xref: /netbsd-src/crypto/external/bsd/openssl/dist/crypto/bn/bn_exp.c (revision b46c97fed00dfbea5bf756ee3219c17ae32ec29b)
1 /*
2  * Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved.
3  *
4  * Licensed under the Apache License 2.0 (the "License").  You may not use
5  * this file except in compliance with the License.  You can obtain a copy
6  * in the file LICENSE in the source distribution or at
7  * https://www.openssl.org/source/license.html
8  */
9 
10 #include "internal/cryptlib.h"
11 #include "internal/constant_time.h"
12 #include "bn_local.h"
13 
14 #include <stdlib.h>
15 #ifdef _WIN32
16 # include <malloc.h>
17 # ifndef alloca
18 #  define alloca _alloca
19 # endif
20 #elif defined(__GNUC__)
21 # ifndef __SSP__
22 #  ifndef alloca
23 #   define alloca(s) __builtin_alloca((s))
24 #  endif
25 # else
26 #   undef alloca
27 # endif
28 #elif defined(__sun)
29 # include <alloca.h>
30 #endif
31 
32 #include "rsaz_exp.h"
33 
34 #undef SPARC_T4_MONT
35 #if defined(OPENSSL_BN_ASM_MONT) && (defined(__sparc__) || defined(__sparc))
36 # include "crypto/sparc_arch.h"
37 # define SPARC_T4_MONT
38 #endif
39 
40 /* maximum precomputation table size for *variable* sliding windows */
41 #define TABLE_SIZE      32
42 
43 /*
44  * Beyond this limit the constant time code is disabled due to
45  * the possible overflow in the computation of powerbufLen in
46  * BN_mod_exp_mont_consttime.
47  * When this limit is exceeded, the computation will be done using
48  * non-constant time code, but it will take very long.
49  */
50 #define BN_CONSTTIME_SIZE_LIMIT (INT_MAX / BN_BYTES / 256)
51 
52 /* this one works - simple but works */
BN_exp(BIGNUM * r,const BIGNUM * a,const BIGNUM * p,BN_CTX * ctx)53 int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
54 {
55     int i, bits, ret = 0;
56     BIGNUM *v, *rr;
57 
58     if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0
59             || BN_get_flags(a, BN_FLG_CONSTTIME) != 0) {
60         /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
61         ERR_raise(ERR_LIB_BN, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
62         return 0;
63     }
64 
65     BN_CTX_start(ctx);
66     rr = ((r == a) || (r == p)) ? BN_CTX_get(ctx) : r;
67     v = BN_CTX_get(ctx);
68     if (rr == NULL || v == NULL)
69         goto err;
70 
71     if (BN_copy(v, a) == NULL)
72         goto err;
73     bits = BN_num_bits(p);
74 
75     if (BN_is_odd(p)) {
76         if (BN_copy(rr, a) == NULL)
77             goto err;
78     } else {
79         if (!BN_one(rr))
80             goto err;
81     }
82 
83     for (i = 1; i < bits; i++) {
84         if (!BN_sqr(v, v, ctx))
85             goto err;
86         if (BN_is_bit_set(p, i)) {
87             if (!BN_mul(rr, rr, v, ctx))
88                 goto err;
89         }
90     }
91     if (r != rr && BN_copy(r, rr) == NULL)
92         goto err;
93 
94     ret = 1;
95  err:
96     BN_CTX_end(ctx);
97     bn_check_top(r);
98     return ret;
99 }
100 
BN_mod_exp(BIGNUM * r,const BIGNUM * a,const BIGNUM * p,const BIGNUM * m,BN_CTX * ctx)101 int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m,
102                BN_CTX *ctx)
103 {
104     int ret;
105 
106     bn_check_top(a);
107     bn_check_top(p);
108     bn_check_top(m);
109 
110     /*-
111      * For even modulus  m = 2^k*m_odd, it might make sense to compute
112      * a^p mod m_odd  and  a^p mod 2^k  separately (with Montgomery
113      * exponentiation for the odd part), using appropriate exponent
114      * reductions, and combine the results using the CRT.
115      *
116      * For now, we use Montgomery only if the modulus is odd; otherwise,
117      * exponentiation using the reciprocal-based quick remaindering
118      * algorithm is used.
119      *
120      * (Timing obtained with expspeed.c [computations  a^p mod m
121      * where  a, p, m  are of the same length: 256, 512, 1024, 2048,
122      * 4096, 8192 bits], compared to the running time of the
123      * standard algorithm:
124      *
125      *   BN_mod_exp_mont   33 .. 40 %  [AMD K6-2, Linux, debug configuration]
126      *                     55 .. 77 %  [UltraSparc processor, but
127      *                                  debug-solaris-sparcv8-gcc conf.]
128      *
129      *   BN_mod_exp_recp   50 .. 70 %  [AMD K6-2, Linux, debug configuration]
130      *                     62 .. 118 % [UltraSparc, debug-solaris-sparcv8-gcc]
131      *
132      * On the Sparc, BN_mod_exp_recp was faster than BN_mod_exp_mont
133      * at 2048 and more bits, but at 512 and 1024 bits, it was
134      * slower even than the standard algorithm!
135      *
136      * "Real" timings [linux-elf, solaris-sparcv9-gcc configurations]
137      * should be obtained when the new Montgomery reduction code
138      * has been integrated into OpenSSL.)
139      */
140 
141 #define MONT_MUL_MOD
142 #define MONT_EXP_WORD
143 #define RECP_MUL_MOD
144 
145 #ifdef MONT_MUL_MOD
146     if (BN_is_odd(m)) {
147 # ifdef MONT_EXP_WORD
148         if (a->top == 1 && !a->neg
149             && (BN_get_flags(p, BN_FLG_CONSTTIME) == 0)
150             && (BN_get_flags(a, BN_FLG_CONSTTIME) == 0)
151             && (BN_get_flags(m, BN_FLG_CONSTTIME) == 0)) {
152             BN_ULONG A = a->d[0];
153             ret = BN_mod_exp_mont_word(r, A, p, m, ctx, NULL);
154         } else
155 # endif
156             ret = BN_mod_exp_mont(r, a, p, m, ctx, NULL);
157     } else
158 #endif
159 #ifdef RECP_MUL_MOD
160     {
161         ret = BN_mod_exp_recp(r, a, p, m, ctx);
162     }
163 #else
164     {
165         ret = BN_mod_exp_simple(r, a, p, m, ctx);
166     }
167 #endif
168 
169     bn_check_top(r);
170     return ret;
171 }
172 
BN_mod_exp_recp(BIGNUM * r,const BIGNUM * a,const BIGNUM * p,const BIGNUM * m,BN_CTX * ctx)173 int BN_mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
174                     const BIGNUM *m, BN_CTX *ctx)
175 {
176     int i, j, bits, ret = 0, wstart, wend, window, wvalue;
177     int start = 1;
178     BIGNUM *aa;
179     /* Table of variables obtained from 'ctx' */
180     BIGNUM *val[TABLE_SIZE];
181     BN_RECP_CTX recp;
182 
183     if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0
184             || BN_get_flags(a, BN_FLG_CONSTTIME) != 0
185             || BN_get_flags(m, BN_FLG_CONSTTIME) != 0) {
186         /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
187         ERR_raise(ERR_LIB_BN, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
188         return 0;
189     }
190 
191     bits = BN_num_bits(p);
192     if (bits == 0) {
193         /* x**0 mod 1, or x**0 mod -1 is still zero. */
194         if (BN_abs_is_word(m, 1)) {
195             ret = 1;
196             BN_zero(r);
197         } else {
198             ret = BN_one(r);
199         }
200         return ret;
201     }
202 
203     BN_RECP_CTX_init(&recp);
204 
205     BN_CTX_start(ctx);
206     aa = BN_CTX_get(ctx);
207     val[0] = BN_CTX_get(ctx);
208     if (val[0] == NULL)
209         goto err;
210 
211     if (m->neg) {
212         /* ignore sign of 'm' */
213         if (!BN_copy(aa, m))
214             goto err;
215         aa->neg = 0;
216         if (BN_RECP_CTX_set(&recp, aa, ctx) <= 0)
217             goto err;
218     } else {
219         if (BN_RECP_CTX_set(&recp, m, ctx) <= 0)
220             goto err;
221     }
222 
223     if (!BN_nnmod(val[0], a, m, ctx))
224         goto err;               /* 1 */
225     if (BN_is_zero(val[0])) {
226         BN_zero(r);
227         ret = 1;
228         goto err;
229     }
230 
231     window = BN_window_bits_for_exponent_size(bits);
232     if (window > 1) {
233         if (!BN_mod_mul_reciprocal(aa, val[0], val[0], &recp, ctx))
234             goto err;           /* 2 */
235         j = 1 << (window - 1);
236         for (i = 1; i < j; i++) {
237             if (((val[i] = BN_CTX_get(ctx)) == NULL) ||
238                 !BN_mod_mul_reciprocal(val[i], val[i - 1], aa, &recp, ctx))
239                 goto err;
240         }
241     }
242 
243     start = 1;                  /* This is used to avoid multiplication etc
244                                  * when there is only the value '1' in the
245                                  * buffer. */
246     wvalue = 0;                 /* The 'value' of the window */
247     wstart = bits - 1;          /* The top bit of the window */
248     wend = 0;                   /* The bottom bit of the window */
249 
250     if (r == p) {
251         BIGNUM *p_dup = BN_CTX_get(ctx);
252 
253         if (p_dup == NULL || BN_copy(p_dup, p) == NULL)
254             goto err;
255         p = p_dup;
256     }
257 
258     if (!BN_one(r))
259         goto err;
260 
261     for (;;) {
262         if (BN_is_bit_set(p, wstart) == 0) {
263             if (!start)
264                 if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx))
265                     goto err;
266             if (wstart == 0)
267                 break;
268             wstart--;
269             continue;
270         }
271         /*
272          * We now have wstart on a 'set' bit, we now need to work out how bit
273          * a window to do.  To do this we need to scan forward until the last
274          * set bit before the end of the window
275          */
276         wvalue = 1;
277         wend = 0;
278         for (i = 1; i < window; i++) {
279             if (wstart - i < 0)
280                 break;
281             if (BN_is_bit_set(p, wstart - i)) {
282                 wvalue <<= (i - wend);
283                 wvalue |= 1;
284                 wend = i;
285             }
286         }
287 
288         /* wend is the size of the current window */
289         j = wend + 1;
290         /* add the 'bytes above' */
291         if (!start)
292             for (i = 0; i < j; i++) {
293                 if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx))
294                     goto err;
295             }
296 
297         /* wvalue will be an odd number < 2^window */
298         if (!BN_mod_mul_reciprocal(r, r, val[wvalue >> 1], &recp, ctx))
299             goto err;
300 
301         /* move the 'window' down further */
302         wstart -= wend + 1;
303         wvalue = 0;
304         start = 0;
305         if (wstart < 0)
306             break;
307     }
308     ret = 1;
309  err:
310     BN_CTX_end(ctx);
311     BN_RECP_CTX_free(&recp);
312     bn_check_top(r);
313     return ret;
314 }
315 
BN_mod_exp_mont(BIGNUM * rr,const BIGNUM * a,const BIGNUM * p,const BIGNUM * m,BN_CTX * ctx,BN_MONT_CTX * in_mont)316 int BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
317                     const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont)
318 {
319     int i, j, bits, ret = 0, wstart, wend, window, wvalue;
320     int start = 1;
321     BIGNUM *d, *r;
322     const BIGNUM *aa;
323     /* Table of variables obtained from 'ctx' */
324     BIGNUM *val[TABLE_SIZE];
325     BN_MONT_CTX *mont = NULL;
326 
327     bn_check_top(a);
328     bn_check_top(p);
329     bn_check_top(m);
330 
331     if (!BN_is_odd(m)) {
332         ERR_raise(ERR_LIB_BN, BN_R_CALLED_WITH_EVEN_MODULUS);
333         return 0;
334     }
335 
336     if (m->top <= BN_CONSTTIME_SIZE_LIMIT
337         && (BN_get_flags(p, BN_FLG_CONSTTIME) != 0
338             || BN_get_flags(a, BN_FLG_CONSTTIME) != 0
339             || BN_get_flags(m, BN_FLG_CONSTTIME) != 0)) {
340         return BN_mod_exp_mont_consttime(rr, a, p, m, ctx, in_mont);
341     }
342 
343     bits = BN_num_bits(p);
344     if (bits == 0) {
345         /* x**0 mod 1, or x**0 mod -1 is still zero. */
346         if (BN_abs_is_word(m, 1)) {
347             ret = 1;
348             BN_zero(rr);
349         } else {
350             ret = BN_one(rr);
351         }
352         return ret;
353     }
354 
355     BN_CTX_start(ctx);
356     d = BN_CTX_get(ctx);
357     r = BN_CTX_get(ctx);
358     val[0] = BN_CTX_get(ctx);
359     if (val[0] == NULL)
360         goto err;
361 
362     /*
363      * If this is not done, things will break in the montgomery part
364      */
365 
366     if (in_mont != NULL)
367         mont = in_mont;
368     else {
369         if ((mont = BN_MONT_CTX_new()) == NULL)
370             goto err;
371         if (!BN_MONT_CTX_set(mont, m, ctx))
372             goto err;
373     }
374 
375     if (a->neg || BN_ucmp(a, m) >= 0) {
376         if (!BN_nnmod(val[0], a, m, ctx))
377             goto err;
378         aa = val[0];
379     } else
380         aa = a;
381     if (!bn_to_mont_fixed_top(val[0], aa, mont, ctx))
382         goto err;               /* 1 */
383 
384     window = BN_window_bits_for_exponent_size(bits);
385     if (window > 1) {
386         if (!bn_mul_mont_fixed_top(d, val[0], val[0], mont, ctx))
387             goto err;           /* 2 */
388         j = 1 << (window - 1);
389         for (i = 1; i < j; i++) {
390             if (((val[i] = BN_CTX_get(ctx)) == NULL) ||
391                 !bn_mul_mont_fixed_top(val[i], val[i - 1], d, mont, ctx))
392                 goto err;
393         }
394     }
395 
396     start = 1;                  /* This is used to avoid multiplication etc
397                                  * when there is only the value '1' in the
398                                  * buffer. */
399     wvalue = 0;                 /* The 'value' of the window */
400     wstart = bits - 1;          /* The top bit of the window */
401     wend = 0;                   /* The bottom bit of the window */
402 
403 #if 1                           /* by Shay Gueron's suggestion */
404     j = m->top;                 /* borrow j */
405     if (m->d[j - 1] & (((BN_ULONG)1) << (BN_BITS2 - 1))) {
406         if (bn_wexpand(r, j) == NULL)
407             goto err;
408         /* 2^(top*BN_BITS2) - m */
409         r->d[0] = (0 - m->d[0]) & BN_MASK2;
410         for (i = 1; i < j; i++)
411             r->d[i] = (~m->d[i]) & BN_MASK2;
412         r->top = j;
413         r->flags |= BN_FLG_FIXED_TOP;
414     } else
415 #endif
416     if (!bn_to_mont_fixed_top(r, BN_value_one(), mont, ctx))
417         goto err;
418     for (;;) {
419         if (BN_is_bit_set(p, wstart) == 0) {
420             if (!start) {
421                 if (!bn_mul_mont_fixed_top(r, r, r, mont, ctx))
422                     goto err;
423             }
424             if (wstart == 0)
425                 break;
426             wstart--;
427             continue;
428         }
429         /*
430          * We now have wstart on a 'set' bit, we now need to work out how bit
431          * a window to do.  To do this we need to scan forward until the last
432          * set bit before the end of the window
433          */
434         wvalue = 1;
435         wend = 0;
436         for (i = 1; i < window; i++) {
437             if (wstart - i < 0)
438                 break;
439             if (BN_is_bit_set(p, wstart - i)) {
440                 wvalue <<= (i - wend);
441                 wvalue |= 1;
442                 wend = i;
443             }
444         }
445 
446         /* wend is the size of the current window */
447         j = wend + 1;
448         /* add the 'bytes above' */
449         if (!start)
450             for (i = 0; i < j; i++) {
451                 if (!bn_mul_mont_fixed_top(r, r, r, mont, ctx))
452                     goto err;
453             }
454 
455         /* wvalue will be an odd number < 2^window */
456         if (!bn_mul_mont_fixed_top(r, r, val[wvalue >> 1], mont, ctx))
457             goto err;
458 
459         /* move the 'window' down further */
460         wstart -= wend + 1;
461         wvalue = 0;
462         start = 0;
463         if (wstart < 0)
464             break;
465     }
466     /*
467      * Done with zero-padded intermediate BIGNUMs. Final BN_from_montgomery
468      * removes padding [if any] and makes return value suitable for public
469      * API consumer.
470      */
471 #if defined(SPARC_T4_MONT)
472     if (OPENSSL_sparcv9cap_P[0] & (SPARCV9_VIS3 | SPARCV9_PREFER_FPU)) {
473         j = mont->N.top;        /* borrow j */
474         val[0]->d[0] = 1;       /* borrow val[0] */
475         for (i = 1; i < j; i++)
476             val[0]->d[i] = 0;
477         val[0]->top = j;
478         if (!BN_mod_mul_montgomery(rr, r, val[0], mont, ctx))
479             goto err;
480     } else
481 #endif
482     if (!BN_from_montgomery(rr, r, mont, ctx))
483         goto err;
484     ret = 1;
485  err:
486     if (in_mont == NULL)
487         BN_MONT_CTX_free(mont);
488     BN_CTX_end(ctx);
489     bn_check_top(rr);
490     return ret;
491 }
492 
bn_get_bits(const BIGNUM * a,int bitpos)493 static BN_ULONG bn_get_bits(const BIGNUM *a, int bitpos)
494 {
495     BN_ULONG ret = 0;
496     int wordpos;
497 
498     wordpos = bitpos / BN_BITS2;
499     bitpos %= BN_BITS2;
500     if (wordpos >= 0 && wordpos < a->top) {
501         ret = a->d[wordpos] & BN_MASK2;
502         if (bitpos) {
503             ret >>= bitpos;
504             if (++wordpos < a->top)
505                 ret |= a->d[wordpos] << (BN_BITS2 - bitpos);
506         }
507     }
508 
509     return ret & BN_MASK2;
510 }
511 
512 /*
513  * BN_mod_exp_mont_consttime() stores the precomputed powers in a specific
514  * layout so that accessing any of these table values shows the same access
515  * pattern as far as cache lines are concerned.  The following functions are
516  * used to transfer a BIGNUM from/to that table.
517  */
518 
MOD_EXP_CTIME_COPY_TO_PREBUF(const BIGNUM * b,int top,unsigned char * buf,int idx,int window)519 static int MOD_EXP_CTIME_COPY_TO_PREBUF(const BIGNUM *b, int top,
520                                         unsigned char *buf, int idx,
521                                         int window)
522 {
523     int i, j;
524     int width = 1 << window;
525     BN_ULONG *table = (BN_ULONG *)buf;
526 
527     if (top > b->top)
528         top = b->top;           /* this works because 'buf' is explicitly
529                                  * zeroed */
530     for (i = 0, j = idx; i < top; i++, j += width) {
531         table[j] = b->d[i];
532     }
533 
534     return 1;
535 }
536 
MOD_EXP_CTIME_COPY_FROM_PREBUF(BIGNUM * b,int top,unsigned char * buf,int idx,int window)537 static int MOD_EXP_CTIME_COPY_FROM_PREBUF(BIGNUM *b, int top,
538                                           unsigned char *buf, int idx,
539                                           int window)
540 {
541     int i, j;
542     int width = 1 << window;
543     /*
544      * We declare table 'volatile' in order to discourage compiler
545      * from reordering loads from the table. Concern is that if
546      * reordered in specific manner loads might give away the
547      * information we are trying to conceal. Some would argue that
548      * compiler can reorder them anyway, but it can as well be
549      * argued that doing so would be violation of standard...
550      */
551     volatile BN_ULONG *table = (volatile BN_ULONG *)buf;
552 
553     if (bn_wexpand(b, top) == NULL)
554         return 0;
555 
556     if (window <= 3) {
557         for (i = 0; i < top; i++, table += width) {
558             BN_ULONG acc = 0;
559 
560             for (j = 0; j < width; j++) {
561                 acc |= table[j] &
562                        ((BN_ULONG)0 - (constant_time_eq_int(j,idx)&1));
563             }
564 
565             b->d[i] = acc;
566         }
567     } else {
568         int xstride = 1 << (window - 2);
569         BN_ULONG y0, y1, y2, y3;
570 
571         i = idx >> (window - 2);        /* equivalent of idx / xstride */
572         idx &= xstride - 1;             /* equivalent of idx % xstride */
573 
574         y0 = (BN_ULONG)0 - (constant_time_eq_int(i,0)&1);
575         y1 = (BN_ULONG)0 - (constant_time_eq_int(i,1)&1);
576         y2 = (BN_ULONG)0 - (constant_time_eq_int(i,2)&1);
577         y3 = (BN_ULONG)0 - (constant_time_eq_int(i,3)&1);
578 
579         for (i = 0; i < top; i++, table += width) {
580             BN_ULONG acc = 0;
581 
582             for (j = 0; j < xstride; j++) {
583                 acc |= ( (table[j + 0 * xstride] & y0) |
584                          (table[j + 1 * xstride] & y1) |
585                          (table[j + 2 * xstride] & y2) |
586                          (table[j + 3 * xstride] & y3) )
587                        & ((BN_ULONG)0 - (constant_time_eq_int(j,idx)&1));
588             }
589 
590             b->d[i] = acc;
591         }
592     }
593 
594     b->top = top;
595     b->flags |= BN_FLG_FIXED_TOP;
596     return 1;
597 }
598 
599 /*
600  * Given a pointer value, compute the next address that is a cache line
601  * multiple.
602  */
603 #define MOD_EXP_CTIME_ALIGN(x_) \
604         ((unsigned char*)(x_) + (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - (((size_t)(x_)) & (MOD_EXP_CTIME_MIN_CACHE_LINE_MASK))))
605 
606 /*
607  * This variant of BN_mod_exp_mont() uses fixed windows and the special
608  * precomputation memory layout to limit data-dependency to a minimum to
609  * protect secret exponents (cf. the hyper-threading timing attacks pointed
610  * out by Colin Percival,
611  * http://www.daemonology.net/hyperthreading-considered-harmful/)
612  */
BN_mod_exp_mont_consttime(BIGNUM * rr,const BIGNUM * a,const BIGNUM * p,const BIGNUM * m,BN_CTX * ctx,BN_MONT_CTX * in_mont)613 int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
614                               const BIGNUM *m, BN_CTX *ctx,
615                               BN_MONT_CTX *in_mont)
616 {
617     int i, bits, ret = 0, window, wvalue, wmask, window0;
618     int top;
619     BN_MONT_CTX *mont = NULL;
620 
621     int numPowers;
622     unsigned char *powerbufFree = NULL;
623     int powerbufLen = 0;
624     unsigned char *powerbuf = NULL;
625     BIGNUM tmp, am;
626 #if defined(SPARC_T4_MONT)
627     unsigned int t4 = 0;
628 #endif
629 
630     bn_check_top(a);
631     bn_check_top(p);
632     bn_check_top(m);
633 
634     if (!BN_is_odd(m)) {
635         ERR_raise(ERR_LIB_BN, BN_R_CALLED_WITH_EVEN_MODULUS);
636         return 0;
637     }
638 
639     top = m->top;
640 
641     if (top > BN_CONSTTIME_SIZE_LIMIT) {
642         /* Prevent overflowing the powerbufLen computation below */
643         return BN_mod_exp_mont(rr, a, p, m, ctx, in_mont);
644     }
645 
646     /*
647      * Use all bits stored in |p|, rather than |BN_num_bits|, so we do not leak
648      * whether the top bits are zero.
649      */
650     bits = p->top * BN_BITS2;
651     if (bits == 0) {
652         /* x**0 mod 1, or x**0 mod -1 is still zero. */
653         if (BN_abs_is_word(m, 1)) {
654             ret = 1;
655             BN_zero(rr);
656         } else {
657             ret = BN_one(rr);
658         }
659         return ret;
660     }
661 
662     BN_CTX_start(ctx);
663 
664     /*
665      * Allocate a montgomery context if it was not supplied by the caller. If
666      * this is not done, things will break in the montgomery part.
667      */
668     if (in_mont != NULL)
669         mont = in_mont;
670     else {
671         if ((mont = BN_MONT_CTX_new()) == NULL)
672             goto err;
673         if (!BN_MONT_CTX_set(mont, m, ctx))
674             goto err;
675     }
676 
677     if (a->neg || BN_ucmp(a, m) >= 0) {
678         BIGNUM *reduced = BN_CTX_get(ctx);
679         if (reduced == NULL
680             || !BN_nnmod(reduced, a, m, ctx)) {
681             goto err;
682         }
683         a = reduced;
684     }
685 
686 #ifdef RSAZ_ENABLED
687     /*
688      * If the size of the operands allow it, perform the optimized
689      * RSAZ exponentiation. For further information see
690      * crypto/bn/rsaz_exp.c and accompanying assembly modules.
691      */
692     if ((16 == a->top) && (16 == p->top) && (BN_num_bits(m) == 1024)
693         && rsaz_avx2_eligible()) {
694         if (NULL == bn_wexpand(rr, 16))
695             goto err;
696         RSAZ_1024_mod_exp_avx2(rr->d, a->d, p->d, m->d, mont->RR.d,
697                                mont->n0[0]);
698         rr->top = 16;
699         rr->neg = 0;
700         bn_correct_top(rr);
701         ret = 1;
702         goto err;
703     } else if ((8 == a->top) && (8 == p->top) && (BN_num_bits(m) == 512)) {
704         if (NULL == bn_wexpand(rr, 8))
705             goto err;
706         RSAZ_512_mod_exp(rr->d, a->d, p->d, m->d, mont->n0[0], mont->RR.d);
707         rr->top = 8;
708         rr->neg = 0;
709         bn_correct_top(rr);
710         ret = 1;
711         goto err;
712     }
713 #endif
714 
715     /* Get the window size to use with size of p. */
716     window = BN_window_bits_for_ctime_exponent_size(bits);
717 #if defined(SPARC_T4_MONT)
718     if (window >= 5 && (top & 15) == 0 && top <= 64 &&
719         (OPENSSL_sparcv9cap_P[1] & (CFR_MONTMUL | CFR_MONTSQR)) ==
720         (CFR_MONTMUL | CFR_MONTSQR) && (t4 = OPENSSL_sparcv9cap_P[0]))
721         window = 5;
722     else
723 #endif
724 #if defined(OPENSSL_BN_ASM_MONT5)
725     if (window >= 5 && top <= BN_SOFT_LIMIT) {
726         window = 5;             /* ~5% improvement for RSA2048 sign, and even
727                                  * for RSA4096 */
728         /* reserve space for mont->N.d[] copy */
729         powerbufLen += top * sizeof(mont->N.d[0]);
730     }
731 #endif
732     (void)0;
733 
734     /*
735      * Allocate a buffer large enough to hold all of the pre-computed powers
736      * of am, am itself and tmp.
737      */
738     numPowers = 1 << window;
739     powerbufLen += sizeof(m->d[0]) * (top * numPowers +
740                                       ((2 * top) >
741                                        numPowers ? (2 * top) : numPowers));
742 #ifdef alloca
743     if (powerbufLen < 3072)
744         powerbufFree =
745             alloca(powerbufLen + MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH);
746     else
747 #endif
748         if ((powerbufFree =
749              OPENSSL_malloc(powerbufLen + MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH))
750             == NULL)
751         goto err;
752 
753     powerbuf = MOD_EXP_CTIME_ALIGN(powerbufFree);
754     memset(powerbuf, 0, powerbufLen);
755 
756 #ifdef alloca
757     if (powerbufLen < 3072)
758         powerbufFree = NULL;
759 #endif
760 
761     /* lay down tmp and am right after powers table */
762     tmp.d = (BN_ULONG *)(powerbuf + sizeof(m->d[0]) * top * numPowers);
763     am.d = tmp.d + top;
764     tmp.top = am.top = 0;
765     tmp.dmax = am.dmax = top;
766     tmp.neg = am.neg = 0;
767     tmp.flags = am.flags = BN_FLG_STATIC_DATA;
768 
769     /* prepare a^0 in Montgomery domain */
770 #if 1                           /* by Shay Gueron's suggestion */
771     if (m->d[top - 1] & (((BN_ULONG)1) << (BN_BITS2 - 1))) {
772         /* 2^(top*BN_BITS2) - m */
773         tmp.d[0] = (0 - m->d[0]) & BN_MASK2;
774         for (i = 1; i < top; i++)
775             tmp.d[i] = (~m->d[i]) & BN_MASK2;
776         tmp.top = top;
777     } else
778 #endif
779     if (!bn_to_mont_fixed_top(&tmp, BN_value_one(), mont, ctx))
780         goto err;
781 
782     /* prepare a^1 in Montgomery domain */
783     if (!bn_to_mont_fixed_top(&am, a, mont, ctx))
784         goto err;
785 
786     if (top > BN_SOFT_LIMIT)
787         goto fallback;
788 
789 #if defined(SPARC_T4_MONT)
790     if (t4) {
791         typedef int (*bn_pwr5_mont_f) (BN_ULONG *tp, const BN_ULONG *np,
792                                        const BN_ULONG *n0, const void *table,
793                                        int power, int bits);
794         int bn_pwr5_mont_t4_8(BN_ULONG *tp, const BN_ULONG *np,
795                               const BN_ULONG *n0, const void *table,
796                               int power, int bits);
797         int bn_pwr5_mont_t4_16(BN_ULONG *tp, const BN_ULONG *np,
798                                const BN_ULONG *n0, const void *table,
799                                int power, int bits);
800         int bn_pwr5_mont_t4_24(BN_ULONG *tp, const BN_ULONG *np,
801                                const BN_ULONG *n0, const void *table,
802                                int power, int bits);
803         int bn_pwr5_mont_t4_32(BN_ULONG *tp, const BN_ULONG *np,
804                                const BN_ULONG *n0, const void *table,
805                                int power, int bits);
806         static const bn_pwr5_mont_f pwr5_funcs[4] = {
807             bn_pwr5_mont_t4_8, bn_pwr5_mont_t4_16,
808             bn_pwr5_mont_t4_24, bn_pwr5_mont_t4_32
809         };
810         bn_pwr5_mont_f pwr5_worker = pwr5_funcs[top / 16 - 1];
811 
812         typedef int (*bn_mul_mont_f) (BN_ULONG *rp, const BN_ULONG *ap,
813                                       const void *bp, const BN_ULONG *np,
814                                       const BN_ULONG *n0);
815         int bn_mul_mont_t4_8(BN_ULONG *rp, const BN_ULONG *ap, const void *bp,
816                              const BN_ULONG *np, const BN_ULONG *n0);
817         int bn_mul_mont_t4_16(BN_ULONG *rp, const BN_ULONG *ap,
818                               const void *bp, const BN_ULONG *np,
819                               const BN_ULONG *n0);
820         int bn_mul_mont_t4_24(BN_ULONG *rp, const BN_ULONG *ap,
821                               const void *bp, const BN_ULONG *np,
822                               const BN_ULONG *n0);
823         int bn_mul_mont_t4_32(BN_ULONG *rp, const BN_ULONG *ap,
824                               const void *bp, const BN_ULONG *np,
825                               const BN_ULONG *n0);
826         static const bn_mul_mont_f mul_funcs[4] = {
827             bn_mul_mont_t4_8, bn_mul_mont_t4_16,
828             bn_mul_mont_t4_24, bn_mul_mont_t4_32
829         };
830         bn_mul_mont_f mul_worker = mul_funcs[top / 16 - 1];
831 
832         void bn_mul_mont_vis3(BN_ULONG *rp, const BN_ULONG *ap,
833                               const void *bp, const BN_ULONG *np,
834                               const BN_ULONG *n0, int num);
835         void bn_mul_mont_t4(BN_ULONG *rp, const BN_ULONG *ap,
836                             const void *bp, const BN_ULONG *np,
837                             const BN_ULONG *n0, int num);
838         void bn_mul_mont_gather5_t4(BN_ULONG *rp, const BN_ULONG *ap,
839                                     const void *table, const BN_ULONG *np,
840                                     const BN_ULONG *n0, int num, int power);
841         void bn_flip_n_scatter5_t4(const BN_ULONG *inp, size_t num,
842                                    void *table, size_t power);
843         void bn_gather5_t4(BN_ULONG *out, size_t num,
844                            void *table, size_t power);
845         void bn_flip_t4(BN_ULONG *dst, BN_ULONG *src, size_t num);
846 
847         BN_ULONG *np = mont->N.d, *n0 = mont->n0;
848         int stride = 5 * (6 - (top / 16 - 1)); /* multiple of 5, but less
849                                                 * than 32 */
850 
851         /*
852          * BN_to_montgomery can contaminate words above .top [in
853          * BN_DEBUG build...
854          */
855         for (i = am.top; i < top; i++)
856             am.d[i] = 0;
857         for (i = tmp.top; i < top; i++)
858             tmp.d[i] = 0;
859 
860         bn_flip_n_scatter5_t4(tmp.d, top, powerbuf, 0);
861         bn_flip_n_scatter5_t4(am.d, top, powerbuf, 1);
862         if (!(*mul_worker) (tmp.d, am.d, am.d, np, n0) &&
863             !(*mul_worker) (tmp.d, am.d, am.d, np, n0))
864             bn_mul_mont_vis3(tmp.d, am.d, am.d, np, n0, top);
865         bn_flip_n_scatter5_t4(tmp.d, top, powerbuf, 2);
866 
867         for (i = 3; i < 32; i++) {
868             /* Calculate a^i = a^(i-1) * a */
869             if (!(*mul_worker) (tmp.d, tmp.d, am.d, np, n0) &&
870                 !(*mul_worker) (tmp.d, tmp.d, am.d, np, n0))
871                 bn_mul_mont_vis3(tmp.d, tmp.d, am.d, np, n0, top);
872             bn_flip_n_scatter5_t4(tmp.d, top, powerbuf, i);
873         }
874 
875         /* switch to 64-bit domain */
876         np = alloca(top * sizeof(BN_ULONG));
877         top /= 2;
878         bn_flip_t4(np, mont->N.d, top);
879 
880         /*
881          * The exponent may not have a whole number of fixed-size windows.
882          * To simplify the main loop, the initial window has between 1 and
883          * full-window-size bits such that what remains is always a whole
884          * number of windows
885          */
886         window0 = (bits - 1) % 5 + 1;
887         wmask = (1 << window0) - 1;
888         bits -= window0;
889         wvalue = bn_get_bits(p, bits) & wmask;
890         bn_gather5_t4(tmp.d, top, powerbuf, wvalue);
891 
892         /*
893          * Scan the exponent one window at a time starting from the most
894          * significant bits.
895          */
896         while (bits > 0) {
897             if (bits < stride)
898                 stride = bits;
899             bits -= stride;
900             wvalue = bn_get_bits(p, bits);
901 
902             if ((*pwr5_worker) (tmp.d, np, n0, powerbuf, wvalue, stride))
903                 continue;
904             /* retry once and fall back */
905             if ((*pwr5_worker) (tmp.d, np, n0, powerbuf, wvalue, stride))
906                 continue;
907 
908             bits += stride - 5;
909             wvalue >>= stride - 5;
910             wvalue &= 31;
911             bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top);
912             bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top);
913             bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top);
914             bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top);
915             bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top);
916             bn_mul_mont_gather5_t4(tmp.d, tmp.d, powerbuf, np, n0, top,
917                                    wvalue);
918         }
919 
920         bn_flip_t4(tmp.d, tmp.d, top);
921         top *= 2;
922         /* back to 32-bit domain */
923         tmp.top = top;
924         bn_correct_top(&tmp);
925         OPENSSL_cleanse(np, top * sizeof(BN_ULONG));
926     } else
927 #endif
928 #if defined(OPENSSL_BN_ASM_MONT5)
929     if (window == 5 && top > 1) {
930         /*
931          * This optimization uses ideas from https://eprint.iacr.org/2011/239,
932          * specifically optimization of cache-timing attack countermeasures,
933          * pre-computation optimization, and Almost Montgomery Multiplication.
934          *
935          * The paper discusses a 4-bit window to optimize 512-bit modular
936          * exponentiation, used in RSA-1024 with CRT, but RSA-1024 is no longer
937          * important.
938          *
939          * |bn_mul_mont_gather5| and |bn_power5| implement the "almost"
940          * reduction variant, so the values here may not be fully reduced.
941          * They are bounded by R (i.e. they fit in |top| words), not |m|.
942          * Additionally, we pass these "almost" reduced inputs into
943          * |bn_mul_mont|, which implements the normal reduction variant.
944          * Given those inputs, |bn_mul_mont| may not give reduced
945          * output, but it will still produce "almost" reduced output.
946          */
947         void bn_mul_mont_gather5(BN_ULONG *rp, const BN_ULONG *ap,
948                                  const void *table, const BN_ULONG *np,
949                                  const BN_ULONG *n0, int num, int power);
950         void bn_scatter5(const BN_ULONG *inp, size_t num,
951                          void *table, size_t power);
952         void bn_gather5(BN_ULONG *out, size_t num, void *table, size_t power);
953         void bn_power5(BN_ULONG *rp, const BN_ULONG *ap,
954                        const void *table, const BN_ULONG *np,
955                        const BN_ULONG *n0, int num, int power);
956         int bn_get_bits5(const BN_ULONG *ap, int off);
957 
958         BN_ULONG *n0 = mont->n0, *np;
959 
960         /*
961          * BN_to_montgomery can contaminate words above .top [in
962          * BN_DEBUG build...
963          */
964         for (i = am.top; i < top; i++)
965             am.d[i] = 0;
966         for (i = tmp.top; i < top; i++)
967             tmp.d[i] = 0;
968 
969         /*
970          * copy mont->N.d[] to improve cache locality
971          */
972         for (np = am.d + top, i = 0; i < top; i++)
973             np[i] = mont->N.d[i];
974 
975         bn_scatter5(tmp.d, top, powerbuf, 0);
976         bn_scatter5(am.d, am.top, powerbuf, 1);
977         bn_mul_mont(tmp.d, am.d, am.d, np, n0, top);
978         bn_scatter5(tmp.d, top, powerbuf, 2);
979 
980 # if 0
981         for (i = 3; i < 32; i++) {
982             /* Calculate a^i = a^(i-1) * a */
983             bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1);
984             bn_scatter5(tmp.d, top, powerbuf, i);
985         }
986 # else
987         /* same as above, but uses squaring for 1/2 of operations */
988         for (i = 4; i < 32; i *= 2) {
989             bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
990             bn_scatter5(tmp.d, top, powerbuf, i);
991         }
992         for (i = 3; i < 8; i += 2) {
993             int j;
994             bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1);
995             bn_scatter5(tmp.d, top, powerbuf, i);
996             for (j = 2 * i; j < 32; j *= 2) {
997                 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
998                 bn_scatter5(tmp.d, top, powerbuf, j);
999             }
1000         }
1001         for (; i < 16; i += 2) {
1002             bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1);
1003             bn_scatter5(tmp.d, top, powerbuf, i);
1004             bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1005             bn_scatter5(tmp.d, top, powerbuf, 2 * i);
1006         }
1007         for (; i < 32; i += 2) {
1008             bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1);
1009             bn_scatter5(tmp.d, top, powerbuf, i);
1010         }
1011 # endif
1012         /*
1013          * The exponent may not have a whole number of fixed-size windows.
1014          * To simplify the main loop, the initial window has between 1 and
1015          * full-window-size bits such that what remains is always a whole
1016          * number of windows
1017          */
1018         window0 = (bits - 1) % 5 + 1;
1019         wmask = (1 << window0) - 1;
1020         bits -= window0;
1021         wvalue = bn_get_bits(p, bits) & wmask;
1022         bn_gather5(tmp.d, top, powerbuf, wvalue);
1023 
1024         /*
1025          * Scan the exponent one window at a time starting from the most
1026          * significant bits.
1027          */
1028         if (top & 7) {
1029             while (bits > 0) {
1030                 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1031                 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1032                 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1033                 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1034                 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1035                 bn_mul_mont_gather5(tmp.d, tmp.d, powerbuf, np, n0, top,
1036                                     bn_get_bits5(p->d, bits -= 5));
1037             }
1038         } else {
1039             while (bits > 0) {
1040                 bn_power5(tmp.d, tmp.d, powerbuf, np, n0, top,
1041                           bn_get_bits5(p->d, bits -= 5));
1042             }
1043         }
1044 
1045         tmp.top = top;
1046         /*
1047          * The result is now in |tmp| in Montgomery form, but it may not be
1048          * fully reduced. This is within bounds for |BN_from_montgomery|
1049          * (tmp < R <= m*R) so it will, when converting from Montgomery form,
1050          * produce a fully reduced result.
1051          *
1052          * This differs from Figure 2 of the paper, which uses AMM(h, 1) to
1053          * convert from Montgomery form with unreduced output, followed by an
1054          * extra reduction step. In the paper's terminology, we replace
1055          * steps 9 and 10 with MM(h, 1).
1056          */
1057     } else
1058 #endif
1059     {
1060  fallback:
1061         if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, 0, window))
1062             goto err;
1063         if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&am, top, powerbuf, 1, window))
1064             goto err;
1065 
1066         /*
1067          * If the window size is greater than 1, then calculate
1068          * val[i=2..2^winsize-1]. Powers are computed as a*a^(i-1) (even
1069          * powers could instead be computed as (a^(i/2))^2 to use the slight
1070          * performance advantage of sqr over mul).
1071          */
1072         if (window > 1) {
1073             if (!bn_mul_mont_fixed_top(&tmp, &am, &am, mont, ctx))
1074                 goto err;
1075             if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, 2,
1076                                               window))
1077                 goto err;
1078             for (i = 3; i < numPowers; i++) {
1079                 /* Calculate a^i = a^(i-1) * a */
1080                 if (!bn_mul_mont_fixed_top(&tmp, &am, &tmp, mont, ctx))
1081                     goto err;
1082                 if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, i,
1083                                                   window))
1084                     goto err;
1085             }
1086         }
1087 
1088         /*
1089          * The exponent may not have a whole number of fixed-size windows.
1090          * To simplify the main loop, the initial window has between 1 and
1091          * full-window-size bits such that what remains is always a whole
1092          * number of windows
1093          */
1094         window0 = (bits - 1) % window + 1;
1095         wmask = (1 << window0) - 1;
1096         bits -= window0;
1097         wvalue = bn_get_bits(p, bits) & wmask;
1098         if (!MOD_EXP_CTIME_COPY_FROM_PREBUF(&tmp, top, powerbuf, wvalue,
1099                                             window))
1100             goto err;
1101 
1102         wmask = (1 << window) - 1;
1103         /*
1104          * Scan the exponent one window at a time starting from the most
1105          * significant bits.
1106          */
1107         while (bits > 0) {
1108 
1109             /* Square the result window-size times */
1110             for (i = 0; i < window; i++)
1111                 if (!bn_mul_mont_fixed_top(&tmp, &tmp, &tmp, mont, ctx))
1112                     goto err;
1113 
1114             /*
1115              * Get a window's worth of bits from the exponent
1116              * This avoids calling BN_is_bit_set for each bit, which
1117              * is not only slower but also makes each bit vulnerable to
1118              * EM (and likely other) side-channel attacks like One&Done
1119              * (for details see "One&Done: A Single-Decryption EM-Based
1120              *  Attack on OpenSSL's Constant-Time Blinded RSA" by M. Alam,
1121              *  H. Khan, M. Dey, N. Sinha, R. Callan, A. Zajic, and
1122              *  M. Prvulovic, in USENIX Security'18)
1123              */
1124             bits -= window;
1125             wvalue = bn_get_bits(p, bits) & wmask;
1126             /*
1127              * Fetch the appropriate pre-computed value from the pre-buf
1128              */
1129             if (!MOD_EXP_CTIME_COPY_FROM_PREBUF(&am, top, powerbuf, wvalue,
1130                                                 window))
1131                 goto err;
1132 
1133             /* Multiply the result into the intermediate result */
1134             if (!bn_mul_mont_fixed_top(&tmp, &tmp, &am, mont, ctx))
1135                 goto err;
1136         }
1137     }
1138 
1139     /*
1140      * Done with zero-padded intermediate BIGNUMs. Final BN_from_montgomery
1141      * removes padding [if any] and makes return value suitable for public
1142      * API consumer.
1143      */
1144 #if defined(SPARC_T4_MONT)
1145     if (OPENSSL_sparcv9cap_P[0] & (SPARCV9_VIS3 | SPARCV9_PREFER_FPU)) {
1146         am.d[0] = 1;            /* borrow am */
1147         for (i = 1; i < top; i++)
1148             am.d[i] = 0;
1149         if (!BN_mod_mul_montgomery(rr, &tmp, &am, mont, ctx))
1150             goto err;
1151     } else
1152 #endif
1153     if (!BN_from_montgomery(rr, &tmp, mont, ctx))
1154         goto err;
1155     ret = 1;
1156  err:
1157     if (in_mont == NULL)
1158         BN_MONT_CTX_free(mont);
1159     if (powerbuf != NULL) {
1160         OPENSSL_cleanse(powerbuf, powerbufLen);
1161         OPENSSL_free(powerbufFree);
1162     }
1163     BN_CTX_end(ctx);
1164     return ret;
1165 }
1166 
BN_mod_exp_mont_word(BIGNUM * rr,BN_ULONG a,const BIGNUM * p,const BIGNUM * m,BN_CTX * ctx,BN_MONT_CTX * in_mont)1167 int BN_mod_exp_mont_word(BIGNUM *rr, BN_ULONG a, const BIGNUM *p,
1168                          const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont)
1169 {
1170     BN_MONT_CTX *mont = NULL;
1171     int b, bits, ret = 0;
1172     int r_is_one;
1173     BN_ULONG w, next_w;
1174     BIGNUM *r, *t;
1175     BIGNUM *swap_tmp;
1176 #define BN_MOD_MUL_WORD(r, w, m) \
1177                 (BN_mul_word(r, (w)) && \
1178                 (/* BN_ucmp(r, (m)) < 0 ? 1 :*/  \
1179                         (BN_mod(t, r, m, ctx) && (swap_tmp = r, r = t, t = swap_tmp, 1))))
1180     /*
1181      * BN_MOD_MUL_WORD is only used with 'w' large, so the BN_ucmp test is
1182      * probably more overhead than always using BN_mod (which uses BN_copy if
1183      * a similar test returns true).
1184      */
1185     /*
1186      * We can use BN_mod and do not need BN_nnmod because our accumulator is
1187      * never negative (the result of BN_mod does not depend on the sign of
1188      * the modulus).
1189      */
1190 #define BN_TO_MONTGOMERY_WORD(r, w, mont) \
1191                 (BN_set_word(r, (w)) && BN_to_montgomery(r, r, (mont), ctx))
1192 
1193     if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0
1194             || BN_get_flags(m, BN_FLG_CONSTTIME) != 0) {
1195         /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
1196         ERR_raise(ERR_LIB_BN, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1197         return 0;
1198     }
1199 
1200     bn_check_top(p);
1201     bn_check_top(m);
1202 
1203     if (!BN_is_odd(m)) {
1204         ERR_raise(ERR_LIB_BN, BN_R_CALLED_WITH_EVEN_MODULUS);
1205         return 0;
1206     }
1207     if (m->top == 1)
1208         a %= m->d[0];           /* make sure that 'a' is reduced */
1209 
1210     bits = BN_num_bits(p);
1211     if (bits == 0) {
1212         /* x**0 mod 1, or x**0 mod -1 is still zero. */
1213         if (BN_abs_is_word(m, 1)) {
1214             ret = 1;
1215             BN_zero(rr);
1216         } else {
1217             ret = BN_one(rr);
1218         }
1219         return ret;
1220     }
1221     if (a == 0) {
1222         BN_zero(rr);
1223         ret = 1;
1224         return ret;
1225     }
1226 
1227     BN_CTX_start(ctx);
1228     r = BN_CTX_get(ctx);
1229     t = BN_CTX_get(ctx);
1230     if (t == NULL)
1231         goto err;
1232 
1233     if (in_mont != NULL)
1234         mont = in_mont;
1235     else {
1236         if ((mont = BN_MONT_CTX_new()) == NULL)
1237             goto err;
1238         if (!BN_MONT_CTX_set(mont, m, ctx))
1239             goto err;
1240     }
1241 
1242     r_is_one = 1;               /* except for Montgomery factor */
1243 
1244     /* bits-1 >= 0 */
1245 
1246     /* The result is accumulated in the product r*w. */
1247     w = a;                      /* bit 'bits-1' of 'p' is always set */
1248     for (b = bits - 2; b >= 0; b--) {
1249         /* First, square r*w. */
1250         next_w = w * w;
1251         if ((next_w / w) != w) { /* overflow */
1252             if (r_is_one) {
1253                 if (!BN_TO_MONTGOMERY_WORD(r, w, mont))
1254                     goto err;
1255                 r_is_one = 0;
1256             } else {
1257                 if (!BN_MOD_MUL_WORD(r, w, m))
1258                     goto err;
1259             }
1260             next_w = 1;
1261         }
1262         w = next_w;
1263         if (!r_is_one) {
1264             if (!BN_mod_mul_montgomery(r, r, r, mont, ctx))
1265                 goto err;
1266         }
1267 
1268         /* Second, multiply r*w by 'a' if exponent bit is set. */
1269         if (BN_is_bit_set(p, b)) {
1270             next_w = w * a;
1271             if ((next_w / a) != w) { /* overflow */
1272                 if (r_is_one) {
1273                     if (!BN_TO_MONTGOMERY_WORD(r, w, mont))
1274                         goto err;
1275                     r_is_one = 0;
1276                 } else {
1277                     if (!BN_MOD_MUL_WORD(r, w, m))
1278                         goto err;
1279                 }
1280                 next_w = a;
1281             }
1282             w = next_w;
1283         }
1284     }
1285 
1286     /* Finally, set r:=r*w. */
1287     if (w != 1) {
1288         if (r_is_one) {
1289             if (!BN_TO_MONTGOMERY_WORD(r, w, mont))
1290                 goto err;
1291             r_is_one = 0;
1292         } else {
1293             if (!BN_MOD_MUL_WORD(r, w, m))
1294                 goto err;
1295         }
1296     }
1297 
1298     if (r_is_one) {             /* can happen only if a == 1 */
1299         if (!BN_one(rr))
1300             goto err;
1301     } else {
1302         if (!BN_from_montgomery(rr, r, mont, ctx))
1303             goto err;
1304     }
1305     ret = 1;
1306  err:
1307     if (in_mont == NULL)
1308         BN_MONT_CTX_free(mont);
1309     BN_CTX_end(ctx);
1310     bn_check_top(rr);
1311     return ret;
1312 }
1313 
1314 /* The old fallback, simple version :-) */
BN_mod_exp_simple(BIGNUM * r,const BIGNUM * a,const BIGNUM * p,const BIGNUM * m,BN_CTX * ctx)1315 int BN_mod_exp_simple(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
1316                       const BIGNUM *m, BN_CTX *ctx)
1317 {
1318     int i, j, bits, ret = 0, wstart, wend, window, wvalue;
1319     int start = 1;
1320     BIGNUM *d;
1321     /* Table of variables obtained from 'ctx' */
1322     BIGNUM *val[TABLE_SIZE];
1323 
1324     if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0
1325             || BN_get_flags(a, BN_FLG_CONSTTIME) != 0
1326             || BN_get_flags(m, BN_FLG_CONSTTIME) != 0) {
1327         /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
1328         ERR_raise(ERR_LIB_BN, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1329         return 0;
1330     }
1331 
1332     if (r == m) {
1333         ERR_raise(ERR_LIB_BN, ERR_R_PASSED_INVALID_ARGUMENT);
1334         return 0;
1335     }
1336 
1337     bits = BN_num_bits(p);
1338     if (bits == 0) {
1339         /* x**0 mod 1, or x**0 mod -1 is still zero. */
1340         if (BN_abs_is_word(m, 1)) {
1341             ret = 1;
1342             BN_zero(r);
1343         } else {
1344             ret = BN_one(r);
1345         }
1346         return ret;
1347     }
1348 
1349     BN_CTX_start(ctx);
1350     d = BN_CTX_get(ctx);
1351     val[0] = BN_CTX_get(ctx);
1352     if (val[0] == NULL)
1353         goto err;
1354 
1355     if (!BN_nnmod(val[0], a, m, ctx))
1356         goto err;               /* 1 */
1357     if (BN_is_zero(val[0])) {
1358         BN_zero(r);
1359         ret = 1;
1360         goto err;
1361     }
1362 
1363     window = BN_window_bits_for_exponent_size(bits);
1364     if (window > 1) {
1365         if (!BN_mod_mul(d, val[0], val[0], m, ctx))
1366             goto err;           /* 2 */
1367         j = 1 << (window - 1);
1368         for (i = 1; i < j; i++) {
1369             if (((val[i] = BN_CTX_get(ctx)) == NULL) ||
1370                 !BN_mod_mul(val[i], val[i - 1], d, m, ctx))
1371                 goto err;
1372         }
1373     }
1374 
1375     start = 1;                  /* This is used to avoid multiplication etc
1376                                  * when there is only the value '1' in the
1377                                  * buffer. */
1378     wvalue = 0;                 /* The 'value' of the window */
1379     wstart = bits - 1;          /* The top bit of the window */
1380     wend = 0;                   /* The bottom bit of the window */
1381 
1382     if (r == p) {
1383         BIGNUM *p_dup = BN_CTX_get(ctx);
1384 
1385         if (p_dup == NULL || BN_copy(p_dup, p) == NULL)
1386             goto err;
1387         p = p_dup;
1388     }
1389 
1390     if (!BN_one(r))
1391         goto err;
1392 
1393     for (;;) {
1394         if (BN_is_bit_set(p, wstart) == 0) {
1395             if (!start)
1396                 if (!BN_mod_mul(r, r, r, m, ctx))
1397                     goto err;
1398             if (wstart == 0)
1399                 break;
1400             wstart--;
1401             continue;
1402         }
1403         /*
1404          * We now have wstart on a 'set' bit, we now need to work out how bit
1405          * a window to do.  To do this we need to scan forward until the last
1406          * set bit before the end of the window
1407          */
1408         wvalue = 1;
1409         wend = 0;
1410         for (i = 1; i < window; i++) {
1411             if (wstart - i < 0)
1412                 break;
1413             if (BN_is_bit_set(p, wstart - i)) {
1414                 wvalue <<= (i - wend);
1415                 wvalue |= 1;
1416                 wend = i;
1417             }
1418         }
1419 
1420         /* wend is the size of the current window */
1421         j = wend + 1;
1422         /* add the 'bytes above' */
1423         if (!start)
1424             for (i = 0; i < j; i++) {
1425                 if (!BN_mod_mul(r, r, r, m, ctx))
1426                     goto err;
1427             }
1428 
1429         /* wvalue will be an odd number < 2^window */
1430         if (!BN_mod_mul(r, r, val[wvalue >> 1], m, ctx))
1431             goto err;
1432 
1433         /* move the 'window' down further */
1434         wstart -= wend + 1;
1435         wvalue = 0;
1436         start = 0;
1437         if (wstart < 0)
1438             break;
1439     }
1440     ret = 1;
1441  err:
1442     BN_CTX_end(ctx);
1443     bn_check_top(r);
1444     return ret;
1445 }
1446 
1447 /*
1448  * This is a variant of modular exponentiation optimization that does
1449  * parallel 2-primes exponentiation using 256-bit (AVX512VL) AVX512_IFMA ISA
1450  * in 52-bit binary redundant representation.
1451  * If such instructions are not available, or input data size is not supported,
1452  * it falls back to two BN_mod_exp_mont_consttime() calls.
1453  */
BN_mod_exp_mont_consttime_x2(BIGNUM * rr1,const BIGNUM * a1,const BIGNUM * p1,const BIGNUM * m1,BN_MONT_CTX * in_mont1,BIGNUM * rr2,const BIGNUM * a2,const BIGNUM * p2,const BIGNUM * m2,BN_MONT_CTX * in_mont2,BN_CTX * ctx)1454 int BN_mod_exp_mont_consttime_x2(BIGNUM *rr1, const BIGNUM *a1, const BIGNUM *p1,
1455                                  const BIGNUM *m1, BN_MONT_CTX *in_mont1,
1456                                  BIGNUM *rr2, const BIGNUM *a2, const BIGNUM *p2,
1457                                  const BIGNUM *m2, BN_MONT_CTX *in_mont2,
1458                                  BN_CTX *ctx)
1459 {
1460     int ret = 0;
1461 
1462 #ifdef RSAZ_ENABLED
1463     BN_MONT_CTX *mont1 = NULL;
1464     BN_MONT_CTX *mont2 = NULL;
1465 
1466     if (ossl_rsaz_avx512ifma_eligible() &&
1467         ((a1->top == 16) && (p1->top == 16) && (BN_num_bits(m1) == 1024) &&
1468          (a2->top == 16) && (p2->top == 16) && (BN_num_bits(m2) == 1024))) {
1469 
1470         if (bn_wexpand(rr1, 16) == NULL)
1471             goto err;
1472         if (bn_wexpand(rr2, 16) == NULL)
1473             goto err;
1474 
1475         /*  Ensure that montgomery contexts are initialized */
1476         if (in_mont1 != NULL) {
1477             mont1 = in_mont1;
1478         } else {
1479             if ((mont1 = BN_MONT_CTX_new()) == NULL)
1480                 goto err;
1481             if (!BN_MONT_CTX_set(mont1, m1, ctx))
1482                 goto err;
1483         }
1484         if (in_mont2 != NULL) {
1485             mont2 = in_mont2;
1486         } else {
1487             if ((mont2 = BN_MONT_CTX_new()) == NULL)
1488                 goto err;
1489             if (!BN_MONT_CTX_set(mont2, m2, ctx))
1490                 goto err;
1491         }
1492 
1493         ret = ossl_rsaz_mod_exp_avx512_x2(rr1->d, a1->d, p1->d, m1->d,
1494                                           mont1->RR.d, mont1->n0[0],
1495                                           rr2->d, a2->d, p2->d, m2->d,
1496                                           mont2->RR.d, mont2->n0[0],
1497                                           1024 /* factor bit size */);
1498 
1499         rr1->top = 16;
1500         rr1->neg = 0;
1501         bn_correct_top(rr1);
1502         bn_check_top(rr1);
1503 
1504         rr2->top = 16;
1505         rr2->neg = 0;
1506         bn_correct_top(rr2);
1507         bn_check_top(rr2);
1508 
1509         goto err;
1510     }
1511 #endif
1512 
1513     /* rr1 = a1^p1 mod m1 */
1514     ret = BN_mod_exp_mont_consttime(rr1, a1, p1, m1, ctx, in_mont1);
1515     /* rr2 = a2^p2 mod m2 */
1516     ret &= BN_mod_exp_mont_consttime(rr2, a2, p2, m2, ctx, in_mont2);
1517 
1518 #ifdef RSAZ_ENABLED
1519 err:
1520     if (in_mont2 == NULL)
1521         BN_MONT_CTX_free(mont2);
1522     if (in_mont1 == NULL)
1523         BN_MONT_CTX_free(mont1);
1524 #endif
1525 
1526     return ret;
1527 }
1528