xref: /llvm-project/clang/lib/Sema/SemaExprMember.cpp (revision 5ede7b6a6bc22aee86e592835ccc4eaa9459e5cd)
1 //===--- SemaExprMember.cpp - Semantic Analysis for Expressions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements semantic analysis member access expressions.
10 //
11 //===----------------------------------------------------------------------===//
12 #include "clang/AST/DeclCXX.h"
13 #include "clang/AST/DeclObjC.h"
14 #include "clang/AST/DeclTemplate.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/AST/ExprObjC.h"
17 #include "clang/Lex/Preprocessor.h"
18 #include "clang/Sema/Lookup.h"
19 #include "clang/Sema/Overload.h"
20 #include "clang/Sema/Scope.h"
21 #include "clang/Sema/ScopeInfo.h"
22 #include "clang/Sema/SemaObjC.h"
23 #include "clang/Sema/SemaOpenMP.h"
24 
25 using namespace clang;
26 using namespace sema;
27 
28 typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> BaseSet;
29 
30 /// Determines if the given class is provably not derived from all of
31 /// the prospective base classes.
32 static bool isProvablyNotDerivedFrom(Sema &SemaRef, CXXRecordDecl *Record,
33                                      const BaseSet &Bases) {
34   auto BaseIsNotInSet = [&Bases](const CXXRecordDecl *Base) {
35     return !Bases.count(Base->getCanonicalDecl());
36   };
37   return BaseIsNotInSet(Record) && Record->forallBases(BaseIsNotInSet);
38 }
39 
40 enum IMAKind {
41   /// The reference is definitely not an instance member access.
42   IMA_Static,
43 
44   /// The reference may be an implicit instance member access.
45   IMA_Mixed,
46 
47   /// The reference may be to an instance member, but it might be invalid if
48   /// so, because the context is not an instance method.
49   IMA_Mixed_StaticOrExplicitContext,
50 
51   /// The reference may be to an instance member, but it is invalid if
52   /// so, because the context is from an unrelated class.
53   IMA_Mixed_Unrelated,
54 
55   /// The reference is definitely an implicit instance member access.
56   IMA_Instance,
57 
58   /// The reference may be to an unresolved using declaration.
59   IMA_Unresolved,
60 
61   /// The reference is a contextually-permitted abstract member reference.
62   IMA_Abstract,
63 
64   /// Whether the context is static is dependent on the enclosing template (i.e.
65   /// in a dependent class scope explicit specialization).
66   IMA_Dependent,
67 
68   /// The reference may be to an unresolved using declaration and the
69   /// context is not an instance method.
70   IMA_Unresolved_StaticOrExplicitContext,
71 
72   // The reference refers to a field which is not a member of the containing
73   // class, which is allowed because we're in C++11 mode and the context is
74   // unevaluated.
75   IMA_Field_Uneval_Context,
76 
77   /// All possible referrents are instance members and the current
78   /// context is not an instance method.
79   IMA_Error_StaticOrExplicitContext,
80 
81   /// All possible referrents are instance members of an unrelated
82   /// class.
83   IMA_Error_Unrelated
84 };
85 
86 /// The given lookup names class member(s) and is not being used for
87 /// an address-of-member expression.  Classify the type of access
88 /// according to whether it's possible that this reference names an
89 /// instance member.  This is best-effort in dependent contexts; it is okay to
90 /// conservatively answer "yes", in which case some errors will simply
91 /// not be caught until template-instantiation.
92 static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef,
93                                             const LookupResult &R) {
94   assert(!R.empty() && (*R.begin())->isCXXClassMember());
95 
96   DeclContext *DC = SemaRef.getFunctionLevelDeclContext();
97 
98   bool couldInstantiateToStatic = false;
99   bool isStaticOrExplicitContext = SemaRef.CXXThisTypeOverride.isNull();
100 
101   if (auto *MD = dyn_cast<CXXMethodDecl>(DC)) {
102     if (MD->isImplicitObjectMemberFunction()) {
103       isStaticOrExplicitContext = false;
104       // A dependent class scope function template explicit specialization
105       // that is neither declared 'static' nor with an explicit object
106       // parameter could instantiate to a static or non-static member function.
107       couldInstantiateToStatic = MD->getDependentSpecializationInfo();
108     }
109   }
110 
111   if (R.isUnresolvableResult()) {
112     if (couldInstantiateToStatic)
113       return IMA_Dependent;
114     return isStaticOrExplicitContext ? IMA_Unresolved_StaticOrExplicitContext
115                                      : IMA_Unresolved;
116   }
117 
118   // Collect all the declaring classes of instance members we find.
119   bool hasNonInstance = false;
120   bool isField = false;
121   BaseSet Classes;
122   for (NamedDecl *D : R) {
123     // Look through any using decls.
124     D = D->getUnderlyingDecl();
125 
126     if (D->isCXXInstanceMember()) {
127       isField |= isa<FieldDecl>(D) || isa<MSPropertyDecl>(D) ||
128                  isa<IndirectFieldDecl>(D);
129 
130       CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext());
131       Classes.insert(R->getCanonicalDecl());
132     } else
133       hasNonInstance = true;
134   }
135 
136   // If we didn't find any instance members, it can't be an implicit
137   // member reference.
138   if (Classes.empty())
139     return IMA_Static;
140 
141   if (couldInstantiateToStatic)
142     return IMA_Dependent;
143 
144   // C++11 [expr.prim.general]p12:
145   //   An id-expression that denotes a non-static data member or non-static
146   //   member function of a class can only be used:
147   //   (...)
148   //   - if that id-expression denotes a non-static data member and it
149   //     appears in an unevaluated operand.
150   //
151   // This rule is specific to C++11.  However, we also permit this form
152   // in unevaluated inline assembly operands, like the operand to a SIZE.
153   IMAKind AbstractInstanceResult = IMA_Static; // happens to be 'false'
154   assert(!AbstractInstanceResult);
155   switch (SemaRef.ExprEvalContexts.back().Context) {
156   case Sema::ExpressionEvaluationContext::Unevaluated:
157   case Sema::ExpressionEvaluationContext::UnevaluatedList:
158     if (isField && SemaRef.getLangOpts().CPlusPlus11)
159       AbstractInstanceResult = IMA_Field_Uneval_Context;
160     break;
161 
162   case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
163     AbstractInstanceResult = IMA_Abstract;
164     break;
165 
166   case Sema::ExpressionEvaluationContext::DiscardedStatement:
167   case Sema::ExpressionEvaluationContext::ConstantEvaluated:
168   case Sema::ExpressionEvaluationContext::ImmediateFunctionContext:
169   case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
170   case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
171     break;
172   }
173 
174   // If the current context is not an instance method, it can't be
175   // an implicit member reference.
176   if (isStaticOrExplicitContext) {
177     if (hasNonInstance)
178       return IMA_Mixed_StaticOrExplicitContext;
179 
180     return AbstractInstanceResult ? AbstractInstanceResult
181                                   : IMA_Error_StaticOrExplicitContext;
182   }
183 
184   CXXRecordDecl *contextClass;
185   if (auto *MD = dyn_cast<CXXMethodDecl>(DC))
186     contextClass = MD->getParent()->getCanonicalDecl();
187   else if (auto *RD = dyn_cast<CXXRecordDecl>(DC))
188     contextClass = RD;
189   else
190     return AbstractInstanceResult ? AbstractInstanceResult
191                                   : IMA_Error_StaticOrExplicitContext;
192 
193   // [class.mfct.non-static]p3:
194   // ...is used in the body of a non-static member function of class X,
195   // if name lookup (3.4.1) resolves the name in the id-expression to a
196   // non-static non-type member of some class C [...]
197   // ...if C is not X or a base class of X, the class member access expression
198   // is ill-formed.
199   if (R.getNamingClass() &&
200       contextClass->getCanonicalDecl() !=
201         R.getNamingClass()->getCanonicalDecl()) {
202     // If the naming class is not the current context, this was a qualified
203     // member name lookup, and it's sufficient to check that we have the naming
204     // class as a base class.
205     Classes.clear();
206     Classes.insert(R.getNamingClass()->getCanonicalDecl());
207   }
208 
209   // If we can prove that the current context is unrelated to all the
210   // declaring classes, it can't be an implicit member reference (in
211   // which case it's an error if any of those members are selected).
212   if (isProvablyNotDerivedFrom(SemaRef, contextClass, Classes))
213     return hasNonInstance ? IMA_Mixed_Unrelated :
214            AbstractInstanceResult ? AbstractInstanceResult :
215                                     IMA_Error_Unrelated;
216 
217   return (hasNonInstance ? IMA_Mixed : IMA_Instance);
218 }
219 
220 /// Diagnose a reference to a field with no object available.
221 static void diagnoseInstanceReference(Sema &SemaRef,
222                                       const CXXScopeSpec &SS,
223                                       NamedDecl *Rep,
224                                       const DeclarationNameInfo &nameInfo) {
225   SourceLocation Loc = nameInfo.getLoc();
226   SourceRange Range(Loc);
227   if (SS.isSet()) Range.setBegin(SS.getRange().getBegin());
228 
229   // Look through using shadow decls and aliases.
230   Rep = Rep->getUnderlyingDecl();
231 
232   DeclContext *FunctionLevelDC = SemaRef.getFunctionLevelDeclContext();
233   CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FunctionLevelDC);
234   CXXRecordDecl *ContextClass = Method ? Method->getParent() : nullptr;
235   CXXRecordDecl *RepClass = dyn_cast<CXXRecordDecl>(Rep->getDeclContext());
236 
237   bool InStaticMethod = Method && Method->isStatic();
238   bool InExplicitObjectMethod =
239       Method && Method->isExplicitObjectMemberFunction();
240   bool IsField = isa<FieldDecl>(Rep) || isa<IndirectFieldDecl>(Rep);
241 
242   std::string Replacement;
243   if (InExplicitObjectMethod) {
244     DeclarationName N = Method->getParamDecl(0)->getDeclName();
245     if (!N.isEmpty()) {
246       Replacement.append(N.getAsString());
247       Replacement.append(".");
248     }
249   }
250   if (IsField && InStaticMethod)
251     // "invalid use of member 'x' in static member function"
252     SemaRef.Diag(Loc, diag::err_invalid_member_use_in_method)
253         << Range << nameInfo.getName() << /*static*/ 0;
254   else if (IsField && InExplicitObjectMethod) {
255     auto Diag = SemaRef.Diag(Loc, diag::err_invalid_member_use_in_method)
256                 << Range << nameInfo.getName() << /*explicit*/ 1;
257     if (!Replacement.empty())
258       Diag << FixItHint::CreateInsertion(Loc, Replacement);
259   } else if (ContextClass && RepClass && SS.isEmpty() &&
260              !InExplicitObjectMethod && !InStaticMethod &&
261              !RepClass->Equals(ContextClass) &&
262              RepClass->Encloses(ContextClass))
263     // Unqualified lookup in a non-static member function found a member of an
264     // enclosing class.
265     SemaRef.Diag(Loc, diag::err_nested_non_static_member_use)
266       << IsField << RepClass << nameInfo.getName() << ContextClass << Range;
267   else if (IsField)
268     SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use)
269       << nameInfo.getName() << Range;
270   else if (!InExplicitObjectMethod)
271     SemaRef.Diag(Loc, diag::err_member_call_without_object)
272         << Range << /*static*/ 0;
273   else {
274     if (const auto *Tpl = dyn_cast<FunctionTemplateDecl>(Rep))
275       Rep = Tpl->getTemplatedDecl();
276     const auto *Callee = cast<CXXMethodDecl>(Rep);
277     auto Diag = SemaRef.Diag(Loc, diag::err_member_call_without_object)
278                 << Range << Callee->isExplicitObjectMemberFunction();
279     if (!Replacement.empty())
280       Diag << FixItHint::CreateInsertion(Loc, Replacement);
281   }
282 }
283 
284 bool Sema::isPotentialImplicitMemberAccess(const CXXScopeSpec &SS,
285                                            LookupResult &R,
286                                            bool IsAddressOfOperand) {
287   if (!getLangOpts().CPlusPlus)
288     return false;
289   else if (R.empty() || !R.begin()->isCXXClassMember())
290     return false;
291   else if (!IsAddressOfOperand)
292     return true;
293   else if (!SS.isEmpty())
294     return false;
295   else if (R.isOverloadedResult())
296     return false;
297   else if (R.isUnresolvableResult())
298     return true;
299   else
300     return isa<FieldDecl, IndirectFieldDecl, MSPropertyDecl>(R.getFoundDecl());
301 }
302 
303 ExprResult Sema::BuildPossibleImplicitMemberExpr(
304     const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, LookupResult &R,
305     const TemplateArgumentListInfo *TemplateArgs, const Scope *S) {
306   switch (IMAKind Classification = ClassifyImplicitMemberAccess(*this, R)) {
307   case IMA_Instance:
308   case IMA_Mixed:
309   case IMA_Mixed_Unrelated:
310   case IMA_Unresolved:
311     return BuildImplicitMemberExpr(
312         SS, TemplateKWLoc, R, TemplateArgs,
313         /*IsKnownInstance=*/Classification == IMA_Instance, S);
314   case IMA_Field_Uneval_Context:
315     Diag(R.getNameLoc(), diag::warn_cxx98_compat_non_static_member_use)
316       << R.getLookupNameInfo().getName();
317     [[fallthrough]];
318   case IMA_Static:
319   case IMA_Abstract:
320   case IMA_Mixed_StaticOrExplicitContext:
321   case IMA_Unresolved_StaticOrExplicitContext:
322     if (TemplateArgs || TemplateKWLoc.isValid())
323       return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*RequiresADL=*/false,
324                                  TemplateArgs);
325     return BuildDeclarationNameExpr(SS, R, /*NeedsADL=*/false,
326                                     /*AcceptInvalidDecl=*/false);
327   case IMA_Dependent:
328     R.suppressDiagnostics();
329     return UnresolvedLookupExpr::Create(
330         Context, R.getNamingClass(), SS.getWithLocInContext(Context),
331         TemplateKWLoc, R.getLookupNameInfo(), /*RequiresADL=*/false,
332         TemplateArgs, R.begin(), R.end(), /*KnownDependent=*/true,
333         /*KnownInstantiationDependent=*/true);
334 
335   case IMA_Error_StaticOrExplicitContext:
336   case IMA_Error_Unrelated:
337     diagnoseInstanceReference(*this, SS, R.getRepresentativeDecl(),
338                               R.getLookupNameInfo());
339     return ExprError();
340   }
341 
342   llvm_unreachable("unexpected instance member access kind");
343 }
344 
345 /// Determine whether input char is from rgba component set.
346 static bool
347 IsRGBA(char c) {
348   switch (c) {
349   case 'r':
350   case 'g':
351   case 'b':
352   case 'a':
353     return true;
354   default:
355     return false;
356   }
357 }
358 
359 // OpenCL v1.1, s6.1.7
360 // The component swizzle length must be in accordance with the acceptable
361 // vector sizes.
362 static bool IsValidOpenCLComponentSwizzleLength(unsigned len)
363 {
364   return (len >= 1 && len <= 4) || len == 8 || len == 16;
365 }
366 
367 /// Check an ext-vector component access expression.
368 ///
369 /// VK should be set in advance to the value kind of the base
370 /// expression.
371 static QualType
372 CheckExtVectorComponent(Sema &S, QualType baseType, ExprValueKind &VK,
373                         SourceLocation OpLoc, const IdentifierInfo *CompName,
374                         SourceLocation CompLoc) {
375   // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
376   // see FIXME there.
377   //
378   // FIXME: This logic can be greatly simplified by splitting it along
379   // halving/not halving and reworking the component checking.
380   const ExtVectorType *vecType = baseType->castAs<ExtVectorType>();
381 
382   // The vector accessor can't exceed the number of elements.
383   const char *compStr = CompName->getNameStart();
384 
385   // This flag determines whether or not the component is one of the four
386   // special names that indicate a subset of exactly half the elements are
387   // to be selected.
388   bool HalvingSwizzle = false;
389 
390   // This flag determines whether or not CompName has an 's' char prefix,
391   // indicating that it is a string of hex values to be used as vector indices.
392   bool HexSwizzle = (*compStr == 's' || *compStr == 'S') && compStr[1];
393 
394   bool HasRepeated = false;
395   bool HasIndex[16] = {};
396 
397   int Idx;
398 
399   // Check that we've found one of the special components, or that the component
400   // names must come from the same set.
401   if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
402       !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
403     HalvingSwizzle = true;
404   } else if (!HexSwizzle &&
405              (Idx = vecType->getPointAccessorIdx(*compStr)) != -1) {
406     bool HasRGBA = IsRGBA(*compStr);
407     do {
408       // Ensure that xyzw and rgba components don't intermingle.
409       if (HasRGBA != IsRGBA(*compStr))
410         break;
411       if (HasIndex[Idx]) HasRepeated = true;
412       HasIndex[Idx] = true;
413       compStr++;
414     } while (*compStr && (Idx = vecType->getPointAccessorIdx(*compStr)) != -1);
415 
416     // Emit a warning if an rgba selector is used earlier than OpenCL C 3.0.
417     if (HasRGBA || (*compStr && IsRGBA(*compStr))) {
418       if (S.getLangOpts().OpenCL &&
419           S.getLangOpts().getOpenCLCompatibleVersion() < 300) {
420         const char *DiagBegin = HasRGBA ? CompName->getNameStart() : compStr;
421         S.Diag(OpLoc, diag::ext_opencl_ext_vector_type_rgba_selector)
422             << StringRef(DiagBegin, 1) << SourceRange(CompLoc);
423       }
424     }
425   } else {
426     if (HexSwizzle) compStr++;
427     while ((Idx = vecType->getNumericAccessorIdx(*compStr)) != -1) {
428       if (HasIndex[Idx]) HasRepeated = true;
429       HasIndex[Idx] = true;
430       compStr++;
431     }
432   }
433 
434   if (!HalvingSwizzle && *compStr) {
435     // We didn't get to the end of the string. This means the component names
436     // didn't come from the same set *or* we encountered an illegal name.
437     size_t Offset = compStr - CompName->getNameStart() + 1;
438     char Fmt[3] = {'\'', *compStr, '\''};
439     S.Diag(OpLoc.getLocWithOffset(Offset),
440            diag::err_ext_vector_component_name_illegal)
441         << StringRef(Fmt, 3) << SourceRange(CompLoc);
442     return QualType();
443   }
444 
445   // Ensure no component accessor exceeds the width of the vector type it
446   // operates on.
447   if (!HalvingSwizzle) {
448     compStr = CompName->getNameStart();
449 
450     if (HexSwizzle)
451       compStr++;
452 
453     while (*compStr) {
454       if (!vecType->isAccessorWithinNumElements(*compStr++, HexSwizzle)) {
455         S.Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
456           << baseType << SourceRange(CompLoc);
457         return QualType();
458       }
459     }
460   }
461 
462   // OpenCL mode requires swizzle length to be in accordance with accepted
463   // sizes. Clang however supports arbitrary lengths for other languages.
464   if (S.getLangOpts().OpenCL && !HalvingSwizzle) {
465     unsigned SwizzleLength = CompName->getLength();
466 
467     if (HexSwizzle)
468       SwizzleLength--;
469 
470     if (IsValidOpenCLComponentSwizzleLength(SwizzleLength) == false) {
471       S.Diag(OpLoc, diag::err_opencl_ext_vector_component_invalid_length)
472         << SwizzleLength << SourceRange(CompLoc);
473       return QualType();
474     }
475   }
476 
477   // The component accessor looks fine - now we need to compute the actual type.
478   // The vector type is implied by the component accessor. For example,
479   // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
480   // vec4.s0 is a float, vec4.s23 is a vec3, etc.
481   // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
482   unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2
483                                      : CompName->getLength();
484   if (HexSwizzle)
485     CompSize--;
486 
487   if (CompSize == 1)
488     return vecType->getElementType();
489 
490   if (HasRepeated)
491     VK = VK_PRValue;
492 
493   QualType VT = S.Context.getExtVectorType(vecType->getElementType(), CompSize);
494   // Now look up the TypeDefDecl from the vector type. Without this,
495   // diagostics look bad. We want extended vector types to appear built-in.
496   for (Sema::ExtVectorDeclsType::iterator
497          I = S.ExtVectorDecls.begin(S.getExternalSource()),
498          E = S.ExtVectorDecls.end();
499        I != E; ++I) {
500     if ((*I)->getUnderlyingType() == VT)
501       return S.Context.getTypedefType(*I);
502   }
503 
504   return VT; // should never get here (a typedef type should always be found).
505 }
506 
507 static Decl *FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
508                                                 IdentifierInfo *Member,
509                                                 const Selector &Sel,
510                                                 ASTContext &Context) {
511   if (Member)
512     if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(
513             Member, ObjCPropertyQueryKind::OBJC_PR_query_instance))
514       return PD;
515   if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
516     return OMD;
517 
518   for (const auto *I : PDecl->protocols()) {
519     if (Decl *D = FindGetterSetterNameDeclFromProtocolList(I, Member, Sel,
520                                                            Context))
521       return D;
522   }
523   return nullptr;
524 }
525 
526 static Decl *FindGetterSetterNameDecl(const ObjCObjectPointerType *QIdTy,
527                                       IdentifierInfo *Member,
528                                       const Selector &Sel,
529                                       ASTContext &Context) {
530   // Check protocols on qualified interfaces.
531   Decl *GDecl = nullptr;
532   for (const auto *I : QIdTy->quals()) {
533     if (Member)
534       if (ObjCPropertyDecl *PD = I->FindPropertyDeclaration(
535               Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
536         GDecl = PD;
537         break;
538       }
539     // Also must look for a getter or setter name which uses property syntax.
540     if (ObjCMethodDecl *OMD = I->getInstanceMethod(Sel)) {
541       GDecl = OMD;
542       break;
543     }
544   }
545   if (!GDecl) {
546     for (const auto *I : QIdTy->quals()) {
547       // Search in the protocol-qualifier list of current protocol.
548       GDecl = FindGetterSetterNameDeclFromProtocolList(I, Member, Sel, Context);
549       if (GDecl)
550         return GDecl;
551     }
552   }
553   return GDecl;
554 }
555 
556 ExprResult
557 Sema::ActOnDependentMemberExpr(Expr *BaseExpr, QualType BaseType,
558                                bool IsArrow, SourceLocation OpLoc,
559                                const CXXScopeSpec &SS,
560                                SourceLocation TemplateKWLoc,
561                                NamedDecl *FirstQualifierInScope,
562                                const DeclarationNameInfo &NameInfo,
563                                const TemplateArgumentListInfo *TemplateArgs) {
564   // Even in dependent contexts, try to diagnose base expressions with
565   // obviously wrong types, e.g.:
566   //
567   // T* t;
568   // t.f;
569   //
570   // In Obj-C++, however, the above expression is valid, since it could be
571   // accessing the 'f' property if T is an Obj-C interface. The extra check
572   // allows this, while still reporting an error if T is a struct pointer.
573   if (!IsArrow) {
574     const PointerType *PT = BaseType->getAs<PointerType>();
575     if (PT && (!getLangOpts().ObjC ||
576                PT->getPointeeType()->isRecordType())) {
577       assert(BaseExpr && "cannot happen with implicit member accesses");
578       Diag(OpLoc, diag::err_typecheck_member_reference_struct_union)
579         << BaseType << BaseExpr->getSourceRange() << NameInfo.getSourceRange();
580       return ExprError();
581     }
582   }
583 
584   assert(BaseType->isDependentType() || NameInfo.getName().isDependentName() ||
585          isDependentScopeSpecifier(SS) ||
586          (TemplateArgs && llvm::any_of(TemplateArgs->arguments(),
587                                        [](const TemplateArgumentLoc &Arg) {
588                                          return Arg.getArgument().isDependent();
589                                        })));
590 
591   // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
592   // must have pointer type, and the accessed type is the pointee.
593   return CXXDependentScopeMemberExpr::Create(
594       Context, BaseExpr, BaseType, IsArrow, OpLoc,
595       SS.getWithLocInContext(Context), TemplateKWLoc, FirstQualifierInScope,
596       NameInfo, TemplateArgs);
597 }
598 
599 /// We know that the given qualified member reference points only to
600 /// declarations which do not belong to the static type of the base
601 /// expression.  Diagnose the problem.
602 static void DiagnoseQualifiedMemberReference(Sema &SemaRef,
603                                              Expr *BaseExpr,
604                                              QualType BaseType,
605                                              const CXXScopeSpec &SS,
606                                              NamedDecl *rep,
607                                        const DeclarationNameInfo &nameInfo) {
608   // If this is an implicit member access, use a different set of
609   // diagnostics.
610   if (!BaseExpr)
611     return diagnoseInstanceReference(SemaRef, SS, rep, nameInfo);
612 
613   SemaRef.Diag(nameInfo.getLoc(), diag::err_qualified_member_of_unrelated)
614     << SS.getRange() << rep << BaseType;
615 }
616 
617 bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr,
618                                          QualType BaseType,
619                                          const CXXScopeSpec &SS,
620                                          const LookupResult &R) {
621   CXXRecordDecl *BaseRecord =
622     cast_or_null<CXXRecordDecl>(computeDeclContext(BaseType));
623   if (!BaseRecord) {
624     // We can't check this yet because the base type is still
625     // dependent.
626     assert(BaseType->isDependentType());
627     return false;
628   }
629 
630   for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
631     // If this is an implicit member reference and we find a
632     // non-instance member, it's not an error.
633     if (!BaseExpr && !(*I)->isCXXInstanceMember())
634       return false;
635 
636     // Note that we use the DC of the decl, not the underlying decl.
637     DeclContext *DC = (*I)->getDeclContext()->getNonTransparentContext();
638     if (!DC->isRecord())
639       continue;
640 
641     CXXRecordDecl *MemberRecord = cast<CXXRecordDecl>(DC)->getCanonicalDecl();
642     if (BaseRecord->getCanonicalDecl() == MemberRecord ||
643         !BaseRecord->isProvablyNotDerivedFrom(MemberRecord))
644       return false;
645   }
646 
647   DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS,
648                                    R.getRepresentativeDecl(),
649                                    R.getLookupNameInfo());
650   return true;
651 }
652 
653 namespace {
654 
655 // Callback to only accept typo corrections that are either a ValueDecl or a
656 // FunctionTemplateDecl and are declared in the current record or, for a C++
657 // classes, one of its base classes.
658 class RecordMemberExprValidatorCCC final : public CorrectionCandidateCallback {
659 public:
660   explicit RecordMemberExprValidatorCCC(QualType RTy)
661       : Record(RTy->getAsRecordDecl()) {
662     // Don't add bare keywords to the consumer since they will always fail
663     // validation by virtue of not being associated with any decls.
664     WantTypeSpecifiers = false;
665     WantExpressionKeywords = false;
666     WantCXXNamedCasts = false;
667     WantFunctionLikeCasts = false;
668     WantRemainingKeywords = false;
669   }
670 
671   bool ValidateCandidate(const TypoCorrection &candidate) override {
672     NamedDecl *ND = candidate.getCorrectionDecl();
673     // Don't accept candidates that cannot be member functions, constants,
674     // variables, or templates.
675     if (!ND || !(isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)))
676       return false;
677 
678     // Accept candidates that occur in the current record.
679     if (Record->containsDecl(ND))
680       return true;
681 
682     if (const auto *RD = dyn_cast<CXXRecordDecl>(Record)) {
683       // Accept candidates that occur in any of the current class' base classes.
684       for (const auto &BS : RD->bases()) {
685         if (const auto *BSTy = BS.getType()->getAs<RecordType>()) {
686           if (BSTy->getDecl()->containsDecl(ND))
687             return true;
688         }
689       }
690     }
691 
692     return false;
693   }
694 
695   std::unique_ptr<CorrectionCandidateCallback> clone() override {
696     return std::make_unique<RecordMemberExprValidatorCCC>(*this);
697   }
698 
699 private:
700   const RecordDecl *const Record;
701 };
702 
703 }
704 
705 static bool LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R,
706                                      Expr *BaseExpr, QualType RTy,
707                                      SourceLocation OpLoc, bool IsArrow,
708                                      CXXScopeSpec &SS, bool HasTemplateArgs,
709                                      SourceLocation TemplateKWLoc,
710                                      TypoExpr *&TE) {
711   SourceRange BaseRange = BaseExpr ? BaseExpr->getSourceRange() : SourceRange();
712   if (!RTy->isDependentType() &&
713       !SemaRef.isThisOutsideMemberFunctionBody(RTy) &&
714       SemaRef.RequireCompleteType(
715           OpLoc, RTy, diag::err_typecheck_incomplete_tag, BaseRange))
716     return true;
717 
718   // LookupTemplateName/LookupParsedName don't expect these both to exist
719   // simultaneously.
720   QualType ObjectType = SS.isSet() ? QualType() : RTy;
721   if (HasTemplateArgs || TemplateKWLoc.isValid())
722     return SemaRef.LookupTemplateName(R,
723                                       /*S=*/nullptr, SS, ObjectType,
724                                       /*EnteringContext=*/false, TemplateKWLoc);
725 
726   SemaRef.LookupParsedName(R, /*S=*/nullptr, &SS, ObjectType);
727 
728   if (!R.empty() || R.wasNotFoundInCurrentInstantiation())
729     return false;
730 
731   DeclarationName Typo = R.getLookupName();
732   SourceLocation TypoLoc = R.getNameLoc();
733   // Recompute the lookup context.
734   DeclContext *DC = SS.isSet() ? SemaRef.computeDeclContext(SS)
735                                : SemaRef.computeDeclContext(RTy);
736 
737   struct QueryState {
738     Sema &SemaRef;
739     DeclarationNameInfo NameInfo;
740     Sema::LookupNameKind LookupKind;
741     RedeclarationKind Redecl;
742   };
743   QueryState Q = {R.getSema(), R.getLookupNameInfo(), R.getLookupKind(),
744                   R.redeclarationKind()};
745   RecordMemberExprValidatorCCC CCC(RTy);
746   TE = SemaRef.CorrectTypoDelayed(
747       R.getLookupNameInfo(), R.getLookupKind(), nullptr, &SS, CCC,
748       [=, &SemaRef](const TypoCorrection &TC) {
749         if (TC) {
750           assert(!TC.isKeyword() &&
751                  "Got a keyword as a correction for a member!");
752           bool DroppedSpecifier =
753               TC.WillReplaceSpecifier() &&
754               Typo.getAsString() == TC.getAsString(SemaRef.getLangOpts());
755           SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest)
756                                        << Typo << DC << DroppedSpecifier
757                                        << SS.getRange());
758         } else {
759           SemaRef.Diag(TypoLoc, diag::err_no_member)
760               << Typo << DC << (SS.isSet() ? SS.getRange() : BaseRange);
761         }
762       },
763       [=](Sema &SemaRef, TypoExpr *TE, TypoCorrection TC) mutable {
764         LookupResult R(Q.SemaRef, Q.NameInfo, Q.LookupKind, Q.Redecl);
765         R.clear(); // Ensure there's no decls lingering in the shared state.
766         R.suppressDiagnostics();
767         R.setLookupName(TC.getCorrection());
768         for (NamedDecl *ND : TC)
769           R.addDecl(ND);
770         R.resolveKind();
771         return SemaRef.BuildMemberReferenceExpr(
772             BaseExpr, BaseExpr->getType(), OpLoc, IsArrow, SS, SourceLocation(),
773             nullptr, R, nullptr, nullptr);
774       },
775       Sema::CTK_ErrorRecovery, DC);
776 
777   return false;
778 }
779 
780 static ExprResult LookupMemberExpr(Sema &S, LookupResult &R,
781                                    ExprResult &BaseExpr, bool &IsArrow,
782                                    SourceLocation OpLoc, CXXScopeSpec &SS,
783                                    Decl *ObjCImpDecl, bool HasTemplateArgs,
784                                    SourceLocation TemplateKWLoc);
785 
786 ExprResult Sema::BuildMemberReferenceExpr(
787     Expr *Base, QualType BaseType, SourceLocation OpLoc, bool IsArrow,
788     CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
789     NamedDecl *FirstQualifierInScope, const DeclarationNameInfo &NameInfo,
790     const TemplateArgumentListInfo *TemplateArgs, const Scope *S,
791     ActOnMemberAccessExtraArgs *ExtraArgs) {
792   LookupResult R(*this, NameInfo, LookupMemberName);
793 
794   // Implicit member accesses.
795   if (!Base) {
796     TypoExpr *TE = nullptr;
797     QualType RecordTy = BaseType;
798     if (IsArrow) RecordTy = RecordTy->castAs<PointerType>()->getPointeeType();
799     if (LookupMemberExprInRecord(*this, R, nullptr, RecordTy, OpLoc, IsArrow,
800                                  SS, TemplateArgs != nullptr, TemplateKWLoc,
801                                  TE))
802       return ExprError();
803     if (TE)
804       return TE;
805 
806   // Explicit member accesses.
807   } else {
808     ExprResult BaseResult = Base;
809     ExprResult Result =
810         LookupMemberExpr(*this, R, BaseResult, IsArrow, OpLoc, SS,
811                          ExtraArgs ? ExtraArgs->ObjCImpDecl : nullptr,
812                          TemplateArgs != nullptr, TemplateKWLoc);
813 
814     if (BaseResult.isInvalid())
815       return ExprError();
816     Base = BaseResult.get();
817 
818     if (Result.isInvalid())
819       return ExprError();
820 
821     if (Result.get())
822       return Result;
823 
824     // LookupMemberExpr can modify Base, and thus change BaseType
825     BaseType = Base->getType();
826   }
827 
828   // BuildMemberReferenceExpr expects the nested-name-specifier, if any, to be
829   // valid.
830   if (SS.isInvalid())
831     return ExprError();
832 
833   return BuildMemberReferenceExpr(Base, BaseType,
834                                   OpLoc, IsArrow, SS, TemplateKWLoc,
835                                   FirstQualifierInScope, R, TemplateArgs, S,
836                                   false, ExtraArgs);
837 }
838 
839 ExprResult
840 Sema::BuildAnonymousStructUnionMemberReference(const CXXScopeSpec &SS,
841                                                SourceLocation loc,
842                                                IndirectFieldDecl *indirectField,
843                                                DeclAccessPair foundDecl,
844                                                Expr *baseObjectExpr,
845                                                SourceLocation opLoc) {
846   // First, build the expression that refers to the base object.
847 
848   // Case 1:  the base of the indirect field is not a field.
849   VarDecl *baseVariable = indirectField->getVarDecl();
850   CXXScopeSpec EmptySS;
851   if (baseVariable) {
852     assert(baseVariable->getType()->isRecordType());
853 
854     // In principle we could have a member access expression that
855     // accesses an anonymous struct/union that's a static member of
856     // the base object's class.  However, under the current standard,
857     // static data members cannot be anonymous structs or unions.
858     // Supporting this is as easy as building a MemberExpr here.
859     assert(!baseObjectExpr && "anonymous struct/union is static data member?");
860 
861     DeclarationNameInfo baseNameInfo(DeclarationName(), loc);
862 
863     ExprResult result
864       = BuildDeclarationNameExpr(EmptySS, baseNameInfo, baseVariable);
865     if (result.isInvalid()) return ExprError();
866 
867     baseObjectExpr = result.get();
868   }
869 
870   assert((baseVariable || baseObjectExpr) &&
871          "referencing anonymous struct/union without a base variable or "
872          "expression");
873 
874   // Build the implicit member references to the field of the
875   // anonymous struct/union.
876   Expr *result = baseObjectExpr;
877   IndirectFieldDecl::chain_iterator
878   FI = indirectField->chain_begin(), FEnd = indirectField->chain_end();
879 
880   // Case 2: the base of the indirect field is a field and the user
881   // wrote a member expression.
882   if (!baseVariable) {
883     FieldDecl *field = cast<FieldDecl>(*FI);
884 
885     bool baseObjectIsPointer = baseObjectExpr->getType()->isPointerType();
886 
887     // Make a nameInfo that properly uses the anonymous name.
888     DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
889 
890     // Build the first member access in the chain with full information.
891     result =
892         BuildFieldReferenceExpr(result, baseObjectIsPointer, SourceLocation(),
893                                 SS, field, foundDecl, memberNameInfo)
894             .get();
895     if (!result)
896       return ExprError();
897   }
898 
899   // In all cases, we should now skip the first declaration in the chain.
900   ++FI;
901 
902   while (FI != FEnd) {
903     FieldDecl *field = cast<FieldDecl>(*FI++);
904 
905     // FIXME: these are somewhat meaningless
906     DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
907     DeclAccessPair fakeFoundDecl =
908         DeclAccessPair::make(field, field->getAccess());
909 
910     result =
911         BuildFieldReferenceExpr(result, /*isarrow*/ false, SourceLocation(),
912                                 (FI == FEnd ? SS : EmptySS), field,
913                                 fakeFoundDecl, memberNameInfo)
914             .get();
915   }
916 
917   return result;
918 }
919 
920 static ExprResult
921 BuildMSPropertyRefExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
922                        const CXXScopeSpec &SS,
923                        MSPropertyDecl *PD,
924                        const DeclarationNameInfo &NameInfo) {
925   // Property names are always simple identifiers and therefore never
926   // require any interesting additional storage.
927   return new (S.Context) MSPropertyRefExpr(BaseExpr, PD, IsArrow,
928                                            S.Context.PseudoObjectTy, VK_LValue,
929                                            SS.getWithLocInContext(S.Context),
930                                            NameInfo.getLoc());
931 }
932 
933 MemberExpr *Sema::BuildMemberExpr(
934     Expr *Base, bool IsArrow, SourceLocation OpLoc, NestedNameSpecifierLoc NNS,
935     SourceLocation TemplateKWLoc, ValueDecl *Member, DeclAccessPair FoundDecl,
936     bool HadMultipleCandidates, const DeclarationNameInfo &MemberNameInfo,
937     QualType Ty, ExprValueKind VK, ExprObjectKind OK,
938     const TemplateArgumentListInfo *TemplateArgs) {
939   assert((!IsArrow || Base->isPRValue()) &&
940          "-> base must be a pointer prvalue");
941   MemberExpr *E =
942       MemberExpr::Create(Context, Base, IsArrow, OpLoc, NNS, TemplateKWLoc,
943                          Member, FoundDecl, MemberNameInfo, TemplateArgs, Ty,
944                          VK, OK, getNonOdrUseReasonInCurrentContext(Member));
945   E->setHadMultipleCandidates(HadMultipleCandidates);
946   MarkMemberReferenced(E);
947 
948   // C++ [except.spec]p17:
949   //   An exception-specification is considered to be needed when:
950   //   - in an expression the function is the unique lookup result or the
951   //     selected member of a set of overloaded functions
952   if (auto *FPT = Ty->getAs<FunctionProtoType>()) {
953     if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) {
954       if (auto *NewFPT = ResolveExceptionSpec(MemberNameInfo.getLoc(), FPT))
955         E->setType(Context.getQualifiedType(NewFPT, Ty.getQualifiers()));
956     }
957   }
958 
959   return E;
960 }
961 
962 /// Determine if the given scope is within a function-try-block handler.
963 static bool IsInFnTryBlockHandler(const Scope *S) {
964   // Walk the scope stack until finding a FnTryCatchScope, or leave the
965   // function scope. If a FnTryCatchScope is found, check whether the TryScope
966   // flag is set. If it is not, it's a function-try-block handler.
967   for (; S != S->getFnParent(); S = S->getParent()) {
968     if (S->isFnTryCatchScope())
969       return (S->getFlags() & Scope::TryScope) != Scope::TryScope;
970   }
971   return false;
972 }
973 
974 ExprResult
975 Sema::BuildMemberReferenceExpr(Expr *BaseExpr, QualType BaseExprType,
976                                SourceLocation OpLoc, bool IsArrow,
977                                const CXXScopeSpec &SS,
978                                SourceLocation TemplateKWLoc,
979                                NamedDecl *FirstQualifierInScope,
980                                LookupResult &R,
981                                const TemplateArgumentListInfo *TemplateArgs,
982                                const Scope *S,
983                                bool SuppressQualifierCheck,
984                                ActOnMemberAccessExtraArgs *ExtraArgs) {
985   assert(!SS.isInvalid() && "nested-name-specifier cannot be invalid");
986   // If the member wasn't found in the current instantiation, or if the
987   // arrow operator was used with a dependent non-pointer object expression,
988   // build a CXXDependentScopeMemberExpr.
989   if (R.wasNotFoundInCurrentInstantiation() ||
990       (R.getLookupName().getCXXOverloadedOperator() == OO_Equal &&
991        (SS.isSet() ? SS.getScopeRep()->isDependent()
992                    : BaseExprType->isDependentType())))
993     return ActOnDependentMemberExpr(BaseExpr, BaseExprType, IsArrow, OpLoc, SS,
994                                     TemplateKWLoc, FirstQualifierInScope,
995                                     R.getLookupNameInfo(), TemplateArgs);
996 
997   QualType BaseType = BaseExprType;
998   if (IsArrow) {
999     assert(BaseType->isPointerType());
1000     BaseType = BaseType->castAs<PointerType>()->getPointeeType();
1001   }
1002   R.setBaseObjectType(BaseType);
1003 
1004   assert((SS.isEmpty()
1005               ? !BaseType->isDependentType() || computeDeclContext(BaseType)
1006               : !isDependentScopeSpecifier(SS) || computeDeclContext(SS)) &&
1007          "dependent lookup context that isn't the current instantiation?");
1008 
1009   const DeclarationNameInfo &MemberNameInfo = R.getLookupNameInfo();
1010   DeclarationName MemberName = MemberNameInfo.getName();
1011   SourceLocation MemberLoc = MemberNameInfo.getLoc();
1012 
1013   if (R.isAmbiguous())
1014     return ExprError();
1015 
1016   // [except.handle]p10: Referring to any non-static member or base class of an
1017   // object in the handler for a function-try-block of a constructor or
1018   // destructor for that object results in undefined behavior.
1019   const auto *FD = getCurFunctionDecl();
1020   if (S && BaseExpr && FD &&
1021       (isa<CXXDestructorDecl>(FD) || isa<CXXConstructorDecl>(FD)) &&
1022       isa<CXXThisExpr>(BaseExpr->IgnoreImpCasts()) &&
1023       IsInFnTryBlockHandler(S))
1024     Diag(MemberLoc, diag::warn_cdtor_function_try_handler_mem_expr)
1025         << isa<CXXDestructorDecl>(FD);
1026 
1027   if (R.empty()) {
1028     ExprResult RetryExpr = ExprError();
1029     if (ExtraArgs && !IsArrow && BaseExpr && !BaseExpr->isTypeDependent()) {
1030       SFINAETrap Trap(*this, true);
1031       ParsedType ObjectType;
1032       bool MayBePseudoDestructor = false;
1033       RetryExpr = ActOnStartCXXMemberReference(getCurScope(), BaseExpr, OpLoc,
1034                                                tok::arrow, ObjectType,
1035                                                MayBePseudoDestructor);
1036       if (RetryExpr.isUsable() && !Trap.hasErrorOccurred()) {
1037         CXXScopeSpec TempSS(SS);
1038         RetryExpr = ActOnMemberAccessExpr(
1039             ExtraArgs->S, RetryExpr.get(), OpLoc, tok::arrow, TempSS,
1040             TemplateKWLoc, ExtraArgs->Id, ExtraArgs->ObjCImpDecl);
1041       }
1042       if (Trap.hasErrorOccurred())
1043         RetryExpr = ExprError();
1044     }
1045 
1046     // Rederive where we looked up.
1047     DeclContext *DC =
1048         (SS.isSet() ? computeDeclContext(SS) : computeDeclContext(BaseType));
1049     assert(DC);
1050 
1051     if (RetryExpr.isUsable())
1052       Diag(OpLoc, diag::err_no_member_overloaded_arrow)
1053           << MemberName << DC << FixItHint::CreateReplacement(OpLoc, "->");
1054     else
1055       Diag(R.getNameLoc(), diag::err_no_member)
1056           << MemberName << DC
1057           << (SS.isSet()
1058                   ? SS.getRange()
1059                   : (BaseExpr ? BaseExpr->getSourceRange() : SourceRange()));
1060     return RetryExpr;
1061   }
1062 
1063   // Diagnose lookups that find only declarations from a non-base
1064   // type.  This is possible for either qualified lookups (which may
1065   // have been qualified with an unrelated type) or implicit member
1066   // expressions (which were found with unqualified lookup and thus
1067   // may have come from an enclosing scope).  Note that it's okay for
1068   // lookup to find declarations from a non-base type as long as those
1069   // aren't the ones picked by overload resolution.
1070   if ((SS.isSet() || !BaseExpr ||
1071        (isa<CXXThisExpr>(BaseExpr) &&
1072         cast<CXXThisExpr>(BaseExpr)->isImplicit())) &&
1073       !SuppressQualifierCheck &&
1074       CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R))
1075     return ExprError();
1076 
1077   // Construct an unresolved result if we in fact got an unresolved
1078   // result.
1079   if (R.isOverloadedResult() || R.isUnresolvableResult()) {
1080     // Suppress any lookup-related diagnostics; we'll do these when we
1081     // pick a member.
1082     R.suppressDiagnostics();
1083 
1084     UnresolvedMemberExpr *MemExpr
1085       = UnresolvedMemberExpr::Create(Context, R.isUnresolvableResult(),
1086                                      BaseExpr, BaseExprType,
1087                                      IsArrow, OpLoc,
1088                                      SS.getWithLocInContext(Context),
1089                                      TemplateKWLoc, MemberNameInfo,
1090                                      TemplateArgs, R.begin(), R.end());
1091 
1092     return MemExpr;
1093   }
1094 
1095   assert(R.isSingleResult());
1096   DeclAccessPair FoundDecl = R.begin().getPair();
1097   NamedDecl *MemberDecl = R.getFoundDecl();
1098 
1099   // FIXME: diagnose the presence of template arguments now.
1100 
1101   // If the decl being referenced had an error, return an error for this
1102   // sub-expr without emitting another error, in order to avoid cascading
1103   // error cases.
1104   if (MemberDecl->isInvalidDecl())
1105     return ExprError();
1106 
1107   // Handle the implicit-member-access case.
1108   if (!BaseExpr) {
1109     // If this is not an instance member, convert to a non-member access.
1110     if (!MemberDecl->isCXXInstanceMember()) {
1111       // We might have a variable template specialization (or maybe one day a
1112       // member concept-id).
1113       if (TemplateArgs || TemplateKWLoc.isValid())
1114         return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/false, TemplateArgs);
1115 
1116       return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), MemberDecl,
1117                                       FoundDecl, TemplateArgs);
1118     }
1119     SourceLocation Loc = R.getNameLoc();
1120     if (SS.getRange().isValid())
1121       Loc = SS.getRange().getBegin();
1122     BaseExpr = BuildCXXThisExpr(Loc, BaseExprType, /*IsImplicit=*/true);
1123   }
1124 
1125   // C++17 [expr.ref]p2, per CWG2813:
1126   //   For the first option (dot), if the id-expression names a static member or
1127   //   an enumerator, the first expression is a discarded-value expression; if
1128   //   the id-expression names a non-static data member, the first expression
1129   //   shall be a glvalue.
1130   auto ConvertBaseExprToDiscardedValue = [&] {
1131     assert(getLangOpts().CPlusPlus &&
1132            "Static member / member enumerator outside of C++");
1133     if (IsArrow)
1134       return false;
1135     ExprResult Converted = IgnoredValueConversions(BaseExpr);
1136     if (Converted.isInvalid())
1137       return true;
1138     BaseExpr = Converted.get();
1139     DiagnoseDiscardedExprMarkedNodiscard(BaseExpr);
1140     return false;
1141   };
1142   auto ConvertBaseExprToGLValue = [&] {
1143     if (IsArrow || !BaseExpr->isPRValue())
1144       return false;
1145     ExprResult Converted = TemporaryMaterializationConversion(BaseExpr);
1146     if (Converted.isInvalid())
1147       return true;
1148     BaseExpr = Converted.get();
1149     return false;
1150   };
1151 
1152   // Check the use of this member.
1153   if (DiagnoseUseOfDecl(MemberDecl, MemberLoc))
1154     return ExprError();
1155 
1156   if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) {
1157     if (ConvertBaseExprToGLValue())
1158       return ExprError();
1159     return BuildFieldReferenceExpr(BaseExpr, IsArrow, OpLoc, SS, FD, FoundDecl,
1160                                    MemberNameInfo);
1161   }
1162 
1163   if (MSPropertyDecl *PD = dyn_cast<MSPropertyDecl>(MemberDecl)) {
1164     // No temporaries are materialized for property references yet.
1165     // They might be materialized when this is transformed into a member call.
1166     // Note that this is slightly different behaviour from MSVC which doesn't
1167     // implement CWG2813 yet: MSVC might materialize an extra temporary if the
1168     // getter or setter function is an explicit object member function.
1169     return BuildMSPropertyRefExpr(*this, BaseExpr, IsArrow, SS, PD,
1170                                   MemberNameInfo);
1171   }
1172 
1173   if (IndirectFieldDecl *FD = dyn_cast<IndirectFieldDecl>(MemberDecl)) {
1174     if (ConvertBaseExprToGLValue())
1175       return ExprError();
1176     // We may have found a field within an anonymous union or struct
1177     // (C++ [class.union]).
1178     return BuildAnonymousStructUnionMemberReference(SS, MemberLoc, FD,
1179                                                     FoundDecl, BaseExpr,
1180                                                     OpLoc);
1181   }
1182 
1183   // Static data member
1184   if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
1185     if (ConvertBaseExprToDiscardedValue())
1186       return ExprError();
1187     return BuildMemberExpr(BaseExpr, IsArrow, OpLoc,
1188                            SS.getWithLocInContext(Context), TemplateKWLoc, Var,
1189                            FoundDecl, /*HadMultipleCandidates=*/false,
1190                            MemberNameInfo, Var->getType().getNonReferenceType(),
1191                            VK_LValue, OK_Ordinary);
1192   }
1193 
1194   if (CXXMethodDecl *MemberFn = dyn_cast<CXXMethodDecl>(MemberDecl)) {
1195     ExprValueKind valueKind;
1196     QualType type;
1197     if (MemberFn->isInstance()) {
1198       valueKind = VK_PRValue;
1199       type = Context.BoundMemberTy;
1200       if (MemberFn->isImplicitObjectMemberFunction() &&
1201           ConvertBaseExprToGLValue())
1202         return ExprError();
1203     } else {
1204       // Static member function
1205       if (ConvertBaseExprToDiscardedValue())
1206         return ExprError();
1207       valueKind = VK_LValue;
1208       type = MemberFn->getType();
1209     }
1210 
1211     return BuildMemberExpr(BaseExpr, IsArrow, OpLoc,
1212                            SS.getWithLocInContext(Context), TemplateKWLoc,
1213                            MemberFn, FoundDecl, /*HadMultipleCandidates=*/false,
1214                            MemberNameInfo, type, valueKind, OK_Ordinary);
1215   }
1216   assert(!isa<FunctionDecl>(MemberDecl) && "member function not C++ method?");
1217 
1218   if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
1219     if (ConvertBaseExprToDiscardedValue())
1220       return ExprError();
1221     return BuildMemberExpr(
1222         BaseExpr, IsArrow, OpLoc, SS.getWithLocInContext(Context),
1223         TemplateKWLoc, Enum, FoundDecl, /*HadMultipleCandidates=*/false,
1224         MemberNameInfo, Enum->getType(), VK_PRValue, OK_Ordinary);
1225   }
1226 
1227   if (VarTemplateDecl *VarTempl = dyn_cast<VarTemplateDecl>(MemberDecl)) {
1228     if (ConvertBaseExprToDiscardedValue())
1229       return ExprError();
1230     if (!TemplateArgs) {
1231       diagnoseMissingTemplateArguments(
1232           SS, /*TemplateKeyword=*/TemplateKWLoc.isValid(), VarTempl, MemberLoc);
1233       return ExprError();
1234     }
1235 
1236     DeclResult VDecl = CheckVarTemplateId(VarTempl, TemplateKWLoc,
1237                                           MemberNameInfo.getLoc(), *TemplateArgs);
1238     if (VDecl.isInvalid())
1239       return ExprError();
1240 
1241     // Non-dependent member, but dependent template arguments.
1242     if (!VDecl.get())
1243       return ActOnDependentMemberExpr(
1244           BaseExpr, BaseExpr->getType(), IsArrow, OpLoc, SS, TemplateKWLoc,
1245           FirstQualifierInScope, MemberNameInfo, TemplateArgs);
1246 
1247     VarDecl *Var = cast<VarDecl>(VDecl.get());
1248     if (!Var->getTemplateSpecializationKind())
1249       Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation, MemberLoc);
1250 
1251     return BuildMemberExpr(BaseExpr, IsArrow, OpLoc,
1252                            SS.getWithLocInContext(Context), TemplateKWLoc, Var,
1253                            FoundDecl, /*HadMultipleCandidates=*/false,
1254                            MemberNameInfo, Var->getType().getNonReferenceType(),
1255                            VK_LValue, OK_Ordinary, TemplateArgs);
1256   }
1257 
1258   // We found something that we didn't expect. Complain.
1259   if (isa<TypeDecl>(MemberDecl))
1260     Diag(MemberLoc, diag::err_typecheck_member_reference_type)
1261       << MemberName << BaseType << int(IsArrow);
1262   else
1263     Diag(MemberLoc, diag::err_typecheck_member_reference_unknown)
1264       << MemberName << BaseType << int(IsArrow);
1265 
1266   Diag(MemberDecl->getLocation(), diag::note_member_declared_here)
1267     << MemberName;
1268   R.suppressDiagnostics();
1269   return ExprError();
1270 }
1271 
1272 /// Given that normal member access failed on the given expression,
1273 /// and given that the expression's type involves builtin-id or
1274 /// builtin-Class, decide whether substituting in the redefinition
1275 /// types would be profitable.  The redefinition type is whatever
1276 /// this translation unit tried to typedef to id/Class;  we store
1277 /// it to the side and then re-use it in places like this.
1278 static bool ShouldTryAgainWithRedefinitionType(Sema &S, ExprResult &base) {
1279   const ObjCObjectPointerType *opty
1280     = base.get()->getType()->getAs<ObjCObjectPointerType>();
1281   if (!opty) return false;
1282 
1283   const ObjCObjectType *ty = opty->getObjectType();
1284 
1285   QualType redef;
1286   if (ty->isObjCId()) {
1287     redef = S.Context.getObjCIdRedefinitionType();
1288   } else if (ty->isObjCClass()) {
1289     redef = S.Context.getObjCClassRedefinitionType();
1290   } else {
1291     return false;
1292   }
1293 
1294   // Do the substitution as long as the redefinition type isn't just a
1295   // possibly-qualified pointer to builtin-id or builtin-Class again.
1296   opty = redef->getAs<ObjCObjectPointerType>();
1297   if (opty && !opty->getObjectType()->getInterface())
1298     return false;
1299 
1300   base = S.ImpCastExprToType(base.get(), redef, CK_BitCast);
1301   return true;
1302 }
1303 
1304 static bool isRecordType(QualType T) {
1305   return T->isRecordType();
1306 }
1307 static bool isPointerToRecordType(QualType T) {
1308   if (const PointerType *PT = T->getAs<PointerType>())
1309     return PT->getPointeeType()->isRecordType();
1310   return false;
1311 }
1312 
1313 ExprResult
1314 Sema::PerformMemberExprBaseConversion(Expr *Base, bool IsArrow) {
1315   if (IsArrow && !Base->getType()->isFunctionType())
1316     return DefaultFunctionArrayLvalueConversion(Base);
1317 
1318   return CheckPlaceholderExpr(Base);
1319 }
1320 
1321 /// Look up the given member of the given non-type-dependent
1322 /// expression.  This can return in one of two ways:
1323 ///  * If it returns a sentinel null-but-valid result, the caller will
1324 ///    assume that lookup was performed and the results written into
1325 ///    the provided structure.  It will take over from there.
1326 ///  * Otherwise, the returned expression will be produced in place of
1327 ///    an ordinary member expression.
1328 ///
1329 /// The ObjCImpDecl bit is a gross hack that will need to be properly
1330 /// fixed for ObjC++.
1331 static ExprResult LookupMemberExpr(Sema &S, LookupResult &R,
1332                                    ExprResult &BaseExpr, bool &IsArrow,
1333                                    SourceLocation OpLoc, CXXScopeSpec &SS,
1334                                    Decl *ObjCImpDecl, bool HasTemplateArgs,
1335                                    SourceLocation TemplateKWLoc) {
1336   assert(BaseExpr.get() && "no base expression");
1337 
1338   // Perform default conversions.
1339   BaseExpr = S.PerformMemberExprBaseConversion(BaseExpr.get(), IsArrow);
1340   if (BaseExpr.isInvalid())
1341     return ExprError();
1342 
1343   QualType BaseType = BaseExpr.get()->getType();
1344 
1345   DeclarationName MemberName = R.getLookupName();
1346   SourceLocation MemberLoc = R.getNameLoc();
1347 
1348   // For later type-checking purposes, turn arrow accesses into dot
1349   // accesses.  The only access type we support that doesn't follow
1350   // the C equivalence "a->b === (*a).b" is ObjC property accesses,
1351   // and those never use arrows, so this is unaffected.
1352   if (IsArrow) {
1353     if (const PointerType *Ptr = BaseType->getAs<PointerType>())
1354       BaseType = Ptr->getPointeeType();
1355     else if (const ObjCObjectPointerType *Ptr =
1356                  BaseType->getAs<ObjCObjectPointerType>())
1357       BaseType = Ptr->getPointeeType();
1358     else if (BaseType->isFunctionType())
1359       goto fail;
1360     else if (BaseType->isDependentType())
1361       BaseType = S.Context.DependentTy;
1362     else if (BaseType->isRecordType()) {
1363       // Recover from arrow accesses to records, e.g.:
1364       //   struct MyRecord foo;
1365       //   foo->bar
1366       // This is actually well-formed in C++ if MyRecord has an
1367       // overloaded operator->, but that should have been dealt with
1368       // by now--or a diagnostic message already issued if a problem
1369       // was encountered while looking for the overloaded operator->.
1370       if (!S.getLangOpts().CPlusPlus) {
1371         S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
1372             << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
1373             << FixItHint::CreateReplacement(OpLoc, ".");
1374       }
1375       IsArrow = false;
1376     } else {
1377       S.Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
1378           << BaseType << BaseExpr.get()->getSourceRange();
1379       return ExprError();
1380     }
1381   }
1382 
1383   // If the base type is an atomic type, this access is undefined behavior per
1384   // C11 6.5.2.3p5. Instead of giving a typecheck error, we'll warn the user
1385   // about the UB and recover by converting the atomic lvalue into a non-atomic
1386   // lvalue. Because this is inherently unsafe as an atomic operation, the
1387   // warning defaults to an error.
1388   if (const auto *ATy = BaseType->getAs<AtomicType>()) {
1389     S.DiagRuntimeBehavior(OpLoc, nullptr,
1390                           S.PDiag(diag::warn_atomic_member_access));
1391     BaseType = ATy->getValueType().getUnqualifiedType();
1392     BaseExpr = ImplicitCastExpr::Create(
1393         S.Context, IsArrow ? S.Context.getPointerType(BaseType) : BaseType,
1394         CK_AtomicToNonAtomic, BaseExpr.get(), nullptr,
1395         BaseExpr.get()->getValueKind(), FPOptionsOverride());
1396   }
1397 
1398   // Handle field access to simple records.
1399   if (BaseType->getAsRecordDecl()) {
1400     TypoExpr *TE = nullptr;
1401     if (LookupMemberExprInRecord(S, R, BaseExpr.get(), BaseType, OpLoc, IsArrow,
1402                                  SS, HasTemplateArgs, TemplateKWLoc, TE))
1403       return ExprError();
1404 
1405     // Returning valid-but-null is how we indicate to the caller that
1406     // the lookup result was filled in. If typo correction was attempted and
1407     // failed, the lookup result will have been cleared--that combined with the
1408     // valid-but-null ExprResult will trigger the appropriate diagnostics.
1409     return ExprResult(TE);
1410   } else if (BaseType->isDependentType()) {
1411     R.setNotFoundInCurrentInstantiation();
1412     return ExprEmpty();
1413   }
1414 
1415   // Handle ivar access to Objective-C objects.
1416   if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>()) {
1417     if (!SS.isEmpty() && !SS.isInvalid()) {
1418       S.Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
1419         << 1 << SS.getScopeRep()
1420         << FixItHint::CreateRemoval(SS.getRange());
1421       SS.clear();
1422     }
1423 
1424     IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1425 
1426     // There are three cases for the base type:
1427     //   - builtin id (qualified or unqualified)
1428     //   - builtin Class (qualified or unqualified)
1429     //   - an interface
1430     ObjCInterfaceDecl *IDecl = OTy->getInterface();
1431     if (!IDecl) {
1432       if (S.getLangOpts().ObjCAutoRefCount &&
1433           (OTy->isObjCId() || OTy->isObjCClass()))
1434         goto fail;
1435       // There's an implicit 'isa' ivar on all objects.
1436       // But we only actually find it this way on objects of type 'id',
1437       // apparently.
1438       if (OTy->isObjCId() && Member->isStr("isa"))
1439         return new (S.Context) ObjCIsaExpr(BaseExpr.get(), IsArrow, MemberLoc,
1440                                            OpLoc, S.Context.getObjCClassType());
1441       if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
1442         return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1443                                 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1444       goto fail;
1445     }
1446 
1447     if (S.RequireCompleteType(OpLoc, BaseType,
1448                               diag::err_typecheck_incomplete_tag,
1449                               BaseExpr.get()))
1450       return ExprError();
1451 
1452     ObjCInterfaceDecl *ClassDeclared = nullptr;
1453     ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
1454 
1455     if (!IV) {
1456       // Attempt to correct for typos in ivar names.
1457       DeclFilterCCC<ObjCIvarDecl> Validator{};
1458       Validator.IsObjCIvarLookup = IsArrow;
1459       if (TypoCorrection Corrected = S.CorrectTypo(
1460               R.getLookupNameInfo(), Sema::LookupMemberName, nullptr, nullptr,
1461               Validator, Sema::CTK_ErrorRecovery, IDecl)) {
1462         IV = Corrected.getCorrectionDeclAs<ObjCIvarDecl>();
1463         S.diagnoseTypo(
1464             Corrected,
1465             S.PDiag(diag::err_typecheck_member_reference_ivar_suggest)
1466                 << IDecl->getDeclName() << MemberName);
1467 
1468         // Figure out the class that declares the ivar.
1469         assert(!ClassDeclared);
1470 
1471         Decl *D = cast<Decl>(IV->getDeclContext());
1472         if (auto *Category = dyn_cast<ObjCCategoryDecl>(D))
1473           D = Category->getClassInterface();
1474 
1475         if (auto *Implementation = dyn_cast<ObjCImplementationDecl>(D))
1476           ClassDeclared = Implementation->getClassInterface();
1477         else if (auto *Interface = dyn_cast<ObjCInterfaceDecl>(D))
1478           ClassDeclared = Interface;
1479 
1480         assert(ClassDeclared && "cannot query interface");
1481       } else {
1482         if (IsArrow &&
1483             IDecl->FindPropertyDeclaration(
1484                 Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
1485           S.Diag(MemberLoc, diag::err_property_found_suggest)
1486               << Member << BaseExpr.get()->getType()
1487               << FixItHint::CreateReplacement(OpLoc, ".");
1488           return ExprError();
1489         }
1490 
1491         S.Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
1492             << IDecl->getDeclName() << MemberName
1493             << BaseExpr.get()->getSourceRange();
1494         return ExprError();
1495       }
1496     }
1497 
1498     assert(ClassDeclared);
1499 
1500     // If the decl being referenced had an error, return an error for this
1501     // sub-expr without emitting another error, in order to avoid cascading
1502     // error cases.
1503     if (IV->isInvalidDecl())
1504       return ExprError();
1505 
1506     // Check whether we can reference this field.
1507     if (S.DiagnoseUseOfDecl(IV, MemberLoc))
1508       return ExprError();
1509     if (IV->getAccessControl() != ObjCIvarDecl::Public &&
1510         IV->getAccessControl() != ObjCIvarDecl::Package) {
1511       ObjCInterfaceDecl *ClassOfMethodDecl = nullptr;
1512       if (ObjCMethodDecl *MD = S.getCurMethodDecl())
1513         ClassOfMethodDecl =  MD->getClassInterface();
1514       else if (ObjCImpDecl && S.getCurFunctionDecl()) {
1515         // Case of a c-function declared inside an objc implementation.
1516         // FIXME: For a c-style function nested inside an objc implementation
1517         // class, there is no implementation context available, so we pass
1518         // down the context as argument to this routine. Ideally, this context
1519         // need be passed down in the AST node and somehow calculated from the
1520         // AST for a function decl.
1521         if (ObjCImplementationDecl *IMPD =
1522               dyn_cast<ObjCImplementationDecl>(ObjCImpDecl))
1523           ClassOfMethodDecl = IMPD->getClassInterface();
1524         else if (ObjCCategoryImplDecl* CatImplClass =
1525                    dyn_cast<ObjCCategoryImplDecl>(ObjCImpDecl))
1526           ClassOfMethodDecl = CatImplClass->getClassInterface();
1527       }
1528       if (!S.getLangOpts().DebuggerSupport) {
1529         if (IV->getAccessControl() == ObjCIvarDecl::Private) {
1530           if (!declaresSameEntity(ClassDeclared, IDecl) ||
1531               !declaresSameEntity(ClassOfMethodDecl, ClassDeclared))
1532             S.Diag(MemberLoc, diag::err_private_ivar_access)
1533               << IV->getDeclName();
1534         } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
1535           // @protected
1536           S.Diag(MemberLoc, diag::err_protected_ivar_access)
1537               << IV->getDeclName();
1538       }
1539     }
1540     bool warn = true;
1541     if (S.getLangOpts().ObjCWeak) {
1542       Expr *BaseExp = BaseExpr.get()->IgnoreParenImpCasts();
1543       if (UnaryOperator *UO = dyn_cast<UnaryOperator>(BaseExp))
1544         if (UO->getOpcode() == UO_Deref)
1545           BaseExp = UO->getSubExpr()->IgnoreParenCasts();
1546 
1547       if (DeclRefExpr *DE = dyn_cast<DeclRefExpr>(BaseExp))
1548         if (DE->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
1549           S.Diag(DE->getLocation(), diag::err_arc_weak_ivar_access);
1550           warn = false;
1551         }
1552     }
1553     if (warn) {
1554       if (ObjCMethodDecl *MD = S.getCurMethodDecl()) {
1555         ObjCMethodFamily MF = MD->getMethodFamily();
1556         warn = (MF != OMF_init && MF != OMF_dealloc && MF != OMF_finalize &&
1557                 !S.ObjC().IvarBacksCurrentMethodAccessor(IDecl, MD, IV));
1558       }
1559       if (warn)
1560         S.Diag(MemberLoc, diag::warn_direct_ivar_access) << IV->getDeclName();
1561     }
1562 
1563     ObjCIvarRefExpr *Result = new (S.Context) ObjCIvarRefExpr(
1564         IV, IV->getUsageType(BaseType), MemberLoc, OpLoc, BaseExpr.get(),
1565         IsArrow);
1566 
1567     if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
1568       if (!S.isUnevaluatedContext() &&
1569           !S.Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, MemberLoc))
1570         S.getCurFunction()->recordUseOfWeak(Result);
1571     }
1572 
1573     return Result;
1574   }
1575 
1576   // Objective-C property access.
1577   const ObjCObjectPointerType *OPT;
1578   if (!IsArrow && (OPT = BaseType->getAs<ObjCObjectPointerType>())) {
1579     if (!SS.isEmpty() && !SS.isInvalid()) {
1580       S.Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
1581           << 0 << SS.getScopeRep() << FixItHint::CreateRemoval(SS.getRange());
1582       SS.clear();
1583     }
1584 
1585     // This actually uses the base as an r-value.
1586     BaseExpr = S.DefaultLvalueConversion(BaseExpr.get());
1587     if (BaseExpr.isInvalid())
1588       return ExprError();
1589 
1590     assert(S.Context.hasSameUnqualifiedType(BaseType,
1591                                             BaseExpr.get()->getType()));
1592 
1593     IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1594 
1595     const ObjCObjectType *OT = OPT->getObjectType();
1596 
1597     // id, with and without qualifiers.
1598     if (OT->isObjCId()) {
1599       // Check protocols on qualified interfaces.
1600       Selector Sel = S.PP.getSelectorTable().getNullarySelector(Member);
1601       if (Decl *PMDecl =
1602               FindGetterSetterNameDecl(OPT, Member, Sel, S.Context)) {
1603         if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
1604           // Check the use of this declaration
1605           if (S.DiagnoseUseOfDecl(PD, MemberLoc))
1606             return ExprError();
1607 
1608           return new (S.Context)
1609               ObjCPropertyRefExpr(PD, S.Context.PseudoObjectTy, VK_LValue,
1610                                   OK_ObjCProperty, MemberLoc, BaseExpr.get());
1611         }
1612 
1613         if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
1614           Selector SetterSel =
1615             SelectorTable::constructSetterSelector(S.PP.getIdentifierTable(),
1616                                                    S.PP.getSelectorTable(),
1617                                                    Member);
1618           ObjCMethodDecl *SMD = nullptr;
1619           if (Decl *SDecl = FindGetterSetterNameDecl(OPT,
1620                                                      /*Property id*/ nullptr,
1621                                                      SetterSel, S.Context))
1622             SMD = dyn_cast<ObjCMethodDecl>(SDecl);
1623 
1624           return new (S.Context)
1625               ObjCPropertyRefExpr(OMD, SMD, S.Context.PseudoObjectTy, VK_LValue,
1626                                   OK_ObjCProperty, MemberLoc, BaseExpr.get());
1627         }
1628       }
1629       // Use of id.member can only be for a property reference. Do not
1630       // use the 'id' redefinition in this case.
1631       if (IsArrow && ShouldTryAgainWithRedefinitionType(S, BaseExpr))
1632         return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1633                                 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1634 
1635       return ExprError(S.Diag(MemberLoc, diag::err_property_not_found)
1636                          << MemberName << BaseType);
1637     }
1638 
1639     // 'Class', unqualified only.
1640     if (OT->isObjCClass()) {
1641       // Only works in a method declaration (??!).
1642       ObjCMethodDecl *MD = S.getCurMethodDecl();
1643       if (!MD) {
1644         if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
1645           return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1646                                   ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1647 
1648         goto fail;
1649       }
1650 
1651       // Also must look for a getter name which uses property syntax.
1652       Selector Sel = S.PP.getSelectorTable().getNullarySelector(Member);
1653       ObjCInterfaceDecl *IFace = MD->getClassInterface();
1654       if (!IFace)
1655         goto fail;
1656 
1657       ObjCMethodDecl *Getter;
1658       if ((Getter = IFace->lookupClassMethod(Sel))) {
1659         // Check the use of this method.
1660         if (S.DiagnoseUseOfDecl(Getter, MemberLoc))
1661           return ExprError();
1662       } else
1663         Getter = IFace->lookupPrivateMethod(Sel, false);
1664       // If we found a getter then this may be a valid dot-reference, we
1665       // will look for the matching setter, in case it is needed.
1666       Selector SetterSel =
1667         SelectorTable::constructSetterSelector(S.PP.getIdentifierTable(),
1668                                                S.PP.getSelectorTable(),
1669                                                Member);
1670       ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
1671       if (!Setter) {
1672         // If this reference is in an @implementation, also check for 'private'
1673         // methods.
1674         Setter = IFace->lookupPrivateMethod(SetterSel, false);
1675       }
1676 
1677       if (Setter && S.DiagnoseUseOfDecl(Setter, MemberLoc))
1678         return ExprError();
1679 
1680       if (Getter || Setter) {
1681         return new (S.Context) ObjCPropertyRefExpr(
1682             Getter, Setter, S.Context.PseudoObjectTy, VK_LValue,
1683             OK_ObjCProperty, MemberLoc, BaseExpr.get());
1684       }
1685 
1686       if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
1687         return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1688                                 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1689 
1690       return ExprError(S.Diag(MemberLoc, diag::err_property_not_found)
1691                          << MemberName << BaseType);
1692     }
1693 
1694     // Normal property access.
1695     return S.ObjC().HandleExprPropertyRefExpr(
1696         OPT, BaseExpr.get(), OpLoc, MemberName, MemberLoc, SourceLocation(),
1697         QualType(), false);
1698   }
1699 
1700   if (BaseType->isExtVectorBoolType()) {
1701     // We disallow element access for ext_vector_type bool.  There is no way to
1702     // materialize a reference to a vector element as a pointer (each element is
1703     // one bit in the vector).
1704     S.Diag(R.getNameLoc(), diag::err_ext_vector_component_name_illegal)
1705         << MemberName
1706         << (BaseExpr.get() ? BaseExpr.get()->getSourceRange() : SourceRange());
1707     return ExprError();
1708   }
1709 
1710   // Handle 'field access' to vectors, such as 'V.xx'.
1711   if (BaseType->isExtVectorType()) {
1712     // FIXME: this expr should store IsArrow.
1713     IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1714     ExprValueKind VK = (IsArrow ? VK_LValue : BaseExpr.get()->getValueKind());
1715     QualType ret = CheckExtVectorComponent(S, BaseType, VK, OpLoc,
1716                                            Member, MemberLoc);
1717     if (ret.isNull())
1718       return ExprError();
1719     Qualifiers BaseQ =
1720         S.Context.getCanonicalType(BaseExpr.get()->getType()).getQualifiers();
1721     ret = S.Context.getQualifiedType(ret, BaseQ);
1722 
1723     return new (S.Context)
1724         ExtVectorElementExpr(ret, VK, BaseExpr.get(), *Member, MemberLoc);
1725   }
1726 
1727   // Adjust builtin-sel to the appropriate redefinition type if that's
1728   // not just a pointer to builtin-sel again.
1729   if (IsArrow && BaseType->isSpecificBuiltinType(BuiltinType::ObjCSel) &&
1730       !S.Context.getObjCSelRedefinitionType()->isObjCSelType()) {
1731     BaseExpr = S.ImpCastExprToType(
1732         BaseExpr.get(), S.Context.getObjCSelRedefinitionType(), CK_BitCast);
1733     return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1734                             ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1735   }
1736 
1737   // Failure cases.
1738  fail:
1739 
1740   // Recover from dot accesses to pointers, e.g.:
1741   //   type *foo;
1742   //   foo.bar
1743   // This is actually well-formed in two cases:
1744   //   - 'type' is an Objective C type
1745   //   - 'bar' is a pseudo-destructor name which happens to refer to
1746   //     the appropriate pointer type
1747   if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
1748     if (!IsArrow && Ptr->getPointeeType()->isRecordType() &&
1749         MemberName.getNameKind() != DeclarationName::CXXDestructorName) {
1750       S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
1751           << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
1752           << FixItHint::CreateReplacement(OpLoc, "->");
1753 
1754       if (S.isSFINAEContext())
1755         return ExprError();
1756 
1757       // Recurse as an -> access.
1758       IsArrow = true;
1759       return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1760                               ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1761     }
1762   }
1763 
1764   // If the user is trying to apply -> or . to a function name, it's probably
1765   // because they forgot parentheses to call that function.
1766   if (S.tryToRecoverWithCall(
1767           BaseExpr, S.PDiag(diag::err_member_reference_needs_call),
1768           /*complain*/ false,
1769           IsArrow ? &isPointerToRecordType : &isRecordType)) {
1770     if (BaseExpr.isInvalid())
1771       return ExprError();
1772     BaseExpr = S.DefaultFunctionArrayConversion(BaseExpr.get());
1773     return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1774                             ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1775   }
1776 
1777   // HLSL supports implicit conversion of scalar types to single element vector
1778   // rvalues in member expressions.
1779   if (S.getLangOpts().HLSL && BaseType->isScalarType()) {
1780     QualType VectorTy = S.Context.getExtVectorType(BaseType, 1);
1781     BaseExpr = S.ImpCastExprToType(BaseExpr.get(), VectorTy, CK_VectorSplat,
1782                                    BaseExpr.get()->getValueKind());
1783     return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS, ObjCImpDecl,
1784                             HasTemplateArgs, TemplateKWLoc);
1785   }
1786 
1787   S.Diag(OpLoc, diag::err_typecheck_member_reference_struct_union)
1788     << BaseType << BaseExpr.get()->getSourceRange() << MemberLoc;
1789 
1790   return ExprError();
1791 }
1792 
1793 ExprResult Sema::ActOnMemberAccessExpr(Scope *S, Expr *Base,
1794                                        SourceLocation OpLoc,
1795                                        tok::TokenKind OpKind, CXXScopeSpec &SS,
1796                                        SourceLocation TemplateKWLoc,
1797                                        UnqualifiedId &Id, Decl *ObjCImpDecl) {
1798   // Warn about the explicit constructor calls Microsoft extension.
1799   if (getLangOpts().MicrosoftExt &&
1800       Id.getKind() == UnqualifiedIdKind::IK_ConstructorName)
1801     Diag(Id.getSourceRange().getBegin(),
1802          diag::ext_ms_explicit_constructor_call);
1803 
1804   TemplateArgumentListInfo TemplateArgsBuffer;
1805 
1806   // Decompose the name into its component parts.
1807   DeclarationNameInfo NameInfo;
1808   const TemplateArgumentListInfo *TemplateArgs;
1809   DecomposeUnqualifiedId(Id, TemplateArgsBuffer,
1810                          NameInfo, TemplateArgs);
1811 
1812   bool IsArrow = (OpKind == tok::arrow);
1813 
1814   if (getLangOpts().HLSL && IsArrow)
1815     return ExprError(Diag(OpLoc, diag::err_hlsl_operator_unsupported) << 2);
1816 
1817   NamedDecl *FirstQualifierInScope
1818     = (!SS.isSet() ? nullptr : FindFirstQualifierInScope(S, SS.getScopeRep()));
1819 
1820   // This is a postfix expression, so get rid of ParenListExprs.
1821   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
1822   if (Result.isInvalid()) return ExprError();
1823   Base = Result.get();
1824 
1825   ActOnMemberAccessExtraArgs ExtraArgs = {S, Id, ObjCImpDecl};
1826   ExprResult Res = BuildMemberReferenceExpr(
1827       Base, Base->getType(), OpLoc, IsArrow, SS, TemplateKWLoc,
1828       FirstQualifierInScope, NameInfo, TemplateArgs, S, &ExtraArgs);
1829 
1830   if (!Res.isInvalid() && isa<MemberExpr>(Res.get()))
1831     CheckMemberAccessOfNoDeref(cast<MemberExpr>(Res.get()));
1832 
1833   return Res;
1834 }
1835 
1836 void Sema::CheckMemberAccessOfNoDeref(const MemberExpr *E) {
1837   if (isUnevaluatedContext())
1838     return;
1839 
1840   QualType ResultTy = E->getType();
1841 
1842   // Member accesses have four cases:
1843   // 1: non-array member via "->": dereferences
1844   // 2: non-array member via ".": nothing interesting happens
1845   // 3: array member access via "->": nothing interesting happens
1846   //    (this returns an array lvalue and does not actually dereference memory)
1847   // 4: array member access via ".": *adds* a layer of indirection
1848   if (ResultTy->isArrayType()) {
1849     if (!E->isArrow()) {
1850       // This might be something like:
1851       //     (*structPtr).arrayMember
1852       // which behaves roughly like:
1853       //     &(*structPtr).pointerMember
1854       // in that the apparent dereference in the base expression does not
1855       // actually happen.
1856       CheckAddressOfNoDeref(E->getBase());
1857     }
1858   } else if (E->isArrow()) {
1859     if (const auto *Ptr = dyn_cast<PointerType>(
1860             E->getBase()->getType().getDesugaredType(Context))) {
1861       if (Ptr->getPointeeType()->hasAttr(attr::NoDeref))
1862         ExprEvalContexts.back().PossibleDerefs.insert(E);
1863     }
1864   }
1865 }
1866 
1867 ExprResult
1868 Sema::BuildFieldReferenceExpr(Expr *BaseExpr, bool IsArrow,
1869                               SourceLocation OpLoc, const CXXScopeSpec &SS,
1870                               FieldDecl *Field, DeclAccessPair FoundDecl,
1871                               const DeclarationNameInfo &MemberNameInfo) {
1872   // x.a is an l-value if 'a' has a reference type. Otherwise:
1873   // x.a is an l-value/x-value/pr-value if the base is (and note
1874   //   that *x is always an l-value), except that if the base isn't
1875   //   an ordinary object then we must have an rvalue.
1876   ExprValueKind VK = VK_LValue;
1877   ExprObjectKind OK = OK_Ordinary;
1878   if (!IsArrow) {
1879     if (BaseExpr->getObjectKind() == OK_Ordinary)
1880       VK = BaseExpr->getValueKind();
1881     else
1882       VK = VK_PRValue;
1883   }
1884   if (VK != VK_PRValue && Field->isBitField())
1885     OK = OK_BitField;
1886 
1887   // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
1888   QualType MemberType = Field->getType();
1889   if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>()) {
1890     MemberType = Ref->getPointeeType();
1891     VK = VK_LValue;
1892   } else {
1893     QualType BaseType = BaseExpr->getType();
1894     if (IsArrow) BaseType = BaseType->castAs<PointerType>()->getPointeeType();
1895 
1896     Qualifiers BaseQuals = BaseType.getQualifiers();
1897 
1898     // GC attributes are never picked up by members.
1899     BaseQuals.removeObjCGCAttr();
1900 
1901     // CVR attributes from the base are picked up by members,
1902     // except that 'mutable' members don't pick up 'const'.
1903     if (Field->isMutable()) BaseQuals.removeConst();
1904 
1905     Qualifiers MemberQuals =
1906         Context.getCanonicalType(MemberType).getQualifiers();
1907 
1908     assert(!MemberQuals.hasAddressSpace());
1909 
1910     Qualifiers Combined = BaseQuals + MemberQuals;
1911     if (Combined != MemberQuals)
1912       MemberType = Context.getQualifiedType(MemberType, Combined);
1913 
1914     // Pick up NoDeref from the base in case we end up using AddrOf on the
1915     // result. E.g. the expression
1916     //     &someNoDerefPtr->pointerMember
1917     // should be a noderef pointer again.
1918     if (BaseType->hasAttr(attr::NoDeref))
1919       MemberType =
1920           Context.getAttributedType(attr::NoDeref, MemberType, MemberType);
1921   }
1922 
1923   auto isDefaultedSpecialMember = [this](const DeclContext *Ctx) {
1924     auto *Method = dyn_cast<CXXMethodDecl>(CurContext);
1925     if (!Method || !Method->isDefaulted())
1926       return false;
1927 
1928     return getDefaultedFunctionKind(Method).isSpecialMember();
1929   };
1930 
1931   // Implicit special members should not mark fields as used.
1932   if (!isDefaultedSpecialMember(CurContext))
1933     UnusedPrivateFields.remove(Field);
1934 
1935   ExprResult Base = PerformObjectMemberConversion(BaseExpr, SS.getScopeRep(),
1936                                                   FoundDecl, Field);
1937   if (Base.isInvalid())
1938     return ExprError();
1939 
1940   // Build a reference to a private copy for non-static data members in
1941   // non-static member functions, privatized by OpenMP constructs.
1942   if (getLangOpts().OpenMP && IsArrow &&
1943       !CurContext->isDependentContext() &&
1944       isa<CXXThisExpr>(Base.get()->IgnoreParenImpCasts())) {
1945     if (auto *PrivateCopy = OpenMP().isOpenMPCapturedDecl(Field)) {
1946       return OpenMP().getOpenMPCapturedExpr(PrivateCopy, VK, OK,
1947                                             MemberNameInfo.getLoc());
1948     }
1949   }
1950 
1951   return BuildMemberExpr(
1952       Base.get(), IsArrow, OpLoc, SS.getWithLocInContext(Context),
1953       /*TemplateKWLoc=*/SourceLocation(), Field, FoundDecl,
1954       /*HadMultipleCandidates=*/false, MemberNameInfo, MemberType, VK, OK);
1955 }
1956 
1957 ExprResult
1958 Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS,
1959                               SourceLocation TemplateKWLoc,
1960                               LookupResult &R,
1961                               const TemplateArgumentListInfo *TemplateArgs,
1962                               bool IsKnownInstance, const Scope *S) {
1963   assert(!R.empty() && !R.isAmbiguous());
1964 
1965   SourceLocation loc = R.getNameLoc();
1966 
1967   // If this is known to be an instance access, go ahead and build an
1968   // implicit 'this' expression now.
1969   QualType ThisTy = getCurrentThisType();
1970   assert(!ThisTy.isNull() && "didn't correctly pre-flight capture of 'this'");
1971 
1972   Expr *baseExpr = nullptr; // null signifies implicit access
1973   if (IsKnownInstance) {
1974     SourceLocation Loc = R.getNameLoc();
1975     if (SS.getRange().isValid())
1976       Loc = SS.getRange().getBegin();
1977     baseExpr = BuildCXXThisExpr(loc, ThisTy, /*IsImplicit=*/true);
1978   }
1979 
1980   return BuildMemberReferenceExpr(
1981       baseExpr, ThisTy,
1982       /*OpLoc=*/SourceLocation(),
1983       /*IsArrow=*/!getLangOpts().HLSL, SS, TemplateKWLoc,
1984       /*FirstQualifierInScope=*/nullptr, R, TemplateArgs, S);
1985 }
1986