1 /* $NetBSD: gdtoaimp.h,v 1.14 2013/04/19 10:41:53 joerg Exp $ */ 2 3 /**************************************************************** 4 5 The author of this software is David M. Gay. 6 7 Copyright (C) 1998-2000 by Lucent Technologies 8 All Rights Reserved 9 10 Permission to use, copy, modify, and distribute this software and 11 its documentation for any purpose and without fee is hereby 12 granted, provided that the above copyright notice appear in all 13 copies and that both that the copyright notice and this 14 permission notice and warranty disclaimer appear in supporting 15 documentation, and that the name of Lucent or any of its entities 16 not be used in advertising or publicity pertaining to 17 distribution of the software without specific, written prior 18 permission. 19 20 LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, 21 INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. 22 IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY 23 SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 24 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER 25 IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, 26 ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF 27 THIS SOFTWARE. 28 29 ****************************************************************/ 30 31 /* This is a variation on dtoa.c that converts arbitary binary 32 floating-point formats to and from decimal notation. It uses 33 double-precision arithmetic internally, so there are still 34 various #ifdefs that adapt the calculations to the native 35 double-precision arithmetic (any of IEEE, VAX D_floating, 36 or IBM mainframe arithmetic). 37 38 Please send bug reports to David M. Gay (dmg at acm dot org, 39 with " at " changed at "@" and " dot " changed to "."). 40 */ 41 42 /* On a machine with IEEE extended-precision registers, it is 43 * necessary to specify double-precision (53-bit) rounding precision 44 * before invoking strtod or dtoa. If the machine uses (the equivalent 45 * of) Intel 80x87 arithmetic, the call 46 * _control87(PC_53, MCW_PC); 47 * does this with many compilers. Whether this or another call is 48 * appropriate depends on the compiler; for this to work, it may be 49 * necessary to #include "float.h" or another system-dependent header 50 * file. 51 */ 52 53 /* strtod for IEEE-, VAX-, and IBM-arithmetic machines. 54 * 55 * This strtod returns a nearest machine number to the input decimal 56 * string (or sets errno to ERANGE). With IEEE arithmetic, ties are 57 * broken by the IEEE round-even rule. Otherwise ties are broken by 58 * biased rounding (add half and chop). 59 * 60 * Inspired loosely by William D. Clinger's paper "How to Read Floating 61 * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 112-126]. 62 * 63 * Modifications: 64 * 65 * 1. We only require IEEE, IBM, or VAX double-precision 66 * arithmetic (not IEEE double-extended). 67 * 2. We get by with floating-point arithmetic in a case that 68 * Clinger missed -- when we're computing d * 10^n 69 * for a small integer d and the integer n is not too 70 * much larger than 22 (the maximum integer k for which 71 * we can represent 10^k exactly), we may be able to 72 * compute (d*10^k) * 10^(e-k) with just one roundoff. 73 * 3. Rather than a bit-at-a-time adjustment of the binary 74 * result in the hard case, we use floating-point 75 * arithmetic to determine the adjustment to within 76 * one bit; only in really hard cases do we need to 77 * compute a second residual. 78 * 4. Because of 3., we don't need a large table of powers of 10 79 * for ten-to-e (just some small tables, e.g. of 10^k 80 * for 0 <= k <= 22). 81 */ 82 83 /* 84 * #define IEEE_LITTLE_ENDIAN for IEEE-arithmetic machines where the least 85 * significant byte has the lowest address. 86 * #define IEEE_BIG_ENDIAN for IEEE-arithmetic machines where the most 87 * significant byte has the lowest address. 88 * #define Long int on machines with 32-bit ints and 64-bit longs. 89 * #define Sudden_Underflow for IEEE-format machines without gradual 90 * underflow (i.e., that flush to zero on underflow). 91 * #define IBM for IBM mainframe-style floating-point arithmetic. 92 * #define VAX for VAX-style floating-point arithmetic (D_floating). 93 * #define No_leftright to omit left-right logic in fast floating-point 94 * computation of dtoa. 95 * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3. 96 * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines 97 * that use extended-precision instructions to compute rounded 98 * products and quotients) with IBM. 99 * #define ROUND_BIASED for IEEE-format with biased rounding and arithmetic 100 * that rounds toward +Infinity. 101 * #define ROUND_BIASED_without_Round_Up for IEEE-format with biased 102 * rounding when the underlying floating-point arithmetic uses 103 * unbiased rounding. This prevent using ordinary floating-point 104 * arithmetic when the result could be computed with one rounding error. 105 * #define Inaccurate_Divide for IEEE-format with correctly rounded 106 * products but inaccurate quotients, e.g., for Intel i860. 107 * #define NO_LONG_LONG on machines that do not have a "long long" 108 * integer type (of >= 64 bits). On such machines, you can 109 * #define Just_16 to store 16 bits per 32-bit Long when doing 110 * high-precision integer arithmetic. Whether this speeds things 111 * up or slows things down depends on the machine and the number 112 * being converted. If long long is available and the name is 113 * something other than "long long", #define Llong to be the name, 114 * and if "unsigned Llong" does not work as an unsigned version of 115 * Llong, #define #ULLong to be the corresponding unsigned type. 116 * #define KR_headers for old-style C function headers. 117 * #define Bad_float_h if your system lacks a float.h or if it does not 118 * define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP, 119 * FLT_RADIX, FLT_ROUNDS, and DBL_MAX. 120 * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n) 121 * if memory is available and otherwise does something you deem 122 * appropriate. If MALLOC is undefined, malloc will be invoked 123 * directly -- and assumed always to succeed. Similarly, if you 124 * want something other than the system's free() to be called to 125 * recycle memory acquired from MALLOC, #define FREE to be the 126 * name of the alternate routine. (FREE or free is only called in 127 * pathological cases, e.g., in a gdtoa call after a gdtoa return in 128 * mode 3 with thousands of digits requested.) 129 * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making 130 * memory allocations from a private pool of memory when possible. 131 * When used, the private pool is PRIVATE_MEM bytes long: 2304 bytes, 132 * unless #defined to be a different length. This default length 133 * suffices to get rid of MALLOC calls except for unusual cases, 134 * such as decimal-to-binary conversion of a very long string of 135 * digits. When converting IEEE double precision values, the 136 * longest string gdtoa can return is about 751 bytes long. For 137 * conversions by strtod of strings of 800 digits and all gdtoa 138 * conversions of IEEE doubles in single-threaded executions with 139 * 8-byte pointers, PRIVATE_MEM >= 7400 appears to suffice; with 140 * 4-byte pointers, PRIVATE_MEM >= 7112 appears adequate. 141 * #define NO_INFNAN_CHECK if you do not wish to have INFNAN_CHECK 142 * #defined automatically on IEEE systems. On such systems, 143 * when INFNAN_CHECK is #defined, strtod checks 144 * for Infinity and NaN (case insensitively). 145 * When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined, 146 * strtodg also accepts (case insensitively) strings of the form 147 * NaN(x), where x is a string of hexadecimal digits (optionally 148 * preceded by 0x or 0X) and spaces; if there is only one string 149 * of hexadecimal digits, it is taken for the fraction bits of the 150 * resulting NaN; if there are two or more strings of hexadecimal 151 * digits, each string is assigned to the next available sequence 152 * of 32-bit words of fractions bits (starting with the most 153 * significant), right-aligned in each sequence. 154 * Unless GDTOA_NON_PEDANTIC_NANCHECK is #defined, input "NaN(...)" 155 * is consumed even when ... has the wrong form (in which case the 156 * "(...)" is consumed but ignored). 157 * #define MULTIPLE_THREADS if the system offers preemptively scheduled 158 * multiple threads. In this case, you must provide (or suitably 159 * #define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed 160 * by FREE_DTOA_LOCK(n) for n = 0 or 1. (The second lock, accessed 161 * in pow5mult, ensures lazy evaluation of only one copy of high 162 * powers of 5; omitting this lock would introduce a small 163 * probability of wasting memory, but would otherwise be harmless.) 164 * You must also invoke freedtoa(s) to free the value s returned by 165 * dtoa. You may do so whether or not MULTIPLE_THREADS is #defined. 166 * #define IMPRECISE_INEXACT if you do not care about the setting of 167 * the STRTOG_Inexact bits in the special case of doing IEEE double 168 * precision conversions (which could also be done by the strtod in 169 * dtoa.c). 170 * #define NO_HEX_FP to disable recognition of C9x's hexadecimal 171 * floating-point constants. 172 * #define -DNO_ERRNO to suppress setting errno (in strtod.c and 173 * strtodg.c). 174 * #define NO_STRING_H to use private versions of memcpy. 175 * On some K&R systems, it may also be necessary to 176 * #define DECLARE_SIZE_T in this case. 177 * #define USE_LOCALE to use the current locale's decimal_point value. 178 */ 179 180 /* #define IEEE_{BIG,LITTLE}_ENDIAN in ${ARCHDIR}/gdtoa/arith.h */ 181 182 #include <assert.h> 183 #include <stdint.h> 184 #define Short int16_t 185 #define UShort uint16_t 186 #define Long int32_t 187 #define ULong uint32_t 188 #define LLong int64_t 189 #define ULLong uint64_t 190 191 #define INFNAN_CHECK 192 #ifdef _REENTRANT 193 #define MULTIPLE_THREADS 194 #endif 195 #define USE_LOCALE 196 197 #ifndef GDTOAIMP_H_INCLUDED 198 #define GDTOAIMP_H_INCLUDED 199 #include "gdtoa.h" 200 #include "gd_qnan.h" 201 #ifdef Honor_FLT_ROUNDS 202 #include <fenv.h> 203 #endif 204 205 #ifdef DEBUG 206 #include "stdio.h" 207 #define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);} 208 #endif 209 210 #include "stdlib.h" 211 #include "string.h" 212 213 #ifdef KR_headers 214 #define Char char 215 #else 216 #define Char void 217 #endif 218 219 #ifdef MALLOC 220 extern Char *MALLOC ANSI((size_t)); 221 #else 222 #define MALLOC malloc 223 #endif 224 225 #undef IEEE_Arith 226 #undef Avoid_Underflow 227 #ifdef IEEE_BIG_ENDIAN 228 #define IEEE_Arith 229 #endif 230 #ifdef IEEE_LITTLE_ENDIAN 231 #define IEEE_Arith 232 #endif 233 234 #include "errno.h" 235 #ifdef Bad_float_h 236 237 #ifdef IEEE_Arith 238 #define DBL_DIG 15 239 #define DBL_MAX_10_EXP 308 240 #define DBL_MAX_EXP 1024 241 #define FLT_RADIX 2 242 #define DBL_MAX 1.7976931348623157e+308 243 #endif 244 245 #ifdef IBM 246 #define DBL_DIG 16 247 #define DBL_MAX_10_EXP 75 248 #define DBL_MAX_EXP 63 249 #define FLT_RADIX 16 250 #define DBL_MAX 7.2370055773322621e+75 251 #endif 252 253 #ifdef VAX 254 #define DBL_DIG 16 255 #define DBL_MAX_10_EXP 38 256 #define DBL_MAX_EXP 127 257 #define FLT_RADIX 2 258 #define DBL_MAX 1.7014118346046923e+38 259 #define n_bigtens 2 260 #endif 261 262 #ifndef LONG_MAX 263 #define LONG_MAX 2147483647 264 #endif 265 266 #else /* ifndef Bad_float_h */ 267 #include "float.h" 268 #endif /* Bad_float_h */ 269 270 #ifdef IEEE_Arith 271 #define Scale_Bit 0x10 272 #define n_bigtens 5 273 #endif 274 275 #ifdef IBM 276 #define n_bigtens 3 277 #endif 278 279 #ifdef VAX 280 #define n_bigtens 2 281 #endif 282 283 #include "math.h" 284 285 #ifdef __cplusplus 286 extern "C" { 287 #endif 288 289 #if defined(IEEE_LITTLE_ENDIAN) + defined(IEEE_BIG_ENDIAN) + defined(VAX) + defined(IBM) != 1 290 Exactly one of IEEE_LITTLE_ENDIAN, IEEE_BIG_ENDIAN, VAX, or IBM should be defined. 291 #endif 292 293 typedef union { double d; ULong L[2]; } __attribute__((__may_alias__)) U; 294 295 #ifdef YES_ALIAS 296 #define dval(x) x 297 #ifdef IEEE_LITTLE_ENDIAN 298 #define word0(x) ((ULong *)x)[1] 299 #define word1(x) ((ULong *)x)[0] 300 #else 301 #define word0(x) ((ULong *)x)[0] 302 #define word1(x) ((ULong *)x)[1] 303 #endif 304 #else /* !YES_ALIAS */ 305 #ifdef IEEE_LITTLE_ENDIAN 306 #define word0(x) ( /* LINTED */ (U*)x)->L[1] 307 #define word1(x) ( /* LINTED */ (U*)x)->L[0] 308 #else 309 #define word0(x) ( /* LINTED */ (U*)x)->L[0] 310 #define word1(x) ( /* LINTED */ (U*)x)->L[1] 311 #endif 312 #define dval(x) ( /* LINTED */ (U*)x)->d 313 #endif /* YES_ALIAS */ 314 315 /* The following definition of Storeinc is appropriate for MIPS processors. 316 * An alternative that might be better on some machines is 317 * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff) 318 */ 319 #if defined(IEEE_LITTLE_ENDIAN) + defined(VAX) 320 #define Storeinc(a,b,c) \ 321 (((unsigned short *)(void *)a)[1] = (unsigned short)b, \ 322 ((unsigned short *)(void *)a)[0] = (unsigned short)c, \ 323 a++) 324 #else 325 #define Storeinc(a,b,c) \ 326 (((unsigned short *)(void *)a)[0] = (unsigned short)b, \ 327 ((unsigned short *)(void *)a)[1] = (unsigned short)c, \ 328 a++) 329 #endif 330 331 /* #define P DBL_MANT_DIG */ 332 /* Ten_pmax = floor(P*log(2)/log(5)) */ 333 /* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */ 334 /* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */ 335 /* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */ 336 337 #ifdef IEEE_Arith 338 #define Exp_shift 20 339 #define Exp_shift1 20 340 #define Exp_msk1 0x100000 341 #define Exp_msk11 0x100000 342 #define Exp_mask 0x7ff00000 343 #define P 53 344 #define Bias 1023 345 #define Emin (-1022) 346 #define Exp_1 0x3ff00000 347 #define Exp_11 0x3ff00000 348 #define Ebits 11 349 #define Frac_mask 0xfffff 350 #define Frac_mask1 0xfffff 351 #define Ten_pmax 22 352 #define Bletch 0x10 353 #define Bndry_mask 0xfffff 354 #define Bndry_mask1 0xfffff 355 #define LSB 1 356 #define Sign_bit 0x80000000 357 #define Log2P 1 358 #define Tiny0 0 359 #define Tiny1 1 360 #define Quick_max 14 361 #define Int_max 14 362 363 #ifndef Flt_Rounds 364 #ifdef FLT_ROUNDS 365 #define Flt_Rounds FLT_ROUNDS 366 #else 367 #define Flt_Rounds 1 368 #endif 369 #endif /*Flt_Rounds*/ 370 371 #else /* ifndef IEEE_Arith */ 372 #undef Sudden_Underflow 373 #define Sudden_Underflow 374 #ifdef IBM 375 #undef Flt_Rounds 376 #define Flt_Rounds 0 377 #define Exp_shift 24 378 #define Exp_shift1 24 379 #define Exp_msk1 0x1000000 380 #define Exp_msk11 0x1000000 381 #define Exp_mask 0x7f000000 382 #define P 14 383 #define Bias 65 384 #define Exp_1 0x41000000 385 #define Exp_11 0x41000000 386 #define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */ 387 #define Frac_mask 0xffffff 388 #define Frac_mask1 0xffffff 389 #define Bletch 4 390 #define Ten_pmax 22 391 #define Bndry_mask 0xefffff 392 #define Bndry_mask1 0xffffff 393 #define LSB 1 394 #define Sign_bit 0x80000000 395 #define Log2P 4 396 #define Tiny0 0x100000 397 #define Tiny1 0 398 #define Quick_max 14 399 #define Int_max 15 400 #else /* VAX */ 401 #undef Flt_Rounds 402 #define Flt_Rounds 1 403 #define Exp_shift 23 404 #define Exp_shift1 7 405 #define Exp_msk1 0x80 406 #define Exp_msk11 0x800000 407 #define Exp_mask 0x7f80 408 #define P 56 409 #define Bias 129 410 #define Emin (-127) /* XXX: Check this */ 411 #define Exp_1 0x40800000 412 #define Exp_11 0x4080 413 #define Ebits 8 414 #define Frac_mask 0x7fffff 415 #define Frac_mask1 0xffff007f 416 #define Ten_pmax 24 417 #define Bletch 2 418 #define Bndry_mask 0xffff007f 419 #define Bndry_mask1 0xffff007f 420 #define LSB 0x10000 421 #define Sign_bit 0x8000 422 #define Log2P 1 423 #define Tiny0 0x80 424 #define Tiny1 0 425 #define Quick_max 15 426 #define Int_max 15 427 #endif /* IBM, VAX */ 428 #endif /* IEEE_Arith */ 429 430 #ifndef IEEE_Arith 431 #define ROUND_BIASED 432 #else 433 #ifdef ROUND_BIASED_without_Round_Up 434 #undef ROUND_BIASED 435 #define ROUND_BIASED 436 #endif 437 #endif 438 439 #ifdef RND_PRODQUOT 440 #define rounded_product(a,b) a = rnd_prod(a, b) 441 #define rounded_quotient(a,b) a = rnd_quot(a, b) 442 #ifdef KR_headers 443 extern double rnd_prod(), rnd_quot(); 444 #else 445 extern double rnd_prod(double, double), rnd_quot(double, double); 446 #endif 447 #else 448 #define rounded_product(a,b) a *= b 449 #define rounded_quotient(a,b) a /= b 450 #endif 451 452 #define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1)) 453 #define Big1 0xffffffff 454 455 #undef Pack_16 456 #ifndef Pack_32 457 #define Pack_32 458 #endif 459 460 #ifdef NO_LONG_LONG 461 #undef ULLong 462 #ifdef Just_16 463 #undef Pack_32 464 #define Pack_16 465 /* When Pack_32 is not defined, we store 16 bits per 32-bit Long. 466 * This makes some inner loops simpler and sometimes saves work 467 * during multiplications, but it often seems to make things slightly 468 * slower. Hence the default is now to store 32 bits per Long. 469 */ 470 #endif 471 #else /* long long available */ 472 #ifndef Llong 473 #define Llong long long 474 #endif 475 #ifndef ULLong 476 #define ULLong unsigned Llong 477 #endif 478 #endif /* NO_LONG_LONG */ 479 480 #ifdef Pack_32 481 #define ULbits 32 482 #define kshift 5 483 #define kmask 31 484 #define ALL_ON 0xffffffff 485 #else 486 #define ULbits 16 487 #define kshift 4 488 #define kmask 15 489 #define ALL_ON 0xffff 490 #endif 491 492 #ifndef MULTIPLE_THREADS 493 #define ACQUIRE_DTOA_LOCK(n) /*nothing*/ 494 #define FREE_DTOA_LOCK(n) /*nothing*/ 495 #else 496 #include "reentrant.h" 497 498 extern mutex_t __gdtoa_locks[2]; 499 500 #define ACQUIRE_DTOA_LOCK(n) \ 501 do { \ 502 if (__isthreaded) \ 503 mutex_lock(&__gdtoa_locks[n]); \ 504 } while (/* CONSTCOND */ 0) 505 #define FREE_DTOA_LOCK(n) \ 506 do { \ 507 if (__isthreaded) \ 508 mutex_unlock(&__gdtoa_locks[n]); \ 509 } while (/* CONSTCOND */ 0) 510 #endif 511 512 #define Kmax (sizeof(size_t) << 3) 513 514 struct 515 Bigint { 516 struct Bigint *next; 517 int k, maxwds, sign, wds; 518 ULong x[1]; 519 }; 520 521 typedef struct Bigint Bigint; 522 523 #ifdef NO_STRING_H 524 #ifdef DECLARE_SIZE_T 525 typedef unsigned int size_t; 526 #endif 527 extern void memcpy_D2A ANSI((void*, const void*, size_t)); 528 #define Bcopy(x,y) memcpy_D2A(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int)) 529 #else /* !NO_STRING_H */ 530 #define Bcopy(x,y) memcpy(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int)) 531 #endif /* NO_STRING_H */ 532 533 #define Balloc __Balloc_D2A 534 #define Bfree __Bfree_D2A 535 #define ULtoQ __ULtoQ_D2A 536 #define ULtof __ULtof_D2A 537 #define ULtod __ULtod_D2A 538 #define ULtodd __ULtodd_D2A 539 #define ULtox __ULtox_D2A 540 #define ULtoxL __ULtoxL_D2A 541 #define any_on __any_on_D2A 542 #define b2d __b2d_D2A 543 #define bigtens __bigtens_D2A 544 #define cmp __cmp_D2A 545 #define copybits __copybits_D2A 546 #define d2b __d2b_D2A 547 #define decrement __decrement_D2A 548 #define diff __diff_D2A 549 #define dtoa_result __dtoa_result_D2A 550 #define g__fmt __g__fmt_D2A 551 #define gethex __gethex_D2A 552 #define hexdig __hexdig_D2A 553 #define hexdig_init_D2A __hexdig_init_D2A 554 #define hexnan __hexnan_D2A 555 #define hi0bits __hi0bits_D2A 556 #define hi0bits_D2A __hi0bits_D2A 557 #define i2b __i2b_D2A 558 #define increment __increment_D2A 559 #define lo0bits __lo0bits_D2A 560 #define lshift __lshift_D2A 561 #define match __match_D2A 562 #define mult __mult_D2A 563 #define multadd __multadd_D2A 564 #define nrv_alloc __nrv_alloc_D2A 565 #define pow5mult __pow5mult_D2A 566 #define quorem __quorem_D2A 567 #define ratio __ratio_D2A 568 #define rshift __rshift_D2A 569 #define rv_alloc __rv_alloc_D2A 570 #define s2b __s2b_D2A 571 #define set_ones __set_ones_D2A 572 #define strcp __strcp_D2A 573 #define strcp_D2A __strcp_D2A 574 #define strtoIg __strtoIg_D2A 575 #define sum __sum_D2A 576 #define tens __tens_D2A 577 #define tinytens __tinytens_D2A 578 #define tinytens __tinytens_D2A 579 #define trailz __trailz_D2A 580 #define ulp __ulp_D2A 581 582 extern char *dtoa_result; 583 extern CONST double bigtens[], tens[], tinytens[]; 584 extern unsigned char hexdig[]; 585 586 extern Bigint *Balloc ANSI((int)); 587 extern void Bfree ANSI((Bigint*)); 588 extern void ULtof ANSI((ULong*, ULong*, Long, int)); 589 extern void ULtod ANSI((ULong*, ULong*, Long, int)); 590 extern void ULtodd ANSI((ULong*, ULong*, Long, int)); 591 extern void ULtoQ ANSI((ULong*, ULong*, Long, int)); 592 extern void ULtox ANSI((UShort*, ULong*, Long, int)); 593 extern void ULtoxL ANSI((ULong*, ULong*, Long, int)); 594 extern ULong any_on ANSI((Bigint*, int)); 595 extern double b2d ANSI((Bigint*, int*)); 596 extern int cmp ANSI((Bigint*, Bigint*)); 597 extern void copybits ANSI((ULong*, int, Bigint*)); 598 extern Bigint *d2b ANSI((double, int*, int*)); 599 extern void decrement ANSI((Bigint*)); 600 extern Bigint *diff ANSI((Bigint*, Bigint*)); 601 extern char *dtoa ANSI((double d, int mode, int ndigits, 602 int *decpt, int *sign, char **rve)); 603 extern char *g__fmt ANSI((char*, char*, char*, int, ULong, size_t)); 604 extern int gethex ANSI((CONST char**, CONST FPI*, Long*, Bigint**, int, locale_t)); 605 extern void hexdig_init_D2A(Void); 606 extern int hexnan ANSI((CONST char**, CONST FPI*, ULong*)); 607 extern int hi0bits_D2A ANSI((ULong)); 608 extern Bigint *i2b ANSI((int)); 609 extern Bigint *increment ANSI((Bigint*)); 610 extern int lo0bits ANSI((ULong*)); 611 extern Bigint *lshift ANSI((Bigint*, int)); 612 extern int match ANSI((CONST char**, CONST char*)); 613 extern Bigint *mult ANSI((Bigint*, Bigint*)); 614 extern Bigint *multadd ANSI((Bigint*, int, int)); 615 extern char *nrv_alloc ANSI((CONST char*, char **, size_t)); 616 extern Bigint *pow5mult ANSI((Bigint*, int)); 617 extern int quorem ANSI((Bigint*, Bigint*)); 618 extern double ratio ANSI((Bigint*, Bigint*)); 619 extern void rshift ANSI((Bigint*, int)); 620 extern char *rv_alloc ANSI((size_t)); 621 extern Bigint *s2b ANSI((CONST char*, int, int, ULong, size_t)); 622 extern Bigint *set_ones ANSI((Bigint*, int)); 623 extern char *strcp ANSI((char*, const char*)); 624 extern int strtoIg ANSI((CONST char*, char**, FPI*, Long*, Bigint**, int*)); 625 extern double strtod ANSI((const char *s00, char **se)); 626 extern Bigint *sum ANSI((Bigint*, Bigint*)); 627 extern int trailz ANSI((CONST Bigint*)); 628 extern double ulp ANSI((U*)); 629 630 #ifdef __cplusplus 631 } 632 #endif 633 /* 634 * NAN_WORD0 and NAN_WORD1 are only referenced in strtod.c. Prior to 635 * 20050115, they used to be hard-wired here (to 0x7ff80000 and 0, 636 * respectively), but now are determined by compiling and running 637 * qnan.c to generate gd_qnan.h, which specifies d_QNAN0 and d_QNAN1. 638 * Formerly gdtoaimp.h recommended supplying suitable -DNAN_WORD0=... 639 * and -DNAN_WORD1=... values if necessary. This should still work. 640 * (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.) 641 */ 642 #ifdef IEEE_Arith 643 #ifndef NO_INFNAN_CHECK 644 #undef INFNAN_CHECK 645 #define INFNAN_CHECK 646 #endif 647 #ifdef IEEE_BIG_ENDIAN 648 #define _0 0 649 #define _1 1 650 #ifndef NAN_WORD0 651 #define NAN_WORD0 d_QNAN0 652 #endif 653 #ifndef NAN_WORD1 654 #define NAN_WORD1 d_QNAN1 655 #endif 656 #else 657 #define _0 1 658 #define _1 0 659 #ifndef NAN_WORD0 660 #define NAN_WORD0 d_QNAN1 661 #endif 662 #ifndef NAN_WORD1 663 #define NAN_WORD1 d_QNAN0 664 #endif 665 #endif 666 #else 667 #undef INFNAN_CHECK 668 #endif 669 670 #undef SI 671 #ifdef Sudden_Underflow 672 #define SI 1 673 #else 674 #define SI 0 675 #endif 676 677 #endif /* GDTOAIMP_H_INCLUDED */ 678