope, 921 SourceLocation Loc, 922 bool &ExplicitResultType) { 923 924 ExplicitResultType = false; 925 926 assert( 927 (ParamInfo.getDeclSpec().getStorageClassSpec() == 928 DeclSpec::SCS_unspecified || 929 ParamInfo.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static) && 930 "Unexpected storage specifier"); 931 bool IsLambdaStatic = 932 ParamInfo.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static; 933 934 TypeSourceInfo *MethodTyInfo; 935 936 if (ParamInfo.getNumTypeObjects() == 0) { 937 MethodTyInfo = getDummyLambdaType(S, Loc); 938 } else { 939 // Check explicit parameters 940 S.CheckExplicitObjectLambda(ParamInfo); 941 942 DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getFunctionTypeInfo(); 943 944 bool HasExplicitObjectParameter = 945 ParamInfo.isExplicitObjectMemberFunction(); 946 947 ExplicitResultType = FTI.hasTrailingReturnType(); 948 if (!FTI.hasMutableQualifier() && !IsLambdaStatic && 949 !HasExplicitObjectParameter) 950 FTI.getOrCreateMethodQualifiers().SetTypeQual(DeclSpec::TQ_const, Loc); 951 952 if (ExplicitResultType && S.getLangOpts().HLSL) { 953 QualType RetTy = FTI.getTrailingReturnType().get(); 954 if (!RetTy.isNull()) { 955 // HLSL does not support specifying an address space on a lambda return 956 // type. 957 LangAS AddressSpace = RetTy.getAddressSpace(); 958 if (AddressSpace != LangAS::Default) 959 S.Diag(FTI.getTrailingReturnTypeLoc(), 960 diag::err_return_value_with_address_space); 961 } 962 } 963 964 MethodTyInfo = S.GetTypeForDeclarator(ParamInfo); 965 assert(MethodTyInfo && "no type from lambda-declarator"); 966 967 // Check for unexpanded parameter packs in the method type. 968 if (MethodTyInfo->getType()->containsUnexpandedParameterPack()) 969 S.DiagnoseUnexpandedParameterPack(Intro.Range.getBegin(), MethodTyInfo, 970 S.UPPC_DeclarationType); 971 } 972 return MethodTyInfo; 973 } 974 975 CXXMethodDecl *Sema::CreateLambdaCallOperator(SourceRange IntroducerRange, 976 CXXRecordDecl *Class) { 977 978 // C++20 [expr.prim.lambda.closure]p3: 979 // The closure type for a lambda-expression has a public inline function 980 // call operator (for a non-generic lambda) or function call operator 981 // template (for a generic lambda) whose parameters and return type are 982 // described by the lambda-expression's parameter-declaration-clause 983 // and trailing-return-type respectively. 984 DeclarationName MethodName = 985 Context.DeclarationNames.getCXXOperatorName(OO_Call); 986 DeclarationNameLoc MethodNameLoc = 987 DeclarationNameLoc::makeCXXOperatorNameLoc(IntroducerRange.getBegin()); 988 CXXMethodDecl *Method = CXXMethodDecl::Create( 989 Context, Class, SourceLocation(), 990 DeclarationNameInfo(MethodName, IntroducerRange.getBegin(), 991 MethodNameLoc), 992 QualType(), /*Tinfo=*/nullptr, SC_None, 993 getCurFPFeatures().isFPConstrained(), 994 /*isInline=*/true, ConstexprSpecKind::Unspecified, SourceLocation(), 995 /*TrailingRequiresClause=*/nullptr); 996 Method->setAccess(AS_public); 997 return Method; 998 } 999 1000 void Sema::AddTemplateParametersToLambdaCallOperator( 1001 CXXMethodDecl *CallOperator, CXXRecordDecl *Class, 1002 TemplateParameterList *TemplateParams) { 1003 assert(TemplateParams && "no template parameters"); 1004 FunctionTemplateDecl *TemplateMethod = FunctionTemplateDecl::Create( 1005 Context, Class, CallOperator->getLocation(), CallOperator->getDeclName(), 1006 TemplateParams, CallOperator); 1007 TemplateMethod->setAccess(AS_public); 1008 CallOperator->setDescribedFunctionTemplate(TemplateMethod); 1009 } 1010 1011 void Sema::CompleteLambdaCallOperator( 1012 CXXMethodDecl *Method, SourceLocation LambdaLoc, 1013 SourceLocation CallOperatorLoc, Expr *TrailingRequiresClause, 1014 TypeSourceInfo *MethodTyInfo, ConstexprSpecKind ConstexprKind, 1015 StorageClass SC, ArrayRef<ParmVarDecl *> Params, 1016 bool HasExplicitResultType) { 1017 1018 LambdaScopeInfo *LSI = getCurrentLambdaScopeUnsafe(*this); 1019 1020 if (TrailingRequiresClause) 1021 Method->setTrailingRequiresClause(TrailingRequiresClause); 1022 1023 TemplateParameterList *TemplateParams = 1024 getGenericLambdaTemplateParameterList(LSI, *this); 1025 1026 DeclContext *DC = Method->getLexicalDeclContext(); 1027 // DeclContext::addDecl() assumes that the DeclContext we're adding to is the 1028 // lexical context of the Method. Do so. 1029 Method->setLexicalDeclContext(LSI->Lambda); 1030 if (TemplateParams) { 1031 FunctionTemplateDecl *TemplateMethod = 1032 Method->getDescribedFunctionTemplate(); 1033 assert(TemplateMethod && 1034 "AddTemplateParametersToLambdaCallOperator should have been called"); 1035 1036 LSI->Lambda->addDecl(TemplateMethod); 1037 TemplateMethod->setLexicalDeclContext(DC); 1038 } else { 1039 LSI->Lambda->addDecl(Method); 1040 } 1041 LSI->Lambda->setLambdaIsGeneric(TemplateParams); 1042 LSI->Lambda->setLambdaTypeInfo(MethodTyInfo); 1043 1044 Method->setLexicalDeclContext(DC); 1045 Method->setLocation(LambdaLoc); 1046 Method->setInnerLocStart(CallOperatorLoc); 1047 Method->setTypeSourceInfo(MethodTyInfo); 1048 Method->setType(buildTypeForLambdaCallOperator(*this, LSI->Lambda, 1049 TemplateParams, MethodTyInfo)); 1050 Method->setConstexprKind(ConstexprKind); 1051 Method->setStorageClass(SC); 1052 if (!Params.empty()) { 1053 CheckParmsForFunctionDef(Params, /*CheckParameterNames=*/false); 1054 Method->setParams(Params); 1055 for (auto P : Method->parameters()) { 1056 assert(P && "null in a parameter list"); 1057 P->setOwningFunction(Method); 1058 } 1059 } 1060 1061 buildLambdaScopeReturnType(*this, LSI, Method, HasExplicitResultType); 1062 } 1063 1064 void Sema::ActOnLambdaExpressionAfterIntroducer(LambdaIntroducer &Intro, 1065 Scope *CurrentScope) { 1066 1067 LambdaScopeInfo *LSI = getCurLambda(); 1068 assert(LSI && "LambdaScopeInfo should be on stack!"); 1069 1070 if (Intro.Default == LCD_ByCopy) 1071 LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByval; 1072 else if (Intro.Default == LCD_ByRef) 1073 LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByref; 1074 LSI->CaptureDefaultLoc = Intro.DefaultLoc; 1075 LSI->IntroducerRange = Intro.Range; 1076 LSI->AfterParameterList = false; 1077 1078 assert(LSI->NumExplicitTemplateParams == 0); 1079 1080 // Determine if we're within a context where we know that the lambda will 1081 // be dependent, because there are template parameters in scope. 1082 CXXRecordDecl::LambdaDependencyKind LambdaDependencyKind = 1083 CXXRecordDecl::LDK_Unknown; 1084 if (CurScope->getTemplateParamParent() != nullptr) { 1085 LambdaDependencyKind = CXXRecordDecl::LDK_AlwaysDependent; 1086 } else if (Scope *P = CurScope->getParent()) { 1087 // Given a lambda defined inside a requires expression, 1088 // 1089 // struct S { 1090 // S(auto var) requires requires { [&] -> decltype(var) { }; } 1091 // {} 1092 // }; 1093 // 1094 // The parameter var is not injected into the function Decl at the point of 1095 // parsing lambda. In such scenarios, perceiving it as dependent could 1096 // result in the constraint being evaluated, which matches what GCC does. 1097 while (P->getEntity() && P->getEntity()->isRequiresExprBody()) 1098 P = P->getParent(); 1099 if (P->isFunctionDeclarationScope() && 1100 llvm::any_of(P->decls(), [](Decl *D) { 1101 return isa<ParmVarDecl>(D) && 1102 cast<ParmVarDecl>(D)->getType()->isTemplateTypeParmType(); 1103 })) 1104 LambdaDependencyKind = CXXRecordDecl::LDK_AlwaysDependent; 1105 } 1106 1107 CXXRecordDecl *Class = createLambdaClosureType( 1108 Intro.Range, /*Info=*/nullptr, LambdaDependencyKind, Intro.Default); 1109 LSI->Lambda = Class; 1110 1111 CXXMethodDecl *Method = CreateLambdaCallOperator(Intro.Range, Class); 1112 LSI->CallOperator = Method; 1113 // Temporarily set the lexical declaration context to the current 1114 // context, so that the Scope stack matches the lexical nesting. 1115 Method->setLexicalDeclContext(CurContext); 1116 1117 PushDeclContext(CurScope, Method); 1118 1119 bool ContainsUnexpandedParameterPack = false; 1120 1121 // Distinct capture names, for diagnostics. 1122 llvm::DenseMap<IdentifierInfo *, ValueDecl *> CaptureNames; 1123 1124 // Handle explicit captures. 1125 SourceLocation PrevCaptureLoc = 1126 Intro.Default == LCD_None ? Intro.Range.getBegin() : Intro.DefaultLoc; 1127 for (auto C = Intro.Captures.begin(), E = Intro.Captures.end(); C != E; 1128 PrevCaptureLoc = C->Loc, ++C) { 1129 if (C->Kind == LCK_This || C->Kind == LCK_StarThis) { 1130 if (C->Kind == LCK_StarThis) 1131 Diag(C->Loc, !getLangOpts().CPlusPlus17 1132 ? diag::ext_star_this_lambda_capture_cxx17 1133 : diag::warn_cxx14_compat_star_this_lambda_capture); 1134 1135 // C++11 [expr.prim.lambda]p8: 1136 // An identifier or this shall not appear more than once in a 1137 // lambda-capture. 1138 if (LSI->isCXXThisCaptured()) { 1139 Diag(C->Loc, diag::err_capture_more_than_once) 1140 << "'this'" << SourceRange(LSI->getCXXThisCapture().getLocation()) 1141 << FixItHint::CreateRemoval( 1142 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc)); 1143 continue; 1144 } 1145 1146 // C++20 [expr.prim.lambda]p8: 1147 // If a lambda-capture includes a capture-default that is =, 1148 // each simple-capture of that lambda-capture shall be of the form 1149 // "&identifier", "this", or "* this". [ Note: The form [&,this] is 1150 // redundant but accepted for compatibility with ISO C++14. --end note ] 1151 if (Intro.Default == LCD_ByCopy && C->Kind != LCK_StarThis) 1152 Diag(C->Loc, !getLangOpts().CPlusPlus20 1153 ? diag::ext_equals_this_lambda_capture_cxx20 1154 : diag::warn_cxx17_compat_equals_this_lambda_capture); 1155 1156 // C++11 [expr.prim.lambda]p12: 1157 // If this is captured by a local lambda expression, its nearest 1158 // enclosing function shall be a non-static member function. 1159 QualType ThisCaptureType = getCurrentThisType(); 1160 if (ThisCaptureType.isNull()) { 1161 Diag(C->Loc, diag::err_this_capture) << true; 1162 continue; 1163 } 1164 1165 CheckCXXThisCapture(C->Loc, /*Explicit=*/true, /*BuildAndDiagnose*/ true, 1166 /*FunctionScopeIndexToStopAtPtr*/ nullptr, 1167 C->Kind == LCK_StarThis); 1168 if (!LSI->Captures.empty()) 1169 LSI->ExplicitCaptureRanges[LSI->Captures.size() - 1] = C->ExplicitRange; 1170 continue; 1171 } 1172 1173 assert(C->Id && "missing identifier for capture"); 1174 1175 if (C->Init.isInvalid()) 1176 continue; 1177 1178 ValueDecl *Var = nullptr; 1179 if (C->Init.isUsable()) { 1180 Diag(C->Loc, getLangOpts().CPlusPlus14 1181 ? diag::warn_cxx11_compat_init_capture 1182 : diag::ext_init_capture); 1183 1184 // If the initializer expression is usable, but the InitCaptureType 1185 // is not, then an error has occurred - so ignore the capture for now. 1186 // for e.g., [n{0}] { }; <-- if no <initializer_list> is included. 1187 // FIXME: we should create the init capture variable and mark it invalid 1188 // in this case. 1189 if (C->InitCaptureType.get().isNull()) 1190 continue; 1191 1192 if (C->Init.get()->containsUnexpandedParameterPack() && 1193 !C->InitCaptureType.get()->getAs<PackExpansionType>()) 1194 DiagnoseUnexpandedParameterPack(C->Init.get(), UPPC_Initializer); 1195 1196 unsigned InitStyle; 1197 switch (C->InitKind) { 1198 case LambdaCaptureInitKind::NoInit: 1199 llvm_unreachable("not an init-capture?"); 1200 case LambdaCaptureInitKind::CopyInit: 1201 InitStyle = VarDecl::CInit; 1202 break; 1203 case LambdaCaptureInitKind::DirectInit: 1204 InitStyle = VarDecl::CallInit; 1205 break; 1206 case LambdaCaptureInitKind::ListInit: 1207 InitStyle = VarDecl::ListInit; 1208 break; 1209 } 1210 Var = createLambdaInitCaptureVarDecl(C->Loc, C->InitCaptureType.get(), 1211 C->EllipsisLoc, C->Id, InitStyle, 1212 C->Init.get(), Method); 1213 assert(Var && "createLambdaInitCaptureVarDecl returned a null VarDecl?"); 1214 if (auto *V = dyn_cast<VarDecl>(Var)) 1215 CheckShadow(CurrentScope, V); 1216 PushOnScopeChains(Var, CurrentScope, false); 1217 } else { 1218 assert(C->InitKind == LambdaCaptureInitKind::NoInit && 1219 "init capture has valid but null init?"); 1220 1221 // C++11 [expr.prim.lambda]p8: 1222 // If a lambda-capture includes a capture-default that is &, the 1223 // identifiers in the lambda-capture shall not be preceded by &. 1224 // If a lambda-capture includes a capture-default that is =, [...] 1225 // each identifier it contains shall be preceded by &. 1226 if (C->Kind == LCK_ByRef && Intro.Default == LCD_ByRef) { 1227 Diag(C->Loc, diag::err_reference_capture_with_reference_default) 1228 << FixItHint::CreateRemoval( 1229 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc)); 1230 continue; 1231 } else if (C->Kind == LCK_ByCopy && Intro.Default == LCD_ByCopy) { 1232 Diag(C->Loc, diag::err_copy_capture_with_copy_default) 1233 << FixItHint::CreateRemoval( 1234 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc)); 1235 continue; 1236 } 1237 1238 // C++11 [expr.prim.lambda]p10: 1239 // The identifiers in a capture-list are looked up using the usual 1240 // rules for unqualified name lookup (3.4.1) 1241 DeclarationNameInfo Name(C->Id, C->Loc); 1242 LookupResult R(*this, Name, LookupOrdinaryName); 1243 LookupName(R, CurScope); 1244 if (R.isAmbiguous()) 1245 continue; 1246 if (R.empty()) { 1247 // FIXME: Disable corrections that would add qualification? 1248 CXXScopeSpec ScopeSpec; 1249 DeclFilterCCC<VarDecl> Validator{}; 1250 if (DiagnoseEmptyLookup(CurScope, ScopeSpec, R, Validator)) 1251 continue; 1252 } 1253 1254 if (auto *BD = R.getAsSingle<BindingDecl>()) 1255 Var = BD; 1256 else if (R.getAsSingle<FieldDecl>()) { 1257 Diag(C->Loc, diag::err_capture_class_member_does_not_name_variable) 1258 << C->Id; 1259 continue; 1260 } else 1261 Var = R.getAsSingle<VarDecl>(); 1262 if (Var && DiagnoseUseOfDecl(Var, C->Loc)) 1263 continue; 1264 } 1265 1266 // C++11 [expr.prim.lambda]p10: 1267 // [...] each such lookup shall find a variable with automatic storage 1268 // duration declared in the reaching scope of the local lambda expression. 1269 // Note that the 'reaching scope' check happens in tryCaptureVariable(). 1270 if (!Var) { 1271 Diag(C->Loc, diag::err_capture_does_not_name_variable) << C->Id; 1272 continue; 1273 } 1274 1275 // C++11 [expr.prim.lambda]p8: 1276 // An identifier or this shall not appear more than once in a 1277 // lambda-capture. 1278 if (auto [It, Inserted] = CaptureNames.insert(std::pair{C->Id, Var}); 1279 !Inserted) { 1280 if (C->InitKind == LambdaCaptureInitKind::NoInit && 1281 !Var->isInitCapture()) { 1282 Diag(C->Loc, diag::err_capture_more_than_once) 1283 << C->Id << It->second->getBeginLoc() 1284 << FixItHint::CreateRemoval( 1285 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc)); 1286 Var->setInvalidDecl(); 1287 } else if (Var && Var->isPlaceholderVar(getLangOpts())) { 1288 DiagPlaceholderVariableDefinition(C->Loc); 1289 } else { 1290 // Previous capture captured something different (one or both was 1291 // an init-capture): no fixit. 1292 Diag(C->Loc, diag::err_capture_more_than_once) << C->Id; 1293 continue; 1294 } 1295 } 1296 1297 // Ignore invalid decls; they'll just confuse the code later. 1298 if (Var->isInvalidDecl()) 1299 continue; 1300 1301 VarDecl *Underlying = Var->getPotentiallyDecomposedVarDecl(); 1302 1303 if (!Underlying->hasLocalStorage()) { 1304 Diag(C->Loc, diag::err_capture_non_automatic_variable) << C->Id; 1305 Diag(Var->getLocation(), diag::note_previous_decl) << C->Id; 1306 continue; 1307 } 1308 1309 // C++11 [expr.prim.lambda]p23: 1310 // A capture followed by an ellipsis is a pack expansion (14.5.3). 1311 SourceLocation EllipsisLoc; 1312 if (C->EllipsisLoc.isValid()) { 1313 if (Var->isParameterPack()) { 1314 EllipsisLoc = C->EllipsisLoc; 1315 } else { 1316 Diag(C->EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) 1317 << (C->Init.isUsable() ? C->Init.get()->getSourceRange() 1318 : SourceRange(C->Loc)); 1319 1320 // Just ignore the ellipsis. 1321 } 1322 } else if (Var->isParameterPack()) { 1323 ContainsUnexpandedParameterPack = true; 1324 } 1325 1326 if (C->Init.isUsable()) { 1327 addInitCapture(LSI, cast<VarDecl>(Var), C->Kind == LCK_ByRef); 1328 } else { 1329 TryCaptureKind Kind = C->Kind == LCK_ByRef ? TryCapture_ExplicitByRef 1330 : TryCapture_ExplicitByVal; 1331 tryCaptureVariable(Var, C->Loc, Kind, EllipsisLoc); 1332 } 1333 if (!LSI->Captures.empty()) 1334 LSI->ExplicitCaptureRanges[LSI->Captures.size() - 1] = C->ExplicitRange; 1335 } 1336 finishLambdaExplicitCaptures(LSI); 1337 LSI->ContainsUnexpandedParameterPack |= ContainsUnexpandedParameterPack; 1338 PopDeclContext(); 1339 } 1340 1341 void Sema::ActOnLambdaClosureQualifiers(LambdaIntroducer &Intro, 1342 SourceLocation MutableLoc) { 1343 1344 LambdaScopeInfo *LSI = getCurrentLambdaScopeUnsafe(*this); 1345 LSI->Mutable = MutableLoc.isValid(); 1346 ContextRAII Context(*this, LSI->CallOperator, /*NewThisContext*/ false); 1347 1348 // C++11 [expr.prim.lambda]p9: 1349 // A lambda-expression whose smallest enclosing scope is a block scope is a 1350 // local lambda expression; any other lambda expression shall not have a 1351 // capture-default or simple-capture in its lambda-introducer. 1352 // 1353 // For simple-captures, this is covered by the check below that any named 1354 // entity is a variable that can be captured. 1355 // 1356 // For DR1632, we also allow a capture-default in any context where we can 1357 // odr-use 'this' (in particular, in a default initializer for a non-static 1358 // data member). 1359 if (Intro.Default != LCD_None && 1360 !LSI->Lambda->getParent()->isFunctionOrMethod() && 1361 (getCurrentThisType().isNull() || 1362 CheckCXXThisCapture(SourceLocation(), /*Explicit=*/true, 1363 /*BuildAndDiagnose=*/false))) 1364 Diag(Intro.DefaultLoc, diag::err_capture_default_non_local); 1365 } 1366 1367 void Sema::ActOnLambdaClosureParameters( 1368 Scope *LambdaScope, MutableArrayRef<DeclaratorChunk::ParamInfo> Params) { 1369 LambdaScopeInfo *LSI = getCurrentLambdaScopeUnsafe(*this); 1370 PushDeclContext(LambdaScope, LSI->CallOperator); 1371 1372 for (const DeclaratorChunk::ParamInfo &P : Params) { 1373 auto *Param = cast<ParmVarDecl>(P.Param); 1374 Param->setOwningFunction(LSI->CallOperator); 1375 if (Param->getIdentifier()) 1376 PushOnScopeChains(Param, LambdaScope, false); 1377 } 1378 1379 // After the parameter list, we may parse a noexcept/requires/trailing return 1380 // type which need to know whether the call operator constiture a dependent 1381 // context, so we need to setup the FunctionTemplateDecl of generic lambdas 1382 // now. 1383 TemplateParameterList *TemplateParams = 1384 getGenericLambdaTemplateParameterList(LSI, *this); 1385 if (TemplateParams) { 1386 AddTemplateParametersToLambdaCallOperator(LSI->CallOperator, LSI->Lambda, 1387 TemplateParams); 1388 LSI->Lambda->setLambdaIsGeneric(true); 1389 LSI->ContainsUnexpandedParameterPack |= 1390 TemplateParams->containsUnexpandedParameterPack(); 1391 } 1392 LSI->AfterParameterList = true; 1393 } 1394 1395 void Sema::ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro, 1396 Declarator &ParamInfo, 1397 const DeclSpec &DS) { 1398 1399 LambdaScopeInfo *LSI = getCurrentLambdaScopeUnsafe(*this); 1400 LSI->CallOperator->setConstexprKind(DS.getConstexprSpecifier()); 1401 1402 SmallVector<ParmVarDecl *, 8> Params; 1403 bool ExplicitResultType; 1404 1405 SourceLocation TypeLoc, CallOperatorLoc; 1406 if (ParamInfo.getNumTypeObjects() == 0) { 1407 CallOperatorLoc = TypeLoc = Intro.Range.getEnd(); 1408 } else { 1409 unsigned Index; 1410 ParamInfo.isFunctionDeclarator(Index); 1411 const auto &Object = ParamInfo.getTypeObject(Index); 1412 TypeLoc = 1413 Object.Loc.isValid() ? Object.Loc : ParamInfo.getSourceRange().getEnd(); 1414 CallOperatorLoc = ParamInfo.getSourceRange().getEnd(); 1415 } 1416 1417 CXXRecordDecl *Class = LSI->Lambda; 1418 CXXMethodDecl *Method = LSI->CallOperator; 1419 1420 TypeSourceInfo *MethodTyInfo = getLambdaType( 1421 *this, Intro, ParamInfo, getCurScope(), TypeLoc, ExplicitResultType); 1422 1423 LSI->ExplicitParams = ParamInfo.getNumTypeObjects() != 0; 1424 1425 if (ParamInfo.isFunctionDeclarator() != 0 && 1426 !FTIHasSingleVoidParameter(ParamInfo.getFunctionTypeInfo())) { 1427 const auto &FTI = ParamInfo.getFunctionTypeInfo(); 1428 Params.reserve(Params.size()); 1429 for (unsigned I = 0; I < FTI.NumParams; ++I) { 1430 auto *Param = cast<ParmVarDecl>(FTI.Params[I].Param); 1431 Param->setScopeInfo(0, Params.size()); 1432 Params.push_back(Param); 1433 } 1434 } 1435 1436 bool IsLambdaStatic = 1437 ParamInfo.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static; 1438 1439 CompleteLambdaCallOperator( 1440 Method, Intro.Range.getBegin(), CallOperatorLoc, 1441 ParamInfo.getTrailingRequiresClause(), MethodTyInfo, 1442 ParamInfo.getDeclSpec().getConstexprSpecifier(), 1443 IsLambdaStatic ? SC_Static : SC_None, Params, ExplicitResultType); 1444 1445 CheckCXXDefaultArguments(Method); 1446 1447 // This represents the function body for the lambda function, check if we 1448 // have to apply optnone due to a pragma. 1449 AddRangeBasedOptnone(Method); 1450 1451 // code_seg attribute on lambda apply to the method. 1452 if (Attr *A = getImplicitCodeSegOrSectionAttrForFunction( 1453 Method, /*IsDefinition=*/true)) 1454 Method->addAttr(A); 1455 1456 // Attributes on the lambda apply to the method. 1457 ProcessDeclAttributes(CurScope, Method, ParamInfo); 1458 1459 if (Context.getTargetInfo().getTriple().isAArch64()) 1460 ARM().CheckSMEFunctionDefAttributes(Method); 1461 1462 // CUDA lambdas get implicit host and device attributes. 1463 if (getLangOpts().CUDA) 1464 CUDA().SetLambdaAttrs(Method); 1465 1466 // OpenMP lambdas might get assumumption attributes. 1467 if (LangOpts.OpenMP) 1468 OpenMP().ActOnFinishedFunctionDefinitionInOpenMPAssumeScope(Method); 1469 1470 handleLambdaNumbering(Class, Method); 1471 1472 for (auto &&C : LSI->Captures) { 1473 if (!C.isVariableCapture()) 1474 continue; 1475 ValueDecl *Var = C.getVariable(); 1476 if (Var && Var->isInitCapture()) { 1477 PushOnScopeChains(Var, CurScope, false); 1478 } 1479 } 1480 1481 auto CheckRedefinition = [&](ParmVarDecl *Param) { 1482 for (const auto &Capture : Intro.Captures) { 1483 if (Capture.Id == Param->getIdentifier()) { 1484 Diag(Param->getLocation(), diag::err_parameter_shadow_capture); 1485 Diag(Capture.Loc, diag::note_var_explicitly_captured_here) 1486 << Capture.Id << true; 1487 return false; 1488 } 1489 } 1490 return true; 1491 }; 1492 1493 for (ParmVarDecl *P : Params) { 1494 if (!P->getIdentifier()) 1495 continue; 1496 if (CheckRedefinition(P)) 1497 CheckShadow(CurScope, P); 1498 PushOnScopeChains(P, CurScope); 1499 } 1500 1501 // C++23 [expr.prim.lambda.capture]p5: 1502 // If an identifier in a capture appears as the declarator-id of a parameter 1503 // of the lambda-declarator's parameter-declaration-clause or as the name of a 1504 // template parameter of the lambda-expression's template-parameter-list, the 1505 // program is ill-formed. 1506 TemplateParameterList *TemplateParams = 1507 getGenericLambdaTemplateParameterList(LSI, *this); 1508 if (TemplateParams) { 1509 for (const auto *TP : TemplateParams->asArray()) { 1510 if (!TP->getIdentifier()) 1511 continue; 1512 for (const auto &Capture : Intro.Captures) { 1513 if (Capture.Id == TP->getIdentifier()) { 1514 Diag(Capture.Loc, diag::err_template_param_shadow) << Capture.Id; 1515 NoteTemplateParameterLocation(*TP); 1516 } 1517 } 1518 } 1519 } 1520 1521 // C++20: dcl.decl.general p4: 1522 // The optional requires-clause ([temp.pre]) in an init-declarator or 1523 // member-declarator shall be present only if the declarator declares a 1524 // templated function ([dcl.fct]). 1525 if (Expr *TRC = Method->getTrailingRequiresClause()) { 1526 // [temp.pre]/8: 1527 // An entity is templated if it is 1528 // - a template, 1529 // - an entity defined ([basic.def]) or created ([class.temporary]) in a 1530 // templated entity, 1531 // - a member of a templated entity, 1532 // - an enumerator for an enumeration that is a templated entity, or 1533 // - the closure type of a lambda-expression ([expr.prim.lambda.closure]) 1534 // appearing in the declaration of a templated entity. [Note 6: A local 1535 // class, a local or block variable, or a friend function defined in a 1536 // templated entity is a templated entity. — end note] 1537 // 1538 // A templated function is a function template or a function that is 1539 // templated. A templated class is a class template or a class that is 1540 // templated. A templated variable is a variable template or a variable 1541 // that is templated. 1542 1543 // Note: we only have to check if this is defined in a template entity, OR 1544 // if we are a template, since the rest don't apply. The requires clause 1545 // applies to the call operator, which we already know is a member function, 1546 // AND defined. 1547 if (!Method->getDescribedFunctionTemplate() && !Method->isTemplated()) { 1548 Diag(TRC->getBeginLoc(), diag::err_constrained_non_templated_function); 1549 } 1550 } 1551 1552 // Enter a new evaluation context to insulate the lambda from any 1553 // cleanups from the enclosing full-expression. 1554 PushExpressionEvaluationContext( 1555 LSI->CallOperator->isConsteval() 1556 ? ExpressionEvaluationContext::ImmediateFunctionContext 1557 : ExpressionEvaluationContext::PotentiallyEvaluated); 1558 ExprEvalContexts.back().InImmediateFunctionContext = 1559 LSI->CallOperator->isConsteval(); 1560 ExprEvalContexts.back().InImmediateEscalatingFunctionContext = 1561 getLangOpts().CPlusPlus20 && LSI->CallOperator->isImmediateEscalating(); 1562 } 1563 1564 void Sema::ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope, 1565 bool IsInstantiation) { 1566 LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(FunctionScopes.back()); 1567 1568 // Leave the expression-evaluation context. 1569 DiscardCleanupsInEvaluationContext(); 1570 PopExpressionEvaluationContext(); 1571 1572 // Leave the context of the lambda. 1573 if (!IsInstantiation) 1574 PopDeclContext(); 1575 1576 // Finalize the lambda. 1577 CXXRecordDecl *Class = LSI->Lambda; 1578 Class->setInvalidDecl(); 1579 SmallVector<Decl*, 4> Fields(Class->fields()); 1580 ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(), 1581 SourceLocation(), ParsedAttributesView()); 1582 CheckCompletedCXXClass(nullptr, Class); 1583 1584 PopFunctionScopeInfo(); 1585 } 1586 1587 template <typename Func> 1588 static void repeatForLambdaConversionFunctionCallingConvs( 1589 Sema &S, const FunctionProtoType &CallOpProto, Func F) { 1590 CallingConv DefaultFree = S.Context.getDefaultCallingConvention( 1591 CallOpProto.isVariadic(), /*IsCXXMethod=*/false); 1592 CallingConv DefaultMember = S.Context.getDefaultCallingConvention( 1593 CallOpProto.isVariadic(), /*IsCXXMethod=*/true); 1594 CallingConv CallOpCC = CallOpProto.getCallConv(); 1595 1596 /// Implement emitting a version of the operator for many of the calling 1597 /// conventions for MSVC, as described here: 1598 /// https://devblogs.microsoft.com/oldnewthing/20150220-00/?p=44623. 1599 /// Experimentally, we determined that cdecl, stdcall, fastcall, and 1600 /// vectorcall are generated by MSVC when it is supported by the target. 1601 /// Additionally, we are ensuring that the default-free/default-member and 1602 /// call-operator calling convention are generated as well. 1603 /// NOTE: We intentionally generate a 'thiscall' on Win32 implicitly from the 1604 /// 'member default', despite MSVC not doing so. We do this in order to ensure 1605 /// that someone who intentionally places 'thiscall' on the lambda call 1606 /// operator will still get that overload, since we don't have the a way of 1607 /// detecting the attribute by the time we get here. 1608 if (S.getLangOpts().MSVCCompat) { 1609 CallingConv Convs[] = { 1610 CC_C, CC_X86StdCall, CC_X86FastCall, CC_X86VectorCall, 1611 DefaultFree, DefaultMember, CallOpCC}; 1612 llvm::sort(Convs); 1613 llvm::iterator_range<CallingConv *> Range( 1614 std::begin(Convs), std::unique(std::begin(Convs), std::end(Convs))); 1615 const TargetInfo &TI = S.getASTContext().getTargetInfo(); 1616 1617 for (CallingConv C : Range) { 1618 if (TI.checkCallingConvention(C) == TargetInfo::CCCR_OK) 1619 F(C); 1620 } 1621 return; 1622 } 1623 1624 if (CallOpCC == DefaultMember && DefaultMember != DefaultFree) { 1625 F(DefaultFree); 1626 F(DefaultMember); 1627 } else { 1628 F(CallOpCC); 1629 } 1630 } 1631 1632 // Returns the 'standard' calling convention to be used for the lambda 1633 // conversion function, that is, the 'free' function calling convention unless 1634 // it is overridden by a non-default calling convention attribute. 1635 static CallingConv 1636 getLambdaConversionFunctionCallConv(Sema &S, 1637 const FunctionProtoType *CallOpProto) { 1638 CallingConv DefaultFree = S.Context.getDefaultCallingConvention( 1639 CallOpProto->isVariadic(), /*IsCXXMethod=*/false); 1640 CallingConv DefaultMember = S.Context.getDefaultCallingConvention( 1641 CallOpProto->isVariadic(), /*IsCXXMethod=*/true); 1642 CallingConv CallOpCC = CallOpProto->getCallConv(); 1643 1644 // If the call-operator hasn't been changed, return both the 'free' and 1645 // 'member' function calling convention. 1646 if (CallOpCC == DefaultMember && DefaultMember != DefaultFree) 1647 return DefaultFree; 1648 return CallOpCC; 1649 } 1650 1651 QualType Sema::getLambdaConversionFunctionResultType( 1652 const FunctionProtoType *CallOpProto, CallingConv CC) { 1653 const FunctionProtoType::ExtProtoInfo CallOpExtInfo = 1654 CallOpProto->getExtProtoInfo(); 1655 FunctionProtoType::ExtProtoInfo InvokerExtInfo = CallOpExtInfo; 1656 InvokerExtInfo.ExtInfo = InvokerExtInfo.ExtInfo.withCallingConv(CC); 1657 InvokerExtInfo.TypeQuals = Qualifiers(); 1658 assert(InvokerExtInfo.RefQualifier == RQ_None && 1659 "Lambda's call operator should not have a reference qualifier"); 1660 return Context.getFunctionType(CallOpProto->getReturnType(), 1661 CallOpProto->getParamTypes(), InvokerExtInfo); 1662 } 1663 1664 /// Add a lambda's conversion to function pointer, as described in 1665 /// C++11 [expr.prim.lambda]p6. 1666 static void addFunctionPointerConversion(Sema &S, SourceRange IntroducerRange, 1667 CXXRecordDecl *Class, 1668 CXXMethodDecl *CallOperator, 1669 QualType InvokerFunctionTy) { 1670 // This conversion is explicitly disabled if the lambda's function has 1671 // pass_object_size attributes on any of its parameters. 1672 auto HasPassObjectSizeAttr = [](const ParmVarDecl *P) { 1673 return P->hasAttr<PassObjectSizeAttr>(); 1674 }; 1675 if (llvm::any_of(CallOperator->parameters(), HasPassObjectSizeAttr)) 1676 return; 1677 1678 // Add the conversion to function pointer. 1679 QualType PtrToFunctionTy = S.Context.getPointerType(InvokerFunctionTy); 1680 1681 // Create the type of the conversion function. 1682 FunctionProtoType::ExtProtoInfo ConvExtInfo( 1683 S.Context.getDefaultCallingConvention( 1684 /*IsVariadic=*/false, /*IsCXXMethod=*/true)); 1685 // The conversion function is always const and noexcept. 1686 ConvExtInfo.TypeQuals = Qualifiers(); 1687 ConvExtInfo.TypeQuals.addConst(); 1688 ConvExtInfo.ExceptionSpec.Type = EST_BasicNoexcept; 1689 QualType ConvTy = S.Context.getFunctionType(PtrToFunctionTy, {}, ConvExtInfo); 1690 1691 SourceLocation Loc = IntroducerRange.getBegin(); 1692 DeclarationName ConversionName 1693 = S.Context.DeclarationNames.getCXXConversionFunctionName( 1694 S.Context.getCanonicalType(PtrToFunctionTy)); 1695 // Construct a TypeSourceInfo for the conversion function, and wire 1696 // all the parameters appropriately for the FunctionProtoTypeLoc 1697 // so that everything works during transformation/instantiation of 1698 // generic lambdas. 1699 // The main reason for wiring up the parameters of the conversion 1700 // function with that of the call operator is so that constructs 1701 // like the following work: 1702 // auto L = [](auto b) { <-- 1 1703 // return [](auto a) -> decltype(a) { <-- 2 1704 // return a; 1705 // }; 1706 // }; 1707 // int (*fp)(int) = L(5); 1708 // Because the trailing return type can contain DeclRefExprs that refer 1709 // to the original call operator's variables, we hijack the call 1710 // operators ParmVarDecls below. 1711 TypeSourceInfo *ConvNamePtrToFunctionTSI = 1712 S.Context.getTrivialTypeSourceInfo(PtrToFunctionTy, Loc); 1713 DeclarationNameLoc ConvNameLoc = 1714 DeclarationNameLoc::makeNamedTypeLoc(ConvNamePtrToFunctionTSI); 1715 1716 // The conversion function is a conversion to a pointer-to-function. 1717 TypeSourceInfo *ConvTSI = S.Context.getTrivialTypeSourceInfo(ConvTy, Loc); 1718 FunctionProtoTypeLoc ConvTL = 1719 ConvTSI->getTypeLoc().getAs<FunctionProtoTypeLoc>(); 1720 // Get the result of the conversion function which is a pointer-to-function. 1721 PointerTypeLoc PtrToFunctionTL = 1722 ConvTL.getReturnLoc().getAs<PointerTypeLoc>(); 1723 // Do the same for the TypeSourceInfo that is used to name the conversion 1724 // operator. 1725 PointerTypeLoc ConvNamePtrToFunctionTL = 1726 ConvNamePtrToFunctionTSI->getTypeLoc().getAs<PointerTypeLoc>(); 1727 1728 // Get the underlying function types that the conversion function will 1729 // be converting to (should match the type of the call operator). 1730 FunctionProtoTypeLoc CallOpConvTL = 1731 PtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>(); 1732 FunctionProtoTypeLoc CallOpConvNameTL = 1733 ConvNamePtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>(); 1734 1735 // Wire up the FunctionProtoTypeLocs with the call operator's parameters. 1736 // These parameter's are essentially used to transform the name and 1737 // the type of the conversion operator. By using the same parameters 1738 // as the call operator's we don't have to fix any back references that 1739 // the trailing return type of the call operator's uses (such as 1740 // decltype(some_type<decltype(a)>::type{} + decltype(a){}) etc.) 1741 // - we can simply use the return type of the call operator, and 1742 // everything should work. 1743 SmallVector<ParmVarDecl *, 4> InvokerParams; 1744 for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) { 1745 ParmVarDecl *From = CallOperator->getParamDecl(I); 1746 1747 InvokerParams.push_back(ParmVarDecl::Create( 1748 S.Context, 1749 // Temporarily add to the TU. This is set to the invoker below. 1750 S.Context.getTranslationUnitDecl(), From->getBeginLoc(), 1751 From->getLocation(), From->getIdentifier(), From->getType(), 1752 From->getTypeSourceInfo(), From->getStorageClass(), 1753 /*DefArg=*/nullptr)); 1754 CallOpConvTL.setParam(I, From); 1755 CallOpConvNameTL.setParam(I, From); 1756 } 1757 1758 CXXConversionDecl *Conversion = CXXConversionDecl::Create( 1759 S.Context, Class, Loc, 1760 DeclarationNameInfo(ConversionName, Loc, ConvNameLoc), ConvTy, ConvTSI, 1761 S.getCurFPFeatures().isFPConstrained(), 1762 /*isInline=*/true, ExplicitSpecifier(), 1763 S.getLangOpts().CPlusPlus17 ? ConstexprSpecKind::Constexpr 1764 : ConstexprSpecKind::Unspecified, 1765 CallOperator->getBody()->getEndLoc()); 1766 Conversion->setAccess(AS_public); 1767 Conversion->setImplicit(true); 1768 1769 // A non-generic lambda may still be a templated entity. We need to preserve 1770 // constraints when converting the lambda to a function pointer. See GH63181. 1771 if (Expr *Requires = CallOperator->getTrailingRequiresClause()) 1772 Conversion->setTrailingRequiresClause(Requires); 1773 1774 if (Class->isGenericLambda()) { 1775 // Create a template version of the conversion operator, using the template 1776 // parameter list of the function call operator. 1777 FunctionTemplateDecl *TemplateCallOperator = 1778 CallOperator->getDescribedFunctionTemplate(); 1779 FunctionTemplateDecl *ConversionTemplate = 1780 FunctionTemplateDecl::Create(S.Context, Class, 1781 Loc, ConversionName, 1782 TemplateCallOperator->getTemplateParameters(), 1783 Conversion); 1784 ConversionTemplate->setAccess(AS_public); 1785 ConversionTemplate->setImplicit(true); 1786 Conversion->setDescribedFunctionTemplate(ConversionTemplate); 1787 Class->addDecl(ConversionTemplate); 1788 } else 1789 Class->addDecl(Conversion); 1790 1791 // If the lambda is not static, we need to add a static member 1792 // function that will be the result of the conversion with a 1793 // certain unique ID. 1794 // When it is static we just return the static call operator instead. 1795 if (CallOperator->isImplicitObjectMemberFunction()) { 1796 DeclarationName InvokerName = 1797 &S.Context.Idents.get(getLambdaStaticInvokerName()); 1798 // FIXME: Instead of passing in the CallOperator->getTypeSourceInfo() 1799 // we should get a prebuilt TrivialTypeSourceInfo from Context 1800 // using FunctionTy & Loc and get its TypeLoc as a FunctionProtoTypeLoc 1801 // then rewire the parameters accordingly, by hoisting up the InvokeParams 1802 // loop below and then use its Params to set Invoke->setParams(...) below. 1803 // This would avoid the 'const' qualifier of the calloperator from 1804 // contaminating the type of the invoker, which is currently adjusted 1805 // in SemaTemplateDeduction.cpp:DeduceTemplateArguments. Fixing the 1806 // trailing return type of the invoker would require a visitor to rebuild 1807 // the trailing return type and adjusting all back DeclRefExpr's to refer 1808 // to the new static invoker parameters - not the call operator's. 1809 CXXMethodDecl *Invoke = CXXMethodDecl::Create( 1810 S.Context, Class, Loc, DeclarationNameInfo(InvokerName, Loc), 1811 InvokerFunctionTy, CallOperator->getTypeSourceInfo(), SC_Static, 1812 S.getCurFPFeatures().isFPConstrained(), 1813 /*isInline=*/true, CallOperator->getConstexprKind(), 1814 CallOperator->getBody()->getEndLoc()); 1815 for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) 1816 InvokerParams[I]->setOwningFunction(Invoke); 1817 Invoke->setParams(InvokerParams); 1818 Invoke->setAccess(AS_private); 1819 Invoke->setImplicit(true); 1820 if (Class->isGenericLambda()) { 1821 FunctionTemplateDecl *TemplateCallOperator = 1822 CallOperator->getDescribedFunctionTemplate(); 1823 FunctionTemplateDecl *StaticInvokerTemplate = 1824 FunctionTemplateDecl::Create( 1825 S.Context, Class, Loc, InvokerName, 1826 TemplateCallOperator->getTemplateParameters(), Invoke); 1827 StaticInvokerTemplate->setAccess(AS_private); 1828 StaticInvokerTemplate->setImplicit(true); 1829 Invoke->setDescribedFunctionTemplate(StaticInvokerTemplate); 1830 Class->addDecl(StaticInvokerTemplate); 1831 } else 1832 Class->addDecl(Invoke); 1833 } 1834 } 1835 1836 /// Add a lambda's conversion to function pointers, as described in 1837 /// C++11 [expr.prim.lambda]p6. Note that in most cases, this should emit only a 1838 /// single pointer conversion. In the event that the default calling convention 1839 /// for free and member functions is different, it will emit both conventions. 1840 static void addFunctionPointerConversions(Sema &S, SourceRange IntroducerRange, 1841 CXXRecordDecl *Class, 1842 CXXMethodDecl *CallOperator) { 1843 const FunctionProtoType *CallOpProto = 1844 CallOperator->getType()->castAs<FunctionProtoType>(); 1845 1846 repeatForLambdaConversionFunctionCallingConvs( 1847 S, *CallOpProto, [&](CallingConv CC) { 1848 QualType InvokerFunctionTy = 1849 S.getLambdaConversionFunctionResultType(CallOpProto, CC); 1850 addFunctionPointerConversion(S, IntroducerRange, Class, CallOperator, 1851 InvokerFunctionTy); 1852 }); 1853 } 1854 1855 /// Add a lambda's conversion to block pointer. 1856 static void addBlockPointerConversion(Sema &S, 1857 SourceRange IntroducerRange, 1858 CXXRecordDecl *Class, 1859 CXXMethodDecl *CallOperator) { 1860 const FunctionProtoType *CallOpProto = 1861 CallOperator->getType()->castAs<FunctionProtoType>(); 1862 QualType FunctionTy = S.getLambdaConversionFunctionResultType( 1863 CallOpProto, getLambdaConversionFunctionCallConv(S, CallOpProto)); 1864 QualType BlockPtrTy = S.Context.getBlockPointerType(FunctionTy); 1865 1866 FunctionProtoType::ExtProtoInfo ConversionEPI( 1867 S.Context.getDefaultCallingConvention( 1868 /*IsVariadic=*/false, /*IsCXXMethod=*/true)); 1869 ConversionEPI.TypeQuals = Qualifiers(); 1870 ConversionEPI.TypeQuals.addConst(); 1871 QualType ConvTy = S.Context.getFunctionType(BlockPtrTy, {}, ConversionEPI); 1872 1873 SourceLocation Loc = IntroducerRange.getBegin(); 1874 DeclarationName Name 1875 = S.Context.DeclarationNames.getCXXConversionFunctionName( 1876 S.Context.getCanonicalType(BlockPtrTy)); 1877 DeclarationNameLoc NameLoc = DeclarationNameLoc::makeNamedTypeLoc( 1878 S.Context.getTrivialTypeSourceInfo(BlockPtrTy, Loc)); 1879 CXXConversionDecl *Conversion = CXXConversionDecl::Create( 1880 S.Context, Class, Loc, DeclarationNameInfo(Name, Loc, NameLoc), ConvTy, 1881 S.Context.getTrivialTypeSourceInfo(ConvTy, Loc), 1882 S.getCurFPFeatures().isFPConstrained(), 1883 /*isInline=*/true, ExplicitSpecifier(), ConstexprSpecKind::Unspecified, 1884 CallOperator->getBody()->getEndLoc()); 1885 Conversion->setAccess(AS_public); 1886 Conversion->setImplicit(true); 1887 Class->addDecl(Conversion); 1888 } 1889 1890 ExprResult Sema::BuildCaptureInit(const Capture &Cap, 1891 SourceLocation ImplicitCaptureLoc, 1892 bool IsOpenMPMapping) { 1893 // VLA captures don't have a stored initialization expression. 1894 if (Cap.isVLATypeCapture()) 1895 return ExprResult(); 1896 1897 // An init-capture is initialized directly from its stored initializer. 1898 if (Cap.isInitCapture()) 1899 return cast<VarDecl>(Cap.getVariable())->getInit(); 1900 1901 // For anything else, build an initialization expression. For an implicit 1902 // capture, the capture notionally happens at the capture-default, so use 1903 // that location here. 1904 SourceLocation Loc = 1905 ImplicitCaptureLoc.isValid() ? ImplicitCaptureLoc : Cap.getLocation(); 1906 1907 // C++11 [expr.prim.lambda]p21: 1908 // When the lambda-expression is evaluated, the entities that 1909 // are captured by copy are used to direct-initialize each 1910 // corresponding non-static data member of the resulting closure 1911 // object. (For array members, the array elements are 1912 // direct-initialized in increasing subscript order.) These 1913 // initializations are performed in the (unspecified) order in 1914 // which the non-static data members are declared. 1915 1916 // C++ [expr.prim.lambda]p12: 1917 // An entity captured by a lambda-expression is odr-used (3.2) in 1918 // the scope containing the lambda-expression. 1919 ExprResult Init; 1920 IdentifierInfo *Name = nullptr; 1921 if (Cap.isThisCapture()) { 1922 QualType ThisTy = getCurrentThisType(); 1923 Expr *This = BuildCXXThisExpr(Loc, ThisTy, ImplicitCaptureLoc.isValid()); 1924 if (Cap.isCopyCapture()) 1925 Init = CreateBuiltinUnaryOp(Loc, UO_Deref, This); 1926 else 1927 Init = This; 1928 } else { 1929 assert(Cap.isVariableCapture() && "unknown kind of capture"); 1930 ValueDecl *Var = Cap.getVariable(); 1931 Name = Var->getIdentifier(); 1932 Init = BuildDeclarationNameExpr( 1933 CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var); 1934 } 1935 1936 // In OpenMP, the capture kind doesn't actually describe how to capture: 1937 // variables are "mapped" onto the device in a process that does not formally 1938 // make a copy, even for a "copy capture". 1939 if (IsOpenMPMapping) 1940 return Init; 1941 1942 if (Init.isInvalid()) 1943 return ExprError(); 1944 1945 Expr *InitExpr = Init.get(); 1946 InitializedEntity Entity = InitializedEntity::InitializeLambdaCapture( 1947 Name, Cap.getCaptureType(), Loc); 1948 InitializationKind InitKind = 1949 InitializationKind::CreateDirect(Loc, Loc, Loc); 1950 InitializationSequence InitSeq(*this, Entity, InitKind, InitExpr); 1951 return InitSeq.Perform(*this, Entity, InitKind, InitExpr); 1952 } 1953 1954 ExprResult Sema::ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body) { 1955 LambdaScopeInfo LSI = *cast<LambdaScopeInfo>(FunctionScopes.back()); 1956 1957 if (LSI.CallOperator->hasAttr<SYCLKernelEntryPointAttr>()) 1958 SYCL().CheckSYCLEntryPointFunctionDecl(LSI.CallOperator); 1959 1960 ActOnFinishFunctionBody(LSI.CallOperator, Body); 1961 1962 return BuildLambdaExpr(StartLoc, Body->getEndLoc(), &LSI); 1963 } 1964 1965 static LambdaCaptureDefault 1966 mapImplicitCaptureStyle(CapturingScopeInfo::ImplicitCaptureStyle ICS) { 1967 switch (ICS) { 1968 case CapturingScopeInfo::ImpCap_None: 1969 return LCD_None; 1970 case CapturingScopeInfo::ImpCap_LambdaByval: 1971 return LCD_ByCopy; 1972 case CapturingScopeInfo::ImpCap_CapturedRegion: 1973 case CapturingScopeInfo::ImpCap_LambdaByref: 1974 return LCD_ByRef; 1975 case CapturingScopeInfo::ImpCap_Block: 1976 llvm_unreachable("block capture in lambda"); 1977 } 1978 llvm_unreachable("Unknown implicit capture style"); 1979 } 1980 1981 bool Sema::CaptureHasSideEffects(const Capture &From) { 1982 if (From.isInitCapture()) { 1983 Expr *Init = cast<VarDecl>(From.getVariable())->getInit(); 1984 if (Init && Init->HasSideEffects(Context)) 1985 return true; 1986 } 1987 1988 if (!From.isCopyCapture()) 1989 return false; 1990 1991 const QualType T = From.isThisCapture() 1992 ? getCurrentThisType()->getPointeeType() 1993 : From.getCaptureType(); 1994 1995 if (T.isVolatileQualified()) 1996 return true; 1997 1998 const Type *BaseT = T->getBaseElementTypeUnsafe(); 1999 if (const CXXRecordDecl *RD = BaseT->getAsCXXRecordDecl()) 2000 return !RD->isCompleteDefinition() || !RD->hasTrivialCopyConstructor() || 2001 !RD->hasTrivialDestructor(); 2002 2003 return false; 2004 } 2005 2006 bool Sema::DiagnoseUnusedLambdaCapture(SourceRange CaptureRange, 2007 const Capture &From) { 2008 if (CaptureHasSideEffects(From)) 2009 return false; 2010 2011 if (From.isVLATypeCapture()) 2012 return false; 2013 2014 // FIXME: maybe we should warn on these if we can find a sensible diagnostic 2015 // message 2016 if (From.isInitCapture() && 2017 From.getVariable()->isPlaceholderVar(getLangOpts())) 2018 return false; 2019 2020 auto diag = Diag(From.getLocation(), diag::warn_unused_lambda_capture); 2021 if (From.isThisCapture()) 2022 diag << "'this'"; 2023 else 2024 diag << From.getVariable(); 2025 diag << From.isNonODRUsed(); 2026 diag << FixItHint::CreateRemoval(CaptureRange); 2027 return true; 2028 } 2029 2030 /// Create a field within the lambda class or captured statement record for the 2031 /// given capture. 2032 FieldDecl *Sema::BuildCaptureField(RecordDecl *RD, 2033 const sema::Capture &Capture) { 2034 SourceLocation Loc = Capture.getLocation(); 2035 QualType FieldType = Capture.getCaptureType(); 2036 2037 TypeSourceInfo *TSI = nullptr; 2038 if (Capture.isVariableCapture()) { 2039 const auto *Var = dyn_cast_or_null<VarDecl>(Capture.getVariable()); 2040 if (Var && Var->isInitCapture()) 2041 TSI = Var->getTypeSourceInfo(); 2042 } 2043 2044 // FIXME: Should we really be doing this? A null TypeSourceInfo seems more 2045 // appropriate, at least for an implicit capture. 2046 if (!TSI) 2047 TSI = Context.getTrivialTypeSourceInfo(FieldType, Loc); 2048 2049 // Build the non-static data member. 2050 FieldDecl *Field = 2051 FieldDecl::Create(Context, RD, /*StartLoc=*/Loc, /*IdLoc=*/Loc, 2052 /*Id=*/nullptr, FieldType, TSI, /*BW=*/nullptr, 2053 /*Mutable=*/false, ICIS_NoInit); 2054 // If the variable being captured has an invalid type, mark the class as 2055 // invalid as well. 2056 if (!FieldType->isDependentType()) { 2057 if (RequireCompleteSizedType(Loc, FieldType, 2058 diag::err_field_incomplete_or_sizeless)) { 2059 RD->setInvalidDecl(); 2060 Field->setInvalidDecl(); 2061 } else { 2062 NamedDecl *Def; 2063 FieldType->isIncompleteType(&Def); 2064 if (Def && Def->isInvalidDecl()) { 2065 RD->setInvalidDecl(); 2066 Field->setInvalidDecl(); 2067 } 2068 } 2069 } 2070 Field->setImplicit(true); 2071 Field->setAccess(AS_private); 2072 RD->addDecl(Field); 2073 2074 if (Capture.isVLATypeCapture()) 2075 Field->setCapturedVLAType(Capture.getCapturedVLAType()); 2076 2077 return Field; 2078 } 2079 2080 ExprResult Sema::BuildLambdaExpr(SourceLocation StartLoc, SourceLocation EndLoc, 2081 LambdaScopeInfo *LSI) { 2082 // Collect information from the lambda scope. 2083 SmallVector<LambdaCapture, 4> Captures; 2084 SmallVector<Expr *, 4> CaptureInits; 2085 SourceLocation CaptureDefaultLoc = LSI->CaptureDefaultLoc; 2086 LambdaCaptureDefault CaptureDefault = 2087 mapImplicitCaptureStyle(LSI->ImpCaptureStyle); 2088 CXXRecordDecl *Class; 2089 CXXMethodDecl *CallOperator; 2090 SourceRange IntroducerRange; 2091 bool ExplicitParams; 2092 bool ExplicitResultType; 2093 CleanupInfo LambdaCleanup; 2094 bool ContainsUnexpandedParameterPack; 2095 bool IsGenericLambda; 2096 { 2097 CallOperator = LSI->CallOperator; 2098 Class = LSI->Lambda; 2099 IntroducerRange = LSI->IntroducerRange; 2100 ExplicitParams = LSI->ExplicitParams; 2101 ExplicitResultType = !LSI->HasImplicitReturnType; 2102 LambdaCleanup = LSI->Cleanup; 2103 ContainsUnexpandedParameterPack = LSI->ContainsUnexpandedParameterPack; 2104 IsGenericLambda = Class->isGenericLambda(); 2105 2106 CallOperator->setLexicalDeclContext(Class); 2107 Decl *TemplateOrNonTemplateCallOperatorDecl = 2108 CallOperator->getDescribedFunctionTemplate() 2109 ? CallOperator->getDescribedFunctionTemplate() 2110 : cast<Decl>(CallOperator); 2111 2112 // FIXME: Is this really the best choice? Keeping the lexical decl context 2113 // set as CurContext seems more faithful to the source. 2114 TemplateOrNonTemplateCallOperatorDecl->setLexicalDeclContext(Class); 2115 2116 PopExpressionEvaluationContext(); 2117 2118 // True if the current capture has a used capture or default before it. 2119 bool CurHasPreviousCapture = CaptureDefault != LCD_None; 2120 SourceLocation PrevCaptureLoc = CurHasPreviousCapture ? 2121 CaptureDefaultLoc : IntroducerRange.getBegin(); 2122 2123 for (unsigned I = 0, N = LSI->Captures.size(); I != N; ++I) { 2124 const Capture &From = LSI->Captures[I]; 2125 2126 if (From.isInvalid()) 2127 return ExprError(); 2128 2129 assert(!From.isBlockCapture() && "Cannot capture __block variables"); 2130 bool IsImplicit = I >= LSI->NumExplicitCaptures; 2131 SourceLocation ImplicitCaptureLoc = 2132 IsImplicit ? CaptureDefaultLoc : SourceLocation(); 2133 2134 // Use source ranges of explicit captures for fixits where available. 2135 SourceRange CaptureRange = LSI->ExplicitCaptureRanges[I]; 2136 2137 // Warn about unused explicit captures. 2138 bool IsCaptureUsed = true; 2139 if (!CurContext->isDependentContext() && !IsImplicit && 2140 !From.isODRUsed()) { 2141 // Initialized captures that are non-ODR used may not be eliminated. 2142 // FIXME: Where did the IsGenericLambda here come from? 2143 bool NonODRUsedInitCapture = 2144 IsGenericLambda && From.isNonODRUsed() && From.isInitCapture(); 2145 if (!NonODRUsedInitCapture) { 2146 bool IsLast = (I + 1) == LSI->NumExplicitCaptures; 2147 SourceRange FixItRange; 2148 if (CaptureRange.isValid()) { 2149 if (!CurHasPreviousCapture && !IsLast) { 2150 // If there are no captures preceding this capture, remove the 2151 // following comma. 2152 FixItRange = SourceRange(CaptureRange.getBegin(), 2153 getLocForEndOfToken(CaptureRange.getEnd())); 2154 } else { 2155 // Otherwise, remove the comma since the last used capture. 2156 FixItRange = SourceRange(getLocForEndOfToken(PrevCaptureLoc), 2157 CaptureRange.getEnd()); 2158 } 2159 } 2160 2161 IsCaptureUsed = !DiagnoseUnusedLambdaCapture(FixItRange, From); 2162 } 2163 } 2164 2165 if (CaptureRange.isValid()) { 2166 CurHasPreviousCapture |= IsCaptureUsed; 2167 PrevCaptureLoc = CaptureRange.getEnd(); 2168 } 2169 2170 // Map the capture to our AST representation. 2171 LambdaCapture Capture = [&] { 2172 if (From.isThisCapture()) { 2173 // Capturing 'this' implicitly with a default of '[=]' is deprecated, 2174 // because it results in a reference capture. Don't warn prior to 2175 // C++2a; there's nothing that can be done about it before then. 2176 if (getLangOpts().CPlusPlus20 && IsImplicit && 2177 CaptureDefault == LCD_ByCopy) { 2178 Diag(From.getLocation(), diag::warn_deprecated_this_capture); 2179 Diag(CaptureDefaultLoc, diag::note_deprecated_this_capture) 2180 << FixItHint::CreateInsertion( 2181 getLocForEndOfToken(CaptureDefaultLoc), ", this"); 2182 } 2183 return LambdaCapture(From.getLocation(), IsImplicit, 2184 From.isCopyCapture() ? LCK_StarThis : LCK_This); 2185 } else if (From.isVLATypeCapture()) { 2186 return LambdaCapture(From.getLocation(), IsImplicit, LCK_VLAType); 2187 } else { 2188 assert(From.isVariableCapture() && "unknown kind of capture"); 2189 ValueDecl *Var = From.getVariable(); 2190 LambdaCaptureKind Kind = 2191 From.isCopyCapture() ? LCK_ByCopy : LCK_ByRef; 2192 return LambdaCapture(From.getLocation(), IsImplicit, Kind, Var, 2193 From.getEllipsisLoc()); 2194 } 2195 }(); 2196 2197 // Form the initializer for the capture field. 2198 ExprResult Init = BuildCaptureInit(From, ImplicitCaptureLoc); 2199 2200 // FIXME: Skip this capture if the capture is not used, the initializer 2201 // has no side-effects, the type of the capture is trivial, and the 2202 // lambda is not externally visible. 2203 2204 // Add a FieldDecl for the capture and form its initializer. 2205 BuildCaptureField(Class, From); 2206 Captures.push_back(Capture); 2207 CaptureInits.push_back(Init.get()); 2208 2209 if (LangOpts.CUDA) 2210 CUDA().CheckLambdaCapture(CallOperator, From); 2211 } 2212 2213 Class->setCaptures(Context, Captures); 2214 2215 // C++11 [expr.prim.lambda]p6: 2216 // The closure type for a lambda-expression with no lambda-capture 2217 // has a public non-virtual non-explicit const conversion function 2218 // to pointer to function having the same parameter and return 2219 // types as the closure type's function call operator. 2220 if (Captures.empty() && CaptureDefault == LCD_None) 2221 addFunctionPointerConversions(*this, IntroducerRange, Class, 2222 CallOperator); 2223 2224 // Objective-C++: 2225 // The closure type for a lambda-expression has a public non-virtual 2226 // non-explicit const conversion function to a block pointer having the 2227 // same parameter and return types as the closure type's function call 2228 // operator. 2229 // FIXME: Fix generic lambda to block conversions. 2230 if (getLangOpts().Blocks && getLangOpts().ObjC && !IsGenericLambda) 2231 addBlockPointerConversion(*this, IntroducerRange, Class, CallOperator); 2232 2233 // Finalize the lambda class. 2234 SmallVector<Decl*, 4> Fields(Class->fields()); 2235 ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(), 2236 SourceLocation(), ParsedAttributesView()); 2237 CheckCompletedCXXClass(nullptr, Class); 2238 } 2239 2240 Cleanup.mergeFrom(LambdaCleanup); 2241 2242 LambdaExpr *Lambda = 2243 LambdaExpr::Create(Context, Class, IntroducerRange, CaptureDefault, 2244 CaptureDefaultLoc, ExplicitParams, ExplicitResultType, 2245 CaptureInits, EndLoc, ContainsUnexpandedParameterPack); 2246 2247 // If the lambda expression's call operator is not explicitly marked constexpr 2248 // and is not dependent, analyze the call operator to infer 2249 // its constexpr-ness, suppressing diagnostics while doing so. 2250 if (getLangOpts().CPlusPlus17 && !CallOperator->isInvalidDecl() && 2251 !CallOperator->isConstexpr() && 2252 !isa<CoroutineBodyStmt>(CallOperator->getBody()) && 2253 !Class->isDependentContext()) { 2254 CallOperator->setConstexprKind( 2255 CheckConstexprFunctionDefinition(CallOperator, 2256 CheckConstexprKind::CheckValid) 2257 ? ConstexprSpecKind::Constexpr 2258 : ConstexprSpecKind::Unspecified); 2259 } 2260 2261 // Emit delayed shadowing warnings now that the full capture list is known. 2262 DiagnoseShadowingLambdaDecls(LSI); 2263 2264 if (!CurContext->isDependentContext()) { 2265 switch (ExprEvalContexts.back().Context) { 2266 // C++11 [expr.prim.lambda]p2: 2267 // A lambda-expression shall not appear in an unevaluated operand 2268 // (Clause 5). 2269 case ExpressionEvaluationContext::Unevaluated: 2270 case ExpressionEvaluationContext::UnevaluatedList: 2271 case ExpressionEvaluationContext::UnevaluatedAbstract: 2272 // C++1y [expr.const]p2: 2273 // A conditional-expression e is a core constant expression unless the 2274 // evaluation of e, following the rules of the abstract machine, would 2275 // evaluate [...] a lambda-expression. 2276 // 2277 // This is technically incorrect, there are some constant evaluated contexts 2278 // where this should be allowed. We should probably fix this when DR1607 is 2279 // ratified, it lays out the exact set of conditions where we shouldn't 2280 // allow a lambda-expression. 2281 case ExpressionEvaluationContext::ConstantEvaluated: 2282 case ExpressionEvaluationContext::ImmediateFunctionContext: 2283 // We don't actually diagnose this case immediately, because we 2284 // could be within a context where we might find out later that 2285 // the expression is potentially evaluated (e.g., for typeid). 2286 ExprEvalContexts.back().Lambdas.push_back(Lambda); 2287 break; 2288 2289 case ExpressionEvaluationContext::DiscardedStatement: 2290 case ExpressionEvaluationContext::PotentiallyEvaluated: 2291 case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed: 2292 break; 2293 } 2294 maybeAddDeclWithEffects(LSI->CallOperator); 2295 } 2296 2297 return MaybeBindToTemporary(Lambda); 2298 } 2299 2300 ExprResult Sema::BuildBlockForLambdaConversion(SourceLocation CurrentLocation, 2301 SourceLocation ConvLocation, 2302 CXXConversionDecl *Conv, 2303 Expr *Src) { 2304 // Make sure that the lambda call operator is marked used. 2305 CXXRecordDecl *Lambda = Conv->getParent(); 2306 CXXMethodDecl *CallOperator 2307 = cast<CXXMethodDecl>( 2308 Lambda->lookup( 2309 Context.DeclarationNames.getCXXOperatorName(OO_Call)).front()); 2310 CallOperator->setReferenced(); 2311 CallOperator->markUsed(Context); 2312 2313 ExprResult Init = PerformCopyInitialization( 2314 InitializedEntity::InitializeLambdaToBlock(ConvLocation, Src->getType()), 2315 CurrentLocation, Src); 2316 if (!Init.isInvalid()) 2317 Init = ActOnFinishFullExpr(Init.get(), /*DiscardedValue*/ false); 2318 2319 if (Init.isInvalid()) 2320 return ExprError(); 2321 2322 // Create the new block to be returned. 2323 BlockDecl *Block = BlockDecl::Create(Context, CurContext, ConvLocation); 2324 2325 // Set the type information. 2326 Block->setSignatureAsWritten(CallOperator->getTypeSourceInfo()); 2327 Block->setIsVariadic(CallOperator->isVariadic()); 2328 Block->setBlockMissingReturnType(false); 2329 2330 // Add parameters. 2331 SmallVector<ParmVarDecl *, 4> BlockParams; 2332 for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) { 2333 ParmVarDecl *From = CallOperator->getParamDecl(I); 2334 BlockParams.push_back(ParmVarDecl::Create( 2335 Context, Block, From->getBeginLoc(), From->getLocation(), 2336 From->getIdentifier(), From->getType(), From->getTypeSourceInfo(), 2337 From->getStorageClass(), 2338 /*DefArg=*/nullptr)); 2339 } 2340 Block->setParams(BlockParams); 2341 2342 Block->setIsConversionFromLambda(true); 2343 2344 // Add capture. The capture uses a fake variable, which doesn't correspond 2345 // to any actual memory location. However, the initializer copy-initializes 2346 // the lambda object. 2347 TypeSourceInfo *CapVarTSI = 2348 Context.getTrivialTypeSourceInfo(Src->getType()); 2349 VarDecl *CapVar = VarDecl::Create(Context, Block, ConvLocation, 2350 ConvLocation, nullptr, 2351 Src->getType(), CapVarTSI, 2352 SC_None); 2353 BlockDecl::Capture Capture(/*variable=*/CapVar, /*byRef=*/false, 2354 /*nested=*/false, /*copy=*/Init.get()); 2355 Block->setCaptures(Context, Capture, /*CapturesCXXThis=*/false); 2356 2357 // Add a fake function body to the block. IR generation is responsible 2358 // for filling in the actual body, which cannot be expressed as an AST. 2359 Block->setBody(new (Context) CompoundStmt(ConvLocation)); 2360 2361 // Create the block literal expression. 2362 // TODO: Do we ever get here if we have unexpanded packs in the lambda??? 2363 Expr *BuildBlock = 2364 new (Context) BlockExpr(Block, Conv->getConversionType(), 2365 /*ContainsUnexpandedParameterPack=*/false); 2366 ExprCleanupObjects.push_back(Block); 2367 Cleanup.setExprNeedsCleanups(true); 2368 2369 return BuildBlock; 2370 } 2371 2372 static FunctionDecl *getPatternFunctionDecl(FunctionDecl *FD) { 2373 if (FD->getTemplatedKind() == FunctionDecl::TK_MemberSpecialization) { 2374 while (FD->getInstantiatedFromMemberFunction()) 2375 FD = FD->getInstantiatedFromMemberFunction(); 2376 return FD; 2377 } 2378 2379 if (FD->getTemplatedKind() == FunctionDecl::TK_DependentNonTemplate) 2380 return FD->getInstantiatedFromDecl(); 2381 2382 FunctionTemplateDecl *FTD = FD->getPrimaryTemplate(); 2383 if (!FTD) 2384 return nullptr; 2385 2386 while (FTD->getInstantiatedFromMemberTemplate()) 2387 FTD = FTD->getInstantiatedFromMemberTemplate(); 2388 2389 return FTD->getTemplatedDecl(); 2390 } 2391 2392 Sema::LambdaScopeForCallOperatorInstantiationRAII:: 2393 LambdaScopeForCallOperatorInstantiationRAII( 2394 Sema &SemaRef, FunctionDecl *FD, MultiLevelTemplateArgumentList MLTAL, 2395 LocalInstantiationScope &Scope, bool ShouldAddDeclsFromParentScope) 2396 : FunctionScopeRAII(SemaRef) { 2397 if (!isLambdaCallOperator(FD)) { 2398 FunctionScopeRAII::disable(); 2399 return; 2400 } 2401 2402 SemaRef.RebuildLambdaScopeInfo(cast<CXXMethodDecl>(FD)); 2403 2404 FunctionDecl *FDPattern = getPatternFunctionDecl(FD); 2405 if (!FDPattern) 2406 return; 2407 2408 if (!ShouldAddDeclsFromParentScope) 2409 return; 2410 2411 llvm::SmallVector<std::pair<FunctionDecl *, FunctionDecl *>, 4> 2412 InstantiationAndPatterns; 2413 while (FDPattern && FD) { 2414 InstantiationAndPatterns.emplace_back(FDPattern, FD); 2415 2416 FDPattern = 2417 dyn_cast<FunctionDecl>(getLambdaAwareParentOfDeclContext(FDPattern)); 2418 FD = dyn_cast<FunctionDecl>(getLambdaAwareParentOfDeclContext(FD)); 2419 } 2420 2421 // Add instantiated parameters and local vars to scopes, starting from the 2422 // outermost lambda to the innermost lambda. This ordering ensures that 2423 // the outer instantiations can be found when referenced from within inner 2424 // lambdas. 2425 // 2426 // auto L = [](auto... x) { 2427 // return [](decltype(x)... y) { }; // Instantiating y needs x 2428 // }; 2429 // 2430 2431 for (auto [FDPattern, FD] : llvm::reverse(InstantiationAndPatterns)) { 2432 SemaRef.addInstantiatedParametersToScope(FD, FDPattern, Scope, MLTAL); 2433 SemaRef.addInstantiatedLocalVarsToScope(FD, FDPattern, Scope); 2434 2435 if (isLambdaCallOperator(FD)) 2436 SemaRef.addInstantiatedCapturesToScope(FD, FDPattern, Scope, MLTAL); 2437 } 2438 } 2439