xref: /netbsd-src/external/apache2/llvm/dist/llvm/lib/Target/ARM/ARMISelLowering.cpp (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 //===- ARMISelLowering.cpp - ARM DAG Lowering Implementation --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that ARM uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "ARMISelLowering.h"
15 #include "ARMBaseInstrInfo.h"
16 #include "ARMBaseRegisterInfo.h"
17 #include "ARMCallingConv.h"
18 #include "ARMConstantPoolValue.h"
19 #include "ARMMachineFunctionInfo.h"
20 #include "ARMPerfectShuffle.h"
21 #include "ARMRegisterInfo.h"
22 #include "ARMSelectionDAGInfo.h"
23 #include "ARMSubtarget.h"
24 #include "ARMTargetTransformInfo.h"
25 #include "MCTargetDesc/ARMAddressingModes.h"
26 #include "MCTargetDesc/ARMBaseInfo.h"
27 #include "Utils/ARMBaseInfo.h"
28 #include "llvm/ADT/APFloat.h"
29 #include "llvm/ADT/APInt.h"
30 #include "llvm/ADT/ArrayRef.h"
31 #include "llvm/ADT/BitVector.h"
32 #include "llvm/ADT/DenseMap.h"
33 #include "llvm/ADT/STLExtras.h"
34 #include "llvm/ADT/SmallPtrSet.h"
35 #include "llvm/ADT/SmallVector.h"
36 #include "llvm/ADT/Statistic.h"
37 #include "llvm/ADT/StringExtras.h"
38 #include "llvm/ADT/StringRef.h"
39 #include "llvm/ADT/StringSwitch.h"
40 #include "llvm/ADT/Triple.h"
41 #include "llvm/ADT/Twine.h"
42 #include "llvm/Analysis/VectorUtils.h"
43 #include "llvm/CodeGen/CallingConvLower.h"
44 #include "llvm/CodeGen/ISDOpcodes.h"
45 #include "llvm/CodeGen/IntrinsicLowering.h"
46 #include "llvm/CodeGen/MachineBasicBlock.h"
47 #include "llvm/CodeGen/MachineConstantPool.h"
48 #include "llvm/CodeGen/MachineFrameInfo.h"
49 #include "llvm/CodeGen/MachineFunction.h"
50 #include "llvm/CodeGen/MachineInstr.h"
51 #include "llvm/CodeGen/MachineInstrBuilder.h"
52 #include "llvm/CodeGen/MachineJumpTableInfo.h"
53 #include "llvm/CodeGen/MachineMemOperand.h"
54 #include "llvm/CodeGen/MachineOperand.h"
55 #include "llvm/CodeGen/MachineRegisterInfo.h"
56 #include "llvm/CodeGen/RuntimeLibcalls.h"
57 #include "llvm/CodeGen/SelectionDAG.h"
58 #include "llvm/CodeGen/SelectionDAGNodes.h"
59 #include "llvm/CodeGen/TargetInstrInfo.h"
60 #include "llvm/CodeGen/TargetLowering.h"
61 #include "llvm/CodeGen/TargetOpcodes.h"
62 #include "llvm/CodeGen/TargetRegisterInfo.h"
63 #include "llvm/CodeGen/TargetSubtargetInfo.h"
64 #include "llvm/CodeGen/ValueTypes.h"
65 #include "llvm/IR/Attributes.h"
66 #include "llvm/IR/CallingConv.h"
67 #include "llvm/IR/Constant.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DataLayout.h"
70 #include "llvm/IR/DebugLoc.h"
71 #include "llvm/IR/DerivedTypes.h"
72 #include "llvm/IR/Function.h"
73 #include "llvm/IR/GlobalAlias.h"
74 #include "llvm/IR/GlobalValue.h"
75 #include "llvm/IR/GlobalVariable.h"
76 #include "llvm/IR/IRBuilder.h"
77 #include "llvm/IR/InlineAsm.h"
78 #include "llvm/IR/Instruction.h"
79 #include "llvm/IR/Instructions.h"
80 #include "llvm/IR/IntrinsicInst.h"
81 #include "llvm/IR/Intrinsics.h"
82 #include "llvm/IR/IntrinsicsARM.h"
83 #include "llvm/IR/Module.h"
84 #include "llvm/IR/PatternMatch.h"
85 #include "llvm/IR/Type.h"
86 #include "llvm/IR/User.h"
87 #include "llvm/IR/Value.h"
88 #include "llvm/MC/MCInstrDesc.h"
89 #include "llvm/MC/MCInstrItineraries.h"
90 #include "llvm/MC/MCRegisterInfo.h"
91 #include "llvm/MC/MCSchedule.h"
92 #include "llvm/Support/AtomicOrdering.h"
93 #include "llvm/Support/BranchProbability.h"
94 #include "llvm/Support/Casting.h"
95 #include "llvm/Support/CodeGen.h"
96 #include "llvm/Support/CommandLine.h"
97 #include "llvm/Support/Compiler.h"
98 #include "llvm/Support/Debug.h"
99 #include "llvm/Support/ErrorHandling.h"
100 #include "llvm/Support/KnownBits.h"
101 #include "llvm/Support/MachineValueType.h"
102 #include "llvm/Support/MathExtras.h"
103 #include "llvm/Support/raw_ostream.h"
104 #include "llvm/Target/TargetMachine.h"
105 #include "llvm/Target/TargetOptions.h"
106 #include <algorithm>
107 #include <cassert>
108 #include <cstdint>
109 #include <cstdlib>
110 #include <iterator>
111 #include <limits>
112 #include <string>
113 #include <tuple>
114 #include <utility>
115 #include <vector>
116 
117 using namespace llvm;
118 using namespace llvm::PatternMatch;
119 
120 #define DEBUG_TYPE "arm-isel"
121 
122 STATISTIC(NumTailCalls, "Number of tail calls");
123 STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
124 STATISTIC(NumLoopByVals, "Number of loops generated for byval arguments");
125 STATISTIC(NumConstpoolPromoted,
126   "Number of constants with their storage promoted into constant pools");
127 
128 static cl::opt<bool>
129 ARMInterworking("arm-interworking", cl::Hidden,
130   cl::desc("Enable / disable ARM interworking (for debugging only)"),
131   cl::init(true));
132 
133 static cl::opt<bool> EnableConstpoolPromotion(
134     "arm-promote-constant", cl::Hidden,
135     cl::desc("Enable / disable promotion of unnamed_addr constants into "
136              "constant pools"),
137     cl::init(false)); // FIXME: set to true by default once PR32780 is fixed
138 static cl::opt<unsigned> ConstpoolPromotionMaxSize(
139     "arm-promote-constant-max-size", cl::Hidden,
140     cl::desc("Maximum size of constant to promote into a constant pool"),
141     cl::init(64));
142 static cl::opt<unsigned> ConstpoolPromotionMaxTotal(
143     "arm-promote-constant-max-total", cl::Hidden,
144     cl::desc("Maximum size of ALL constants to promote into a constant pool"),
145     cl::init(128));
146 
147 cl::opt<unsigned>
148 MVEMaxSupportedInterleaveFactor("mve-max-interleave-factor", cl::Hidden,
149   cl::desc("Maximum interleave factor for MVE VLDn to generate."),
150   cl::init(2));
151 
152 // The APCS parameter registers.
153 static const MCPhysReg GPRArgRegs[] = {
154   ARM::R0, ARM::R1, ARM::R2, ARM::R3
155 };
156 
addTypeForNEON(MVT VT,MVT PromotedLdStVT,MVT PromotedBitwiseVT)157 void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT,
158                                        MVT PromotedBitwiseVT) {
159   if (VT != PromotedLdStVT) {
160     setOperationAction(ISD::LOAD, VT, Promote);
161     AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT);
162 
163     setOperationAction(ISD::STORE, VT, Promote);
164     AddPromotedToType (ISD::STORE, VT, PromotedLdStVT);
165   }
166 
167   MVT ElemTy = VT.getVectorElementType();
168   if (ElemTy != MVT::f64)
169     setOperationAction(ISD::SETCC, VT, Custom);
170   setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
171   setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
172   if (ElemTy == MVT::i32) {
173     setOperationAction(ISD::SINT_TO_FP, VT, Custom);
174     setOperationAction(ISD::UINT_TO_FP, VT, Custom);
175     setOperationAction(ISD::FP_TO_SINT, VT, Custom);
176     setOperationAction(ISD::FP_TO_UINT, VT, Custom);
177   } else {
178     setOperationAction(ISD::SINT_TO_FP, VT, Expand);
179     setOperationAction(ISD::UINT_TO_FP, VT, Expand);
180     setOperationAction(ISD::FP_TO_SINT, VT, Expand);
181     setOperationAction(ISD::FP_TO_UINT, VT, Expand);
182   }
183   setOperationAction(ISD::BUILD_VECTOR,      VT, Custom);
184   setOperationAction(ISD::VECTOR_SHUFFLE,    VT, Custom);
185   setOperationAction(ISD::CONCAT_VECTORS,    VT, Legal);
186   setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
187   setOperationAction(ISD::SELECT,            VT, Expand);
188   setOperationAction(ISD::SELECT_CC,         VT, Expand);
189   setOperationAction(ISD::VSELECT,           VT, Expand);
190   setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
191   if (VT.isInteger()) {
192     setOperationAction(ISD::SHL, VT, Custom);
193     setOperationAction(ISD::SRA, VT, Custom);
194     setOperationAction(ISD::SRL, VT, Custom);
195   }
196 
197   // Promote all bit-wise operations.
198   if (VT.isInteger() && VT != PromotedBitwiseVT) {
199     setOperationAction(ISD::AND, VT, Promote);
200     AddPromotedToType (ISD::AND, VT, PromotedBitwiseVT);
201     setOperationAction(ISD::OR,  VT, Promote);
202     AddPromotedToType (ISD::OR,  VT, PromotedBitwiseVT);
203     setOperationAction(ISD::XOR, VT, Promote);
204     AddPromotedToType (ISD::XOR, VT, PromotedBitwiseVT);
205   }
206 
207   // Neon does not support vector divide/remainder operations.
208   setOperationAction(ISD::SDIV, VT, Expand);
209   setOperationAction(ISD::UDIV, VT, Expand);
210   setOperationAction(ISD::FDIV, VT, Expand);
211   setOperationAction(ISD::SREM, VT, Expand);
212   setOperationAction(ISD::UREM, VT, Expand);
213   setOperationAction(ISD::FREM, VT, Expand);
214   setOperationAction(ISD::SDIVREM, VT, Expand);
215   setOperationAction(ISD::UDIVREM, VT, Expand);
216 
217   if (!VT.isFloatingPoint() &&
218       VT != MVT::v2i64 && VT != MVT::v1i64)
219     for (auto Opcode : {ISD::ABS, ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
220       setOperationAction(Opcode, VT, Legal);
221   if (!VT.isFloatingPoint())
222     for (auto Opcode : {ISD::SADDSAT, ISD::UADDSAT, ISD::SSUBSAT, ISD::USUBSAT})
223       setOperationAction(Opcode, VT, Legal);
224 }
225 
addDRTypeForNEON(MVT VT)226 void ARMTargetLowering::addDRTypeForNEON(MVT VT) {
227   addRegisterClass(VT, &ARM::DPRRegClass);
228   addTypeForNEON(VT, MVT::f64, MVT::v2i32);
229 }
230 
addQRTypeForNEON(MVT VT)231 void ARMTargetLowering::addQRTypeForNEON(MVT VT) {
232   addRegisterClass(VT, &ARM::DPairRegClass);
233   addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
234 }
235 
setAllExpand(MVT VT)236 void ARMTargetLowering::setAllExpand(MVT VT) {
237   for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
238     setOperationAction(Opc, VT, Expand);
239 
240   // We support these really simple operations even on types where all
241   // the actual arithmetic has to be broken down into simpler
242   // operations or turned into library calls.
243   setOperationAction(ISD::BITCAST, VT, Legal);
244   setOperationAction(ISD::LOAD, VT, Legal);
245   setOperationAction(ISD::STORE, VT, Legal);
246   setOperationAction(ISD::UNDEF, VT, Legal);
247 }
248 
addAllExtLoads(const MVT From,const MVT To,LegalizeAction Action)249 void ARMTargetLowering::addAllExtLoads(const MVT From, const MVT To,
250                                        LegalizeAction Action) {
251   setLoadExtAction(ISD::EXTLOAD,  From, To, Action);
252   setLoadExtAction(ISD::ZEXTLOAD, From, To, Action);
253   setLoadExtAction(ISD::SEXTLOAD, From, To, Action);
254 }
255 
addMVEVectorTypes(bool HasMVEFP)256 void ARMTargetLowering::addMVEVectorTypes(bool HasMVEFP) {
257   const MVT IntTypes[] = { MVT::v16i8, MVT::v8i16, MVT::v4i32 };
258 
259   for (auto VT : IntTypes) {
260     addRegisterClass(VT, &ARM::MQPRRegClass);
261     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
262     setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
263     setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
264     setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
265     setOperationAction(ISD::SHL, VT, Custom);
266     setOperationAction(ISD::SRA, VT, Custom);
267     setOperationAction(ISD::SRL, VT, Custom);
268     setOperationAction(ISD::SMIN, VT, Legal);
269     setOperationAction(ISD::SMAX, VT, Legal);
270     setOperationAction(ISD::UMIN, VT, Legal);
271     setOperationAction(ISD::UMAX, VT, Legal);
272     setOperationAction(ISD::ABS, VT, Legal);
273     setOperationAction(ISD::SETCC, VT, Custom);
274     setOperationAction(ISD::MLOAD, VT, Custom);
275     setOperationAction(ISD::MSTORE, VT, Legal);
276     setOperationAction(ISD::CTLZ, VT, Legal);
277     setOperationAction(ISD::CTTZ, VT, Custom);
278     setOperationAction(ISD::BITREVERSE, VT, Legal);
279     setOperationAction(ISD::BSWAP, VT, Legal);
280     setOperationAction(ISD::SADDSAT, VT, Legal);
281     setOperationAction(ISD::UADDSAT, VT, Legal);
282     setOperationAction(ISD::SSUBSAT, VT, Legal);
283     setOperationAction(ISD::USUBSAT, VT, Legal);
284 
285     // No native support for these.
286     setOperationAction(ISD::UDIV, VT, Expand);
287     setOperationAction(ISD::SDIV, VT, Expand);
288     setOperationAction(ISD::UREM, VT, Expand);
289     setOperationAction(ISD::SREM, VT, Expand);
290     setOperationAction(ISD::UDIVREM, VT, Expand);
291     setOperationAction(ISD::SDIVREM, VT, Expand);
292     setOperationAction(ISD::CTPOP, VT, Expand);
293     setOperationAction(ISD::SELECT, VT, Expand);
294     setOperationAction(ISD::SELECT_CC, VT, Expand);
295 
296     // Vector reductions
297     setOperationAction(ISD::VECREDUCE_ADD, VT, Legal);
298     setOperationAction(ISD::VECREDUCE_SMAX, VT, Legal);
299     setOperationAction(ISD::VECREDUCE_UMAX, VT, Legal);
300     setOperationAction(ISD::VECREDUCE_SMIN, VT, Legal);
301     setOperationAction(ISD::VECREDUCE_UMIN, VT, Legal);
302     setOperationAction(ISD::VECREDUCE_MUL, VT, Custom);
303     setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
304     setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
305     setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
306 
307     if (!HasMVEFP) {
308       setOperationAction(ISD::SINT_TO_FP, VT, Expand);
309       setOperationAction(ISD::UINT_TO_FP, VT, Expand);
310       setOperationAction(ISD::FP_TO_SINT, VT, Expand);
311       setOperationAction(ISD::FP_TO_UINT, VT, Expand);
312     }
313 
314     // Pre and Post inc are supported on loads and stores
315     for (unsigned im = (unsigned)ISD::PRE_INC;
316          im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
317       setIndexedLoadAction(im, VT, Legal);
318       setIndexedStoreAction(im, VT, Legal);
319       setIndexedMaskedLoadAction(im, VT, Legal);
320       setIndexedMaskedStoreAction(im, VT, Legal);
321     }
322   }
323 
324   const MVT FloatTypes[] = { MVT::v8f16, MVT::v4f32 };
325   for (auto VT : FloatTypes) {
326     addRegisterClass(VT, &ARM::MQPRRegClass);
327     if (!HasMVEFP)
328       setAllExpand(VT);
329 
330     // These are legal or custom whether we have MVE.fp or not
331     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
332     setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
333     setOperationAction(ISD::INSERT_VECTOR_ELT, VT.getVectorElementType(), Custom);
334     setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
335     setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
336     setOperationAction(ISD::BUILD_VECTOR, VT.getVectorElementType(), Custom);
337     setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Legal);
338     setOperationAction(ISD::SETCC, VT, Custom);
339     setOperationAction(ISD::MLOAD, VT, Custom);
340     setOperationAction(ISD::MSTORE, VT, Legal);
341     setOperationAction(ISD::SELECT, VT, Expand);
342     setOperationAction(ISD::SELECT_CC, VT, Expand);
343 
344     // Pre and Post inc are supported on loads and stores
345     for (unsigned im = (unsigned)ISD::PRE_INC;
346          im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
347       setIndexedLoadAction(im, VT, Legal);
348       setIndexedStoreAction(im, VT, Legal);
349       setIndexedMaskedLoadAction(im, VT, Legal);
350       setIndexedMaskedStoreAction(im, VT, Legal);
351     }
352 
353     if (HasMVEFP) {
354       setOperationAction(ISD::FMINNUM, VT, Legal);
355       setOperationAction(ISD::FMAXNUM, VT, Legal);
356       setOperationAction(ISD::FROUND, VT, Legal);
357       setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
358       setOperationAction(ISD::VECREDUCE_FMUL, VT, Custom);
359       setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
360       setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
361 
362       // No native support for these.
363       setOperationAction(ISD::FDIV, VT, Expand);
364       setOperationAction(ISD::FREM, VT, Expand);
365       setOperationAction(ISD::FSQRT, VT, Expand);
366       setOperationAction(ISD::FSIN, VT, Expand);
367       setOperationAction(ISD::FCOS, VT, Expand);
368       setOperationAction(ISD::FPOW, VT, Expand);
369       setOperationAction(ISD::FLOG, VT, Expand);
370       setOperationAction(ISD::FLOG2, VT, Expand);
371       setOperationAction(ISD::FLOG10, VT, Expand);
372       setOperationAction(ISD::FEXP, VT, Expand);
373       setOperationAction(ISD::FEXP2, VT, Expand);
374       setOperationAction(ISD::FNEARBYINT, VT, Expand);
375     }
376   }
377 
378   // Custom Expand smaller than legal vector reductions to prevent false zero
379   // items being added.
380   setOperationAction(ISD::VECREDUCE_FADD, MVT::v4f16, Custom);
381   setOperationAction(ISD::VECREDUCE_FMUL, MVT::v4f16, Custom);
382   setOperationAction(ISD::VECREDUCE_FMIN, MVT::v4f16, Custom);
383   setOperationAction(ISD::VECREDUCE_FMAX, MVT::v4f16, Custom);
384   setOperationAction(ISD::VECREDUCE_FADD, MVT::v2f16, Custom);
385   setOperationAction(ISD::VECREDUCE_FMUL, MVT::v2f16, Custom);
386   setOperationAction(ISD::VECREDUCE_FMIN, MVT::v2f16, Custom);
387   setOperationAction(ISD::VECREDUCE_FMAX, MVT::v2f16, Custom);
388 
389   // We 'support' these types up to bitcast/load/store level, regardless of
390   // MVE integer-only / float support. Only doing FP data processing on the FP
391   // vector types is inhibited at integer-only level.
392   const MVT LongTypes[] = { MVT::v2i64, MVT::v2f64 };
393   for (auto VT : LongTypes) {
394     addRegisterClass(VT, &ARM::MQPRRegClass);
395     setAllExpand(VT);
396     setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
397     setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
398     setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
399   }
400   setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
401 
402   // We can do bitwise operations on v2i64 vectors
403   setOperationAction(ISD::AND, MVT::v2i64, Legal);
404   setOperationAction(ISD::OR, MVT::v2i64, Legal);
405   setOperationAction(ISD::XOR, MVT::v2i64, Legal);
406 
407   // It is legal to extload from v4i8 to v4i16 or v4i32.
408   addAllExtLoads(MVT::v8i16, MVT::v8i8, Legal);
409   addAllExtLoads(MVT::v4i32, MVT::v4i16, Legal);
410   addAllExtLoads(MVT::v4i32, MVT::v4i8, Legal);
411 
412   // It is legal to sign extend from v4i8/v4i16 to v4i32 or v8i8 to v8i16.
413   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8,  Legal);
414   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal);
415   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal);
416   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v8i8,  Legal);
417   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v8i16, Legal);
418 
419   // Some truncating stores are legal too.
420   setTruncStoreAction(MVT::v4i32, MVT::v4i16, Legal);
421   setTruncStoreAction(MVT::v4i32, MVT::v4i8,  Legal);
422   setTruncStoreAction(MVT::v8i16, MVT::v8i8,  Legal);
423 
424   // Pre and Post inc on these are legal, given the correct extends
425   for (unsigned im = (unsigned)ISD::PRE_INC;
426        im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
427     for (auto VT : {MVT::v8i8, MVT::v4i8, MVT::v4i16}) {
428       setIndexedLoadAction(im, VT, Legal);
429       setIndexedStoreAction(im, VT, Legal);
430       setIndexedMaskedLoadAction(im, VT, Legal);
431       setIndexedMaskedStoreAction(im, VT, Legal);
432     }
433   }
434 
435   // Predicate types
436   const MVT pTypes[] = {MVT::v16i1, MVT::v8i1, MVT::v4i1};
437   for (auto VT : pTypes) {
438     addRegisterClass(VT, &ARM::VCCRRegClass);
439     setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
440     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
441     setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
442     setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
443     setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
444     setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
445     setOperationAction(ISD::SETCC, VT, Custom);
446     setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
447     setOperationAction(ISD::LOAD, VT, Custom);
448     setOperationAction(ISD::STORE, VT, Custom);
449     setOperationAction(ISD::TRUNCATE, VT, Custom);
450     setOperationAction(ISD::VSELECT, VT, Expand);
451     setOperationAction(ISD::SELECT, VT, Expand);
452   }
453 }
454 
ARMTargetLowering(const TargetMachine & TM,const ARMSubtarget & STI)455 ARMTargetLowering::ARMTargetLowering(const TargetMachine &TM,
456                                      const ARMSubtarget &STI)
457     : TargetLowering(TM), Subtarget(&STI) {
458   RegInfo = Subtarget->getRegisterInfo();
459   Itins = Subtarget->getInstrItineraryData();
460 
461   setBooleanContents(ZeroOrOneBooleanContent);
462   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
463 
464   if (!Subtarget->isTargetDarwin() && !Subtarget->isTargetIOS() &&
465       !Subtarget->isTargetWatchOS()) {
466     bool IsHFTarget = TM.Options.FloatABIType == FloatABI::Hard;
467     for (int LCID = 0; LCID < RTLIB::UNKNOWN_LIBCALL; ++LCID)
468       setLibcallCallingConv(static_cast<RTLIB::Libcall>(LCID),
469                             IsHFTarget ? CallingConv::ARM_AAPCS_VFP
470                                        : CallingConv::ARM_AAPCS);
471   }
472 
473   if (Subtarget->isTargetMachO()) {
474     // Uses VFP for Thumb libfuncs if available.
475     if (Subtarget->isThumb() && Subtarget->hasVFP2Base() &&
476         Subtarget->hasARMOps() && !Subtarget->useSoftFloat()) {
477       static const struct {
478         const RTLIB::Libcall Op;
479         const char * const Name;
480         const ISD::CondCode Cond;
481       } LibraryCalls[] = {
482         // Single-precision floating-point arithmetic.
483         { RTLIB::ADD_F32, "__addsf3vfp", ISD::SETCC_INVALID },
484         { RTLIB::SUB_F32, "__subsf3vfp", ISD::SETCC_INVALID },
485         { RTLIB::MUL_F32, "__mulsf3vfp", ISD::SETCC_INVALID },
486         { RTLIB::DIV_F32, "__divsf3vfp", ISD::SETCC_INVALID },
487 
488         // Double-precision floating-point arithmetic.
489         { RTLIB::ADD_F64, "__adddf3vfp", ISD::SETCC_INVALID },
490         { RTLIB::SUB_F64, "__subdf3vfp", ISD::SETCC_INVALID },
491         { RTLIB::MUL_F64, "__muldf3vfp", ISD::SETCC_INVALID },
492         { RTLIB::DIV_F64, "__divdf3vfp", ISD::SETCC_INVALID },
493 
494         // Single-precision comparisons.
495         { RTLIB::OEQ_F32, "__eqsf2vfp",    ISD::SETNE },
496         { RTLIB::UNE_F32, "__nesf2vfp",    ISD::SETNE },
497         { RTLIB::OLT_F32, "__ltsf2vfp",    ISD::SETNE },
498         { RTLIB::OLE_F32, "__lesf2vfp",    ISD::SETNE },
499         { RTLIB::OGE_F32, "__gesf2vfp",    ISD::SETNE },
500         { RTLIB::OGT_F32, "__gtsf2vfp",    ISD::SETNE },
501         { RTLIB::UO_F32,  "__unordsf2vfp", ISD::SETNE },
502 
503         // Double-precision comparisons.
504         { RTLIB::OEQ_F64, "__eqdf2vfp",    ISD::SETNE },
505         { RTLIB::UNE_F64, "__nedf2vfp",    ISD::SETNE },
506         { RTLIB::OLT_F64, "__ltdf2vfp",    ISD::SETNE },
507         { RTLIB::OLE_F64, "__ledf2vfp",    ISD::SETNE },
508         { RTLIB::OGE_F64, "__gedf2vfp",    ISD::SETNE },
509         { RTLIB::OGT_F64, "__gtdf2vfp",    ISD::SETNE },
510         { RTLIB::UO_F64,  "__unorddf2vfp", ISD::SETNE },
511 
512         // Floating-point to integer conversions.
513         // i64 conversions are done via library routines even when generating VFP
514         // instructions, so use the same ones.
515         { RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp",    ISD::SETCC_INVALID },
516         { RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp", ISD::SETCC_INVALID },
517         { RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp",    ISD::SETCC_INVALID },
518         { RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp", ISD::SETCC_INVALID },
519 
520         // Conversions between floating types.
521         { RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp",  ISD::SETCC_INVALID },
522         { RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp", ISD::SETCC_INVALID },
523 
524         // Integer to floating-point conversions.
525         // i64 conversions are done via library routines even when generating VFP
526         // instructions, so use the same ones.
527         // FIXME: There appears to be some naming inconsistency in ARM libgcc:
528         // e.g., __floatunsidf vs. __floatunssidfvfp.
529         { RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp",    ISD::SETCC_INVALID },
530         { RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp", ISD::SETCC_INVALID },
531         { RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp",    ISD::SETCC_INVALID },
532         { RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp", ISD::SETCC_INVALID },
533       };
534 
535       for (const auto &LC : LibraryCalls) {
536         setLibcallName(LC.Op, LC.Name);
537         if (LC.Cond != ISD::SETCC_INVALID)
538           setCmpLibcallCC(LC.Op, LC.Cond);
539       }
540     }
541   }
542 
543   // These libcalls are not available in 32-bit.
544   setLibcallName(RTLIB::SHL_I128, nullptr);
545   setLibcallName(RTLIB::SRL_I128, nullptr);
546   setLibcallName(RTLIB::SRA_I128, nullptr);
547 
548   // RTLIB
549   if (Subtarget->isAAPCS_ABI() &&
550       (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() ||
551        Subtarget->isTargetMuslAEABI() || Subtarget->isTargetAndroid())) {
552     static const struct {
553       const RTLIB::Libcall Op;
554       const char * const Name;
555       const CallingConv::ID CC;
556       const ISD::CondCode Cond;
557     } LibraryCalls[] = {
558       // Double-precision floating-point arithmetic helper functions
559       // RTABI chapter 4.1.2, Table 2
560       { RTLIB::ADD_F64, "__aeabi_dadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
561       { RTLIB::DIV_F64, "__aeabi_ddiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
562       { RTLIB::MUL_F64, "__aeabi_dmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
563       { RTLIB::SUB_F64, "__aeabi_dsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
564 
565       // Double-precision floating-point comparison helper functions
566       // RTABI chapter 4.1.2, Table 3
567       { RTLIB::OEQ_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
568       { RTLIB::UNE_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
569       { RTLIB::OLT_F64, "__aeabi_dcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
570       { RTLIB::OLE_F64, "__aeabi_dcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
571       { RTLIB::OGE_F64, "__aeabi_dcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
572       { RTLIB::OGT_F64, "__aeabi_dcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
573       { RTLIB::UO_F64,  "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
574 
575       // Single-precision floating-point arithmetic helper functions
576       // RTABI chapter 4.1.2, Table 4
577       { RTLIB::ADD_F32, "__aeabi_fadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
578       { RTLIB::DIV_F32, "__aeabi_fdiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
579       { RTLIB::MUL_F32, "__aeabi_fmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
580       { RTLIB::SUB_F32, "__aeabi_fsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
581 
582       // Single-precision floating-point comparison helper functions
583       // RTABI chapter 4.1.2, Table 5
584       { RTLIB::OEQ_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
585       { RTLIB::UNE_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
586       { RTLIB::OLT_F32, "__aeabi_fcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
587       { RTLIB::OLE_F32, "__aeabi_fcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
588       { RTLIB::OGE_F32, "__aeabi_fcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
589       { RTLIB::OGT_F32, "__aeabi_fcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
590       { RTLIB::UO_F32,  "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
591 
592       // Floating-point to integer conversions.
593       // RTABI chapter 4.1.2, Table 6
594       { RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
595       { RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
596       { RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
597       { RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
598       { RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
599       { RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
600       { RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
601       { RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
602 
603       // Conversions between floating types.
604       // RTABI chapter 4.1.2, Table 7
605       { RTLIB::FPROUND_F64_F32, "__aeabi_d2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
606       { RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
607       { RTLIB::FPEXT_F32_F64,   "__aeabi_f2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
608 
609       // Integer to floating-point conversions.
610       // RTABI chapter 4.1.2, Table 8
611       { RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
612       { RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
613       { RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
614       { RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
615       { RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
616       { RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
617       { RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
618       { RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
619 
620       // Long long helper functions
621       // RTABI chapter 4.2, Table 9
622       { RTLIB::MUL_I64, "__aeabi_lmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
623       { RTLIB::SHL_I64, "__aeabi_llsl", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
624       { RTLIB::SRL_I64, "__aeabi_llsr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
625       { RTLIB::SRA_I64, "__aeabi_lasr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
626 
627       // Integer division functions
628       // RTABI chapter 4.3.1
629       { RTLIB::SDIV_I8,  "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
630       { RTLIB::SDIV_I16, "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
631       { RTLIB::SDIV_I32, "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
632       { RTLIB::SDIV_I64, "__aeabi_ldivmod",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
633       { RTLIB::UDIV_I8,  "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
634       { RTLIB::UDIV_I16, "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
635       { RTLIB::UDIV_I32, "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
636       { RTLIB::UDIV_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
637     };
638 
639     for (const auto &LC : LibraryCalls) {
640       setLibcallName(LC.Op, LC.Name);
641       setLibcallCallingConv(LC.Op, LC.CC);
642       if (LC.Cond != ISD::SETCC_INVALID)
643         setCmpLibcallCC(LC.Op, LC.Cond);
644     }
645 
646     // EABI dependent RTLIB
647     if (TM.Options.EABIVersion == EABI::EABI4 ||
648         TM.Options.EABIVersion == EABI::EABI5) {
649       static const struct {
650         const RTLIB::Libcall Op;
651         const char *const Name;
652         const CallingConv::ID CC;
653         const ISD::CondCode Cond;
654       } MemOpsLibraryCalls[] = {
655         // Memory operations
656         // RTABI chapter 4.3.4
657         { RTLIB::MEMCPY,  "__aeabi_memcpy",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
658         { RTLIB::MEMMOVE, "__aeabi_memmove", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
659         { RTLIB::MEMSET,  "__aeabi_memset",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
660       };
661 
662       for (const auto &LC : MemOpsLibraryCalls) {
663         setLibcallName(LC.Op, LC.Name);
664         setLibcallCallingConv(LC.Op, LC.CC);
665         if (LC.Cond != ISD::SETCC_INVALID)
666           setCmpLibcallCC(LC.Op, LC.Cond);
667       }
668     }
669   }
670 
671   if (Subtarget->isTargetWindows()) {
672     static const struct {
673       const RTLIB::Libcall Op;
674       const char * const Name;
675       const CallingConv::ID CC;
676     } LibraryCalls[] = {
677       { RTLIB::FPTOSINT_F32_I64, "__stoi64", CallingConv::ARM_AAPCS_VFP },
678       { RTLIB::FPTOSINT_F64_I64, "__dtoi64", CallingConv::ARM_AAPCS_VFP },
679       { RTLIB::FPTOUINT_F32_I64, "__stou64", CallingConv::ARM_AAPCS_VFP },
680       { RTLIB::FPTOUINT_F64_I64, "__dtou64", CallingConv::ARM_AAPCS_VFP },
681       { RTLIB::SINTTOFP_I64_F32, "__i64tos", CallingConv::ARM_AAPCS_VFP },
682       { RTLIB::SINTTOFP_I64_F64, "__i64tod", CallingConv::ARM_AAPCS_VFP },
683       { RTLIB::UINTTOFP_I64_F32, "__u64tos", CallingConv::ARM_AAPCS_VFP },
684       { RTLIB::UINTTOFP_I64_F64, "__u64tod", CallingConv::ARM_AAPCS_VFP },
685     };
686 
687     for (const auto &LC : LibraryCalls) {
688       setLibcallName(LC.Op, LC.Name);
689       setLibcallCallingConv(LC.Op, LC.CC);
690     }
691   }
692 
693   // Use divmod compiler-rt calls for iOS 5.0 and later.
694   if (Subtarget->isTargetMachO() &&
695       !(Subtarget->isTargetIOS() &&
696         Subtarget->getTargetTriple().isOSVersionLT(5, 0))) {
697     setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
698     setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
699   }
700 
701   // The half <-> float conversion functions are always soft-float on
702   // non-watchos platforms, but are needed for some targets which use a
703   // hard-float calling convention by default.
704   if (!Subtarget->isTargetWatchABI()) {
705     if (Subtarget->isAAPCS_ABI()) {
706       setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_AAPCS);
707       setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_AAPCS);
708       setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_AAPCS);
709     } else {
710       setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_APCS);
711       setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_APCS);
712       setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_APCS);
713     }
714   }
715 
716   // In EABI, these functions have an __aeabi_ prefix, but in GNUEABI they have
717   // a __gnu_ prefix (which is the default).
718   if (Subtarget->isTargetAEABI()) {
719     static const struct {
720       const RTLIB::Libcall Op;
721       const char * const Name;
722       const CallingConv::ID CC;
723     } LibraryCalls[] = {
724       { RTLIB::FPROUND_F32_F16, "__aeabi_f2h", CallingConv::ARM_AAPCS },
725       { RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS },
726       { RTLIB::FPEXT_F16_F32, "__aeabi_h2f", CallingConv::ARM_AAPCS },
727     };
728 
729     for (const auto &LC : LibraryCalls) {
730       setLibcallName(LC.Op, LC.Name);
731       setLibcallCallingConv(LC.Op, LC.CC);
732     }
733   }
734 
735   if (Subtarget->isThumb1Only())
736     addRegisterClass(MVT::i32, &ARM::tGPRRegClass);
737   else
738     addRegisterClass(MVT::i32, &ARM::GPRRegClass);
739 
740   if (!Subtarget->useSoftFloat() && !Subtarget->isThumb1Only() &&
741       Subtarget->hasFPRegs()) {
742     addRegisterClass(MVT::f32, &ARM::SPRRegClass);
743     addRegisterClass(MVT::f64, &ARM::DPRRegClass);
744     if (!Subtarget->hasVFP2Base())
745       setAllExpand(MVT::f32);
746     if (!Subtarget->hasFP64())
747       setAllExpand(MVT::f64);
748   }
749 
750   if (Subtarget->hasFullFP16()) {
751     addRegisterClass(MVT::f16, &ARM::HPRRegClass);
752     setOperationAction(ISD::BITCAST, MVT::i16, Custom);
753     setOperationAction(ISD::BITCAST, MVT::f16, Custom);
754 
755     setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
756     setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
757   }
758 
759   if (Subtarget->hasBF16()) {
760     addRegisterClass(MVT::bf16, &ARM::HPRRegClass);
761     setAllExpand(MVT::bf16);
762     if (!Subtarget->hasFullFP16())
763       setOperationAction(ISD::BITCAST, MVT::bf16, Custom);
764   }
765 
766   for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
767     for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
768       setTruncStoreAction(VT, InnerVT, Expand);
769       addAllExtLoads(VT, InnerVT, Expand);
770     }
771 
772     setOperationAction(ISD::MULHS, VT, Expand);
773     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
774     setOperationAction(ISD::MULHU, VT, Expand);
775     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
776 
777     setOperationAction(ISD::BSWAP, VT, Expand);
778   }
779 
780   setOperationAction(ISD::ConstantFP, MVT::f32, Custom);
781   setOperationAction(ISD::ConstantFP, MVT::f64, Custom);
782 
783   setOperationAction(ISD::READ_REGISTER, MVT::i64, Custom);
784   setOperationAction(ISD::WRITE_REGISTER, MVT::i64, Custom);
785 
786   if (Subtarget->hasMVEIntegerOps())
787     addMVEVectorTypes(Subtarget->hasMVEFloatOps());
788 
789   // Combine low-overhead loop intrinsics so that we can lower i1 types.
790   if (Subtarget->hasLOB()) {
791     setTargetDAGCombine(ISD::BRCOND);
792     setTargetDAGCombine(ISD::BR_CC);
793   }
794 
795   if (Subtarget->hasNEON()) {
796     addDRTypeForNEON(MVT::v2f32);
797     addDRTypeForNEON(MVT::v8i8);
798     addDRTypeForNEON(MVT::v4i16);
799     addDRTypeForNEON(MVT::v2i32);
800     addDRTypeForNEON(MVT::v1i64);
801 
802     addQRTypeForNEON(MVT::v4f32);
803     addQRTypeForNEON(MVT::v2f64);
804     addQRTypeForNEON(MVT::v16i8);
805     addQRTypeForNEON(MVT::v8i16);
806     addQRTypeForNEON(MVT::v4i32);
807     addQRTypeForNEON(MVT::v2i64);
808 
809     if (Subtarget->hasFullFP16()) {
810       addQRTypeForNEON(MVT::v8f16);
811       addDRTypeForNEON(MVT::v4f16);
812     }
813 
814     if (Subtarget->hasBF16()) {
815       addQRTypeForNEON(MVT::v8bf16);
816       addDRTypeForNEON(MVT::v4bf16);
817     }
818   }
819 
820   if (Subtarget->hasMVEIntegerOps() || Subtarget->hasNEON()) {
821     // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
822     // none of Neon, MVE or VFP supports any arithmetic operations on it.
823     setOperationAction(ISD::FADD, MVT::v2f64, Expand);
824     setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
825     setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
826     // FIXME: Code duplication: FDIV and FREM are expanded always, see
827     // ARMTargetLowering::addTypeForNEON method for details.
828     setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
829     setOperationAction(ISD::FREM, MVT::v2f64, Expand);
830     // FIXME: Create unittest.
831     // In another words, find a way when "copysign" appears in DAG with vector
832     // operands.
833     setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
834     // FIXME: Code duplication: SETCC has custom operation action, see
835     // ARMTargetLowering::addTypeForNEON method for details.
836     setOperationAction(ISD::SETCC, MVT::v2f64, Expand);
837     // FIXME: Create unittest for FNEG and for FABS.
838     setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
839     setOperationAction(ISD::FABS, MVT::v2f64, Expand);
840     setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
841     setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
842     setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
843     setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
844     setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
845     setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
846     setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
847     setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
848     setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
849     // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
850     setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
851     setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
852     setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
853     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
854     setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
855     setOperationAction(ISD::FMA, MVT::v2f64, Expand);
856   }
857 
858   if (Subtarget->hasNEON()) {
859     // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
860     // supported for v4f32.
861     setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
862     setOperationAction(ISD::FSIN, MVT::v4f32, Expand);
863     setOperationAction(ISD::FCOS, MVT::v4f32, Expand);
864     setOperationAction(ISD::FPOW, MVT::v4f32, Expand);
865     setOperationAction(ISD::FLOG, MVT::v4f32, Expand);
866     setOperationAction(ISD::FLOG2, MVT::v4f32, Expand);
867     setOperationAction(ISD::FLOG10, MVT::v4f32, Expand);
868     setOperationAction(ISD::FEXP, MVT::v4f32, Expand);
869     setOperationAction(ISD::FEXP2, MVT::v4f32, Expand);
870     setOperationAction(ISD::FCEIL, MVT::v4f32, Expand);
871     setOperationAction(ISD::FTRUNC, MVT::v4f32, Expand);
872     setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
873     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
874     setOperationAction(ISD::FFLOOR, MVT::v4f32, Expand);
875 
876     // Mark v2f32 intrinsics.
877     setOperationAction(ISD::FSQRT, MVT::v2f32, Expand);
878     setOperationAction(ISD::FSIN, MVT::v2f32, Expand);
879     setOperationAction(ISD::FCOS, MVT::v2f32, Expand);
880     setOperationAction(ISD::FPOW, MVT::v2f32, Expand);
881     setOperationAction(ISD::FLOG, MVT::v2f32, Expand);
882     setOperationAction(ISD::FLOG2, MVT::v2f32, Expand);
883     setOperationAction(ISD::FLOG10, MVT::v2f32, Expand);
884     setOperationAction(ISD::FEXP, MVT::v2f32, Expand);
885     setOperationAction(ISD::FEXP2, MVT::v2f32, Expand);
886     setOperationAction(ISD::FCEIL, MVT::v2f32, Expand);
887     setOperationAction(ISD::FTRUNC, MVT::v2f32, Expand);
888     setOperationAction(ISD::FRINT, MVT::v2f32, Expand);
889     setOperationAction(ISD::FNEARBYINT, MVT::v2f32, Expand);
890     setOperationAction(ISD::FFLOOR, MVT::v2f32, Expand);
891 
892     // Neon does not support some operations on v1i64 and v2i64 types.
893     setOperationAction(ISD::MUL, MVT::v1i64, Expand);
894     // Custom handling for some quad-vector types to detect VMULL.
895     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
896     setOperationAction(ISD::MUL, MVT::v4i32, Custom);
897     setOperationAction(ISD::MUL, MVT::v2i64, Custom);
898     // Custom handling for some vector types to avoid expensive expansions
899     setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
900     setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
901     setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
902     setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
903     // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
904     // a destination type that is wider than the source, and nor does
905     // it have a FP_TO_[SU]INT instruction with a narrower destination than
906     // source.
907     setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
908     setOperationAction(ISD::SINT_TO_FP, MVT::v8i16, Custom);
909     setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
910     setOperationAction(ISD::UINT_TO_FP, MVT::v8i16, Custom);
911     setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom);
912     setOperationAction(ISD::FP_TO_UINT, MVT::v8i16, Custom);
913     setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom);
914     setOperationAction(ISD::FP_TO_SINT, MVT::v8i16, Custom);
915 
916     setOperationAction(ISD::FP_ROUND,   MVT::v2f32, Expand);
917     setOperationAction(ISD::FP_EXTEND,  MVT::v2f64, Expand);
918 
919     // NEON does not have single instruction CTPOP for vectors with element
920     // types wider than 8-bits.  However, custom lowering can leverage the
921     // v8i8/v16i8 vcnt instruction.
922     setOperationAction(ISD::CTPOP,      MVT::v2i32, Custom);
923     setOperationAction(ISD::CTPOP,      MVT::v4i32, Custom);
924     setOperationAction(ISD::CTPOP,      MVT::v4i16, Custom);
925     setOperationAction(ISD::CTPOP,      MVT::v8i16, Custom);
926     setOperationAction(ISD::CTPOP,      MVT::v1i64, Custom);
927     setOperationAction(ISD::CTPOP,      MVT::v2i64, Custom);
928 
929     setOperationAction(ISD::CTLZ,       MVT::v1i64, Expand);
930     setOperationAction(ISD::CTLZ,       MVT::v2i64, Expand);
931 
932     // NEON does not have single instruction CTTZ for vectors.
933     setOperationAction(ISD::CTTZ, MVT::v8i8, Custom);
934     setOperationAction(ISD::CTTZ, MVT::v4i16, Custom);
935     setOperationAction(ISD::CTTZ, MVT::v2i32, Custom);
936     setOperationAction(ISD::CTTZ, MVT::v1i64, Custom);
937 
938     setOperationAction(ISD::CTTZ, MVT::v16i8, Custom);
939     setOperationAction(ISD::CTTZ, MVT::v8i16, Custom);
940     setOperationAction(ISD::CTTZ, MVT::v4i32, Custom);
941     setOperationAction(ISD::CTTZ, MVT::v2i64, Custom);
942 
943     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i8, Custom);
944     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i16, Custom);
945     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i32, Custom);
946     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v1i64, Custom);
947 
948     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v16i8, Custom);
949     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i16, Custom);
950     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i32, Custom);
951     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i64, Custom);
952 
953     // NEON only has FMA instructions as of VFP4.
954     if (!Subtarget->hasVFP4Base()) {
955       setOperationAction(ISD::FMA, MVT::v2f32, Expand);
956       setOperationAction(ISD::FMA, MVT::v4f32, Expand);
957     }
958 
959     setTargetDAGCombine(ISD::SHL);
960     setTargetDAGCombine(ISD::SRL);
961     setTargetDAGCombine(ISD::SRA);
962     setTargetDAGCombine(ISD::FP_TO_SINT);
963     setTargetDAGCombine(ISD::FP_TO_UINT);
964     setTargetDAGCombine(ISD::FDIV);
965     setTargetDAGCombine(ISD::LOAD);
966 
967     // It is legal to extload from v4i8 to v4i16 or v4i32.
968     for (MVT Ty : {MVT::v8i8, MVT::v4i8, MVT::v2i8, MVT::v4i16, MVT::v2i16,
969                    MVT::v2i32}) {
970       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
971         setLoadExtAction(ISD::EXTLOAD, VT, Ty, Legal);
972         setLoadExtAction(ISD::ZEXTLOAD, VT, Ty, Legal);
973         setLoadExtAction(ISD::SEXTLOAD, VT, Ty, Legal);
974       }
975     }
976   }
977 
978   if (Subtarget->hasNEON() || Subtarget->hasMVEIntegerOps()) {
979     setTargetDAGCombine(ISD::BUILD_VECTOR);
980     setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
981     setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
982     setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
983     setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
984     setTargetDAGCombine(ISD::STORE);
985     setTargetDAGCombine(ISD::SIGN_EXTEND);
986     setTargetDAGCombine(ISD::ZERO_EXTEND);
987     setTargetDAGCombine(ISD::ANY_EXTEND);
988     setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
989     setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
990     setTargetDAGCombine(ISD::INTRINSIC_VOID);
991     setTargetDAGCombine(ISD::VECREDUCE_ADD);
992     setTargetDAGCombine(ISD::ADD);
993     setTargetDAGCombine(ISD::BITCAST);
994   }
995   if (Subtarget->hasMVEIntegerOps()) {
996     setTargetDAGCombine(ISD::SMIN);
997     setTargetDAGCombine(ISD::UMIN);
998     setTargetDAGCombine(ISD::SMAX);
999     setTargetDAGCombine(ISD::UMAX);
1000     setTargetDAGCombine(ISD::FP_EXTEND);
1001     setTargetDAGCombine(ISD::SELECT);
1002     setTargetDAGCombine(ISD::SELECT_CC);
1003   }
1004 
1005   if (!Subtarget->hasFP64()) {
1006     // When targeting a floating-point unit with only single-precision
1007     // operations, f64 is legal for the few double-precision instructions which
1008     // are present However, no double-precision operations other than moves,
1009     // loads and stores are provided by the hardware.
1010     setOperationAction(ISD::FADD,       MVT::f64, Expand);
1011     setOperationAction(ISD::FSUB,       MVT::f64, Expand);
1012     setOperationAction(ISD::FMUL,       MVT::f64, Expand);
1013     setOperationAction(ISD::FMA,        MVT::f64, Expand);
1014     setOperationAction(ISD::FDIV,       MVT::f64, Expand);
1015     setOperationAction(ISD::FREM,       MVT::f64, Expand);
1016     setOperationAction(ISD::FCOPYSIGN,  MVT::f64, Expand);
1017     setOperationAction(ISD::FGETSIGN,   MVT::f64, Expand);
1018     setOperationAction(ISD::FNEG,       MVT::f64, Expand);
1019     setOperationAction(ISD::FABS,       MVT::f64, Expand);
1020     setOperationAction(ISD::FSQRT,      MVT::f64, Expand);
1021     setOperationAction(ISD::FSIN,       MVT::f64, Expand);
1022     setOperationAction(ISD::FCOS,       MVT::f64, Expand);
1023     setOperationAction(ISD::FPOW,       MVT::f64, Expand);
1024     setOperationAction(ISD::FLOG,       MVT::f64, Expand);
1025     setOperationAction(ISD::FLOG2,      MVT::f64, Expand);
1026     setOperationAction(ISD::FLOG10,     MVT::f64, Expand);
1027     setOperationAction(ISD::FEXP,       MVT::f64, Expand);
1028     setOperationAction(ISD::FEXP2,      MVT::f64, Expand);
1029     setOperationAction(ISD::FCEIL,      MVT::f64, Expand);
1030     setOperationAction(ISD::FTRUNC,     MVT::f64, Expand);
1031     setOperationAction(ISD::FRINT,      MVT::f64, Expand);
1032     setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand);
1033     setOperationAction(ISD::FFLOOR,     MVT::f64, Expand);
1034     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
1035     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
1036     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
1037     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
1038     setOperationAction(ISD::FP_TO_SINT, MVT::f64, Custom);
1039     setOperationAction(ISD::FP_TO_UINT, MVT::f64, Custom);
1040     setOperationAction(ISD::FP_ROUND,   MVT::f32, Custom);
1041     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
1042     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
1043     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::f64, Custom);
1044     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::f64, Custom);
1045     setOperationAction(ISD::STRICT_FP_ROUND,   MVT::f32, Custom);
1046   }
1047 
1048   if (!Subtarget->hasFP64() || !Subtarget->hasFPARMv8Base()) {
1049     setOperationAction(ISD::FP_EXTEND,  MVT::f64, Custom);
1050     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Custom);
1051     if (Subtarget->hasFullFP16()) {
1052       setOperationAction(ISD::FP_ROUND,  MVT::f16, Custom);
1053       setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Custom);
1054     }
1055   }
1056 
1057   if (!Subtarget->hasFP16()) {
1058     setOperationAction(ISD::FP_EXTEND,  MVT::f32, Custom);
1059     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Custom);
1060   }
1061 
1062   computeRegisterProperties(Subtarget->getRegisterInfo());
1063 
1064   // ARM does not have floating-point extending loads.
1065   for (MVT VT : MVT::fp_valuetypes()) {
1066     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
1067     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
1068   }
1069 
1070   // ... or truncating stores
1071   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
1072   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
1073   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
1074 
1075   // ARM does not have i1 sign extending load.
1076   for (MVT VT : MVT::integer_valuetypes())
1077     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
1078 
1079   // ARM supports all 4 flavors of integer indexed load / store.
1080   if (!Subtarget->isThumb1Only()) {
1081     for (unsigned im = (unsigned)ISD::PRE_INC;
1082          im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
1083       setIndexedLoadAction(im,  MVT::i1,  Legal);
1084       setIndexedLoadAction(im,  MVT::i8,  Legal);
1085       setIndexedLoadAction(im,  MVT::i16, Legal);
1086       setIndexedLoadAction(im,  MVT::i32, Legal);
1087       setIndexedStoreAction(im, MVT::i1,  Legal);
1088       setIndexedStoreAction(im, MVT::i8,  Legal);
1089       setIndexedStoreAction(im, MVT::i16, Legal);
1090       setIndexedStoreAction(im, MVT::i32, Legal);
1091     }
1092   } else {
1093     // Thumb-1 has limited post-inc load/store support - LDM r0!, {r1}.
1094     setIndexedLoadAction(ISD::POST_INC, MVT::i32,  Legal);
1095     setIndexedStoreAction(ISD::POST_INC, MVT::i32,  Legal);
1096   }
1097 
1098   setOperationAction(ISD::SADDO, MVT::i32, Custom);
1099   setOperationAction(ISD::UADDO, MVT::i32, Custom);
1100   setOperationAction(ISD::SSUBO, MVT::i32, Custom);
1101   setOperationAction(ISD::USUBO, MVT::i32, Custom);
1102 
1103   setOperationAction(ISD::ADDCARRY, MVT::i32, Custom);
1104   setOperationAction(ISD::SUBCARRY, MVT::i32, Custom);
1105   if (Subtarget->hasDSP()) {
1106     setOperationAction(ISD::SADDSAT, MVT::i8, Custom);
1107     setOperationAction(ISD::SSUBSAT, MVT::i8, Custom);
1108     setOperationAction(ISD::SADDSAT, MVT::i16, Custom);
1109     setOperationAction(ISD::SSUBSAT, MVT::i16, Custom);
1110   }
1111   if (Subtarget->hasBaseDSP()) {
1112     setOperationAction(ISD::SADDSAT, MVT::i32, Legal);
1113     setOperationAction(ISD::SSUBSAT, MVT::i32, Legal);
1114   }
1115 
1116   // i64 operation support.
1117   setOperationAction(ISD::MUL,     MVT::i64, Expand);
1118   setOperationAction(ISD::MULHU,   MVT::i32, Expand);
1119   if (Subtarget->isThumb1Only()) {
1120     setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
1121     setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
1122   }
1123   if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
1124       || (Subtarget->isThumb2() && !Subtarget->hasDSP()))
1125     setOperationAction(ISD::MULHS, MVT::i32, Expand);
1126 
1127   setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
1128   setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
1129   setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
1130   setOperationAction(ISD::SRL,       MVT::i64, Custom);
1131   setOperationAction(ISD::SRA,       MVT::i64, Custom);
1132   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
1133   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
1134   setOperationAction(ISD::LOAD, MVT::i64, Custom);
1135   setOperationAction(ISD::STORE, MVT::i64, Custom);
1136 
1137   // MVE lowers 64 bit shifts to lsll and lsrl
1138   // assuming that ISD::SRL and SRA of i64 are already marked custom
1139   if (Subtarget->hasMVEIntegerOps())
1140     setOperationAction(ISD::SHL, MVT::i64, Custom);
1141 
1142   // Expand to __aeabi_l{lsl,lsr,asr} calls for Thumb1.
1143   if (Subtarget->isThumb1Only()) {
1144     setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
1145     setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
1146     setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
1147   }
1148 
1149   if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops())
1150     setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
1151 
1152   // ARM does not have ROTL.
1153   setOperationAction(ISD::ROTL, MVT::i32, Expand);
1154   for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
1155     setOperationAction(ISD::ROTL, VT, Expand);
1156     setOperationAction(ISD::ROTR, VT, Expand);
1157   }
1158   setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
1159   setOperationAction(ISD::CTPOP, MVT::i32, Expand);
1160   if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only()) {
1161     setOperationAction(ISD::CTLZ, MVT::i32, Expand);
1162     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, LibCall);
1163   }
1164 
1165   // @llvm.readcyclecounter requires the Performance Monitors extension.
1166   // Default to the 0 expansion on unsupported platforms.
1167   // FIXME: Technically there are older ARM CPUs that have
1168   // implementation-specific ways of obtaining this information.
1169   if (Subtarget->hasPerfMon())
1170     setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom);
1171 
1172   // Only ARMv6 has BSWAP.
1173   if (!Subtarget->hasV6Ops())
1174     setOperationAction(ISD::BSWAP, MVT::i32, Expand);
1175 
1176   bool hasDivide = Subtarget->isThumb() ? Subtarget->hasDivideInThumbMode()
1177                                         : Subtarget->hasDivideInARMMode();
1178   if (!hasDivide) {
1179     // These are expanded into libcalls if the cpu doesn't have HW divider.
1180     setOperationAction(ISD::SDIV,  MVT::i32, LibCall);
1181     setOperationAction(ISD::UDIV,  MVT::i32, LibCall);
1182   }
1183 
1184   if (Subtarget->isTargetWindows() && !Subtarget->hasDivideInThumbMode()) {
1185     setOperationAction(ISD::SDIV, MVT::i32, Custom);
1186     setOperationAction(ISD::UDIV, MVT::i32, Custom);
1187 
1188     setOperationAction(ISD::SDIV, MVT::i64, Custom);
1189     setOperationAction(ISD::UDIV, MVT::i64, Custom);
1190   }
1191 
1192   setOperationAction(ISD::SREM,  MVT::i32, Expand);
1193   setOperationAction(ISD::UREM,  MVT::i32, Expand);
1194 
1195   // Register based DivRem for AEABI (RTABI 4.2)
1196   if (Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() ||
1197       Subtarget->isTargetGNUAEABI() || Subtarget->isTargetMuslAEABI() ||
1198       Subtarget->isTargetWindows()) {
1199     setOperationAction(ISD::SREM, MVT::i64, Custom);
1200     setOperationAction(ISD::UREM, MVT::i64, Custom);
1201     HasStandaloneRem = false;
1202 
1203     if (Subtarget->isTargetWindows()) {
1204       const struct {
1205         const RTLIB::Libcall Op;
1206         const char * const Name;
1207         const CallingConv::ID CC;
1208       } LibraryCalls[] = {
1209         { RTLIB::SDIVREM_I8, "__rt_sdiv", CallingConv::ARM_AAPCS },
1210         { RTLIB::SDIVREM_I16, "__rt_sdiv", CallingConv::ARM_AAPCS },
1211         { RTLIB::SDIVREM_I32, "__rt_sdiv", CallingConv::ARM_AAPCS },
1212         { RTLIB::SDIVREM_I64, "__rt_sdiv64", CallingConv::ARM_AAPCS },
1213 
1214         { RTLIB::UDIVREM_I8, "__rt_udiv", CallingConv::ARM_AAPCS },
1215         { RTLIB::UDIVREM_I16, "__rt_udiv", CallingConv::ARM_AAPCS },
1216         { RTLIB::UDIVREM_I32, "__rt_udiv", CallingConv::ARM_AAPCS },
1217         { RTLIB::UDIVREM_I64, "__rt_udiv64", CallingConv::ARM_AAPCS },
1218       };
1219 
1220       for (const auto &LC : LibraryCalls) {
1221         setLibcallName(LC.Op, LC.Name);
1222         setLibcallCallingConv(LC.Op, LC.CC);
1223       }
1224     } else {
1225       const struct {
1226         const RTLIB::Libcall Op;
1227         const char * const Name;
1228         const CallingConv::ID CC;
1229       } LibraryCalls[] = {
1230         { RTLIB::SDIVREM_I8, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
1231         { RTLIB::SDIVREM_I16, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
1232         { RTLIB::SDIVREM_I32, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
1233         { RTLIB::SDIVREM_I64, "__aeabi_ldivmod", CallingConv::ARM_AAPCS },
1234 
1235         { RTLIB::UDIVREM_I8, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
1236         { RTLIB::UDIVREM_I16, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
1237         { RTLIB::UDIVREM_I32, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
1238         { RTLIB::UDIVREM_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS },
1239       };
1240 
1241       for (const auto &LC : LibraryCalls) {
1242         setLibcallName(LC.Op, LC.Name);
1243         setLibcallCallingConv(LC.Op, LC.CC);
1244       }
1245     }
1246 
1247     setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
1248     setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
1249     setOperationAction(ISD::SDIVREM, MVT::i64, Custom);
1250     setOperationAction(ISD::UDIVREM, MVT::i64, Custom);
1251   } else {
1252     setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
1253     setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
1254   }
1255 
1256   if (Subtarget->getTargetTriple().isOSMSVCRT()) {
1257     // MSVCRT doesn't have powi; fall back to pow
1258     setLibcallName(RTLIB::POWI_F32, nullptr);
1259     setLibcallName(RTLIB::POWI_F64, nullptr);
1260   }
1261 
1262   setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
1263   setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
1264   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
1265   setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
1266 
1267   setOperationAction(ISD::TRAP, MVT::Other, Legal);
1268   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
1269 
1270   // Use the default implementation.
1271   setOperationAction(ISD::VASTART,            MVT::Other, Custom);
1272   setOperationAction(ISD::VAARG,              MVT::Other, Expand);
1273   setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
1274   setOperationAction(ISD::VAEND,              MVT::Other, Expand);
1275   setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
1276   setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
1277 
1278   if (Subtarget->isTargetWindows())
1279     setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
1280   else
1281     setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
1282 
1283   // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
1284   // the default expansion.
1285   InsertFencesForAtomic = false;
1286   if (Subtarget->hasAnyDataBarrier() &&
1287       (!Subtarget->isThumb() || Subtarget->hasV8MBaselineOps())) {
1288     // ATOMIC_FENCE needs custom lowering; the others should have been expanded
1289     // to ldrex/strex loops already.
1290     setOperationAction(ISD::ATOMIC_FENCE,     MVT::Other, Custom);
1291     if (!Subtarget->isThumb() || !Subtarget->isMClass())
1292       setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i64, Custom);
1293 
1294     // On v8, we have particularly efficient implementations of atomic fences
1295     // if they can be combined with nearby atomic loads and stores.
1296     if (!Subtarget->hasAcquireRelease() ||
1297         getTargetMachine().getOptLevel() == 0) {
1298       // Automatically insert fences (dmb ish) around ATOMIC_SWAP etc.
1299       InsertFencesForAtomic = true;
1300     }
1301   } else {
1302     // If there's anything we can use as a barrier, go through custom lowering
1303     // for ATOMIC_FENCE.
1304     // If target has DMB in thumb, Fences can be inserted.
1305     if (Subtarget->hasDataBarrier())
1306       InsertFencesForAtomic = true;
1307 
1308     setOperationAction(ISD::ATOMIC_FENCE,   MVT::Other,
1309                        Subtarget->hasAnyDataBarrier() ? Custom : Expand);
1310 
1311     // Set them all for expansion, which will force libcalls.
1312     setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Expand);
1313     setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Expand);
1314     setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Expand);
1315     setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Expand);
1316     setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Expand);
1317     setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Expand);
1318     setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Expand);
1319     setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
1320     setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
1321     setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
1322     setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
1323     setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
1324     // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
1325     // Unordered/Monotonic case.
1326     if (!InsertFencesForAtomic) {
1327       setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
1328       setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
1329     }
1330   }
1331 
1332   setOperationAction(ISD::PREFETCH,         MVT::Other, Custom);
1333 
1334   // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
1335   if (!Subtarget->hasV6Ops()) {
1336     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
1337     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
1338   }
1339   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
1340 
1341   if (!Subtarget->useSoftFloat() && Subtarget->hasFPRegs() &&
1342       !Subtarget->isThumb1Only()) {
1343     // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
1344     // iff target supports vfp2.
1345     setOperationAction(ISD::BITCAST, MVT::i64, Custom);
1346     setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
1347     setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom);
1348   }
1349 
1350   // We want to custom lower some of our intrinsics.
1351   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1352   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
1353   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
1354   setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH, MVT::Other, Custom);
1355   if (Subtarget->useSjLjEH())
1356     setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
1357 
1358   setOperationAction(ISD::SETCC,     MVT::i32, Expand);
1359   setOperationAction(ISD::SETCC,     MVT::f32, Expand);
1360   setOperationAction(ISD::SETCC,     MVT::f64, Expand);
1361   setOperationAction(ISD::SELECT,    MVT::i32, Custom);
1362   setOperationAction(ISD::SELECT,    MVT::f32, Custom);
1363   setOperationAction(ISD::SELECT,    MVT::f64, Custom);
1364   setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
1365   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
1366   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
1367   if (Subtarget->hasFullFP16()) {
1368     setOperationAction(ISD::SETCC,     MVT::f16, Expand);
1369     setOperationAction(ISD::SELECT,    MVT::f16, Custom);
1370     setOperationAction(ISD::SELECT_CC, MVT::f16, Custom);
1371   }
1372 
1373   setOperationAction(ISD::SETCCCARRY, MVT::i32, Custom);
1374 
1375   setOperationAction(ISD::BRCOND,    MVT::Other, Custom);
1376   setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
1377   if (Subtarget->hasFullFP16())
1378       setOperationAction(ISD::BR_CC, MVT::f16,   Custom);
1379   setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
1380   setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
1381   setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
1382 
1383   // We don't support sin/cos/fmod/copysign/pow
1384   setOperationAction(ISD::FSIN,      MVT::f64, Expand);
1385   setOperationAction(ISD::FSIN,      MVT::f32, Expand);
1386   setOperationAction(ISD::FCOS,      MVT::f32, Expand);
1387   setOperationAction(ISD::FCOS,      MVT::f64, Expand);
1388   setOperationAction(ISD::FSINCOS,   MVT::f64, Expand);
1389   setOperationAction(ISD::FSINCOS,   MVT::f32, Expand);
1390   setOperationAction(ISD::FREM,      MVT::f64, Expand);
1391   setOperationAction(ISD::FREM,      MVT::f32, Expand);
1392   if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2Base() &&
1393       !Subtarget->isThumb1Only()) {
1394     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
1395     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
1396   }
1397   setOperationAction(ISD::FPOW,      MVT::f64, Expand);
1398   setOperationAction(ISD::FPOW,      MVT::f32, Expand);
1399 
1400   if (!Subtarget->hasVFP4Base()) {
1401     setOperationAction(ISD::FMA, MVT::f64, Expand);
1402     setOperationAction(ISD::FMA, MVT::f32, Expand);
1403   }
1404 
1405   // Various VFP goodness
1406   if (!Subtarget->useSoftFloat() && !Subtarget->isThumb1Only()) {
1407     // FP-ARMv8 adds f64 <-> f16 conversion. Before that it should be expanded.
1408     if (!Subtarget->hasFPARMv8Base() || !Subtarget->hasFP64()) {
1409       setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
1410       setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
1411     }
1412 
1413     // fp16 is a special v7 extension that adds f16 <-> f32 conversions.
1414     if (!Subtarget->hasFP16()) {
1415       setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
1416       setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
1417     }
1418 
1419     // Strict floating-point comparisons need custom lowering.
1420     setOperationAction(ISD::STRICT_FSETCC,  MVT::f16, Custom);
1421     setOperationAction(ISD::STRICT_FSETCCS, MVT::f16, Custom);
1422     setOperationAction(ISD::STRICT_FSETCC,  MVT::f32, Custom);
1423     setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Custom);
1424     setOperationAction(ISD::STRICT_FSETCC,  MVT::f64, Custom);
1425     setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Custom);
1426   }
1427 
1428   // Use __sincos_stret if available.
1429   if (getLibcallName(RTLIB::SINCOS_STRET_F32) != nullptr &&
1430       getLibcallName(RTLIB::SINCOS_STRET_F64) != nullptr) {
1431     setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
1432     setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
1433   }
1434 
1435   // FP-ARMv8 implements a lot of rounding-like FP operations.
1436   if (Subtarget->hasFPARMv8Base()) {
1437     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
1438     setOperationAction(ISD::FCEIL, MVT::f32, Legal);
1439     setOperationAction(ISD::FROUND, MVT::f32, Legal);
1440     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
1441     setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
1442     setOperationAction(ISD::FRINT, MVT::f32, Legal);
1443     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
1444     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
1445     if (Subtarget->hasNEON()) {
1446       setOperationAction(ISD::FMINNUM, MVT::v2f32, Legal);
1447       setOperationAction(ISD::FMAXNUM, MVT::v2f32, Legal);
1448       setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
1449       setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
1450     }
1451 
1452     if (Subtarget->hasFP64()) {
1453       setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
1454       setOperationAction(ISD::FCEIL, MVT::f64, Legal);
1455       setOperationAction(ISD::FROUND, MVT::f64, Legal);
1456       setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
1457       setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
1458       setOperationAction(ISD::FRINT, MVT::f64, Legal);
1459       setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
1460       setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
1461     }
1462   }
1463 
1464   // FP16 often need to be promoted to call lib functions
1465   if (Subtarget->hasFullFP16()) {
1466     setOperationAction(ISD::FREM, MVT::f16, Promote);
1467     setOperationAction(ISD::FCOPYSIGN, MVT::f16, Expand);
1468     setOperationAction(ISD::FSIN, MVT::f16, Promote);
1469     setOperationAction(ISD::FCOS, MVT::f16, Promote);
1470     setOperationAction(ISD::FSINCOS, MVT::f16, Promote);
1471     setOperationAction(ISD::FPOWI, MVT::f16, Promote);
1472     setOperationAction(ISD::FPOW, MVT::f16, Promote);
1473     setOperationAction(ISD::FEXP, MVT::f16, Promote);
1474     setOperationAction(ISD::FEXP2, MVT::f16, Promote);
1475     setOperationAction(ISD::FLOG, MVT::f16, Promote);
1476     setOperationAction(ISD::FLOG10, MVT::f16, Promote);
1477     setOperationAction(ISD::FLOG2, MVT::f16, Promote);
1478 
1479     setOperationAction(ISD::FROUND, MVT::f16, Legal);
1480   }
1481 
1482   if (Subtarget->hasNEON()) {
1483     // vmin and vmax aren't available in a scalar form, so we can use
1484     // a NEON instruction with an undef lane instead.  This has a performance
1485     // penalty on some cores, so we don't do this unless we have been
1486     // asked to by the core tuning model.
1487     if (Subtarget->useNEONForSinglePrecisionFP()) {
1488       setOperationAction(ISD::FMINIMUM, MVT::f32, Legal);
1489       setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal);
1490       setOperationAction(ISD::FMINIMUM, MVT::f16, Legal);
1491       setOperationAction(ISD::FMAXIMUM, MVT::f16, Legal);
1492     }
1493     setOperationAction(ISD::FMINIMUM, MVT::v2f32, Legal);
1494     setOperationAction(ISD::FMAXIMUM, MVT::v2f32, Legal);
1495     setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal);
1496     setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal);
1497 
1498     if (Subtarget->hasFullFP16()) {
1499       setOperationAction(ISD::FMINNUM, MVT::v4f16, Legal);
1500       setOperationAction(ISD::FMAXNUM, MVT::v4f16, Legal);
1501       setOperationAction(ISD::FMINNUM, MVT::v8f16, Legal);
1502       setOperationAction(ISD::FMAXNUM, MVT::v8f16, Legal);
1503 
1504       setOperationAction(ISD::FMINIMUM, MVT::v4f16, Legal);
1505       setOperationAction(ISD::FMAXIMUM, MVT::v4f16, Legal);
1506       setOperationAction(ISD::FMINIMUM, MVT::v8f16, Legal);
1507       setOperationAction(ISD::FMAXIMUM, MVT::v8f16, Legal);
1508     }
1509   }
1510 
1511   // We have target-specific dag combine patterns for the following nodes:
1512   // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
1513   setTargetDAGCombine(ISD::ADD);
1514   setTargetDAGCombine(ISD::SUB);
1515   setTargetDAGCombine(ISD::MUL);
1516   setTargetDAGCombine(ISD::AND);
1517   setTargetDAGCombine(ISD::OR);
1518   setTargetDAGCombine(ISD::XOR);
1519 
1520   if (Subtarget->hasMVEIntegerOps())
1521     setTargetDAGCombine(ISD::VSELECT);
1522 
1523   if (Subtarget->hasV6Ops())
1524     setTargetDAGCombine(ISD::SRL);
1525   if (Subtarget->isThumb1Only())
1526     setTargetDAGCombine(ISD::SHL);
1527 
1528   setStackPointerRegisterToSaveRestore(ARM::SP);
1529 
1530   if (Subtarget->useSoftFloat() || Subtarget->isThumb1Only() ||
1531       !Subtarget->hasVFP2Base() || Subtarget->hasMinSize())
1532     setSchedulingPreference(Sched::RegPressure);
1533   else
1534     setSchedulingPreference(Sched::Hybrid);
1535 
1536   //// temporary - rewrite interface to use type
1537   MaxStoresPerMemset = 8;
1538   MaxStoresPerMemsetOptSize = 4;
1539   MaxStoresPerMemcpy = 4; // For @llvm.memcpy -> sequence of stores
1540   MaxStoresPerMemcpyOptSize = 2;
1541   MaxStoresPerMemmove = 4; // For @llvm.memmove -> sequence of stores
1542   MaxStoresPerMemmoveOptSize = 2;
1543 
1544   // On ARM arguments smaller than 4 bytes are extended, so all arguments
1545   // are at least 4 bytes aligned.
1546   setMinStackArgumentAlignment(Align(4));
1547 
1548   // Prefer likely predicted branches to selects on out-of-order cores.
1549   PredictableSelectIsExpensive = Subtarget->getSchedModel().isOutOfOrder();
1550 
1551   setPrefLoopAlignment(Align(1ULL << Subtarget->getPrefLoopLogAlignment()));
1552 
1553   setMinFunctionAlignment(Subtarget->isThumb() ? Align(2) : Align(4));
1554 
1555   if (Subtarget->isThumb() || Subtarget->isThumb2())
1556     setTargetDAGCombine(ISD::ABS);
1557 }
1558 
useSoftFloat() const1559 bool ARMTargetLowering::useSoftFloat() const {
1560   return Subtarget->useSoftFloat();
1561 }
1562 
1563 // FIXME: It might make sense to define the representative register class as the
1564 // nearest super-register that has a non-null superset. For example, DPR_VFP2 is
1565 // a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
1566 // SPR's representative would be DPR_VFP2. This should work well if register
1567 // pressure tracking were modified such that a register use would increment the
1568 // pressure of the register class's representative and all of it's super
1569 // classes' representatives transitively. We have not implemented this because
1570 // of the difficulty prior to coalescing of modeling operand register classes
1571 // due to the common occurrence of cross class copies and subregister insertions
1572 // and extractions.
1573 std::pair<const TargetRegisterClass *, uint8_t>
findRepresentativeClass(const TargetRegisterInfo * TRI,MVT VT) const1574 ARMTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
1575                                            MVT VT) const {
1576   const TargetRegisterClass *RRC = nullptr;
1577   uint8_t Cost = 1;
1578   switch (VT.SimpleTy) {
1579   default:
1580     return TargetLowering::findRepresentativeClass(TRI, VT);
1581   // Use DPR as representative register class for all floating point
1582   // and vector types. Since there are 32 SPR registers and 32 DPR registers so
1583   // the cost is 1 for both f32 and f64.
1584   case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
1585   case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
1586     RRC = &ARM::DPRRegClass;
1587     // When NEON is used for SP, only half of the register file is available
1588     // because operations that define both SP and DP results will be constrained
1589     // to the VFP2 class (D0-D15). We currently model this constraint prior to
1590     // coalescing by double-counting the SP regs. See the FIXME above.
1591     if (Subtarget->useNEONForSinglePrecisionFP())
1592       Cost = 2;
1593     break;
1594   case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1595   case MVT::v4f32: case MVT::v2f64:
1596     RRC = &ARM::DPRRegClass;
1597     Cost = 2;
1598     break;
1599   case MVT::v4i64:
1600     RRC = &ARM::DPRRegClass;
1601     Cost = 4;
1602     break;
1603   case MVT::v8i64:
1604     RRC = &ARM::DPRRegClass;
1605     Cost = 8;
1606     break;
1607   }
1608   return std::make_pair(RRC, Cost);
1609 }
1610 
getTargetNodeName(unsigned Opcode) const1611 const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
1612 #define MAKE_CASE(V)                                                           \
1613   case V:                                                                      \
1614     return #V;
1615   switch ((ARMISD::NodeType)Opcode) {
1616   case ARMISD::FIRST_NUMBER:
1617     break;
1618     MAKE_CASE(ARMISD::Wrapper)
1619     MAKE_CASE(ARMISD::WrapperPIC)
1620     MAKE_CASE(ARMISD::WrapperJT)
1621     MAKE_CASE(ARMISD::COPY_STRUCT_BYVAL)
1622     MAKE_CASE(ARMISD::CALL)
1623     MAKE_CASE(ARMISD::CALL_PRED)
1624     MAKE_CASE(ARMISD::CALL_NOLINK)
1625     MAKE_CASE(ARMISD::tSECALL)
1626     MAKE_CASE(ARMISD::BRCOND)
1627     MAKE_CASE(ARMISD::BR_JT)
1628     MAKE_CASE(ARMISD::BR2_JT)
1629     MAKE_CASE(ARMISD::RET_FLAG)
1630     MAKE_CASE(ARMISD::SERET_FLAG)
1631     MAKE_CASE(ARMISD::INTRET_FLAG)
1632     MAKE_CASE(ARMISD::PIC_ADD)
1633     MAKE_CASE(ARMISD::CMP)
1634     MAKE_CASE(ARMISD::CMN)
1635     MAKE_CASE(ARMISD::CMPZ)
1636     MAKE_CASE(ARMISD::CMPFP)
1637     MAKE_CASE(ARMISD::CMPFPE)
1638     MAKE_CASE(ARMISD::CMPFPw0)
1639     MAKE_CASE(ARMISD::CMPFPEw0)
1640     MAKE_CASE(ARMISD::BCC_i64)
1641     MAKE_CASE(ARMISD::FMSTAT)
1642     MAKE_CASE(ARMISD::CMOV)
1643     MAKE_CASE(ARMISD::SUBS)
1644     MAKE_CASE(ARMISD::SSAT)
1645     MAKE_CASE(ARMISD::USAT)
1646     MAKE_CASE(ARMISD::ASRL)
1647     MAKE_CASE(ARMISD::LSRL)
1648     MAKE_CASE(ARMISD::LSLL)
1649     MAKE_CASE(ARMISD::SRL_FLAG)
1650     MAKE_CASE(ARMISD::SRA_FLAG)
1651     MAKE_CASE(ARMISD::RRX)
1652     MAKE_CASE(ARMISD::ADDC)
1653     MAKE_CASE(ARMISD::ADDE)
1654     MAKE_CASE(ARMISD::SUBC)
1655     MAKE_CASE(ARMISD::SUBE)
1656     MAKE_CASE(ARMISD::LSLS)
1657     MAKE_CASE(ARMISD::VMOVRRD)
1658     MAKE_CASE(ARMISD::VMOVDRR)
1659     MAKE_CASE(ARMISD::VMOVhr)
1660     MAKE_CASE(ARMISD::VMOVrh)
1661     MAKE_CASE(ARMISD::VMOVSR)
1662     MAKE_CASE(ARMISD::EH_SJLJ_SETJMP)
1663     MAKE_CASE(ARMISD::EH_SJLJ_LONGJMP)
1664     MAKE_CASE(ARMISD::EH_SJLJ_SETUP_DISPATCH)
1665     MAKE_CASE(ARMISD::TC_RETURN)
1666     MAKE_CASE(ARMISD::THREAD_POINTER)
1667     MAKE_CASE(ARMISD::DYN_ALLOC)
1668     MAKE_CASE(ARMISD::MEMBARRIER_MCR)
1669     MAKE_CASE(ARMISD::PRELOAD)
1670     MAKE_CASE(ARMISD::LDRD)
1671     MAKE_CASE(ARMISD::STRD)
1672     MAKE_CASE(ARMISD::WIN__CHKSTK)
1673     MAKE_CASE(ARMISD::WIN__DBZCHK)
1674     MAKE_CASE(ARMISD::PREDICATE_CAST)
1675     MAKE_CASE(ARMISD::VECTOR_REG_CAST)
1676     MAKE_CASE(ARMISD::VCMP)
1677     MAKE_CASE(ARMISD::VCMPZ)
1678     MAKE_CASE(ARMISD::VTST)
1679     MAKE_CASE(ARMISD::VSHLs)
1680     MAKE_CASE(ARMISD::VSHLu)
1681     MAKE_CASE(ARMISD::VSHLIMM)
1682     MAKE_CASE(ARMISD::VSHRsIMM)
1683     MAKE_CASE(ARMISD::VSHRuIMM)
1684     MAKE_CASE(ARMISD::VRSHRsIMM)
1685     MAKE_CASE(ARMISD::VRSHRuIMM)
1686     MAKE_CASE(ARMISD::VRSHRNIMM)
1687     MAKE_CASE(ARMISD::VQSHLsIMM)
1688     MAKE_CASE(ARMISD::VQSHLuIMM)
1689     MAKE_CASE(ARMISD::VQSHLsuIMM)
1690     MAKE_CASE(ARMISD::VQSHRNsIMM)
1691     MAKE_CASE(ARMISD::VQSHRNuIMM)
1692     MAKE_CASE(ARMISD::VQSHRNsuIMM)
1693     MAKE_CASE(ARMISD::VQRSHRNsIMM)
1694     MAKE_CASE(ARMISD::VQRSHRNuIMM)
1695     MAKE_CASE(ARMISD::VQRSHRNsuIMM)
1696     MAKE_CASE(ARMISD::VSLIIMM)
1697     MAKE_CASE(ARMISD::VSRIIMM)
1698     MAKE_CASE(ARMISD::VGETLANEu)
1699     MAKE_CASE(ARMISD::VGETLANEs)
1700     MAKE_CASE(ARMISD::VMOVIMM)
1701     MAKE_CASE(ARMISD::VMVNIMM)
1702     MAKE_CASE(ARMISD::VMOVFPIMM)
1703     MAKE_CASE(ARMISD::VDUP)
1704     MAKE_CASE(ARMISD::VDUPLANE)
1705     MAKE_CASE(ARMISD::VEXT)
1706     MAKE_CASE(ARMISD::VREV64)
1707     MAKE_CASE(ARMISD::VREV32)
1708     MAKE_CASE(ARMISD::VREV16)
1709     MAKE_CASE(ARMISD::VZIP)
1710     MAKE_CASE(ARMISD::VUZP)
1711     MAKE_CASE(ARMISD::VTRN)
1712     MAKE_CASE(ARMISD::VTBL1)
1713     MAKE_CASE(ARMISD::VTBL2)
1714     MAKE_CASE(ARMISD::VMOVN)
1715     MAKE_CASE(ARMISD::VQMOVNs)
1716     MAKE_CASE(ARMISD::VQMOVNu)
1717     MAKE_CASE(ARMISD::VCVTN)
1718     MAKE_CASE(ARMISD::VCVTL)
1719     MAKE_CASE(ARMISD::VIDUP)
1720     MAKE_CASE(ARMISD::VMULLs)
1721     MAKE_CASE(ARMISD::VMULLu)
1722     MAKE_CASE(ARMISD::VQDMULH)
1723     MAKE_CASE(ARMISD::VADDVs)
1724     MAKE_CASE(ARMISD::VADDVu)
1725     MAKE_CASE(ARMISD::VADDVps)
1726     MAKE_CASE(ARMISD::VADDVpu)
1727     MAKE_CASE(ARMISD::VADDLVs)
1728     MAKE_CASE(ARMISD::VADDLVu)
1729     MAKE_CASE(ARMISD::VADDLVAs)
1730     MAKE_CASE(ARMISD::VADDLVAu)
1731     MAKE_CASE(ARMISD::VADDLVps)
1732     MAKE_CASE(ARMISD::VADDLVpu)
1733     MAKE_CASE(ARMISD::VADDLVAps)
1734     MAKE_CASE(ARMISD::VADDLVApu)
1735     MAKE_CASE(ARMISD::VMLAVs)
1736     MAKE_CASE(ARMISD::VMLAVu)
1737     MAKE_CASE(ARMISD::VMLAVps)
1738     MAKE_CASE(ARMISD::VMLAVpu)
1739     MAKE_CASE(ARMISD::VMLALVs)
1740     MAKE_CASE(ARMISD::VMLALVu)
1741     MAKE_CASE(ARMISD::VMLALVps)
1742     MAKE_CASE(ARMISD::VMLALVpu)
1743     MAKE_CASE(ARMISD::VMLALVAs)
1744     MAKE_CASE(ARMISD::VMLALVAu)
1745     MAKE_CASE(ARMISD::VMLALVAps)
1746     MAKE_CASE(ARMISD::VMLALVApu)
1747     MAKE_CASE(ARMISD::VMINVu)
1748     MAKE_CASE(ARMISD::VMINVs)
1749     MAKE_CASE(ARMISD::VMAXVu)
1750     MAKE_CASE(ARMISD::VMAXVs)
1751     MAKE_CASE(ARMISD::UMAAL)
1752     MAKE_CASE(ARMISD::UMLAL)
1753     MAKE_CASE(ARMISD::SMLAL)
1754     MAKE_CASE(ARMISD::SMLALBB)
1755     MAKE_CASE(ARMISD::SMLALBT)
1756     MAKE_CASE(ARMISD::SMLALTB)
1757     MAKE_CASE(ARMISD::SMLALTT)
1758     MAKE_CASE(ARMISD::SMULWB)
1759     MAKE_CASE(ARMISD::SMULWT)
1760     MAKE_CASE(ARMISD::SMLALD)
1761     MAKE_CASE(ARMISD::SMLALDX)
1762     MAKE_CASE(ARMISD::SMLSLD)
1763     MAKE_CASE(ARMISD::SMLSLDX)
1764     MAKE_CASE(ARMISD::SMMLAR)
1765     MAKE_CASE(ARMISD::SMMLSR)
1766     MAKE_CASE(ARMISD::QADD16b)
1767     MAKE_CASE(ARMISD::QSUB16b)
1768     MAKE_CASE(ARMISD::QADD8b)
1769     MAKE_CASE(ARMISD::QSUB8b)
1770     MAKE_CASE(ARMISD::BUILD_VECTOR)
1771     MAKE_CASE(ARMISD::BFI)
1772     MAKE_CASE(ARMISD::VORRIMM)
1773     MAKE_CASE(ARMISD::VBICIMM)
1774     MAKE_CASE(ARMISD::VBSP)
1775     MAKE_CASE(ARMISD::MEMCPY)
1776     MAKE_CASE(ARMISD::VLD1DUP)
1777     MAKE_CASE(ARMISD::VLD2DUP)
1778     MAKE_CASE(ARMISD::VLD3DUP)
1779     MAKE_CASE(ARMISD::VLD4DUP)
1780     MAKE_CASE(ARMISD::VLD1_UPD)
1781     MAKE_CASE(ARMISD::VLD2_UPD)
1782     MAKE_CASE(ARMISD::VLD3_UPD)
1783     MAKE_CASE(ARMISD::VLD4_UPD)
1784     MAKE_CASE(ARMISD::VLD2LN_UPD)
1785     MAKE_CASE(ARMISD::VLD3LN_UPD)
1786     MAKE_CASE(ARMISD::VLD4LN_UPD)
1787     MAKE_CASE(ARMISD::VLD1DUP_UPD)
1788     MAKE_CASE(ARMISD::VLD2DUP_UPD)
1789     MAKE_CASE(ARMISD::VLD3DUP_UPD)
1790     MAKE_CASE(ARMISD::VLD4DUP_UPD)
1791     MAKE_CASE(ARMISD::VST1_UPD)
1792     MAKE_CASE(ARMISD::VST2_UPD)
1793     MAKE_CASE(ARMISD::VST3_UPD)
1794     MAKE_CASE(ARMISD::VST4_UPD)
1795     MAKE_CASE(ARMISD::VST1x2_UPD)
1796     MAKE_CASE(ARMISD::VST1x3_UPD)
1797     MAKE_CASE(ARMISD::VST1x4_UPD)
1798     MAKE_CASE(ARMISD::VST2LN_UPD)
1799     MAKE_CASE(ARMISD::VST3LN_UPD)
1800     MAKE_CASE(ARMISD::VST4LN_UPD)
1801     MAKE_CASE(ARMISD::WLS)
1802     MAKE_CASE(ARMISD::WLSSETUP)
1803     MAKE_CASE(ARMISD::LE)
1804     MAKE_CASE(ARMISD::LOOP_DEC)
1805     MAKE_CASE(ARMISD::CSINV)
1806     MAKE_CASE(ARMISD::CSNEG)
1807     MAKE_CASE(ARMISD::CSINC)
1808     MAKE_CASE(ARMISD::MEMCPYLOOP)
1809     MAKE_CASE(ARMISD::MEMSETLOOP)
1810 #undef MAKE_CASE
1811   }
1812   return nullptr;
1813 }
1814 
getSetCCResultType(const DataLayout & DL,LLVMContext &,EVT VT) const1815 EVT ARMTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1816                                           EVT VT) const {
1817   if (!VT.isVector())
1818     return getPointerTy(DL);
1819 
1820   // MVE has a predicate register.
1821   if (Subtarget->hasMVEIntegerOps() &&
1822       (VT == MVT::v4i32 || VT == MVT::v8i16 || VT == MVT::v16i8))
1823     return MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1824   return VT.changeVectorElementTypeToInteger();
1825 }
1826 
1827 /// getRegClassFor - Return the register class that should be used for the
1828 /// specified value type.
1829 const TargetRegisterClass *
getRegClassFor(MVT VT,bool isDivergent) const1830 ARMTargetLowering::getRegClassFor(MVT VT, bool isDivergent) const {
1831   (void)isDivergent;
1832   // Map v4i64 to QQ registers but do not make the type legal. Similarly map
1833   // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
1834   // load / store 4 to 8 consecutive NEON D registers, or 2 to 4 consecutive
1835   // MVE Q registers.
1836   if (Subtarget->hasNEON() || Subtarget->hasMVEIntegerOps()) {
1837     if (VT == MVT::v4i64)
1838       return &ARM::QQPRRegClass;
1839     if (VT == MVT::v8i64)
1840       return &ARM::QQQQPRRegClass;
1841   }
1842   return TargetLowering::getRegClassFor(VT);
1843 }
1844 
1845 // memcpy, and other memory intrinsics, typically tries to use LDM/STM if the
1846 // source/dest is aligned and the copy size is large enough. We therefore want
1847 // to align such objects passed to memory intrinsics.
shouldAlignPointerArgs(CallInst * CI,unsigned & MinSize,unsigned & PrefAlign) const1848 bool ARMTargetLowering::shouldAlignPointerArgs(CallInst *CI, unsigned &MinSize,
1849                                                unsigned &PrefAlign) const {
1850   if (!isa<MemIntrinsic>(CI))
1851     return false;
1852   MinSize = 8;
1853   // On ARM11 onwards (excluding M class) 8-byte aligned LDM is typically 1
1854   // cycle faster than 4-byte aligned LDM.
1855   PrefAlign = (Subtarget->hasV6Ops() && !Subtarget->isMClass() ? 8 : 4);
1856   return true;
1857 }
1858 
1859 // Create a fast isel object.
1860 FastISel *
createFastISel(FunctionLoweringInfo & funcInfo,const TargetLibraryInfo * libInfo) const1861 ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
1862                                   const TargetLibraryInfo *libInfo) const {
1863   return ARM::createFastISel(funcInfo, libInfo);
1864 }
1865 
getSchedulingPreference(SDNode * N) const1866 Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
1867   unsigned NumVals = N->getNumValues();
1868   if (!NumVals)
1869     return Sched::RegPressure;
1870 
1871   for (unsigned i = 0; i != NumVals; ++i) {
1872     EVT VT = N->getValueType(i);
1873     if (VT == MVT::Glue || VT == MVT::Other)
1874       continue;
1875     if (VT.isFloatingPoint() || VT.isVector())
1876       return Sched::ILP;
1877   }
1878 
1879   if (!N->isMachineOpcode())
1880     return Sched::RegPressure;
1881 
1882   // Load are scheduled for latency even if there instruction itinerary
1883   // is not available.
1884   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
1885   const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1886 
1887   if (MCID.getNumDefs() == 0)
1888     return Sched::RegPressure;
1889   if (!Itins->isEmpty() &&
1890       Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2)
1891     return Sched::ILP;
1892 
1893   return Sched::RegPressure;
1894 }
1895 
1896 //===----------------------------------------------------------------------===//
1897 // Lowering Code
1898 //===----------------------------------------------------------------------===//
1899 
isSRL16(const SDValue & Op)1900 static bool isSRL16(const SDValue &Op) {
1901   if (Op.getOpcode() != ISD::SRL)
1902     return false;
1903   if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
1904     return Const->getZExtValue() == 16;
1905   return false;
1906 }
1907 
isSRA16(const SDValue & Op)1908 static bool isSRA16(const SDValue &Op) {
1909   if (Op.getOpcode() != ISD::SRA)
1910     return false;
1911   if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
1912     return Const->getZExtValue() == 16;
1913   return false;
1914 }
1915 
isSHL16(const SDValue & Op)1916 static bool isSHL16(const SDValue &Op) {
1917   if (Op.getOpcode() != ISD::SHL)
1918     return false;
1919   if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
1920     return Const->getZExtValue() == 16;
1921   return false;
1922 }
1923 
1924 // Check for a signed 16-bit value. We special case SRA because it makes it
1925 // more simple when also looking for SRAs that aren't sign extending a
1926 // smaller value. Without the check, we'd need to take extra care with
1927 // checking order for some operations.
isS16(const SDValue & Op,SelectionDAG & DAG)1928 static bool isS16(const SDValue &Op, SelectionDAG &DAG) {
1929   if (isSRA16(Op))
1930     return isSHL16(Op.getOperand(0));
1931   return DAG.ComputeNumSignBits(Op) == 17;
1932 }
1933 
1934 /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
IntCCToARMCC(ISD::CondCode CC)1935 static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
1936   switch (CC) {
1937   default: llvm_unreachable("Unknown condition code!");
1938   case ISD::SETNE:  return ARMCC::NE;
1939   case ISD::SETEQ:  return ARMCC::EQ;
1940   case ISD::SETGT:  return ARMCC::GT;
1941   case ISD::SETGE:  return ARMCC::GE;
1942   case ISD::SETLT:  return ARMCC::LT;
1943   case ISD::SETLE:  return ARMCC::LE;
1944   case ISD::SETUGT: return ARMCC::HI;
1945   case ISD::SETUGE: return ARMCC::HS;
1946   case ISD::SETULT: return ARMCC::LO;
1947   case ISD::SETULE: return ARMCC::LS;
1948   }
1949 }
1950 
1951 /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
FPCCToARMCC(ISD::CondCode CC,ARMCC::CondCodes & CondCode,ARMCC::CondCodes & CondCode2)1952 static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
1953                         ARMCC::CondCodes &CondCode2) {
1954   CondCode2 = ARMCC::AL;
1955   switch (CC) {
1956   default: llvm_unreachable("Unknown FP condition!");
1957   case ISD::SETEQ:
1958   case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
1959   case ISD::SETGT:
1960   case ISD::SETOGT: CondCode = ARMCC::GT; break;
1961   case ISD::SETGE:
1962   case ISD::SETOGE: CondCode = ARMCC::GE; break;
1963   case ISD::SETOLT: CondCode = ARMCC::MI; break;
1964   case ISD::SETOLE: CondCode = ARMCC::LS; break;
1965   case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
1966   case ISD::SETO:   CondCode = ARMCC::VC; break;
1967   case ISD::SETUO:  CondCode = ARMCC::VS; break;
1968   case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
1969   case ISD::SETUGT: CondCode = ARMCC::HI; break;
1970   case ISD::SETUGE: CondCode = ARMCC::PL; break;
1971   case ISD::SETLT:
1972   case ISD::SETULT: CondCode = ARMCC::LT; break;
1973   case ISD::SETLE:
1974   case ISD::SETULE: CondCode = ARMCC::LE; break;
1975   case ISD::SETNE:
1976   case ISD::SETUNE: CondCode = ARMCC::NE; break;
1977   }
1978 }
1979 
1980 //===----------------------------------------------------------------------===//
1981 //                      Calling Convention Implementation
1982 //===----------------------------------------------------------------------===//
1983 
1984 /// getEffectiveCallingConv - Get the effective calling convention, taking into
1985 /// account presence of floating point hardware and calling convention
1986 /// limitations, such as support for variadic functions.
1987 CallingConv::ID
getEffectiveCallingConv(CallingConv::ID CC,bool isVarArg) const1988 ARMTargetLowering::getEffectiveCallingConv(CallingConv::ID CC,
1989                                            bool isVarArg) const {
1990   switch (CC) {
1991   default:
1992     report_fatal_error("Unsupported calling convention");
1993   case CallingConv::ARM_AAPCS:
1994   case CallingConv::ARM_APCS:
1995   case CallingConv::GHC:
1996   case CallingConv::CFGuard_Check:
1997     return CC;
1998   case CallingConv::PreserveMost:
1999     return CallingConv::PreserveMost;
2000   case CallingConv::ARM_AAPCS_VFP:
2001   case CallingConv::Swift:
2002   case CallingConv::SwiftTail:
2003     return isVarArg ? CallingConv::ARM_AAPCS : CallingConv::ARM_AAPCS_VFP;
2004   case CallingConv::C:
2005     if (!Subtarget->isAAPCS_ABI())
2006       return CallingConv::ARM_APCS;
2007     else if (Subtarget->hasVFP2Base() && !Subtarget->isThumb1Only() &&
2008              getTargetMachine().Options.FloatABIType == FloatABI::Hard &&
2009              !isVarArg)
2010       return CallingConv::ARM_AAPCS_VFP;
2011     else
2012       return CallingConv::ARM_AAPCS;
2013   case CallingConv::Fast:
2014   case CallingConv::CXX_FAST_TLS:
2015     if (!Subtarget->isAAPCS_ABI()) {
2016       if (Subtarget->hasVFP2Base() && !Subtarget->isThumb1Only() && !isVarArg)
2017         return CallingConv::Fast;
2018       return CallingConv::ARM_APCS;
2019     } else if (Subtarget->hasVFP2Base() &&
2020                !Subtarget->isThumb1Only() && !isVarArg)
2021       return CallingConv::ARM_AAPCS_VFP;
2022     else
2023       return CallingConv::ARM_AAPCS;
2024   }
2025 }
2026 
CCAssignFnForCall(CallingConv::ID CC,bool isVarArg) const2027 CCAssignFn *ARMTargetLowering::CCAssignFnForCall(CallingConv::ID CC,
2028                                                  bool isVarArg) const {
2029   return CCAssignFnForNode(CC, false, isVarArg);
2030 }
2031 
CCAssignFnForReturn(CallingConv::ID CC,bool isVarArg) const2032 CCAssignFn *ARMTargetLowering::CCAssignFnForReturn(CallingConv::ID CC,
2033                                                    bool isVarArg) const {
2034   return CCAssignFnForNode(CC, true, isVarArg);
2035 }
2036 
2037 /// CCAssignFnForNode - Selects the correct CCAssignFn for the given
2038 /// CallingConvention.
CCAssignFnForNode(CallingConv::ID CC,bool Return,bool isVarArg) const2039 CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
2040                                                  bool Return,
2041                                                  bool isVarArg) const {
2042   switch (getEffectiveCallingConv(CC, isVarArg)) {
2043   default:
2044     report_fatal_error("Unsupported calling convention");
2045   case CallingConv::ARM_APCS:
2046     return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
2047   case CallingConv::ARM_AAPCS:
2048     return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
2049   case CallingConv::ARM_AAPCS_VFP:
2050     return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
2051   case CallingConv::Fast:
2052     return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
2053   case CallingConv::GHC:
2054     return (Return ? RetCC_ARM_APCS : CC_ARM_APCS_GHC);
2055   case CallingConv::PreserveMost:
2056     return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
2057   case CallingConv::CFGuard_Check:
2058     return (Return ? RetCC_ARM_AAPCS : CC_ARM_Win32_CFGuard_Check);
2059   }
2060 }
2061 
MoveToHPR(const SDLoc & dl,SelectionDAG & DAG,MVT LocVT,MVT ValVT,SDValue Val) const2062 SDValue ARMTargetLowering::MoveToHPR(const SDLoc &dl, SelectionDAG &DAG,
2063                                      MVT LocVT, MVT ValVT, SDValue Val) const {
2064   Val = DAG.getNode(ISD::BITCAST, dl, MVT::getIntegerVT(LocVT.getSizeInBits()),
2065                     Val);
2066   if (Subtarget->hasFullFP16()) {
2067     Val = DAG.getNode(ARMISD::VMOVhr, dl, ValVT, Val);
2068   } else {
2069     Val = DAG.getNode(ISD::TRUNCATE, dl,
2070                       MVT::getIntegerVT(ValVT.getSizeInBits()), Val);
2071     Val = DAG.getNode(ISD::BITCAST, dl, ValVT, Val);
2072   }
2073   return Val;
2074 }
2075 
MoveFromHPR(const SDLoc & dl,SelectionDAG & DAG,MVT LocVT,MVT ValVT,SDValue Val) const2076 SDValue ARMTargetLowering::MoveFromHPR(const SDLoc &dl, SelectionDAG &DAG,
2077                                        MVT LocVT, MVT ValVT,
2078                                        SDValue Val) const {
2079   if (Subtarget->hasFullFP16()) {
2080     Val = DAG.getNode(ARMISD::VMOVrh, dl,
2081                       MVT::getIntegerVT(LocVT.getSizeInBits()), Val);
2082   } else {
2083     Val = DAG.getNode(ISD::BITCAST, dl,
2084                       MVT::getIntegerVT(ValVT.getSizeInBits()), Val);
2085     Val = DAG.getNode(ISD::ZERO_EXTEND, dl,
2086                       MVT::getIntegerVT(LocVT.getSizeInBits()), Val);
2087   }
2088   return DAG.getNode(ISD::BITCAST, dl, LocVT, Val);
2089 }
2090 
2091 /// LowerCallResult - Lower the result values of a call into the
2092 /// appropriate copies out of appropriate physical registers.
LowerCallResult(SDValue Chain,SDValue InFlag,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals,bool isThisReturn,SDValue ThisVal) const2093 SDValue ARMTargetLowering::LowerCallResult(
2094     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
2095     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
2096     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
2097     SDValue ThisVal) const {
2098   // Assign locations to each value returned by this call.
2099   SmallVector<CCValAssign, 16> RVLocs;
2100   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2101                  *DAG.getContext());
2102   CCInfo.AnalyzeCallResult(Ins, CCAssignFnForReturn(CallConv, isVarArg));
2103 
2104   // Copy all of the result registers out of their specified physreg.
2105   for (unsigned i = 0; i != RVLocs.size(); ++i) {
2106     CCValAssign VA = RVLocs[i];
2107 
2108     // Pass 'this' value directly from the argument to return value, to avoid
2109     // reg unit interference
2110     if (i == 0 && isThisReturn) {
2111       assert(!VA.needsCustom() && VA.getLocVT() == MVT::i32 &&
2112              "unexpected return calling convention register assignment");
2113       InVals.push_back(ThisVal);
2114       continue;
2115     }
2116 
2117     SDValue Val;
2118     if (VA.needsCustom() &&
2119         (VA.getLocVT() == MVT::f64 || VA.getLocVT() == MVT::v2f64)) {
2120       // Handle f64 or half of a v2f64.
2121       SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
2122                                       InFlag);
2123       Chain = Lo.getValue(1);
2124       InFlag = Lo.getValue(2);
2125       VA = RVLocs[++i]; // skip ahead to next loc
2126       SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
2127                                       InFlag);
2128       Chain = Hi.getValue(1);
2129       InFlag = Hi.getValue(2);
2130       if (!Subtarget->isLittle())
2131         std::swap (Lo, Hi);
2132       Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
2133 
2134       if (VA.getLocVT() == MVT::v2f64) {
2135         SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
2136         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
2137                           DAG.getConstant(0, dl, MVT::i32));
2138 
2139         VA = RVLocs[++i]; // skip ahead to next loc
2140         Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
2141         Chain = Lo.getValue(1);
2142         InFlag = Lo.getValue(2);
2143         VA = RVLocs[++i]; // skip ahead to next loc
2144         Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
2145         Chain = Hi.getValue(1);
2146         InFlag = Hi.getValue(2);
2147         if (!Subtarget->isLittle())
2148           std::swap (Lo, Hi);
2149         Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
2150         Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
2151                           DAG.getConstant(1, dl, MVT::i32));
2152       }
2153     } else {
2154       Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
2155                                InFlag);
2156       Chain = Val.getValue(1);
2157       InFlag = Val.getValue(2);
2158     }
2159 
2160     switch (VA.getLocInfo()) {
2161     default: llvm_unreachable("Unknown loc info!");
2162     case CCValAssign::Full: break;
2163     case CCValAssign::BCvt:
2164       Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
2165       break;
2166     }
2167 
2168     // f16 arguments have their size extended to 4 bytes and passed as if they
2169     // had been copied to the LSBs of a 32-bit register.
2170     // For that, it's passed extended to i32 (soft ABI) or to f32 (hard ABI)
2171     if (VA.needsCustom() &&
2172         (VA.getValVT() == MVT::f16 || VA.getValVT() == MVT::bf16))
2173       Val = MoveToHPR(dl, DAG, VA.getLocVT(), VA.getValVT(), Val);
2174 
2175     InVals.push_back(Val);
2176   }
2177 
2178   return Chain;
2179 }
2180 
2181 /// LowerMemOpCallTo - Store the argument to the stack.
LowerMemOpCallTo(SDValue Chain,SDValue StackPtr,SDValue Arg,const SDLoc & dl,SelectionDAG & DAG,const CCValAssign & VA,ISD::ArgFlagsTy Flags) const2182 SDValue ARMTargetLowering::LowerMemOpCallTo(SDValue Chain, SDValue StackPtr,
2183                                             SDValue Arg, const SDLoc &dl,
2184                                             SelectionDAG &DAG,
2185                                             const CCValAssign &VA,
2186                                             ISD::ArgFlagsTy Flags) const {
2187   unsigned LocMemOffset = VA.getLocMemOffset();
2188   SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
2189   PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
2190                        StackPtr, PtrOff);
2191   return DAG.getStore(
2192       Chain, dl, Arg, PtrOff,
2193       MachinePointerInfo::getStack(DAG.getMachineFunction(), LocMemOffset));
2194 }
2195 
PassF64ArgInRegs(const SDLoc & dl,SelectionDAG & DAG,SDValue Chain,SDValue & Arg,RegsToPassVector & RegsToPass,CCValAssign & VA,CCValAssign & NextVA,SDValue & StackPtr,SmallVectorImpl<SDValue> & MemOpChains,ISD::ArgFlagsTy Flags) const2196 void ARMTargetLowering::PassF64ArgInRegs(const SDLoc &dl, SelectionDAG &DAG,
2197                                          SDValue Chain, SDValue &Arg,
2198                                          RegsToPassVector &RegsToPass,
2199                                          CCValAssign &VA, CCValAssign &NextVA,
2200                                          SDValue &StackPtr,
2201                                          SmallVectorImpl<SDValue> &MemOpChains,
2202                                          ISD::ArgFlagsTy Flags) const {
2203   SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
2204                               DAG.getVTList(MVT::i32, MVT::i32), Arg);
2205   unsigned id = Subtarget->isLittle() ? 0 : 1;
2206   RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd.getValue(id)));
2207 
2208   if (NextVA.isRegLoc())
2209     RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1-id)));
2210   else {
2211     assert(NextVA.isMemLoc());
2212     if (!StackPtr.getNode())
2213       StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP,
2214                                     getPointerTy(DAG.getDataLayout()));
2215 
2216     MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1-id),
2217                                            dl, DAG, NextVA,
2218                                            Flags));
2219   }
2220 }
2221 
2222 /// LowerCall - Lowering a call into a callseq_start <-
2223 /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
2224 /// nodes.
2225 SDValue
LowerCall(TargetLowering::CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const2226 ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2227                              SmallVectorImpl<SDValue> &InVals) const {
2228   SelectionDAG &DAG                     = CLI.DAG;
2229   SDLoc &dl                             = CLI.DL;
2230   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
2231   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
2232   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
2233   SDValue Chain                         = CLI.Chain;
2234   SDValue Callee                        = CLI.Callee;
2235   bool &isTailCall                      = CLI.IsTailCall;
2236   CallingConv::ID CallConv              = CLI.CallConv;
2237   bool doesNotRet                       = CLI.DoesNotReturn;
2238   bool isVarArg                         = CLI.IsVarArg;
2239 
2240   MachineFunction &MF = DAG.getMachineFunction();
2241   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2242   MachineFunction::CallSiteInfo CSInfo;
2243   bool isStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
2244   bool isThisReturn = false;
2245   bool isCmseNSCall   = false;
2246   bool PreferIndirect = false;
2247 
2248   // Determine whether this is a non-secure function call.
2249   if (CLI.CB && CLI.CB->getAttributes().hasFnAttribute("cmse_nonsecure_call"))
2250     isCmseNSCall = true;
2251 
2252   // Disable tail calls if they're not supported.
2253   if (!Subtarget->supportsTailCall())
2254     isTailCall = false;
2255 
2256   // For both the non-secure calls and the returns from a CMSE entry function,
2257   // the function needs to do some extra work afte r the call, or before the
2258   // return, respectively, thus it cannot end with atail call
2259   if (isCmseNSCall || AFI->isCmseNSEntryFunction())
2260     isTailCall = false;
2261 
2262   if (isa<GlobalAddressSDNode>(Callee)) {
2263     // If we're optimizing for minimum size and the function is called three or
2264     // more times in this block, we can improve codesize by calling indirectly
2265     // as BLXr has a 16-bit encoding.
2266     auto *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
2267     if (CLI.CB) {
2268       auto *BB = CLI.CB->getParent();
2269       PreferIndirect = Subtarget->isThumb() && Subtarget->hasMinSize() &&
2270                        count_if(GV->users(), [&BB](const User *U) {
2271                          return isa<Instruction>(U) &&
2272                                 cast<Instruction>(U)->getParent() == BB;
2273                        }) > 2;
2274     }
2275   }
2276   if (isTailCall) {
2277     // Check if it's really possible to do a tail call.
2278     isTailCall = IsEligibleForTailCallOptimization(
2279         Callee, CallConv, isVarArg, isStructRet,
2280         MF.getFunction().hasStructRetAttr(), Outs, OutVals, Ins, DAG,
2281         PreferIndirect);
2282     if (!isTailCall && CLI.CB && CLI.CB->isMustTailCall())
2283       report_fatal_error("failed to perform tail call elimination on a call "
2284                          "site marked musttail");
2285     // We don't support GuaranteedTailCallOpt for ARM, only automatically
2286     // detected sibcalls.
2287     if (isTailCall)
2288       ++NumTailCalls;
2289   }
2290 
2291   // Analyze operands of the call, assigning locations to each operand.
2292   SmallVector<CCValAssign, 16> ArgLocs;
2293   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2294                  *DAG.getContext());
2295   CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CallConv, isVarArg));
2296 
2297   // Get a count of how many bytes are to be pushed on the stack.
2298   unsigned NumBytes = CCInfo.getNextStackOffset();
2299 
2300   if (isTailCall) {
2301     // For tail calls, memory operands are available in our caller's stack.
2302     NumBytes = 0;
2303   } else {
2304     // Adjust the stack pointer for the new arguments...
2305     // These operations are automatically eliminated by the prolog/epilog pass
2306     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
2307   }
2308 
2309   SDValue StackPtr =
2310       DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy(DAG.getDataLayout()));
2311 
2312   RegsToPassVector RegsToPass;
2313   SmallVector<SDValue, 8> MemOpChains;
2314 
2315   // Walk the register/memloc assignments, inserting copies/loads.  In the case
2316   // of tail call optimization, arguments are handled later.
2317   for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
2318        i != e;
2319        ++i, ++realArgIdx) {
2320     CCValAssign &VA = ArgLocs[i];
2321     SDValue Arg = OutVals[realArgIdx];
2322     ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
2323     bool isByVal = Flags.isByVal();
2324 
2325     // Promote the value if needed.
2326     switch (VA.getLocInfo()) {
2327     default: llvm_unreachable("Unknown loc info!");
2328     case CCValAssign::Full: break;
2329     case CCValAssign::SExt:
2330       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
2331       break;
2332     case CCValAssign::ZExt:
2333       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
2334       break;
2335     case CCValAssign::AExt:
2336       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
2337       break;
2338     case CCValAssign::BCvt:
2339       Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
2340       break;
2341     }
2342 
2343     // f16 arguments have their size extended to 4 bytes and passed as if they
2344     // had been copied to the LSBs of a 32-bit register.
2345     // For that, it's passed extended to i32 (soft ABI) or to f32 (hard ABI)
2346     if (VA.needsCustom() &&
2347         (VA.getValVT() == MVT::f16 || VA.getValVT() == MVT::bf16)) {
2348       Arg = MoveFromHPR(dl, DAG, VA.getLocVT(), VA.getValVT(), Arg);
2349     } else {
2350       // f16 arguments could have been extended prior to argument lowering.
2351       // Mask them arguments if this is a CMSE nonsecure call.
2352       auto ArgVT = Outs[realArgIdx].ArgVT;
2353       if (isCmseNSCall && (ArgVT == MVT::f16)) {
2354         auto LocBits = VA.getLocVT().getSizeInBits();
2355         auto MaskValue = APInt::getLowBitsSet(LocBits, ArgVT.getSizeInBits());
2356         SDValue Mask =
2357             DAG.getConstant(MaskValue, dl, MVT::getIntegerVT(LocBits));
2358         Arg = DAG.getNode(ISD::BITCAST, dl, MVT::getIntegerVT(LocBits), Arg);
2359         Arg = DAG.getNode(ISD::AND, dl, MVT::getIntegerVT(LocBits), Arg, Mask);
2360         Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
2361       }
2362     }
2363 
2364     // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
2365     if (VA.needsCustom() && VA.getLocVT() == MVT::v2f64) {
2366       SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2367                                 DAG.getConstant(0, dl, MVT::i32));
2368       SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2369                                 DAG.getConstant(1, dl, MVT::i32));
2370 
2371       PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass, VA, ArgLocs[++i],
2372                        StackPtr, MemOpChains, Flags);
2373 
2374       VA = ArgLocs[++i]; // skip ahead to next loc
2375       if (VA.isRegLoc()) {
2376         PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass, VA, ArgLocs[++i],
2377                          StackPtr, MemOpChains, Flags);
2378       } else {
2379         assert(VA.isMemLoc());
2380 
2381         MemOpChains.push_back(
2382             LowerMemOpCallTo(Chain, StackPtr, Op1, dl, DAG, VA, Flags));
2383       }
2384     } else if (VA.needsCustom() && VA.getLocVT() == MVT::f64) {
2385       PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
2386                        StackPtr, MemOpChains, Flags);
2387     } else if (VA.isRegLoc()) {
2388       if (realArgIdx == 0 && Flags.isReturned() && !Flags.isSwiftSelf() &&
2389           Outs[0].VT == MVT::i32) {
2390         assert(VA.getLocVT() == MVT::i32 &&
2391                "unexpected calling convention register assignment");
2392         assert(!Ins.empty() && Ins[0].VT == MVT::i32 &&
2393                "unexpected use of 'returned'");
2394         isThisReturn = true;
2395       }
2396       const TargetOptions &Options = DAG.getTarget().Options;
2397       if (Options.EmitCallSiteInfo)
2398         CSInfo.emplace_back(VA.getLocReg(), i);
2399       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2400     } else if (isByVal) {
2401       assert(VA.isMemLoc());
2402       unsigned offset = 0;
2403 
2404       // True if this byval aggregate will be split between registers
2405       // and memory.
2406       unsigned ByValArgsCount = CCInfo.getInRegsParamsCount();
2407       unsigned CurByValIdx = CCInfo.getInRegsParamsProcessed();
2408 
2409       if (CurByValIdx < ByValArgsCount) {
2410 
2411         unsigned RegBegin, RegEnd;
2412         CCInfo.getInRegsParamInfo(CurByValIdx, RegBegin, RegEnd);
2413 
2414         EVT PtrVT =
2415             DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2416         unsigned int i, j;
2417         for (i = 0, j = RegBegin; j < RegEnd; i++, j++) {
2418           SDValue Const = DAG.getConstant(4*i, dl, MVT::i32);
2419           SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
2420           SDValue Load =
2421               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo(),
2422                           DAG.InferPtrAlign(AddArg));
2423           MemOpChains.push_back(Load.getValue(1));
2424           RegsToPass.push_back(std::make_pair(j, Load));
2425         }
2426 
2427         // If parameter size outsides register area, "offset" value
2428         // helps us to calculate stack slot for remained part properly.
2429         offset = RegEnd - RegBegin;
2430 
2431         CCInfo.nextInRegsParam();
2432       }
2433 
2434       if (Flags.getByValSize() > 4*offset) {
2435         auto PtrVT = getPointerTy(DAG.getDataLayout());
2436         unsigned LocMemOffset = VA.getLocMemOffset();
2437         SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
2438         SDValue Dst = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, StkPtrOff);
2439         SDValue SrcOffset = DAG.getIntPtrConstant(4*offset, dl);
2440         SDValue Src = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, SrcOffset);
2441         SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset, dl,
2442                                            MVT::i32);
2443         SDValue AlignNode =
2444             DAG.getConstant(Flags.getNonZeroByValAlign().value(), dl, MVT::i32);
2445 
2446         SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
2447         SDValue Ops[] = { Chain, Dst, Src, SizeNode, AlignNode};
2448         MemOpChains.push_back(DAG.getNode(ARMISD::COPY_STRUCT_BYVAL, dl, VTs,
2449                                           Ops));
2450       }
2451     } else if (!isTailCall) {
2452       assert(VA.isMemLoc());
2453 
2454       MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2455                                              dl, DAG, VA, Flags));
2456     }
2457   }
2458 
2459   if (!MemOpChains.empty())
2460     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
2461 
2462   // Build a sequence of copy-to-reg nodes chained together with token chain
2463   // and flag operands which copy the outgoing args into the appropriate regs.
2464   SDValue InFlag;
2465   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2466     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2467                              RegsToPass[i].second, InFlag);
2468     InFlag = Chain.getValue(1);
2469   }
2470 
2471   // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2472   // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2473   // node so that legalize doesn't hack it.
2474   bool isDirect = false;
2475 
2476   const TargetMachine &TM = getTargetMachine();
2477   const Module *Mod = MF.getFunction().getParent();
2478   const GlobalValue *GV = nullptr;
2479   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2480     GV = G->getGlobal();
2481   bool isStub =
2482       !TM.shouldAssumeDSOLocal(*Mod, GV) && Subtarget->isTargetMachO();
2483 
2484   bool isARMFunc = !Subtarget->isThumb() || (isStub && !Subtarget->isMClass());
2485   bool isLocalARMFunc = false;
2486   auto PtrVt = getPointerTy(DAG.getDataLayout());
2487 
2488   if (Subtarget->genLongCalls()) {
2489     assert((!isPositionIndependent() || Subtarget->isTargetWindows()) &&
2490            "long-calls codegen is not position independent!");
2491     // Handle a global address or an external symbol. If it's not one of
2492     // those, the target's already in a register, so we don't need to do
2493     // anything extra.
2494     if (isa<GlobalAddressSDNode>(Callee)) {
2495       // Create a constant pool entry for the callee address
2496       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2497       ARMConstantPoolValue *CPV =
2498         ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0);
2499 
2500       // Get the address of the callee into a register
2501       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, Align(4));
2502       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2503       Callee = DAG.getLoad(
2504           PtrVt, dl, DAG.getEntryNode(), CPAddr,
2505           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2506     } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
2507       const char *Sym = S->getSymbol();
2508 
2509       // Create a constant pool entry for the callee address
2510       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2511       ARMConstantPoolValue *CPV =
2512         ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
2513                                       ARMPCLabelIndex, 0);
2514       // Get the address of the callee into a register
2515       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, Align(4));
2516       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2517       Callee = DAG.getLoad(
2518           PtrVt, dl, DAG.getEntryNode(), CPAddr,
2519           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2520     }
2521   } else if (isa<GlobalAddressSDNode>(Callee)) {
2522     if (!PreferIndirect) {
2523       isDirect = true;
2524       bool isDef = GV->isStrongDefinitionForLinker();
2525 
2526       // ARM call to a local ARM function is predicable.
2527       isLocalARMFunc = !Subtarget->isThumb() && (isDef || !ARMInterworking);
2528       // tBX takes a register source operand.
2529       if (isStub && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
2530         assert(Subtarget->isTargetMachO() && "WrapperPIC use on non-MachO?");
2531         Callee = DAG.getNode(
2532             ARMISD::WrapperPIC, dl, PtrVt,
2533             DAG.getTargetGlobalAddress(GV, dl, PtrVt, 0, ARMII::MO_NONLAZY));
2534         Callee = DAG.getLoad(
2535             PtrVt, dl, DAG.getEntryNode(), Callee,
2536             MachinePointerInfo::getGOT(DAG.getMachineFunction()), MaybeAlign(),
2537             MachineMemOperand::MODereferenceable |
2538                 MachineMemOperand::MOInvariant);
2539       } else if (Subtarget->isTargetCOFF()) {
2540         assert(Subtarget->isTargetWindows() &&
2541                "Windows is the only supported COFF target");
2542         unsigned TargetFlags = ARMII::MO_NO_FLAG;
2543         if (GV->hasDLLImportStorageClass())
2544           TargetFlags = ARMII::MO_DLLIMPORT;
2545         else if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
2546           TargetFlags = ARMII::MO_COFFSTUB;
2547         Callee = DAG.getTargetGlobalAddress(GV, dl, PtrVt, /*offset=*/0,
2548                                             TargetFlags);
2549         if (TargetFlags & (ARMII::MO_DLLIMPORT | ARMII::MO_COFFSTUB))
2550           Callee =
2551               DAG.getLoad(PtrVt, dl, DAG.getEntryNode(),
2552                           DAG.getNode(ARMISD::Wrapper, dl, PtrVt, Callee),
2553                           MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2554       } else {
2555         Callee = DAG.getTargetGlobalAddress(GV, dl, PtrVt, 0, 0);
2556       }
2557     }
2558   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2559     isDirect = true;
2560     // tBX takes a register source operand.
2561     const char *Sym = S->getSymbol();
2562     if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
2563       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2564       ARMConstantPoolValue *CPV =
2565         ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
2566                                       ARMPCLabelIndex, 4);
2567       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, Align(4));
2568       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2569       Callee = DAG.getLoad(
2570           PtrVt, dl, DAG.getEntryNode(), CPAddr,
2571           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2572       SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
2573       Callee = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVt, Callee, PICLabel);
2574     } else {
2575       Callee = DAG.getTargetExternalSymbol(Sym, PtrVt, 0);
2576     }
2577   }
2578 
2579   if (isCmseNSCall) {
2580     assert(!isARMFunc && !isDirect &&
2581            "Cannot handle call to ARM function or direct call");
2582     if (NumBytes > 0) {
2583       DiagnosticInfoUnsupported Diag(DAG.getMachineFunction().getFunction(),
2584                                      "call to non-secure function would "
2585                                      "require passing arguments on stack",
2586                                      dl.getDebugLoc());
2587       DAG.getContext()->diagnose(Diag);
2588     }
2589     if (isStructRet) {
2590       DiagnosticInfoUnsupported Diag(
2591           DAG.getMachineFunction().getFunction(),
2592           "call to non-secure function would return value through pointer",
2593           dl.getDebugLoc());
2594       DAG.getContext()->diagnose(Diag);
2595     }
2596   }
2597 
2598   // FIXME: handle tail calls differently.
2599   unsigned CallOpc;
2600   if (Subtarget->isThumb()) {
2601     if (isCmseNSCall)
2602       CallOpc = ARMISD::tSECALL;
2603     else if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
2604       CallOpc = ARMISD::CALL_NOLINK;
2605     else
2606       CallOpc = ARMISD::CALL;
2607   } else {
2608     if (!isDirect && !Subtarget->hasV5TOps())
2609       CallOpc = ARMISD::CALL_NOLINK;
2610     else if (doesNotRet && isDirect && Subtarget->hasRetAddrStack() &&
2611              // Emit regular call when code size is the priority
2612              !Subtarget->hasMinSize())
2613       // "mov lr, pc; b _foo" to avoid confusing the RSP
2614       CallOpc = ARMISD::CALL_NOLINK;
2615     else
2616       CallOpc = isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL;
2617   }
2618 
2619   std::vector<SDValue> Ops;
2620   Ops.push_back(Chain);
2621   Ops.push_back(Callee);
2622 
2623   // Add argument registers to the end of the list so that they are known live
2624   // into the call.
2625   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2626     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2627                                   RegsToPass[i].second.getValueType()));
2628 
2629   // Add a register mask operand representing the call-preserved registers.
2630   if (!isTailCall) {
2631     const uint32_t *Mask;
2632     const ARMBaseRegisterInfo *ARI = Subtarget->getRegisterInfo();
2633     if (isThisReturn) {
2634       // For 'this' returns, use the R0-preserving mask if applicable
2635       Mask = ARI->getThisReturnPreservedMask(MF, CallConv);
2636       if (!Mask) {
2637         // Set isThisReturn to false if the calling convention is not one that
2638         // allows 'returned' to be modeled in this way, so LowerCallResult does
2639         // not try to pass 'this' straight through
2640         isThisReturn = false;
2641         Mask = ARI->getCallPreservedMask(MF, CallConv);
2642       }
2643     } else
2644       Mask = ARI->getCallPreservedMask(MF, CallConv);
2645 
2646     assert(Mask && "Missing call preserved mask for calling convention");
2647     Ops.push_back(DAG.getRegisterMask(Mask));
2648   }
2649 
2650   if (InFlag.getNode())
2651     Ops.push_back(InFlag);
2652 
2653   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2654   if (isTailCall) {
2655     MF.getFrameInfo().setHasTailCall();
2656     SDValue Ret = DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, Ops);
2657     DAG.addCallSiteInfo(Ret.getNode(), std::move(CSInfo));
2658     return Ret;
2659   }
2660 
2661   // Returns a chain and a flag for retval copy to use.
2662   Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
2663   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
2664   InFlag = Chain.getValue(1);
2665   DAG.addCallSiteInfo(Chain.getNode(), std::move(CSInfo));
2666 
2667   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
2668                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
2669   if (!Ins.empty())
2670     InFlag = Chain.getValue(1);
2671 
2672   // Handle result values, copying them out of physregs into vregs that we
2673   // return.
2674   return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG,
2675                          InVals, isThisReturn,
2676                          isThisReturn ? OutVals[0] : SDValue());
2677 }
2678 
2679 /// HandleByVal - Every parameter *after* a byval parameter is passed
2680 /// on the stack.  Remember the next parameter register to allocate,
2681 /// and then confiscate the rest of the parameter registers to insure
2682 /// this.
HandleByVal(CCState * State,unsigned & Size,Align Alignment) const2683 void ARMTargetLowering::HandleByVal(CCState *State, unsigned &Size,
2684                                     Align Alignment) const {
2685   // Byval (as with any stack) slots are always at least 4 byte aligned.
2686   Alignment = std::max(Alignment, Align(4));
2687 
2688   unsigned Reg = State->AllocateReg(GPRArgRegs);
2689   if (!Reg)
2690     return;
2691 
2692   unsigned AlignInRegs = Alignment.value() / 4;
2693   unsigned Waste = (ARM::R4 - Reg) % AlignInRegs;
2694   for (unsigned i = 0; i < Waste; ++i)
2695     Reg = State->AllocateReg(GPRArgRegs);
2696 
2697   if (!Reg)
2698     return;
2699 
2700   unsigned Excess = 4 * (ARM::R4 - Reg);
2701 
2702   // Special case when NSAA != SP and parameter size greater than size of
2703   // all remained GPR regs. In that case we can't split parameter, we must
2704   // send it to stack. We also must set NCRN to R4, so waste all
2705   // remained registers.
2706   const unsigned NSAAOffset = State->getNextStackOffset();
2707   if (NSAAOffset != 0 && Size > Excess) {
2708     while (State->AllocateReg(GPRArgRegs))
2709       ;
2710     return;
2711   }
2712 
2713   // First register for byval parameter is the first register that wasn't
2714   // allocated before this method call, so it would be "reg".
2715   // If parameter is small enough to be saved in range [reg, r4), then
2716   // the end (first after last) register would be reg + param-size-in-regs,
2717   // else parameter would be splitted between registers and stack,
2718   // end register would be r4 in this case.
2719   unsigned ByValRegBegin = Reg;
2720   unsigned ByValRegEnd = std::min<unsigned>(Reg + Size / 4, ARM::R4);
2721   State->addInRegsParamInfo(ByValRegBegin, ByValRegEnd);
2722   // Note, first register is allocated in the beginning of function already,
2723   // allocate remained amount of registers we need.
2724   for (unsigned i = Reg + 1; i != ByValRegEnd; ++i)
2725     State->AllocateReg(GPRArgRegs);
2726   // A byval parameter that is split between registers and memory needs its
2727   // size truncated here.
2728   // In the case where the entire structure fits in registers, we set the
2729   // size in memory to zero.
2730   Size = std::max<int>(Size - Excess, 0);
2731 }
2732 
2733 /// MatchingStackOffset - Return true if the given stack call argument is
2734 /// already available in the same position (relatively) of the caller's
2735 /// incoming argument stack.
2736 static
MatchingStackOffset(SDValue Arg,unsigned Offset,ISD::ArgFlagsTy Flags,MachineFrameInfo & MFI,const MachineRegisterInfo * MRI,const TargetInstrInfo * TII)2737 bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2738                          MachineFrameInfo &MFI, const MachineRegisterInfo *MRI,
2739                          const TargetInstrInfo *TII) {
2740   unsigned Bytes = Arg.getValueSizeInBits() / 8;
2741   int FI = std::numeric_limits<int>::max();
2742   if (Arg.getOpcode() == ISD::CopyFromReg) {
2743     unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2744     if (!Register::isVirtualRegister(VR))
2745       return false;
2746     MachineInstr *Def = MRI->getVRegDef(VR);
2747     if (!Def)
2748       return false;
2749     if (!Flags.isByVal()) {
2750       if (!TII->isLoadFromStackSlot(*Def, FI))
2751         return false;
2752     } else {
2753       return false;
2754     }
2755   } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2756     if (Flags.isByVal())
2757       // ByVal argument is passed in as a pointer but it's now being
2758       // dereferenced. e.g.
2759       // define @foo(%struct.X* %A) {
2760       //   tail call @bar(%struct.X* byval %A)
2761       // }
2762       return false;
2763     SDValue Ptr = Ld->getBasePtr();
2764     FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2765     if (!FINode)
2766       return false;
2767     FI = FINode->getIndex();
2768   } else
2769     return false;
2770 
2771   assert(FI != std::numeric_limits<int>::max());
2772   if (!MFI.isFixedObjectIndex(FI))
2773     return false;
2774   return Offset == MFI.getObjectOffset(FI) && Bytes == MFI.getObjectSize(FI);
2775 }
2776 
2777 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
2778 /// for tail call optimization. Targets which want to do tail call
2779 /// optimization should implement this function.
IsEligibleForTailCallOptimization(SDValue Callee,CallingConv::ID CalleeCC,bool isVarArg,bool isCalleeStructRet,bool isCallerStructRet,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SmallVectorImpl<ISD::InputArg> & Ins,SelectionDAG & DAG,const bool isIndirect) const2780 bool ARMTargetLowering::IsEligibleForTailCallOptimization(
2781     SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
2782     bool isCalleeStructRet, bool isCallerStructRet,
2783     const SmallVectorImpl<ISD::OutputArg> &Outs,
2784     const SmallVectorImpl<SDValue> &OutVals,
2785     const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG,
2786     const bool isIndirect) const {
2787   MachineFunction &MF = DAG.getMachineFunction();
2788   const Function &CallerF = MF.getFunction();
2789   CallingConv::ID CallerCC = CallerF.getCallingConv();
2790 
2791   assert(Subtarget->supportsTailCall());
2792 
2793   // Indirect tail calls cannot be optimized for Thumb1 if the args
2794   // to the call take up r0-r3. The reason is that there are no legal registers
2795   // left to hold the pointer to the function to be called.
2796   if (Subtarget->isThumb1Only() && Outs.size() >= 4 &&
2797       (!isa<GlobalAddressSDNode>(Callee.getNode()) || isIndirect))
2798     return false;
2799 
2800   // Look for obvious safe cases to perform tail call optimization that do not
2801   // require ABI changes. This is what gcc calls sibcall.
2802 
2803   // Exception-handling functions need a special set of instructions to indicate
2804   // a return to the hardware. Tail-calling another function would probably
2805   // break this.
2806   if (CallerF.hasFnAttribute("interrupt"))
2807     return false;
2808 
2809   // Also avoid sibcall optimization if either caller or callee uses struct
2810   // return semantics.
2811   if (isCalleeStructRet || isCallerStructRet)
2812     return false;
2813 
2814   // Externally-defined functions with weak linkage should not be
2815   // tail-called on ARM when the OS does not support dynamic
2816   // pre-emption of symbols, as the AAELF spec requires normal calls
2817   // to undefined weak functions to be replaced with a NOP or jump to the
2818   // next instruction. The behaviour of branch instructions in this
2819   // situation (as used for tail calls) is implementation-defined, so we
2820   // cannot rely on the linker replacing the tail call with a return.
2821   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2822     const GlobalValue *GV = G->getGlobal();
2823     const Triple &TT = getTargetMachine().getTargetTriple();
2824     if (GV->hasExternalWeakLinkage() &&
2825         (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
2826       return false;
2827   }
2828 
2829   // Check that the call results are passed in the same way.
2830   LLVMContext &C = *DAG.getContext();
2831   if (!CCState::resultsCompatible(
2832           getEffectiveCallingConv(CalleeCC, isVarArg),
2833           getEffectiveCallingConv(CallerCC, CallerF.isVarArg()), MF, C, Ins,
2834           CCAssignFnForReturn(CalleeCC, isVarArg),
2835           CCAssignFnForReturn(CallerCC, CallerF.isVarArg())))
2836     return false;
2837   // The callee has to preserve all registers the caller needs to preserve.
2838   const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
2839   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
2840   if (CalleeCC != CallerCC) {
2841     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
2842     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
2843       return false;
2844   }
2845 
2846   // If Caller's vararg or byval argument has been split between registers and
2847   // stack, do not perform tail call, since part of the argument is in caller's
2848   // local frame.
2849   const ARMFunctionInfo *AFI_Caller = MF.getInfo<ARMFunctionInfo>();
2850   if (AFI_Caller->getArgRegsSaveSize())
2851     return false;
2852 
2853   // If the callee takes no arguments then go on to check the results of the
2854   // call.
2855   if (!Outs.empty()) {
2856     // Check if stack adjustment is needed. For now, do not do this if any
2857     // argument is passed on the stack.
2858     SmallVector<CCValAssign, 16> ArgLocs;
2859     CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
2860     CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg));
2861     if (CCInfo.getNextStackOffset()) {
2862       // Check if the arguments are already laid out in the right way as
2863       // the caller's fixed stack objects.
2864       MachineFrameInfo &MFI = MF.getFrameInfo();
2865       const MachineRegisterInfo *MRI = &MF.getRegInfo();
2866       const TargetInstrInfo *TII = Subtarget->getInstrInfo();
2867       for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
2868            i != e;
2869            ++i, ++realArgIdx) {
2870         CCValAssign &VA = ArgLocs[i];
2871         EVT RegVT = VA.getLocVT();
2872         SDValue Arg = OutVals[realArgIdx];
2873         ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
2874         if (VA.getLocInfo() == CCValAssign::Indirect)
2875           return false;
2876         if (VA.needsCustom() && (RegVT == MVT::f64 || RegVT == MVT::v2f64)) {
2877           // f64 and vector types are split into multiple registers or
2878           // register/stack-slot combinations.  The types will not match
2879           // the registers; give up on memory f64 refs until we figure
2880           // out what to do about this.
2881           if (!VA.isRegLoc())
2882             return false;
2883           if (!ArgLocs[++i].isRegLoc())
2884             return false;
2885           if (RegVT == MVT::v2f64) {
2886             if (!ArgLocs[++i].isRegLoc())
2887               return false;
2888             if (!ArgLocs[++i].isRegLoc())
2889               return false;
2890           }
2891         } else if (!VA.isRegLoc()) {
2892           if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2893                                    MFI, MRI, TII))
2894             return false;
2895         }
2896       }
2897     }
2898 
2899     const MachineRegisterInfo &MRI = MF.getRegInfo();
2900     if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals))
2901       return false;
2902   }
2903 
2904   return true;
2905 }
2906 
2907 bool
CanLowerReturn(CallingConv::ID CallConv,MachineFunction & MF,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,LLVMContext & Context) const2908 ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
2909                                   MachineFunction &MF, bool isVarArg,
2910                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
2911                                   LLVMContext &Context) const {
2912   SmallVector<CCValAssign, 16> RVLocs;
2913   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
2914   return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
2915 }
2916 
LowerInterruptReturn(SmallVectorImpl<SDValue> & RetOps,const SDLoc & DL,SelectionDAG & DAG)2917 static SDValue LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps,
2918                                     const SDLoc &DL, SelectionDAG &DAG) {
2919   const MachineFunction &MF = DAG.getMachineFunction();
2920   const Function &F = MF.getFunction();
2921 
2922   StringRef IntKind = F.getFnAttribute("interrupt").getValueAsString();
2923 
2924   // See ARM ARM v7 B1.8.3. On exception entry LR is set to a possibly offset
2925   // version of the "preferred return address". These offsets affect the return
2926   // instruction if this is a return from PL1 without hypervisor extensions.
2927   //    IRQ/FIQ: +4     "subs pc, lr, #4"
2928   //    SWI:     0      "subs pc, lr, #0"
2929   //    ABORT:   +4     "subs pc, lr, #4"
2930   //    UNDEF:   +4/+2  "subs pc, lr, #0"
2931   // UNDEF varies depending on where the exception came from ARM or Thumb
2932   // mode. Alongside GCC, we throw our hands up in disgust and pretend it's 0.
2933 
2934   int64_t LROffset;
2935   if (IntKind == "" || IntKind == "IRQ" || IntKind == "FIQ" ||
2936       IntKind == "ABORT")
2937     LROffset = 4;
2938   else if (IntKind == "SWI" || IntKind == "UNDEF")
2939     LROffset = 0;
2940   else
2941     report_fatal_error("Unsupported interrupt attribute. If present, value "
2942                        "must be one of: IRQ, FIQ, SWI, ABORT or UNDEF");
2943 
2944   RetOps.insert(RetOps.begin() + 1,
2945                 DAG.getConstant(LROffset, DL, MVT::i32, false));
2946 
2947   return DAG.getNode(ARMISD::INTRET_FLAG, DL, MVT::Other, RetOps);
2948 }
2949 
2950 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & dl,SelectionDAG & DAG) const2951 ARMTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2952                                bool isVarArg,
2953                                const SmallVectorImpl<ISD::OutputArg> &Outs,
2954                                const SmallVectorImpl<SDValue> &OutVals,
2955                                const SDLoc &dl, SelectionDAG &DAG) const {
2956   // CCValAssign - represent the assignment of the return value to a location.
2957   SmallVector<CCValAssign, 16> RVLocs;
2958 
2959   // CCState - Info about the registers and stack slots.
2960   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2961                  *DAG.getContext());
2962 
2963   // Analyze outgoing return values.
2964   CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
2965 
2966   SDValue Flag;
2967   SmallVector<SDValue, 4> RetOps;
2968   RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
2969   bool isLittleEndian = Subtarget->isLittle();
2970 
2971   MachineFunction &MF = DAG.getMachineFunction();
2972   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2973   AFI->setReturnRegsCount(RVLocs.size());
2974 
2975  // Report error if cmse entry function returns structure through first ptr arg.
2976   if (AFI->isCmseNSEntryFunction() && MF.getFunction().hasStructRetAttr()) {
2977     // Note: using an empty SDLoc(), as the first line of the function is a
2978     // better place to report than the last line.
2979     DiagnosticInfoUnsupported Diag(
2980         DAG.getMachineFunction().getFunction(),
2981         "secure entry function would return value through pointer",
2982         SDLoc().getDebugLoc());
2983     DAG.getContext()->diagnose(Diag);
2984   }
2985 
2986   // Copy the result values into the output registers.
2987   for (unsigned i = 0, realRVLocIdx = 0;
2988        i != RVLocs.size();
2989        ++i, ++realRVLocIdx) {
2990     CCValAssign &VA = RVLocs[i];
2991     assert(VA.isRegLoc() && "Can only return in registers!");
2992 
2993     SDValue Arg = OutVals[realRVLocIdx];
2994     bool ReturnF16 = false;
2995 
2996     if (Subtarget->hasFullFP16() && Subtarget->isTargetHardFloat()) {
2997       // Half-precision return values can be returned like this:
2998       //
2999       // t11 f16 = fadd ...
3000       // t12: i16 = bitcast t11
3001       //   t13: i32 = zero_extend t12
3002       // t14: f32 = bitcast t13  <~~~~~~~ Arg
3003       //
3004       // to avoid code generation for bitcasts, we simply set Arg to the node
3005       // that produces the f16 value, t11 in this case.
3006       //
3007       if (Arg.getValueType() == MVT::f32 && Arg.getOpcode() == ISD::BITCAST) {
3008         SDValue ZE = Arg.getOperand(0);
3009         if (ZE.getOpcode() == ISD::ZERO_EXTEND && ZE.getValueType() == MVT::i32) {
3010           SDValue BC = ZE.getOperand(0);
3011           if (BC.getOpcode() == ISD::BITCAST && BC.getValueType() == MVT::i16) {
3012             Arg = BC.getOperand(0);
3013             ReturnF16 = true;
3014           }
3015         }
3016       }
3017     }
3018 
3019     switch (VA.getLocInfo()) {
3020     default: llvm_unreachable("Unknown loc info!");
3021     case CCValAssign::Full: break;
3022     case CCValAssign::BCvt:
3023       if (!ReturnF16)
3024         Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
3025       break;
3026     }
3027 
3028     // Mask f16 arguments if this is a CMSE nonsecure entry.
3029     auto RetVT = Outs[realRVLocIdx].ArgVT;
3030     if (AFI->isCmseNSEntryFunction() && (RetVT == MVT::f16)) {
3031       if (VA.needsCustom() && VA.getValVT() == MVT::f16) {
3032         Arg = MoveFromHPR(dl, DAG, VA.getLocVT(), VA.getValVT(), Arg);
3033       } else {
3034         auto LocBits = VA.getLocVT().getSizeInBits();
3035         auto MaskValue = APInt::getLowBitsSet(LocBits, RetVT.getSizeInBits());
3036         SDValue Mask =
3037             DAG.getConstant(MaskValue, dl, MVT::getIntegerVT(LocBits));
3038         Arg = DAG.getNode(ISD::BITCAST, dl, MVT::getIntegerVT(LocBits), Arg);
3039         Arg = DAG.getNode(ISD::AND, dl, MVT::getIntegerVT(LocBits), Arg, Mask);
3040         Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
3041       }
3042     }
3043 
3044     if (VA.needsCustom() &&
3045         (VA.getLocVT() == MVT::v2f64 || VA.getLocVT() == MVT::f64)) {
3046       if (VA.getLocVT() == MVT::v2f64) {
3047         // Extract the first half and return it in two registers.
3048         SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
3049                                    DAG.getConstant(0, dl, MVT::i32));
3050         SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
3051                                        DAG.getVTList(MVT::i32, MVT::i32), Half);
3052 
3053         Chain =
3054             DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
3055                              HalfGPRs.getValue(isLittleEndian ? 0 : 1), Flag);
3056         Flag = Chain.getValue(1);
3057         RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
3058         VA = RVLocs[++i]; // skip ahead to next loc
3059         Chain =
3060             DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
3061                              HalfGPRs.getValue(isLittleEndian ? 1 : 0), Flag);
3062         Flag = Chain.getValue(1);
3063         RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
3064         VA = RVLocs[++i]; // skip ahead to next loc
3065 
3066         // Extract the 2nd half and fall through to handle it as an f64 value.
3067         Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
3068                           DAG.getConstant(1, dl, MVT::i32));
3069       }
3070       // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
3071       // available.
3072       SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
3073                                   DAG.getVTList(MVT::i32, MVT::i32), Arg);
3074       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
3075                                fmrrd.getValue(isLittleEndian ? 0 : 1), Flag);
3076       Flag = Chain.getValue(1);
3077       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
3078       VA = RVLocs[++i]; // skip ahead to next loc
3079       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
3080                                fmrrd.getValue(isLittleEndian ? 1 : 0), Flag);
3081     } else
3082       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
3083 
3084     // Guarantee that all emitted copies are
3085     // stuck together, avoiding something bad.
3086     Flag = Chain.getValue(1);
3087     RetOps.push_back(DAG.getRegister(
3088         VA.getLocReg(), ReturnF16 ? Arg.getValueType() : VA.getLocVT()));
3089   }
3090   const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
3091   const MCPhysReg *I =
3092       TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
3093   if (I) {
3094     for (; *I; ++I) {
3095       if (ARM::GPRRegClass.contains(*I))
3096         RetOps.push_back(DAG.getRegister(*I, MVT::i32));
3097       else if (ARM::DPRRegClass.contains(*I))
3098         RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
3099       else
3100         llvm_unreachable("Unexpected register class in CSRsViaCopy!");
3101     }
3102   }
3103 
3104   // Update chain and glue.
3105   RetOps[0] = Chain;
3106   if (Flag.getNode())
3107     RetOps.push_back(Flag);
3108 
3109   // CPUs which aren't M-class use a special sequence to return from
3110   // exceptions (roughly, any instruction setting pc and cpsr simultaneously,
3111   // though we use "subs pc, lr, #N").
3112   //
3113   // M-class CPUs actually use a normal return sequence with a special
3114   // (hardware-provided) value in LR, so the normal code path works.
3115   if (DAG.getMachineFunction().getFunction().hasFnAttribute("interrupt") &&
3116       !Subtarget->isMClass()) {
3117     if (Subtarget->isThumb1Only())
3118       report_fatal_error("interrupt attribute is not supported in Thumb1");
3119     return LowerInterruptReturn(RetOps, dl, DAG);
3120   }
3121 
3122   ARMISD::NodeType RetNode = AFI->isCmseNSEntryFunction() ? ARMISD::SERET_FLAG :
3123                                                             ARMISD::RET_FLAG;
3124   return DAG.getNode(RetNode, dl, MVT::Other, RetOps);
3125 }
3126 
isUsedByReturnOnly(SDNode * N,SDValue & Chain) const3127 bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
3128   if (N->getNumValues() != 1)
3129     return false;
3130   if (!N->hasNUsesOfValue(1, 0))
3131     return false;
3132 
3133   SDValue TCChain = Chain;
3134   SDNode *Copy = *N->use_begin();
3135   if (Copy->getOpcode() == ISD::CopyToReg) {
3136     // If the copy has a glue operand, we conservatively assume it isn't safe to
3137     // perform a tail call.
3138     if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
3139       return false;
3140     TCChain = Copy->getOperand(0);
3141   } else if (Copy->getOpcode() == ARMISD::VMOVRRD) {
3142     SDNode *VMov = Copy;
3143     // f64 returned in a pair of GPRs.
3144     SmallPtrSet<SDNode*, 2> Copies;
3145     for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
3146          UI != UE; ++UI) {
3147       if (UI->getOpcode() != ISD::CopyToReg)
3148         return false;
3149       Copies.insert(*UI);
3150     }
3151     if (Copies.size() > 2)
3152       return false;
3153 
3154     for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
3155          UI != UE; ++UI) {
3156       SDValue UseChain = UI->getOperand(0);
3157       if (Copies.count(UseChain.getNode()))
3158         // Second CopyToReg
3159         Copy = *UI;
3160       else {
3161         // We are at the top of this chain.
3162         // If the copy has a glue operand, we conservatively assume it
3163         // isn't safe to perform a tail call.
3164         if (UI->getOperand(UI->getNumOperands()-1).getValueType() == MVT::Glue)
3165           return false;
3166         // First CopyToReg
3167         TCChain = UseChain;
3168       }
3169     }
3170   } else if (Copy->getOpcode() == ISD::BITCAST) {
3171     // f32 returned in a single GPR.
3172     if (!Copy->hasOneUse())
3173       return false;
3174     Copy = *Copy->use_begin();
3175     if (Copy->getOpcode() != ISD::CopyToReg || !Copy->hasNUsesOfValue(1, 0))
3176       return false;
3177     // If the copy has a glue operand, we conservatively assume it isn't safe to
3178     // perform a tail call.
3179     if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
3180       return false;
3181     TCChain = Copy->getOperand(0);
3182   } else {
3183     return false;
3184   }
3185 
3186   bool HasRet = false;
3187   for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
3188        UI != UE; ++UI) {
3189     if (UI->getOpcode() != ARMISD::RET_FLAG &&
3190         UI->getOpcode() != ARMISD::INTRET_FLAG)
3191       return false;
3192     HasRet = true;
3193   }
3194 
3195   if (!HasRet)
3196     return false;
3197 
3198   Chain = TCChain;
3199   return true;
3200 }
3201 
mayBeEmittedAsTailCall(const CallInst * CI) const3202 bool ARMTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
3203   if (!Subtarget->supportsTailCall())
3204     return false;
3205 
3206   if (!CI->isTailCall())
3207     return false;
3208 
3209   return true;
3210 }
3211 
3212 // Trying to write a 64 bit value so need to split into two 32 bit values first,
3213 // and pass the lower and high parts through.
LowerWRITE_REGISTER(SDValue Op,SelectionDAG & DAG)3214 static SDValue LowerWRITE_REGISTER(SDValue Op, SelectionDAG &DAG) {
3215   SDLoc DL(Op);
3216   SDValue WriteValue = Op->getOperand(2);
3217 
3218   // This function is only supposed to be called for i64 type argument.
3219   assert(WriteValue.getValueType() == MVT::i64
3220           && "LowerWRITE_REGISTER called for non-i64 type argument.");
3221 
3222   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue,
3223                            DAG.getConstant(0, DL, MVT::i32));
3224   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue,
3225                            DAG.getConstant(1, DL, MVT::i32));
3226   SDValue Ops[] = { Op->getOperand(0), Op->getOperand(1), Lo, Hi };
3227   return DAG.getNode(ISD::WRITE_REGISTER, DL, MVT::Other, Ops);
3228 }
3229 
3230 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
3231 // their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
3232 // one of the above mentioned nodes. It has to be wrapped because otherwise
3233 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
3234 // be used to form addressing mode. These wrapped nodes will be selected
3235 // into MOVi.
LowerConstantPool(SDValue Op,SelectionDAG & DAG) const3236 SDValue ARMTargetLowering::LowerConstantPool(SDValue Op,
3237                                              SelectionDAG &DAG) const {
3238   EVT PtrVT = Op.getValueType();
3239   // FIXME there is no actual debug info here
3240   SDLoc dl(Op);
3241   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3242   SDValue Res;
3243 
3244   // When generating execute-only code Constant Pools must be promoted to the
3245   // global data section. It's a bit ugly that we can't share them across basic
3246   // blocks, but this way we guarantee that execute-only behaves correct with
3247   // position-independent addressing modes.
3248   if (Subtarget->genExecuteOnly()) {
3249     auto AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
3250     auto T = const_cast<Type*>(CP->getType());
3251     auto C = const_cast<Constant*>(CP->getConstVal());
3252     auto M = const_cast<Module*>(DAG.getMachineFunction().
3253                                  getFunction().getParent());
3254     auto GV = new GlobalVariable(
3255                     *M, T, /*isConstant=*/true, GlobalVariable::InternalLinkage, C,
3256                     Twine(DAG.getDataLayout().getPrivateGlobalPrefix()) + "CP" +
3257                     Twine(DAG.getMachineFunction().getFunctionNumber()) + "_" +
3258                     Twine(AFI->createPICLabelUId())
3259                   );
3260     SDValue GA = DAG.getTargetGlobalAddress(dyn_cast<GlobalValue>(GV),
3261                                             dl, PtrVT);
3262     return LowerGlobalAddress(GA, DAG);
3263   }
3264 
3265   if (CP->isMachineConstantPoolEntry())
3266     Res =
3267         DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CP->getAlign());
3268   else
3269     Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlign());
3270   return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
3271 }
3272 
getJumpTableEncoding() const3273 unsigned ARMTargetLowering::getJumpTableEncoding() const {
3274   return MachineJumpTableInfo::EK_Inline;
3275 }
3276 
LowerBlockAddress(SDValue Op,SelectionDAG & DAG) const3277 SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
3278                                              SelectionDAG &DAG) const {
3279   MachineFunction &MF = DAG.getMachineFunction();
3280   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3281   unsigned ARMPCLabelIndex = 0;
3282   SDLoc DL(Op);
3283   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3284   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
3285   SDValue CPAddr;
3286   bool IsPositionIndependent = isPositionIndependent() || Subtarget->isROPI();
3287   if (!IsPositionIndependent) {
3288     CPAddr = DAG.getTargetConstantPool(BA, PtrVT, Align(4));
3289   } else {
3290     unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
3291     ARMPCLabelIndex = AFI->createPICLabelUId();
3292     ARMConstantPoolValue *CPV =
3293       ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex,
3294                                       ARMCP::CPBlockAddress, PCAdj);
3295     CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, Align(4));
3296   }
3297   CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
3298   SDValue Result = DAG.getLoad(
3299       PtrVT, DL, DAG.getEntryNode(), CPAddr,
3300       MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3301   if (!IsPositionIndependent)
3302     return Result;
3303   SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, DL, MVT::i32);
3304   return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
3305 }
3306 
3307 /// Convert a TLS address reference into the correct sequence of loads
3308 /// and calls to compute the variable's address for Darwin, and return an
3309 /// SDValue containing the final node.
3310 
3311 /// Darwin only has one TLS scheme which must be capable of dealing with the
3312 /// fully general situation, in the worst case. This means:
3313 ///     + "extern __thread" declaration.
3314 ///     + Defined in a possibly unknown dynamic library.
3315 ///
3316 /// The general system is that each __thread variable has a [3 x i32] descriptor
3317 /// which contains information used by the runtime to calculate the address. The
3318 /// only part of this the compiler needs to know about is the first word, which
3319 /// contains a function pointer that must be called with the address of the
3320 /// entire descriptor in "r0".
3321 ///
3322 /// Since this descriptor may be in a different unit, in general access must
3323 /// proceed along the usual ARM rules. A common sequence to produce is:
3324 ///
3325 ///     movw rT1, :lower16:_var$non_lazy_ptr
3326 ///     movt rT1, :upper16:_var$non_lazy_ptr
3327 ///     ldr r0, [rT1]
3328 ///     ldr rT2, [r0]
3329 ///     blx rT2
3330 ///     [...address now in r0...]
3331 SDValue
LowerGlobalTLSAddressDarwin(SDValue Op,SelectionDAG & DAG) const3332 ARMTargetLowering::LowerGlobalTLSAddressDarwin(SDValue Op,
3333                                                SelectionDAG &DAG) const {
3334   assert(Subtarget->isTargetDarwin() &&
3335          "This function expects a Darwin target");
3336   SDLoc DL(Op);
3337 
3338   // First step is to get the address of the actua global symbol. This is where
3339   // the TLS descriptor lives.
3340   SDValue DescAddr = LowerGlobalAddressDarwin(Op, DAG);
3341 
3342   // The first entry in the descriptor is a function pointer that we must call
3343   // to obtain the address of the variable.
3344   SDValue Chain = DAG.getEntryNode();
3345   SDValue FuncTLVGet = DAG.getLoad(
3346       MVT::i32, DL, Chain, DescAddr,
3347       MachinePointerInfo::getGOT(DAG.getMachineFunction()), Align(4),
3348       MachineMemOperand::MONonTemporal | MachineMemOperand::MODereferenceable |
3349           MachineMemOperand::MOInvariant);
3350   Chain = FuncTLVGet.getValue(1);
3351 
3352   MachineFunction &F = DAG.getMachineFunction();
3353   MachineFrameInfo &MFI = F.getFrameInfo();
3354   MFI.setAdjustsStack(true);
3355 
3356   // TLS calls preserve all registers except those that absolutely must be
3357   // trashed: R0 (it takes an argument), LR (it's a call) and CPSR (let's not be
3358   // silly).
3359   auto TRI =
3360       getTargetMachine().getSubtargetImpl(F.getFunction())->getRegisterInfo();
3361   auto ARI = static_cast<const ARMRegisterInfo *>(TRI);
3362   const uint32_t *Mask = ARI->getTLSCallPreservedMask(DAG.getMachineFunction());
3363 
3364   // Finally, we can make the call. This is just a degenerate version of a
3365   // normal AArch64 call node: r0 takes the address of the descriptor, and
3366   // returns the address of the variable in this thread.
3367   Chain = DAG.getCopyToReg(Chain, DL, ARM::R0, DescAddr, SDValue());
3368   Chain =
3369       DAG.getNode(ARMISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
3370                   Chain, FuncTLVGet, DAG.getRegister(ARM::R0, MVT::i32),
3371                   DAG.getRegisterMask(Mask), Chain.getValue(1));
3372   return DAG.getCopyFromReg(Chain, DL, ARM::R0, MVT::i32, Chain.getValue(1));
3373 }
3374 
3375 SDValue
LowerGlobalTLSAddressWindows(SDValue Op,SelectionDAG & DAG) const3376 ARMTargetLowering::LowerGlobalTLSAddressWindows(SDValue Op,
3377                                                 SelectionDAG &DAG) const {
3378   assert(Subtarget->isTargetWindows() && "Windows specific TLS lowering");
3379 
3380   SDValue Chain = DAG.getEntryNode();
3381   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3382   SDLoc DL(Op);
3383 
3384   // Load the current TEB (thread environment block)
3385   SDValue Ops[] = {Chain,
3386                    DAG.getTargetConstant(Intrinsic::arm_mrc, DL, MVT::i32),
3387                    DAG.getTargetConstant(15, DL, MVT::i32),
3388                    DAG.getTargetConstant(0, DL, MVT::i32),
3389                    DAG.getTargetConstant(13, DL, MVT::i32),
3390                    DAG.getTargetConstant(0, DL, MVT::i32),
3391                    DAG.getTargetConstant(2, DL, MVT::i32)};
3392   SDValue CurrentTEB = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
3393                                    DAG.getVTList(MVT::i32, MVT::Other), Ops);
3394 
3395   SDValue TEB = CurrentTEB.getValue(0);
3396   Chain = CurrentTEB.getValue(1);
3397 
3398   // Load the ThreadLocalStoragePointer from the TEB
3399   // A pointer to the TLS array is located at offset 0x2c from the TEB.
3400   SDValue TLSArray =
3401       DAG.getNode(ISD::ADD, DL, PtrVT, TEB, DAG.getIntPtrConstant(0x2c, DL));
3402   TLSArray = DAG.getLoad(PtrVT, DL, Chain, TLSArray, MachinePointerInfo());
3403 
3404   // The pointer to the thread's TLS data area is at the TLS Index scaled by 4
3405   // offset into the TLSArray.
3406 
3407   // Load the TLS index from the C runtime
3408   SDValue TLSIndex =
3409       DAG.getTargetExternalSymbol("_tls_index", PtrVT, ARMII::MO_NO_FLAG);
3410   TLSIndex = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, TLSIndex);
3411   TLSIndex = DAG.getLoad(PtrVT, DL, Chain, TLSIndex, MachinePointerInfo());
3412 
3413   SDValue Slot = DAG.getNode(ISD::SHL, DL, PtrVT, TLSIndex,
3414                               DAG.getConstant(2, DL, MVT::i32));
3415   SDValue TLS = DAG.getLoad(PtrVT, DL, Chain,
3416                             DAG.getNode(ISD::ADD, DL, PtrVT, TLSArray, Slot),
3417                             MachinePointerInfo());
3418 
3419   // Get the offset of the start of the .tls section (section base)
3420   const auto *GA = cast<GlobalAddressSDNode>(Op);
3421   auto *CPV = ARMConstantPoolConstant::Create(GA->getGlobal(), ARMCP::SECREL);
3422   SDValue Offset = DAG.getLoad(
3423       PtrVT, DL, Chain,
3424       DAG.getNode(ARMISD::Wrapper, DL, MVT::i32,
3425                   DAG.getTargetConstantPool(CPV, PtrVT, Align(4))),
3426       MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3427 
3428   return DAG.getNode(ISD::ADD, DL, PtrVT, TLS, Offset);
3429 }
3430 
3431 // Lower ISD::GlobalTLSAddress using the "general dynamic" model
3432 SDValue
LowerToTLSGeneralDynamicModel(GlobalAddressSDNode * GA,SelectionDAG & DAG) const3433 ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
3434                                                  SelectionDAG &DAG) const {
3435   SDLoc dl(GA);
3436   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3437   unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
3438   MachineFunction &MF = DAG.getMachineFunction();
3439   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3440   unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
3441   ARMConstantPoolValue *CPV =
3442     ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
3443                                     ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
3444   SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, Align(4));
3445   Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
3446   Argument = DAG.getLoad(
3447       PtrVT, dl, DAG.getEntryNode(), Argument,
3448       MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3449   SDValue Chain = Argument.getValue(1);
3450 
3451   SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
3452   Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
3453 
3454   // call __tls_get_addr.
3455   ArgListTy Args;
3456   ArgListEntry Entry;
3457   Entry.Node = Argument;
3458   Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
3459   Args.push_back(Entry);
3460 
3461   // FIXME: is there useful debug info available here?
3462   TargetLowering::CallLoweringInfo CLI(DAG);
3463   CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
3464       CallingConv::C, Type::getInt32Ty(*DAG.getContext()),
3465       DAG.getExternalSymbol("__tls_get_addr", PtrVT), std::move(Args));
3466 
3467   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3468   return CallResult.first;
3469 }
3470 
3471 // Lower ISD::GlobalTLSAddress using the "initial exec" or
3472 // "local exec" model.
3473 SDValue
LowerToTLSExecModels(GlobalAddressSDNode * GA,SelectionDAG & DAG,TLSModel::Model model) const3474 ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
3475                                         SelectionDAG &DAG,
3476                                         TLSModel::Model model) const {
3477   const GlobalValue *GV = GA->getGlobal();
3478   SDLoc dl(GA);
3479   SDValue Offset;
3480   SDValue Chain = DAG.getEntryNode();
3481   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3482   // Get the Thread Pointer
3483   SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
3484 
3485   if (model == TLSModel::InitialExec) {
3486     MachineFunction &MF = DAG.getMachineFunction();
3487     ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3488     unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
3489     // Initial exec model.
3490     unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
3491     ARMConstantPoolValue *CPV =
3492       ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
3493                                       ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF,
3494                                       true);
3495     Offset = DAG.getTargetConstantPool(CPV, PtrVT, Align(4));
3496     Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
3497     Offset = DAG.getLoad(
3498         PtrVT, dl, Chain, Offset,
3499         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3500     Chain = Offset.getValue(1);
3501 
3502     SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
3503     Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
3504 
3505     Offset = DAG.getLoad(
3506         PtrVT, dl, Chain, Offset,
3507         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3508   } else {
3509     // local exec model
3510     assert(model == TLSModel::LocalExec);
3511     ARMConstantPoolValue *CPV =
3512       ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF);
3513     Offset = DAG.getTargetConstantPool(CPV, PtrVT, Align(4));
3514     Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
3515     Offset = DAG.getLoad(
3516         PtrVT, dl, Chain, Offset,
3517         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3518   }
3519 
3520   // The address of the thread local variable is the add of the thread
3521   // pointer with the offset of the variable.
3522   return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
3523 }
3524 
3525 SDValue
LowerGlobalTLSAddress(SDValue Op,SelectionDAG & DAG) const3526 ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
3527   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3528   if (DAG.getTarget().useEmulatedTLS())
3529     return LowerToTLSEmulatedModel(GA, DAG);
3530 
3531   if (Subtarget->isTargetDarwin())
3532     return LowerGlobalTLSAddressDarwin(Op, DAG);
3533 
3534   if (Subtarget->isTargetWindows())
3535     return LowerGlobalTLSAddressWindows(Op, DAG);
3536 
3537   // TODO: implement the "local dynamic" model
3538   assert(Subtarget->isTargetELF() && "Only ELF implemented here");
3539   TLSModel::Model model = getTargetMachine().getTLSModel(GA->getGlobal());
3540 
3541   switch (model) {
3542     case TLSModel::GeneralDynamic:
3543     case TLSModel::LocalDynamic:
3544       return LowerToTLSGeneralDynamicModel(GA, DAG);
3545     case TLSModel::InitialExec:
3546     case TLSModel::LocalExec:
3547       return LowerToTLSExecModels(GA, DAG, model);
3548   }
3549   llvm_unreachable("bogus TLS model");
3550 }
3551 
3552 /// Return true if all users of V are within function F, looking through
3553 /// ConstantExprs.
allUsersAreInFunction(const Value * V,const Function * F)3554 static bool allUsersAreInFunction(const Value *V, const Function *F) {
3555   SmallVector<const User*,4> Worklist(V->users());
3556   while (!Worklist.empty()) {
3557     auto *U = Worklist.pop_back_val();
3558     if (isa<ConstantExpr>(U)) {
3559       append_range(Worklist, U->users());
3560       continue;
3561     }
3562 
3563     auto *I = dyn_cast<Instruction>(U);
3564     if (!I || I->getParent()->getParent() != F)
3565       return false;
3566   }
3567   return true;
3568 }
3569 
promoteToConstantPool(const ARMTargetLowering * TLI,const GlobalValue * GV,SelectionDAG & DAG,EVT PtrVT,const SDLoc & dl)3570 static SDValue promoteToConstantPool(const ARMTargetLowering *TLI,
3571                                      const GlobalValue *GV, SelectionDAG &DAG,
3572                                      EVT PtrVT, const SDLoc &dl) {
3573   // If we're creating a pool entry for a constant global with unnamed address,
3574   // and the global is small enough, we can emit it inline into the constant pool
3575   // to save ourselves an indirection.
3576   //
3577   // This is a win if the constant is only used in one function (so it doesn't
3578   // need to be duplicated) or duplicating the constant wouldn't increase code
3579   // size (implying the constant is no larger than 4 bytes).
3580   const Function &F = DAG.getMachineFunction().getFunction();
3581 
3582   // We rely on this decision to inline being idemopotent and unrelated to the
3583   // use-site. We know that if we inline a variable at one use site, we'll
3584   // inline it elsewhere too (and reuse the constant pool entry). Fast-isel
3585   // doesn't know about this optimization, so bail out if it's enabled else
3586   // we could decide to inline here (and thus never emit the GV) but require
3587   // the GV from fast-isel generated code.
3588   if (!EnableConstpoolPromotion ||
3589       DAG.getMachineFunction().getTarget().Options.EnableFastISel)
3590       return SDValue();
3591 
3592   auto *GVar = dyn_cast<GlobalVariable>(GV);
3593   if (!GVar || !GVar->hasInitializer() ||
3594       !GVar->isConstant() || !GVar->hasGlobalUnnamedAddr() ||
3595       !GVar->hasLocalLinkage())
3596     return SDValue();
3597 
3598   // If we inline a value that contains relocations, we move the relocations
3599   // from .data to .text. This is not allowed in position-independent code.
3600   auto *Init = GVar->getInitializer();
3601   if ((TLI->isPositionIndependent() || TLI->getSubtarget()->isROPI()) &&
3602       Init->needsDynamicRelocation())
3603     return SDValue();
3604 
3605   // The constant islands pass can only really deal with alignment requests
3606   // <= 4 bytes and cannot pad constants itself. Therefore we cannot promote
3607   // any type wanting greater alignment requirements than 4 bytes. We also
3608   // can only promote constants that are multiples of 4 bytes in size or
3609   // are paddable to a multiple of 4. Currently we only try and pad constants
3610   // that are strings for simplicity.
3611   auto *CDAInit = dyn_cast<ConstantDataArray>(Init);
3612   unsigned Size = DAG.getDataLayout().getTypeAllocSize(Init->getType());
3613   Align PrefAlign = DAG.getDataLayout().getPreferredAlign(GVar);
3614   unsigned RequiredPadding = 4 - (Size % 4);
3615   bool PaddingPossible =
3616     RequiredPadding == 4 || (CDAInit && CDAInit->isString());
3617   if (!PaddingPossible || PrefAlign > 4 || Size > ConstpoolPromotionMaxSize ||
3618       Size == 0)
3619     return SDValue();
3620 
3621   unsigned PaddedSize = Size + ((RequiredPadding == 4) ? 0 : RequiredPadding);
3622   MachineFunction &MF = DAG.getMachineFunction();
3623   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3624 
3625   // We can't bloat the constant pool too much, else the ConstantIslands pass
3626   // may fail to converge. If we haven't promoted this global yet (it may have
3627   // multiple uses), and promoting it would increase the constant pool size (Sz
3628   // > 4), ensure we have space to do so up to MaxTotal.
3629   if (!AFI->getGlobalsPromotedToConstantPool().count(GVar) && Size > 4)
3630     if (AFI->getPromotedConstpoolIncrease() + PaddedSize - 4 >=
3631         ConstpoolPromotionMaxTotal)
3632       return SDValue();
3633 
3634   // This is only valid if all users are in a single function; we can't clone
3635   // the constant in general. The LLVM IR unnamed_addr allows merging
3636   // constants, but not cloning them.
3637   //
3638   // We could potentially allow cloning if we could prove all uses of the
3639   // constant in the current function don't care about the address, like
3640   // printf format strings. But that isn't implemented for now.
3641   if (!allUsersAreInFunction(GVar, &F))
3642     return SDValue();
3643 
3644   // We're going to inline this global. Pad it out if needed.
3645   if (RequiredPadding != 4) {
3646     StringRef S = CDAInit->getAsString();
3647 
3648     SmallVector<uint8_t,16> V(S.size());
3649     std::copy(S.bytes_begin(), S.bytes_end(), V.begin());
3650     while (RequiredPadding--)
3651       V.push_back(0);
3652     Init = ConstantDataArray::get(*DAG.getContext(), V);
3653   }
3654 
3655   auto CPVal = ARMConstantPoolConstant::Create(GVar, Init);
3656   SDValue CPAddr = DAG.getTargetConstantPool(CPVal, PtrVT, Align(4));
3657   if (!AFI->getGlobalsPromotedToConstantPool().count(GVar)) {
3658     AFI->markGlobalAsPromotedToConstantPool(GVar);
3659     AFI->setPromotedConstpoolIncrease(AFI->getPromotedConstpoolIncrease() +
3660                                       PaddedSize - 4);
3661   }
3662   ++NumConstpoolPromoted;
3663   return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3664 }
3665 
isReadOnly(const GlobalValue * GV) const3666 bool ARMTargetLowering::isReadOnly(const GlobalValue *GV) const {
3667   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
3668     if (!(GV = GA->getBaseObject()))
3669       return false;
3670   if (const auto *V = dyn_cast<GlobalVariable>(GV))
3671     return V->isConstant();
3672   return isa<Function>(GV);
3673 }
3674 
LowerGlobalAddress(SDValue Op,SelectionDAG & DAG) const3675 SDValue ARMTargetLowering::LowerGlobalAddress(SDValue Op,
3676                                               SelectionDAG &DAG) const {
3677   switch (Subtarget->getTargetTriple().getObjectFormat()) {
3678   default: llvm_unreachable("unknown object format");
3679   case Triple::COFF:
3680     return LowerGlobalAddressWindows(Op, DAG);
3681   case Triple::ELF:
3682     return LowerGlobalAddressELF(Op, DAG);
3683   case Triple::MachO:
3684     return LowerGlobalAddressDarwin(Op, DAG);
3685   }
3686 }
3687 
LowerGlobalAddressELF(SDValue Op,SelectionDAG & DAG) const3688 SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
3689                                                  SelectionDAG &DAG) const {
3690   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3691   SDLoc dl(Op);
3692   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3693   const TargetMachine &TM = getTargetMachine();
3694   bool IsRO = isReadOnly(GV);
3695 
3696   // promoteToConstantPool only if not generating XO text section
3697   if (TM.shouldAssumeDSOLocal(*GV->getParent(), GV) && !Subtarget->genExecuteOnly())
3698     if (SDValue V = promoteToConstantPool(this, GV, DAG, PtrVT, dl))
3699       return V;
3700 
3701   if (isPositionIndependent()) {
3702     bool UseGOT_PREL = !TM.shouldAssumeDSOLocal(*GV->getParent(), GV);
3703     SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3704                                            UseGOT_PREL ? ARMII::MO_GOT : 0);
3705     SDValue Result = DAG.getNode(ARMISD::WrapperPIC, dl, PtrVT, G);
3706     if (UseGOT_PREL)
3707       Result =
3708           DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
3709                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3710     return Result;
3711   } else if (Subtarget->isROPI() && IsRO) {
3712     // PC-relative.
3713     SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT);
3714     SDValue Result = DAG.getNode(ARMISD::WrapperPIC, dl, PtrVT, G);
3715     return Result;
3716   } else if (Subtarget->isRWPI() && !IsRO) {
3717     // SB-relative.
3718     SDValue RelAddr;
3719     if (Subtarget->useMovt()) {
3720       ++NumMovwMovt;
3721       SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_SBREL);
3722       RelAddr = DAG.getNode(ARMISD::Wrapper, dl, PtrVT, G);
3723     } else { // use literal pool for address constant
3724       ARMConstantPoolValue *CPV =
3725         ARMConstantPoolConstant::Create(GV, ARMCP::SBREL);
3726       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, Align(4));
3727       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3728       RelAddr = DAG.getLoad(
3729           PtrVT, dl, DAG.getEntryNode(), CPAddr,
3730           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3731     }
3732     SDValue SB = DAG.getCopyFromReg(DAG.getEntryNode(), dl, ARM::R9, PtrVT);
3733     SDValue Result = DAG.getNode(ISD::ADD, dl, PtrVT, SB, RelAddr);
3734     return Result;
3735   }
3736 
3737   // If we have T2 ops, we can materialize the address directly via movt/movw
3738   // pair. This is always cheaper.
3739   if (Subtarget->useMovt()) {
3740     ++NumMovwMovt;
3741     // FIXME: Once remat is capable of dealing with instructions with register
3742     // operands, expand this into two nodes.
3743     return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
3744                        DAG.getTargetGlobalAddress(GV, dl, PtrVT));
3745   } else {
3746     SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, Align(4));
3747     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3748     return DAG.getLoad(
3749         PtrVT, dl, DAG.getEntryNode(), CPAddr,
3750         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3751   }
3752 }
3753 
LowerGlobalAddressDarwin(SDValue Op,SelectionDAG & DAG) const3754 SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
3755                                                     SelectionDAG &DAG) const {
3756   assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
3757          "ROPI/RWPI not currently supported for Darwin");
3758   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3759   SDLoc dl(Op);
3760   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3761 
3762   if (Subtarget->useMovt())
3763     ++NumMovwMovt;
3764 
3765   // FIXME: Once remat is capable of dealing with instructions with register
3766   // operands, expand this into multiple nodes
3767   unsigned Wrapper =
3768       isPositionIndependent() ? ARMISD::WrapperPIC : ARMISD::Wrapper;
3769 
3770   SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_NONLAZY);
3771   SDValue Result = DAG.getNode(Wrapper, dl, PtrVT, G);
3772 
3773   if (Subtarget->isGVIndirectSymbol(GV))
3774     Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
3775                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3776   return Result;
3777 }
3778 
LowerGlobalAddressWindows(SDValue Op,SelectionDAG & DAG) const3779 SDValue ARMTargetLowering::LowerGlobalAddressWindows(SDValue Op,
3780                                                      SelectionDAG &DAG) const {
3781   assert(Subtarget->isTargetWindows() && "non-Windows COFF is not supported");
3782   assert(Subtarget->useMovt() &&
3783          "Windows on ARM expects to use movw/movt");
3784   assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
3785          "ROPI/RWPI not currently supported for Windows");
3786 
3787   const TargetMachine &TM = getTargetMachine();
3788   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3789   ARMII::TOF TargetFlags = ARMII::MO_NO_FLAG;
3790   if (GV->hasDLLImportStorageClass())
3791     TargetFlags = ARMII::MO_DLLIMPORT;
3792   else if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
3793     TargetFlags = ARMII::MO_COFFSTUB;
3794   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3795   SDValue Result;
3796   SDLoc DL(Op);
3797 
3798   ++NumMovwMovt;
3799 
3800   // FIXME: Once remat is capable of dealing with instructions with register
3801   // operands, expand this into two nodes.
3802   Result = DAG.getNode(ARMISD::Wrapper, DL, PtrVT,
3803                        DAG.getTargetGlobalAddress(GV, DL, PtrVT, /*offset=*/0,
3804                                                   TargetFlags));
3805   if (TargetFlags & (ARMII::MO_DLLIMPORT | ARMII::MO_COFFSTUB))
3806     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
3807                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3808   return Result;
3809 }
3810 
3811 SDValue
LowerEH_SJLJ_SETJMP(SDValue Op,SelectionDAG & DAG) const3812 ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
3813   SDLoc dl(Op);
3814   SDValue Val = DAG.getConstant(0, dl, MVT::i32);
3815   return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl,
3816                      DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
3817                      Op.getOperand(1), Val);
3818 }
3819 
3820 SDValue
LowerEH_SJLJ_LONGJMP(SDValue Op,SelectionDAG & DAG) const3821 ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
3822   SDLoc dl(Op);
3823   return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
3824                      Op.getOperand(1), DAG.getConstant(0, dl, MVT::i32));
3825 }
3826 
LowerEH_SJLJ_SETUP_DISPATCH(SDValue Op,SelectionDAG & DAG) const3827 SDValue ARMTargetLowering::LowerEH_SJLJ_SETUP_DISPATCH(SDValue Op,
3828                                                       SelectionDAG &DAG) const {
3829   SDLoc dl(Op);
3830   return DAG.getNode(ARMISD::EH_SJLJ_SETUP_DISPATCH, dl, MVT::Other,
3831                      Op.getOperand(0));
3832 }
3833 
LowerINTRINSIC_VOID(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * Subtarget) const3834 SDValue ARMTargetLowering::LowerINTRINSIC_VOID(
3835     SDValue Op, SelectionDAG &DAG, const ARMSubtarget *Subtarget) const {
3836   unsigned IntNo =
3837       cast<ConstantSDNode>(
3838           Op.getOperand(Op.getOperand(0).getValueType() == MVT::Other))
3839           ->getZExtValue();
3840   switch (IntNo) {
3841     default:
3842       return SDValue();  // Don't custom lower most intrinsics.
3843     case Intrinsic::arm_gnu_eabi_mcount: {
3844       MachineFunction &MF = DAG.getMachineFunction();
3845       EVT PtrVT = getPointerTy(DAG.getDataLayout());
3846       SDLoc dl(Op);
3847       SDValue Chain = Op.getOperand(0);
3848       // call "\01__gnu_mcount_nc"
3849       const ARMBaseRegisterInfo *ARI = Subtarget->getRegisterInfo();
3850       const uint32_t *Mask =
3851           ARI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
3852       assert(Mask && "Missing call preserved mask for calling convention");
3853       // Mark LR an implicit live-in.
3854       unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
3855       SDValue ReturnAddress =
3856           DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, PtrVT);
3857       constexpr EVT ResultTys[] = {MVT::Other, MVT::Glue};
3858       SDValue Callee =
3859           DAG.getTargetExternalSymbol("\01__gnu_mcount_nc", PtrVT, 0);
3860       SDValue RegisterMask = DAG.getRegisterMask(Mask);
3861       if (Subtarget->isThumb())
3862         return SDValue(
3863             DAG.getMachineNode(
3864                 ARM::tBL_PUSHLR, dl, ResultTys,
3865                 {ReturnAddress, DAG.getTargetConstant(ARMCC::AL, dl, PtrVT),
3866                  DAG.getRegister(0, PtrVT), Callee, RegisterMask, Chain}),
3867             0);
3868       return SDValue(
3869           DAG.getMachineNode(ARM::BL_PUSHLR, dl, ResultTys,
3870                              {ReturnAddress, Callee, RegisterMask, Chain}),
3871           0);
3872     }
3873   }
3874 }
3875 
3876 SDValue
LowerINTRINSIC_WO_CHAIN(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * Subtarget) const3877 ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
3878                                           const ARMSubtarget *Subtarget) const {
3879   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3880   SDLoc dl(Op);
3881   switch (IntNo) {
3882   default: return SDValue();    // Don't custom lower most intrinsics.
3883   case Intrinsic::thread_pointer: {
3884     EVT PtrVT = getPointerTy(DAG.getDataLayout());
3885     return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
3886   }
3887   case Intrinsic::arm_cls: {
3888     const SDValue &Operand = Op.getOperand(1);
3889     const EVT VTy = Op.getValueType();
3890     SDValue SRA =
3891         DAG.getNode(ISD::SRA, dl, VTy, Operand, DAG.getConstant(31, dl, VTy));
3892     SDValue XOR = DAG.getNode(ISD::XOR, dl, VTy, SRA, Operand);
3893     SDValue SHL =
3894         DAG.getNode(ISD::SHL, dl, VTy, XOR, DAG.getConstant(1, dl, VTy));
3895     SDValue OR =
3896         DAG.getNode(ISD::OR, dl, VTy, SHL, DAG.getConstant(1, dl, VTy));
3897     SDValue Result = DAG.getNode(ISD::CTLZ, dl, VTy, OR);
3898     return Result;
3899   }
3900   case Intrinsic::arm_cls64: {
3901     // cls(x) = if cls(hi(x)) != 31 then cls(hi(x))
3902     //          else 31 + clz(if hi(x) == 0 then lo(x) else not(lo(x)))
3903     const SDValue &Operand = Op.getOperand(1);
3904     const EVT VTy = Op.getValueType();
3905 
3906     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VTy, Operand,
3907                              DAG.getConstant(1, dl, VTy));
3908     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VTy, Operand,
3909                              DAG.getConstant(0, dl, VTy));
3910     SDValue Constant0 = DAG.getConstant(0, dl, VTy);
3911     SDValue Constant1 = DAG.getConstant(1, dl, VTy);
3912     SDValue Constant31 = DAG.getConstant(31, dl, VTy);
3913     SDValue SRAHi = DAG.getNode(ISD::SRA, dl, VTy, Hi, Constant31);
3914     SDValue XORHi = DAG.getNode(ISD::XOR, dl, VTy, SRAHi, Hi);
3915     SDValue SHLHi = DAG.getNode(ISD::SHL, dl, VTy, XORHi, Constant1);
3916     SDValue ORHi = DAG.getNode(ISD::OR, dl, VTy, SHLHi, Constant1);
3917     SDValue CLSHi = DAG.getNode(ISD::CTLZ, dl, VTy, ORHi);
3918     SDValue CheckLo =
3919         DAG.getSetCC(dl, MVT::i1, CLSHi, Constant31, ISD::CondCode::SETEQ);
3920     SDValue HiIsZero =
3921         DAG.getSetCC(dl, MVT::i1, Hi, Constant0, ISD::CondCode::SETEQ);
3922     SDValue AdjustedLo =
3923         DAG.getSelect(dl, VTy, HiIsZero, Lo, DAG.getNOT(dl, Lo, VTy));
3924     SDValue CLZAdjustedLo = DAG.getNode(ISD::CTLZ, dl, VTy, AdjustedLo);
3925     SDValue Result =
3926         DAG.getSelect(dl, VTy, CheckLo,
3927                       DAG.getNode(ISD::ADD, dl, VTy, CLZAdjustedLo, Constant31), CLSHi);
3928     return Result;
3929   }
3930   case Intrinsic::eh_sjlj_lsda: {
3931     MachineFunction &MF = DAG.getMachineFunction();
3932     ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3933     unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
3934     EVT PtrVT = getPointerTy(DAG.getDataLayout());
3935     SDValue CPAddr;
3936     bool IsPositionIndependent = isPositionIndependent();
3937     unsigned PCAdj = IsPositionIndependent ? (Subtarget->isThumb() ? 4 : 8) : 0;
3938     ARMConstantPoolValue *CPV =
3939       ARMConstantPoolConstant::Create(&MF.getFunction(), ARMPCLabelIndex,
3940                                       ARMCP::CPLSDA, PCAdj);
3941     CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, Align(4));
3942     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3943     SDValue Result = DAG.getLoad(
3944         PtrVT, dl, DAG.getEntryNode(), CPAddr,
3945         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3946 
3947     if (IsPositionIndependent) {
3948       SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
3949       Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
3950     }
3951     return Result;
3952   }
3953   case Intrinsic::arm_neon_vabs:
3954     return DAG.getNode(ISD::ABS, SDLoc(Op), Op.getValueType(),
3955                         Op.getOperand(1));
3956   case Intrinsic::arm_neon_vmulls:
3957   case Intrinsic::arm_neon_vmullu: {
3958     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
3959       ? ARMISD::VMULLs : ARMISD::VMULLu;
3960     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3961                        Op.getOperand(1), Op.getOperand(2));
3962   }
3963   case Intrinsic::arm_neon_vminnm:
3964   case Intrinsic::arm_neon_vmaxnm: {
3965     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminnm)
3966       ? ISD::FMINNUM : ISD::FMAXNUM;
3967     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3968                        Op.getOperand(1), Op.getOperand(2));
3969   }
3970   case Intrinsic::arm_neon_vminu:
3971   case Intrinsic::arm_neon_vmaxu: {
3972     if (Op.getValueType().isFloatingPoint())
3973       return SDValue();
3974     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminu)
3975       ? ISD::UMIN : ISD::UMAX;
3976     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3977                          Op.getOperand(1), Op.getOperand(2));
3978   }
3979   case Intrinsic::arm_neon_vmins:
3980   case Intrinsic::arm_neon_vmaxs: {
3981     // v{min,max}s is overloaded between signed integers and floats.
3982     if (!Op.getValueType().isFloatingPoint()) {
3983       unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
3984         ? ISD::SMIN : ISD::SMAX;
3985       return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3986                          Op.getOperand(1), Op.getOperand(2));
3987     }
3988     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
3989       ? ISD::FMINIMUM : ISD::FMAXIMUM;
3990     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3991                        Op.getOperand(1), Op.getOperand(2));
3992   }
3993   case Intrinsic::arm_neon_vtbl1:
3994     return DAG.getNode(ARMISD::VTBL1, SDLoc(Op), Op.getValueType(),
3995                        Op.getOperand(1), Op.getOperand(2));
3996   case Intrinsic::arm_neon_vtbl2:
3997     return DAG.getNode(ARMISD::VTBL2, SDLoc(Op), Op.getValueType(),
3998                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
3999   case Intrinsic::arm_mve_pred_i2v:
4000   case Intrinsic::arm_mve_pred_v2i:
4001     return DAG.getNode(ARMISD::PREDICATE_CAST, SDLoc(Op), Op.getValueType(),
4002                        Op.getOperand(1));
4003   case Intrinsic::arm_mve_vreinterpretq:
4004     return DAG.getNode(ARMISD::VECTOR_REG_CAST, SDLoc(Op), Op.getValueType(),
4005                        Op.getOperand(1));
4006   case Intrinsic::arm_mve_lsll:
4007     return DAG.getNode(ARMISD::LSLL, SDLoc(Op), Op->getVTList(),
4008                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4009   case Intrinsic::arm_mve_asrl:
4010     return DAG.getNode(ARMISD::ASRL, SDLoc(Op), Op->getVTList(),
4011                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4012   }
4013 }
4014 
LowerATOMIC_FENCE(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * Subtarget)4015 static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
4016                                  const ARMSubtarget *Subtarget) {
4017   SDLoc dl(Op);
4018   ConstantSDNode *SSIDNode = cast<ConstantSDNode>(Op.getOperand(2));
4019   auto SSID = static_cast<SyncScope::ID>(SSIDNode->getZExtValue());
4020   if (SSID == SyncScope::SingleThread)
4021     return Op;
4022 
4023   if (!Subtarget->hasDataBarrier()) {
4024     // Some ARMv6 cpus can support data barriers with an mcr instruction.
4025     // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
4026     // here.
4027     assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
4028            "Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!");
4029     return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
4030                        DAG.getConstant(0, dl, MVT::i32));
4031   }
4032 
4033   ConstantSDNode *OrdN = cast<ConstantSDNode>(Op.getOperand(1));
4034   AtomicOrdering Ord = static_cast<AtomicOrdering>(OrdN->getZExtValue());
4035   ARM_MB::MemBOpt Domain = ARM_MB::ISH;
4036   if (Subtarget->isMClass()) {
4037     // Only a full system barrier exists in the M-class architectures.
4038     Domain = ARM_MB::SY;
4039   } else if (Subtarget->preferISHSTBarriers() &&
4040              Ord == AtomicOrdering::Release) {
4041     // Swift happens to implement ISHST barriers in a way that's compatible with
4042     // Release semantics but weaker than ISH so we'd be fools not to use
4043     // it. Beware: other processors probably don't!
4044     Domain = ARM_MB::ISHST;
4045   }
4046 
4047   return DAG.getNode(ISD::INTRINSIC_VOID, dl, MVT::Other, Op.getOperand(0),
4048                      DAG.getConstant(Intrinsic::arm_dmb, dl, MVT::i32),
4049                      DAG.getConstant(Domain, dl, MVT::i32));
4050 }
4051 
LowerPREFETCH(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * Subtarget)4052 static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
4053                              const ARMSubtarget *Subtarget) {
4054   // ARM pre v5TE and Thumb1 does not have preload instructions.
4055   if (!(Subtarget->isThumb2() ||
4056         (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
4057     // Just preserve the chain.
4058     return Op.getOperand(0);
4059 
4060   SDLoc dl(Op);
4061   unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
4062   if (!isRead &&
4063       (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
4064     // ARMv7 with MP extension has PLDW.
4065     return Op.getOperand(0);
4066 
4067   unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
4068   if (Subtarget->isThumb()) {
4069     // Invert the bits.
4070     isRead = ~isRead & 1;
4071     isData = ~isData & 1;
4072   }
4073 
4074   return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
4075                      Op.getOperand(1), DAG.getConstant(isRead, dl, MVT::i32),
4076                      DAG.getConstant(isData, dl, MVT::i32));
4077 }
4078 
LowerVASTART(SDValue Op,SelectionDAG & DAG)4079 static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
4080   MachineFunction &MF = DAG.getMachineFunction();
4081   ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
4082 
4083   // vastart just stores the address of the VarArgsFrameIndex slot into the
4084   // memory location argument.
4085   SDLoc dl(Op);
4086   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4087   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4088   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
4089   return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
4090                       MachinePointerInfo(SV));
4091 }
4092 
GetF64FormalArgument(CCValAssign & VA,CCValAssign & NextVA,SDValue & Root,SelectionDAG & DAG,const SDLoc & dl) const4093 SDValue ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA,
4094                                                 CCValAssign &NextVA,
4095                                                 SDValue &Root,
4096                                                 SelectionDAG &DAG,
4097                                                 const SDLoc &dl) const {
4098   MachineFunction &MF = DAG.getMachineFunction();
4099   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
4100 
4101   const TargetRegisterClass *RC;
4102   if (AFI->isThumb1OnlyFunction())
4103     RC = &ARM::tGPRRegClass;
4104   else
4105     RC = &ARM::GPRRegClass;
4106 
4107   // Transform the arguments stored in physical registers into virtual ones.
4108   unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
4109   SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
4110 
4111   SDValue ArgValue2;
4112   if (NextVA.isMemLoc()) {
4113     MachineFrameInfo &MFI = MF.getFrameInfo();
4114     int FI = MFI.CreateFixedObject(4, NextVA.getLocMemOffset(), true);
4115 
4116     // Create load node to retrieve arguments from the stack.
4117     SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
4118     ArgValue2 = DAG.getLoad(
4119         MVT::i32, dl, Root, FIN,
4120         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
4121   } else {
4122     Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
4123     ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
4124   }
4125   if (!Subtarget->isLittle())
4126     std::swap (ArgValue, ArgValue2);
4127   return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
4128 }
4129 
4130 // The remaining GPRs hold either the beginning of variable-argument
4131 // data, or the beginning of an aggregate passed by value (usually
4132 // byval).  Either way, we allocate stack slots adjacent to the data
4133 // provided by our caller, and store the unallocated registers there.
4134 // If this is a variadic function, the va_list pointer will begin with
4135 // these values; otherwise, this reassembles a (byval) structure that
4136 // was split between registers and memory.
4137 // Return: The frame index registers were stored into.
StoreByValRegs(CCState & CCInfo,SelectionDAG & DAG,const SDLoc & dl,SDValue & Chain,const Value * OrigArg,unsigned InRegsParamRecordIdx,int ArgOffset,unsigned ArgSize) const4138 int ARMTargetLowering::StoreByValRegs(CCState &CCInfo, SelectionDAG &DAG,
4139                                       const SDLoc &dl, SDValue &Chain,
4140                                       const Value *OrigArg,
4141                                       unsigned InRegsParamRecordIdx,
4142                                       int ArgOffset, unsigned ArgSize) const {
4143   // Currently, two use-cases possible:
4144   // Case #1. Non-var-args function, and we meet first byval parameter.
4145   //          Setup first unallocated register as first byval register;
4146   //          eat all remained registers
4147   //          (these two actions are performed by HandleByVal method).
4148   //          Then, here, we initialize stack frame with
4149   //          "store-reg" instructions.
4150   // Case #2. Var-args function, that doesn't contain byval parameters.
4151   //          The same: eat all remained unallocated registers,
4152   //          initialize stack frame.
4153 
4154   MachineFunction &MF = DAG.getMachineFunction();
4155   MachineFrameInfo &MFI = MF.getFrameInfo();
4156   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
4157   unsigned RBegin, REnd;
4158   if (InRegsParamRecordIdx < CCInfo.getInRegsParamsCount()) {
4159     CCInfo.getInRegsParamInfo(InRegsParamRecordIdx, RBegin, REnd);
4160   } else {
4161     unsigned RBeginIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
4162     RBegin = RBeginIdx == 4 ? (unsigned)ARM::R4 : GPRArgRegs[RBeginIdx];
4163     REnd = ARM::R4;
4164   }
4165 
4166   if (REnd != RBegin)
4167     ArgOffset = -4 * (ARM::R4 - RBegin);
4168 
4169   auto PtrVT = getPointerTy(DAG.getDataLayout());
4170   int FrameIndex = MFI.CreateFixedObject(ArgSize, ArgOffset, false);
4171   SDValue FIN = DAG.getFrameIndex(FrameIndex, PtrVT);
4172 
4173   SmallVector<SDValue, 4> MemOps;
4174   const TargetRegisterClass *RC =
4175       AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
4176 
4177   for (unsigned Reg = RBegin, i = 0; Reg < REnd; ++Reg, ++i) {
4178     unsigned VReg = MF.addLiveIn(Reg, RC);
4179     SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
4180     SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
4181                                  MachinePointerInfo(OrigArg, 4 * i));
4182     MemOps.push_back(Store);
4183     FIN = DAG.getNode(ISD::ADD, dl, PtrVT, FIN, DAG.getConstant(4, dl, PtrVT));
4184   }
4185 
4186   if (!MemOps.empty())
4187     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4188   return FrameIndex;
4189 }
4190 
4191 // Setup stack frame, the va_list pointer will start from.
VarArgStyleRegisters(CCState & CCInfo,SelectionDAG & DAG,const SDLoc & dl,SDValue & Chain,unsigned ArgOffset,unsigned TotalArgRegsSaveSize,bool ForceMutable) const4192 void ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
4193                                              const SDLoc &dl, SDValue &Chain,
4194                                              unsigned ArgOffset,
4195                                              unsigned TotalArgRegsSaveSize,
4196                                              bool ForceMutable) const {
4197   MachineFunction &MF = DAG.getMachineFunction();
4198   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
4199 
4200   // Try to store any remaining integer argument regs
4201   // to their spots on the stack so that they may be loaded by dereferencing
4202   // the result of va_next.
4203   // If there is no regs to be stored, just point address after last
4204   // argument passed via stack.
4205   int FrameIndex = StoreByValRegs(CCInfo, DAG, dl, Chain, nullptr,
4206                                   CCInfo.getInRegsParamsCount(),
4207                                   CCInfo.getNextStackOffset(),
4208                                   std::max(4U, TotalArgRegsSaveSize));
4209   AFI->setVarArgsFrameIndex(FrameIndex);
4210 }
4211 
splitValueIntoRegisterParts(SelectionDAG & DAG,const SDLoc & DL,SDValue Val,SDValue * Parts,unsigned NumParts,MVT PartVT,Optional<CallingConv::ID> CC) const4212 bool ARMTargetLowering::splitValueIntoRegisterParts(
4213     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
4214     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
4215   bool IsABIRegCopy = CC.hasValue();
4216   EVT ValueVT = Val.getValueType();
4217   if (IsABIRegCopy && (ValueVT == MVT::f16 || ValueVT == MVT::bf16) &&
4218       PartVT == MVT::f32) {
4219     unsigned ValueBits = ValueVT.getSizeInBits();
4220     unsigned PartBits = PartVT.getSizeInBits();
4221     Val = DAG.getNode(ISD::BITCAST, DL, MVT::getIntegerVT(ValueBits), Val);
4222     Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::getIntegerVT(PartBits), Val);
4223     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
4224     Parts[0] = Val;
4225     return true;
4226   }
4227   return false;
4228 }
4229 
joinRegisterPartsIntoValue(SelectionDAG & DAG,const SDLoc & DL,const SDValue * Parts,unsigned NumParts,MVT PartVT,EVT ValueVT,Optional<CallingConv::ID> CC) const4230 SDValue ARMTargetLowering::joinRegisterPartsIntoValue(
4231     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
4232     MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
4233   bool IsABIRegCopy = CC.hasValue();
4234   if (IsABIRegCopy && (ValueVT == MVT::f16 || ValueVT == MVT::bf16) &&
4235       PartVT == MVT::f32) {
4236     unsigned ValueBits = ValueVT.getSizeInBits();
4237     unsigned PartBits = PartVT.getSizeInBits();
4238     SDValue Val = Parts[0];
4239 
4240     Val = DAG.getNode(ISD::BITCAST, DL, MVT::getIntegerVT(PartBits), Val);
4241     Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::getIntegerVT(ValueBits), Val);
4242     Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
4243     return Val;
4244   }
4245   return SDValue();
4246 }
4247 
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const4248 SDValue ARMTargetLowering::LowerFormalArguments(
4249     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
4250     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4251     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4252   MachineFunction &MF = DAG.getMachineFunction();
4253   MachineFrameInfo &MFI = MF.getFrameInfo();
4254 
4255   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
4256 
4257   // Assign locations to all of the incoming arguments.
4258   SmallVector<CCValAssign, 16> ArgLocs;
4259   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
4260                  *DAG.getContext());
4261   CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForCall(CallConv, isVarArg));
4262 
4263   SmallVector<SDValue, 16> ArgValues;
4264   SDValue ArgValue;
4265   Function::const_arg_iterator CurOrigArg = MF.getFunction().arg_begin();
4266   unsigned CurArgIdx = 0;
4267 
4268   // Initially ArgRegsSaveSize is zero.
4269   // Then we increase this value each time we meet byval parameter.
4270   // We also increase this value in case of varargs function.
4271   AFI->setArgRegsSaveSize(0);
4272 
4273   // Calculate the amount of stack space that we need to allocate to store
4274   // byval and variadic arguments that are passed in registers.
4275   // We need to know this before we allocate the first byval or variadic
4276   // argument, as they will be allocated a stack slot below the CFA (Canonical
4277   // Frame Address, the stack pointer at entry to the function).
4278   unsigned ArgRegBegin = ARM::R4;
4279   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
4280     if (CCInfo.getInRegsParamsProcessed() >= CCInfo.getInRegsParamsCount())
4281       break;
4282 
4283     CCValAssign &VA = ArgLocs[i];
4284     unsigned Index = VA.getValNo();
4285     ISD::ArgFlagsTy Flags = Ins[Index].Flags;
4286     if (!Flags.isByVal())
4287       continue;
4288 
4289     assert(VA.isMemLoc() && "unexpected byval pointer in reg");
4290     unsigned RBegin, REnd;
4291     CCInfo.getInRegsParamInfo(CCInfo.getInRegsParamsProcessed(), RBegin, REnd);
4292     ArgRegBegin = std::min(ArgRegBegin, RBegin);
4293 
4294     CCInfo.nextInRegsParam();
4295   }
4296   CCInfo.rewindByValRegsInfo();
4297 
4298   int lastInsIndex = -1;
4299   if (isVarArg && MFI.hasVAStart()) {
4300     unsigned RegIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
4301     if (RegIdx != array_lengthof(GPRArgRegs))
4302       ArgRegBegin = std::min(ArgRegBegin, (unsigned)GPRArgRegs[RegIdx]);
4303   }
4304 
4305   unsigned TotalArgRegsSaveSize = 4 * (ARM::R4 - ArgRegBegin);
4306   AFI->setArgRegsSaveSize(TotalArgRegsSaveSize);
4307   auto PtrVT = getPointerTy(DAG.getDataLayout());
4308 
4309   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
4310     CCValAssign &VA = ArgLocs[i];
4311     if (Ins[VA.getValNo()].isOrigArg()) {
4312       std::advance(CurOrigArg,
4313                    Ins[VA.getValNo()].getOrigArgIndex() - CurArgIdx);
4314       CurArgIdx = Ins[VA.getValNo()].getOrigArgIndex();
4315     }
4316     // Arguments stored in registers.
4317     if (VA.isRegLoc()) {
4318       EVT RegVT = VA.getLocVT();
4319 
4320       if (VA.needsCustom() && VA.getLocVT() == MVT::v2f64) {
4321         // f64 and vector types are split up into multiple registers or
4322         // combinations of registers and stack slots.
4323         SDValue ArgValue1 =
4324             GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
4325         VA = ArgLocs[++i]; // skip ahead to next loc
4326         SDValue ArgValue2;
4327         if (VA.isMemLoc()) {
4328           int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), true);
4329           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4330           ArgValue2 = DAG.getLoad(
4331               MVT::f64, dl, Chain, FIN,
4332               MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
4333         } else {
4334           ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
4335         }
4336         ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
4337         ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, ArgValue,
4338                                ArgValue1, DAG.getIntPtrConstant(0, dl));
4339         ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, ArgValue,
4340                                ArgValue2, DAG.getIntPtrConstant(1, dl));
4341       } else if (VA.needsCustom() && VA.getLocVT() == MVT::f64) {
4342         ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
4343       } else {
4344         const TargetRegisterClass *RC;
4345 
4346         if (RegVT == MVT::f16 || RegVT == MVT::bf16)
4347           RC = &ARM::HPRRegClass;
4348         else if (RegVT == MVT::f32)
4349           RC = &ARM::SPRRegClass;
4350         else if (RegVT == MVT::f64 || RegVT == MVT::v4f16 ||
4351                  RegVT == MVT::v4bf16)
4352           RC = &ARM::DPRRegClass;
4353         else if (RegVT == MVT::v2f64 || RegVT == MVT::v8f16 ||
4354                  RegVT == MVT::v8bf16)
4355           RC = &ARM::QPRRegClass;
4356         else if (RegVT == MVT::i32)
4357           RC = AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass
4358                                            : &ARM::GPRRegClass;
4359         else
4360           llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
4361 
4362         // Transform the arguments in physical registers into virtual ones.
4363         unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
4364         ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
4365 
4366         // If this value is passed in r0 and has the returned attribute (e.g.
4367         // C++ 'structors), record this fact for later use.
4368         if (VA.getLocReg() == ARM::R0 && Ins[VA.getValNo()].Flags.isReturned()) {
4369           AFI->setPreservesR0();
4370         }
4371       }
4372 
4373       // If this is an 8 or 16-bit value, it is really passed promoted
4374       // to 32 bits.  Insert an assert[sz]ext to capture this, then
4375       // truncate to the right size.
4376       switch (VA.getLocInfo()) {
4377       default: llvm_unreachable("Unknown loc info!");
4378       case CCValAssign::Full: break;
4379       case CCValAssign::BCvt:
4380         ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
4381         break;
4382       case CCValAssign::SExt:
4383         ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
4384                                DAG.getValueType(VA.getValVT()));
4385         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
4386         break;
4387       case CCValAssign::ZExt:
4388         ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
4389                                DAG.getValueType(VA.getValVT()));
4390         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
4391         break;
4392       }
4393 
4394       // f16 arguments have their size extended to 4 bytes and passed as if they
4395       // had been copied to the LSBs of a 32-bit register.
4396       // For that, it's passed extended to i32 (soft ABI) or to f32 (hard ABI)
4397       if (VA.needsCustom() &&
4398           (VA.getValVT() == MVT::f16 || VA.getValVT() == MVT::bf16))
4399         ArgValue = MoveToHPR(dl, DAG, VA.getLocVT(), VA.getValVT(), ArgValue);
4400 
4401       InVals.push_back(ArgValue);
4402     } else { // VA.isRegLoc()
4403       // sanity check
4404       assert(VA.isMemLoc());
4405       assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
4406 
4407       int index = VA.getValNo();
4408 
4409       // Some Ins[] entries become multiple ArgLoc[] entries.
4410       // Process them only once.
4411       if (index != lastInsIndex)
4412         {
4413           ISD::ArgFlagsTy Flags = Ins[index].Flags;
4414           // FIXME: For now, all byval parameter objects are marked mutable.
4415           // This can be changed with more analysis.
4416           // In case of tail call optimization mark all arguments mutable.
4417           // Since they could be overwritten by lowering of arguments in case of
4418           // a tail call.
4419           if (Flags.isByVal()) {
4420             assert(Ins[index].isOrigArg() &&
4421                    "Byval arguments cannot be implicit");
4422             unsigned CurByValIndex = CCInfo.getInRegsParamsProcessed();
4423 
4424             int FrameIndex = StoreByValRegs(
4425                 CCInfo, DAG, dl, Chain, &*CurOrigArg, CurByValIndex,
4426                 VA.getLocMemOffset(), Flags.getByValSize());
4427             InVals.push_back(DAG.getFrameIndex(FrameIndex, PtrVT));
4428             CCInfo.nextInRegsParam();
4429           } else {
4430             unsigned FIOffset = VA.getLocMemOffset();
4431             int FI = MFI.CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
4432                                            FIOffset, true);
4433 
4434             // Create load nodes to retrieve arguments from the stack.
4435             SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4436             InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
4437                                          MachinePointerInfo::getFixedStack(
4438                                              DAG.getMachineFunction(), FI)));
4439           }
4440           lastInsIndex = index;
4441         }
4442     }
4443   }
4444 
4445   // varargs
4446   if (isVarArg && MFI.hasVAStart()) {
4447     VarArgStyleRegisters(CCInfo, DAG, dl, Chain, CCInfo.getNextStackOffset(),
4448                          TotalArgRegsSaveSize);
4449     if (AFI->isCmseNSEntryFunction()) {
4450       DiagnosticInfoUnsupported Diag(
4451           DAG.getMachineFunction().getFunction(),
4452           "secure entry function must not be variadic", dl.getDebugLoc());
4453       DAG.getContext()->diagnose(Diag);
4454     }
4455   }
4456 
4457   AFI->setArgumentStackSize(CCInfo.getNextStackOffset());
4458 
4459   if (CCInfo.getNextStackOffset() > 0 && AFI->isCmseNSEntryFunction()) {
4460     DiagnosticInfoUnsupported Diag(
4461         DAG.getMachineFunction().getFunction(),
4462         "secure entry function requires arguments on stack", dl.getDebugLoc());
4463     DAG.getContext()->diagnose(Diag);
4464   }
4465 
4466   return Chain;
4467 }
4468 
4469 /// isFloatingPointZero - Return true if this is +0.0.
isFloatingPointZero(SDValue Op)4470 static bool isFloatingPointZero(SDValue Op) {
4471   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
4472     return CFP->getValueAPF().isPosZero();
4473   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
4474     // Maybe this has already been legalized into the constant pool?
4475     if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
4476       SDValue WrapperOp = Op.getOperand(1).getOperand(0);
4477       if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
4478         if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
4479           return CFP->getValueAPF().isPosZero();
4480     }
4481   } else if (Op->getOpcode() == ISD::BITCAST &&
4482              Op->getValueType(0) == MVT::f64) {
4483     // Handle (ISD::BITCAST (ARMISD::VMOVIMM (ISD::TargetConstant 0)) MVT::f64)
4484     // created by LowerConstantFP().
4485     SDValue BitcastOp = Op->getOperand(0);
4486     if (BitcastOp->getOpcode() == ARMISD::VMOVIMM &&
4487         isNullConstant(BitcastOp->getOperand(0)))
4488       return true;
4489   }
4490   return false;
4491 }
4492 
4493 /// Returns appropriate ARM CMP (cmp) and corresponding condition code for
4494 /// the given operands.
getARMCmp(SDValue LHS,SDValue RHS,ISD::CondCode CC,SDValue & ARMcc,SelectionDAG & DAG,const SDLoc & dl) const4495 SDValue ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
4496                                      SDValue &ARMcc, SelectionDAG &DAG,
4497                                      const SDLoc &dl) const {
4498   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
4499     unsigned C = RHSC->getZExtValue();
4500     if (!isLegalICmpImmediate((int32_t)C)) {
4501       // Constant does not fit, try adjusting it by one.
4502       switch (CC) {
4503       default: break;
4504       case ISD::SETLT:
4505       case ISD::SETGE:
4506         if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
4507           CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
4508           RHS = DAG.getConstant(C - 1, dl, MVT::i32);
4509         }
4510         break;
4511       case ISD::SETULT:
4512       case ISD::SETUGE:
4513         if (C != 0 && isLegalICmpImmediate(C-1)) {
4514           CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
4515           RHS = DAG.getConstant(C - 1, dl, MVT::i32);
4516         }
4517         break;
4518       case ISD::SETLE:
4519       case ISD::SETGT:
4520         if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
4521           CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
4522           RHS = DAG.getConstant(C + 1, dl, MVT::i32);
4523         }
4524         break;
4525       case ISD::SETULE:
4526       case ISD::SETUGT:
4527         if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
4528           CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
4529           RHS = DAG.getConstant(C + 1, dl, MVT::i32);
4530         }
4531         break;
4532       }
4533     }
4534   } else if ((ARM_AM::getShiftOpcForNode(LHS.getOpcode()) != ARM_AM::no_shift) &&
4535              (ARM_AM::getShiftOpcForNode(RHS.getOpcode()) == ARM_AM::no_shift)) {
4536     // In ARM and Thumb-2, the compare instructions can shift their second
4537     // operand.
4538     CC = ISD::getSetCCSwappedOperands(CC);
4539     std::swap(LHS, RHS);
4540   }
4541 
4542   // Thumb1 has very limited immediate modes, so turning an "and" into a
4543   // shift can save multiple instructions.
4544   //
4545   // If we have (x & C1), and C1 is an appropriate mask, we can transform it
4546   // into "((x << n) >> n)".  But that isn't necessarily profitable on its
4547   // own. If it's the operand to an unsigned comparison with an immediate,
4548   // we can eliminate one of the shifts: we transform
4549   // "((x << n) >> n) == C2" to "(x << n) == (C2 << n)".
4550   //
4551   // We avoid transforming cases which aren't profitable due to encoding
4552   // details:
4553   //
4554   // 1. C2 fits into the immediate field of a cmp, and the transformed version
4555   // would not; in that case, we're essentially trading one immediate load for
4556   // another.
4557   // 2. C1 is 255 or 65535, so we can use uxtb or uxth.
4558   // 3. C2 is zero; we have other code for this special case.
4559   //
4560   // FIXME: Figure out profitability for Thumb2; we usually can't save an
4561   // instruction, since the AND is always one instruction anyway, but we could
4562   // use narrow instructions in some cases.
4563   if (Subtarget->isThumb1Only() && LHS->getOpcode() == ISD::AND &&
4564       LHS->hasOneUse() && isa<ConstantSDNode>(LHS.getOperand(1)) &&
4565       LHS.getValueType() == MVT::i32 && isa<ConstantSDNode>(RHS) &&
4566       !isSignedIntSetCC(CC)) {
4567     unsigned Mask = cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue();
4568     auto *RHSC = cast<ConstantSDNode>(RHS.getNode());
4569     uint64_t RHSV = RHSC->getZExtValue();
4570     if (isMask_32(Mask) && (RHSV & ~Mask) == 0 && Mask != 255 && Mask != 65535) {
4571       unsigned ShiftBits = countLeadingZeros(Mask);
4572       if (RHSV && (RHSV > 255 || (RHSV << ShiftBits) <= 255)) {
4573         SDValue ShiftAmt = DAG.getConstant(ShiftBits, dl, MVT::i32);
4574         LHS = DAG.getNode(ISD::SHL, dl, MVT::i32, LHS.getOperand(0), ShiftAmt);
4575         RHS = DAG.getConstant(RHSV << ShiftBits, dl, MVT::i32);
4576       }
4577     }
4578   }
4579 
4580   // The specific comparison "(x<<c) > 0x80000000U" can be optimized to a
4581   // single "lsls x, c+1".  The shift sets the "C" and "Z" flags the same
4582   // way a cmp would.
4583   // FIXME: Add support for ARM/Thumb2; this would need isel patterns, and
4584   // some tweaks to the heuristics for the previous and->shift transform.
4585   // FIXME: Optimize cases where the LHS isn't a shift.
4586   if (Subtarget->isThumb1Only() && LHS->getOpcode() == ISD::SHL &&
4587       isa<ConstantSDNode>(RHS) &&
4588       cast<ConstantSDNode>(RHS)->getZExtValue() == 0x80000000U &&
4589       CC == ISD::SETUGT && isa<ConstantSDNode>(LHS.getOperand(1)) &&
4590       cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() < 31) {
4591     unsigned ShiftAmt =
4592       cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() + 1;
4593     SDValue Shift = DAG.getNode(ARMISD::LSLS, dl,
4594                                 DAG.getVTList(MVT::i32, MVT::i32),
4595                                 LHS.getOperand(0),
4596                                 DAG.getConstant(ShiftAmt, dl, MVT::i32));
4597     SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, ARM::CPSR,
4598                                      Shift.getValue(1), SDValue());
4599     ARMcc = DAG.getConstant(ARMCC::HI, dl, MVT::i32);
4600     return Chain.getValue(1);
4601   }
4602 
4603   ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
4604 
4605   // If the RHS is a constant zero then the V (overflow) flag will never be
4606   // set. This can allow us to simplify GE to PL or LT to MI, which can be
4607   // simpler for other passes (like the peephole optimiser) to deal with.
4608   if (isNullConstant(RHS)) {
4609     switch (CondCode) {
4610       default: break;
4611       case ARMCC::GE:
4612         CondCode = ARMCC::PL;
4613         break;
4614       case ARMCC::LT:
4615         CondCode = ARMCC::MI;
4616         break;
4617     }
4618   }
4619 
4620   ARMISD::NodeType CompareType;
4621   switch (CondCode) {
4622   default:
4623     CompareType = ARMISD::CMP;
4624     break;
4625   case ARMCC::EQ:
4626   case ARMCC::NE:
4627     // Uses only Z Flag
4628     CompareType = ARMISD::CMPZ;
4629     break;
4630   }
4631   ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
4632   return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
4633 }
4634 
4635 /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
getVFPCmp(SDValue LHS,SDValue RHS,SelectionDAG & DAG,const SDLoc & dl,bool Signaling) const4636 SDValue ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS,
4637                                      SelectionDAG &DAG, const SDLoc &dl,
4638                                      bool Signaling) const {
4639   assert(Subtarget->hasFP64() || RHS.getValueType() != MVT::f64);
4640   SDValue Cmp;
4641   if (!isFloatingPointZero(RHS))
4642     Cmp = DAG.getNode(Signaling ? ARMISD::CMPFPE : ARMISD::CMPFP,
4643                       dl, MVT::Glue, LHS, RHS);
4644   else
4645     Cmp = DAG.getNode(Signaling ? ARMISD::CMPFPEw0 : ARMISD::CMPFPw0,
4646                       dl, MVT::Glue, LHS);
4647   return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
4648 }
4649 
4650 /// duplicateCmp - Glue values can have only one use, so this function
4651 /// duplicates a comparison node.
4652 SDValue
duplicateCmp(SDValue Cmp,SelectionDAG & DAG) const4653 ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
4654   unsigned Opc = Cmp.getOpcode();
4655   SDLoc DL(Cmp);
4656   if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
4657     return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
4658 
4659   assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
4660   Cmp = Cmp.getOperand(0);
4661   Opc = Cmp.getOpcode();
4662   if (Opc == ARMISD::CMPFP)
4663     Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
4664   else {
4665     assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
4666     Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0));
4667   }
4668   return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
4669 }
4670 
4671 // This function returns three things: the arithmetic computation itself
4672 // (Value), a comparison (OverflowCmp), and a condition code (ARMcc).  The
4673 // comparison and the condition code define the case in which the arithmetic
4674 // computation *does not* overflow.
4675 std::pair<SDValue, SDValue>
getARMXALUOOp(SDValue Op,SelectionDAG & DAG,SDValue & ARMcc) const4676 ARMTargetLowering::getARMXALUOOp(SDValue Op, SelectionDAG &DAG,
4677                                  SDValue &ARMcc) const {
4678   assert(Op.getValueType() == MVT::i32 &&  "Unsupported value type");
4679 
4680   SDValue Value, OverflowCmp;
4681   SDValue LHS = Op.getOperand(0);
4682   SDValue RHS = Op.getOperand(1);
4683   SDLoc dl(Op);
4684 
4685   // FIXME: We are currently always generating CMPs because we don't support
4686   // generating CMN through the backend. This is not as good as the natural
4687   // CMP case because it causes a register dependency and cannot be folded
4688   // later.
4689 
4690   switch (Op.getOpcode()) {
4691   default:
4692     llvm_unreachable("Unknown overflow instruction!");
4693   case ISD::SADDO:
4694     ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
4695     Value = DAG.getNode(ISD::ADD, dl, Op.getValueType(), LHS, RHS);
4696     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS);
4697     break;
4698   case ISD::UADDO:
4699     ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
4700     // We use ADDC here to correspond to its use in LowerUnsignedALUO.
4701     // We do not use it in the USUBO case as Value may not be used.
4702     Value = DAG.getNode(ARMISD::ADDC, dl,
4703                         DAG.getVTList(Op.getValueType(), MVT::i32), LHS, RHS)
4704                 .getValue(0);
4705     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS);
4706     break;
4707   case ISD::SSUBO:
4708     ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
4709     Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
4710     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS);
4711     break;
4712   case ISD::USUBO:
4713     ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
4714     Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
4715     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS);
4716     break;
4717   case ISD::UMULO:
4718     // We generate a UMUL_LOHI and then check if the high word is 0.
4719     ARMcc = DAG.getConstant(ARMCC::EQ, dl, MVT::i32);
4720     Value = DAG.getNode(ISD::UMUL_LOHI, dl,
4721                         DAG.getVTList(Op.getValueType(), Op.getValueType()),
4722                         LHS, RHS);
4723     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value.getValue(1),
4724                               DAG.getConstant(0, dl, MVT::i32));
4725     Value = Value.getValue(0); // We only want the low 32 bits for the result.
4726     break;
4727   case ISD::SMULO:
4728     // We generate a SMUL_LOHI and then check if all the bits of the high word
4729     // are the same as the sign bit of the low word.
4730     ARMcc = DAG.getConstant(ARMCC::EQ, dl, MVT::i32);
4731     Value = DAG.getNode(ISD::SMUL_LOHI, dl,
4732                         DAG.getVTList(Op.getValueType(), Op.getValueType()),
4733                         LHS, RHS);
4734     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value.getValue(1),
4735                               DAG.getNode(ISD::SRA, dl, Op.getValueType(),
4736                                           Value.getValue(0),
4737                                           DAG.getConstant(31, dl, MVT::i32)));
4738     Value = Value.getValue(0); // We only want the low 32 bits for the result.
4739     break;
4740   } // switch (...)
4741 
4742   return std::make_pair(Value, OverflowCmp);
4743 }
4744 
4745 SDValue
LowerSignedALUO(SDValue Op,SelectionDAG & DAG) const4746 ARMTargetLowering::LowerSignedALUO(SDValue Op, SelectionDAG &DAG) const {
4747   // Let legalize expand this if it isn't a legal type yet.
4748   if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
4749     return SDValue();
4750 
4751   SDValue Value, OverflowCmp;
4752   SDValue ARMcc;
4753   std::tie(Value, OverflowCmp) = getARMXALUOOp(Op, DAG, ARMcc);
4754   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4755   SDLoc dl(Op);
4756   // We use 0 and 1 as false and true values.
4757   SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
4758   SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
4759   EVT VT = Op.getValueType();
4760 
4761   SDValue Overflow = DAG.getNode(ARMISD::CMOV, dl, VT, TVal, FVal,
4762                                  ARMcc, CCR, OverflowCmp);
4763 
4764   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
4765   return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
4766 }
4767 
ConvertBooleanCarryToCarryFlag(SDValue BoolCarry,SelectionDAG & DAG)4768 static SDValue ConvertBooleanCarryToCarryFlag(SDValue BoolCarry,
4769                                               SelectionDAG &DAG) {
4770   SDLoc DL(BoolCarry);
4771   EVT CarryVT = BoolCarry.getValueType();
4772 
4773   // This converts the boolean value carry into the carry flag by doing
4774   // ARMISD::SUBC Carry, 1
4775   SDValue Carry = DAG.getNode(ARMISD::SUBC, DL,
4776                               DAG.getVTList(CarryVT, MVT::i32),
4777                               BoolCarry, DAG.getConstant(1, DL, CarryVT));
4778   return Carry.getValue(1);
4779 }
4780 
ConvertCarryFlagToBooleanCarry(SDValue Flags,EVT VT,SelectionDAG & DAG)4781 static SDValue ConvertCarryFlagToBooleanCarry(SDValue Flags, EVT VT,
4782                                               SelectionDAG &DAG) {
4783   SDLoc DL(Flags);
4784 
4785   // Now convert the carry flag into a boolean carry. We do this
4786   // using ARMISD:ADDE 0, 0, Carry
4787   return DAG.getNode(ARMISD::ADDE, DL, DAG.getVTList(VT, MVT::i32),
4788                      DAG.getConstant(0, DL, MVT::i32),
4789                      DAG.getConstant(0, DL, MVT::i32), Flags);
4790 }
4791 
LowerUnsignedALUO(SDValue Op,SelectionDAG & DAG) const4792 SDValue ARMTargetLowering::LowerUnsignedALUO(SDValue Op,
4793                                              SelectionDAG &DAG) const {
4794   // Let legalize expand this if it isn't a legal type yet.
4795   if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
4796     return SDValue();
4797 
4798   SDValue LHS = Op.getOperand(0);
4799   SDValue RHS = Op.getOperand(1);
4800   SDLoc dl(Op);
4801 
4802   EVT VT = Op.getValueType();
4803   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
4804   SDValue Value;
4805   SDValue Overflow;
4806   switch (Op.getOpcode()) {
4807   default:
4808     llvm_unreachable("Unknown overflow instruction!");
4809   case ISD::UADDO:
4810     Value = DAG.getNode(ARMISD::ADDC, dl, VTs, LHS, RHS);
4811     // Convert the carry flag into a boolean value.
4812     Overflow = ConvertCarryFlagToBooleanCarry(Value.getValue(1), VT, DAG);
4813     break;
4814   case ISD::USUBO: {
4815     Value = DAG.getNode(ARMISD::SUBC, dl, VTs, LHS, RHS);
4816     // Convert the carry flag into a boolean value.
4817     Overflow = ConvertCarryFlagToBooleanCarry(Value.getValue(1), VT, DAG);
4818     // ARMISD::SUBC returns 0 when we have to borrow, so make it an overflow
4819     // value. So compute 1 - C.
4820     Overflow = DAG.getNode(ISD::SUB, dl, MVT::i32,
4821                            DAG.getConstant(1, dl, MVT::i32), Overflow);
4822     break;
4823   }
4824   }
4825 
4826   return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
4827 }
4828 
LowerSADDSUBSAT(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * Subtarget)4829 static SDValue LowerSADDSUBSAT(SDValue Op, SelectionDAG &DAG,
4830                                const ARMSubtarget *Subtarget) {
4831   EVT VT = Op.getValueType();
4832   if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP())
4833     return SDValue();
4834   if (!VT.isSimple())
4835     return SDValue();
4836 
4837   unsigned NewOpcode;
4838   bool IsAdd = Op->getOpcode() == ISD::SADDSAT;
4839   switch (VT.getSimpleVT().SimpleTy) {
4840   default:
4841     return SDValue();
4842   case MVT::i8:
4843     NewOpcode = IsAdd ? ARMISD::QADD8b : ARMISD::QSUB8b;
4844     break;
4845   case MVT::i16:
4846     NewOpcode = IsAdd ? ARMISD::QADD16b : ARMISD::QSUB16b;
4847     break;
4848   }
4849 
4850   SDLoc dl(Op);
4851   SDValue Add =
4852       DAG.getNode(NewOpcode, dl, MVT::i32,
4853                   DAG.getSExtOrTrunc(Op->getOperand(0), dl, MVT::i32),
4854                   DAG.getSExtOrTrunc(Op->getOperand(1), dl, MVT::i32));
4855   return DAG.getNode(ISD::TRUNCATE, dl, VT, Add);
4856 }
4857 
LowerSELECT(SDValue Op,SelectionDAG & DAG) const4858 SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
4859   SDValue Cond = Op.getOperand(0);
4860   SDValue SelectTrue = Op.getOperand(1);
4861   SDValue SelectFalse = Op.getOperand(2);
4862   SDLoc dl(Op);
4863   unsigned Opc = Cond.getOpcode();
4864 
4865   if (Cond.getResNo() == 1 &&
4866       (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
4867        Opc == ISD::USUBO)) {
4868     if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0)))
4869       return SDValue();
4870 
4871     SDValue Value, OverflowCmp;
4872     SDValue ARMcc;
4873     std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc);
4874     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4875     EVT VT = Op.getValueType();
4876 
4877     return getCMOV(dl, VT, SelectTrue, SelectFalse, ARMcc, CCR,
4878                    OverflowCmp, DAG);
4879   }
4880 
4881   // Convert:
4882   //
4883   //   (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
4884   //   (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
4885   //
4886   if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
4887     const ConstantSDNode *CMOVTrue =
4888       dyn_cast<ConstantSDNode>(Cond.getOperand(0));
4889     const ConstantSDNode *CMOVFalse =
4890       dyn_cast<ConstantSDNode>(Cond.getOperand(1));
4891 
4892     if (CMOVTrue && CMOVFalse) {
4893       unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
4894       unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
4895 
4896       SDValue True;
4897       SDValue False;
4898       if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
4899         True = SelectTrue;
4900         False = SelectFalse;
4901       } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
4902         True = SelectFalse;
4903         False = SelectTrue;
4904       }
4905 
4906       if (True.getNode() && False.getNode()) {
4907         EVT VT = Op.getValueType();
4908         SDValue ARMcc = Cond.getOperand(2);
4909         SDValue CCR = Cond.getOperand(3);
4910         SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
4911         assert(True.getValueType() == VT);
4912         return getCMOV(dl, VT, True, False, ARMcc, CCR, Cmp, DAG);
4913       }
4914     }
4915   }
4916 
4917   // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
4918   // undefined bits before doing a full-word comparison with zero.
4919   Cond = DAG.getNode(ISD::AND, dl, Cond.getValueType(), Cond,
4920                      DAG.getConstant(1, dl, Cond.getValueType()));
4921 
4922   return DAG.getSelectCC(dl, Cond,
4923                          DAG.getConstant(0, dl, Cond.getValueType()),
4924                          SelectTrue, SelectFalse, ISD::SETNE);
4925 }
4926 
checkVSELConstraints(ISD::CondCode CC,ARMCC::CondCodes & CondCode,bool & swpCmpOps,bool & swpVselOps)4927 static void checkVSELConstraints(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
4928                                  bool &swpCmpOps, bool &swpVselOps) {
4929   // Start by selecting the GE condition code for opcodes that return true for
4930   // 'equality'
4931   if (CC == ISD::SETUGE || CC == ISD::SETOGE || CC == ISD::SETOLE ||
4932       CC == ISD::SETULE || CC == ISD::SETGE  || CC == ISD::SETLE)
4933     CondCode = ARMCC::GE;
4934 
4935   // and GT for opcodes that return false for 'equality'.
4936   else if (CC == ISD::SETUGT || CC == ISD::SETOGT || CC == ISD::SETOLT ||
4937            CC == ISD::SETULT || CC == ISD::SETGT  || CC == ISD::SETLT)
4938     CondCode = ARMCC::GT;
4939 
4940   // Since we are constrained to GE/GT, if the opcode contains 'less', we need
4941   // to swap the compare operands.
4942   if (CC == ISD::SETOLE || CC == ISD::SETULE || CC == ISD::SETOLT ||
4943       CC == ISD::SETULT || CC == ISD::SETLE  || CC == ISD::SETLT)
4944     swpCmpOps = true;
4945 
4946   // Both GT and GE are ordered comparisons, and return false for 'unordered'.
4947   // If we have an unordered opcode, we need to swap the operands to the VSEL
4948   // instruction (effectively negating the condition).
4949   //
4950   // This also has the effect of swapping which one of 'less' or 'greater'
4951   // returns true, so we also swap the compare operands. It also switches
4952   // whether we return true for 'equality', so we compensate by picking the
4953   // opposite condition code to our original choice.
4954   if (CC == ISD::SETULE || CC == ISD::SETULT || CC == ISD::SETUGE ||
4955       CC == ISD::SETUGT) {
4956     swpCmpOps = !swpCmpOps;
4957     swpVselOps = !swpVselOps;
4958     CondCode = CondCode == ARMCC::GT ? ARMCC::GE : ARMCC::GT;
4959   }
4960 
4961   // 'ordered' is 'anything but unordered', so use the VS condition code and
4962   // swap the VSEL operands.
4963   if (CC == ISD::SETO) {
4964     CondCode = ARMCC::VS;
4965     swpVselOps = true;
4966   }
4967 
4968   // 'unordered or not equal' is 'anything but equal', so use the EQ condition
4969   // code and swap the VSEL operands. Also do this if we don't care about the
4970   // unordered case.
4971   if (CC == ISD::SETUNE || CC == ISD::SETNE) {
4972     CondCode = ARMCC::EQ;
4973     swpVselOps = true;
4974   }
4975 }
4976 
getCMOV(const SDLoc & dl,EVT VT,SDValue FalseVal,SDValue TrueVal,SDValue ARMcc,SDValue CCR,SDValue Cmp,SelectionDAG & DAG) const4977 SDValue ARMTargetLowering::getCMOV(const SDLoc &dl, EVT VT, SDValue FalseVal,
4978                                    SDValue TrueVal, SDValue ARMcc, SDValue CCR,
4979                                    SDValue Cmp, SelectionDAG &DAG) const {
4980   if (!Subtarget->hasFP64() && VT == MVT::f64) {
4981     FalseVal = DAG.getNode(ARMISD::VMOVRRD, dl,
4982                            DAG.getVTList(MVT::i32, MVT::i32), FalseVal);
4983     TrueVal = DAG.getNode(ARMISD::VMOVRRD, dl,
4984                           DAG.getVTList(MVT::i32, MVT::i32), TrueVal);
4985 
4986     SDValue TrueLow = TrueVal.getValue(0);
4987     SDValue TrueHigh = TrueVal.getValue(1);
4988     SDValue FalseLow = FalseVal.getValue(0);
4989     SDValue FalseHigh = FalseVal.getValue(1);
4990 
4991     SDValue Low = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseLow, TrueLow,
4992                               ARMcc, CCR, Cmp);
4993     SDValue High = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseHigh, TrueHigh,
4994                                ARMcc, CCR, duplicateCmp(Cmp, DAG));
4995 
4996     return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Low, High);
4997   } else {
4998     return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,
4999                        Cmp);
5000   }
5001 }
5002 
isGTorGE(ISD::CondCode CC)5003 static bool isGTorGE(ISD::CondCode CC) {
5004   return CC == ISD::SETGT || CC == ISD::SETGE;
5005 }
5006 
isLTorLE(ISD::CondCode CC)5007 static bool isLTorLE(ISD::CondCode CC) {
5008   return CC == ISD::SETLT || CC == ISD::SETLE;
5009 }
5010 
5011 // See if a conditional (LHS CC RHS ? TrueVal : FalseVal) is lower-saturating.
5012 // All of these conditions (and their <= and >= counterparts) will do:
5013 //          x < k ? k : x
5014 //          x > k ? x : k
5015 //          k < x ? x : k
5016 //          k > x ? k : x
isLowerSaturate(const SDValue LHS,const SDValue RHS,const SDValue TrueVal,const SDValue FalseVal,const ISD::CondCode CC,const SDValue K)5017 static bool isLowerSaturate(const SDValue LHS, const SDValue RHS,
5018                             const SDValue TrueVal, const SDValue FalseVal,
5019                             const ISD::CondCode CC, const SDValue K) {
5020   return (isGTorGE(CC) &&
5021           ((K == LHS && K == TrueVal) || (K == RHS && K == FalseVal))) ||
5022          (isLTorLE(CC) &&
5023           ((K == RHS && K == TrueVal) || (K == LHS && K == FalseVal)));
5024 }
5025 
5026 // Check if two chained conditionals could be converted into SSAT or USAT.
5027 //
5028 // SSAT can replace a set of two conditional selectors that bound a number to an
5029 // interval of type [k, ~k] when k + 1 is a power of 2. Here are some examples:
5030 //
5031 //     x < -k ? -k : (x > k ? k : x)
5032 //     x < -k ? -k : (x < k ? x : k)
5033 //     x > -k ? (x > k ? k : x) : -k
5034 //     x < k ? (x < -k ? -k : x) : k
5035 //     etc.
5036 //
5037 // LLVM canonicalizes these to either a min(max()) or a max(min())
5038 // pattern. This function tries to match one of these and will return a SSAT
5039 // node if successful.
5040 //
5041 // USAT works similarily to SSAT but bounds on the interval [0, k] where k + 1
5042 // is a power of 2.
LowerSaturatingConditional(SDValue Op,SelectionDAG & DAG)5043 static SDValue LowerSaturatingConditional(SDValue Op, SelectionDAG &DAG) {
5044   EVT VT = Op.getValueType();
5045   SDValue V1 = Op.getOperand(0);
5046   SDValue K1 = Op.getOperand(1);
5047   SDValue TrueVal1 = Op.getOperand(2);
5048   SDValue FalseVal1 = Op.getOperand(3);
5049   ISD::CondCode CC1 = cast<CondCodeSDNode>(Op.getOperand(4))->get();
5050 
5051   const SDValue Op2 = isa<ConstantSDNode>(TrueVal1) ? FalseVal1 : TrueVal1;
5052   if (Op2.getOpcode() != ISD::SELECT_CC)
5053     return SDValue();
5054 
5055   SDValue V2 = Op2.getOperand(0);
5056   SDValue K2 = Op2.getOperand(1);
5057   SDValue TrueVal2 = Op2.getOperand(2);
5058   SDValue FalseVal2 = Op2.getOperand(3);
5059   ISD::CondCode CC2 = cast<CondCodeSDNode>(Op2.getOperand(4))->get();
5060 
5061   SDValue V1Tmp = V1;
5062   SDValue V2Tmp = V2;
5063 
5064   // Check that the registers and the constants match a max(min()) or min(max())
5065   // pattern
5066   if (V1Tmp != TrueVal1 || V2Tmp != TrueVal2 || K1 != FalseVal1 ||
5067       K2 != FalseVal2 ||
5068       !((isGTorGE(CC1) && isLTorLE(CC2)) || (isLTorLE(CC1) && isGTorGE(CC2))))
5069     return SDValue();
5070 
5071   // Check that the constant in the lower-bound check is
5072   // the opposite of the constant in the upper-bound check
5073   // in 1's complement.
5074   if (!isa<ConstantSDNode>(K1) || !isa<ConstantSDNode>(K2))
5075     return SDValue();
5076 
5077   int64_t Val1 = cast<ConstantSDNode>(K1)->getSExtValue();
5078   int64_t Val2 = cast<ConstantSDNode>(K2)->getSExtValue();
5079   int64_t PosVal = std::max(Val1, Val2);
5080   int64_t NegVal = std::min(Val1, Val2);
5081 
5082   if (!((Val1 > Val2 && isLTorLE(CC1)) || (Val1 < Val2 && isLTorLE(CC2))) ||
5083       !isPowerOf2_64(PosVal + 1))
5084     return SDValue();
5085 
5086   // Handle the difference between USAT (unsigned) and SSAT (signed)
5087   // saturation
5088   // At this point, PosVal is guaranteed to be positive
5089   uint64_t K = PosVal;
5090   SDLoc dl(Op);
5091   if (Val1 == ~Val2)
5092     return DAG.getNode(ARMISD::SSAT, dl, VT, V2Tmp,
5093                        DAG.getConstant(countTrailingOnes(K), dl, VT));
5094   if (NegVal == 0)
5095     return DAG.getNode(ARMISD::USAT, dl, VT, V2Tmp,
5096                        DAG.getConstant(countTrailingOnes(K), dl, VT));
5097 
5098   return SDValue();
5099 }
5100 
5101 // Check if a condition of the type x < k ? k : x can be converted into a
5102 // bit operation instead of conditional moves.
5103 // Currently this is allowed given:
5104 // - The conditions and values match up
5105 // - k is 0 or -1 (all ones)
5106 // This function will not check the last condition, thats up to the caller
5107 // It returns true if the transformation can be made, and in such case
5108 // returns x in V, and k in SatK.
isLowerSaturatingConditional(const SDValue & Op,SDValue & V,SDValue & SatK)5109 static bool isLowerSaturatingConditional(const SDValue &Op, SDValue &V,
5110                                          SDValue &SatK)
5111 {
5112   SDValue LHS = Op.getOperand(0);
5113   SDValue RHS = Op.getOperand(1);
5114   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
5115   SDValue TrueVal = Op.getOperand(2);
5116   SDValue FalseVal = Op.getOperand(3);
5117 
5118   SDValue *K = isa<ConstantSDNode>(LHS) ? &LHS : isa<ConstantSDNode>(RHS)
5119                                                ? &RHS
5120                                                : nullptr;
5121 
5122   // No constant operation in comparison, early out
5123   if (!K)
5124     return false;
5125 
5126   SDValue KTmp = isa<ConstantSDNode>(TrueVal) ? TrueVal : FalseVal;
5127   V = (KTmp == TrueVal) ? FalseVal : TrueVal;
5128   SDValue VTmp = (K && *K == LHS) ? RHS : LHS;
5129 
5130   // If the constant on left and right side, or variable on left and right,
5131   // does not match, early out
5132   if (*K != KTmp || V != VTmp)
5133     return false;
5134 
5135   if (isLowerSaturate(LHS, RHS, TrueVal, FalseVal, CC, *K)) {
5136     SatK = *K;
5137     return true;
5138   }
5139 
5140   return false;
5141 }
5142 
isUnsupportedFloatingType(EVT VT) const5143 bool ARMTargetLowering::isUnsupportedFloatingType(EVT VT) const {
5144   if (VT == MVT::f32)
5145     return !Subtarget->hasVFP2Base();
5146   if (VT == MVT::f64)
5147     return !Subtarget->hasFP64();
5148   if (VT == MVT::f16)
5149     return !Subtarget->hasFullFP16();
5150   return false;
5151 }
5152 
LowerSELECT_CC(SDValue Op,SelectionDAG & DAG) const5153 SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
5154   EVT VT = Op.getValueType();
5155   SDLoc dl(Op);
5156 
5157   // Try to convert two saturating conditional selects into a single SSAT
5158   if ((!Subtarget->isThumb() && Subtarget->hasV6Ops()) || Subtarget->isThumb2())
5159     if (SDValue SatValue = LowerSaturatingConditional(Op, DAG))
5160       return SatValue;
5161 
5162   // Try to convert expressions of the form x < k ? k : x (and similar forms)
5163   // into more efficient bit operations, which is possible when k is 0 or -1
5164   // On ARM and Thumb-2 which have flexible operand 2 this will result in
5165   // single instructions. On Thumb the shift and the bit operation will be two
5166   // instructions.
5167   // Only allow this transformation on full-width (32-bit) operations
5168   SDValue LowerSatConstant;
5169   SDValue SatValue;
5170   if (VT == MVT::i32 &&
5171       isLowerSaturatingConditional(Op, SatValue, LowerSatConstant)) {
5172     SDValue ShiftV = DAG.getNode(ISD::SRA, dl, VT, SatValue,
5173                                  DAG.getConstant(31, dl, VT));
5174     if (isNullConstant(LowerSatConstant)) {
5175       SDValue NotShiftV = DAG.getNode(ISD::XOR, dl, VT, ShiftV,
5176                                       DAG.getAllOnesConstant(dl, VT));
5177       return DAG.getNode(ISD::AND, dl, VT, SatValue, NotShiftV);
5178     } else if (isAllOnesConstant(LowerSatConstant))
5179       return DAG.getNode(ISD::OR, dl, VT, SatValue, ShiftV);
5180   }
5181 
5182   SDValue LHS = Op.getOperand(0);
5183   SDValue RHS = Op.getOperand(1);
5184   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
5185   SDValue TrueVal = Op.getOperand(2);
5186   SDValue FalseVal = Op.getOperand(3);
5187   ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FalseVal);
5188   ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TrueVal);
5189 
5190   if (Subtarget->hasV8_1MMainlineOps() && CFVal && CTVal &&
5191       LHS.getValueType() == MVT::i32 && RHS.getValueType() == MVT::i32) {
5192     unsigned TVal = CTVal->getZExtValue();
5193     unsigned FVal = CFVal->getZExtValue();
5194     unsigned Opcode = 0;
5195 
5196     if (TVal == ~FVal) {
5197       Opcode = ARMISD::CSINV;
5198     } else if (TVal == ~FVal + 1) {
5199       Opcode = ARMISD::CSNEG;
5200     } else if (TVal + 1 == FVal) {
5201       Opcode = ARMISD::CSINC;
5202     } else if (TVal == FVal + 1) {
5203       Opcode = ARMISD::CSINC;
5204       std::swap(TrueVal, FalseVal);
5205       std::swap(TVal, FVal);
5206       CC = ISD::getSetCCInverse(CC, LHS.getValueType());
5207     }
5208 
5209     if (Opcode) {
5210       // If one of the constants is cheaper than another, materialise the
5211       // cheaper one and let the csel generate the other.
5212       if (Opcode != ARMISD::CSINC &&
5213           HasLowerConstantMaterializationCost(FVal, TVal, Subtarget)) {
5214         std::swap(TrueVal, FalseVal);
5215         std::swap(TVal, FVal);
5216         CC = ISD::getSetCCInverse(CC, LHS.getValueType());
5217       }
5218 
5219       // Attempt to use ZR checking TVal is 0, possibly inverting the condition
5220       // to get there. CSINC not is invertable like the other two (~(~a) == a,
5221       // -(-a) == a, but (a+1)+1 != a).
5222       if (FVal == 0 && Opcode != ARMISD::CSINC) {
5223         std::swap(TrueVal, FalseVal);
5224         std::swap(TVal, FVal);
5225         CC = ISD::getSetCCInverse(CC, LHS.getValueType());
5226       }
5227 
5228       // Drops F's value because we can get it by inverting/negating TVal.
5229       FalseVal = TrueVal;
5230 
5231       SDValue ARMcc;
5232       SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
5233       EVT VT = TrueVal.getValueType();
5234       return DAG.getNode(Opcode, dl, VT, TrueVal, FalseVal, ARMcc, Cmp);
5235     }
5236   }
5237 
5238   if (isUnsupportedFloatingType(LHS.getValueType())) {
5239     DAG.getTargetLoweringInfo().softenSetCCOperands(
5240         DAG, LHS.getValueType(), LHS, RHS, CC, dl, LHS, RHS);
5241 
5242     // If softenSetCCOperands only returned one value, we should compare it to
5243     // zero.
5244     if (!RHS.getNode()) {
5245       RHS = DAG.getConstant(0, dl, LHS.getValueType());
5246       CC = ISD::SETNE;
5247     }
5248   }
5249 
5250   if (LHS.getValueType() == MVT::i32) {
5251     // Try to generate VSEL on ARMv8.
5252     // The VSEL instruction can't use all the usual ARM condition
5253     // codes: it only has two bits to select the condition code, so it's
5254     // constrained to use only GE, GT, VS and EQ.
5255     //
5256     // To implement all the various ISD::SETXXX opcodes, we sometimes need to
5257     // swap the operands of the previous compare instruction (effectively
5258     // inverting the compare condition, swapping 'less' and 'greater') and
5259     // sometimes need to swap the operands to the VSEL (which inverts the
5260     // condition in the sense of firing whenever the previous condition didn't)
5261     if (Subtarget->hasFPARMv8Base() && (TrueVal.getValueType() == MVT::f16 ||
5262                                         TrueVal.getValueType() == MVT::f32 ||
5263                                         TrueVal.getValueType() == MVT::f64)) {
5264       ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
5265       if (CondCode == ARMCC::LT || CondCode == ARMCC::LE ||
5266           CondCode == ARMCC::VC || CondCode == ARMCC::NE) {
5267         CC = ISD::getSetCCInverse(CC, LHS.getValueType());
5268         std::swap(TrueVal, FalseVal);
5269       }
5270     }
5271 
5272     SDValue ARMcc;
5273     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5274     SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
5275     // Choose GE over PL, which vsel does now support
5276     if (cast<ConstantSDNode>(ARMcc)->getZExtValue() == ARMCC::PL)
5277       ARMcc = DAG.getConstant(ARMCC::GE, dl, MVT::i32);
5278     return getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
5279   }
5280 
5281   ARMCC::CondCodes CondCode, CondCode2;
5282   FPCCToARMCC(CC, CondCode, CondCode2);
5283 
5284   // Normalize the fp compare. If RHS is zero we prefer to keep it there so we
5285   // match CMPFPw0 instead of CMPFP, though we don't do this for f16 because we
5286   // must use VSEL (limited condition codes), due to not having conditional f16
5287   // moves.
5288   if (Subtarget->hasFPARMv8Base() &&
5289       !(isFloatingPointZero(RHS) && TrueVal.getValueType() != MVT::f16) &&
5290       (TrueVal.getValueType() == MVT::f16 ||
5291        TrueVal.getValueType() == MVT::f32 ||
5292        TrueVal.getValueType() == MVT::f64)) {
5293     bool swpCmpOps = false;
5294     bool swpVselOps = false;
5295     checkVSELConstraints(CC, CondCode, swpCmpOps, swpVselOps);
5296 
5297     if (CondCode == ARMCC::GT || CondCode == ARMCC::GE ||
5298         CondCode == ARMCC::VS || CondCode == ARMCC::EQ) {
5299       if (swpCmpOps)
5300         std::swap(LHS, RHS);
5301       if (swpVselOps)
5302         std::swap(TrueVal, FalseVal);
5303     }
5304   }
5305 
5306   SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
5307   SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
5308   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5309   SDValue Result = getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
5310   if (CondCode2 != ARMCC::AL) {
5311     SDValue ARMcc2 = DAG.getConstant(CondCode2, dl, MVT::i32);
5312     // FIXME: Needs another CMP because flag can have but one use.
5313     SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
5314     Result = getCMOV(dl, VT, Result, TrueVal, ARMcc2, CCR, Cmp2, DAG);
5315   }
5316   return Result;
5317 }
5318 
5319 /// canChangeToInt - Given the fp compare operand, return true if it is suitable
5320 /// to morph to an integer compare sequence.
canChangeToInt(SDValue Op,bool & SeenZero,const ARMSubtarget * Subtarget)5321 static bool canChangeToInt(SDValue Op, bool &SeenZero,
5322                            const ARMSubtarget *Subtarget) {
5323   SDNode *N = Op.getNode();
5324   if (!N->hasOneUse())
5325     // Otherwise it requires moving the value from fp to integer registers.
5326     return false;
5327   if (!N->getNumValues())
5328     return false;
5329   EVT VT = Op.getValueType();
5330   if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
5331     // f32 case is generally profitable. f64 case only makes sense when vcmpe +
5332     // vmrs are very slow, e.g. cortex-a8.
5333     return false;
5334 
5335   if (isFloatingPointZero(Op)) {
5336     SeenZero = true;
5337     return true;
5338   }
5339   return ISD::isNormalLoad(N);
5340 }
5341 
bitcastf32Toi32(SDValue Op,SelectionDAG & DAG)5342 static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
5343   if (isFloatingPointZero(Op))
5344     return DAG.getConstant(0, SDLoc(Op), MVT::i32);
5345 
5346   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
5347     return DAG.getLoad(MVT::i32, SDLoc(Op), Ld->getChain(), Ld->getBasePtr(),
5348                        Ld->getPointerInfo(), Ld->getAlignment(),
5349                        Ld->getMemOperand()->getFlags());
5350 
5351   llvm_unreachable("Unknown VFP cmp argument!");
5352 }
5353 
expandf64Toi32(SDValue Op,SelectionDAG & DAG,SDValue & RetVal1,SDValue & RetVal2)5354 static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
5355                            SDValue &RetVal1, SDValue &RetVal2) {
5356   SDLoc dl(Op);
5357 
5358   if (isFloatingPointZero(Op)) {
5359     RetVal1 = DAG.getConstant(0, dl, MVT::i32);
5360     RetVal2 = DAG.getConstant(0, dl, MVT::i32);
5361     return;
5362   }
5363 
5364   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
5365     SDValue Ptr = Ld->getBasePtr();
5366     RetVal1 =
5367         DAG.getLoad(MVT::i32, dl, Ld->getChain(), Ptr, Ld->getPointerInfo(),
5368                     Ld->getAlignment(), Ld->getMemOperand()->getFlags());
5369 
5370     EVT PtrType = Ptr.getValueType();
5371     unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
5372     SDValue NewPtr = DAG.getNode(ISD::ADD, dl,
5373                                  PtrType, Ptr, DAG.getConstant(4, dl, PtrType));
5374     RetVal2 = DAG.getLoad(MVT::i32, dl, Ld->getChain(), NewPtr,
5375                           Ld->getPointerInfo().getWithOffset(4), NewAlign,
5376                           Ld->getMemOperand()->getFlags());
5377     return;
5378   }
5379 
5380   llvm_unreachable("Unknown VFP cmp argument!");
5381 }
5382 
5383 /// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
5384 /// f32 and even f64 comparisons to integer ones.
5385 SDValue
OptimizeVFPBrcond(SDValue Op,SelectionDAG & DAG) const5386 ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
5387   SDValue Chain = Op.getOperand(0);
5388   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
5389   SDValue LHS = Op.getOperand(2);
5390   SDValue RHS = Op.getOperand(3);
5391   SDValue Dest = Op.getOperand(4);
5392   SDLoc dl(Op);
5393 
5394   bool LHSSeenZero = false;
5395   bool LHSOk = canChangeToInt(LHS, LHSSeenZero, Subtarget);
5396   bool RHSSeenZero = false;
5397   bool RHSOk = canChangeToInt(RHS, RHSSeenZero, Subtarget);
5398   if (LHSOk && RHSOk && (LHSSeenZero || RHSSeenZero)) {
5399     // If unsafe fp math optimization is enabled and there are no other uses of
5400     // the CMP operands, and the condition code is EQ or NE, we can optimize it
5401     // to an integer comparison.
5402     if (CC == ISD::SETOEQ)
5403       CC = ISD::SETEQ;
5404     else if (CC == ISD::SETUNE)
5405       CC = ISD::SETNE;
5406 
5407     SDValue Mask = DAG.getConstant(0x7fffffff, dl, MVT::i32);
5408     SDValue ARMcc;
5409     if (LHS.getValueType() == MVT::f32) {
5410       LHS = DAG.getNode(ISD::AND, dl, MVT::i32,
5411                         bitcastf32Toi32(LHS, DAG), Mask);
5412       RHS = DAG.getNode(ISD::AND, dl, MVT::i32,
5413                         bitcastf32Toi32(RHS, DAG), Mask);
5414       SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
5415       SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5416       return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
5417                          Chain, Dest, ARMcc, CCR, Cmp);
5418     }
5419 
5420     SDValue LHS1, LHS2;
5421     SDValue RHS1, RHS2;
5422     expandf64Toi32(LHS, DAG, LHS1, LHS2);
5423     expandf64Toi32(RHS, DAG, RHS1, RHS2);
5424     LHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, LHS2, Mask);
5425     RHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, RHS2, Mask);
5426     ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
5427     ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
5428     SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
5429     SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
5430     return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops);
5431   }
5432 
5433   return SDValue();
5434 }
5435 
LowerBRCOND(SDValue Op,SelectionDAG & DAG) const5436 SDValue ARMTargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
5437   SDValue Chain = Op.getOperand(0);
5438   SDValue Cond = Op.getOperand(1);
5439   SDValue Dest = Op.getOperand(2);
5440   SDLoc dl(Op);
5441 
5442   // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
5443   // instruction.
5444   unsigned Opc = Cond.getOpcode();
5445   bool OptimizeMul = (Opc == ISD::SMULO || Opc == ISD::UMULO) &&
5446                       !Subtarget->isThumb1Only();
5447   if (Cond.getResNo() == 1 &&
5448       (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
5449        Opc == ISD::USUBO || OptimizeMul)) {
5450     // Only lower legal XALUO ops.
5451     if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0)))
5452       return SDValue();
5453 
5454     // The actual operation with overflow check.
5455     SDValue Value, OverflowCmp;
5456     SDValue ARMcc;
5457     std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc);
5458 
5459     // Reverse the condition code.
5460     ARMCC::CondCodes CondCode =
5461         (ARMCC::CondCodes)cast<const ConstantSDNode>(ARMcc)->getZExtValue();
5462     CondCode = ARMCC::getOppositeCondition(CondCode);
5463     ARMcc = DAG.getConstant(CondCode, SDLoc(ARMcc), MVT::i32);
5464     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5465 
5466     return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Chain, Dest, ARMcc, CCR,
5467                        OverflowCmp);
5468   }
5469 
5470   return SDValue();
5471 }
5472 
LowerBR_CC(SDValue Op,SelectionDAG & DAG) const5473 SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
5474   SDValue Chain = Op.getOperand(0);
5475   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
5476   SDValue LHS = Op.getOperand(2);
5477   SDValue RHS = Op.getOperand(3);
5478   SDValue Dest = Op.getOperand(4);
5479   SDLoc dl(Op);
5480 
5481   if (isUnsupportedFloatingType(LHS.getValueType())) {
5482     DAG.getTargetLoweringInfo().softenSetCCOperands(
5483         DAG, LHS.getValueType(), LHS, RHS, CC, dl, LHS, RHS);
5484 
5485     // If softenSetCCOperands only returned one value, we should compare it to
5486     // zero.
5487     if (!RHS.getNode()) {
5488       RHS = DAG.getConstant(0, dl, LHS.getValueType());
5489       CC = ISD::SETNE;
5490     }
5491   }
5492 
5493   // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
5494   // instruction.
5495   unsigned Opc = LHS.getOpcode();
5496   bool OptimizeMul = (Opc == ISD::SMULO || Opc == ISD::UMULO) &&
5497                       !Subtarget->isThumb1Only();
5498   if (LHS.getResNo() == 1 && (isOneConstant(RHS) || isNullConstant(RHS)) &&
5499       (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
5500        Opc == ISD::USUBO || OptimizeMul) &&
5501       (CC == ISD::SETEQ || CC == ISD::SETNE)) {
5502     // Only lower legal XALUO ops.
5503     if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
5504       return SDValue();
5505 
5506     // The actual operation with overflow check.
5507     SDValue Value, OverflowCmp;
5508     SDValue ARMcc;
5509     std::tie(Value, OverflowCmp) = getARMXALUOOp(LHS.getValue(0), DAG, ARMcc);
5510 
5511     if ((CC == ISD::SETNE) != isOneConstant(RHS)) {
5512       // Reverse the condition code.
5513       ARMCC::CondCodes CondCode =
5514           (ARMCC::CondCodes)cast<const ConstantSDNode>(ARMcc)->getZExtValue();
5515       CondCode = ARMCC::getOppositeCondition(CondCode);
5516       ARMcc = DAG.getConstant(CondCode, SDLoc(ARMcc), MVT::i32);
5517     }
5518     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5519 
5520     return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Chain, Dest, ARMcc, CCR,
5521                        OverflowCmp);
5522   }
5523 
5524   if (LHS.getValueType() == MVT::i32) {
5525     SDValue ARMcc;
5526     SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
5527     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5528     return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
5529                        Chain, Dest, ARMcc, CCR, Cmp);
5530   }
5531 
5532   if (getTargetMachine().Options.UnsafeFPMath &&
5533       (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
5534        CC == ISD::SETNE || CC == ISD::SETUNE)) {
5535     if (SDValue Result = OptimizeVFPBrcond(Op, DAG))
5536       return Result;
5537   }
5538 
5539   ARMCC::CondCodes CondCode, CondCode2;
5540   FPCCToARMCC(CC, CondCode, CondCode2);
5541 
5542   SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
5543   SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
5544   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5545   SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
5546   SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
5547   SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
5548   if (CondCode2 != ARMCC::AL) {
5549     ARMcc = DAG.getConstant(CondCode2, dl, MVT::i32);
5550     SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
5551     Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
5552   }
5553   return Res;
5554 }
5555 
LowerBR_JT(SDValue Op,SelectionDAG & DAG) const5556 SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
5557   SDValue Chain = Op.getOperand(0);
5558   SDValue Table = Op.getOperand(1);
5559   SDValue Index = Op.getOperand(2);
5560   SDLoc dl(Op);
5561 
5562   EVT PTy = getPointerTy(DAG.getDataLayout());
5563   JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
5564   SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
5565   Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI);
5566   Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, dl, PTy));
5567   SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Table, Index);
5568   if (Subtarget->isThumb2() || (Subtarget->hasV8MBaselineOps() && Subtarget->isThumb())) {
5569     // Thumb2 and ARMv8-M use a two-level jump. That is, it jumps into the jump table
5570     // which does another jump to the destination. This also makes it easier
5571     // to translate it to TBB / TBH later (Thumb2 only).
5572     // FIXME: This might not work if the function is extremely large.
5573     return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
5574                        Addr, Op.getOperand(2), JTI);
5575   }
5576   if (isPositionIndependent() || Subtarget->isROPI()) {
5577     Addr =
5578         DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
5579                     MachinePointerInfo::getJumpTable(DAG.getMachineFunction()));
5580     Chain = Addr.getValue(1);
5581     Addr = DAG.getNode(ISD::ADD, dl, PTy, Table, Addr);
5582     return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
5583   } else {
5584     Addr =
5585         DAG.getLoad(PTy, dl, Chain, Addr,
5586                     MachinePointerInfo::getJumpTable(DAG.getMachineFunction()));
5587     Chain = Addr.getValue(1);
5588     return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
5589   }
5590 }
5591 
LowerVectorFP_TO_INT(SDValue Op,SelectionDAG & DAG)5592 static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
5593   EVT VT = Op.getValueType();
5594   SDLoc dl(Op);
5595 
5596   if (Op.getValueType().getVectorElementType() == MVT::i32) {
5597     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32)
5598       return Op;
5599     return DAG.UnrollVectorOp(Op.getNode());
5600   }
5601 
5602   const bool HasFullFP16 =
5603     static_cast<const ARMSubtarget&>(DAG.getSubtarget()).hasFullFP16();
5604 
5605   EVT NewTy;
5606   const EVT OpTy = Op.getOperand(0).getValueType();
5607   if (OpTy == MVT::v4f32)
5608     NewTy = MVT::v4i32;
5609   else if (OpTy == MVT::v4f16 && HasFullFP16)
5610     NewTy = MVT::v4i16;
5611   else if (OpTy == MVT::v8f16 && HasFullFP16)
5612     NewTy = MVT::v8i16;
5613   else
5614     llvm_unreachable("Invalid type for custom lowering!");
5615 
5616   if (VT != MVT::v4i16 && VT != MVT::v8i16)
5617     return DAG.UnrollVectorOp(Op.getNode());
5618 
5619   Op = DAG.getNode(Op.getOpcode(), dl, NewTy, Op.getOperand(0));
5620   return DAG.getNode(ISD::TRUNCATE, dl, VT, Op);
5621 }
5622 
LowerFP_TO_INT(SDValue Op,SelectionDAG & DAG) const5623 SDValue ARMTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const {
5624   EVT VT = Op.getValueType();
5625   if (VT.isVector())
5626     return LowerVectorFP_TO_INT(Op, DAG);
5627 
5628   bool IsStrict = Op->isStrictFPOpcode();
5629   SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0);
5630 
5631   if (isUnsupportedFloatingType(SrcVal.getValueType())) {
5632     RTLIB::Libcall LC;
5633     if (Op.getOpcode() == ISD::FP_TO_SINT ||
5634         Op.getOpcode() == ISD::STRICT_FP_TO_SINT)
5635       LC = RTLIB::getFPTOSINT(SrcVal.getValueType(),
5636                               Op.getValueType());
5637     else
5638       LC = RTLIB::getFPTOUINT(SrcVal.getValueType(),
5639                               Op.getValueType());
5640     SDLoc Loc(Op);
5641     MakeLibCallOptions CallOptions;
5642     SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
5643     SDValue Result;
5644     std::tie(Result, Chain) = makeLibCall(DAG, LC, Op.getValueType(), SrcVal,
5645                                           CallOptions, Loc, Chain);
5646     return IsStrict ? DAG.getMergeValues({Result, Chain}, Loc) : Result;
5647   }
5648 
5649   // FIXME: Remove this when we have strict fp instruction selection patterns
5650   if (IsStrict) {
5651     SDLoc Loc(Op);
5652     SDValue Result =
5653         DAG.getNode(Op.getOpcode() == ISD::STRICT_FP_TO_SINT ? ISD::FP_TO_SINT
5654                                                              : ISD::FP_TO_UINT,
5655                     Loc, Op.getValueType(), SrcVal);
5656     return DAG.getMergeValues({Result, Op.getOperand(0)}, Loc);
5657   }
5658 
5659   return Op;
5660 }
5661 
LowerVectorINT_TO_FP(SDValue Op,SelectionDAG & DAG)5662 static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
5663   EVT VT = Op.getValueType();
5664   SDLoc dl(Op);
5665 
5666   if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) {
5667     if (VT.getVectorElementType() == MVT::f32)
5668       return Op;
5669     return DAG.UnrollVectorOp(Op.getNode());
5670   }
5671 
5672   assert((Op.getOperand(0).getValueType() == MVT::v4i16 ||
5673           Op.getOperand(0).getValueType() == MVT::v8i16) &&
5674          "Invalid type for custom lowering!");
5675 
5676   const bool HasFullFP16 =
5677     static_cast<const ARMSubtarget&>(DAG.getSubtarget()).hasFullFP16();
5678 
5679   EVT DestVecType;
5680   if (VT == MVT::v4f32)
5681     DestVecType = MVT::v4i32;
5682   else if (VT == MVT::v4f16 && HasFullFP16)
5683     DestVecType = MVT::v4i16;
5684   else if (VT == MVT::v8f16 && HasFullFP16)
5685     DestVecType = MVT::v8i16;
5686   else
5687     return DAG.UnrollVectorOp(Op.getNode());
5688 
5689   unsigned CastOpc;
5690   unsigned Opc;
5691   switch (Op.getOpcode()) {
5692   default: llvm_unreachable("Invalid opcode!");
5693   case ISD::SINT_TO_FP:
5694     CastOpc = ISD::SIGN_EXTEND;
5695     Opc = ISD::SINT_TO_FP;
5696     break;
5697   case ISD::UINT_TO_FP:
5698     CastOpc = ISD::ZERO_EXTEND;
5699     Opc = ISD::UINT_TO_FP;
5700     break;
5701   }
5702 
5703   Op = DAG.getNode(CastOpc, dl, DestVecType, Op.getOperand(0));
5704   return DAG.getNode(Opc, dl, VT, Op);
5705 }
5706 
LowerINT_TO_FP(SDValue Op,SelectionDAG & DAG) const5707 SDValue ARMTargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const {
5708   EVT VT = Op.getValueType();
5709   if (VT.isVector())
5710     return LowerVectorINT_TO_FP(Op, DAG);
5711   if (isUnsupportedFloatingType(VT)) {
5712     RTLIB::Libcall LC;
5713     if (Op.getOpcode() == ISD::SINT_TO_FP)
5714       LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(),
5715                               Op.getValueType());
5716     else
5717       LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(),
5718                               Op.getValueType());
5719     MakeLibCallOptions CallOptions;
5720     return makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(0),
5721                        CallOptions, SDLoc(Op)).first;
5722   }
5723 
5724   return Op;
5725 }
5726 
LowerFCOPYSIGN(SDValue Op,SelectionDAG & DAG) const5727 SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
5728   // Implement fcopysign with a fabs and a conditional fneg.
5729   SDValue Tmp0 = Op.getOperand(0);
5730   SDValue Tmp1 = Op.getOperand(1);
5731   SDLoc dl(Op);
5732   EVT VT = Op.getValueType();
5733   EVT SrcVT = Tmp1.getValueType();
5734   bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
5735     Tmp0.getOpcode() == ARMISD::VMOVDRR;
5736   bool UseNEON = !InGPR && Subtarget->hasNEON();
5737 
5738   if (UseNEON) {
5739     // Use VBSL to copy the sign bit.
5740     unsigned EncodedVal = ARM_AM::createVMOVModImm(0x6, 0x80);
5741     SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
5742                                DAG.getTargetConstant(EncodedVal, dl, MVT::i32));
5743     EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
5744     if (VT == MVT::f64)
5745       Mask = DAG.getNode(ARMISD::VSHLIMM, dl, OpVT,
5746                          DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
5747                          DAG.getConstant(32, dl, MVT::i32));
5748     else /*if (VT == MVT::f32)*/
5749       Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
5750     if (SrcVT == MVT::f32) {
5751       Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
5752       if (VT == MVT::f64)
5753         Tmp1 = DAG.getNode(ARMISD::VSHLIMM, dl, OpVT,
5754                            DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
5755                            DAG.getConstant(32, dl, MVT::i32));
5756     } else if (VT == MVT::f32)
5757       Tmp1 = DAG.getNode(ARMISD::VSHRuIMM, dl, MVT::v1i64,
5758                          DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
5759                          DAG.getConstant(32, dl, MVT::i32));
5760     Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
5761     Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
5762 
5763     SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0xff),
5764                                             dl, MVT::i32);
5765     AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
5766     SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
5767                                   DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
5768 
5769     SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
5770                               DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
5771                               DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
5772     if (VT == MVT::f32) {
5773       Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
5774       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
5775                         DAG.getConstant(0, dl, MVT::i32));
5776     } else {
5777       Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
5778     }
5779 
5780     return Res;
5781   }
5782 
5783   // Bitcast operand 1 to i32.
5784   if (SrcVT == MVT::f64)
5785     Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
5786                        Tmp1).getValue(1);
5787   Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
5788 
5789   // Or in the signbit with integer operations.
5790   SDValue Mask1 = DAG.getConstant(0x80000000, dl, MVT::i32);
5791   SDValue Mask2 = DAG.getConstant(0x7fffffff, dl, MVT::i32);
5792   Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
5793   if (VT == MVT::f32) {
5794     Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
5795                        DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
5796     return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
5797                        DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
5798   }
5799 
5800   // f64: Or the high part with signbit and then combine two parts.
5801   Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
5802                      Tmp0);
5803   SDValue Lo = Tmp0.getValue(0);
5804   SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
5805   Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
5806   return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
5807 }
5808 
LowerRETURNADDR(SDValue Op,SelectionDAG & DAG) const5809 SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
5810   MachineFunction &MF = DAG.getMachineFunction();
5811   MachineFrameInfo &MFI = MF.getFrameInfo();
5812   MFI.setReturnAddressIsTaken(true);
5813 
5814   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
5815     return SDValue();
5816 
5817   EVT VT = Op.getValueType();
5818   SDLoc dl(Op);
5819   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5820   if (Depth) {
5821     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
5822     SDValue Offset = DAG.getConstant(4, dl, MVT::i32);
5823     return DAG.getLoad(VT, dl, DAG.getEntryNode(),
5824                        DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
5825                        MachinePointerInfo());
5826   }
5827 
5828   // Return LR, which contains the return address. Mark it an implicit live-in.
5829   unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
5830   return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
5831 }
5832 
LowerFRAMEADDR(SDValue Op,SelectionDAG & DAG) const5833 SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
5834   const ARMBaseRegisterInfo &ARI =
5835     *static_cast<const ARMBaseRegisterInfo*>(RegInfo);
5836   MachineFunction &MF = DAG.getMachineFunction();
5837   MachineFrameInfo &MFI = MF.getFrameInfo();
5838   MFI.setFrameAddressIsTaken(true);
5839 
5840   EVT VT = Op.getValueType();
5841   SDLoc dl(Op);  // FIXME probably not meaningful
5842   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5843   Register FrameReg = ARI.getFrameRegister(MF);
5844   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
5845   while (Depth--)
5846     FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
5847                             MachinePointerInfo());
5848   return FrameAddr;
5849 }
5850 
5851 // FIXME? Maybe this could be a TableGen attribute on some registers and
5852 // this table could be generated automatically from RegInfo.
getRegisterByName(const char * RegName,LLT VT,const MachineFunction & MF) const5853 Register ARMTargetLowering::getRegisterByName(const char* RegName, LLT VT,
5854                                               const MachineFunction &MF) const {
5855   Register Reg = StringSwitch<unsigned>(RegName)
5856                        .Case("sp", ARM::SP)
5857                        .Default(0);
5858   if (Reg)
5859     return Reg;
5860   report_fatal_error(Twine("Invalid register name \""
5861                               + StringRef(RegName)  + "\"."));
5862 }
5863 
5864 // Result is 64 bit value so split into two 32 bit values and return as a
5865 // pair of values.
ExpandREAD_REGISTER(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG)5866 static void ExpandREAD_REGISTER(SDNode *N, SmallVectorImpl<SDValue> &Results,
5867                                 SelectionDAG &DAG) {
5868   SDLoc DL(N);
5869 
5870   // This function is only supposed to be called for i64 type destination.
5871   assert(N->getValueType(0) == MVT::i64
5872           && "ExpandREAD_REGISTER called for non-i64 type result.");
5873 
5874   SDValue Read = DAG.getNode(ISD::READ_REGISTER, DL,
5875                              DAG.getVTList(MVT::i32, MVT::i32, MVT::Other),
5876                              N->getOperand(0),
5877                              N->getOperand(1));
5878 
5879   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Read.getValue(0),
5880                     Read.getValue(1)));
5881   Results.push_back(Read.getOperand(0));
5882 }
5883 
5884 /// \p BC is a bitcast that is about to be turned into a VMOVDRR.
5885 /// When \p DstVT, the destination type of \p BC, is on the vector
5886 /// register bank and the source of bitcast, \p Op, operates on the same bank,
5887 /// it might be possible to combine them, such that everything stays on the
5888 /// vector register bank.
5889 /// \p return The node that would replace \p BT, if the combine
5890 /// is possible.
CombineVMOVDRRCandidateWithVecOp(const SDNode * BC,SelectionDAG & DAG)5891 static SDValue CombineVMOVDRRCandidateWithVecOp(const SDNode *BC,
5892                                                 SelectionDAG &DAG) {
5893   SDValue Op = BC->getOperand(0);
5894   EVT DstVT = BC->getValueType(0);
5895 
5896   // The only vector instruction that can produce a scalar (remember,
5897   // since the bitcast was about to be turned into VMOVDRR, the source
5898   // type is i64) from a vector is EXTRACT_VECTOR_ELT.
5899   // Moreover, we can do this combine only if there is one use.
5900   // Finally, if the destination type is not a vector, there is not
5901   // much point on forcing everything on the vector bank.
5902   if (!DstVT.isVector() || Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
5903       !Op.hasOneUse())
5904     return SDValue();
5905 
5906   // If the index is not constant, we will introduce an additional
5907   // multiply that will stick.
5908   // Give up in that case.
5909   ConstantSDNode *Index = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5910   if (!Index)
5911     return SDValue();
5912   unsigned DstNumElt = DstVT.getVectorNumElements();
5913 
5914   // Compute the new index.
5915   const APInt &APIntIndex = Index->getAPIntValue();
5916   APInt NewIndex(APIntIndex.getBitWidth(), DstNumElt);
5917   NewIndex *= APIntIndex;
5918   // Check if the new constant index fits into i32.
5919   if (NewIndex.getBitWidth() > 32)
5920     return SDValue();
5921 
5922   // vMTy bitcast(i64 extractelt vNi64 src, i32 index) ->
5923   // vMTy extractsubvector vNxMTy (bitcast vNi64 src), i32 index*M)
5924   SDLoc dl(Op);
5925   SDValue ExtractSrc = Op.getOperand(0);
5926   EVT VecVT = EVT::getVectorVT(
5927       *DAG.getContext(), DstVT.getScalarType(),
5928       ExtractSrc.getValueType().getVectorNumElements() * DstNumElt);
5929   SDValue BitCast = DAG.getNode(ISD::BITCAST, dl, VecVT, ExtractSrc);
5930   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DstVT, BitCast,
5931                      DAG.getConstant(NewIndex.getZExtValue(), dl, MVT::i32));
5932 }
5933 
5934 /// ExpandBITCAST - If the target supports VFP, this function is called to
5935 /// expand a bit convert where either the source or destination type is i64 to
5936 /// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64
5937 /// operand type is illegal (e.g., v2f32 for a target that doesn't support
5938 /// vectors), since the legalizer won't know what to do with that.
ExpandBITCAST(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * Subtarget) const5939 SDValue ARMTargetLowering::ExpandBITCAST(SDNode *N, SelectionDAG &DAG,
5940                                          const ARMSubtarget *Subtarget) const {
5941   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5942   SDLoc dl(N);
5943   SDValue Op = N->getOperand(0);
5944 
5945   // This function is only supposed to be called for i16 and i64 types, either
5946   // as the source or destination of the bit convert.
5947   EVT SrcVT = Op.getValueType();
5948   EVT DstVT = N->getValueType(0);
5949 
5950   if ((SrcVT == MVT::i16 || SrcVT == MVT::i32) &&
5951       (DstVT == MVT::f16 || DstVT == MVT::bf16))
5952     return MoveToHPR(SDLoc(N), DAG, MVT::i32, DstVT.getSimpleVT(),
5953                      DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), MVT::i32, Op));
5954 
5955   if ((DstVT == MVT::i16 || DstVT == MVT::i32) &&
5956       (SrcVT == MVT::f16 || SrcVT == MVT::bf16))
5957     return DAG.getNode(
5958         ISD::TRUNCATE, SDLoc(N), DstVT,
5959         MoveFromHPR(SDLoc(N), DAG, MVT::i32, SrcVT.getSimpleVT(), Op));
5960 
5961   if (!(SrcVT == MVT::i64 || DstVT == MVT::i64))
5962     return SDValue();
5963 
5964   // Turn i64->f64 into VMOVDRR.
5965   if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
5966     // Do not force values to GPRs (this is what VMOVDRR does for the inputs)
5967     // if we can combine the bitcast with its source.
5968     if (SDValue Val = CombineVMOVDRRCandidateWithVecOp(N, DAG))
5969       return Val;
5970 
5971     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
5972                              DAG.getConstant(0, dl, MVT::i32));
5973     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
5974                              DAG.getConstant(1, dl, MVT::i32));
5975     return DAG.getNode(ISD::BITCAST, dl, DstVT,
5976                        DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
5977   }
5978 
5979   // Turn f64->i64 into VMOVRRD.
5980   if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
5981     SDValue Cvt;
5982     if (DAG.getDataLayout().isBigEndian() && SrcVT.isVector() &&
5983         SrcVT.getVectorNumElements() > 1)
5984       Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
5985                         DAG.getVTList(MVT::i32, MVT::i32),
5986                         DAG.getNode(ARMISD::VREV64, dl, SrcVT, Op));
5987     else
5988       Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
5989                         DAG.getVTList(MVT::i32, MVT::i32), Op);
5990     // Merge the pieces into a single i64 value.
5991     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
5992   }
5993 
5994   return SDValue();
5995 }
5996 
5997 /// getZeroVector - Returns a vector of specified type with all zero elements.
5998 /// Zero vectors are used to represent vector negation and in those cases
5999 /// will be implemented with the NEON VNEG instruction.  However, VNEG does
6000 /// not support i64 elements, so sometimes the zero vectors will need to be
6001 /// explicitly constructed.  Regardless, use a canonical VMOV to create the
6002 /// zero vector.
getZeroVector(EVT VT,SelectionDAG & DAG,const SDLoc & dl)6003 static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, const SDLoc &dl) {
6004   assert(VT.isVector() && "Expected a vector type");
6005   // The canonical modified immediate encoding of a zero vector is....0!
6006   SDValue EncodedVal = DAG.getTargetConstant(0, dl, MVT::i32);
6007   EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
6008   SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
6009   return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
6010 }
6011 
6012 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two
6013 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
LowerShiftRightParts(SDValue Op,SelectionDAG & DAG) const6014 SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
6015                                                 SelectionDAG &DAG) const {
6016   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
6017   EVT VT = Op.getValueType();
6018   unsigned VTBits = VT.getSizeInBits();
6019   SDLoc dl(Op);
6020   SDValue ShOpLo = Op.getOperand(0);
6021   SDValue ShOpHi = Op.getOperand(1);
6022   SDValue ShAmt  = Op.getOperand(2);
6023   SDValue ARMcc;
6024   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
6025   unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
6026 
6027   assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
6028 
6029   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
6030                                  DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
6031   SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
6032   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
6033                                    DAG.getConstant(VTBits, dl, MVT::i32));
6034   SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
6035   SDValue LoSmallShift = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
6036   SDValue LoBigShift = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
6037   SDValue CmpLo = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
6038                             ISD::SETGE, ARMcc, DAG, dl);
6039   SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, LoSmallShift, LoBigShift,
6040                            ARMcc, CCR, CmpLo);
6041 
6042   SDValue HiSmallShift = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
6043   SDValue HiBigShift = Opc == ISD::SRA
6044                            ? DAG.getNode(Opc, dl, VT, ShOpHi,
6045                                          DAG.getConstant(VTBits - 1, dl, VT))
6046                            : DAG.getConstant(0, dl, VT);
6047   SDValue CmpHi = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
6048                             ISD::SETGE, ARMcc, DAG, dl);
6049   SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, HiSmallShift, HiBigShift,
6050                            ARMcc, CCR, CmpHi);
6051 
6052   SDValue Ops[2] = { Lo, Hi };
6053   return DAG.getMergeValues(Ops, dl);
6054 }
6055 
6056 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
6057 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
LowerShiftLeftParts(SDValue Op,SelectionDAG & DAG) const6058 SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
6059                                                SelectionDAG &DAG) const {
6060   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
6061   EVT VT = Op.getValueType();
6062   unsigned VTBits = VT.getSizeInBits();
6063   SDLoc dl(Op);
6064   SDValue ShOpLo = Op.getOperand(0);
6065   SDValue ShOpHi = Op.getOperand(1);
6066   SDValue ShAmt  = Op.getOperand(2);
6067   SDValue ARMcc;
6068   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
6069 
6070   assert(Op.getOpcode() == ISD::SHL_PARTS);
6071   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
6072                                  DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
6073   SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
6074   SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
6075   SDValue HiSmallShift = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
6076 
6077   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
6078                                    DAG.getConstant(VTBits, dl, MVT::i32));
6079   SDValue HiBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
6080   SDValue CmpHi = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
6081                             ISD::SETGE, ARMcc, DAG, dl);
6082   SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, HiSmallShift, HiBigShift,
6083                            ARMcc, CCR, CmpHi);
6084 
6085   SDValue CmpLo = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
6086                           ISD::SETGE, ARMcc, DAG, dl);
6087   SDValue LoSmallShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
6088   SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, LoSmallShift,
6089                            DAG.getConstant(0, dl, VT), ARMcc, CCR, CmpLo);
6090 
6091   SDValue Ops[2] = { Lo, Hi };
6092   return DAG.getMergeValues(Ops, dl);
6093 }
6094 
LowerFLT_ROUNDS_(SDValue Op,SelectionDAG & DAG) const6095 SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
6096                                             SelectionDAG &DAG) const {
6097   // The rounding mode is in bits 23:22 of the FPSCR.
6098   // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
6099   // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
6100   // so that the shift + and get folded into a bitfield extract.
6101   SDLoc dl(Op);
6102   SDValue Chain = Op.getOperand(0);
6103   SDValue Ops[] = {Chain,
6104                    DAG.getConstant(Intrinsic::arm_get_fpscr, dl, MVT::i32)};
6105 
6106   SDValue FPSCR =
6107       DAG.getNode(ISD::INTRINSIC_W_CHAIN, dl, {MVT::i32, MVT::Other}, Ops);
6108   Chain = FPSCR.getValue(1);
6109   SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
6110                                   DAG.getConstant(1U << 22, dl, MVT::i32));
6111   SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
6112                               DAG.getConstant(22, dl, MVT::i32));
6113   SDValue And = DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
6114                             DAG.getConstant(3, dl, MVT::i32));
6115   return DAG.getMergeValues({And, Chain}, dl);
6116 }
6117 
LowerSET_ROUNDING(SDValue Op,SelectionDAG & DAG) const6118 SDValue ARMTargetLowering::LowerSET_ROUNDING(SDValue Op,
6119                                              SelectionDAG &DAG) const {
6120   SDLoc DL(Op);
6121   SDValue Chain = Op->getOperand(0);
6122   SDValue RMValue = Op->getOperand(1);
6123 
6124   // The rounding mode is in bits 23:22 of the FPSCR.
6125   // The llvm.set.rounding argument value to ARM rounding mode value mapping
6126   // is 0->3, 1->0, 2->1, 3->2. The formula we use to implement this is
6127   // ((arg - 1) & 3) << 22).
6128   //
6129   // It is expected that the argument of llvm.set.rounding is within the
6130   // segment [0, 3], so NearestTiesToAway (4) is not handled here. It is
6131   // responsibility of the code generated llvm.set.rounding to ensure this
6132   // condition.
6133 
6134   // Calculate new value of FPSCR[23:22].
6135   RMValue = DAG.getNode(ISD::SUB, DL, MVT::i32, RMValue,
6136                         DAG.getConstant(1, DL, MVT::i32));
6137   RMValue = DAG.getNode(ISD::AND, DL, MVT::i32, RMValue,
6138                         DAG.getConstant(0x3, DL, MVT::i32));
6139   RMValue = DAG.getNode(ISD::SHL, DL, MVT::i32, RMValue,
6140                         DAG.getConstant(ARM::RoundingBitsPos, DL, MVT::i32));
6141 
6142   // Get current value of FPSCR.
6143   SDValue Ops[] = {Chain,
6144                    DAG.getConstant(Intrinsic::arm_get_fpscr, DL, MVT::i32)};
6145   SDValue FPSCR =
6146       DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL, {MVT::i32, MVT::Other}, Ops);
6147   Chain = FPSCR.getValue(1);
6148   FPSCR = FPSCR.getValue(0);
6149 
6150   // Put new rounding mode into FPSCR[23:22].
6151   const unsigned RMMask = ~(ARM::Rounding::rmMask << ARM::RoundingBitsPos);
6152   FPSCR = DAG.getNode(ISD::AND, DL, MVT::i32, FPSCR,
6153                       DAG.getConstant(RMMask, DL, MVT::i32));
6154   FPSCR = DAG.getNode(ISD::OR, DL, MVT::i32, FPSCR, RMValue);
6155   SDValue Ops2[] = {
6156       Chain, DAG.getConstant(Intrinsic::arm_set_fpscr, DL, MVT::i32), FPSCR};
6157   return DAG.getNode(ISD::INTRINSIC_VOID, DL, MVT::Other, Ops2);
6158 }
6159 
LowerCTTZ(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)6160 static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
6161                          const ARMSubtarget *ST) {
6162   SDLoc dl(N);
6163   EVT VT = N->getValueType(0);
6164   if (VT.isVector() && ST->hasNEON()) {
6165 
6166     // Compute the least significant set bit: LSB = X & -X
6167     SDValue X = N->getOperand(0);
6168     SDValue NX = DAG.getNode(ISD::SUB, dl, VT, getZeroVector(VT, DAG, dl), X);
6169     SDValue LSB = DAG.getNode(ISD::AND, dl, VT, X, NX);
6170 
6171     EVT ElemTy = VT.getVectorElementType();
6172 
6173     if (ElemTy == MVT::i8) {
6174       // Compute with: cttz(x) = ctpop(lsb - 1)
6175       SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
6176                                 DAG.getTargetConstant(1, dl, ElemTy));
6177       SDValue Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One);
6178       return DAG.getNode(ISD::CTPOP, dl, VT, Bits);
6179     }
6180 
6181     if ((ElemTy == MVT::i16 || ElemTy == MVT::i32) &&
6182         (N->getOpcode() == ISD::CTTZ_ZERO_UNDEF)) {
6183       // Compute with: cttz(x) = (width - 1) - ctlz(lsb), if x != 0
6184       unsigned NumBits = ElemTy.getSizeInBits();
6185       SDValue WidthMinus1 =
6186           DAG.getNode(ARMISD::VMOVIMM, dl, VT,
6187                       DAG.getTargetConstant(NumBits - 1, dl, ElemTy));
6188       SDValue CTLZ = DAG.getNode(ISD::CTLZ, dl, VT, LSB);
6189       return DAG.getNode(ISD::SUB, dl, VT, WidthMinus1, CTLZ);
6190     }
6191 
6192     // Compute with: cttz(x) = ctpop(lsb - 1)
6193 
6194     // Compute LSB - 1.
6195     SDValue Bits;
6196     if (ElemTy == MVT::i64) {
6197       // Load constant 0xffff'ffff'ffff'ffff to register.
6198       SDValue FF = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
6199                                DAG.getTargetConstant(0x1eff, dl, MVT::i32));
6200       Bits = DAG.getNode(ISD::ADD, dl, VT, LSB, FF);
6201     } else {
6202       SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
6203                                 DAG.getTargetConstant(1, dl, ElemTy));
6204       Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One);
6205     }
6206     return DAG.getNode(ISD::CTPOP, dl, VT, Bits);
6207   }
6208 
6209   if (!ST->hasV6T2Ops())
6210     return SDValue();
6211 
6212   SDValue rbit = DAG.getNode(ISD::BITREVERSE, dl, VT, N->getOperand(0));
6213   return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
6214 }
6215 
LowerCTPOP(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)6216 static SDValue LowerCTPOP(SDNode *N, SelectionDAG &DAG,
6217                           const ARMSubtarget *ST) {
6218   EVT VT = N->getValueType(0);
6219   SDLoc DL(N);
6220 
6221   assert(ST->hasNEON() && "Custom ctpop lowering requires NEON.");
6222   assert((VT == MVT::v1i64 || VT == MVT::v2i64 || VT == MVT::v2i32 ||
6223           VT == MVT::v4i32 || VT == MVT::v4i16 || VT == MVT::v8i16) &&
6224          "Unexpected type for custom ctpop lowering");
6225 
6226   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6227   EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
6228   SDValue Res = DAG.getBitcast(VT8Bit, N->getOperand(0));
6229   Res = DAG.getNode(ISD::CTPOP, DL, VT8Bit, Res);
6230 
6231   // Widen v8i8/v16i8 CTPOP result to VT by repeatedly widening pairwise adds.
6232   unsigned EltSize = 8;
6233   unsigned NumElts = VT.is64BitVector() ? 8 : 16;
6234   while (EltSize != VT.getScalarSizeInBits()) {
6235     SmallVector<SDValue, 8> Ops;
6236     Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddlu, DL,
6237                                   TLI.getPointerTy(DAG.getDataLayout())));
6238     Ops.push_back(Res);
6239 
6240     EltSize *= 2;
6241     NumElts /= 2;
6242     MVT WidenVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize), NumElts);
6243     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, WidenVT, Ops);
6244   }
6245 
6246   return Res;
6247 }
6248 
6249 /// Getvshiftimm - Check if this is a valid build_vector for the immediate
6250 /// operand of a vector shift operation, where all the elements of the
6251 /// build_vector must have the same constant integer value.
getVShiftImm(SDValue Op,unsigned ElementBits,int64_t & Cnt)6252 static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
6253   // Ignore bit_converts.
6254   while (Op.getOpcode() == ISD::BITCAST)
6255     Op = Op.getOperand(0);
6256   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
6257   APInt SplatBits, SplatUndef;
6258   unsigned SplatBitSize;
6259   bool HasAnyUndefs;
6260   if (!BVN ||
6261       !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
6262                             ElementBits) ||
6263       SplatBitSize > ElementBits)
6264     return false;
6265   Cnt = SplatBits.getSExtValue();
6266   return true;
6267 }
6268 
6269 /// isVShiftLImm - Check if this is a valid build_vector for the immediate
6270 /// operand of a vector shift left operation.  That value must be in the range:
6271 ///   0 <= Value < ElementBits for a left shift; or
6272 ///   0 <= Value <= ElementBits for a long left shift.
isVShiftLImm(SDValue Op,EVT VT,bool isLong,int64_t & Cnt)6273 static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
6274   assert(VT.isVector() && "vector shift count is not a vector type");
6275   int64_t ElementBits = VT.getScalarSizeInBits();
6276   if (!getVShiftImm(Op, ElementBits, Cnt))
6277     return false;
6278   return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits);
6279 }
6280 
6281 /// isVShiftRImm - Check if this is a valid build_vector for the immediate
6282 /// operand of a vector shift right operation.  For a shift opcode, the value
6283 /// is positive, but for an intrinsic the value count must be negative. The
6284 /// absolute value must be in the range:
6285 ///   1 <= |Value| <= ElementBits for a right shift; or
6286 ///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
isVShiftRImm(SDValue Op,EVT VT,bool isNarrow,bool isIntrinsic,int64_t & Cnt)6287 static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
6288                          int64_t &Cnt) {
6289   assert(VT.isVector() && "vector shift count is not a vector type");
6290   int64_t ElementBits = VT.getScalarSizeInBits();
6291   if (!getVShiftImm(Op, ElementBits, Cnt))
6292     return false;
6293   if (!isIntrinsic)
6294     return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits));
6295   if (Cnt >= -(isNarrow ? ElementBits / 2 : ElementBits) && Cnt <= -1) {
6296     Cnt = -Cnt;
6297     return true;
6298   }
6299   return false;
6300 }
6301 
LowerShift(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)6302 static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
6303                           const ARMSubtarget *ST) {
6304   EVT VT = N->getValueType(0);
6305   SDLoc dl(N);
6306   int64_t Cnt;
6307 
6308   if (!VT.isVector())
6309     return SDValue();
6310 
6311   // We essentially have two forms here. Shift by an immediate and shift by a
6312   // vector register (there are also shift by a gpr, but that is just handled
6313   // with a tablegen pattern). We cannot easily match shift by an immediate in
6314   // tablegen so we do that here and generate a VSHLIMM/VSHRsIMM/VSHRuIMM.
6315   // For shifting by a vector, we don't have VSHR, only VSHL (which can be
6316   // signed or unsigned, and a negative shift indicates a shift right).
6317   if (N->getOpcode() == ISD::SHL) {
6318     if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
6319       return DAG.getNode(ARMISD::VSHLIMM, dl, VT, N->getOperand(0),
6320                          DAG.getConstant(Cnt, dl, MVT::i32));
6321     return DAG.getNode(ARMISD::VSHLu, dl, VT, N->getOperand(0),
6322                        N->getOperand(1));
6323   }
6324 
6325   assert((N->getOpcode() == ISD::SRA || N->getOpcode() == ISD::SRL) &&
6326          "unexpected vector shift opcode");
6327 
6328   if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
6329     unsigned VShiftOpc =
6330         (N->getOpcode() == ISD::SRA ? ARMISD::VSHRsIMM : ARMISD::VSHRuIMM);
6331     return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0),
6332                        DAG.getConstant(Cnt, dl, MVT::i32));
6333   }
6334 
6335   // Other right shifts we don't have operations for (we use a shift left by a
6336   // negative number).
6337   EVT ShiftVT = N->getOperand(1).getValueType();
6338   SDValue NegatedCount = DAG.getNode(
6339       ISD::SUB, dl, ShiftVT, getZeroVector(ShiftVT, DAG, dl), N->getOperand(1));
6340   unsigned VShiftOpc =
6341       (N->getOpcode() == ISD::SRA ? ARMISD::VSHLs : ARMISD::VSHLu);
6342   return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0), NegatedCount);
6343 }
6344 
Expand64BitShift(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)6345 static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
6346                                 const ARMSubtarget *ST) {
6347   EVT VT = N->getValueType(0);
6348   SDLoc dl(N);
6349 
6350   // We can get here for a node like i32 = ISD::SHL i32, i64
6351   if (VT != MVT::i64)
6352     return SDValue();
6353 
6354   assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA ||
6355           N->getOpcode() == ISD::SHL) &&
6356          "Unknown shift to lower!");
6357 
6358   unsigned ShOpc = N->getOpcode();
6359   if (ST->hasMVEIntegerOps()) {
6360     SDValue ShAmt = N->getOperand(1);
6361     unsigned ShPartsOpc = ARMISD::LSLL;
6362     ConstantSDNode *Con = dyn_cast<ConstantSDNode>(ShAmt);
6363 
6364     // If the shift amount is greater than 32 or has a greater bitwidth than 64
6365     // then do the default optimisation
6366     if (ShAmt->getValueType(0).getSizeInBits() > 64 ||
6367         (Con && (Con->getZExtValue() == 0 || Con->getZExtValue() >= 32)))
6368       return SDValue();
6369 
6370     // Extract the lower 32 bits of the shift amount if it's not an i32
6371     if (ShAmt->getValueType(0) != MVT::i32)
6372       ShAmt = DAG.getZExtOrTrunc(ShAmt, dl, MVT::i32);
6373 
6374     if (ShOpc == ISD::SRL) {
6375       if (!Con)
6376         // There is no t2LSRLr instruction so negate and perform an lsll if the
6377         // shift amount is in a register, emulating a right shift.
6378         ShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
6379                             DAG.getConstant(0, dl, MVT::i32), ShAmt);
6380       else
6381         // Else generate an lsrl on the immediate shift amount
6382         ShPartsOpc = ARMISD::LSRL;
6383     } else if (ShOpc == ISD::SRA)
6384       ShPartsOpc = ARMISD::ASRL;
6385 
6386     // Lower 32 bits of the destination/source
6387     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
6388                              DAG.getConstant(0, dl, MVT::i32));
6389     // Upper 32 bits of the destination/source
6390     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
6391                              DAG.getConstant(1, dl, MVT::i32));
6392 
6393     // Generate the shift operation as computed above
6394     Lo = DAG.getNode(ShPartsOpc, dl, DAG.getVTList(MVT::i32, MVT::i32), Lo, Hi,
6395                      ShAmt);
6396     // The upper 32 bits come from the second return value of lsll
6397     Hi = SDValue(Lo.getNode(), 1);
6398     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
6399   }
6400 
6401   // We only lower SRA, SRL of 1 here, all others use generic lowering.
6402   if (!isOneConstant(N->getOperand(1)) || N->getOpcode() == ISD::SHL)
6403     return SDValue();
6404 
6405   // If we are in thumb mode, we don't have RRX.
6406   if (ST->isThumb1Only())
6407     return SDValue();
6408 
6409   // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
6410   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
6411                            DAG.getConstant(0, dl, MVT::i32));
6412   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
6413                            DAG.getConstant(1, dl, MVT::i32));
6414 
6415   // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
6416   // captures the result into a carry flag.
6417   unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
6418   Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), Hi);
6419 
6420   // The low part is an ARMISD::RRX operand, which shifts the carry in.
6421   Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
6422 
6423   // Merge the pieces into a single i64 value.
6424  return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
6425 }
6426 
LowerVSETCC(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST)6427 static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG,
6428                            const ARMSubtarget *ST) {
6429   bool Invert = false;
6430   bool Swap = false;
6431   unsigned Opc = ARMCC::AL;
6432 
6433   SDValue Op0 = Op.getOperand(0);
6434   SDValue Op1 = Op.getOperand(1);
6435   SDValue CC = Op.getOperand(2);
6436   EVT VT = Op.getValueType();
6437   ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
6438   SDLoc dl(Op);
6439 
6440   EVT CmpVT;
6441   if (ST->hasNEON())
6442     CmpVT = Op0.getValueType().changeVectorElementTypeToInteger();
6443   else {
6444     assert(ST->hasMVEIntegerOps() &&
6445            "No hardware support for integer vector comparison!");
6446 
6447     if (Op.getValueType().getVectorElementType() != MVT::i1)
6448       return SDValue();
6449 
6450     // Make sure we expand floating point setcc to scalar if we do not have
6451     // mve.fp, so that we can handle them from there.
6452     if (Op0.getValueType().isFloatingPoint() && !ST->hasMVEFloatOps())
6453       return SDValue();
6454 
6455     CmpVT = VT;
6456   }
6457 
6458   if (Op0.getValueType().getVectorElementType() == MVT::i64 &&
6459       (SetCCOpcode == ISD::SETEQ || SetCCOpcode == ISD::SETNE)) {
6460     // Special-case integer 64-bit equality comparisons. They aren't legal,
6461     // but they can be lowered with a few vector instructions.
6462     unsigned CmpElements = CmpVT.getVectorNumElements() * 2;
6463     EVT SplitVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, CmpElements);
6464     SDValue CastOp0 = DAG.getNode(ISD::BITCAST, dl, SplitVT, Op0);
6465     SDValue CastOp1 = DAG.getNode(ISD::BITCAST, dl, SplitVT, Op1);
6466     SDValue Cmp = DAG.getNode(ISD::SETCC, dl, SplitVT, CastOp0, CastOp1,
6467                               DAG.getCondCode(ISD::SETEQ));
6468     SDValue Reversed = DAG.getNode(ARMISD::VREV64, dl, SplitVT, Cmp);
6469     SDValue Merged = DAG.getNode(ISD::AND, dl, SplitVT, Cmp, Reversed);
6470     Merged = DAG.getNode(ISD::BITCAST, dl, CmpVT, Merged);
6471     if (SetCCOpcode == ISD::SETNE)
6472       Merged = DAG.getNOT(dl, Merged, CmpVT);
6473     Merged = DAG.getSExtOrTrunc(Merged, dl, VT);
6474     return Merged;
6475   }
6476 
6477   if (CmpVT.getVectorElementType() == MVT::i64)
6478     // 64-bit comparisons are not legal in general.
6479     return SDValue();
6480 
6481   if (Op1.getValueType().isFloatingPoint()) {
6482     switch (SetCCOpcode) {
6483     default: llvm_unreachable("Illegal FP comparison");
6484     case ISD::SETUNE:
6485     case ISD::SETNE:
6486       if (ST->hasMVEFloatOps()) {
6487         Opc = ARMCC::NE; break;
6488       } else {
6489         Invert = true; LLVM_FALLTHROUGH;
6490       }
6491     case ISD::SETOEQ:
6492     case ISD::SETEQ:  Opc = ARMCC::EQ; break;
6493     case ISD::SETOLT:
6494     case ISD::SETLT: Swap = true; LLVM_FALLTHROUGH;
6495     case ISD::SETOGT:
6496     case ISD::SETGT:  Opc = ARMCC::GT; break;
6497     case ISD::SETOLE:
6498     case ISD::SETLE:  Swap = true; LLVM_FALLTHROUGH;
6499     case ISD::SETOGE:
6500     case ISD::SETGE: Opc = ARMCC::GE; break;
6501     case ISD::SETUGE: Swap = true; LLVM_FALLTHROUGH;
6502     case ISD::SETULE: Invert = true; Opc = ARMCC::GT; break;
6503     case ISD::SETUGT: Swap = true; LLVM_FALLTHROUGH;
6504     case ISD::SETULT: Invert = true; Opc = ARMCC::GE; break;
6505     case ISD::SETUEQ: Invert = true; LLVM_FALLTHROUGH;
6506     case ISD::SETONE: {
6507       // Expand this to (OLT | OGT).
6508       SDValue TmpOp0 = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op1, Op0,
6509                                    DAG.getConstant(ARMCC::GT, dl, MVT::i32));
6510       SDValue TmpOp1 = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op0, Op1,
6511                                    DAG.getConstant(ARMCC::GT, dl, MVT::i32));
6512       SDValue Result = DAG.getNode(ISD::OR, dl, CmpVT, TmpOp0, TmpOp1);
6513       if (Invert)
6514         Result = DAG.getNOT(dl, Result, VT);
6515       return Result;
6516     }
6517     case ISD::SETUO: Invert = true; LLVM_FALLTHROUGH;
6518     case ISD::SETO: {
6519       // Expand this to (OLT | OGE).
6520       SDValue TmpOp0 = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op1, Op0,
6521                                    DAG.getConstant(ARMCC::GT, dl, MVT::i32));
6522       SDValue TmpOp1 = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op0, Op1,
6523                                    DAG.getConstant(ARMCC::GE, dl, MVT::i32));
6524       SDValue Result = DAG.getNode(ISD::OR, dl, CmpVT, TmpOp0, TmpOp1);
6525       if (Invert)
6526         Result = DAG.getNOT(dl, Result, VT);
6527       return Result;
6528     }
6529     }
6530   } else {
6531     // Integer comparisons.
6532     switch (SetCCOpcode) {
6533     default: llvm_unreachable("Illegal integer comparison");
6534     case ISD::SETNE:
6535       if (ST->hasMVEIntegerOps()) {
6536         Opc = ARMCC::NE; break;
6537       } else {
6538         Invert = true; LLVM_FALLTHROUGH;
6539       }
6540     case ISD::SETEQ:  Opc = ARMCC::EQ; break;
6541     case ISD::SETLT:  Swap = true; LLVM_FALLTHROUGH;
6542     case ISD::SETGT:  Opc = ARMCC::GT; break;
6543     case ISD::SETLE:  Swap = true; LLVM_FALLTHROUGH;
6544     case ISD::SETGE:  Opc = ARMCC::GE; break;
6545     case ISD::SETULT: Swap = true; LLVM_FALLTHROUGH;
6546     case ISD::SETUGT: Opc = ARMCC::HI; break;
6547     case ISD::SETULE: Swap = true; LLVM_FALLTHROUGH;
6548     case ISD::SETUGE: Opc = ARMCC::HS; break;
6549     }
6550 
6551     // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
6552     if (ST->hasNEON() && Opc == ARMCC::EQ) {
6553       SDValue AndOp;
6554       if (ISD::isBuildVectorAllZeros(Op1.getNode()))
6555         AndOp = Op0;
6556       else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
6557         AndOp = Op1;
6558 
6559       // Ignore bitconvert.
6560       if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
6561         AndOp = AndOp.getOperand(0);
6562 
6563       if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
6564         Op0 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(0));
6565         Op1 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(1));
6566         SDValue Result = DAG.getNode(ARMISD::VTST, dl, CmpVT, Op0, Op1);
6567         if (!Invert)
6568           Result = DAG.getNOT(dl, Result, VT);
6569         return Result;
6570       }
6571     }
6572   }
6573 
6574   if (Swap)
6575     std::swap(Op0, Op1);
6576 
6577   // If one of the operands is a constant vector zero, attempt to fold the
6578   // comparison to a specialized compare-against-zero form.
6579   SDValue SingleOp;
6580   if (ISD::isBuildVectorAllZeros(Op1.getNode()))
6581     SingleOp = Op0;
6582   else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
6583     if (Opc == ARMCC::GE)
6584       Opc = ARMCC::LE;
6585     else if (Opc == ARMCC::GT)
6586       Opc = ARMCC::LT;
6587     SingleOp = Op1;
6588   }
6589 
6590   SDValue Result;
6591   if (SingleOp.getNode()) {
6592     Result = DAG.getNode(ARMISD::VCMPZ, dl, CmpVT, SingleOp,
6593                          DAG.getConstant(Opc, dl, MVT::i32));
6594   } else {
6595     Result = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op0, Op1,
6596                          DAG.getConstant(Opc, dl, MVT::i32));
6597   }
6598 
6599   Result = DAG.getSExtOrTrunc(Result, dl, VT);
6600 
6601   if (Invert)
6602     Result = DAG.getNOT(dl, Result, VT);
6603 
6604   return Result;
6605 }
6606 
LowerSETCCCARRY(SDValue Op,SelectionDAG & DAG)6607 static SDValue LowerSETCCCARRY(SDValue Op, SelectionDAG &DAG) {
6608   SDValue LHS = Op.getOperand(0);
6609   SDValue RHS = Op.getOperand(1);
6610   SDValue Carry = Op.getOperand(2);
6611   SDValue Cond = Op.getOperand(3);
6612   SDLoc DL(Op);
6613 
6614   assert(LHS.getSimpleValueType().isInteger() && "SETCCCARRY is integer only.");
6615 
6616   // ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
6617   // have to invert the carry first.
6618   Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
6619                       DAG.getConstant(1, DL, MVT::i32), Carry);
6620   // This converts the boolean value carry into the carry flag.
6621   Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
6622 
6623   SDVTList VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
6624   SDValue Cmp = DAG.getNode(ARMISD::SUBE, DL, VTs, LHS, RHS, Carry);
6625 
6626   SDValue FVal = DAG.getConstant(0, DL, MVT::i32);
6627   SDValue TVal = DAG.getConstant(1, DL, MVT::i32);
6628   SDValue ARMcc = DAG.getConstant(
6629       IntCCToARMCC(cast<CondCodeSDNode>(Cond)->get()), DL, MVT::i32);
6630   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
6631   SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, ARM::CPSR,
6632                                    Cmp.getValue(1), SDValue());
6633   return DAG.getNode(ARMISD::CMOV, DL, Op.getValueType(), FVal, TVal, ARMcc,
6634                      CCR, Chain.getValue(1));
6635 }
6636 
6637 /// isVMOVModifiedImm - Check if the specified splat value corresponds to a
6638 /// valid vector constant for a NEON or MVE instruction with a "modified
6639 /// immediate" operand (e.g., VMOV).  If so, return the encoded value.
isVMOVModifiedImm(uint64_t SplatBits,uint64_t SplatUndef,unsigned SplatBitSize,SelectionDAG & DAG,const SDLoc & dl,EVT & VT,EVT VectorVT,VMOVModImmType type)6640 static SDValue isVMOVModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
6641                                  unsigned SplatBitSize, SelectionDAG &DAG,
6642                                  const SDLoc &dl, EVT &VT, EVT VectorVT,
6643                                  VMOVModImmType type) {
6644   unsigned OpCmode, Imm;
6645   bool is128Bits = VectorVT.is128BitVector();
6646 
6647   // SplatBitSize is set to the smallest size that splats the vector, so a
6648   // zero vector will always have SplatBitSize == 8.  However, NEON modified
6649   // immediate instructions others than VMOV do not support the 8-bit encoding
6650   // of a zero vector, and the default encoding of zero is supposed to be the
6651   // 32-bit version.
6652   if (SplatBits == 0)
6653     SplatBitSize = 32;
6654 
6655   switch (SplatBitSize) {
6656   case 8:
6657     if (type != VMOVModImm)
6658       return SDValue();
6659     // Any 1-byte value is OK.  Op=0, Cmode=1110.
6660     assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
6661     OpCmode = 0xe;
6662     Imm = SplatBits;
6663     VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
6664     break;
6665 
6666   case 16:
6667     // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
6668     VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
6669     if ((SplatBits & ~0xff) == 0) {
6670       // Value = 0x00nn: Op=x, Cmode=100x.
6671       OpCmode = 0x8;
6672       Imm = SplatBits;
6673       break;
6674     }
6675     if ((SplatBits & ~0xff00) == 0) {
6676       // Value = 0xnn00: Op=x, Cmode=101x.
6677       OpCmode = 0xa;
6678       Imm = SplatBits >> 8;
6679       break;
6680     }
6681     return SDValue();
6682 
6683   case 32:
6684     // NEON's 32-bit VMOV supports splat values where:
6685     // * only one byte is nonzero, or
6686     // * the least significant byte is 0xff and the second byte is nonzero, or
6687     // * the least significant 2 bytes are 0xff and the third is nonzero.
6688     VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
6689     if ((SplatBits & ~0xff) == 0) {
6690       // Value = 0x000000nn: Op=x, Cmode=000x.
6691       OpCmode = 0;
6692       Imm = SplatBits;
6693       break;
6694     }
6695     if ((SplatBits & ~0xff00) == 0) {
6696       // Value = 0x0000nn00: Op=x, Cmode=001x.
6697       OpCmode = 0x2;
6698       Imm = SplatBits >> 8;
6699       break;
6700     }
6701     if ((SplatBits & ~0xff0000) == 0) {
6702       // Value = 0x00nn0000: Op=x, Cmode=010x.
6703       OpCmode = 0x4;
6704       Imm = SplatBits >> 16;
6705       break;
6706     }
6707     if ((SplatBits & ~0xff000000) == 0) {
6708       // Value = 0xnn000000: Op=x, Cmode=011x.
6709       OpCmode = 0x6;
6710       Imm = SplatBits >> 24;
6711       break;
6712     }
6713 
6714     // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
6715     if (type == OtherModImm) return SDValue();
6716 
6717     if ((SplatBits & ~0xffff) == 0 &&
6718         ((SplatBits | SplatUndef) & 0xff) == 0xff) {
6719       // Value = 0x0000nnff: Op=x, Cmode=1100.
6720       OpCmode = 0xc;
6721       Imm = SplatBits >> 8;
6722       break;
6723     }
6724 
6725     // cmode == 0b1101 is not supported for MVE VMVN
6726     if (type == MVEVMVNModImm)
6727       return SDValue();
6728 
6729     if ((SplatBits & ~0xffffff) == 0 &&
6730         ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
6731       // Value = 0x00nnffff: Op=x, Cmode=1101.
6732       OpCmode = 0xd;
6733       Imm = SplatBits >> 16;
6734       break;
6735     }
6736 
6737     // Note: there are a few 32-bit splat values (specifically: 00ffff00,
6738     // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
6739     // VMOV.I32.  A (very) minor optimization would be to replicate the value
6740     // and fall through here to test for a valid 64-bit splat.  But, then the
6741     // caller would also need to check and handle the change in size.
6742     return SDValue();
6743 
6744   case 64: {
6745     if (type != VMOVModImm)
6746       return SDValue();
6747     // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
6748     uint64_t BitMask = 0xff;
6749     uint64_t Val = 0;
6750     unsigned ImmMask = 1;
6751     Imm = 0;
6752     for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
6753       if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
6754         Val |= BitMask;
6755         Imm |= ImmMask;
6756       } else if ((SplatBits & BitMask) != 0) {
6757         return SDValue();
6758       }
6759       BitMask <<= 8;
6760       ImmMask <<= 1;
6761     }
6762 
6763     if (DAG.getDataLayout().isBigEndian()) {
6764       // Reverse the order of elements within the vector.
6765       unsigned BytesPerElem = VectorVT.getScalarSizeInBits() / 8;
6766       unsigned Mask = (1 << BytesPerElem) - 1;
6767       unsigned NumElems = 8 / BytesPerElem;
6768       unsigned NewImm = 0;
6769       for (unsigned ElemNum = 0; ElemNum < NumElems; ++ElemNum) {
6770         unsigned Elem = ((Imm >> ElemNum * BytesPerElem) & Mask);
6771         NewImm |= Elem << (NumElems - ElemNum - 1) * BytesPerElem;
6772       }
6773       Imm = NewImm;
6774     }
6775 
6776     // Op=1, Cmode=1110.
6777     OpCmode = 0x1e;
6778     VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
6779     break;
6780   }
6781 
6782   default:
6783     llvm_unreachable("unexpected size for isVMOVModifiedImm");
6784   }
6785 
6786   unsigned EncodedVal = ARM_AM::createVMOVModImm(OpCmode, Imm);
6787   return DAG.getTargetConstant(EncodedVal, dl, MVT::i32);
6788 }
6789 
LowerConstantFP(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST) const6790 SDValue ARMTargetLowering::LowerConstantFP(SDValue Op, SelectionDAG &DAG,
6791                                            const ARMSubtarget *ST) const {
6792   EVT VT = Op.getValueType();
6793   bool IsDouble = (VT == MVT::f64);
6794   ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Op);
6795   const APFloat &FPVal = CFP->getValueAPF();
6796 
6797   // Prevent floating-point constants from using literal loads
6798   // when execute-only is enabled.
6799   if (ST->genExecuteOnly()) {
6800     // If we can represent the constant as an immediate, don't lower it
6801     if (isFPImmLegal(FPVal, VT))
6802       return Op;
6803     // Otherwise, construct as integer, and move to float register
6804     APInt INTVal = FPVal.bitcastToAPInt();
6805     SDLoc DL(CFP);
6806     switch (VT.getSimpleVT().SimpleTy) {
6807       default:
6808         llvm_unreachable("Unknown floating point type!");
6809         break;
6810       case MVT::f64: {
6811         SDValue Lo = DAG.getConstant(INTVal.trunc(32), DL, MVT::i32);
6812         SDValue Hi = DAG.getConstant(INTVal.lshr(32).trunc(32), DL, MVT::i32);
6813         return DAG.getNode(ARMISD::VMOVDRR, DL, MVT::f64, Lo, Hi);
6814       }
6815       case MVT::f32:
6816           return DAG.getNode(ARMISD::VMOVSR, DL, VT,
6817               DAG.getConstant(INTVal, DL, MVT::i32));
6818     }
6819   }
6820 
6821   if (!ST->hasVFP3Base())
6822     return SDValue();
6823 
6824   // Use the default (constant pool) lowering for double constants when we have
6825   // an SP-only FPU
6826   if (IsDouble && !Subtarget->hasFP64())
6827     return SDValue();
6828 
6829   // Try splatting with a VMOV.f32...
6830   int ImmVal = IsDouble ? ARM_AM::getFP64Imm(FPVal) : ARM_AM::getFP32Imm(FPVal);
6831 
6832   if (ImmVal != -1) {
6833     if (IsDouble || !ST->useNEONForSinglePrecisionFP()) {
6834       // We have code in place to select a valid ConstantFP already, no need to
6835       // do any mangling.
6836       return Op;
6837     }
6838 
6839     // It's a float and we are trying to use NEON operations where
6840     // possible. Lower it to a splat followed by an extract.
6841     SDLoc DL(Op);
6842     SDValue NewVal = DAG.getTargetConstant(ImmVal, DL, MVT::i32);
6843     SDValue VecConstant = DAG.getNode(ARMISD::VMOVFPIMM, DL, MVT::v2f32,
6844                                       NewVal);
6845     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecConstant,
6846                        DAG.getConstant(0, DL, MVT::i32));
6847   }
6848 
6849   // The rest of our options are NEON only, make sure that's allowed before
6850   // proceeding..
6851   if (!ST->hasNEON() || (!IsDouble && !ST->useNEONForSinglePrecisionFP()))
6852     return SDValue();
6853 
6854   EVT VMovVT;
6855   uint64_t iVal = FPVal.bitcastToAPInt().getZExtValue();
6856 
6857   // It wouldn't really be worth bothering for doubles except for one very
6858   // important value, which does happen to match: 0.0. So make sure we don't do
6859   // anything stupid.
6860   if (IsDouble && (iVal & 0xffffffff) != (iVal >> 32))
6861     return SDValue();
6862 
6863   // Try a VMOV.i32 (FIXME: i8, i16, or i64 could work too).
6864   SDValue NewVal = isVMOVModifiedImm(iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op),
6865                                      VMovVT, VT, VMOVModImm);
6866   if (NewVal != SDValue()) {
6867     SDLoc DL(Op);
6868     SDValue VecConstant = DAG.getNode(ARMISD::VMOVIMM, DL, VMovVT,
6869                                       NewVal);
6870     if (IsDouble)
6871       return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
6872 
6873     // It's a float: cast and extract a vector element.
6874     SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
6875                                        VecConstant);
6876     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
6877                        DAG.getConstant(0, DL, MVT::i32));
6878   }
6879 
6880   // Finally, try a VMVN.i32
6881   NewVal = isVMOVModifiedImm(~iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op), VMovVT,
6882                              VT, VMVNModImm);
6883   if (NewVal != SDValue()) {
6884     SDLoc DL(Op);
6885     SDValue VecConstant = DAG.getNode(ARMISD::VMVNIMM, DL, VMovVT, NewVal);
6886 
6887     if (IsDouble)
6888       return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
6889 
6890     // It's a float: cast and extract a vector element.
6891     SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
6892                                        VecConstant);
6893     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
6894                        DAG.getConstant(0, DL, MVT::i32));
6895   }
6896 
6897   return SDValue();
6898 }
6899 
6900 // check if an VEXT instruction can handle the shuffle mask when the
6901 // vector sources of the shuffle are the same.
isSingletonVEXTMask(ArrayRef<int> M,EVT VT,unsigned & Imm)6902 static bool isSingletonVEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
6903   unsigned NumElts = VT.getVectorNumElements();
6904 
6905   // Assume that the first shuffle index is not UNDEF.  Fail if it is.
6906   if (M[0] < 0)
6907     return false;
6908 
6909   Imm = M[0];
6910 
6911   // If this is a VEXT shuffle, the immediate value is the index of the first
6912   // element.  The other shuffle indices must be the successive elements after
6913   // the first one.
6914   unsigned ExpectedElt = Imm;
6915   for (unsigned i = 1; i < NumElts; ++i) {
6916     // Increment the expected index.  If it wraps around, just follow it
6917     // back to index zero and keep going.
6918     ++ExpectedElt;
6919     if (ExpectedElt == NumElts)
6920       ExpectedElt = 0;
6921 
6922     if (M[i] < 0) continue; // ignore UNDEF indices
6923     if (ExpectedElt != static_cast<unsigned>(M[i]))
6924       return false;
6925   }
6926 
6927   return true;
6928 }
6929 
isVEXTMask(ArrayRef<int> M,EVT VT,bool & ReverseVEXT,unsigned & Imm)6930 static bool isVEXTMask(ArrayRef<int> M, EVT VT,
6931                        bool &ReverseVEXT, unsigned &Imm) {
6932   unsigned NumElts = VT.getVectorNumElements();
6933   ReverseVEXT = false;
6934 
6935   // Assume that the first shuffle index is not UNDEF.  Fail if it is.
6936   if (M[0] < 0)
6937     return false;
6938 
6939   Imm = M[0];
6940 
6941   // If this is a VEXT shuffle, the immediate value is the index of the first
6942   // element.  The other shuffle indices must be the successive elements after
6943   // the first one.
6944   unsigned ExpectedElt = Imm;
6945   for (unsigned i = 1; i < NumElts; ++i) {
6946     // Increment the expected index.  If it wraps around, it may still be
6947     // a VEXT but the source vectors must be swapped.
6948     ExpectedElt += 1;
6949     if (ExpectedElt == NumElts * 2) {
6950       ExpectedElt = 0;
6951       ReverseVEXT = true;
6952     }
6953 
6954     if (M[i] < 0) continue; // ignore UNDEF indices
6955     if (ExpectedElt != static_cast<unsigned>(M[i]))
6956       return false;
6957   }
6958 
6959   // Adjust the index value if the source operands will be swapped.
6960   if (ReverseVEXT)
6961     Imm -= NumElts;
6962 
6963   return true;
6964 }
6965 
isVTBLMask(ArrayRef<int> M,EVT VT)6966 static bool isVTBLMask(ArrayRef<int> M, EVT VT) {
6967   // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
6968   // range, then 0 is placed into the resulting vector. So pretty much any mask
6969   // of 8 elements can work here.
6970   return VT == MVT::v8i8 && M.size() == 8;
6971 }
6972 
SelectPairHalf(unsigned Elements,ArrayRef<int> Mask,unsigned Index)6973 static unsigned SelectPairHalf(unsigned Elements, ArrayRef<int> Mask,
6974                                unsigned Index) {
6975   if (Mask.size() == Elements * 2)
6976     return Index / Elements;
6977   return Mask[Index] == 0 ? 0 : 1;
6978 }
6979 
6980 // Checks whether the shuffle mask represents a vector transpose (VTRN) by
6981 // checking that pairs of elements in the shuffle mask represent the same index
6982 // in each vector, incrementing the expected index by 2 at each step.
6983 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 2, 6]
6984 //  v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,c,g}
6985 //  v2={e,f,g,h}
6986 // WhichResult gives the offset for each element in the mask based on which
6987 // of the two results it belongs to.
6988 //
6989 // The transpose can be represented either as:
6990 // result1 = shufflevector v1, v2, result1_shuffle_mask
6991 // result2 = shufflevector v1, v2, result2_shuffle_mask
6992 // where v1/v2 and the shuffle masks have the same number of elements
6993 // (here WhichResult (see below) indicates which result is being checked)
6994 //
6995 // or as:
6996 // results = shufflevector v1, v2, shuffle_mask
6997 // where both results are returned in one vector and the shuffle mask has twice
6998 // as many elements as v1/v2 (here WhichResult will always be 0 if true) here we
6999 // want to check the low half and high half of the shuffle mask as if it were
7000 // the other case
isVTRNMask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)7001 static bool isVTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
7002   unsigned EltSz = VT.getScalarSizeInBits();
7003   if (EltSz == 64)
7004     return false;
7005 
7006   unsigned NumElts = VT.getVectorNumElements();
7007   if (M.size() != NumElts && M.size() != NumElts*2)
7008     return false;
7009 
7010   // If the mask is twice as long as the input vector then we need to check the
7011   // upper and lower parts of the mask with a matching value for WhichResult
7012   // FIXME: A mask with only even values will be rejected in case the first
7013   // element is undefined, e.g. [-1, 4, 2, 6] will be rejected, because only
7014   // M[0] is used to determine WhichResult
7015   for (unsigned i = 0; i < M.size(); i += NumElts) {
7016     WhichResult = SelectPairHalf(NumElts, M, i);
7017     for (unsigned j = 0; j < NumElts; j += 2) {
7018       if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) ||
7019           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + NumElts + WhichResult))
7020         return false;
7021     }
7022   }
7023 
7024   if (M.size() == NumElts*2)
7025     WhichResult = 0;
7026 
7027   return true;
7028 }
7029 
7030 /// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
7031 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
7032 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
isVTRN_v_undef_Mask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)7033 static bool isVTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
7034   unsigned EltSz = VT.getScalarSizeInBits();
7035   if (EltSz == 64)
7036     return false;
7037 
7038   unsigned NumElts = VT.getVectorNumElements();
7039   if (M.size() != NumElts && M.size() != NumElts*2)
7040     return false;
7041 
7042   for (unsigned i = 0; i < M.size(); i += NumElts) {
7043     WhichResult = SelectPairHalf(NumElts, M, i);
7044     for (unsigned j = 0; j < NumElts; j += 2) {
7045       if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) ||
7046           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + WhichResult))
7047         return false;
7048     }
7049   }
7050 
7051   if (M.size() == NumElts*2)
7052     WhichResult = 0;
7053 
7054   return true;
7055 }
7056 
7057 // Checks whether the shuffle mask represents a vector unzip (VUZP) by checking
7058 // that the mask elements are either all even and in steps of size 2 or all odd
7059 // and in steps of size 2.
7060 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 2, 4, 6]
7061 //  v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,c,e,g}
7062 //  v2={e,f,g,h}
7063 // Requires similar checks to that of isVTRNMask with
7064 // respect the how results are returned.
isVUZPMask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)7065 static bool isVUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
7066   unsigned EltSz = VT.getScalarSizeInBits();
7067   if (EltSz == 64)
7068     return false;
7069 
7070   unsigned NumElts = VT.getVectorNumElements();
7071   if (M.size() != NumElts && M.size() != NumElts*2)
7072     return false;
7073 
7074   for (unsigned i = 0; i < M.size(); i += NumElts) {
7075     WhichResult = SelectPairHalf(NumElts, M, i);
7076     for (unsigned j = 0; j < NumElts; ++j) {
7077       if (M[i+j] >= 0 && (unsigned) M[i+j] != 2 * j + WhichResult)
7078         return false;
7079     }
7080   }
7081 
7082   if (M.size() == NumElts*2)
7083     WhichResult = 0;
7084 
7085   // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
7086   if (VT.is64BitVector() && EltSz == 32)
7087     return false;
7088 
7089   return true;
7090 }
7091 
7092 /// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
7093 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
7094 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
isVUZP_v_undef_Mask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)7095 static bool isVUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
7096   unsigned EltSz = VT.getScalarSizeInBits();
7097   if (EltSz == 64)
7098     return false;
7099 
7100   unsigned NumElts = VT.getVectorNumElements();
7101   if (M.size() != NumElts && M.size() != NumElts*2)
7102     return false;
7103 
7104   unsigned Half = NumElts / 2;
7105   for (unsigned i = 0; i < M.size(); i += NumElts) {
7106     WhichResult = SelectPairHalf(NumElts, M, i);
7107     for (unsigned j = 0; j < NumElts; j += Half) {
7108       unsigned Idx = WhichResult;
7109       for (unsigned k = 0; k < Half; ++k) {
7110         int MIdx = M[i + j + k];
7111         if (MIdx >= 0 && (unsigned) MIdx != Idx)
7112           return false;
7113         Idx += 2;
7114       }
7115     }
7116   }
7117 
7118   if (M.size() == NumElts*2)
7119     WhichResult = 0;
7120 
7121   // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
7122   if (VT.is64BitVector() && EltSz == 32)
7123     return false;
7124 
7125   return true;
7126 }
7127 
7128 // Checks whether the shuffle mask represents a vector zip (VZIP) by checking
7129 // that pairs of elements of the shufflemask represent the same index in each
7130 // vector incrementing sequentially through the vectors.
7131 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 1, 5]
7132 //  v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,b,f}
7133 //  v2={e,f,g,h}
7134 // Requires similar checks to that of isVTRNMask with respect the how results
7135 // are returned.
isVZIPMask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)7136 static bool isVZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
7137   unsigned EltSz = VT.getScalarSizeInBits();
7138   if (EltSz == 64)
7139     return false;
7140 
7141   unsigned NumElts = VT.getVectorNumElements();
7142   if (M.size() != NumElts && M.size() != NumElts*2)
7143     return false;
7144 
7145   for (unsigned i = 0; i < M.size(); i += NumElts) {
7146     WhichResult = SelectPairHalf(NumElts, M, i);
7147     unsigned Idx = WhichResult * NumElts / 2;
7148     for (unsigned j = 0; j < NumElts; j += 2) {
7149       if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) ||
7150           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx + NumElts))
7151         return false;
7152       Idx += 1;
7153     }
7154   }
7155 
7156   if (M.size() == NumElts*2)
7157     WhichResult = 0;
7158 
7159   // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
7160   if (VT.is64BitVector() && EltSz == 32)
7161     return false;
7162 
7163   return true;
7164 }
7165 
7166 /// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
7167 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
7168 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
isVZIP_v_undef_Mask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)7169 static bool isVZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
7170   unsigned EltSz = VT.getScalarSizeInBits();
7171   if (EltSz == 64)
7172     return false;
7173 
7174   unsigned NumElts = VT.getVectorNumElements();
7175   if (M.size() != NumElts && M.size() != NumElts*2)
7176     return false;
7177 
7178   for (unsigned i = 0; i < M.size(); i += NumElts) {
7179     WhichResult = SelectPairHalf(NumElts, M, i);
7180     unsigned Idx = WhichResult * NumElts / 2;
7181     for (unsigned j = 0; j < NumElts; j += 2) {
7182       if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) ||
7183           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx))
7184         return false;
7185       Idx += 1;
7186     }
7187   }
7188 
7189   if (M.size() == NumElts*2)
7190     WhichResult = 0;
7191 
7192   // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
7193   if (VT.is64BitVector() && EltSz == 32)
7194     return false;
7195 
7196   return true;
7197 }
7198 
7199 /// Check if \p ShuffleMask is a NEON two-result shuffle (VZIP, VUZP, VTRN),
7200 /// and return the corresponding ARMISD opcode if it is, or 0 if it isn't.
isNEONTwoResultShuffleMask(ArrayRef<int> ShuffleMask,EVT VT,unsigned & WhichResult,bool & isV_UNDEF)7201 static unsigned isNEONTwoResultShuffleMask(ArrayRef<int> ShuffleMask, EVT VT,
7202                                            unsigned &WhichResult,
7203                                            bool &isV_UNDEF) {
7204   isV_UNDEF = false;
7205   if (isVTRNMask(ShuffleMask, VT, WhichResult))
7206     return ARMISD::VTRN;
7207   if (isVUZPMask(ShuffleMask, VT, WhichResult))
7208     return ARMISD::VUZP;
7209   if (isVZIPMask(ShuffleMask, VT, WhichResult))
7210     return ARMISD::VZIP;
7211 
7212   isV_UNDEF = true;
7213   if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
7214     return ARMISD::VTRN;
7215   if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
7216     return ARMISD::VUZP;
7217   if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
7218     return ARMISD::VZIP;
7219 
7220   return 0;
7221 }
7222 
7223 /// \return true if this is a reverse operation on an vector.
isReverseMask(ArrayRef<int> M,EVT VT)7224 static bool isReverseMask(ArrayRef<int> M, EVT VT) {
7225   unsigned NumElts = VT.getVectorNumElements();
7226   // Make sure the mask has the right size.
7227   if (NumElts != M.size())
7228       return false;
7229 
7230   // Look for <15, ..., 3, -1, 1, 0>.
7231   for (unsigned i = 0; i != NumElts; ++i)
7232     if (M[i] >= 0 && M[i] != (int) (NumElts - 1 - i))
7233       return false;
7234 
7235   return true;
7236 }
7237 
isVMOVNMask(ArrayRef<int> M,EVT VT,bool Top,bool SingleSource)7238 static bool isVMOVNMask(ArrayRef<int> M, EVT VT, bool Top, bool SingleSource) {
7239   unsigned NumElts = VT.getVectorNumElements();
7240   // Make sure the mask has the right size.
7241   if (NumElts != M.size() || (VT != MVT::v8i16 && VT != MVT::v16i8))
7242     return false;
7243 
7244   // If Top
7245   //   Look for <0, N, 2, N+2, 4, N+4, ..>.
7246   //   This inserts Input2 into Input1
7247   // else if not Top
7248   //   Look for <0, N+1, 2, N+3, 4, N+5, ..>
7249   //   This inserts Input1 into Input2
7250   unsigned Offset = Top ? 0 : 1;
7251   unsigned N = SingleSource ? 0 : NumElts;
7252   for (unsigned i = 0; i < NumElts; i += 2) {
7253     if (M[i] >= 0 && M[i] != (int)i)
7254       return false;
7255     if (M[i + 1] >= 0 && M[i + 1] != (int)(N + i + Offset))
7256       return false;
7257   }
7258 
7259   return true;
7260 }
7261 
7262 // Reconstruct an MVE VCVT from a BuildVector of scalar fptrunc, all extracted
7263 // from a pair of inputs. For example:
7264 // BUILDVECTOR(FP_ROUND(EXTRACT_ELT(X, 0),
7265 //             FP_ROUND(EXTRACT_ELT(Y, 0),
7266 //             FP_ROUND(EXTRACT_ELT(X, 1),
7267 //             FP_ROUND(EXTRACT_ELT(Y, 1), ...)
LowerBuildVectorOfFPTrunc(SDValue BV,SelectionDAG & DAG,const ARMSubtarget * ST)7268 static SDValue LowerBuildVectorOfFPTrunc(SDValue BV, SelectionDAG &DAG,
7269                                          const ARMSubtarget *ST) {
7270   assert(BV.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
7271   if (!ST->hasMVEFloatOps())
7272     return SDValue();
7273 
7274   SDLoc dl(BV);
7275   EVT VT = BV.getValueType();
7276   if (VT != MVT::v8f16)
7277     return SDValue();
7278 
7279   // We are looking for a buildvector of fptrunc elements, where all the
7280   // elements are interleavingly extracted from two sources. Check the first two
7281   // items are valid enough and extract some info from them (they are checked
7282   // properly in the loop below).
7283   if (BV.getOperand(0).getOpcode() != ISD::FP_ROUND ||
7284       BV.getOperand(0).getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
7285       BV.getOperand(0).getOperand(0).getConstantOperandVal(1) != 0)
7286     return SDValue();
7287   if (BV.getOperand(1).getOpcode() != ISD::FP_ROUND ||
7288       BV.getOperand(1).getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
7289       BV.getOperand(1).getOperand(0).getConstantOperandVal(1) != 0)
7290     return SDValue();
7291   SDValue Op0 = BV.getOperand(0).getOperand(0).getOperand(0);
7292   SDValue Op1 = BV.getOperand(1).getOperand(0).getOperand(0);
7293   if (Op0.getValueType() != MVT::v4f32 || Op1.getValueType() != MVT::v4f32)
7294     return SDValue();
7295 
7296   // Check all the values in the BuildVector line up with our expectations.
7297   for (unsigned i = 1; i < 4; i++) {
7298     auto Check = [](SDValue Trunc, SDValue Op, unsigned Idx) {
7299       return Trunc.getOpcode() == ISD::FP_ROUND &&
7300              Trunc.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7301              Trunc.getOperand(0).getOperand(0) == Op &&
7302              Trunc.getOperand(0).getConstantOperandVal(1) == Idx;
7303     };
7304     if (!Check(BV.getOperand(i * 2 + 0), Op0, i))
7305       return SDValue();
7306     if (!Check(BV.getOperand(i * 2 + 1), Op1, i))
7307       return SDValue();
7308   }
7309 
7310   SDValue N1 = DAG.getNode(ARMISD::VCVTN, dl, VT, DAG.getUNDEF(VT), Op0,
7311                            DAG.getConstant(0, dl, MVT::i32));
7312   return DAG.getNode(ARMISD::VCVTN, dl, VT, N1, Op1,
7313                      DAG.getConstant(1, dl, MVT::i32));
7314 }
7315 
7316 // Reconstruct an MVE VCVT from a BuildVector of scalar fpext, all extracted
7317 // from a single input on alternating lanes. For example:
7318 // BUILDVECTOR(FP_ROUND(EXTRACT_ELT(X, 0),
7319 //             FP_ROUND(EXTRACT_ELT(X, 2),
7320 //             FP_ROUND(EXTRACT_ELT(X, 4), ...)
LowerBuildVectorOfFPExt(SDValue BV,SelectionDAG & DAG,const ARMSubtarget * ST)7321 static SDValue LowerBuildVectorOfFPExt(SDValue BV, SelectionDAG &DAG,
7322                                        const ARMSubtarget *ST) {
7323   assert(BV.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
7324   if (!ST->hasMVEFloatOps())
7325     return SDValue();
7326 
7327   SDLoc dl(BV);
7328   EVT VT = BV.getValueType();
7329   if (VT != MVT::v4f32)
7330     return SDValue();
7331 
7332   // We are looking for a buildvector of fptext elements, where all the
7333   // elements are alternating lanes from a single source. For example <0,2,4,6>
7334   // or <1,3,5,7>. Check the first two items are valid enough and extract some
7335   // info from them (they are checked properly in the loop below).
7336   if (BV.getOperand(0).getOpcode() != ISD::FP_EXTEND ||
7337       BV.getOperand(0).getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT)
7338     return SDValue();
7339   SDValue Op0 = BV.getOperand(0).getOperand(0).getOperand(0);
7340   int Offset = BV.getOperand(0).getOperand(0).getConstantOperandVal(1);
7341   if (Op0.getValueType() != MVT::v8f16 || (Offset != 0 && Offset != 1))
7342     return SDValue();
7343 
7344   // Check all the values in the BuildVector line up with our expectations.
7345   for (unsigned i = 1; i < 4; i++) {
7346     auto Check = [](SDValue Trunc, SDValue Op, unsigned Idx) {
7347       return Trunc.getOpcode() == ISD::FP_EXTEND &&
7348              Trunc.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7349              Trunc.getOperand(0).getOperand(0) == Op &&
7350              Trunc.getOperand(0).getConstantOperandVal(1) == Idx;
7351     };
7352     if (!Check(BV.getOperand(i), Op0, 2 * i + Offset))
7353       return SDValue();
7354   }
7355 
7356   return DAG.getNode(ARMISD::VCVTL, dl, VT, Op0,
7357                      DAG.getConstant(Offset, dl, MVT::i32));
7358 }
7359 
7360 // If N is an integer constant that can be moved into a register in one
7361 // instruction, return an SDValue of such a constant (will become a MOV
7362 // instruction).  Otherwise return null.
IsSingleInstrConstant(SDValue N,SelectionDAG & DAG,const ARMSubtarget * ST,const SDLoc & dl)7363 static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
7364                                      const ARMSubtarget *ST, const SDLoc &dl) {
7365   uint64_t Val;
7366   if (!isa<ConstantSDNode>(N))
7367     return SDValue();
7368   Val = cast<ConstantSDNode>(N)->getZExtValue();
7369 
7370   if (ST->isThumb1Only()) {
7371     if (Val <= 255 || ~Val <= 255)
7372       return DAG.getConstant(Val, dl, MVT::i32);
7373   } else {
7374     if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
7375       return DAG.getConstant(Val, dl, MVT::i32);
7376   }
7377   return SDValue();
7378 }
7379 
LowerBUILD_VECTOR_i1(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST)7380 static SDValue LowerBUILD_VECTOR_i1(SDValue Op, SelectionDAG &DAG,
7381                                     const ARMSubtarget *ST) {
7382   SDLoc dl(Op);
7383   EVT VT = Op.getValueType();
7384 
7385   assert(ST->hasMVEIntegerOps() && "LowerBUILD_VECTOR_i1 called without MVE!");
7386 
7387   unsigned NumElts = VT.getVectorNumElements();
7388   unsigned BoolMask;
7389   unsigned BitsPerBool;
7390   if (NumElts == 4) {
7391     BitsPerBool = 4;
7392     BoolMask = 0xf;
7393   } else if (NumElts == 8) {
7394     BitsPerBool = 2;
7395     BoolMask = 0x3;
7396   } else if (NumElts == 16) {
7397     BitsPerBool = 1;
7398     BoolMask = 0x1;
7399   } else
7400     return SDValue();
7401 
7402   // If this is a single value copied into all lanes (a splat), we can just sign
7403   // extend that single value
7404   SDValue FirstOp = Op.getOperand(0);
7405   if (!isa<ConstantSDNode>(FirstOp) &&
7406       std::all_of(std::next(Op->op_begin()), Op->op_end(),
7407                   [&FirstOp](SDUse &U) {
7408                     return U.get().isUndef() || U.get() == FirstOp;
7409                   })) {
7410     SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::i32, FirstOp,
7411                               DAG.getValueType(MVT::i1));
7412     return DAG.getNode(ARMISD::PREDICATE_CAST, dl, Op.getValueType(), Ext);
7413   }
7414 
7415   // First create base with bits set where known
7416   unsigned Bits32 = 0;
7417   for (unsigned i = 0; i < NumElts; ++i) {
7418     SDValue V = Op.getOperand(i);
7419     if (!isa<ConstantSDNode>(V) && !V.isUndef())
7420       continue;
7421     bool BitSet = V.isUndef() ? false : cast<ConstantSDNode>(V)->getZExtValue();
7422     if (BitSet)
7423       Bits32 |= BoolMask << (i * BitsPerBool);
7424   }
7425 
7426   // Add in unknown nodes
7427   SDValue Base = DAG.getNode(ARMISD::PREDICATE_CAST, dl, VT,
7428                              DAG.getConstant(Bits32, dl, MVT::i32));
7429   for (unsigned i = 0; i < NumElts; ++i) {
7430     SDValue V = Op.getOperand(i);
7431     if (isa<ConstantSDNode>(V) || V.isUndef())
7432       continue;
7433     Base = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Base, V,
7434                        DAG.getConstant(i, dl, MVT::i32));
7435   }
7436 
7437   return Base;
7438 }
7439 
LowerBUILD_VECTORToVIDUP(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST)7440 static SDValue LowerBUILD_VECTORToVIDUP(SDValue Op, SelectionDAG &DAG,
7441                                         const ARMSubtarget *ST) {
7442   if (!ST->hasMVEIntegerOps())
7443     return SDValue();
7444 
7445   // We are looking for a buildvector where each element is Op[0] + i*N
7446   EVT VT = Op.getValueType();
7447   SDValue Op0 = Op.getOperand(0);
7448   unsigned NumElts = VT.getVectorNumElements();
7449 
7450   // Get the increment value from operand 1
7451   SDValue Op1 = Op.getOperand(1);
7452   if (Op1.getOpcode() != ISD::ADD || Op1.getOperand(0) != Op0 ||
7453       !isa<ConstantSDNode>(Op1.getOperand(1)))
7454     return SDValue();
7455   unsigned N = Op1.getConstantOperandVal(1);
7456   if (N != 1 && N != 2 && N != 4 && N != 8)
7457     return SDValue();
7458 
7459   // Check that each other operand matches
7460   for (unsigned I = 2; I < NumElts; I++) {
7461     SDValue OpI = Op.getOperand(I);
7462     if (OpI.getOpcode() != ISD::ADD || OpI.getOperand(0) != Op0 ||
7463         !isa<ConstantSDNode>(OpI.getOperand(1)) ||
7464         OpI.getConstantOperandVal(1) != I * N)
7465       return SDValue();
7466   }
7467 
7468   SDLoc DL(Op);
7469   return DAG.getNode(ARMISD::VIDUP, DL, DAG.getVTList(VT, MVT::i32), Op0,
7470                      DAG.getConstant(N, DL, MVT::i32));
7471 }
7472 
7473 // If this is a case we can't handle, return null and let the default
7474 // expansion code take care of it.
LowerBUILD_VECTOR(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST) const7475 SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
7476                                              const ARMSubtarget *ST) const {
7477   BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
7478   SDLoc dl(Op);
7479   EVT VT = Op.getValueType();
7480 
7481   if (ST->hasMVEIntegerOps() && VT.getScalarSizeInBits() == 1)
7482     return LowerBUILD_VECTOR_i1(Op, DAG, ST);
7483 
7484   if (SDValue R = LowerBUILD_VECTORToVIDUP(Op, DAG, ST))
7485     return R;
7486 
7487   APInt SplatBits, SplatUndef;
7488   unsigned SplatBitSize;
7489   bool HasAnyUndefs;
7490   if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
7491     if (SplatUndef.isAllOnesValue())
7492       return DAG.getUNDEF(VT);
7493 
7494     if ((ST->hasNEON() && SplatBitSize <= 64) ||
7495         (ST->hasMVEIntegerOps() && SplatBitSize <= 64)) {
7496       // Check if an immediate VMOV works.
7497       EVT VmovVT;
7498       SDValue Val =
7499           isVMOVModifiedImm(SplatBits.getZExtValue(), SplatUndef.getZExtValue(),
7500                             SplatBitSize, DAG, dl, VmovVT, VT, VMOVModImm);
7501 
7502       if (Val.getNode()) {
7503         SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
7504         return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
7505       }
7506 
7507       // Try an immediate VMVN.
7508       uint64_t NegatedImm = (~SplatBits).getZExtValue();
7509       Val = isVMOVModifiedImm(
7510           NegatedImm, SplatUndef.getZExtValue(), SplatBitSize, DAG, dl, VmovVT,
7511           VT, ST->hasMVEIntegerOps() ? MVEVMVNModImm : VMVNModImm);
7512       if (Val.getNode()) {
7513         SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
7514         return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
7515       }
7516 
7517       // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
7518       if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) {
7519         int ImmVal = ARM_AM::getFP32Imm(SplatBits);
7520         if (ImmVal != -1) {
7521           SDValue Val = DAG.getTargetConstant(ImmVal, dl, MVT::i32);
7522           return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val);
7523         }
7524       }
7525     }
7526   }
7527 
7528   // Scan through the operands to see if only one value is used.
7529   //
7530   // As an optimisation, even if more than one value is used it may be more
7531   // profitable to splat with one value then change some lanes.
7532   //
7533   // Heuristically we decide to do this if the vector has a "dominant" value,
7534   // defined as splatted to more than half of the lanes.
7535   unsigned NumElts = VT.getVectorNumElements();
7536   bool isOnlyLowElement = true;
7537   bool usesOnlyOneValue = true;
7538   bool hasDominantValue = false;
7539   bool isConstant = true;
7540 
7541   // Map of the number of times a particular SDValue appears in the
7542   // element list.
7543   DenseMap<SDValue, unsigned> ValueCounts;
7544   SDValue Value;
7545   for (unsigned i = 0; i < NumElts; ++i) {
7546     SDValue V = Op.getOperand(i);
7547     if (V.isUndef())
7548       continue;
7549     if (i > 0)
7550       isOnlyLowElement = false;
7551     if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
7552       isConstant = false;
7553 
7554     ValueCounts.insert(std::make_pair(V, 0));
7555     unsigned &Count = ValueCounts[V];
7556 
7557     // Is this value dominant? (takes up more than half of the lanes)
7558     if (++Count > (NumElts / 2)) {
7559       hasDominantValue = true;
7560       Value = V;
7561     }
7562   }
7563   if (ValueCounts.size() != 1)
7564     usesOnlyOneValue = false;
7565   if (!Value.getNode() && !ValueCounts.empty())
7566     Value = ValueCounts.begin()->first;
7567 
7568   if (ValueCounts.empty())
7569     return DAG.getUNDEF(VT);
7570 
7571   // Loads are better lowered with insert_vector_elt/ARMISD::BUILD_VECTOR.
7572   // Keep going if we are hitting this case.
7573   if (isOnlyLowElement && !ISD::isNormalLoad(Value.getNode()))
7574     return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
7575 
7576   unsigned EltSize = VT.getScalarSizeInBits();
7577 
7578   // Use VDUP for non-constant splats.  For f32 constant splats, reduce to
7579   // i32 and try again.
7580   if (hasDominantValue && EltSize <= 32) {
7581     if (!isConstant) {
7582       SDValue N;
7583 
7584       // If we are VDUPing a value that comes directly from a vector, that will
7585       // cause an unnecessary move to and from a GPR, where instead we could
7586       // just use VDUPLANE. We can only do this if the lane being extracted
7587       // is at a constant index, as the VDUP from lane instructions only have
7588       // constant-index forms.
7589       ConstantSDNode *constIndex;
7590       if (Value->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7591           (constIndex = dyn_cast<ConstantSDNode>(Value->getOperand(1)))) {
7592         // We need to create a new undef vector to use for the VDUPLANE if the
7593         // size of the vector from which we get the value is different than the
7594         // size of the vector that we need to create. We will insert the element
7595         // such that the register coalescer will remove unnecessary copies.
7596         if (VT != Value->getOperand(0).getValueType()) {
7597           unsigned index = constIndex->getAPIntValue().getLimitedValue() %
7598                              VT.getVectorNumElements();
7599           N =  DAG.getNode(ARMISD::VDUPLANE, dl, VT,
7600                  DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DAG.getUNDEF(VT),
7601                         Value, DAG.getConstant(index, dl, MVT::i32)),
7602                            DAG.getConstant(index, dl, MVT::i32));
7603         } else
7604           N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
7605                         Value->getOperand(0), Value->getOperand(1));
7606       } else
7607         N = DAG.getNode(ARMISD::VDUP, dl, VT, Value);
7608 
7609       if (!usesOnlyOneValue) {
7610         // The dominant value was splatted as 'N', but we now have to insert
7611         // all differing elements.
7612         for (unsigned I = 0; I < NumElts; ++I) {
7613           if (Op.getOperand(I) == Value)
7614             continue;
7615           SmallVector<SDValue, 3> Ops;
7616           Ops.push_back(N);
7617           Ops.push_back(Op.getOperand(I));
7618           Ops.push_back(DAG.getConstant(I, dl, MVT::i32));
7619           N = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Ops);
7620         }
7621       }
7622       return N;
7623     }
7624     if (VT.getVectorElementType().isFloatingPoint()) {
7625       SmallVector<SDValue, 8> Ops;
7626       MVT FVT = VT.getVectorElementType().getSimpleVT();
7627       assert(FVT == MVT::f32 || FVT == MVT::f16);
7628       MVT IVT = (FVT == MVT::f32) ? MVT::i32 : MVT::i16;
7629       for (unsigned i = 0; i < NumElts; ++i)
7630         Ops.push_back(DAG.getNode(ISD::BITCAST, dl, IVT,
7631                                   Op.getOperand(i)));
7632       EVT VecVT = EVT::getVectorVT(*DAG.getContext(), IVT, NumElts);
7633       SDValue Val = DAG.getBuildVector(VecVT, dl, Ops);
7634       Val = LowerBUILD_VECTOR(Val, DAG, ST);
7635       if (Val.getNode())
7636         return DAG.getNode(ISD::BITCAST, dl, VT, Val);
7637     }
7638     if (usesOnlyOneValue) {
7639       SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
7640       if (isConstant && Val.getNode())
7641         return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
7642     }
7643   }
7644 
7645   // If all elements are constants and the case above didn't get hit, fall back
7646   // to the default expansion, which will generate a load from the constant
7647   // pool.
7648   if (isConstant)
7649     return SDValue();
7650 
7651   // Reconstruct the BUILDVECTOR to one of the legal shuffles (such as vext and
7652   // vmovn). Empirical tests suggest this is rarely worth it for vectors of
7653   // length <= 2.
7654   if (NumElts >= 4)
7655     if (SDValue shuffle = ReconstructShuffle(Op, DAG))
7656       return shuffle;
7657 
7658   // Attempt to turn a buildvector of scalar fptrunc's or fpext's back into
7659   // VCVT's
7660   if (SDValue VCVT = LowerBuildVectorOfFPTrunc(Op, DAG, Subtarget))
7661     return VCVT;
7662   if (SDValue VCVT = LowerBuildVectorOfFPExt(Op, DAG, Subtarget))
7663     return VCVT;
7664 
7665   if (ST->hasNEON() && VT.is128BitVector() && VT != MVT::v2f64 && VT != MVT::v4f32) {
7666     // If we haven't found an efficient lowering, try splitting a 128-bit vector
7667     // into two 64-bit vectors; we might discover a better way to lower it.
7668     SmallVector<SDValue, 64> Ops(Op->op_begin(), Op->op_begin() + NumElts);
7669     EVT ExtVT = VT.getVectorElementType();
7670     EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElts / 2);
7671     SDValue Lower =
7672         DAG.getBuildVector(HVT, dl, makeArrayRef(&Ops[0], NumElts / 2));
7673     if (Lower.getOpcode() == ISD::BUILD_VECTOR)
7674       Lower = LowerBUILD_VECTOR(Lower, DAG, ST);
7675     SDValue Upper = DAG.getBuildVector(
7676         HVT, dl, makeArrayRef(&Ops[NumElts / 2], NumElts / 2));
7677     if (Upper.getOpcode() == ISD::BUILD_VECTOR)
7678       Upper = LowerBUILD_VECTOR(Upper, DAG, ST);
7679     if (Lower && Upper)
7680       return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Lower, Upper);
7681   }
7682 
7683   // Vectors with 32- or 64-bit elements can be built by directly assigning
7684   // the subregisters.  Lower it to an ARMISD::BUILD_VECTOR so the operands
7685   // will be legalized.
7686   if (EltSize >= 32) {
7687     // Do the expansion with floating-point types, since that is what the VFP
7688     // registers are defined to use, and since i64 is not legal.
7689     EVT EltVT = EVT::getFloatingPointVT(EltSize);
7690     EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
7691     SmallVector<SDValue, 8> Ops;
7692     for (unsigned i = 0; i < NumElts; ++i)
7693       Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
7694     SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
7695     return DAG.getNode(ISD::BITCAST, dl, VT, Val);
7696   }
7697 
7698   // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
7699   // know the default expansion would otherwise fall back on something even
7700   // worse. For a vector with one or two non-undef values, that's
7701   // scalar_to_vector for the elements followed by a shuffle (provided the
7702   // shuffle is valid for the target) and materialization element by element
7703   // on the stack followed by a load for everything else.
7704   if (!isConstant && !usesOnlyOneValue) {
7705     SDValue Vec = DAG.getUNDEF(VT);
7706     for (unsigned i = 0 ; i < NumElts; ++i) {
7707       SDValue V = Op.getOperand(i);
7708       if (V.isUndef())
7709         continue;
7710       SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i32);
7711       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
7712     }
7713     return Vec;
7714   }
7715 
7716   return SDValue();
7717 }
7718 
7719 // Gather data to see if the operation can be modelled as a
7720 // shuffle in combination with VEXTs.
ReconstructShuffle(SDValue Op,SelectionDAG & DAG) const7721 SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
7722                                               SelectionDAG &DAG) const {
7723   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
7724   SDLoc dl(Op);
7725   EVT VT = Op.getValueType();
7726   unsigned NumElts = VT.getVectorNumElements();
7727 
7728   struct ShuffleSourceInfo {
7729     SDValue Vec;
7730     unsigned MinElt = std::numeric_limits<unsigned>::max();
7731     unsigned MaxElt = 0;
7732 
7733     // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
7734     // be compatible with the shuffle we intend to construct. As a result
7735     // ShuffleVec will be some sliding window into the original Vec.
7736     SDValue ShuffleVec;
7737 
7738     // Code should guarantee that element i in Vec starts at element "WindowBase
7739     // + i * WindowScale in ShuffleVec".
7740     int WindowBase = 0;
7741     int WindowScale = 1;
7742 
7743     ShuffleSourceInfo(SDValue Vec) : Vec(Vec), ShuffleVec(Vec) {}
7744 
7745     bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
7746   };
7747 
7748   // First gather all vectors used as an immediate source for this BUILD_VECTOR
7749   // node.
7750   SmallVector<ShuffleSourceInfo, 2> Sources;
7751   for (unsigned i = 0; i < NumElts; ++i) {
7752     SDValue V = Op.getOperand(i);
7753     if (V.isUndef())
7754       continue;
7755     else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
7756       // A shuffle can only come from building a vector from various
7757       // elements of other vectors.
7758       return SDValue();
7759     } else if (!isa<ConstantSDNode>(V.getOperand(1))) {
7760       // Furthermore, shuffles require a constant mask, whereas extractelts
7761       // accept variable indices.
7762       return SDValue();
7763     }
7764 
7765     // Add this element source to the list if it's not already there.
7766     SDValue SourceVec = V.getOperand(0);
7767     auto Source = llvm::find(Sources, SourceVec);
7768     if (Source == Sources.end())
7769       Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));
7770 
7771     // Update the minimum and maximum lane number seen.
7772     unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
7773     Source->MinElt = std::min(Source->MinElt, EltNo);
7774     Source->MaxElt = std::max(Source->MaxElt, EltNo);
7775   }
7776 
7777   // Currently only do something sane when at most two source vectors
7778   // are involved.
7779   if (Sources.size() > 2)
7780     return SDValue();
7781 
7782   // Find out the smallest element size among result and two sources, and use
7783   // it as element size to build the shuffle_vector.
7784   EVT SmallestEltTy = VT.getVectorElementType();
7785   for (auto &Source : Sources) {
7786     EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
7787     if (SrcEltTy.bitsLT(SmallestEltTy))
7788       SmallestEltTy = SrcEltTy;
7789   }
7790   unsigned ResMultiplier =
7791       VT.getScalarSizeInBits() / SmallestEltTy.getSizeInBits();
7792   NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits();
7793   EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);
7794 
7795   // If the source vector is too wide or too narrow, we may nevertheless be able
7796   // to construct a compatible shuffle either by concatenating it with UNDEF or
7797   // extracting a suitable range of elements.
7798   for (auto &Src : Sources) {
7799     EVT SrcVT = Src.ShuffleVec.getValueType();
7800 
7801     uint64_t SrcVTSize = SrcVT.getFixedSizeInBits();
7802     uint64_t VTSize = VT.getFixedSizeInBits();
7803     if (SrcVTSize == VTSize)
7804       continue;
7805 
7806     // This stage of the search produces a source with the same element type as
7807     // the original, but with a total width matching the BUILD_VECTOR output.
7808     EVT EltVT = SrcVT.getVectorElementType();
7809     unsigned NumSrcElts = VTSize / EltVT.getFixedSizeInBits();
7810     EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);
7811 
7812     if (SrcVTSize < VTSize) {
7813       if (2 * SrcVTSize != VTSize)
7814         return SDValue();
7815       // We can pad out the smaller vector for free, so if it's part of a
7816       // shuffle...
7817       Src.ShuffleVec =
7818           DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
7819                       DAG.getUNDEF(Src.ShuffleVec.getValueType()));
7820       continue;
7821     }
7822 
7823     if (SrcVTSize != 2 * VTSize)
7824       return SDValue();
7825 
7826     if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
7827       // Span too large for a VEXT to cope
7828       return SDValue();
7829     }
7830 
7831     if (Src.MinElt >= NumSrcElts) {
7832       // The extraction can just take the second half
7833       Src.ShuffleVec =
7834           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
7835                       DAG.getConstant(NumSrcElts, dl, MVT::i32));
7836       Src.WindowBase = -NumSrcElts;
7837     } else if (Src.MaxElt < NumSrcElts) {
7838       // The extraction can just take the first half
7839       Src.ShuffleVec =
7840           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
7841                       DAG.getConstant(0, dl, MVT::i32));
7842     } else {
7843       // An actual VEXT is needed
7844       SDValue VEXTSrc1 =
7845           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
7846                       DAG.getConstant(0, dl, MVT::i32));
7847       SDValue VEXTSrc2 =
7848           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
7849                       DAG.getConstant(NumSrcElts, dl, MVT::i32));
7850 
7851       Src.ShuffleVec = DAG.getNode(ARMISD::VEXT, dl, DestVT, VEXTSrc1,
7852                                    VEXTSrc2,
7853                                    DAG.getConstant(Src.MinElt, dl, MVT::i32));
7854       Src.WindowBase = -Src.MinElt;
7855     }
7856   }
7857 
7858   // Another possible incompatibility occurs from the vector element types. We
7859   // can fix this by bitcasting the source vectors to the same type we intend
7860   // for the shuffle.
7861   for (auto &Src : Sources) {
7862     EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
7863     if (SrcEltTy == SmallestEltTy)
7864       continue;
7865     assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
7866     Src.ShuffleVec = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, ShuffleVT, Src.ShuffleVec);
7867     Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits();
7868     Src.WindowBase *= Src.WindowScale;
7869   }
7870 
7871   // Final sanity check before we try to actually produce a shuffle.
7872   LLVM_DEBUG(for (auto Src
7873                   : Sources)
7874                  assert(Src.ShuffleVec.getValueType() == ShuffleVT););
7875 
7876   // The stars all align, our next step is to produce the mask for the shuffle.
7877   SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
7878   int BitsPerShuffleLane = ShuffleVT.getScalarSizeInBits();
7879   for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
7880     SDValue Entry = Op.getOperand(i);
7881     if (Entry.isUndef())
7882       continue;
7883 
7884     auto Src = llvm::find(Sources, Entry.getOperand(0));
7885     int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();
7886 
7887     // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
7888     // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
7889     // segment.
7890     EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
7891     int BitsDefined = std::min(OrigEltTy.getScalarSizeInBits(),
7892                                VT.getScalarSizeInBits());
7893     int LanesDefined = BitsDefined / BitsPerShuffleLane;
7894 
7895     // This source is expected to fill ResMultiplier lanes of the final shuffle,
7896     // starting at the appropriate offset.
7897     int *LaneMask = &Mask[i * ResMultiplier];
7898 
7899     int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
7900     ExtractBase += NumElts * (Src - Sources.begin());
7901     for (int j = 0; j < LanesDefined; ++j)
7902       LaneMask[j] = ExtractBase + j;
7903   }
7904 
7905 
7906   // We can't handle more than two sources. This should have already
7907   // been checked before this point.
7908   assert(Sources.size() <= 2 && "Too many sources!");
7909 
7910   SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
7911   for (unsigned i = 0; i < Sources.size(); ++i)
7912     ShuffleOps[i] = Sources[i].ShuffleVec;
7913 
7914   SDValue Shuffle = buildLegalVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
7915                                             ShuffleOps[1], Mask, DAG);
7916   if (!Shuffle)
7917     return SDValue();
7918   return DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, VT, Shuffle);
7919 }
7920 
7921 enum ShuffleOpCodes {
7922   OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
7923   OP_VREV,
7924   OP_VDUP0,
7925   OP_VDUP1,
7926   OP_VDUP2,
7927   OP_VDUP3,
7928   OP_VEXT1,
7929   OP_VEXT2,
7930   OP_VEXT3,
7931   OP_VUZPL, // VUZP, left result
7932   OP_VUZPR, // VUZP, right result
7933   OP_VZIPL, // VZIP, left result
7934   OP_VZIPR, // VZIP, right result
7935   OP_VTRNL, // VTRN, left result
7936   OP_VTRNR  // VTRN, right result
7937 };
7938 
isLegalMVEShuffleOp(unsigned PFEntry)7939 static bool isLegalMVEShuffleOp(unsigned PFEntry) {
7940   unsigned OpNum = (PFEntry >> 26) & 0x0F;
7941   switch (OpNum) {
7942   case OP_COPY:
7943   case OP_VREV:
7944   case OP_VDUP0:
7945   case OP_VDUP1:
7946   case OP_VDUP2:
7947   case OP_VDUP3:
7948     return true;
7949   }
7950   return false;
7951 }
7952 
7953 /// isShuffleMaskLegal - Targets can use this to indicate that they only
7954 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
7955 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
7956 /// are assumed to be legal.
isShuffleMaskLegal(ArrayRef<int> M,EVT VT) const7957 bool ARMTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
7958   if (VT.getVectorNumElements() == 4 &&
7959       (VT.is128BitVector() || VT.is64BitVector())) {
7960     unsigned PFIndexes[4];
7961     for (unsigned i = 0; i != 4; ++i) {
7962       if (M[i] < 0)
7963         PFIndexes[i] = 8;
7964       else
7965         PFIndexes[i] = M[i];
7966     }
7967 
7968     // Compute the index in the perfect shuffle table.
7969     unsigned PFTableIndex =
7970       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
7971     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
7972     unsigned Cost = (PFEntry >> 30);
7973 
7974     if (Cost <= 4 && (Subtarget->hasNEON() || isLegalMVEShuffleOp(PFEntry)))
7975       return true;
7976   }
7977 
7978   bool ReverseVEXT, isV_UNDEF;
7979   unsigned Imm, WhichResult;
7980 
7981   unsigned EltSize = VT.getScalarSizeInBits();
7982   if (EltSize >= 32 ||
7983       ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
7984       ShuffleVectorInst::isIdentityMask(M) ||
7985       isVREVMask(M, VT, 64) ||
7986       isVREVMask(M, VT, 32) ||
7987       isVREVMask(M, VT, 16))
7988     return true;
7989   else if (Subtarget->hasNEON() &&
7990            (isVEXTMask(M, VT, ReverseVEXT, Imm) ||
7991             isVTBLMask(M, VT) ||
7992             isNEONTwoResultShuffleMask(M, VT, WhichResult, isV_UNDEF)))
7993     return true;
7994   else if (Subtarget->hasNEON() && (VT == MVT::v8i16 || VT == MVT::v16i8) &&
7995            isReverseMask(M, VT))
7996     return true;
7997   else if (Subtarget->hasMVEIntegerOps() &&
7998            (isVMOVNMask(M, VT, true, false) ||
7999             isVMOVNMask(M, VT, false, false) || isVMOVNMask(M, VT, true, true)))
8000     return true;
8001   else
8002     return false;
8003 }
8004 
8005 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
8006 /// the specified operations to build the shuffle.
GeneratePerfectShuffle(unsigned PFEntry,SDValue LHS,SDValue RHS,SelectionDAG & DAG,const SDLoc & dl)8007 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
8008                                       SDValue RHS, SelectionDAG &DAG,
8009                                       const SDLoc &dl) {
8010   unsigned OpNum = (PFEntry >> 26) & 0x0F;
8011   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
8012   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
8013 
8014   if (OpNum == OP_COPY) {
8015     if (LHSID == (1*9+2)*9+3) return LHS;
8016     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
8017     return RHS;
8018   }
8019 
8020   SDValue OpLHS, OpRHS;
8021   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
8022   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
8023   EVT VT = OpLHS.getValueType();
8024 
8025   switch (OpNum) {
8026   default: llvm_unreachable("Unknown shuffle opcode!");
8027   case OP_VREV:
8028     // VREV divides the vector in half and swaps within the half.
8029     if (VT.getVectorElementType() == MVT::i32 ||
8030         VT.getVectorElementType() == MVT::f32)
8031       return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
8032     // vrev <4 x i16> -> VREV32
8033     if (VT.getVectorElementType() == MVT::i16 ||
8034         VT.getVectorElementType() == MVT::f16)
8035       return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
8036     // vrev <4 x i8> -> VREV16
8037     assert(VT.getVectorElementType() == MVT::i8);
8038     return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
8039   case OP_VDUP0:
8040   case OP_VDUP1:
8041   case OP_VDUP2:
8042   case OP_VDUP3:
8043     return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
8044                        OpLHS, DAG.getConstant(OpNum-OP_VDUP0, dl, MVT::i32));
8045   case OP_VEXT1:
8046   case OP_VEXT2:
8047   case OP_VEXT3:
8048     return DAG.getNode(ARMISD::VEXT, dl, VT,
8049                        OpLHS, OpRHS,
8050                        DAG.getConstant(OpNum - OP_VEXT1 + 1, dl, MVT::i32));
8051   case OP_VUZPL:
8052   case OP_VUZPR:
8053     return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
8054                        OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
8055   case OP_VZIPL:
8056   case OP_VZIPR:
8057     return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
8058                        OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
8059   case OP_VTRNL:
8060   case OP_VTRNR:
8061     return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
8062                        OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
8063   }
8064 }
8065 
LowerVECTOR_SHUFFLEv8i8(SDValue Op,ArrayRef<int> ShuffleMask,SelectionDAG & DAG)8066 static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
8067                                        ArrayRef<int> ShuffleMask,
8068                                        SelectionDAG &DAG) {
8069   // Check to see if we can use the VTBL instruction.
8070   SDValue V1 = Op.getOperand(0);
8071   SDValue V2 = Op.getOperand(1);
8072   SDLoc DL(Op);
8073 
8074   SmallVector<SDValue, 8> VTBLMask;
8075   for (ArrayRef<int>::iterator
8076          I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
8077     VTBLMask.push_back(DAG.getConstant(*I, DL, MVT::i32));
8078 
8079   if (V2.getNode()->isUndef())
8080     return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
8081                        DAG.getBuildVector(MVT::v8i8, DL, VTBLMask));
8082 
8083   return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
8084                      DAG.getBuildVector(MVT::v8i8, DL, VTBLMask));
8085 }
8086 
LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op,SelectionDAG & DAG)8087 static SDValue LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op,
8088                                                       SelectionDAG &DAG) {
8089   SDLoc DL(Op);
8090   SDValue OpLHS = Op.getOperand(0);
8091   EVT VT = OpLHS.getValueType();
8092 
8093   assert((VT == MVT::v8i16 || VT == MVT::v16i8) &&
8094          "Expect an v8i16/v16i8 type");
8095   OpLHS = DAG.getNode(ARMISD::VREV64, DL, VT, OpLHS);
8096   // For a v16i8 type: After the VREV, we have got <8, ...15, 8, ..., 0>. Now,
8097   // extract the first 8 bytes into the top double word and the last 8 bytes
8098   // into the bottom double word. The v8i16 case is similar.
8099   unsigned ExtractNum = (VT == MVT::v16i8) ? 8 : 4;
8100   return DAG.getNode(ARMISD::VEXT, DL, VT, OpLHS, OpLHS,
8101                      DAG.getConstant(ExtractNum, DL, MVT::i32));
8102 }
8103 
getVectorTyFromPredicateVector(EVT VT)8104 static EVT getVectorTyFromPredicateVector(EVT VT) {
8105   switch (VT.getSimpleVT().SimpleTy) {
8106   case MVT::v4i1:
8107     return MVT::v4i32;
8108   case MVT::v8i1:
8109     return MVT::v8i16;
8110   case MVT::v16i1:
8111     return MVT::v16i8;
8112   default:
8113     llvm_unreachable("Unexpected vector predicate type");
8114   }
8115 }
8116 
PromoteMVEPredVector(SDLoc dl,SDValue Pred,EVT VT,SelectionDAG & DAG)8117 static SDValue PromoteMVEPredVector(SDLoc dl, SDValue Pred, EVT VT,
8118                                     SelectionDAG &DAG) {
8119   // Converting from boolean predicates to integers involves creating a vector
8120   // of all ones or all zeroes and selecting the lanes based upon the real
8121   // predicate.
8122   SDValue AllOnes =
8123       DAG.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0xff), dl, MVT::i32);
8124   AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v16i8, AllOnes);
8125 
8126   SDValue AllZeroes =
8127       DAG.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0x0), dl, MVT::i32);
8128   AllZeroes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v16i8, AllZeroes);
8129 
8130   // Get full vector type from predicate type
8131   EVT NewVT = getVectorTyFromPredicateVector(VT);
8132 
8133   SDValue RecastV1;
8134   // If the real predicate is an v8i1 or v4i1 (not v16i1) then we need to recast
8135   // this to a v16i1. This cannot be done with an ordinary bitcast because the
8136   // sizes are not the same. We have to use a MVE specific PREDICATE_CAST node,
8137   // since we know in hardware the sizes are really the same.
8138   if (VT != MVT::v16i1)
8139     RecastV1 = DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::v16i1, Pred);
8140   else
8141     RecastV1 = Pred;
8142 
8143   // Select either all ones or zeroes depending upon the real predicate bits.
8144   SDValue PredAsVector =
8145       DAG.getNode(ISD::VSELECT, dl, MVT::v16i8, RecastV1, AllOnes, AllZeroes);
8146 
8147   // Recast our new predicate-as-integer v16i8 vector into something
8148   // appropriate for the shuffle, i.e. v4i32 for a real v4i1 predicate.
8149   return DAG.getNode(ISD::BITCAST, dl, NewVT, PredAsVector);
8150 }
8151 
LowerVECTOR_SHUFFLE_i1(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST)8152 static SDValue LowerVECTOR_SHUFFLE_i1(SDValue Op, SelectionDAG &DAG,
8153                                       const ARMSubtarget *ST) {
8154   EVT VT = Op.getValueType();
8155   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
8156   ArrayRef<int> ShuffleMask = SVN->getMask();
8157 
8158   assert(ST->hasMVEIntegerOps() &&
8159          "No support for vector shuffle of boolean predicates");
8160 
8161   SDValue V1 = Op.getOperand(0);
8162   SDLoc dl(Op);
8163   if (isReverseMask(ShuffleMask, VT)) {
8164     SDValue cast = DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::i32, V1);
8165     SDValue rbit = DAG.getNode(ISD::BITREVERSE, dl, MVT::i32, cast);
8166     SDValue srl = DAG.getNode(ISD::SRL, dl, MVT::i32, rbit,
8167                               DAG.getConstant(16, dl, MVT::i32));
8168     return DAG.getNode(ARMISD::PREDICATE_CAST, dl, VT, srl);
8169   }
8170 
8171   // Until we can come up with optimised cases for every single vector
8172   // shuffle in existence we have chosen the least painful strategy. This is
8173   // to essentially promote the boolean predicate to a 8-bit integer, where
8174   // each predicate represents a byte. Then we fall back on a normal integer
8175   // vector shuffle and convert the result back into a predicate vector. In
8176   // many cases the generated code might be even better than scalar code
8177   // operating on bits. Just imagine trying to shuffle 8 arbitrary 2-bit
8178   // fields in a register into 8 other arbitrary 2-bit fields!
8179   SDValue PredAsVector = PromoteMVEPredVector(dl, V1, VT, DAG);
8180   EVT NewVT = PredAsVector.getValueType();
8181 
8182   // Do the shuffle!
8183   SDValue Shuffled = DAG.getVectorShuffle(NewVT, dl, PredAsVector,
8184                                           DAG.getUNDEF(NewVT), ShuffleMask);
8185 
8186   // Now return the result of comparing the shuffled vector with zero,
8187   // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
8188   return DAG.getNode(ARMISD::VCMPZ, dl, VT, Shuffled,
8189                      DAG.getConstant(ARMCC::NE, dl, MVT::i32));
8190 }
8191 
LowerVECTOR_SHUFFLEUsingMovs(SDValue Op,ArrayRef<int> ShuffleMask,SelectionDAG & DAG)8192 static SDValue LowerVECTOR_SHUFFLEUsingMovs(SDValue Op,
8193                                             ArrayRef<int> ShuffleMask,
8194                                             SelectionDAG &DAG) {
8195   // Attempt to lower the vector shuffle using as many whole register movs as
8196   // possible. This is useful for types smaller than 32bits, which would
8197   // often otherwise become a series for grp movs.
8198   SDLoc dl(Op);
8199   EVT VT = Op.getValueType();
8200   if (VT.getScalarSizeInBits() >= 32)
8201     return SDValue();
8202 
8203   assert((VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i8) &&
8204          "Unexpected vector type");
8205   int NumElts = VT.getVectorNumElements();
8206   int QuarterSize = NumElts / 4;
8207   // The four final parts of the vector, as i32's
8208   SDValue Parts[4];
8209 
8210   // Look for full lane vmovs like <0,1,2,3> or <u,5,6,7> etc, (but not
8211   // <u,u,u,u>), returning the vmov lane index
8212   auto getMovIdx = [](ArrayRef<int> ShuffleMask, int Start, int Length) {
8213     // Detect which mov lane this would be from the first non-undef element.
8214     int MovIdx = -1;
8215     for (int i = 0; i < Length; i++) {
8216       if (ShuffleMask[Start + i] >= 0) {
8217         if (ShuffleMask[Start + i] % Length != i)
8218           return -1;
8219         MovIdx = ShuffleMask[Start + i] / Length;
8220         break;
8221       }
8222     }
8223     // If all items are undef, leave this for other combines
8224     if (MovIdx == -1)
8225       return -1;
8226     // Check the remaining values are the correct part of the same mov
8227     for (int i = 1; i < Length; i++) {
8228       if (ShuffleMask[Start + i] >= 0 &&
8229           (ShuffleMask[Start + i] / Length != MovIdx ||
8230            ShuffleMask[Start + i] % Length != i))
8231         return -1;
8232     }
8233     return MovIdx;
8234   };
8235 
8236   for (int Part = 0; Part < 4; ++Part) {
8237     // Does this part look like a mov
8238     int Elt = getMovIdx(ShuffleMask, Part * QuarterSize, QuarterSize);
8239     if (Elt != -1) {
8240       SDValue Input = Op->getOperand(0);
8241       if (Elt >= 4) {
8242         Input = Op->getOperand(1);
8243         Elt -= 4;
8244       }
8245       SDValue BitCast = DAG.getBitcast(MVT::v4f32, Input);
8246       Parts[Part] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, BitCast,
8247                                 DAG.getConstant(Elt, dl, MVT::i32));
8248     }
8249   }
8250 
8251   // Nothing interesting found, just return
8252   if (!Parts[0] && !Parts[1] && !Parts[2] && !Parts[3])
8253     return SDValue();
8254 
8255   // The other parts need to be built with the old shuffle vector, cast to a
8256   // v4i32 and extract_vector_elts
8257   if (!Parts[0] || !Parts[1] || !Parts[2] || !Parts[3]) {
8258     SmallVector<int, 16> NewShuffleMask;
8259     for (int Part = 0; Part < 4; ++Part)
8260       for (int i = 0; i < QuarterSize; i++)
8261         NewShuffleMask.push_back(
8262             Parts[Part] ? -1 : ShuffleMask[Part * QuarterSize + i]);
8263     SDValue NewShuffle = DAG.getVectorShuffle(
8264         VT, dl, Op->getOperand(0), Op->getOperand(1), NewShuffleMask);
8265     SDValue BitCast = DAG.getBitcast(MVT::v4f32, NewShuffle);
8266 
8267     for (int Part = 0; Part < 4; ++Part)
8268       if (!Parts[Part])
8269         Parts[Part] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32,
8270                                   BitCast, DAG.getConstant(Part, dl, MVT::i32));
8271   }
8272   // Build a vector out of the various parts and bitcast it back to the original
8273   // type.
8274   SDValue NewVec = DAG.getNode(ARMISD::BUILD_VECTOR, dl, MVT::v4f32, Parts);
8275   return DAG.getBitcast(VT, NewVec);
8276 }
8277 
LowerVECTOR_SHUFFLEUsingOneOff(SDValue Op,ArrayRef<int> ShuffleMask,SelectionDAG & DAG)8278 static SDValue LowerVECTOR_SHUFFLEUsingOneOff(SDValue Op,
8279                                               ArrayRef<int> ShuffleMask,
8280                                               SelectionDAG &DAG) {
8281   SDValue V1 = Op.getOperand(0);
8282   SDValue V2 = Op.getOperand(1);
8283   EVT VT = Op.getValueType();
8284   unsigned NumElts = VT.getVectorNumElements();
8285 
8286   // An One-Off Identity mask is one that is mostly an identity mask from as
8287   // single source but contains a single element out-of-place, either from a
8288   // different vector or from another position in the same vector. As opposed to
8289   // lowering this via a ARMISD::BUILD_VECTOR we can generate an extract/insert
8290   // pair directly.
8291   auto isOneOffIdentityMask = [](ArrayRef<int> Mask, EVT VT, int BaseOffset,
8292                                  int &OffElement) {
8293     OffElement = -1;
8294     int NonUndef = 0;
8295     for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
8296       if (Mask[i] == -1)
8297         continue;
8298       NonUndef++;
8299       if (Mask[i] != i + BaseOffset) {
8300         if (OffElement == -1)
8301           OffElement = i;
8302         else
8303           return false;
8304       }
8305     }
8306     return NonUndef > 2 && OffElement != -1;
8307   };
8308   int OffElement;
8309   SDValue VInput;
8310   if (isOneOffIdentityMask(ShuffleMask, VT, 0, OffElement))
8311     VInput = V1;
8312   else if (isOneOffIdentityMask(ShuffleMask, VT, NumElts, OffElement))
8313     VInput = V2;
8314   else
8315     return SDValue();
8316 
8317   SDLoc dl(Op);
8318   EVT SVT = VT.getScalarType() == MVT::i8 || VT.getScalarType() == MVT::i16
8319                 ? MVT::i32
8320                 : VT.getScalarType();
8321   SDValue Elt = DAG.getNode(
8322       ISD::EXTRACT_VECTOR_ELT, dl, SVT,
8323       ShuffleMask[OffElement] < (int)NumElts ? V1 : V2,
8324       DAG.getVectorIdxConstant(ShuffleMask[OffElement] % NumElts, dl));
8325   return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, VInput, Elt,
8326                      DAG.getVectorIdxConstant(OffElement % NumElts, dl));
8327 }
8328 
LowerVECTOR_SHUFFLE(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST)8329 static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
8330                                    const ARMSubtarget *ST) {
8331   SDValue V1 = Op.getOperand(0);
8332   SDValue V2 = Op.getOperand(1);
8333   SDLoc dl(Op);
8334   EVT VT = Op.getValueType();
8335   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
8336   unsigned EltSize = VT.getScalarSizeInBits();
8337 
8338   if (ST->hasMVEIntegerOps() && EltSize == 1)
8339     return LowerVECTOR_SHUFFLE_i1(Op, DAG, ST);
8340 
8341   // Convert shuffles that are directly supported on NEON to target-specific
8342   // DAG nodes, instead of keeping them as shuffles and matching them again
8343   // during code selection.  This is more efficient and avoids the possibility
8344   // of inconsistencies between legalization and selection.
8345   // FIXME: floating-point vectors should be canonicalized to integer vectors
8346   // of the same time so that they get CSEd properly.
8347   ArrayRef<int> ShuffleMask = SVN->getMask();
8348 
8349   if (EltSize <= 32) {
8350     if (SVN->isSplat()) {
8351       int Lane = SVN->getSplatIndex();
8352       // If this is undef splat, generate it via "just" vdup, if possible.
8353       if (Lane == -1) Lane = 0;
8354 
8355       // Test if V1 is a SCALAR_TO_VECTOR.
8356       if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
8357         return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
8358       }
8359       // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
8360       // (and probably will turn into a SCALAR_TO_VECTOR once legalization
8361       // reaches it).
8362       if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR &&
8363           !isa<ConstantSDNode>(V1.getOperand(0))) {
8364         bool IsScalarToVector = true;
8365         for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i)
8366           if (!V1.getOperand(i).isUndef()) {
8367             IsScalarToVector = false;
8368             break;
8369           }
8370         if (IsScalarToVector)
8371           return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
8372       }
8373       return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
8374                          DAG.getConstant(Lane, dl, MVT::i32));
8375     }
8376 
8377     bool ReverseVEXT = false;
8378     unsigned Imm = 0;
8379     if (ST->hasNEON() && isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
8380       if (ReverseVEXT)
8381         std::swap(V1, V2);
8382       return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
8383                          DAG.getConstant(Imm, dl, MVT::i32));
8384     }
8385 
8386     if (isVREVMask(ShuffleMask, VT, 64))
8387       return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
8388     if (isVREVMask(ShuffleMask, VT, 32))
8389       return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
8390     if (isVREVMask(ShuffleMask, VT, 16))
8391       return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
8392 
8393     if (ST->hasNEON() && V2->isUndef() && isSingletonVEXTMask(ShuffleMask, VT, Imm)) {
8394       return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V1,
8395                          DAG.getConstant(Imm, dl, MVT::i32));
8396     }
8397 
8398     // Check for Neon shuffles that modify both input vectors in place.
8399     // If both results are used, i.e., if there are two shuffles with the same
8400     // source operands and with masks corresponding to both results of one of
8401     // these operations, DAG memoization will ensure that a single node is
8402     // used for both shuffles.
8403     unsigned WhichResult = 0;
8404     bool isV_UNDEF = false;
8405     if (ST->hasNEON()) {
8406       if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask(
8407               ShuffleMask, VT, WhichResult, isV_UNDEF)) {
8408         if (isV_UNDEF)
8409           V2 = V1;
8410         return DAG.getNode(ShuffleOpc, dl, DAG.getVTList(VT, VT), V1, V2)
8411             .getValue(WhichResult);
8412       }
8413     }
8414     if (ST->hasMVEIntegerOps()) {
8415       if (isVMOVNMask(ShuffleMask, VT, false, false))
8416         return DAG.getNode(ARMISD::VMOVN, dl, VT, V2, V1,
8417                            DAG.getConstant(0, dl, MVT::i32));
8418       if (isVMOVNMask(ShuffleMask, VT, true, false))
8419         return DAG.getNode(ARMISD::VMOVN, dl, VT, V1, V2,
8420                            DAG.getConstant(1, dl, MVT::i32));
8421       if (isVMOVNMask(ShuffleMask, VT, true, true))
8422         return DAG.getNode(ARMISD::VMOVN, dl, VT, V1, V1,
8423                            DAG.getConstant(1, dl, MVT::i32));
8424     }
8425 
8426     // Also check for these shuffles through CONCAT_VECTORS: we canonicalize
8427     // shuffles that produce a result larger than their operands with:
8428     //   shuffle(concat(v1, undef), concat(v2, undef))
8429     // ->
8430     //   shuffle(concat(v1, v2), undef)
8431     // because we can access quad vectors (see PerformVECTOR_SHUFFLECombine).
8432     //
8433     // This is useful in the general case, but there are special cases where
8434     // native shuffles produce larger results: the two-result ops.
8435     //
8436     // Look through the concat when lowering them:
8437     //   shuffle(concat(v1, v2), undef)
8438     // ->
8439     //   concat(VZIP(v1, v2):0, :1)
8440     //
8441     if (ST->hasNEON() && V1->getOpcode() == ISD::CONCAT_VECTORS && V2->isUndef()) {
8442       SDValue SubV1 = V1->getOperand(0);
8443       SDValue SubV2 = V1->getOperand(1);
8444       EVT SubVT = SubV1.getValueType();
8445 
8446       // We expect these to have been canonicalized to -1.
8447       assert(llvm::all_of(ShuffleMask, [&](int i) {
8448         return i < (int)VT.getVectorNumElements();
8449       }) && "Unexpected shuffle index into UNDEF operand!");
8450 
8451       if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask(
8452               ShuffleMask, SubVT, WhichResult, isV_UNDEF)) {
8453         if (isV_UNDEF)
8454           SubV2 = SubV1;
8455         assert((WhichResult == 0) &&
8456                "In-place shuffle of concat can only have one result!");
8457         SDValue Res = DAG.getNode(ShuffleOpc, dl, DAG.getVTList(SubVT, SubVT),
8458                                   SubV1, SubV2);
8459         return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Res.getValue(0),
8460                            Res.getValue(1));
8461       }
8462     }
8463   }
8464 
8465   if (ST->hasMVEIntegerOps() && EltSize <= 32)
8466     if (SDValue V = LowerVECTOR_SHUFFLEUsingOneOff(Op, ShuffleMask, DAG))
8467       return V;
8468 
8469   // If the shuffle is not directly supported and it has 4 elements, use
8470   // the PerfectShuffle-generated table to synthesize it from other shuffles.
8471   unsigned NumElts = VT.getVectorNumElements();
8472   if (NumElts == 4) {
8473     unsigned PFIndexes[4];
8474     for (unsigned i = 0; i != 4; ++i) {
8475       if (ShuffleMask[i] < 0)
8476         PFIndexes[i] = 8;
8477       else
8478         PFIndexes[i] = ShuffleMask[i];
8479     }
8480 
8481     // Compute the index in the perfect shuffle table.
8482     unsigned PFTableIndex =
8483       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
8484     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
8485     unsigned Cost = (PFEntry >> 30);
8486 
8487     if (Cost <= 4) {
8488       if (ST->hasNEON())
8489         return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
8490       else if (isLegalMVEShuffleOp(PFEntry)) {
8491         unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
8492         unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
8493         unsigned PFEntryLHS = PerfectShuffleTable[LHSID];
8494         unsigned PFEntryRHS = PerfectShuffleTable[RHSID];
8495         if (isLegalMVEShuffleOp(PFEntryLHS) && isLegalMVEShuffleOp(PFEntryRHS))
8496           return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
8497       }
8498     }
8499   }
8500 
8501   // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
8502   if (EltSize >= 32) {
8503     // Do the expansion with floating-point types, since that is what the VFP
8504     // registers are defined to use, and since i64 is not legal.
8505     EVT EltVT = EVT::getFloatingPointVT(EltSize);
8506     EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
8507     V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
8508     V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
8509     SmallVector<SDValue, 8> Ops;
8510     for (unsigned i = 0; i < NumElts; ++i) {
8511       if (ShuffleMask[i] < 0)
8512         Ops.push_back(DAG.getUNDEF(EltVT));
8513       else
8514         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
8515                                   ShuffleMask[i] < (int)NumElts ? V1 : V2,
8516                                   DAG.getConstant(ShuffleMask[i] & (NumElts-1),
8517                                                   dl, MVT::i32)));
8518     }
8519     SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
8520     return DAG.getNode(ISD::BITCAST, dl, VT, Val);
8521   }
8522 
8523   if (ST->hasNEON() && (VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(ShuffleMask, VT))
8524     return LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(Op, DAG);
8525 
8526   if (ST->hasNEON() && VT == MVT::v8i8)
8527     if (SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG))
8528       return NewOp;
8529 
8530   if (ST->hasMVEIntegerOps())
8531     if (SDValue NewOp = LowerVECTOR_SHUFFLEUsingMovs(Op, ShuffleMask, DAG))
8532       return NewOp;
8533 
8534   return SDValue();
8535 }
8536 
LowerINSERT_VECTOR_ELT_i1(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST)8537 static SDValue LowerINSERT_VECTOR_ELT_i1(SDValue Op, SelectionDAG &DAG,
8538                                          const ARMSubtarget *ST) {
8539   EVT VecVT = Op.getOperand(0).getValueType();
8540   SDLoc dl(Op);
8541 
8542   assert(ST->hasMVEIntegerOps() &&
8543          "LowerINSERT_VECTOR_ELT_i1 called without MVE!");
8544 
8545   SDValue Conv =
8546       DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::i32, Op->getOperand(0));
8547   unsigned Lane = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
8548   unsigned LaneWidth =
8549       getVectorTyFromPredicateVector(VecVT).getScalarSizeInBits() / 8;
8550   unsigned Mask = ((1 << LaneWidth) - 1) << Lane * LaneWidth;
8551   SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::i32,
8552                             Op.getOperand(1), DAG.getValueType(MVT::i1));
8553   SDValue BFI = DAG.getNode(ARMISD::BFI, dl, MVT::i32, Conv, Ext,
8554                             DAG.getConstant(~Mask, dl, MVT::i32));
8555   return DAG.getNode(ARMISD::PREDICATE_CAST, dl, Op.getValueType(), BFI);
8556 }
8557 
LowerINSERT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const8558 SDValue ARMTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
8559                                                   SelectionDAG &DAG) const {
8560   // INSERT_VECTOR_ELT is legal only for immediate indexes.
8561   SDValue Lane = Op.getOperand(2);
8562   if (!isa<ConstantSDNode>(Lane))
8563     return SDValue();
8564 
8565   SDValue Elt = Op.getOperand(1);
8566   EVT EltVT = Elt.getValueType();
8567 
8568   if (Subtarget->hasMVEIntegerOps() &&
8569       Op.getValueType().getScalarSizeInBits() == 1)
8570     return LowerINSERT_VECTOR_ELT_i1(Op, DAG, Subtarget);
8571 
8572   if (getTypeAction(*DAG.getContext(), EltVT) ==
8573       TargetLowering::TypePromoteFloat) {
8574     // INSERT_VECTOR_ELT doesn't want f16 operands promoting to f32,
8575     // but the type system will try to do that if we don't intervene.
8576     // Reinterpret any such vector-element insertion as one with the
8577     // corresponding integer types.
8578 
8579     SDLoc dl(Op);
8580 
8581     EVT IEltVT = MVT::getIntegerVT(EltVT.getScalarSizeInBits());
8582     assert(getTypeAction(*DAG.getContext(), IEltVT) !=
8583            TargetLowering::TypePromoteFloat);
8584 
8585     SDValue VecIn = Op.getOperand(0);
8586     EVT VecVT = VecIn.getValueType();
8587     EVT IVecVT = EVT::getVectorVT(*DAG.getContext(), IEltVT,
8588                                   VecVT.getVectorNumElements());
8589 
8590     SDValue IElt = DAG.getNode(ISD::BITCAST, dl, IEltVT, Elt);
8591     SDValue IVecIn = DAG.getNode(ISD::BITCAST, dl, IVecVT, VecIn);
8592     SDValue IVecOut = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, IVecVT,
8593                                   IVecIn, IElt, Lane);
8594     return DAG.getNode(ISD::BITCAST, dl, VecVT, IVecOut);
8595   }
8596 
8597   return Op;
8598 }
8599 
LowerEXTRACT_VECTOR_ELT_i1(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST)8600 static SDValue LowerEXTRACT_VECTOR_ELT_i1(SDValue Op, SelectionDAG &DAG,
8601                                           const ARMSubtarget *ST) {
8602   EVT VecVT = Op.getOperand(0).getValueType();
8603   SDLoc dl(Op);
8604 
8605   assert(ST->hasMVEIntegerOps() &&
8606          "LowerINSERT_VECTOR_ELT_i1 called without MVE!");
8607 
8608   SDValue Conv =
8609       DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::i32, Op->getOperand(0));
8610   unsigned Lane = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
8611   unsigned LaneWidth =
8612       getVectorTyFromPredicateVector(VecVT).getScalarSizeInBits() / 8;
8613   SDValue Shift = DAG.getNode(ISD::SRL, dl, MVT::i32, Conv,
8614                               DAG.getConstant(Lane * LaneWidth, dl, MVT::i32));
8615   return Shift;
8616 }
8617 
LowerEXTRACT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST)8618 static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG,
8619                                        const ARMSubtarget *ST) {
8620   // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
8621   SDValue Lane = Op.getOperand(1);
8622   if (!isa<ConstantSDNode>(Lane))
8623     return SDValue();
8624 
8625   SDValue Vec = Op.getOperand(0);
8626   EVT VT = Vec.getValueType();
8627 
8628   if (ST->hasMVEIntegerOps() && VT.getScalarSizeInBits() == 1)
8629     return LowerEXTRACT_VECTOR_ELT_i1(Op, DAG, ST);
8630 
8631   if (Op.getValueType() == MVT::i32 && Vec.getScalarValueSizeInBits() < 32) {
8632     SDLoc dl(Op);
8633     return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
8634   }
8635 
8636   return Op;
8637 }
8638 
LowerCONCAT_VECTORS_i1(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST)8639 static SDValue LowerCONCAT_VECTORS_i1(SDValue Op, SelectionDAG &DAG,
8640                                       const ARMSubtarget *ST) {
8641   SDValue V1 = Op.getOperand(0);
8642   SDValue V2 = Op.getOperand(1);
8643   SDLoc dl(Op);
8644   EVT VT = Op.getValueType();
8645   EVT Op1VT = V1.getValueType();
8646   EVT Op2VT = V2.getValueType();
8647   unsigned NumElts = VT.getVectorNumElements();
8648 
8649   assert(Op1VT == Op2VT && "Operand types don't match!");
8650   assert(VT.getScalarSizeInBits() == 1 &&
8651          "Unexpected custom CONCAT_VECTORS lowering");
8652   assert(ST->hasMVEIntegerOps() &&
8653          "CONCAT_VECTORS lowering only supported for MVE");
8654 
8655   SDValue NewV1 = PromoteMVEPredVector(dl, V1, Op1VT, DAG);
8656   SDValue NewV2 = PromoteMVEPredVector(dl, V2, Op2VT, DAG);
8657 
8658   // We now have Op1 + Op2 promoted to vectors of integers, where v8i1 gets
8659   // promoted to v8i16, etc.
8660 
8661   MVT ElType = getVectorTyFromPredicateVector(VT).getScalarType().getSimpleVT();
8662 
8663   // Extract the vector elements from Op1 and Op2 one by one and truncate them
8664   // to be the right size for the destination. For example, if Op1 is v4i1 then
8665   // the promoted vector is v4i32. The result of concatentation gives a v8i1,
8666   // which when promoted is v8i16. That means each i32 element from Op1 needs
8667   // truncating to i16 and inserting in the result.
8668   EVT ConcatVT = MVT::getVectorVT(ElType, NumElts);
8669   SDValue ConVec = DAG.getNode(ISD::UNDEF, dl, ConcatVT);
8670   auto ExractInto = [&DAG, &dl](SDValue NewV, SDValue ConVec, unsigned &j) {
8671     EVT NewVT = NewV.getValueType();
8672     EVT ConcatVT = ConVec.getValueType();
8673     for (unsigned i = 0, e = NewVT.getVectorNumElements(); i < e; i++, j++) {
8674       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, NewV,
8675                                 DAG.getIntPtrConstant(i, dl));
8676       ConVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ConcatVT, ConVec, Elt,
8677                            DAG.getConstant(j, dl, MVT::i32));
8678     }
8679     return ConVec;
8680   };
8681   unsigned j = 0;
8682   ConVec = ExractInto(NewV1, ConVec, j);
8683   ConVec = ExractInto(NewV2, ConVec, j);
8684 
8685   // Now return the result of comparing the subvector with zero,
8686   // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
8687   return DAG.getNode(ARMISD::VCMPZ, dl, VT, ConVec,
8688                      DAG.getConstant(ARMCC::NE, dl, MVT::i32));
8689 }
8690 
LowerCONCAT_VECTORS(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST)8691 static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG,
8692                                    const ARMSubtarget *ST) {
8693   EVT VT = Op->getValueType(0);
8694   if (ST->hasMVEIntegerOps() && VT.getScalarSizeInBits() == 1)
8695     return LowerCONCAT_VECTORS_i1(Op, DAG, ST);
8696 
8697   // The only time a CONCAT_VECTORS operation can have legal types is when
8698   // two 64-bit vectors are concatenated to a 128-bit vector.
8699   assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
8700          "unexpected CONCAT_VECTORS");
8701   SDLoc dl(Op);
8702   SDValue Val = DAG.getUNDEF(MVT::v2f64);
8703   SDValue Op0 = Op.getOperand(0);
8704   SDValue Op1 = Op.getOperand(1);
8705   if (!Op0.isUndef())
8706     Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
8707                       DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
8708                       DAG.getIntPtrConstant(0, dl));
8709   if (!Op1.isUndef())
8710     Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
8711                       DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
8712                       DAG.getIntPtrConstant(1, dl));
8713   return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
8714 }
8715 
LowerEXTRACT_SUBVECTOR(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST)8716 static SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG,
8717                                       const ARMSubtarget *ST) {
8718   SDValue V1 = Op.getOperand(0);
8719   SDValue V2 = Op.getOperand(1);
8720   SDLoc dl(Op);
8721   EVT VT = Op.getValueType();
8722   EVT Op1VT = V1.getValueType();
8723   unsigned NumElts = VT.getVectorNumElements();
8724   unsigned Index = cast<ConstantSDNode>(V2)->getZExtValue();
8725 
8726   assert(VT.getScalarSizeInBits() == 1 &&
8727          "Unexpected custom EXTRACT_SUBVECTOR lowering");
8728   assert(ST->hasMVEIntegerOps() &&
8729          "EXTRACT_SUBVECTOR lowering only supported for MVE");
8730 
8731   SDValue NewV1 = PromoteMVEPredVector(dl, V1, Op1VT, DAG);
8732 
8733   // We now have Op1 promoted to a vector of integers, where v8i1 gets
8734   // promoted to v8i16, etc.
8735 
8736   MVT ElType = getVectorTyFromPredicateVector(VT).getScalarType().getSimpleVT();
8737 
8738   EVT SubVT = MVT::getVectorVT(ElType, NumElts);
8739   SDValue SubVec = DAG.getNode(ISD::UNDEF, dl, SubVT);
8740   for (unsigned i = Index, j = 0; i < (Index + NumElts); i++, j++) {
8741     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, NewV1,
8742                               DAG.getIntPtrConstant(i, dl));
8743     SubVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, SubVT, SubVec, Elt,
8744                          DAG.getConstant(j, dl, MVT::i32));
8745   }
8746 
8747   // Now return the result of comparing the subvector with zero,
8748   // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
8749   return DAG.getNode(ARMISD::VCMPZ, dl, VT, SubVec,
8750                      DAG.getConstant(ARMCC::NE, dl, MVT::i32));
8751 }
8752 
8753 // Turn a truncate into a predicate (an i1 vector) into icmp(and(x, 1), 0).
LowerTruncatei1(SDValue N,SelectionDAG & DAG,const ARMSubtarget * ST)8754 static SDValue LowerTruncatei1(SDValue N, SelectionDAG &DAG,
8755                                const ARMSubtarget *ST) {
8756   assert(ST->hasMVEIntegerOps() && "Expected MVE!");
8757   EVT VT = N.getValueType();
8758   assert((VT == MVT::v16i1 || VT == MVT::v8i1 || VT == MVT::v4i1) &&
8759          "Expected a vector i1 type!");
8760   SDValue Op = N.getOperand(0);
8761   EVT FromVT = Op.getValueType();
8762   SDLoc DL(N);
8763 
8764   SDValue And =
8765       DAG.getNode(ISD::AND, DL, FromVT, Op, DAG.getConstant(1, DL, FromVT));
8766   return DAG.getNode(ISD::SETCC, DL, VT, And, DAG.getConstant(0, DL, FromVT),
8767                      DAG.getCondCode(ISD::SETNE));
8768 }
8769 
8770 /// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
8771 /// element has been zero/sign-extended, depending on the isSigned parameter,
8772 /// from an integer type half its size.
isExtendedBUILD_VECTOR(SDNode * N,SelectionDAG & DAG,bool isSigned)8773 static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
8774                                    bool isSigned) {
8775   // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
8776   EVT VT = N->getValueType(0);
8777   if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
8778     SDNode *BVN = N->getOperand(0).getNode();
8779     if (BVN->getValueType(0) != MVT::v4i32 ||
8780         BVN->getOpcode() != ISD::BUILD_VECTOR)
8781       return false;
8782     unsigned LoElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
8783     unsigned HiElt = 1 - LoElt;
8784     ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
8785     ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
8786     ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
8787     ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
8788     if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
8789       return false;
8790     if (isSigned) {
8791       if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
8792           Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
8793         return true;
8794     } else {
8795       if (Hi0->isNullValue() && Hi1->isNullValue())
8796         return true;
8797     }
8798     return false;
8799   }
8800 
8801   if (N->getOpcode() != ISD::BUILD_VECTOR)
8802     return false;
8803 
8804   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
8805     SDNode *Elt = N->getOperand(i).getNode();
8806     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
8807       unsigned EltSize = VT.getScalarSizeInBits();
8808       unsigned HalfSize = EltSize / 2;
8809       if (isSigned) {
8810         if (!isIntN(HalfSize, C->getSExtValue()))
8811           return false;
8812       } else {
8813         if (!isUIntN(HalfSize, C->getZExtValue()))
8814           return false;
8815       }
8816       continue;
8817     }
8818     return false;
8819   }
8820 
8821   return true;
8822 }
8823 
8824 /// isSignExtended - Check if a node is a vector value that is sign-extended
8825 /// or a constant BUILD_VECTOR with sign-extended elements.
isSignExtended(SDNode * N,SelectionDAG & DAG)8826 static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
8827   if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
8828     return true;
8829   if (isExtendedBUILD_VECTOR(N, DAG, true))
8830     return true;
8831   return false;
8832 }
8833 
8834 /// isZeroExtended - Check if a node is a vector value that is zero-extended (or
8835 /// any-extended) or a constant BUILD_VECTOR with zero-extended elements.
isZeroExtended(SDNode * N,SelectionDAG & DAG)8836 static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
8837   if (N->getOpcode() == ISD::ZERO_EXTEND || N->getOpcode() == ISD::ANY_EXTEND ||
8838       ISD::isZEXTLoad(N))
8839     return true;
8840   if (isExtendedBUILD_VECTOR(N, DAG, false))
8841     return true;
8842   return false;
8843 }
8844 
getExtensionTo64Bits(const EVT & OrigVT)8845 static EVT getExtensionTo64Bits(const EVT &OrigVT) {
8846   if (OrigVT.getSizeInBits() >= 64)
8847     return OrigVT;
8848 
8849   assert(OrigVT.isSimple() && "Expecting a simple value type");
8850 
8851   MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
8852   switch (OrigSimpleTy) {
8853   default: llvm_unreachable("Unexpected Vector Type");
8854   case MVT::v2i8:
8855   case MVT::v2i16:
8856      return MVT::v2i32;
8857   case MVT::v4i8:
8858     return  MVT::v4i16;
8859   }
8860 }
8861 
8862 /// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total
8863 /// value size to 64 bits. We need a 64-bit D register as an operand to VMULL.
8864 /// We insert the required extension here to get the vector to fill a D register.
AddRequiredExtensionForVMULL(SDValue N,SelectionDAG & DAG,const EVT & OrigTy,const EVT & ExtTy,unsigned ExtOpcode)8865 static SDValue AddRequiredExtensionForVMULL(SDValue N, SelectionDAG &DAG,
8866                                             const EVT &OrigTy,
8867                                             const EVT &ExtTy,
8868                                             unsigned ExtOpcode) {
8869   // The vector originally had a size of OrigTy. It was then extended to ExtTy.
8870   // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
8871   // 64-bits we need to insert a new extension so that it will be 64-bits.
8872   assert(ExtTy.is128BitVector() && "Unexpected extension size");
8873   if (OrigTy.getSizeInBits() >= 64)
8874     return N;
8875 
8876   // Must extend size to at least 64 bits to be used as an operand for VMULL.
8877   EVT NewVT = getExtensionTo64Bits(OrigTy);
8878 
8879   return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
8880 }
8881 
8882 /// SkipLoadExtensionForVMULL - return a load of the original vector size that
8883 /// does not do any sign/zero extension. If the original vector is less
8884 /// than 64 bits, an appropriate extension will be added after the load to
8885 /// reach a total size of 64 bits. We have to add the extension separately
8886 /// because ARM does not have a sign/zero extending load for vectors.
SkipLoadExtensionForVMULL(LoadSDNode * LD,SelectionDAG & DAG)8887 static SDValue SkipLoadExtensionForVMULL(LoadSDNode *LD, SelectionDAG& DAG) {
8888   EVT ExtendedTy = getExtensionTo64Bits(LD->getMemoryVT());
8889 
8890   // The load already has the right type.
8891   if (ExtendedTy == LD->getMemoryVT())
8892     return DAG.getLoad(LD->getMemoryVT(), SDLoc(LD), LD->getChain(),
8893                        LD->getBasePtr(), LD->getPointerInfo(),
8894                        LD->getAlignment(), LD->getMemOperand()->getFlags());
8895 
8896   // We need to create a zextload/sextload. We cannot just create a load
8897   // followed by a zext/zext node because LowerMUL is also run during normal
8898   // operation legalization where we can't create illegal types.
8899   return DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), ExtendedTy,
8900                         LD->getChain(), LD->getBasePtr(), LD->getPointerInfo(),
8901                         LD->getMemoryVT(), LD->getAlignment(),
8902                         LD->getMemOperand()->getFlags());
8903 }
8904 
8905 /// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND,
8906 /// ANY_EXTEND, extending load, or BUILD_VECTOR with extended elements, return
8907 /// the unextended value. The unextended vector should be 64 bits so that it can
8908 /// be used as an operand to a VMULL instruction. If the original vector size
8909 /// before extension is less than 64 bits we add a an extension to resize
8910 /// the vector to 64 bits.
SkipExtensionForVMULL(SDNode * N,SelectionDAG & DAG)8911 static SDValue SkipExtensionForVMULL(SDNode *N, SelectionDAG &DAG) {
8912   if (N->getOpcode() == ISD::SIGN_EXTEND ||
8913       N->getOpcode() == ISD::ZERO_EXTEND || N->getOpcode() == ISD::ANY_EXTEND)
8914     return AddRequiredExtensionForVMULL(N->getOperand(0), DAG,
8915                                         N->getOperand(0)->getValueType(0),
8916                                         N->getValueType(0),
8917                                         N->getOpcode());
8918 
8919   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
8920     assert((ISD::isSEXTLoad(LD) || ISD::isZEXTLoad(LD)) &&
8921            "Expected extending load");
8922 
8923     SDValue newLoad = SkipLoadExtensionForVMULL(LD, DAG);
8924     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), newLoad.getValue(1));
8925     unsigned Opcode = ISD::isSEXTLoad(LD) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
8926     SDValue extLoad =
8927         DAG.getNode(Opcode, SDLoc(newLoad), LD->getValueType(0), newLoad);
8928     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 0), extLoad);
8929 
8930     return newLoad;
8931   }
8932 
8933   // Otherwise, the value must be a BUILD_VECTOR.  For v2i64, it will
8934   // have been legalized as a BITCAST from v4i32.
8935   if (N->getOpcode() == ISD::BITCAST) {
8936     SDNode *BVN = N->getOperand(0).getNode();
8937     assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
8938            BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
8939     unsigned LowElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
8940     return DAG.getBuildVector(
8941         MVT::v2i32, SDLoc(N),
8942         {BVN->getOperand(LowElt), BVN->getOperand(LowElt + 2)});
8943   }
8944   // Construct a new BUILD_VECTOR with elements truncated to half the size.
8945   assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
8946   EVT VT = N->getValueType(0);
8947   unsigned EltSize = VT.getScalarSizeInBits() / 2;
8948   unsigned NumElts = VT.getVectorNumElements();
8949   MVT TruncVT = MVT::getIntegerVT(EltSize);
8950   SmallVector<SDValue, 8> Ops;
8951   SDLoc dl(N);
8952   for (unsigned i = 0; i != NumElts; ++i) {
8953     ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
8954     const APInt &CInt = C->getAPIntValue();
8955     // Element types smaller than 32 bits are not legal, so use i32 elements.
8956     // The values are implicitly truncated so sext vs. zext doesn't matter.
8957     Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32));
8958   }
8959   return DAG.getBuildVector(MVT::getVectorVT(TruncVT, NumElts), dl, Ops);
8960 }
8961 
isAddSubSExt(SDNode * N,SelectionDAG & DAG)8962 static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
8963   unsigned Opcode = N->getOpcode();
8964   if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
8965     SDNode *N0 = N->getOperand(0).getNode();
8966     SDNode *N1 = N->getOperand(1).getNode();
8967     return N0->hasOneUse() && N1->hasOneUse() &&
8968       isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
8969   }
8970   return false;
8971 }
8972 
isAddSubZExt(SDNode * N,SelectionDAG & DAG)8973 static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
8974   unsigned Opcode = N->getOpcode();
8975   if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
8976     SDNode *N0 = N->getOperand(0).getNode();
8977     SDNode *N1 = N->getOperand(1).getNode();
8978     return N0->hasOneUse() && N1->hasOneUse() &&
8979       isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
8980   }
8981   return false;
8982 }
8983 
LowerMUL(SDValue Op,SelectionDAG & DAG)8984 static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
8985   // Multiplications are only custom-lowered for 128-bit vectors so that
8986   // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
8987   EVT VT = Op.getValueType();
8988   assert(VT.is128BitVector() && VT.isInteger() &&
8989          "unexpected type for custom-lowering ISD::MUL");
8990   SDNode *N0 = Op.getOperand(0).getNode();
8991   SDNode *N1 = Op.getOperand(1).getNode();
8992   unsigned NewOpc = 0;
8993   bool isMLA = false;
8994   bool isN0SExt = isSignExtended(N0, DAG);
8995   bool isN1SExt = isSignExtended(N1, DAG);
8996   if (isN0SExt && isN1SExt)
8997     NewOpc = ARMISD::VMULLs;
8998   else {
8999     bool isN0ZExt = isZeroExtended(N0, DAG);
9000     bool isN1ZExt = isZeroExtended(N1, DAG);
9001     if (isN0ZExt && isN1ZExt)
9002       NewOpc = ARMISD::VMULLu;
9003     else if (isN1SExt || isN1ZExt) {
9004       // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
9005       // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
9006       if (isN1SExt && isAddSubSExt(N0, DAG)) {
9007         NewOpc = ARMISD::VMULLs;
9008         isMLA = true;
9009       } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
9010         NewOpc = ARMISD::VMULLu;
9011         isMLA = true;
9012       } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
9013         std::swap(N0, N1);
9014         NewOpc = ARMISD::VMULLu;
9015         isMLA = true;
9016       }
9017     }
9018 
9019     if (!NewOpc) {
9020       if (VT == MVT::v2i64)
9021         // Fall through to expand this.  It is not legal.
9022         return SDValue();
9023       else
9024         // Other vector multiplications are legal.
9025         return Op;
9026     }
9027   }
9028 
9029   // Legalize to a VMULL instruction.
9030   SDLoc DL(Op);
9031   SDValue Op0;
9032   SDValue Op1 = SkipExtensionForVMULL(N1, DAG);
9033   if (!isMLA) {
9034     Op0 = SkipExtensionForVMULL(N0, DAG);
9035     assert(Op0.getValueType().is64BitVector() &&
9036            Op1.getValueType().is64BitVector() &&
9037            "unexpected types for extended operands to VMULL");
9038     return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
9039   }
9040 
9041   // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
9042   // isel lowering to take advantage of no-stall back to back vmul + vmla.
9043   //   vmull q0, d4, d6
9044   //   vmlal q0, d5, d6
9045   // is faster than
9046   //   vaddl q0, d4, d5
9047   //   vmovl q1, d6
9048   //   vmul  q0, q0, q1
9049   SDValue N00 = SkipExtensionForVMULL(N0->getOperand(0).getNode(), DAG);
9050   SDValue N01 = SkipExtensionForVMULL(N0->getOperand(1).getNode(), DAG);
9051   EVT Op1VT = Op1.getValueType();
9052   return DAG.getNode(N0->getOpcode(), DL, VT,
9053                      DAG.getNode(NewOpc, DL, VT,
9054                                DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
9055                      DAG.getNode(NewOpc, DL, VT,
9056                                DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
9057 }
9058 
LowerSDIV_v4i8(SDValue X,SDValue Y,const SDLoc & dl,SelectionDAG & DAG)9059 static SDValue LowerSDIV_v4i8(SDValue X, SDValue Y, const SDLoc &dl,
9060                               SelectionDAG &DAG) {
9061   // TODO: Should this propagate fast-math-flags?
9062 
9063   // Convert to float
9064   // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
9065   // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
9066   X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
9067   Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
9068   X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
9069   Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
9070   // Get reciprocal estimate.
9071   // float4 recip = vrecpeq_f32(yf);
9072   Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
9073                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
9074                    Y);
9075   // Because char has a smaller range than uchar, we can actually get away
9076   // without any newton steps.  This requires that we use a weird bias
9077   // of 0xb000, however (again, this has been exhaustively tested).
9078   // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
9079   X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
9080   X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
9081   Y = DAG.getConstant(0xb000, dl, MVT::v4i32);
9082   X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
9083   X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
9084   // Convert back to short.
9085   X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
9086   X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
9087   return X;
9088 }
9089 
LowerSDIV_v4i16(SDValue N0,SDValue N1,const SDLoc & dl,SelectionDAG & DAG)9090 static SDValue LowerSDIV_v4i16(SDValue N0, SDValue N1, const SDLoc &dl,
9091                                SelectionDAG &DAG) {
9092   // TODO: Should this propagate fast-math-flags?
9093 
9094   SDValue N2;
9095   // Convert to float.
9096   // float4 yf = vcvt_f32_s32(vmovl_s16(y));
9097   // float4 xf = vcvt_f32_s32(vmovl_s16(x));
9098   N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
9099   N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
9100   N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
9101   N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
9102 
9103   // Use reciprocal estimate and one refinement step.
9104   // float4 recip = vrecpeq_f32(yf);
9105   // recip *= vrecpsq_f32(yf, recip);
9106   N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
9107                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
9108                    N1);
9109   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
9110                    DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
9111                    N1, N2);
9112   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
9113   // Because short has a smaller range than ushort, we can actually get away
9114   // with only a single newton step.  This requires that we use a weird bias
9115   // of 89, however (again, this has been exhaustively tested).
9116   // float4 result = as_float4(as_int4(xf*recip) + 0x89);
9117   N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
9118   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
9119   N1 = DAG.getConstant(0x89, dl, MVT::v4i32);
9120   N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
9121   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
9122   // Convert back to integer and return.
9123   // return vmovn_s32(vcvt_s32_f32(result));
9124   N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
9125   N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
9126   return N0;
9127 }
9128 
LowerSDIV(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST)9129 static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG,
9130                          const ARMSubtarget *ST) {
9131   EVT VT = Op.getValueType();
9132   assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
9133          "unexpected type for custom-lowering ISD::SDIV");
9134 
9135   SDLoc dl(Op);
9136   SDValue N0 = Op.getOperand(0);
9137   SDValue N1 = Op.getOperand(1);
9138   SDValue N2, N3;
9139 
9140   if (VT == MVT::v8i8) {
9141     N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
9142     N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
9143 
9144     N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
9145                      DAG.getIntPtrConstant(4, dl));
9146     N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
9147                      DAG.getIntPtrConstant(4, dl));
9148     N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
9149                      DAG.getIntPtrConstant(0, dl));
9150     N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
9151                      DAG.getIntPtrConstant(0, dl));
9152 
9153     N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
9154     N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
9155 
9156     N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
9157     N0 = LowerCONCAT_VECTORS(N0, DAG, ST);
9158 
9159     N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
9160     return N0;
9161   }
9162   return LowerSDIV_v4i16(N0, N1, dl, DAG);
9163 }
9164 
LowerUDIV(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST)9165 static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG,
9166                          const ARMSubtarget *ST) {
9167   // TODO: Should this propagate fast-math-flags?
9168   EVT VT = Op.getValueType();
9169   assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
9170          "unexpected type for custom-lowering ISD::UDIV");
9171 
9172   SDLoc dl(Op);
9173   SDValue N0 = Op.getOperand(0);
9174   SDValue N1 = Op.getOperand(1);
9175   SDValue N2, N3;
9176 
9177   if (VT == MVT::v8i8) {
9178     N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
9179     N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
9180 
9181     N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
9182                      DAG.getIntPtrConstant(4, dl));
9183     N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
9184                      DAG.getIntPtrConstant(4, dl));
9185     N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
9186                      DAG.getIntPtrConstant(0, dl));
9187     N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
9188                      DAG.getIntPtrConstant(0, dl));
9189 
9190     N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
9191     N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
9192 
9193     N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
9194     N0 = LowerCONCAT_VECTORS(N0, DAG, ST);
9195 
9196     N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
9197                      DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, dl,
9198                                      MVT::i32),
9199                      N0);
9200     return N0;
9201   }
9202 
9203   // v4i16 sdiv ... Convert to float.
9204   // float4 yf = vcvt_f32_s32(vmovl_u16(y));
9205   // float4 xf = vcvt_f32_s32(vmovl_u16(x));
9206   N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
9207   N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
9208   N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
9209   SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
9210 
9211   // Use reciprocal estimate and two refinement steps.
9212   // float4 recip = vrecpeq_f32(yf);
9213   // recip *= vrecpsq_f32(yf, recip);
9214   // recip *= vrecpsq_f32(yf, recip);
9215   N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
9216                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
9217                    BN1);
9218   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
9219                    DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
9220                    BN1, N2);
9221   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
9222   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
9223                    DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
9224                    BN1, N2);
9225   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
9226   // Simply multiplying by the reciprocal estimate can leave us a few ulps
9227   // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
9228   // and that it will never cause us to return an answer too large).
9229   // float4 result = as_float4(as_int4(xf*recip) + 2);
9230   N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
9231   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
9232   N1 = DAG.getConstant(2, dl, MVT::v4i32);
9233   N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
9234   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
9235   // Convert back to integer and return.
9236   // return vmovn_u32(vcvt_s32_f32(result));
9237   N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
9238   N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
9239   return N0;
9240 }
9241 
LowerADDSUBCARRY(SDValue Op,SelectionDAG & DAG)9242 static SDValue LowerADDSUBCARRY(SDValue Op, SelectionDAG &DAG) {
9243   SDNode *N = Op.getNode();
9244   EVT VT = N->getValueType(0);
9245   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
9246 
9247   SDValue Carry = Op.getOperand(2);
9248 
9249   SDLoc DL(Op);
9250 
9251   SDValue Result;
9252   if (Op.getOpcode() == ISD::ADDCARRY) {
9253     // This converts the boolean value carry into the carry flag.
9254     Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
9255 
9256     // Do the addition proper using the carry flag we wanted.
9257     Result = DAG.getNode(ARMISD::ADDE, DL, VTs, Op.getOperand(0),
9258                          Op.getOperand(1), Carry);
9259 
9260     // Now convert the carry flag into a boolean value.
9261     Carry = ConvertCarryFlagToBooleanCarry(Result.getValue(1), VT, DAG);
9262   } else {
9263     // ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
9264     // have to invert the carry first.
9265     Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
9266                         DAG.getConstant(1, DL, MVT::i32), Carry);
9267     // This converts the boolean value carry into the carry flag.
9268     Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
9269 
9270     // Do the subtraction proper using the carry flag we wanted.
9271     Result = DAG.getNode(ARMISD::SUBE, DL, VTs, Op.getOperand(0),
9272                          Op.getOperand(1), Carry);
9273 
9274     // Now convert the carry flag into a boolean value.
9275     Carry = ConvertCarryFlagToBooleanCarry(Result.getValue(1), VT, DAG);
9276     // But the carry returned by ARMISD::SUBE is not a borrow as expected
9277     // by ISD::SUBCARRY, so compute 1 - C.
9278     Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
9279                         DAG.getConstant(1, DL, MVT::i32), Carry);
9280   }
9281 
9282   // Return both values.
9283   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, Carry);
9284 }
9285 
LowerFSINCOS(SDValue Op,SelectionDAG & DAG) const9286 SDValue ARMTargetLowering::LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const {
9287   assert(Subtarget->isTargetDarwin());
9288 
9289   // For iOS, we want to call an alternative entry point: __sincos_stret,
9290   // return values are passed via sret.
9291   SDLoc dl(Op);
9292   SDValue Arg = Op.getOperand(0);
9293   EVT ArgVT = Arg.getValueType();
9294   Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
9295   auto PtrVT = getPointerTy(DAG.getDataLayout());
9296 
9297   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9298   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9299 
9300   // Pair of floats / doubles used to pass the result.
9301   Type *RetTy = StructType::get(ArgTy, ArgTy);
9302   auto &DL = DAG.getDataLayout();
9303 
9304   ArgListTy Args;
9305   bool ShouldUseSRet = Subtarget->isAPCS_ABI();
9306   SDValue SRet;
9307   if (ShouldUseSRet) {
9308     // Create stack object for sret.
9309     const uint64_t ByteSize = DL.getTypeAllocSize(RetTy);
9310     const Align StackAlign = DL.getPrefTypeAlign(RetTy);
9311     int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
9312     SRet = DAG.getFrameIndex(FrameIdx, TLI.getPointerTy(DL));
9313 
9314     ArgListEntry Entry;
9315     Entry.Node = SRet;
9316     Entry.Ty = RetTy->getPointerTo();
9317     Entry.IsSExt = false;
9318     Entry.IsZExt = false;
9319     Entry.IsSRet = true;
9320     Args.push_back(Entry);
9321     RetTy = Type::getVoidTy(*DAG.getContext());
9322   }
9323 
9324   ArgListEntry Entry;
9325   Entry.Node = Arg;
9326   Entry.Ty = ArgTy;
9327   Entry.IsSExt = false;
9328   Entry.IsZExt = false;
9329   Args.push_back(Entry);
9330 
9331   RTLIB::Libcall LC =
9332       (ArgVT == MVT::f64) ? RTLIB::SINCOS_STRET_F64 : RTLIB::SINCOS_STRET_F32;
9333   const char *LibcallName = getLibcallName(LC);
9334   CallingConv::ID CC = getLibcallCallingConv(LC);
9335   SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy(DL));
9336 
9337   TargetLowering::CallLoweringInfo CLI(DAG);
9338   CLI.setDebugLoc(dl)
9339       .setChain(DAG.getEntryNode())
9340       .setCallee(CC, RetTy, Callee, std::move(Args))
9341       .setDiscardResult(ShouldUseSRet);
9342   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
9343 
9344   if (!ShouldUseSRet)
9345     return CallResult.first;
9346 
9347   SDValue LoadSin =
9348       DAG.getLoad(ArgVT, dl, CallResult.second, SRet, MachinePointerInfo());
9349 
9350   // Address of cos field.
9351   SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, SRet,
9352                             DAG.getIntPtrConstant(ArgVT.getStoreSize(), dl));
9353   SDValue LoadCos =
9354       DAG.getLoad(ArgVT, dl, LoadSin.getValue(1), Add, MachinePointerInfo());
9355 
9356   SDVTList Tys = DAG.getVTList(ArgVT, ArgVT);
9357   return DAG.getNode(ISD::MERGE_VALUES, dl, Tys,
9358                      LoadSin.getValue(0), LoadCos.getValue(0));
9359 }
9360 
LowerWindowsDIVLibCall(SDValue Op,SelectionDAG & DAG,bool Signed,SDValue & Chain) const9361 SDValue ARMTargetLowering::LowerWindowsDIVLibCall(SDValue Op, SelectionDAG &DAG,
9362                                                   bool Signed,
9363                                                   SDValue &Chain) const {
9364   EVT VT = Op.getValueType();
9365   assert((VT == MVT::i32 || VT == MVT::i64) &&
9366          "unexpected type for custom lowering DIV");
9367   SDLoc dl(Op);
9368 
9369   const auto &DL = DAG.getDataLayout();
9370   const auto &TLI = DAG.getTargetLoweringInfo();
9371 
9372   const char *Name = nullptr;
9373   if (Signed)
9374     Name = (VT == MVT::i32) ? "__rt_sdiv" : "__rt_sdiv64";
9375   else
9376     Name = (VT == MVT::i32) ? "__rt_udiv" : "__rt_udiv64";
9377 
9378   SDValue ES = DAG.getExternalSymbol(Name, TLI.getPointerTy(DL));
9379 
9380   ARMTargetLowering::ArgListTy Args;
9381 
9382   for (auto AI : {1, 0}) {
9383     ArgListEntry Arg;
9384     Arg.Node = Op.getOperand(AI);
9385     Arg.Ty = Arg.Node.getValueType().getTypeForEVT(*DAG.getContext());
9386     Args.push_back(Arg);
9387   }
9388 
9389   CallLoweringInfo CLI(DAG);
9390   CLI.setDebugLoc(dl)
9391     .setChain(Chain)
9392     .setCallee(CallingConv::ARM_AAPCS_VFP, VT.getTypeForEVT(*DAG.getContext()),
9393                ES, std::move(Args));
9394 
9395   return LowerCallTo(CLI).first;
9396 }
9397 
9398 // This is a code size optimisation: return the original SDIV node to
9399 // DAGCombiner when we don't want to expand SDIV into a sequence of
9400 // instructions, and an empty node otherwise which will cause the
9401 // SDIV to be expanded in DAGCombine.
9402 SDValue
BuildSDIVPow2(SDNode * N,const APInt & Divisor,SelectionDAG & DAG,SmallVectorImpl<SDNode * > & Created) const9403 ARMTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
9404                                  SelectionDAG &DAG,
9405                                  SmallVectorImpl<SDNode *> &Created) const {
9406   // TODO: Support SREM
9407   if (N->getOpcode() != ISD::SDIV)
9408     return SDValue();
9409 
9410   const auto &ST = static_cast<const ARMSubtarget&>(DAG.getSubtarget());
9411   const bool MinSize = ST.hasMinSize();
9412   const bool HasDivide = ST.isThumb() ? ST.hasDivideInThumbMode()
9413                                       : ST.hasDivideInARMMode();
9414 
9415   // Don't touch vector types; rewriting this may lead to scalarizing
9416   // the int divs.
9417   if (N->getOperand(0).getValueType().isVector())
9418     return SDValue();
9419 
9420   // Bail if MinSize is not set, and also for both ARM and Thumb mode we need
9421   // hwdiv support for this to be really profitable.
9422   if (!(MinSize && HasDivide))
9423     return SDValue();
9424 
9425   // ARM mode is a bit simpler than Thumb: we can handle large power
9426   // of 2 immediates with 1 mov instruction; no further checks required,
9427   // just return the sdiv node.
9428   if (!ST.isThumb())
9429     return SDValue(N, 0);
9430 
9431   // In Thumb mode, immediates larger than 128 need a wide 4-byte MOV,
9432   // and thus lose the code size benefits of a MOVS that requires only 2.
9433   // TargetTransformInfo and 'getIntImmCodeSizeCost' could be helpful here,
9434   // but as it's doing exactly this, it's not worth the trouble to get TTI.
9435   if (Divisor.sgt(128))
9436     return SDValue();
9437 
9438   return SDValue(N, 0);
9439 }
9440 
LowerDIV_Windows(SDValue Op,SelectionDAG & DAG,bool Signed) const9441 SDValue ARMTargetLowering::LowerDIV_Windows(SDValue Op, SelectionDAG &DAG,
9442                                             bool Signed) const {
9443   assert(Op.getValueType() == MVT::i32 &&
9444          "unexpected type for custom lowering DIV");
9445   SDLoc dl(Op);
9446 
9447   SDValue DBZCHK = DAG.getNode(ARMISD::WIN__DBZCHK, dl, MVT::Other,
9448                                DAG.getEntryNode(), Op.getOperand(1));
9449 
9450   return LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK);
9451 }
9452 
WinDBZCheckDenominator(SelectionDAG & DAG,SDNode * N,SDValue InChain)9453 static SDValue WinDBZCheckDenominator(SelectionDAG &DAG, SDNode *N, SDValue InChain) {
9454   SDLoc DL(N);
9455   SDValue Op = N->getOperand(1);
9456   if (N->getValueType(0) == MVT::i32)
9457     return DAG.getNode(ARMISD::WIN__DBZCHK, DL, MVT::Other, InChain, Op);
9458   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Op,
9459                            DAG.getConstant(0, DL, MVT::i32));
9460   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Op,
9461                            DAG.getConstant(1, DL, MVT::i32));
9462   return DAG.getNode(ARMISD::WIN__DBZCHK, DL, MVT::Other, InChain,
9463                      DAG.getNode(ISD::OR, DL, MVT::i32, Lo, Hi));
9464 }
9465 
ExpandDIV_Windows(SDValue Op,SelectionDAG & DAG,bool Signed,SmallVectorImpl<SDValue> & Results) const9466 void ARMTargetLowering::ExpandDIV_Windows(
9467     SDValue Op, SelectionDAG &DAG, bool Signed,
9468     SmallVectorImpl<SDValue> &Results) const {
9469   const auto &DL = DAG.getDataLayout();
9470   const auto &TLI = DAG.getTargetLoweringInfo();
9471 
9472   assert(Op.getValueType() == MVT::i64 &&
9473          "unexpected type for custom lowering DIV");
9474   SDLoc dl(Op);
9475 
9476   SDValue DBZCHK = WinDBZCheckDenominator(DAG, Op.getNode(), DAG.getEntryNode());
9477 
9478   SDValue Result = LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK);
9479 
9480   SDValue Lower = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Result);
9481   SDValue Upper = DAG.getNode(ISD::SRL, dl, MVT::i64, Result,
9482                               DAG.getConstant(32, dl, TLI.getPointerTy(DL)));
9483   Upper = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Upper);
9484 
9485   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lower, Upper));
9486 }
9487 
LowerPredicateLoad(SDValue Op,SelectionDAG & DAG)9488 static SDValue LowerPredicateLoad(SDValue Op, SelectionDAG &DAG) {
9489   LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
9490   EVT MemVT = LD->getMemoryVT();
9491   assert((MemVT == MVT::v4i1 || MemVT == MVT::v8i1 || MemVT == MVT::v16i1) &&
9492          "Expected a predicate type!");
9493   assert(MemVT == Op.getValueType());
9494   assert(LD->getExtensionType() == ISD::NON_EXTLOAD &&
9495          "Expected a non-extending load");
9496   assert(LD->isUnindexed() && "Expected a unindexed load");
9497 
9498   // The basic MVE VLDR on a v4i1/v8i1 actually loads the entire 16bit
9499   // predicate, with the "v4i1" bits spread out over the 16 bits loaded. We
9500   // need to make sure that 8/4 bits are actually loaded into the correct
9501   // place, which means loading the value and then shuffling the values into
9502   // the bottom bits of the predicate.
9503   // Equally, VLDR for an v16i1 will actually load 32bits (so will be incorrect
9504   // for BE).
9505   // Speaking of BE, apparently the rest of llvm will assume a reverse order to
9506   // a natural VMSR(load), so needs to be reversed.
9507 
9508   SDLoc dl(Op);
9509   SDValue Load = DAG.getExtLoad(
9510       ISD::EXTLOAD, dl, MVT::i32, LD->getChain(), LD->getBasePtr(),
9511       EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()),
9512       LD->getMemOperand());
9513   SDValue Val = Load;
9514   if (DAG.getDataLayout().isBigEndian())
9515     Val = DAG.getNode(ISD::SRL, dl, MVT::i32,
9516                       DAG.getNode(ISD::BITREVERSE, dl, MVT::i32, Load),
9517                       DAG.getConstant(32 - MemVT.getSizeInBits(), dl, MVT::i32));
9518   SDValue Pred = DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::v16i1, Val);
9519   if (MemVT != MVT::v16i1)
9520     Pred = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MemVT, Pred,
9521                        DAG.getConstant(0, dl, MVT::i32));
9522   return DAG.getMergeValues({Pred, Load.getValue(1)}, dl);
9523 }
9524 
LowerLOAD(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const9525 void ARMTargetLowering::LowerLOAD(SDNode *N, SmallVectorImpl<SDValue> &Results,
9526                                   SelectionDAG &DAG) const {
9527   LoadSDNode *LD = cast<LoadSDNode>(N);
9528   EVT MemVT = LD->getMemoryVT();
9529   assert(LD->isUnindexed() && "Loads should be unindexed at this point.");
9530 
9531   if (MemVT == MVT::i64 && Subtarget->hasV5TEOps() &&
9532       !Subtarget->isThumb1Only() && LD->isVolatile()) {
9533     SDLoc dl(N);
9534     SDValue Result = DAG.getMemIntrinsicNode(
9535         ARMISD::LDRD, dl, DAG.getVTList({MVT::i32, MVT::i32, MVT::Other}),
9536         {LD->getChain(), LD->getBasePtr()}, MemVT, LD->getMemOperand());
9537     SDValue Lo = Result.getValue(DAG.getDataLayout().isLittleEndian() ? 0 : 1);
9538     SDValue Hi = Result.getValue(DAG.getDataLayout().isLittleEndian() ? 1 : 0);
9539     SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
9540     Results.append({Pair, Result.getValue(2)});
9541   }
9542 }
9543 
LowerPredicateStore(SDValue Op,SelectionDAG & DAG)9544 static SDValue LowerPredicateStore(SDValue Op, SelectionDAG &DAG) {
9545   StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
9546   EVT MemVT = ST->getMemoryVT();
9547   assert((MemVT == MVT::v4i1 || MemVT == MVT::v8i1 || MemVT == MVT::v16i1) &&
9548          "Expected a predicate type!");
9549   assert(MemVT == ST->getValue().getValueType());
9550   assert(!ST->isTruncatingStore() && "Expected a non-extending store");
9551   assert(ST->isUnindexed() && "Expected a unindexed store");
9552 
9553   // Only store the v4i1 or v8i1 worth of bits, via a buildvector with top bits
9554   // unset and a scalar store.
9555   SDLoc dl(Op);
9556   SDValue Build = ST->getValue();
9557   if (MemVT != MVT::v16i1) {
9558     SmallVector<SDValue, 16> Ops;
9559     for (unsigned I = 0; I < MemVT.getVectorNumElements(); I++) {
9560       unsigned Elt = DAG.getDataLayout().isBigEndian()
9561                          ? MemVT.getVectorNumElements() - I - 1
9562                          : I;
9563       Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, Build,
9564                                 DAG.getConstant(Elt, dl, MVT::i32)));
9565     }
9566     for (unsigned I = MemVT.getVectorNumElements(); I < 16; I++)
9567       Ops.push_back(DAG.getUNDEF(MVT::i32));
9568     Build = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i1, Ops);
9569   }
9570   SDValue GRP = DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::i32, Build);
9571   if (MemVT == MVT::v16i1 && DAG.getDataLayout().isBigEndian())
9572     GRP = DAG.getNode(ISD::SRL, dl, MVT::i32,
9573                       DAG.getNode(ISD::BITREVERSE, dl, MVT::i32, GRP),
9574                       DAG.getConstant(16, dl, MVT::i32));
9575   return DAG.getTruncStore(
9576       ST->getChain(), dl, GRP, ST->getBasePtr(),
9577       EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()),
9578       ST->getMemOperand());
9579 }
9580 
LowerSTORE(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * Subtarget)9581 static SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG,
9582                           const ARMSubtarget *Subtarget) {
9583   StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
9584   EVT MemVT = ST->getMemoryVT();
9585   assert(ST->isUnindexed() && "Stores should be unindexed at this point.");
9586 
9587   if (MemVT == MVT::i64 && Subtarget->hasV5TEOps() &&
9588       !Subtarget->isThumb1Only() && ST->isVolatile()) {
9589     SDNode *N = Op.getNode();
9590     SDLoc dl(N);
9591 
9592     SDValue Lo = DAG.getNode(
9593         ISD::EXTRACT_ELEMENT, dl, MVT::i32, ST->getValue(),
9594         DAG.getTargetConstant(DAG.getDataLayout().isLittleEndian() ? 0 : 1, dl,
9595                               MVT::i32));
9596     SDValue Hi = DAG.getNode(
9597         ISD::EXTRACT_ELEMENT, dl, MVT::i32, ST->getValue(),
9598         DAG.getTargetConstant(DAG.getDataLayout().isLittleEndian() ? 1 : 0, dl,
9599                               MVT::i32));
9600 
9601     return DAG.getMemIntrinsicNode(ARMISD::STRD, dl, DAG.getVTList(MVT::Other),
9602                                    {ST->getChain(), Lo, Hi, ST->getBasePtr()},
9603                                    MemVT, ST->getMemOperand());
9604   } else if (Subtarget->hasMVEIntegerOps() &&
9605              ((MemVT == MVT::v4i1 || MemVT == MVT::v8i1 ||
9606                MemVT == MVT::v16i1))) {
9607     return LowerPredicateStore(Op, DAG);
9608   }
9609 
9610   return SDValue();
9611 }
9612 
isZeroVector(SDValue N)9613 static bool isZeroVector(SDValue N) {
9614   return (ISD::isBuildVectorAllZeros(N.getNode()) ||
9615           (N->getOpcode() == ARMISD::VMOVIMM &&
9616            isNullConstant(N->getOperand(0))));
9617 }
9618 
LowerMLOAD(SDValue Op,SelectionDAG & DAG)9619 static SDValue LowerMLOAD(SDValue Op, SelectionDAG &DAG) {
9620   MaskedLoadSDNode *N = cast<MaskedLoadSDNode>(Op.getNode());
9621   MVT VT = Op.getSimpleValueType();
9622   SDValue Mask = N->getMask();
9623   SDValue PassThru = N->getPassThru();
9624   SDLoc dl(Op);
9625 
9626   if (isZeroVector(PassThru))
9627     return Op;
9628 
9629   // MVE Masked loads use zero as the passthru value. Here we convert undef to
9630   // zero too, and other values are lowered to a select.
9631   SDValue ZeroVec = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
9632                                 DAG.getTargetConstant(0, dl, MVT::i32));
9633   SDValue NewLoad = DAG.getMaskedLoad(
9634       VT, dl, N->getChain(), N->getBasePtr(), N->getOffset(), Mask, ZeroVec,
9635       N->getMemoryVT(), N->getMemOperand(), N->getAddressingMode(),
9636       N->getExtensionType(), N->isExpandingLoad());
9637   SDValue Combo = NewLoad;
9638   bool PassThruIsCastZero = (PassThru.getOpcode() == ISD::BITCAST ||
9639                              PassThru.getOpcode() == ARMISD::VECTOR_REG_CAST) &&
9640                             isZeroVector(PassThru->getOperand(0));
9641   if (!PassThru.isUndef() && !PassThruIsCastZero)
9642     Combo = DAG.getNode(ISD::VSELECT, dl, VT, Mask, NewLoad, PassThru);
9643   return DAG.getMergeValues({Combo, NewLoad.getValue(1)}, dl);
9644 }
9645 
LowerVecReduce(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST)9646 static SDValue LowerVecReduce(SDValue Op, SelectionDAG &DAG,
9647                               const ARMSubtarget *ST) {
9648   if (!ST->hasMVEIntegerOps())
9649     return SDValue();
9650 
9651   SDLoc dl(Op);
9652   unsigned BaseOpcode = 0;
9653   switch (Op->getOpcode()) {
9654   default: llvm_unreachable("Expected VECREDUCE opcode");
9655   case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break;
9656   case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break;
9657   case ISD::VECREDUCE_MUL:  BaseOpcode = ISD::MUL; break;
9658   case ISD::VECREDUCE_AND:  BaseOpcode = ISD::AND; break;
9659   case ISD::VECREDUCE_OR:   BaseOpcode = ISD::OR; break;
9660   case ISD::VECREDUCE_XOR:  BaseOpcode = ISD::XOR; break;
9661   case ISD::VECREDUCE_FMAX: BaseOpcode = ISD::FMAXNUM; break;
9662   case ISD::VECREDUCE_FMIN: BaseOpcode = ISD::FMINNUM; break;
9663   }
9664 
9665   SDValue Op0 = Op->getOperand(0);
9666   EVT VT = Op0.getValueType();
9667   EVT EltVT = VT.getVectorElementType();
9668   unsigned NumElts = VT.getVectorNumElements();
9669   unsigned NumActiveLanes = NumElts;
9670 
9671   assert((NumActiveLanes == 16 || NumActiveLanes == 8 || NumActiveLanes == 4 ||
9672           NumActiveLanes == 2) &&
9673          "Only expected a power 2 vector size");
9674 
9675   // Use Mul(X, Rev(X)) until 4 items remain. Going down to 4 vector elements
9676   // allows us to easily extract vector elements from the lanes.
9677   while (NumActiveLanes > 4) {
9678     unsigned RevOpcode = NumActiveLanes == 16 ? ARMISD::VREV16 : ARMISD::VREV32;
9679     SDValue Rev = DAG.getNode(RevOpcode, dl, VT, Op0);
9680     Op0 = DAG.getNode(BaseOpcode, dl, VT, Op0, Rev);
9681     NumActiveLanes /= 2;
9682   }
9683 
9684   SDValue Res;
9685   if (NumActiveLanes == 4) {
9686     // The remaining 4 elements are summed sequentially
9687     SDValue Ext0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
9688                               DAG.getConstant(0 * NumElts / 4, dl, MVT::i32));
9689     SDValue Ext1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
9690                               DAG.getConstant(1 * NumElts / 4, dl, MVT::i32));
9691     SDValue Ext2 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
9692                               DAG.getConstant(2 * NumElts / 4, dl, MVT::i32));
9693     SDValue Ext3 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
9694                               DAG.getConstant(3 * NumElts / 4, dl, MVT::i32));
9695     SDValue Res0 = DAG.getNode(BaseOpcode, dl, EltVT, Ext0, Ext1, Op->getFlags());
9696     SDValue Res1 = DAG.getNode(BaseOpcode, dl, EltVT, Ext2, Ext3, Op->getFlags());
9697     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res0, Res1, Op->getFlags());
9698   } else {
9699     SDValue Ext0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
9700                               DAG.getConstant(0, dl, MVT::i32));
9701     SDValue Ext1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
9702                               DAG.getConstant(1, dl, MVT::i32));
9703     Res = DAG.getNode(BaseOpcode, dl, EltVT, Ext0, Ext1, Op->getFlags());
9704   }
9705 
9706   // Result type may be wider than element type.
9707   if (EltVT != Op->getValueType(0))
9708     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Op->getValueType(0), Res);
9709   return Res;
9710 }
9711 
LowerVecReduceF(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST)9712 static SDValue LowerVecReduceF(SDValue Op, SelectionDAG &DAG,
9713                                const ARMSubtarget *ST) {
9714   if (!ST->hasMVEFloatOps())
9715     return SDValue();
9716   return LowerVecReduce(Op, DAG, ST);
9717 }
9718 
LowerAtomicLoadStore(SDValue Op,SelectionDAG & DAG)9719 static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) {
9720   if (isStrongerThanMonotonic(cast<AtomicSDNode>(Op)->getOrdering()))
9721     // Acquire/Release load/store is not legal for targets without a dmb or
9722     // equivalent available.
9723     return SDValue();
9724 
9725   // Monotonic load/store is legal for all targets.
9726   return Op;
9727 }
9728 
ReplaceREADCYCLECOUNTER(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG,const ARMSubtarget * Subtarget)9729 static void ReplaceREADCYCLECOUNTER(SDNode *N,
9730                                     SmallVectorImpl<SDValue> &Results,
9731                                     SelectionDAG &DAG,
9732                                     const ARMSubtarget *Subtarget) {
9733   SDLoc DL(N);
9734   // Under Power Management extensions, the cycle-count is:
9735   //    mrc p15, #0, <Rt>, c9, c13, #0
9736   SDValue Ops[] = { N->getOperand(0), // Chain
9737                     DAG.getTargetConstant(Intrinsic::arm_mrc, DL, MVT::i32),
9738                     DAG.getTargetConstant(15, DL, MVT::i32),
9739                     DAG.getTargetConstant(0, DL, MVT::i32),
9740                     DAG.getTargetConstant(9, DL, MVT::i32),
9741                     DAG.getTargetConstant(13, DL, MVT::i32),
9742                     DAG.getTargetConstant(0, DL, MVT::i32)
9743   };
9744 
9745   SDValue Cycles32 = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
9746                                  DAG.getVTList(MVT::i32, MVT::Other), Ops);
9747   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Cycles32,
9748                                 DAG.getConstant(0, DL, MVT::i32)));
9749   Results.push_back(Cycles32.getValue(1));
9750 }
9751 
createGPRPairNode(SelectionDAG & DAG,SDValue V)9752 static SDValue createGPRPairNode(SelectionDAG &DAG, SDValue V) {
9753   SDLoc dl(V.getNode());
9754   SDValue VLo = DAG.getAnyExtOrTrunc(V, dl, MVT::i32);
9755   SDValue VHi = DAG.getAnyExtOrTrunc(
9756       DAG.getNode(ISD::SRL, dl, MVT::i64, V, DAG.getConstant(32, dl, MVT::i32)),
9757       dl, MVT::i32);
9758   bool isBigEndian = DAG.getDataLayout().isBigEndian();
9759   if (isBigEndian)
9760     std::swap (VLo, VHi);
9761   SDValue RegClass =
9762       DAG.getTargetConstant(ARM::GPRPairRegClassID, dl, MVT::i32);
9763   SDValue SubReg0 = DAG.getTargetConstant(ARM::gsub_0, dl, MVT::i32);
9764   SDValue SubReg1 = DAG.getTargetConstant(ARM::gsub_1, dl, MVT::i32);
9765   const SDValue Ops[] = { RegClass, VLo, SubReg0, VHi, SubReg1 };
9766   return SDValue(
9767       DAG.getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::Untyped, Ops), 0);
9768 }
9769 
ReplaceCMP_SWAP_64Results(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG)9770 static void ReplaceCMP_SWAP_64Results(SDNode *N,
9771                                        SmallVectorImpl<SDValue> & Results,
9772                                        SelectionDAG &DAG) {
9773   assert(N->getValueType(0) == MVT::i64 &&
9774          "AtomicCmpSwap on types less than 64 should be legal");
9775   SDValue Ops[] = {N->getOperand(1),
9776                    createGPRPairNode(DAG, N->getOperand(2)),
9777                    createGPRPairNode(DAG, N->getOperand(3)),
9778                    N->getOperand(0)};
9779   SDNode *CmpSwap = DAG.getMachineNode(
9780       ARM::CMP_SWAP_64, SDLoc(N),
9781       DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other), Ops);
9782 
9783   MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
9784   DAG.setNodeMemRefs(cast<MachineSDNode>(CmpSwap), {MemOp});
9785 
9786   bool isBigEndian = DAG.getDataLayout().isBigEndian();
9787 
9788   SDValue Lo =
9789       DAG.getTargetExtractSubreg(isBigEndian ? ARM::gsub_1 : ARM::gsub_0,
9790                                  SDLoc(N), MVT::i32, SDValue(CmpSwap, 0));
9791   SDValue Hi =
9792       DAG.getTargetExtractSubreg(isBigEndian ? ARM::gsub_0 : ARM::gsub_1,
9793                                  SDLoc(N), MVT::i32, SDValue(CmpSwap, 0));
9794   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, SDLoc(N), MVT::i64, Lo, Hi));
9795   Results.push_back(SDValue(CmpSwap, 2));
9796 }
9797 
LowerFSETCC(SDValue Op,SelectionDAG & DAG) const9798 SDValue ARMTargetLowering::LowerFSETCC(SDValue Op, SelectionDAG &DAG) const {
9799   SDLoc dl(Op);
9800   EVT VT = Op.getValueType();
9801   SDValue Chain = Op.getOperand(0);
9802   SDValue LHS = Op.getOperand(1);
9803   SDValue RHS = Op.getOperand(2);
9804   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get();
9805   bool IsSignaling = Op.getOpcode() == ISD::STRICT_FSETCCS;
9806 
9807   // If we don't have instructions of this float type then soften to a libcall
9808   // and use SETCC instead.
9809   if (isUnsupportedFloatingType(LHS.getValueType())) {
9810     DAG.getTargetLoweringInfo().softenSetCCOperands(
9811       DAG, LHS.getValueType(), LHS, RHS, CC, dl, LHS, RHS, Chain, IsSignaling);
9812     if (!RHS.getNode()) {
9813       RHS = DAG.getConstant(0, dl, LHS.getValueType());
9814       CC = ISD::SETNE;
9815     }
9816     SDValue Result = DAG.getNode(ISD::SETCC, dl, VT, LHS, RHS,
9817                                  DAG.getCondCode(CC));
9818     return DAG.getMergeValues({Result, Chain}, dl);
9819   }
9820 
9821   ARMCC::CondCodes CondCode, CondCode2;
9822   FPCCToARMCC(CC, CondCode, CondCode2);
9823 
9824   // FIXME: Chain is not handled correctly here. Currently the FPSCR is implicit
9825   // in CMPFP and CMPFPE, but instead it should be made explicit by these
9826   // instructions using a chain instead of glue. This would also fix the problem
9827   // here (and also in LowerSELECT_CC) where we generate two comparisons when
9828   // CondCode2 != AL.
9829   SDValue True = DAG.getConstant(1, dl, VT);
9830   SDValue False =  DAG.getConstant(0, dl, VT);
9831   SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
9832   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
9833   SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl, IsSignaling);
9834   SDValue Result = getCMOV(dl, VT, False, True, ARMcc, CCR, Cmp, DAG);
9835   if (CondCode2 != ARMCC::AL) {
9836     ARMcc = DAG.getConstant(CondCode2, dl, MVT::i32);
9837     Cmp = getVFPCmp(LHS, RHS, DAG, dl, IsSignaling);
9838     Result = getCMOV(dl, VT, Result, True, ARMcc, CCR, Cmp, DAG);
9839   }
9840   return DAG.getMergeValues({Result, Chain}, dl);
9841 }
9842 
LowerOperation(SDValue Op,SelectionDAG & DAG) const9843 SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9844   LLVM_DEBUG(dbgs() << "Lowering node: "; Op.dump());
9845   switch (Op.getOpcode()) {
9846   default: llvm_unreachable("Don't know how to custom lower this!");
9847   case ISD::WRITE_REGISTER: return LowerWRITE_REGISTER(Op, DAG);
9848   case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
9849   case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
9850   case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
9851   case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
9852   case ISD::SELECT:        return LowerSELECT(Op, DAG);
9853   case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
9854   case ISD::BRCOND:        return LowerBRCOND(Op, DAG);
9855   case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
9856   case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
9857   case ISD::VASTART:       return LowerVASTART(Op, DAG);
9858   case ISD::ATOMIC_FENCE:  return LowerATOMIC_FENCE(Op, DAG, Subtarget);
9859   case ISD::PREFETCH:      return LowerPREFETCH(Op, DAG, Subtarget);
9860   case ISD::SINT_TO_FP:
9861   case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
9862   case ISD::STRICT_FP_TO_SINT:
9863   case ISD::STRICT_FP_TO_UINT:
9864   case ISD::FP_TO_SINT:
9865   case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
9866   case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
9867   case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
9868   case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
9869   case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
9870   case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
9871   case ISD::EH_SJLJ_SETUP_DISPATCH: return LowerEH_SJLJ_SETUP_DISPATCH(Op, DAG);
9872   case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG, Subtarget);
9873   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
9874                                                                Subtarget);
9875   case ISD::BITCAST:       return ExpandBITCAST(Op.getNode(), DAG, Subtarget);
9876   case ISD::SHL:
9877   case ISD::SRL:
9878   case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
9879   case ISD::SREM:          return LowerREM(Op.getNode(), DAG);
9880   case ISD::UREM:          return LowerREM(Op.getNode(), DAG);
9881   case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
9882   case ISD::SRL_PARTS:
9883   case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
9884   case ISD::CTTZ:
9885   case ISD::CTTZ_ZERO_UNDEF: return LowerCTTZ(Op.getNode(), DAG, Subtarget);
9886   case ISD::CTPOP:         return LowerCTPOP(Op.getNode(), DAG, Subtarget);
9887   case ISD::SETCC:         return LowerVSETCC(Op, DAG, Subtarget);
9888   case ISD::SETCCCARRY:    return LowerSETCCCARRY(Op, DAG);
9889   case ISD::ConstantFP:    return LowerConstantFP(Op, DAG, Subtarget);
9890   case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG, Subtarget);
9891   case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
9892   case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG, Subtarget);
9893   case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
9894   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG, Subtarget);
9895   case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG, Subtarget);
9896   case ISD::TRUNCATE:      return LowerTruncatei1(Op, DAG, Subtarget);
9897   case ISD::FLT_ROUNDS_:   return LowerFLT_ROUNDS_(Op, DAG);
9898   case ISD::SET_ROUNDING:  return LowerSET_ROUNDING(Op, DAG);
9899   case ISD::MUL:           return LowerMUL(Op, DAG);
9900   case ISD::SDIV:
9901     if (Subtarget->isTargetWindows() && !Op.getValueType().isVector())
9902       return LowerDIV_Windows(Op, DAG, /* Signed */ true);
9903     return LowerSDIV(Op, DAG, Subtarget);
9904   case ISD::UDIV:
9905     if (Subtarget->isTargetWindows() && !Op.getValueType().isVector())
9906       return LowerDIV_Windows(Op, DAG, /* Signed */ false);
9907     return LowerUDIV(Op, DAG, Subtarget);
9908   case ISD::ADDCARRY:
9909   case ISD::SUBCARRY:      return LowerADDSUBCARRY(Op, DAG);
9910   case ISD::SADDO:
9911   case ISD::SSUBO:
9912     return LowerSignedALUO(Op, DAG);
9913   case ISD::UADDO:
9914   case ISD::USUBO:
9915     return LowerUnsignedALUO(Op, DAG);
9916   case ISD::SADDSAT:
9917   case ISD::SSUBSAT:
9918     return LowerSADDSUBSAT(Op, DAG, Subtarget);
9919   case ISD::LOAD:
9920     return LowerPredicateLoad(Op, DAG);
9921   case ISD::STORE:
9922     return LowerSTORE(Op, DAG, Subtarget);
9923   case ISD::MLOAD:
9924     return LowerMLOAD(Op, DAG);
9925   case ISD::VECREDUCE_MUL:
9926   case ISD::VECREDUCE_AND:
9927   case ISD::VECREDUCE_OR:
9928   case ISD::VECREDUCE_XOR:
9929     return LowerVecReduce(Op, DAG, Subtarget);
9930   case ISD::VECREDUCE_FADD:
9931   case ISD::VECREDUCE_FMUL:
9932   case ISD::VECREDUCE_FMIN:
9933   case ISD::VECREDUCE_FMAX:
9934     return LowerVecReduceF(Op, DAG, Subtarget);
9935   case ISD::ATOMIC_LOAD:
9936   case ISD::ATOMIC_STORE:  return LowerAtomicLoadStore(Op, DAG);
9937   case ISD::FSINCOS:       return LowerFSINCOS(Op, DAG);
9938   case ISD::SDIVREM:
9939   case ISD::UDIVREM:       return LowerDivRem(Op, DAG);
9940   case ISD::DYNAMIC_STACKALLOC:
9941     if (Subtarget->isTargetWindows())
9942       return LowerDYNAMIC_STACKALLOC(Op, DAG);
9943     llvm_unreachable("Don't know how to custom lower this!");
9944   case ISD::STRICT_FP_ROUND:
9945   case ISD::FP_ROUND: return LowerFP_ROUND(Op, DAG);
9946   case ISD::STRICT_FP_EXTEND:
9947   case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG);
9948   case ISD::STRICT_FSETCC:
9949   case ISD::STRICT_FSETCCS: return LowerFSETCC(Op, DAG);
9950   case ARMISD::WIN__DBZCHK: return SDValue();
9951   }
9952 }
9953 
ReplaceLongIntrinsic(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG)9954 static void ReplaceLongIntrinsic(SDNode *N, SmallVectorImpl<SDValue> &Results,
9955                                  SelectionDAG &DAG) {
9956   unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
9957   unsigned Opc = 0;
9958   if (IntNo == Intrinsic::arm_smlald)
9959     Opc = ARMISD::SMLALD;
9960   else if (IntNo == Intrinsic::arm_smlaldx)
9961     Opc = ARMISD::SMLALDX;
9962   else if (IntNo == Intrinsic::arm_smlsld)
9963     Opc = ARMISD::SMLSLD;
9964   else if (IntNo == Intrinsic::arm_smlsldx)
9965     Opc = ARMISD::SMLSLDX;
9966   else
9967     return;
9968 
9969   SDLoc dl(N);
9970   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
9971                            N->getOperand(3),
9972                            DAG.getConstant(0, dl, MVT::i32));
9973   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
9974                            N->getOperand(3),
9975                            DAG.getConstant(1, dl, MVT::i32));
9976 
9977   SDValue LongMul = DAG.getNode(Opc, dl,
9978                                 DAG.getVTList(MVT::i32, MVT::i32),
9979                                 N->getOperand(1), N->getOperand(2),
9980                                 Lo, Hi);
9981   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64,
9982                                 LongMul.getValue(0), LongMul.getValue(1)));
9983 }
9984 
9985 /// ReplaceNodeResults - Replace the results of node with an illegal result
9986 /// type with new values built out of custom code.
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const9987 void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
9988                                            SmallVectorImpl<SDValue> &Results,
9989                                            SelectionDAG &DAG) const {
9990   SDValue Res;
9991   switch (N->getOpcode()) {
9992   default:
9993     llvm_unreachable("Don't know how to custom expand this!");
9994   case ISD::READ_REGISTER:
9995     ExpandREAD_REGISTER(N, Results, DAG);
9996     break;
9997   case ISD::BITCAST:
9998     Res = ExpandBITCAST(N, DAG, Subtarget);
9999     break;
10000   case ISD::SRL:
10001   case ISD::SRA:
10002   case ISD::SHL:
10003     Res = Expand64BitShift(N, DAG, Subtarget);
10004     break;
10005   case ISD::SREM:
10006   case ISD::UREM:
10007     Res = LowerREM(N, DAG);
10008     break;
10009   case ISD::SDIVREM:
10010   case ISD::UDIVREM:
10011     Res = LowerDivRem(SDValue(N, 0), DAG);
10012     assert(Res.getNumOperands() == 2 && "DivRem needs two values");
10013     Results.push_back(Res.getValue(0));
10014     Results.push_back(Res.getValue(1));
10015     return;
10016   case ISD::SADDSAT:
10017   case ISD::SSUBSAT:
10018     Res = LowerSADDSUBSAT(SDValue(N, 0), DAG, Subtarget);
10019     break;
10020   case ISD::READCYCLECOUNTER:
10021     ReplaceREADCYCLECOUNTER(N, Results, DAG, Subtarget);
10022     return;
10023   case ISD::UDIV:
10024   case ISD::SDIV:
10025     assert(Subtarget->isTargetWindows() && "can only expand DIV on Windows");
10026     return ExpandDIV_Windows(SDValue(N, 0), DAG, N->getOpcode() == ISD::SDIV,
10027                              Results);
10028   case ISD::ATOMIC_CMP_SWAP:
10029     ReplaceCMP_SWAP_64Results(N, Results, DAG);
10030     return;
10031   case ISD::INTRINSIC_WO_CHAIN:
10032     return ReplaceLongIntrinsic(N, Results, DAG);
10033   case ISD::ABS:
10034      lowerABS(N, Results, DAG);
10035      return ;
10036   case ISD::LOAD:
10037     LowerLOAD(N, Results, DAG);
10038     break;
10039   }
10040   if (Res.getNode())
10041     Results.push_back(Res);
10042 }
10043 
10044 //===----------------------------------------------------------------------===//
10045 //                           ARM Scheduler Hooks
10046 //===----------------------------------------------------------------------===//
10047 
10048 /// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
10049 /// registers the function context.
SetupEntryBlockForSjLj(MachineInstr & MI,MachineBasicBlock * MBB,MachineBasicBlock * DispatchBB,int FI) const10050 void ARMTargetLowering::SetupEntryBlockForSjLj(MachineInstr &MI,
10051                                                MachineBasicBlock *MBB,
10052                                                MachineBasicBlock *DispatchBB,
10053                                                int FI) const {
10054   assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
10055          "ROPI/RWPI not currently supported with SjLj");
10056   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
10057   DebugLoc dl = MI.getDebugLoc();
10058   MachineFunction *MF = MBB->getParent();
10059   MachineRegisterInfo *MRI = &MF->getRegInfo();
10060   MachineConstantPool *MCP = MF->getConstantPool();
10061   ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
10062   const Function &F = MF->getFunction();
10063 
10064   bool isThumb = Subtarget->isThumb();
10065   bool isThumb2 = Subtarget->isThumb2();
10066 
10067   unsigned PCLabelId = AFI->createPICLabelUId();
10068   unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8;
10069   ARMConstantPoolValue *CPV =
10070     ARMConstantPoolMBB::Create(F.getContext(), DispatchBB, PCLabelId, PCAdj);
10071   unsigned CPI = MCP->getConstantPoolIndex(CPV, Align(4));
10072 
10073   const TargetRegisterClass *TRC = isThumb ? &ARM::tGPRRegClass
10074                                            : &ARM::GPRRegClass;
10075 
10076   // Grab constant pool and fixed stack memory operands.
10077   MachineMemOperand *CPMMO =
10078       MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF),
10079                                MachineMemOperand::MOLoad, 4, Align(4));
10080 
10081   MachineMemOperand *FIMMOSt =
10082       MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI),
10083                                MachineMemOperand::MOStore, 4, Align(4));
10084 
10085   // Load the address of the dispatch MBB into the jump buffer.
10086   if (isThumb2) {
10087     // Incoming value: jbuf
10088     //   ldr.n  r5, LCPI1_1
10089     //   orr    r5, r5, #1
10090     //   add    r5, pc
10091     //   str    r5, [$jbuf, #+4] ; &jbuf[1]
10092     Register NewVReg1 = MRI->createVirtualRegister(TRC);
10093     BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1)
10094         .addConstantPoolIndex(CPI)
10095         .addMemOperand(CPMMO)
10096         .add(predOps(ARMCC::AL));
10097     // Set the low bit because of thumb mode.
10098     Register NewVReg2 = MRI->createVirtualRegister(TRC);
10099     BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2)
10100         .addReg(NewVReg1, RegState::Kill)
10101         .addImm(0x01)
10102         .add(predOps(ARMCC::AL))
10103         .add(condCodeOp());
10104     Register NewVReg3 = MRI->createVirtualRegister(TRC);
10105     BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3)
10106       .addReg(NewVReg2, RegState::Kill)
10107       .addImm(PCLabelId);
10108     BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12))
10109         .addReg(NewVReg3, RegState::Kill)
10110         .addFrameIndex(FI)
10111         .addImm(36) // &jbuf[1] :: pc
10112         .addMemOperand(FIMMOSt)
10113         .add(predOps(ARMCC::AL));
10114   } else if (isThumb) {
10115     // Incoming value: jbuf
10116     //   ldr.n  r1, LCPI1_4
10117     //   add    r1, pc
10118     //   mov    r2, #1
10119     //   orrs   r1, r2
10120     //   add    r2, $jbuf, #+4 ; &jbuf[1]
10121     //   str    r1, [r2]
10122     Register NewVReg1 = MRI->createVirtualRegister(TRC);
10123     BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1)
10124         .addConstantPoolIndex(CPI)
10125         .addMemOperand(CPMMO)
10126         .add(predOps(ARMCC::AL));
10127     Register NewVReg2 = MRI->createVirtualRegister(TRC);
10128     BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2)
10129       .addReg(NewVReg1, RegState::Kill)
10130       .addImm(PCLabelId);
10131     // Set the low bit because of thumb mode.
10132     Register NewVReg3 = MRI->createVirtualRegister(TRC);
10133     BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3)
10134         .addReg(ARM::CPSR, RegState::Define)
10135         .addImm(1)
10136         .add(predOps(ARMCC::AL));
10137     Register NewVReg4 = MRI->createVirtualRegister(TRC);
10138     BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4)
10139         .addReg(ARM::CPSR, RegState::Define)
10140         .addReg(NewVReg2, RegState::Kill)
10141         .addReg(NewVReg3, RegState::Kill)
10142         .add(predOps(ARMCC::AL));
10143     Register NewVReg5 = MRI->createVirtualRegister(TRC);
10144     BuildMI(*MBB, MI, dl, TII->get(ARM::tADDframe), NewVReg5)
10145             .addFrameIndex(FI)
10146             .addImm(36); // &jbuf[1] :: pc
10147     BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi))
10148         .addReg(NewVReg4, RegState::Kill)
10149         .addReg(NewVReg5, RegState::Kill)
10150         .addImm(0)
10151         .addMemOperand(FIMMOSt)
10152         .add(predOps(ARMCC::AL));
10153   } else {
10154     // Incoming value: jbuf
10155     //   ldr  r1, LCPI1_1
10156     //   add  r1, pc, r1
10157     //   str  r1, [$jbuf, #+4] ; &jbuf[1]
10158     Register NewVReg1 = MRI->createVirtualRegister(TRC);
10159     BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12), NewVReg1)
10160         .addConstantPoolIndex(CPI)
10161         .addImm(0)
10162         .addMemOperand(CPMMO)
10163         .add(predOps(ARMCC::AL));
10164     Register NewVReg2 = MRI->createVirtualRegister(TRC);
10165     BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2)
10166         .addReg(NewVReg1, RegState::Kill)
10167         .addImm(PCLabelId)
10168         .add(predOps(ARMCC::AL));
10169     BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12))
10170         .addReg(NewVReg2, RegState::Kill)
10171         .addFrameIndex(FI)
10172         .addImm(36) // &jbuf[1] :: pc
10173         .addMemOperand(FIMMOSt)
10174         .add(predOps(ARMCC::AL));
10175   }
10176 }
10177 
EmitSjLjDispatchBlock(MachineInstr & MI,MachineBasicBlock * MBB) const10178 void ARMTargetLowering::EmitSjLjDispatchBlock(MachineInstr &MI,
10179                                               MachineBasicBlock *MBB) const {
10180   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
10181   DebugLoc dl = MI.getDebugLoc();
10182   MachineFunction *MF = MBB->getParent();
10183   MachineRegisterInfo *MRI = &MF->getRegInfo();
10184   MachineFrameInfo &MFI = MF->getFrameInfo();
10185   int FI = MFI.getFunctionContextIndex();
10186 
10187   const TargetRegisterClass *TRC = Subtarget->isThumb() ? &ARM::tGPRRegClass
10188                                                         : &ARM::GPRnopcRegClass;
10189 
10190   // Get a mapping of the call site numbers to all of the landing pads they're
10191   // associated with.
10192   DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2>> CallSiteNumToLPad;
10193   unsigned MaxCSNum = 0;
10194   for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E;
10195        ++BB) {
10196     if (!BB->isEHPad()) continue;
10197 
10198     // FIXME: We should assert that the EH_LABEL is the first MI in the landing
10199     // pad.
10200     for (MachineBasicBlock::iterator
10201            II = BB->begin(), IE = BB->end(); II != IE; ++II) {
10202       if (!II->isEHLabel()) continue;
10203 
10204       MCSymbol *Sym = II->getOperand(0).getMCSymbol();
10205       if (!MF->hasCallSiteLandingPad(Sym)) continue;
10206 
10207       SmallVectorImpl<unsigned> &CallSiteIdxs = MF->getCallSiteLandingPad(Sym);
10208       for (SmallVectorImpl<unsigned>::iterator
10209              CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end();
10210            CSI != CSE; ++CSI) {
10211         CallSiteNumToLPad[*CSI].push_back(&*BB);
10212         MaxCSNum = std::max(MaxCSNum, *CSI);
10213       }
10214       break;
10215     }
10216   }
10217 
10218   // Get an ordered list of the machine basic blocks for the jump table.
10219   std::vector<MachineBasicBlock*> LPadList;
10220   SmallPtrSet<MachineBasicBlock*, 32> InvokeBBs;
10221   LPadList.reserve(CallSiteNumToLPad.size());
10222   for (unsigned I = 1; I <= MaxCSNum; ++I) {
10223     SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I];
10224     for (SmallVectorImpl<MachineBasicBlock*>::iterator
10225            II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II) {
10226       LPadList.push_back(*II);
10227       InvokeBBs.insert((*II)->pred_begin(), (*II)->pred_end());
10228     }
10229   }
10230 
10231   assert(!LPadList.empty() &&
10232          "No landing pad destinations for the dispatch jump table!");
10233 
10234   // Create the jump table and associated information.
10235   MachineJumpTableInfo *JTI =
10236     MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline);
10237   unsigned MJTI = JTI->createJumpTableIndex(LPadList);
10238 
10239   // Create the MBBs for the dispatch code.
10240 
10241   // Shove the dispatch's address into the return slot in the function context.
10242   MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
10243   DispatchBB->setIsEHPad();
10244 
10245   MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
10246   unsigned trap_opcode;
10247   if (Subtarget->isThumb())
10248     trap_opcode = ARM::tTRAP;
10249   else
10250     trap_opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP;
10251 
10252   BuildMI(TrapBB, dl, TII->get(trap_opcode));
10253   DispatchBB->addSuccessor(TrapBB);
10254 
10255   MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
10256   DispatchBB->addSuccessor(DispContBB);
10257 
10258   // Insert and MBBs.
10259   MF->insert(MF->end(), DispatchBB);
10260   MF->insert(MF->end(), DispContBB);
10261   MF->insert(MF->end(), TrapBB);
10262 
10263   // Insert code into the entry block that creates and registers the function
10264   // context.
10265   SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI);
10266 
10267   MachineMemOperand *FIMMOLd = MF->getMachineMemOperand(
10268       MachinePointerInfo::getFixedStack(*MF, FI),
10269       MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile, 4, Align(4));
10270 
10271   MachineInstrBuilder MIB;
10272   MIB = BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup));
10273 
10274   const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
10275   const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
10276 
10277   // Add a register mask with no preserved registers.  This results in all
10278   // registers being marked as clobbered. This can't work if the dispatch block
10279   // is in a Thumb1 function and is linked with ARM code which uses the FP
10280   // registers, as there is no way to preserve the FP registers in Thumb1 mode.
10281   MIB.addRegMask(RI.getSjLjDispatchPreservedMask(*MF));
10282 
10283   bool IsPositionIndependent = isPositionIndependent();
10284   unsigned NumLPads = LPadList.size();
10285   if (Subtarget->isThumb2()) {
10286     Register NewVReg1 = MRI->createVirtualRegister(TRC);
10287     BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1)
10288         .addFrameIndex(FI)
10289         .addImm(4)
10290         .addMemOperand(FIMMOLd)
10291         .add(predOps(ARMCC::AL));
10292 
10293     if (NumLPads < 256) {
10294       BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri))
10295           .addReg(NewVReg1)
10296           .addImm(LPadList.size())
10297           .add(predOps(ARMCC::AL));
10298     } else {
10299       Register VReg1 = MRI->createVirtualRegister(TRC);
10300       BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1)
10301           .addImm(NumLPads & 0xFFFF)
10302           .add(predOps(ARMCC::AL));
10303 
10304       unsigned VReg2 = VReg1;
10305       if ((NumLPads & 0xFFFF0000) != 0) {
10306         VReg2 = MRI->createVirtualRegister(TRC);
10307         BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2)
10308             .addReg(VReg1)
10309             .addImm(NumLPads >> 16)
10310             .add(predOps(ARMCC::AL));
10311       }
10312 
10313       BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr))
10314           .addReg(NewVReg1)
10315           .addReg(VReg2)
10316           .add(predOps(ARMCC::AL));
10317     }
10318 
10319     BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc))
10320       .addMBB(TrapBB)
10321       .addImm(ARMCC::HI)
10322       .addReg(ARM::CPSR);
10323 
10324     Register NewVReg3 = MRI->createVirtualRegister(TRC);
10325     BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT), NewVReg3)
10326         .addJumpTableIndex(MJTI)
10327         .add(predOps(ARMCC::AL));
10328 
10329     Register NewVReg4 = MRI->createVirtualRegister(TRC);
10330     BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4)
10331         .addReg(NewVReg3, RegState::Kill)
10332         .addReg(NewVReg1)
10333         .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))
10334         .add(predOps(ARMCC::AL))
10335         .add(condCodeOp());
10336 
10337     BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT))
10338       .addReg(NewVReg4, RegState::Kill)
10339       .addReg(NewVReg1)
10340       .addJumpTableIndex(MJTI);
10341   } else if (Subtarget->isThumb()) {
10342     Register NewVReg1 = MRI->createVirtualRegister(TRC);
10343     BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1)
10344         .addFrameIndex(FI)
10345         .addImm(1)
10346         .addMemOperand(FIMMOLd)
10347         .add(predOps(ARMCC::AL));
10348 
10349     if (NumLPads < 256) {
10350       BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8))
10351           .addReg(NewVReg1)
10352           .addImm(NumLPads)
10353           .add(predOps(ARMCC::AL));
10354     } else {
10355       MachineConstantPool *ConstantPool = MF->getConstantPool();
10356       Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
10357       const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
10358 
10359       // MachineConstantPool wants an explicit alignment.
10360       Align Alignment = MF->getDataLayout().getPrefTypeAlign(Int32Ty);
10361       unsigned Idx = ConstantPool->getConstantPoolIndex(C, Alignment);
10362 
10363       Register VReg1 = MRI->createVirtualRegister(TRC);
10364       BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci))
10365           .addReg(VReg1, RegState::Define)
10366           .addConstantPoolIndex(Idx)
10367           .add(predOps(ARMCC::AL));
10368       BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr))
10369           .addReg(NewVReg1)
10370           .addReg(VReg1)
10371           .add(predOps(ARMCC::AL));
10372     }
10373 
10374     BuildMI(DispatchBB, dl, TII->get(ARM::tBcc))
10375       .addMBB(TrapBB)
10376       .addImm(ARMCC::HI)
10377       .addReg(ARM::CPSR);
10378 
10379     Register NewVReg2 = MRI->createVirtualRegister(TRC);
10380     BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2)
10381         .addReg(ARM::CPSR, RegState::Define)
10382         .addReg(NewVReg1)
10383         .addImm(2)
10384         .add(predOps(ARMCC::AL));
10385 
10386     Register NewVReg3 = MRI->createVirtualRegister(TRC);
10387     BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3)
10388         .addJumpTableIndex(MJTI)
10389         .add(predOps(ARMCC::AL));
10390 
10391     Register NewVReg4 = MRI->createVirtualRegister(TRC);
10392     BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4)
10393         .addReg(ARM::CPSR, RegState::Define)
10394         .addReg(NewVReg2, RegState::Kill)
10395         .addReg(NewVReg3)
10396         .add(predOps(ARMCC::AL));
10397 
10398     MachineMemOperand *JTMMOLd =
10399         MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(*MF),
10400                                  MachineMemOperand::MOLoad, 4, Align(4));
10401 
10402     Register NewVReg5 = MRI->createVirtualRegister(TRC);
10403     BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5)
10404         .addReg(NewVReg4, RegState::Kill)
10405         .addImm(0)
10406         .addMemOperand(JTMMOLd)
10407         .add(predOps(ARMCC::AL));
10408 
10409     unsigned NewVReg6 = NewVReg5;
10410     if (IsPositionIndependent) {
10411       NewVReg6 = MRI->createVirtualRegister(TRC);
10412       BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6)
10413           .addReg(ARM::CPSR, RegState::Define)
10414           .addReg(NewVReg5, RegState::Kill)
10415           .addReg(NewVReg3)
10416           .add(predOps(ARMCC::AL));
10417     }
10418 
10419     BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr))
10420       .addReg(NewVReg6, RegState::Kill)
10421       .addJumpTableIndex(MJTI);
10422   } else {
10423     Register NewVReg1 = MRI->createVirtualRegister(TRC);
10424     BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1)
10425         .addFrameIndex(FI)
10426         .addImm(4)
10427         .addMemOperand(FIMMOLd)
10428         .add(predOps(ARMCC::AL));
10429 
10430     if (NumLPads < 256) {
10431       BuildMI(DispatchBB, dl, TII->get(ARM::CMPri))
10432           .addReg(NewVReg1)
10433           .addImm(NumLPads)
10434           .add(predOps(ARMCC::AL));
10435     } else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) {
10436       Register VReg1 = MRI->createVirtualRegister(TRC);
10437       BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1)
10438           .addImm(NumLPads & 0xFFFF)
10439           .add(predOps(ARMCC::AL));
10440 
10441       unsigned VReg2 = VReg1;
10442       if ((NumLPads & 0xFFFF0000) != 0) {
10443         VReg2 = MRI->createVirtualRegister(TRC);
10444         BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2)
10445             .addReg(VReg1)
10446             .addImm(NumLPads >> 16)
10447             .add(predOps(ARMCC::AL));
10448       }
10449 
10450       BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
10451           .addReg(NewVReg1)
10452           .addReg(VReg2)
10453           .add(predOps(ARMCC::AL));
10454     } else {
10455       MachineConstantPool *ConstantPool = MF->getConstantPool();
10456       Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
10457       const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
10458 
10459       // MachineConstantPool wants an explicit alignment.
10460       Align Alignment = MF->getDataLayout().getPrefTypeAlign(Int32Ty);
10461       unsigned Idx = ConstantPool->getConstantPoolIndex(C, Alignment);
10462 
10463       Register VReg1 = MRI->createVirtualRegister(TRC);
10464       BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp))
10465           .addReg(VReg1, RegState::Define)
10466           .addConstantPoolIndex(Idx)
10467           .addImm(0)
10468           .add(predOps(ARMCC::AL));
10469       BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
10470           .addReg(NewVReg1)
10471           .addReg(VReg1, RegState::Kill)
10472           .add(predOps(ARMCC::AL));
10473     }
10474 
10475     BuildMI(DispatchBB, dl, TII->get(ARM::Bcc))
10476       .addMBB(TrapBB)
10477       .addImm(ARMCC::HI)
10478       .addReg(ARM::CPSR);
10479 
10480     Register NewVReg3 = MRI->createVirtualRegister(TRC);
10481     BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3)
10482         .addReg(NewVReg1)
10483         .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))
10484         .add(predOps(ARMCC::AL))
10485         .add(condCodeOp());
10486     Register NewVReg4 = MRI->createVirtualRegister(TRC);
10487     BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4)
10488         .addJumpTableIndex(MJTI)
10489         .add(predOps(ARMCC::AL));
10490 
10491     MachineMemOperand *JTMMOLd =
10492         MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(*MF),
10493                                  MachineMemOperand::MOLoad, 4, Align(4));
10494     Register NewVReg5 = MRI->createVirtualRegister(TRC);
10495     BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5)
10496         .addReg(NewVReg3, RegState::Kill)
10497         .addReg(NewVReg4)
10498         .addImm(0)
10499         .addMemOperand(JTMMOLd)
10500         .add(predOps(ARMCC::AL));
10501 
10502     if (IsPositionIndependent) {
10503       BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd))
10504         .addReg(NewVReg5, RegState::Kill)
10505         .addReg(NewVReg4)
10506         .addJumpTableIndex(MJTI);
10507     } else {
10508       BuildMI(DispContBB, dl, TII->get(ARM::BR_JTr))
10509         .addReg(NewVReg5, RegState::Kill)
10510         .addJumpTableIndex(MJTI);
10511     }
10512   }
10513 
10514   // Add the jump table entries as successors to the MBB.
10515   SmallPtrSet<MachineBasicBlock*, 8> SeenMBBs;
10516   for (std::vector<MachineBasicBlock*>::iterator
10517          I = LPadList.begin(), E = LPadList.end(); I != E; ++I) {
10518     MachineBasicBlock *CurMBB = *I;
10519     if (SeenMBBs.insert(CurMBB).second)
10520       DispContBB->addSuccessor(CurMBB);
10521   }
10522 
10523   // N.B. the order the invoke BBs are processed in doesn't matter here.
10524   const MCPhysReg *SavedRegs = RI.getCalleeSavedRegs(MF);
10525   SmallVector<MachineBasicBlock*, 64> MBBLPads;
10526   for (MachineBasicBlock *BB : InvokeBBs) {
10527 
10528     // Remove the landing pad successor from the invoke block and replace it
10529     // with the new dispatch block.
10530     SmallVector<MachineBasicBlock*, 4> Successors(BB->successors());
10531     while (!Successors.empty()) {
10532       MachineBasicBlock *SMBB = Successors.pop_back_val();
10533       if (SMBB->isEHPad()) {
10534         BB->removeSuccessor(SMBB);
10535         MBBLPads.push_back(SMBB);
10536       }
10537     }
10538 
10539     BB->addSuccessor(DispatchBB, BranchProbability::getZero());
10540     BB->normalizeSuccProbs();
10541 
10542     // Find the invoke call and mark all of the callee-saved registers as
10543     // 'implicit defined' so that they're spilled. This prevents code from
10544     // moving instructions to before the EH block, where they will never be
10545     // executed.
10546     for (MachineBasicBlock::reverse_iterator
10547            II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
10548       if (!II->isCall()) continue;
10549 
10550       DenseMap<unsigned, bool> DefRegs;
10551       for (MachineInstr::mop_iterator
10552              OI = II->operands_begin(), OE = II->operands_end();
10553            OI != OE; ++OI) {
10554         if (!OI->isReg()) continue;
10555         DefRegs[OI->getReg()] = true;
10556       }
10557 
10558       MachineInstrBuilder MIB(*MF, &*II);
10559 
10560       for (unsigned i = 0; SavedRegs[i] != 0; ++i) {
10561         unsigned Reg = SavedRegs[i];
10562         if (Subtarget->isThumb2() &&
10563             !ARM::tGPRRegClass.contains(Reg) &&
10564             !ARM::hGPRRegClass.contains(Reg))
10565           continue;
10566         if (Subtarget->isThumb1Only() && !ARM::tGPRRegClass.contains(Reg))
10567           continue;
10568         if (!Subtarget->isThumb() && !ARM::GPRRegClass.contains(Reg))
10569           continue;
10570         if (!DefRegs[Reg])
10571           MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
10572       }
10573 
10574       break;
10575     }
10576   }
10577 
10578   // Mark all former landing pads as non-landing pads. The dispatch is the only
10579   // landing pad now.
10580   for (SmallVectorImpl<MachineBasicBlock*>::iterator
10581          I = MBBLPads.begin(), E = MBBLPads.end(); I != E; ++I)
10582     (*I)->setIsEHPad(false);
10583 
10584   // The instruction is gone now.
10585   MI.eraseFromParent();
10586 }
10587 
10588 static
OtherSucc(MachineBasicBlock * MBB,MachineBasicBlock * Succ)10589 MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
10590   for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
10591        E = MBB->succ_end(); I != E; ++I)
10592     if (*I != Succ)
10593       return *I;
10594   llvm_unreachable("Expecting a BB with two successors!");
10595 }
10596 
10597 /// Return the load opcode for a given load size. If load size >= 8,
10598 /// neon opcode will be returned.
getLdOpcode(unsigned LdSize,bool IsThumb1,bool IsThumb2)10599 static unsigned getLdOpcode(unsigned LdSize, bool IsThumb1, bool IsThumb2) {
10600   if (LdSize >= 8)
10601     return LdSize == 16 ? ARM::VLD1q32wb_fixed
10602                         : LdSize == 8 ? ARM::VLD1d32wb_fixed : 0;
10603   if (IsThumb1)
10604     return LdSize == 4 ? ARM::tLDRi
10605                        : LdSize == 2 ? ARM::tLDRHi
10606                                      : LdSize == 1 ? ARM::tLDRBi : 0;
10607   if (IsThumb2)
10608     return LdSize == 4 ? ARM::t2LDR_POST
10609                        : LdSize == 2 ? ARM::t2LDRH_POST
10610                                      : LdSize == 1 ? ARM::t2LDRB_POST : 0;
10611   return LdSize == 4 ? ARM::LDR_POST_IMM
10612                      : LdSize == 2 ? ARM::LDRH_POST
10613                                    : LdSize == 1 ? ARM::LDRB_POST_IMM : 0;
10614 }
10615 
10616 /// Return the store opcode for a given store size. If store size >= 8,
10617 /// neon opcode will be returned.
getStOpcode(unsigned StSize,bool IsThumb1,bool IsThumb2)10618 static unsigned getStOpcode(unsigned StSize, bool IsThumb1, bool IsThumb2) {
10619   if (StSize >= 8)
10620     return StSize == 16 ? ARM::VST1q32wb_fixed
10621                         : StSize == 8 ? ARM::VST1d32wb_fixed : 0;
10622   if (IsThumb1)
10623     return StSize == 4 ? ARM::tSTRi
10624                        : StSize == 2 ? ARM::tSTRHi
10625                                      : StSize == 1 ? ARM::tSTRBi : 0;
10626   if (IsThumb2)
10627     return StSize == 4 ? ARM::t2STR_POST
10628                        : StSize == 2 ? ARM::t2STRH_POST
10629                                      : StSize == 1 ? ARM::t2STRB_POST : 0;
10630   return StSize == 4 ? ARM::STR_POST_IMM
10631                      : StSize == 2 ? ARM::STRH_POST
10632                                    : StSize == 1 ? ARM::STRB_POST_IMM : 0;
10633 }
10634 
10635 /// Emit a post-increment load operation with given size. The instructions
10636 /// will be added to BB at Pos.
emitPostLd(MachineBasicBlock * BB,MachineBasicBlock::iterator Pos,const TargetInstrInfo * TII,const DebugLoc & dl,unsigned LdSize,unsigned Data,unsigned AddrIn,unsigned AddrOut,bool IsThumb1,bool IsThumb2)10637 static void emitPostLd(MachineBasicBlock *BB, MachineBasicBlock::iterator Pos,
10638                        const TargetInstrInfo *TII, const DebugLoc &dl,
10639                        unsigned LdSize, unsigned Data, unsigned AddrIn,
10640                        unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
10641   unsigned LdOpc = getLdOpcode(LdSize, IsThumb1, IsThumb2);
10642   assert(LdOpc != 0 && "Should have a load opcode");
10643   if (LdSize >= 8) {
10644     BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
10645         .addReg(AddrOut, RegState::Define)
10646         .addReg(AddrIn)
10647         .addImm(0)
10648         .add(predOps(ARMCC::AL));
10649   } else if (IsThumb1) {
10650     // load + update AddrIn
10651     BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
10652         .addReg(AddrIn)
10653         .addImm(0)
10654         .add(predOps(ARMCC::AL));
10655     BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut)
10656         .add(t1CondCodeOp())
10657         .addReg(AddrIn)
10658         .addImm(LdSize)
10659         .add(predOps(ARMCC::AL));
10660   } else if (IsThumb2) {
10661     BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
10662         .addReg(AddrOut, RegState::Define)
10663         .addReg(AddrIn)
10664         .addImm(LdSize)
10665         .add(predOps(ARMCC::AL));
10666   } else { // arm
10667     BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
10668         .addReg(AddrOut, RegState::Define)
10669         .addReg(AddrIn)
10670         .addReg(0)
10671         .addImm(LdSize)
10672         .add(predOps(ARMCC::AL));
10673   }
10674 }
10675 
10676 /// Emit a post-increment store operation with given size. The instructions
10677 /// will be added to BB at Pos.
emitPostSt(MachineBasicBlock * BB,MachineBasicBlock::iterator Pos,const TargetInstrInfo * TII,const DebugLoc & dl,unsigned StSize,unsigned Data,unsigned AddrIn,unsigned AddrOut,bool IsThumb1,bool IsThumb2)10678 static void emitPostSt(MachineBasicBlock *BB, MachineBasicBlock::iterator Pos,
10679                        const TargetInstrInfo *TII, const DebugLoc &dl,
10680                        unsigned StSize, unsigned Data, unsigned AddrIn,
10681                        unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
10682   unsigned StOpc = getStOpcode(StSize, IsThumb1, IsThumb2);
10683   assert(StOpc != 0 && "Should have a store opcode");
10684   if (StSize >= 8) {
10685     BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
10686         .addReg(AddrIn)
10687         .addImm(0)
10688         .addReg(Data)
10689         .add(predOps(ARMCC::AL));
10690   } else if (IsThumb1) {
10691     // store + update AddrIn
10692     BuildMI(*BB, Pos, dl, TII->get(StOpc))
10693         .addReg(Data)
10694         .addReg(AddrIn)
10695         .addImm(0)
10696         .add(predOps(ARMCC::AL));
10697     BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut)
10698         .add(t1CondCodeOp())
10699         .addReg(AddrIn)
10700         .addImm(StSize)
10701         .add(predOps(ARMCC::AL));
10702   } else if (IsThumb2) {
10703     BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
10704         .addReg(Data)
10705         .addReg(AddrIn)
10706         .addImm(StSize)
10707         .add(predOps(ARMCC::AL));
10708   } else { // arm
10709     BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
10710         .addReg(Data)
10711         .addReg(AddrIn)
10712         .addReg(0)
10713         .addImm(StSize)
10714         .add(predOps(ARMCC::AL));
10715   }
10716 }
10717 
10718 MachineBasicBlock *
EmitStructByval(MachineInstr & MI,MachineBasicBlock * BB) const10719 ARMTargetLowering::EmitStructByval(MachineInstr &MI,
10720                                    MachineBasicBlock *BB) const {
10721   // This pseudo instruction has 3 operands: dst, src, size
10722   // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold().
10723   // Otherwise, we will generate unrolled scalar copies.
10724   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
10725   const BasicBlock *LLVM_BB = BB->getBasicBlock();
10726   MachineFunction::iterator It = ++BB->getIterator();
10727 
10728   Register dest = MI.getOperand(0).getReg();
10729   Register src = MI.getOperand(1).getReg();
10730   unsigned SizeVal = MI.getOperand(2).getImm();
10731   unsigned Alignment = MI.getOperand(3).getImm();
10732   DebugLoc dl = MI.getDebugLoc();
10733 
10734   MachineFunction *MF = BB->getParent();
10735   MachineRegisterInfo &MRI = MF->getRegInfo();
10736   unsigned UnitSize = 0;
10737   const TargetRegisterClass *TRC = nullptr;
10738   const TargetRegisterClass *VecTRC = nullptr;
10739 
10740   bool IsThumb1 = Subtarget->isThumb1Only();
10741   bool IsThumb2 = Subtarget->isThumb2();
10742   bool IsThumb = Subtarget->isThumb();
10743 
10744   if (Alignment & 1) {
10745     UnitSize = 1;
10746   } else if (Alignment & 2) {
10747     UnitSize = 2;
10748   } else {
10749     // Check whether we can use NEON instructions.
10750     if (!MF->getFunction().hasFnAttribute(Attribute::NoImplicitFloat) &&
10751         Subtarget->hasNEON()) {
10752       if ((Alignment % 16 == 0) && SizeVal >= 16)
10753         UnitSize = 16;
10754       else if ((Alignment % 8 == 0) && SizeVal >= 8)
10755         UnitSize = 8;
10756     }
10757     // Can't use NEON instructions.
10758     if (UnitSize == 0)
10759       UnitSize = 4;
10760   }
10761 
10762   // Select the correct opcode and register class for unit size load/store
10763   bool IsNeon = UnitSize >= 8;
10764   TRC = IsThumb ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
10765   if (IsNeon)
10766     VecTRC = UnitSize == 16 ? &ARM::DPairRegClass
10767                             : UnitSize == 8 ? &ARM::DPRRegClass
10768                                             : nullptr;
10769 
10770   unsigned BytesLeft = SizeVal % UnitSize;
10771   unsigned LoopSize = SizeVal - BytesLeft;
10772 
10773   if (SizeVal <= Subtarget->getMaxInlineSizeThreshold()) {
10774     // Use LDR and STR to copy.
10775     // [scratch, srcOut] = LDR_POST(srcIn, UnitSize)
10776     // [destOut] = STR_POST(scratch, destIn, UnitSize)
10777     unsigned srcIn = src;
10778     unsigned destIn = dest;
10779     for (unsigned i = 0; i < LoopSize; i+=UnitSize) {
10780       Register srcOut = MRI.createVirtualRegister(TRC);
10781       Register destOut = MRI.createVirtualRegister(TRC);
10782       Register scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
10783       emitPostLd(BB, MI, TII, dl, UnitSize, scratch, srcIn, srcOut,
10784                  IsThumb1, IsThumb2);
10785       emitPostSt(BB, MI, TII, dl, UnitSize, scratch, destIn, destOut,
10786                  IsThumb1, IsThumb2);
10787       srcIn = srcOut;
10788       destIn = destOut;
10789     }
10790 
10791     // Handle the leftover bytes with LDRB and STRB.
10792     // [scratch, srcOut] = LDRB_POST(srcIn, 1)
10793     // [destOut] = STRB_POST(scratch, destIn, 1)
10794     for (unsigned i = 0; i < BytesLeft; i++) {
10795       Register srcOut = MRI.createVirtualRegister(TRC);
10796       Register destOut = MRI.createVirtualRegister(TRC);
10797       Register scratch = MRI.createVirtualRegister(TRC);
10798       emitPostLd(BB, MI, TII, dl, 1, scratch, srcIn, srcOut,
10799                  IsThumb1, IsThumb2);
10800       emitPostSt(BB, MI, TII, dl, 1, scratch, destIn, destOut,
10801                  IsThumb1, IsThumb2);
10802       srcIn = srcOut;
10803       destIn = destOut;
10804     }
10805     MI.eraseFromParent(); // The instruction is gone now.
10806     return BB;
10807   }
10808 
10809   // Expand the pseudo op to a loop.
10810   // thisMBB:
10811   //   ...
10812   //   movw varEnd, # --> with thumb2
10813   //   movt varEnd, #
10814   //   ldrcp varEnd, idx --> without thumb2
10815   //   fallthrough --> loopMBB
10816   // loopMBB:
10817   //   PHI varPhi, varEnd, varLoop
10818   //   PHI srcPhi, src, srcLoop
10819   //   PHI destPhi, dst, destLoop
10820   //   [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
10821   //   [destLoop] = STR_POST(scratch, destPhi, UnitSize)
10822   //   subs varLoop, varPhi, #UnitSize
10823   //   bne loopMBB
10824   //   fallthrough --> exitMBB
10825   // exitMBB:
10826   //   epilogue to handle left-over bytes
10827   //   [scratch, srcOut] = LDRB_POST(srcLoop, 1)
10828   //   [destOut] = STRB_POST(scratch, destLoop, 1)
10829   MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
10830   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
10831   MF->insert(It, loopMBB);
10832   MF->insert(It, exitMBB);
10833 
10834   // Transfer the remainder of BB and its successor edges to exitMBB.
10835   exitMBB->splice(exitMBB->begin(), BB,
10836                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
10837   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10838 
10839   // Load an immediate to varEnd.
10840   Register varEnd = MRI.createVirtualRegister(TRC);
10841   if (Subtarget->useMovt()) {
10842     unsigned Vtmp = varEnd;
10843     if ((LoopSize & 0xFFFF0000) != 0)
10844       Vtmp = MRI.createVirtualRegister(TRC);
10845     BuildMI(BB, dl, TII->get(IsThumb ? ARM::t2MOVi16 : ARM::MOVi16), Vtmp)
10846         .addImm(LoopSize & 0xFFFF)
10847         .add(predOps(ARMCC::AL));
10848 
10849     if ((LoopSize & 0xFFFF0000) != 0)
10850       BuildMI(BB, dl, TII->get(IsThumb ? ARM::t2MOVTi16 : ARM::MOVTi16), varEnd)
10851           .addReg(Vtmp)
10852           .addImm(LoopSize >> 16)
10853           .add(predOps(ARMCC::AL));
10854   } else {
10855     MachineConstantPool *ConstantPool = MF->getConstantPool();
10856     Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
10857     const Constant *C = ConstantInt::get(Int32Ty, LoopSize);
10858 
10859     // MachineConstantPool wants an explicit alignment.
10860     Align Alignment = MF->getDataLayout().getPrefTypeAlign(Int32Ty);
10861     unsigned Idx = ConstantPool->getConstantPoolIndex(C, Alignment);
10862     MachineMemOperand *CPMMO =
10863         MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF),
10864                                  MachineMemOperand::MOLoad, 4, Align(4));
10865 
10866     if (IsThumb)
10867       BuildMI(*BB, MI, dl, TII->get(ARM::tLDRpci))
10868           .addReg(varEnd, RegState::Define)
10869           .addConstantPoolIndex(Idx)
10870           .add(predOps(ARMCC::AL))
10871           .addMemOperand(CPMMO);
10872     else
10873       BuildMI(*BB, MI, dl, TII->get(ARM::LDRcp))
10874           .addReg(varEnd, RegState::Define)
10875           .addConstantPoolIndex(Idx)
10876           .addImm(0)
10877           .add(predOps(ARMCC::AL))
10878           .addMemOperand(CPMMO);
10879   }
10880   BB->addSuccessor(loopMBB);
10881 
10882   // Generate the loop body:
10883   //   varPhi = PHI(varLoop, varEnd)
10884   //   srcPhi = PHI(srcLoop, src)
10885   //   destPhi = PHI(destLoop, dst)
10886   MachineBasicBlock *entryBB = BB;
10887   BB = loopMBB;
10888   Register varLoop = MRI.createVirtualRegister(TRC);
10889   Register varPhi = MRI.createVirtualRegister(TRC);
10890   Register srcLoop = MRI.createVirtualRegister(TRC);
10891   Register srcPhi = MRI.createVirtualRegister(TRC);
10892   Register destLoop = MRI.createVirtualRegister(TRC);
10893   Register destPhi = MRI.createVirtualRegister(TRC);
10894 
10895   BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), varPhi)
10896     .addReg(varLoop).addMBB(loopMBB)
10897     .addReg(varEnd).addMBB(entryBB);
10898   BuildMI(BB, dl, TII->get(ARM::PHI), srcPhi)
10899     .addReg(srcLoop).addMBB(loopMBB)
10900     .addReg(src).addMBB(entryBB);
10901   BuildMI(BB, dl, TII->get(ARM::PHI), destPhi)
10902     .addReg(destLoop).addMBB(loopMBB)
10903     .addReg(dest).addMBB(entryBB);
10904 
10905   //   [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
10906   //   [destLoop] = STR_POST(scratch, destPhi, UnitSiz)
10907   Register scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
10908   emitPostLd(BB, BB->end(), TII, dl, UnitSize, scratch, srcPhi, srcLoop,
10909              IsThumb1, IsThumb2);
10910   emitPostSt(BB, BB->end(), TII, dl, UnitSize, scratch, destPhi, destLoop,
10911              IsThumb1, IsThumb2);
10912 
10913   // Decrement loop variable by UnitSize.
10914   if (IsThumb1) {
10915     BuildMI(*BB, BB->end(), dl, TII->get(ARM::tSUBi8), varLoop)
10916         .add(t1CondCodeOp())
10917         .addReg(varPhi)
10918         .addImm(UnitSize)
10919         .add(predOps(ARMCC::AL));
10920   } else {
10921     MachineInstrBuilder MIB =
10922         BuildMI(*BB, BB->end(), dl,
10923                 TII->get(IsThumb2 ? ARM::t2SUBri : ARM::SUBri), varLoop);
10924     MIB.addReg(varPhi)
10925         .addImm(UnitSize)
10926         .add(predOps(ARMCC::AL))
10927         .add(condCodeOp());
10928     MIB->getOperand(5).setReg(ARM::CPSR);
10929     MIB->getOperand(5).setIsDef(true);
10930   }
10931   BuildMI(*BB, BB->end(), dl,
10932           TII->get(IsThumb1 ? ARM::tBcc : IsThumb2 ? ARM::t2Bcc : ARM::Bcc))
10933       .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
10934 
10935   // loopMBB can loop back to loopMBB or fall through to exitMBB.
10936   BB->addSuccessor(loopMBB);
10937   BB->addSuccessor(exitMBB);
10938 
10939   // Add epilogue to handle BytesLeft.
10940   BB = exitMBB;
10941   auto StartOfExit = exitMBB->begin();
10942 
10943   //   [scratch, srcOut] = LDRB_POST(srcLoop, 1)
10944   //   [destOut] = STRB_POST(scratch, destLoop, 1)
10945   unsigned srcIn = srcLoop;
10946   unsigned destIn = destLoop;
10947   for (unsigned i = 0; i < BytesLeft; i++) {
10948     Register srcOut = MRI.createVirtualRegister(TRC);
10949     Register destOut = MRI.createVirtualRegister(TRC);
10950     Register scratch = MRI.createVirtualRegister(TRC);
10951     emitPostLd(BB, StartOfExit, TII, dl, 1, scratch, srcIn, srcOut,
10952                IsThumb1, IsThumb2);
10953     emitPostSt(BB, StartOfExit, TII, dl, 1, scratch, destIn, destOut,
10954                IsThumb1, IsThumb2);
10955     srcIn = srcOut;
10956     destIn = destOut;
10957   }
10958 
10959   MI.eraseFromParent(); // The instruction is gone now.
10960   return BB;
10961 }
10962 
10963 MachineBasicBlock *
EmitLowered__chkstk(MachineInstr & MI,MachineBasicBlock * MBB) const10964 ARMTargetLowering::EmitLowered__chkstk(MachineInstr &MI,
10965                                        MachineBasicBlock *MBB) const {
10966   const TargetMachine &TM = getTargetMachine();
10967   const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
10968   DebugLoc DL = MI.getDebugLoc();
10969 
10970   assert(Subtarget->isTargetWindows() &&
10971          "__chkstk is only supported on Windows");
10972   assert(Subtarget->isThumb2() && "Windows on ARM requires Thumb-2 mode");
10973 
10974   // __chkstk takes the number of words to allocate on the stack in R4, and
10975   // returns the stack adjustment in number of bytes in R4.  This will not
10976   // clober any other registers (other than the obvious lr).
10977   //
10978   // Although, technically, IP should be considered a register which may be
10979   // clobbered, the call itself will not touch it.  Windows on ARM is a pure
10980   // thumb-2 environment, so there is no interworking required.  As a result, we
10981   // do not expect a veneer to be emitted by the linker, clobbering IP.
10982   //
10983   // Each module receives its own copy of __chkstk, so no import thunk is
10984   // required, again, ensuring that IP is not clobbered.
10985   //
10986   // Finally, although some linkers may theoretically provide a trampoline for
10987   // out of range calls (which is quite common due to a 32M range limitation of
10988   // branches for Thumb), we can generate the long-call version via
10989   // -mcmodel=large, alleviating the need for the trampoline which may clobber
10990   // IP.
10991 
10992   switch (TM.getCodeModel()) {
10993   case CodeModel::Tiny:
10994     llvm_unreachable("Tiny code model not available on ARM.");
10995   case CodeModel::Small:
10996   case CodeModel::Medium:
10997   case CodeModel::Kernel:
10998     BuildMI(*MBB, MI, DL, TII.get(ARM::tBL))
10999         .add(predOps(ARMCC::AL))
11000         .addExternalSymbol("__chkstk")
11001         .addReg(ARM::R4, RegState::Implicit | RegState::Kill)
11002         .addReg(ARM::R4, RegState::Implicit | RegState::Define)
11003         .addReg(ARM::R12,
11004                 RegState::Implicit | RegState::Define | RegState::Dead)
11005         .addReg(ARM::CPSR,
11006                 RegState::Implicit | RegState::Define | RegState::Dead);
11007     break;
11008   case CodeModel::Large: {
11009     MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
11010     Register Reg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
11011 
11012     BuildMI(*MBB, MI, DL, TII.get(ARM::t2MOVi32imm), Reg)
11013       .addExternalSymbol("__chkstk");
11014     BuildMI(*MBB, MI, DL, TII.get(gettBLXrOpcode(*MBB->getParent())))
11015         .add(predOps(ARMCC::AL))
11016         .addReg(Reg, RegState::Kill)
11017         .addReg(ARM::R4, RegState::Implicit | RegState::Kill)
11018         .addReg(ARM::R4, RegState::Implicit | RegState::Define)
11019         .addReg(ARM::R12,
11020                 RegState::Implicit | RegState::Define | RegState::Dead)
11021         .addReg(ARM::CPSR,
11022                 RegState::Implicit | RegState::Define | RegState::Dead);
11023     break;
11024   }
11025   }
11026 
11027   BuildMI(*MBB, MI, DL, TII.get(ARM::t2SUBrr), ARM::SP)
11028       .addReg(ARM::SP, RegState::Kill)
11029       .addReg(ARM::R4, RegState::Kill)
11030       .setMIFlags(MachineInstr::FrameSetup)
11031       .add(predOps(ARMCC::AL))
11032       .add(condCodeOp());
11033 
11034   MI.eraseFromParent();
11035   return MBB;
11036 }
11037 
11038 MachineBasicBlock *
EmitLowered__dbzchk(MachineInstr & MI,MachineBasicBlock * MBB) const11039 ARMTargetLowering::EmitLowered__dbzchk(MachineInstr &MI,
11040                                        MachineBasicBlock *MBB) const {
11041   DebugLoc DL = MI.getDebugLoc();
11042   MachineFunction *MF = MBB->getParent();
11043   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
11044 
11045   MachineBasicBlock *ContBB = MF->CreateMachineBasicBlock();
11046   MF->insert(++MBB->getIterator(), ContBB);
11047   ContBB->splice(ContBB->begin(), MBB,
11048                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
11049   ContBB->transferSuccessorsAndUpdatePHIs(MBB);
11050   MBB->addSuccessor(ContBB);
11051 
11052   MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
11053   BuildMI(TrapBB, DL, TII->get(ARM::t__brkdiv0));
11054   MF->push_back(TrapBB);
11055   MBB->addSuccessor(TrapBB);
11056 
11057   BuildMI(*MBB, MI, DL, TII->get(ARM::tCMPi8))
11058       .addReg(MI.getOperand(0).getReg())
11059       .addImm(0)
11060       .add(predOps(ARMCC::AL));
11061   BuildMI(*MBB, MI, DL, TII->get(ARM::t2Bcc))
11062       .addMBB(TrapBB)
11063       .addImm(ARMCC::EQ)
11064       .addReg(ARM::CPSR);
11065 
11066   MI.eraseFromParent();
11067   return ContBB;
11068 }
11069 
11070 // The CPSR operand of SelectItr might be missing a kill marker
11071 // because there were multiple uses of CPSR, and ISel didn't know
11072 // which to mark. Figure out whether SelectItr should have had a
11073 // kill marker, and set it if it should. Returns the correct kill
11074 // marker value.
checkAndUpdateCPSRKill(MachineBasicBlock::iterator SelectItr,MachineBasicBlock * BB,const TargetRegisterInfo * TRI)11075 static bool checkAndUpdateCPSRKill(MachineBasicBlock::iterator SelectItr,
11076                                    MachineBasicBlock* BB,
11077                                    const TargetRegisterInfo* TRI) {
11078   // Scan forward through BB for a use/def of CPSR.
11079   MachineBasicBlock::iterator miI(std::next(SelectItr));
11080   for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
11081     const MachineInstr& mi = *miI;
11082     if (mi.readsRegister(ARM::CPSR))
11083       return false;
11084     if (mi.definesRegister(ARM::CPSR))
11085       break; // Should have kill-flag - update below.
11086   }
11087 
11088   // If we hit the end of the block, check whether CPSR is live into a
11089   // successor.
11090   if (miI == BB->end()) {
11091     for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
11092                                           sEnd = BB->succ_end();
11093          sItr != sEnd; ++sItr) {
11094       MachineBasicBlock* succ = *sItr;
11095       if (succ->isLiveIn(ARM::CPSR))
11096         return false;
11097     }
11098   }
11099 
11100   // We found a def, or hit the end of the basic block and CPSR wasn't live
11101   // out. SelectMI should have a kill flag on CPSR.
11102   SelectItr->addRegisterKilled(ARM::CPSR, TRI);
11103   return true;
11104 }
11105 
11106 /// Adds logic in loop entry MBB to calculate loop iteration count and adds
11107 /// t2WhileLoopSetup and t2WhileLoopStart to generate WLS loop
genTPEntry(MachineBasicBlock * TpEntry,MachineBasicBlock * TpLoopBody,MachineBasicBlock * TpExit,Register OpSizeReg,const TargetInstrInfo * TII,DebugLoc Dl,MachineRegisterInfo & MRI)11108 static Register genTPEntry(MachineBasicBlock *TpEntry,
11109                            MachineBasicBlock *TpLoopBody,
11110                            MachineBasicBlock *TpExit, Register OpSizeReg,
11111                            const TargetInstrInfo *TII, DebugLoc Dl,
11112                            MachineRegisterInfo &MRI) {
11113   // Calculates loop iteration count = ceil(n/16)/16 = ((n + 15)&(-16)) / 16.
11114   Register AddDestReg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
11115   BuildMI(TpEntry, Dl, TII->get(ARM::t2ADDri), AddDestReg)
11116       .addUse(OpSizeReg)
11117       .addImm(15)
11118       .add(predOps(ARMCC::AL))
11119       .addReg(0);
11120 
11121   Register BicDestReg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
11122   BuildMI(TpEntry, Dl, TII->get(ARM::t2BICri), BicDestReg)
11123       .addUse(AddDestReg, RegState::Kill)
11124       .addImm(16)
11125       .add(predOps(ARMCC::AL))
11126       .addReg(0);
11127 
11128   Register LsrDestReg = MRI.createVirtualRegister(&ARM::GPRlrRegClass);
11129   BuildMI(TpEntry, Dl, TII->get(ARM::t2LSRri), LsrDestReg)
11130       .addUse(BicDestReg, RegState::Kill)
11131       .addImm(4)
11132       .add(predOps(ARMCC::AL))
11133       .addReg(0);
11134 
11135   Register TotalIterationsReg = MRI.createVirtualRegister(&ARM::GPRlrRegClass);
11136   BuildMI(TpEntry, Dl, TII->get(ARM::t2WhileLoopSetup), TotalIterationsReg)
11137       .addUse(LsrDestReg, RegState::Kill);
11138 
11139   BuildMI(TpEntry, Dl, TII->get(ARM::t2WhileLoopStart))
11140       .addUse(TotalIterationsReg)
11141       .addMBB(TpExit);
11142 
11143   return TotalIterationsReg;
11144 }
11145 
11146 /// Adds logic in the loopBody MBB to generate MVE_VCTP, t2DoLoopDec and
11147 /// t2DoLoopEnd. These are used by later passes to generate tail predicated
11148 /// loops.
genTPLoopBody(MachineBasicBlock * TpLoopBody,MachineBasicBlock * TpEntry,MachineBasicBlock * TpExit,const TargetInstrInfo * TII,DebugLoc Dl,MachineRegisterInfo & MRI,Register OpSrcReg,Register OpDestReg,Register ElementCountReg,Register TotalIterationsReg,bool IsMemcpy)11149 static void genTPLoopBody(MachineBasicBlock *TpLoopBody,
11150                           MachineBasicBlock *TpEntry, MachineBasicBlock *TpExit,
11151                           const TargetInstrInfo *TII, DebugLoc Dl,
11152                           MachineRegisterInfo &MRI, Register OpSrcReg,
11153                           Register OpDestReg, Register ElementCountReg,
11154                           Register TotalIterationsReg, bool IsMemcpy) {
11155   // First insert 4 PHI nodes for: Current pointer to Src (if memcpy), Dest
11156   // array, loop iteration counter, predication counter.
11157 
11158   Register SrcPhiReg, CurrSrcReg;
11159   if (IsMemcpy) {
11160     //  Current position in the src array
11161     SrcPhiReg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
11162     CurrSrcReg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
11163     BuildMI(TpLoopBody, Dl, TII->get(ARM::PHI), SrcPhiReg)
11164         .addUse(OpSrcReg)
11165         .addMBB(TpEntry)
11166         .addUse(CurrSrcReg)
11167         .addMBB(TpLoopBody);
11168   }
11169 
11170   // Current position in the dest array
11171   Register DestPhiReg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
11172   Register CurrDestReg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
11173   BuildMI(TpLoopBody, Dl, TII->get(ARM::PHI), DestPhiReg)
11174       .addUse(OpDestReg)
11175       .addMBB(TpEntry)
11176       .addUse(CurrDestReg)
11177       .addMBB(TpLoopBody);
11178 
11179   // Current loop counter
11180   Register LoopCounterPhiReg = MRI.createVirtualRegister(&ARM::GPRlrRegClass);
11181   Register RemainingLoopIterationsReg =
11182       MRI.createVirtualRegister(&ARM::GPRlrRegClass);
11183   BuildMI(TpLoopBody, Dl, TII->get(ARM::PHI), LoopCounterPhiReg)
11184       .addUse(TotalIterationsReg)
11185       .addMBB(TpEntry)
11186       .addUse(RemainingLoopIterationsReg)
11187       .addMBB(TpLoopBody);
11188 
11189   // Predication counter
11190   Register PredCounterPhiReg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
11191   Register RemainingElementsReg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
11192   BuildMI(TpLoopBody, Dl, TII->get(ARM::PHI), PredCounterPhiReg)
11193       .addUse(ElementCountReg)
11194       .addMBB(TpEntry)
11195       .addUse(RemainingElementsReg)
11196       .addMBB(TpLoopBody);
11197 
11198   // Pass predication counter to VCTP
11199   Register VccrReg = MRI.createVirtualRegister(&ARM::VCCRRegClass);
11200   BuildMI(TpLoopBody, Dl, TII->get(ARM::MVE_VCTP8), VccrReg)
11201       .addUse(PredCounterPhiReg)
11202       .addImm(ARMVCC::None)
11203       .addReg(0);
11204 
11205   BuildMI(TpLoopBody, Dl, TII->get(ARM::t2SUBri), RemainingElementsReg)
11206       .addUse(PredCounterPhiReg)
11207       .addImm(16)
11208       .add(predOps(ARMCC::AL))
11209       .addReg(0);
11210 
11211   // VLDRB (only if memcpy) and VSTRB instructions, predicated using VPR
11212   Register SrcValueReg;
11213   if (IsMemcpy) {
11214     SrcValueReg = MRI.createVirtualRegister(&ARM::MQPRRegClass);
11215     BuildMI(TpLoopBody, Dl, TII->get(ARM::MVE_VLDRBU8_post))
11216         .addDef(CurrSrcReg)
11217         .addDef(SrcValueReg)
11218         .addReg(SrcPhiReg)
11219         .addImm(16)
11220         .addImm(ARMVCC::Then)
11221         .addUse(VccrReg);
11222   } else
11223     SrcValueReg = OpSrcReg;
11224 
11225   BuildMI(TpLoopBody, Dl, TII->get(ARM::MVE_VSTRBU8_post))
11226       .addDef(CurrDestReg)
11227       .addUse(SrcValueReg)
11228       .addReg(DestPhiReg)
11229       .addImm(16)
11230       .addImm(ARMVCC::Then)
11231       .addUse(VccrReg);
11232 
11233   // Add the pseudoInstrs for decrementing the loop counter and marking the
11234   // end:t2DoLoopDec and t2DoLoopEnd
11235   BuildMI(TpLoopBody, Dl, TII->get(ARM::t2LoopDec), RemainingLoopIterationsReg)
11236       .addUse(LoopCounterPhiReg)
11237       .addImm(1);
11238 
11239   BuildMI(TpLoopBody, Dl, TII->get(ARM::t2LoopEnd))
11240       .addUse(RemainingLoopIterationsReg)
11241       .addMBB(TpLoopBody);
11242 
11243   BuildMI(TpLoopBody, Dl, TII->get(ARM::t2B))
11244       .addMBB(TpExit)
11245       .add(predOps(ARMCC::AL));
11246 }
11247 
11248 MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr & MI,MachineBasicBlock * BB) const11249 ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
11250                                                MachineBasicBlock *BB) const {
11251   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
11252   DebugLoc dl = MI.getDebugLoc();
11253   bool isThumb2 = Subtarget->isThumb2();
11254   switch (MI.getOpcode()) {
11255   default: {
11256     MI.print(errs());
11257     llvm_unreachable("Unexpected instr type to insert");
11258   }
11259 
11260   // Thumb1 post-indexed loads are really just single-register LDMs.
11261   case ARM::tLDR_postidx: {
11262     MachineOperand Def(MI.getOperand(1));
11263     BuildMI(*BB, MI, dl, TII->get(ARM::tLDMIA_UPD))
11264         .add(Def)  // Rn_wb
11265         .add(MI.getOperand(2))  // Rn
11266         .add(MI.getOperand(3))  // PredImm
11267         .add(MI.getOperand(4))  // PredReg
11268         .add(MI.getOperand(0))  // Rt
11269         .cloneMemRefs(MI);
11270     MI.eraseFromParent();
11271     return BB;
11272   }
11273 
11274   case ARM::MVE_MEMCPYLOOPINST:
11275   case ARM::MVE_MEMSETLOOPINST: {
11276 
11277     // Transformation below expands MVE_MEMCPYLOOPINST/MVE_MEMSETLOOPINST Pseudo
11278     // into a Tail Predicated (TP) Loop. It adds the instructions to calculate
11279     // the iteration count =ceil(size_in_bytes/16)) in the TP entry block and
11280     // adds the relevant instructions in the TP loop Body for generation of a
11281     // WLSTP loop.
11282 
11283     // Below is relevant portion of the CFG after the transformation.
11284     // The Machine Basic Blocks are shown along with branch conditions (in
11285     // brackets). Note that TP entry/exit MBBs depict the entry/exit of this
11286     // portion of the CFG and may not necessarily be the entry/exit of the
11287     // function.
11288 
11289     //             (Relevant) CFG after transformation:
11290     //               TP entry MBB
11291     //                   |
11292     //          |-----------------|
11293     //       (n <= 0)          (n > 0)
11294     //          |                 |
11295     //          |         TP loop Body MBB<--|
11296     //          |                |           |
11297     //           \               |___________|
11298     //            \             /
11299     //              TP exit MBB
11300 
11301     MachineFunction *MF = BB->getParent();
11302     MachineFunctionProperties &Properties = MF->getProperties();
11303     MachineRegisterInfo &MRI = MF->getRegInfo();
11304 
11305     Register OpDestReg = MI.getOperand(0).getReg();
11306     Register OpSrcReg = MI.getOperand(1).getReg();
11307     Register OpSizeReg = MI.getOperand(2).getReg();
11308 
11309     // Allocate the required MBBs and add to parent function.
11310     MachineBasicBlock *TpEntry = BB;
11311     MachineBasicBlock *TpLoopBody = MF->CreateMachineBasicBlock();
11312     MachineBasicBlock *TpExit;
11313 
11314     MF->push_back(TpLoopBody);
11315 
11316     // If any instructions are present in the current block after
11317     // MVE_MEMCPYLOOPINST or MVE_MEMSETLOOPINST, split the current block and
11318     // move the instructions into the newly created exit block. If there are no
11319     // instructions add an explicit branch to the FallThrough block and then
11320     // split.
11321     //
11322     // The split is required for two reasons:
11323     // 1) A terminator(t2WhileLoopStart) will be placed at that site.
11324     // 2) Since a TPLoopBody will be added later, any phis in successive blocks
11325     //    need to be updated. splitAt() already handles this.
11326     TpExit = BB->splitAt(MI, false);
11327     if (TpExit == BB) {
11328       assert(BB->canFallThrough() && "Exit Block must be Fallthrough of the "
11329                                      "block containing memcpy/memset Pseudo");
11330       TpExit = BB->getFallThrough();
11331       BuildMI(BB, dl, TII->get(ARM::t2B))
11332           .addMBB(TpExit)
11333           .add(predOps(ARMCC::AL));
11334       TpExit = BB->splitAt(MI, false);
11335     }
11336 
11337     // Add logic for iteration count
11338     Register TotalIterationsReg =
11339         genTPEntry(TpEntry, TpLoopBody, TpExit, OpSizeReg, TII, dl, MRI);
11340 
11341     // Add the vectorized (and predicated) loads/store instructions
11342     bool IsMemcpy = MI.getOpcode() == ARM::MVE_MEMCPYLOOPINST;
11343     genTPLoopBody(TpLoopBody, TpEntry, TpExit, TII, dl, MRI, OpSrcReg,
11344                   OpDestReg, OpSizeReg, TotalIterationsReg, IsMemcpy);
11345 
11346     // Required to avoid conflict with the MachineVerifier during testing.
11347     Properties.reset(MachineFunctionProperties::Property::NoPHIs);
11348 
11349     // Connect the blocks
11350     TpEntry->addSuccessor(TpLoopBody);
11351     TpLoopBody->addSuccessor(TpLoopBody);
11352     TpLoopBody->addSuccessor(TpExit);
11353 
11354     // Reorder for a more natural layout
11355     TpLoopBody->moveAfter(TpEntry);
11356     TpExit->moveAfter(TpLoopBody);
11357 
11358     // Finally, remove the memcpy Psuedo Instruction
11359     MI.eraseFromParent();
11360 
11361     // Return the exit block as it may contain other instructions requiring a
11362     // custom inserter
11363     return TpExit;
11364   }
11365 
11366   // The Thumb2 pre-indexed stores have the same MI operands, they just
11367   // define them differently in the .td files from the isel patterns, so
11368   // they need pseudos.
11369   case ARM::t2STR_preidx:
11370     MI.setDesc(TII->get(ARM::t2STR_PRE));
11371     return BB;
11372   case ARM::t2STRB_preidx:
11373     MI.setDesc(TII->get(ARM::t2STRB_PRE));
11374     return BB;
11375   case ARM::t2STRH_preidx:
11376     MI.setDesc(TII->get(ARM::t2STRH_PRE));
11377     return BB;
11378 
11379   case ARM::STRi_preidx:
11380   case ARM::STRBi_preidx: {
11381     unsigned NewOpc = MI.getOpcode() == ARM::STRi_preidx ? ARM::STR_PRE_IMM
11382                                                          : ARM::STRB_PRE_IMM;
11383     // Decode the offset.
11384     unsigned Offset = MI.getOperand(4).getImm();
11385     bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub;
11386     Offset = ARM_AM::getAM2Offset(Offset);
11387     if (isSub)
11388       Offset = -Offset;
11389 
11390     MachineMemOperand *MMO = *MI.memoperands_begin();
11391     BuildMI(*BB, MI, dl, TII->get(NewOpc))
11392         .add(MI.getOperand(0)) // Rn_wb
11393         .add(MI.getOperand(1)) // Rt
11394         .add(MI.getOperand(2)) // Rn
11395         .addImm(Offset)        // offset (skip GPR==zero_reg)
11396         .add(MI.getOperand(5)) // pred
11397         .add(MI.getOperand(6))
11398         .addMemOperand(MMO);
11399     MI.eraseFromParent();
11400     return BB;
11401   }
11402   case ARM::STRr_preidx:
11403   case ARM::STRBr_preidx:
11404   case ARM::STRH_preidx: {
11405     unsigned NewOpc;
11406     switch (MI.getOpcode()) {
11407     default: llvm_unreachable("unexpected opcode!");
11408     case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break;
11409     case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break;
11410     case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break;
11411     }
11412     MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
11413     for (unsigned i = 0; i < MI.getNumOperands(); ++i)
11414       MIB.add(MI.getOperand(i));
11415     MI.eraseFromParent();
11416     return BB;
11417   }
11418 
11419   case ARM::tMOVCCr_pseudo: {
11420     // To "insert" a SELECT_CC instruction, we actually have to insert the
11421     // diamond control-flow pattern.  The incoming instruction knows the
11422     // destination vreg to set, the condition code register to branch on, the
11423     // true/false values to select between, and a branch opcode to use.
11424     const BasicBlock *LLVM_BB = BB->getBasicBlock();
11425     MachineFunction::iterator It = ++BB->getIterator();
11426 
11427     //  thisMBB:
11428     //  ...
11429     //   TrueVal = ...
11430     //   cmpTY ccX, r1, r2
11431     //   bCC copy1MBB
11432     //   fallthrough --> copy0MBB
11433     MachineBasicBlock *thisMBB  = BB;
11434     MachineFunction *F = BB->getParent();
11435     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
11436     MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
11437     F->insert(It, copy0MBB);
11438     F->insert(It, sinkMBB);
11439 
11440     // Check whether CPSR is live past the tMOVCCr_pseudo.
11441     const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo();
11442     if (!MI.killsRegister(ARM::CPSR) &&
11443         !checkAndUpdateCPSRKill(MI, thisMBB, TRI)) {
11444       copy0MBB->addLiveIn(ARM::CPSR);
11445       sinkMBB->addLiveIn(ARM::CPSR);
11446     }
11447 
11448     // Transfer the remainder of BB and its successor edges to sinkMBB.
11449     sinkMBB->splice(sinkMBB->begin(), BB,
11450                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11451     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11452 
11453     BB->addSuccessor(copy0MBB);
11454     BB->addSuccessor(sinkMBB);
11455 
11456     BuildMI(BB, dl, TII->get(ARM::tBcc))
11457         .addMBB(sinkMBB)
11458         .addImm(MI.getOperand(3).getImm())
11459         .addReg(MI.getOperand(4).getReg());
11460 
11461     //  copy0MBB:
11462     //   %FalseValue = ...
11463     //   # fallthrough to sinkMBB
11464     BB = copy0MBB;
11465 
11466     // Update machine-CFG edges
11467     BB->addSuccessor(sinkMBB);
11468 
11469     //  sinkMBB:
11470     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
11471     //  ...
11472     BB = sinkMBB;
11473     BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), MI.getOperand(0).getReg())
11474         .addReg(MI.getOperand(1).getReg())
11475         .addMBB(copy0MBB)
11476         .addReg(MI.getOperand(2).getReg())
11477         .addMBB(thisMBB);
11478 
11479     MI.eraseFromParent(); // The pseudo instruction is gone now.
11480     return BB;
11481   }
11482 
11483   case ARM::BCCi64:
11484   case ARM::BCCZi64: {
11485     // If there is an unconditional branch to the other successor, remove it.
11486     BB->erase(std::next(MachineBasicBlock::iterator(MI)), BB->end());
11487 
11488     // Compare both parts that make up the double comparison separately for
11489     // equality.
11490     bool RHSisZero = MI.getOpcode() == ARM::BCCZi64;
11491 
11492     Register LHS1 = MI.getOperand(1).getReg();
11493     Register LHS2 = MI.getOperand(2).getReg();
11494     if (RHSisZero) {
11495       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
11496           .addReg(LHS1)
11497           .addImm(0)
11498           .add(predOps(ARMCC::AL));
11499       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
11500         .addReg(LHS2).addImm(0)
11501         .addImm(ARMCC::EQ).addReg(ARM::CPSR);
11502     } else {
11503       Register RHS1 = MI.getOperand(3).getReg();
11504       Register RHS2 = MI.getOperand(4).getReg();
11505       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
11506           .addReg(LHS1)
11507           .addReg(RHS1)
11508           .add(predOps(ARMCC::AL));
11509       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
11510         .addReg(LHS2).addReg(RHS2)
11511         .addImm(ARMCC::EQ).addReg(ARM::CPSR);
11512     }
11513 
11514     MachineBasicBlock *destMBB = MI.getOperand(RHSisZero ? 3 : 5).getMBB();
11515     MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
11516     if (MI.getOperand(0).getImm() == ARMCC::NE)
11517       std::swap(destMBB, exitMBB);
11518 
11519     BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
11520       .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
11521     if (isThumb2)
11522       BuildMI(BB, dl, TII->get(ARM::t2B))
11523           .addMBB(exitMBB)
11524           .add(predOps(ARMCC::AL));
11525     else
11526       BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB);
11527 
11528     MI.eraseFromParent(); // The pseudo instruction is gone now.
11529     return BB;
11530   }
11531 
11532   case ARM::Int_eh_sjlj_setjmp:
11533   case ARM::Int_eh_sjlj_setjmp_nofp:
11534   case ARM::tInt_eh_sjlj_setjmp:
11535   case ARM::t2Int_eh_sjlj_setjmp:
11536   case ARM::t2Int_eh_sjlj_setjmp_nofp:
11537     return BB;
11538 
11539   case ARM::Int_eh_sjlj_setup_dispatch:
11540     EmitSjLjDispatchBlock(MI, BB);
11541     return BB;
11542 
11543   case ARM::ABS:
11544   case ARM::t2ABS: {
11545     // To insert an ABS instruction, we have to insert the
11546     // diamond control-flow pattern.  The incoming instruction knows the
11547     // source vreg to test against 0, the destination vreg to set,
11548     // the condition code register to branch on, the
11549     // true/false values to select between, and a branch opcode to use.
11550     // It transforms
11551     //     V1 = ABS V0
11552     // into
11553     //     V2 = MOVS V0
11554     //     BCC                      (branch to SinkBB if V0 >= 0)
11555     //     RSBBB: V3 = RSBri V2, 0  (compute ABS if V2 < 0)
11556     //     SinkBB: V1 = PHI(V2, V3)
11557     const BasicBlock *LLVM_BB = BB->getBasicBlock();
11558     MachineFunction::iterator BBI = ++BB->getIterator();
11559     MachineFunction *Fn = BB->getParent();
11560     MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB);
11561     MachineBasicBlock *SinkBB  = Fn->CreateMachineBasicBlock(LLVM_BB);
11562     Fn->insert(BBI, RSBBB);
11563     Fn->insert(BBI, SinkBB);
11564 
11565     Register ABSSrcReg = MI.getOperand(1).getReg();
11566     Register ABSDstReg = MI.getOperand(0).getReg();
11567     bool ABSSrcKIll = MI.getOperand(1).isKill();
11568     bool isThumb2 = Subtarget->isThumb2();
11569     MachineRegisterInfo &MRI = Fn->getRegInfo();
11570     // In Thumb mode S must not be specified if source register is the SP or
11571     // PC and if destination register is the SP, so restrict register class
11572     Register NewRsbDstReg = MRI.createVirtualRegister(
11573         isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass);
11574 
11575     // Transfer the remainder of BB and its successor edges to sinkMBB.
11576     SinkBB->splice(SinkBB->begin(), BB,
11577                    std::next(MachineBasicBlock::iterator(MI)), BB->end());
11578     SinkBB->transferSuccessorsAndUpdatePHIs(BB);
11579 
11580     BB->addSuccessor(RSBBB);
11581     BB->addSuccessor(SinkBB);
11582 
11583     // fall through to SinkMBB
11584     RSBBB->addSuccessor(SinkBB);
11585 
11586     // insert a cmp at the end of BB
11587     BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
11588         .addReg(ABSSrcReg)
11589         .addImm(0)
11590         .add(predOps(ARMCC::AL));
11591 
11592     // insert a bcc with opposite CC to ARMCC::MI at the end of BB
11593     BuildMI(BB, dl,
11594       TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB)
11595       .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR);
11596 
11597     // insert rsbri in RSBBB
11598     // Note: BCC and rsbri will be converted into predicated rsbmi
11599     // by if-conversion pass
11600     BuildMI(*RSBBB, RSBBB->begin(), dl,
11601             TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg)
11602         .addReg(ABSSrcReg, ABSSrcKIll ? RegState::Kill : 0)
11603         .addImm(0)
11604         .add(predOps(ARMCC::AL))
11605         .add(condCodeOp());
11606 
11607     // insert PHI in SinkBB,
11608     // reuse ABSDstReg to not change uses of ABS instruction
11609     BuildMI(*SinkBB, SinkBB->begin(), dl,
11610       TII->get(ARM::PHI), ABSDstReg)
11611       .addReg(NewRsbDstReg).addMBB(RSBBB)
11612       .addReg(ABSSrcReg).addMBB(BB);
11613 
11614     // remove ABS instruction
11615     MI.eraseFromParent();
11616 
11617     // return last added BB
11618     return SinkBB;
11619   }
11620   case ARM::COPY_STRUCT_BYVAL_I32:
11621     ++NumLoopByVals;
11622     return EmitStructByval(MI, BB);
11623   case ARM::WIN__CHKSTK:
11624     return EmitLowered__chkstk(MI, BB);
11625   case ARM::WIN__DBZCHK:
11626     return EmitLowered__dbzchk(MI, BB);
11627   }
11628 }
11629 
11630 /// Attaches vregs to MEMCPY that it will use as scratch registers
11631 /// when it is expanded into LDM/STM. This is done as a post-isel lowering
11632 /// instead of as a custom inserter because we need the use list from the SDNode.
attachMEMCPYScratchRegs(const ARMSubtarget * Subtarget,MachineInstr & MI,const SDNode * Node)11633 static void attachMEMCPYScratchRegs(const ARMSubtarget *Subtarget,
11634                                     MachineInstr &MI, const SDNode *Node) {
11635   bool isThumb1 = Subtarget->isThumb1Only();
11636 
11637   DebugLoc DL = MI.getDebugLoc();
11638   MachineFunction *MF = MI.getParent()->getParent();
11639   MachineRegisterInfo &MRI = MF->getRegInfo();
11640   MachineInstrBuilder MIB(*MF, MI);
11641 
11642   // If the new dst/src is unused mark it as dead.
11643   if (!Node->hasAnyUseOfValue(0)) {
11644     MI.getOperand(0).setIsDead(true);
11645   }
11646   if (!Node->hasAnyUseOfValue(1)) {
11647     MI.getOperand(1).setIsDead(true);
11648   }
11649 
11650   // The MEMCPY both defines and kills the scratch registers.
11651   for (unsigned I = 0; I != MI.getOperand(4).getImm(); ++I) {
11652     Register TmpReg = MRI.createVirtualRegister(isThumb1 ? &ARM::tGPRRegClass
11653                                                          : &ARM::GPRRegClass);
11654     MIB.addReg(TmpReg, RegState::Define|RegState::Dead);
11655   }
11656 }
11657 
AdjustInstrPostInstrSelection(MachineInstr & MI,SDNode * Node) const11658 void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
11659                                                       SDNode *Node) const {
11660   if (MI.getOpcode() == ARM::MEMCPY) {
11661     attachMEMCPYScratchRegs(Subtarget, MI, Node);
11662     return;
11663   }
11664 
11665   const MCInstrDesc *MCID = &MI.getDesc();
11666   // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
11667   // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
11668   // operand is still set to noreg. If needed, set the optional operand's
11669   // register to CPSR, and remove the redundant implicit def.
11670   //
11671   // e.g. ADCS (..., implicit-def CPSR) -> ADC (... opt:def CPSR).
11672 
11673   // Rename pseudo opcodes.
11674   unsigned NewOpc = convertAddSubFlagsOpcode(MI.getOpcode());
11675   unsigned ccOutIdx;
11676   if (NewOpc) {
11677     const ARMBaseInstrInfo *TII = Subtarget->getInstrInfo();
11678     MCID = &TII->get(NewOpc);
11679 
11680     assert(MCID->getNumOperands() ==
11681            MI.getDesc().getNumOperands() + 5 - MI.getDesc().getSize()
11682         && "converted opcode should be the same except for cc_out"
11683            " (and, on Thumb1, pred)");
11684 
11685     MI.setDesc(*MCID);
11686 
11687     // Add the optional cc_out operand
11688     MI.addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
11689 
11690     // On Thumb1, move all input operands to the end, then add the predicate
11691     if (Subtarget->isThumb1Only()) {
11692       for (unsigned c = MCID->getNumOperands() - 4; c--;) {
11693         MI.addOperand(MI.getOperand(1));
11694         MI.RemoveOperand(1);
11695       }
11696 
11697       // Restore the ties
11698       for (unsigned i = MI.getNumOperands(); i--;) {
11699         const MachineOperand& op = MI.getOperand(i);
11700         if (op.isReg() && op.isUse()) {
11701           int DefIdx = MCID->getOperandConstraint(i, MCOI::TIED_TO);
11702           if (DefIdx != -1)
11703             MI.tieOperands(DefIdx, i);
11704         }
11705       }
11706 
11707       MI.addOperand(MachineOperand::CreateImm(ARMCC::AL));
11708       MI.addOperand(MachineOperand::CreateReg(0, /*isDef=*/false));
11709       ccOutIdx = 1;
11710     } else
11711       ccOutIdx = MCID->getNumOperands() - 1;
11712   } else
11713     ccOutIdx = MCID->getNumOperands() - 1;
11714 
11715   // Any ARM instruction that sets the 's' bit should specify an optional
11716   // "cc_out" operand in the last operand position.
11717   if (!MI.hasOptionalDef() || !MCID->OpInfo[ccOutIdx].isOptionalDef()) {
11718     assert(!NewOpc && "Optional cc_out operand required");
11719     return;
11720   }
11721   // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
11722   // since we already have an optional CPSR def.
11723   bool definesCPSR = false;
11724   bool deadCPSR = false;
11725   for (unsigned i = MCID->getNumOperands(), e = MI.getNumOperands(); i != e;
11726        ++i) {
11727     const MachineOperand &MO = MI.getOperand(i);
11728     if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) {
11729       definesCPSR = true;
11730       if (MO.isDead())
11731         deadCPSR = true;
11732       MI.RemoveOperand(i);
11733       break;
11734     }
11735   }
11736   if (!definesCPSR) {
11737     assert(!NewOpc && "Optional cc_out operand required");
11738     return;
11739   }
11740   assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag");
11741   if (deadCPSR) {
11742     assert(!MI.getOperand(ccOutIdx).getReg() &&
11743            "expect uninitialized optional cc_out operand");
11744     // Thumb1 instructions must have the S bit even if the CPSR is dead.
11745     if (!Subtarget->isThumb1Only())
11746       return;
11747   }
11748 
11749   // If this instruction was defined with an optional CPSR def and its dag node
11750   // had a live implicit CPSR def, then activate the optional CPSR def.
11751   MachineOperand &MO = MI.getOperand(ccOutIdx);
11752   MO.setReg(ARM::CPSR);
11753   MO.setIsDef(true);
11754 }
11755 
11756 //===----------------------------------------------------------------------===//
11757 //                           ARM Optimization Hooks
11758 //===----------------------------------------------------------------------===//
11759 
11760 // Helper function that checks if N is a null or all ones constant.
isZeroOrAllOnes(SDValue N,bool AllOnes)11761 static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) {
11762   return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
11763 }
11764 
11765 // Return true if N is conditionally 0 or all ones.
11766 // Detects these expressions where cc is an i1 value:
11767 //
11768 //   (select cc 0, y)   [AllOnes=0]
11769 //   (select cc y, 0)   [AllOnes=0]
11770 //   (zext cc)          [AllOnes=0]
11771 //   (sext cc)          [AllOnes=0/1]
11772 //   (select cc -1, y)  [AllOnes=1]
11773 //   (select cc y, -1)  [AllOnes=1]
11774 //
11775 // Invert is set when N is the null/all ones constant when CC is false.
11776 // OtherOp is set to the alternative value of N.
isConditionalZeroOrAllOnes(SDNode * N,bool AllOnes,SDValue & CC,bool & Invert,SDValue & OtherOp,SelectionDAG & DAG)11777 static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes,
11778                                        SDValue &CC, bool &Invert,
11779                                        SDValue &OtherOp,
11780                                        SelectionDAG &DAG) {
11781   switch (N->getOpcode()) {
11782   default: return false;
11783   case ISD::SELECT: {
11784     CC = N->getOperand(0);
11785     SDValue N1 = N->getOperand(1);
11786     SDValue N2 = N->getOperand(2);
11787     if (isZeroOrAllOnes(N1, AllOnes)) {
11788       Invert = false;
11789       OtherOp = N2;
11790       return true;
11791     }
11792     if (isZeroOrAllOnes(N2, AllOnes)) {
11793       Invert = true;
11794       OtherOp = N1;
11795       return true;
11796     }
11797     return false;
11798   }
11799   case ISD::ZERO_EXTEND:
11800     // (zext cc) can never be the all ones value.
11801     if (AllOnes)
11802       return false;
11803     LLVM_FALLTHROUGH;
11804   case ISD::SIGN_EXTEND: {
11805     SDLoc dl(N);
11806     EVT VT = N->getValueType(0);
11807     CC = N->getOperand(0);
11808     if (CC.getValueType() != MVT::i1 || CC.getOpcode() != ISD::SETCC)
11809       return false;
11810     Invert = !AllOnes;
11811     if (AllOnes)
11812       // When looking for an AllOnes constant, N is an sext, and the 'other'
11813       // value is 0.
11814       OtherOp = DAG.getConstant(0, dl, VT);
11815     else if (N->getOpcode() == ISD::ZERO_EXTEND)
11816       // When looking for a 0 constant, N can be zext or sext.
11817       OtherOp = DAG.getConstant(1, dl, VT);
11818     else
11819       OtherOp = DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl,
11820                                 VT);
11821     return true;
11822   }
11823   }
11824 }
11825 
11826 // Combine a constant select operand into its use:
11827 //
11828 //   (add (select cc, 0, c), x)  -> (select cc, x, (add, x, c))
11829 //   (sub x, (select cc, 0, c))  -> (select cc, x, (sub, x, c))
11830 //   (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))  [AllOnes=1]
11831 //   (or  (select cc, 0, c), x)  -> (select cc, x, (or, x, c))
11832 //   (xor (select cc, 0, c), x)  -> (select cc, x, (xor, x, c))
11833 //
11834 // The transform is rejected if the select doesn't have a constant operand that
11835 // is null, or all ones when AllOnes is set.
11836 //
11837 // Also recognize sext/zext from i1:
11838 //
11839 //   (add (zext cc), x) -> (select cc (add x, 1), x)
11840 //   (add (sext cc), x) -> (select cc (add x, -1), x)
11841 //
11842 // These transformations eventually create predicated instructions.
11843 //
11844 // @param N       The node to transform.
11845 // @param Slct    The N operand that is a select.
11846 // @param OtherOp The other N operand (x above).
11847 // @param DCI     Context.
11848 // @param AllOnes Require the select constant to be all ones instead of null.
11849 // @returns The new node, or SDValue() on failure.
11850 static
combineSelectAndUse(SDNode * N,SDValue Slct,SDValue OtherOp,TargetLowering::DAGCombinerInfo & DCI,bool AllOnes=false)11851 SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
11852                             TargetLowering::DAGCombinerInfo &DCI,
11853                             bool AllOnes = false) {
11854   SelectionDAG &DAG = DCI.DAG;
11855   EVT VT = N->getValueType(0);
11856   SDValue NonConstantVal;
11857   SDValue CCOp;
11858   bool SwapSelectOps;
11859   if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps,
11860                                   NonConstantVal, DAG))
11861     return SDValue();
11862 
11863   // Slct is now know to be the desired identity constant when CC is true.
11864   SDValue TrueVal = OtherOp;
11865   SDValue FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
11866                                  OtherOp, NonConstantVal);
11867   // Unless SwapSelectOps says CC should be false.
11868   if (SwapSelectOps)
11869     std::swap(TrueVal, FalseVal);
11870 
11871   return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
11872                      CCOp, TrueVal, FalseVal);
11873 }
11874 
11875 // Attempt combineSelectAndUse on each operand of a commutative operator N.
11876 static
combineSelectAndUseCommutative(SDNode * N,bool AllOnes,TargetLowering::DAGCombinerInfo & DCI)11877 SDValue combineSelectAndUseCommutative(SDNode *N, bool AllOnes,
11878                                        TargetLowering::DAGCombinerInfo &DCI) {
11879   SDValue N0 = N->getOperand(0);
11880   SDValue N1 = N->getOperand(1);
11881   if (N0.getNode()->hasOneUse())
11882     if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes))
11883       return Result;
11884   if (N1.getNode()->hasOneUse())
11885     if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes))
11886       return Result;
11887   return SDValue();
11888 }
11889 
IsVUZPShuffleNode(SDNode * N)11890 static bool IsVUZPShuffleNode(SDNode *N) {
11891   // VUZP shuffle node.
11892   if (N->getOpcode() == ARMISD::VUZP)
11893     return true;
11894 
11895   // "VUZP" on i32 is an alias for VTRN.
11896   if (N->getOpcode() == ARMISD::VTRN && N->getValueType(0) == MVT::v2i32)
11897     return true;
11898 
11899   return false;
11900 }
11901 
AddCombineToVPADD(SDNode * N,SDValue N0,SDValue N1,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)11902 static SDValue AddCombineToVPADD(SDNode *N, SDValue N0, SDValue N1,
11903                                  TargetLowering::DAGCombinerInfo &DCI,
11904                                  const ARMSubtarget *Subtarget) {
11905   // Look for ADD(VUZP.0, VUZP.1).
11906   if (!IsVUZPShuffleNode(N0.getNode()) || N0.getNode() != N1.getNode() ||
11907       N0 == N1)
11908    return SDValue();
11909 
11910   // Make sure the ADD is a 64-bit add; there is no 128-bit VPADD.
11911   if (!N->getValueType(0).is64BitVector())
11912     return SDValue();
11913 
11914   // Generate vpadd.
11915   SelectionDAG &DAG = DCI.DAG;
11916   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11917   SDLoc dl(N);
11918   SDNode *Unzip = N0.getNode();
11919   EVT VT = N->getValueType(0);
11920 
11921   SmallVector<SDValue, 8> Ops;
11922   Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpadd, dl,
11923                                 TLI.getPointerTy(DAG.getDataLayout())));
11924   Ops.push_back(Unzip->getOperand(0));
11925   Ops.push_back(Unzip->getOperand(1));
11926 
11927   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, Ops);
11928 }
11929 
AddCombineVUZPToVPADDL(SDNode * N,SDValue N0,SDValue N1,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)11930 static SDValue AddCombineVUZPToVPADDL(SDNode *N, SDValue N0, SDValue N1,
11931                                       TargetLowering::DAGCombinerInfo &DCI,
11932                                       const ARMSubtarget *Subtarget) {
11933   // Check for two extended operands.
11934   if (!(N0.getOpcode() == ISD::SIGN_EXTEND &&
11935         N1.getOpcode() == ISD::SIGN_EXTEND) &&
11936       !(N0.getOpcode() == ISD::ZERO_EXTEND &&
11937         N1.getOpcode() == ISD::ZERO_EXTEND))
11938     return SDValue();
11939 
11940   SDValue N00 = N0.getOperand(0);
11941   SDValue N10 = N1.getOperand(0);
11942 
11943   // Look for ADD(SEXT(VUZP.0), SEXT(VUZP.1))
11944   if (!IsVUZPShuffleNode(N00.getNode()) || N00.getNode() != N10.getNode() ||
11945       N00 == N10)
11946     return SDValue();
11947 
11948   // We only recognize Q register paddl here; this can't be reached until
11949   // after type legalization.
11950   if (!N00.getValueType().is64BitVector() ||
11951       !N0.getValueType().is128BitVector())
11952     return SDValue();
11953 
11954   // Generate vpaddl.
11955   SelectionDAG &DAG = DCI.DAG;
11956   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11957   SDLoc dl(N);
11958   EVT VT = N->getValueType(0);
11959 
11960   SmallVector<SDValue, 8> Ops;
11961   // Form vpaddl.sN or vpaddl.uN depending on the kind of extension.
11962   unsigned Opcode;
11963   if (N0.getOpcode() == ISD::SIGN_EXTEND)
11964     Opcode = Intrinsic::arm_neon_vpaddls;
11965   else
11966     Opcode = Intrinsic::arm_neon_vpaddlu;
11967   Ops.push_back(DAG.getConstant(Opcode, dl,
11968                                 TLI.getPointerTy(DAG.getDataLayout())));
11969   EVT ElemTy = N00.getValueType().getVectorElementType();
11970   unsigned NumElts = VT.getVectorNumElements();
11971   EVT ConcatVT = EVT::getVectorVT(*DAG.getContext(), ElemTy, NumElts * 2);
11972   SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), ConcatVT,
11973                                N00.getOperand(0), N00.getOperand(1));
11974   Ops.push_back(Concat);
11975 
11976   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, Ops);
11977 }
11978 
11979 // FIXME: This function shouldn't be necessary; if we lower BUILD_VECTOR in
11980 // an appropriate manner, we end up with ADD(VUZP(ZEXT(N))), which is
11981 // much easier to match.
11982 static SDValue
AddCombineBUILD_VECTORToVPADDL(SDNode * N,SDValue N0,SDValue N1,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)11983 AddCombineBUILD_VECTORToVPADDL(SDNode *N, SDValue N0, SDValue N1,
11984                                TargetLowering::DAGCombinerInfo &DCI,
11985                                const ARMSubtarget *Subtarget) {
11986   // Only perform optimization if after legalize, and if NEON is available. We
11987   // also expected both operands to be BUILD_VECTORs.
11988   if (DCI.isBeforeLegalize() || !Subtarget->hasNEON()
11989       || N0.getOpcode() != ISD::BUILD_VECTOR
11990       || N1.getOpcode() != ISD::BUILD_VECTOR)
11991     return SDValue();
11992 
11993   // Check output type since VPADDL operand elements can only be 8, 16, or 32.
11994   EVT VT = N->getValueType(0);
11995   if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64)
11996     return SDValue();
11997 
11998   // Check that the vector operands are of the right form.
11999   // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
12000   // operands, where N is the size of the formed vector.
12001   // Each EXTRACT_VECTOR should have the same input vector and odd or even
12002   // index such that we have a pair wise add pattern.
12003 
12004   // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
12005   if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
12006     return SDValue();
12007   SDValue Vec = N0->getOperand(0)->getOperand(0);
12008   SDNode *V = Vec.getNode();
12009   unsigned nextIndex = 0;
12010 
12011   // For each operands to the ADD which are BUILD_VECTORs,
12012   // check to see if each of their operands are an EXTRACT_VECTOR with
12013   // the same vector and appropriate index.
12014   for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) {
12015     if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
12016         && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
12017 
12018       SDValue ExtVec0 = N0->getOperand(i);
12019       SDValue ExtVec1 = N1->getOperand(i);
12020 
12021       // First operand is the vector, verify its the same.
12022       if (V != ExtVec0->getOperand(0).getNode() ||
12023           V != ExtVec1->getOperand(0).getNode())
12024         return SDValue();
12025 
12026       // Second is the constant, verify its correct.
12027       ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1));
12028       ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1));
12029 
12030       // For the constant, we want to see all the even or all the odd.
12031       if (!C0 || !C1 || C0->getZExtValue() != nextIndex
12032           || C1->getZExtValue() != nextIndex+1)
12033         return SDValue();
12034 
12035       // Increment index.
12036       nextIndex+=2;
12037     } else
12038       return SDValue();
12039   }
12040 
12041   // Don't generate vpaddl+vmovn; we'll match it to vpadd later. Also make sure
12042   // we're using the entire input vector, otherwise there's a size/legality
12043   // mismatch somewhere.
12044   if (nextIndex != Vec.getValueType().getVectorNumElements() ||
12045       Vec.getValueType().getVectorElementType() == VT.getVectorElementType())
12046     return SDValue();
12047 
12048   // Create VPADDL node.
12049   SelectionDAG &DAG = DCI.DAG;
12050   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12051 
12052   SDLoc dl(N);
12053 
12054   // Build operand list.
12055   SmallVector<SDValue, 8> Ops;
12056   Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls, dl,
12057                                 TLI.getPointerTy(DAG.getDataLayout())));
12058 
12059   // Input is the vector.
12060   Ops.push_back(Vec);
12061 
12062   // Get widened type and narrowed type.
12063   MVT widenType;
12064   unsigned numElem = VT.getVectorNumElements();
12065 
12066   EVT inputLaneType = Vec.getValueType().getVectorElementType();
12067   switch (inputLaneType.getSimpleVT().SimpleTy) {
12068     case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;
12069     case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break;
12070     case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break;
12071     default:
12072       llvm_unreachable("Invalid vector element type for padd optimization.");
12073   }
12074 
12075   SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, widenType, Ops);
12076   unsigned ExtOp = VT.bitsGT(tmp.getValueType()) ? ISD::ANY_EXTEND : ISD::TRUNCATE;
12077   return DAG.getNode(ExtOp, dl, VT, tmp);
12078 }
12079 
findMUL_LOHI(SDValue V)12080 static SDValue findMUL_LOHI(SDValue V) {
12081   if (V->getOpcode() == ISD::UMUL_LOHI ||
12082       V->getOpcode() == ISD::SMUL_LOHI)
12083     return V;
12084   return SDValue();
12085 }
12086 
AddCombineTo64BitSMLAL16(SDNode * AddcNode,SDNode * AddeNode,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)12087 static SDValue AddCombineTo64BitSMLAL16(SDNode *AddcNode, SDNode *AddeNode,
12088                                         TargetLowering::DAGCombinerInfo &DCI,
12089                                         const ARMSubtarget *Subtarget) {
12090   if (!Subtarget->hasBaseDSP())
12091     return SDValue();
12092 
12093   // SMLALBB, SMLALBT, SMLALTB, SMLALTT multiply two 16-bit values and
12094   // accumulates the product into a 64-bit value. The 16-bit values will
12095   // be sign extended somehow or SRA'd into 32-bit values
12096   // (addc (adde (mul 16bit, 16bit), lo), hi)
12097   SDValue Mul = AddcNode->getOperand(0);
12098   SDValue Lo = AddcNode->getOperand(1);
12099   if (Mul.getOpcode() != ISD::MUL) {
12100     Lo = AddcNode->getOperand(0);
12101     Mul = AddcNode->getOperand(1);
12102     if (Mul.getOpcode() != ISD::MUL)
12103       return SDValue();
12104   }
12105 
12106   SDValue SRA = AddeNode->getOperand(0);
12107   SDValue Hi = AddeNode->getOperand(1);
12108   if (SRA.getOpcode() != ISD::SRA) {
12109     SRA = AddeNode->getOperand(1);
12110     Hi = AddeNode->getOperand(0);
12111     if (SRA.getOpcode() != ISD::SRA)
12112       return SDValue();
12113   }
12114   if (auto Const = dyn_cast<ConstantSDNode>(SRA.getOperand(1))) {
12115     if (Const->getZExtValue() != 31)
12116       return SDValue();
12117   } else
12118     return SDValue();
12119 
12120   if (SRA.getOperand(0) != Mul)
12121     return SDValue();
12122 
12123   SelectionDAG &DAG = DCI.DAG;
12124   SDLoc dl(AddcNode);
12125   unsigned Opcode = 0;
12126   SDValue Op0;
12127   SDValue Op1;
12128 
12129   if (isS16(Mul.getOperand(0), DAG) && isS16(Mul.getOperand(1), DAG)) {
12130     Opcode = ARMISD::SMLALBB;
12131     Op0 = Mul.getOperand(0);
12132     Op1 = Mul.getOperand(1);
12133   } else if (isS16(Mul.getOperand(0), DAG) && isSRA16(Mul.getOperand(1))) {
12134     Opcode = ARMISD::SMLALBT;
12135     Op0 = Mul.getOperand(0);
12136     Op1 = Mul.getOperand(1).getOperand(0);
12137   } else if (isSRA16(Mul.getOperand(0)) && isS16(Mul.getOperand(1), DAG)) {
12138     Opcode = ARMISD::SMLALTB;
12139     Op0 = Mul.getOperand(0).getOperand(0);
12140     Op1 = Mul.getOperand(1);
12141   } else if (isSRA16(Mul.getOperand(0)) && isSRA16(Mul.getOperand(1))) {
12142     Opcode = ARMISD::SMLALTT;
12143     Op0 = Mul->getOperand(0).getOperand(0);
12144     Op1 = Mul->getOperand(1).getOperand(0);
12145   }
12146 
12147   if (!Op0 || !Op1)
12148     return SDValue();
12149 
12150   SDValue SMLAL = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
12151                               Op0, Op1, Lo, Hi);
12152   // Replace the ADDs' nodes uses by the MLA node's values.
12153   SDValue HiMLALResult(SMLAL.getNode(), 1);
12154   SDValue LoMLALResult(SMLAL.getNode(), 0);
12155 
12156   DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), LoMLALResult);
12157   DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), HiMLALResult);
12158 
12159   // Return original node to notify the driver to stop replacing.
12160   SDValue resNode(AddcNode, 0);
12161   return resNode;
12162 }
12163 
AddCombineTo64bitMLAL(SDNode * AddeSubeNode,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)12164 static SDValue AddCombineTo64bitMLAL(SDNode *AddeSubeNode,
12165                                      TargetLowering::DAGCombinerInfo &DCI,
12166                                      const ARMSubtarget *Subtarget) {
12167   // Look for multiply add opportunities.
12168   // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where
12169   // each add nodes consumes a value from ISD::UMUL_LOHI and there is
12170   // a glue link from the first add to the second add.
12171   // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by
12172   // a S/UMLAL instruction.
12173   //                  UMUL_LOHI
12174   //                 / :lo    \ :hi
12175   //                V          \          [no multiline comment]
12176   //    loAdd ->  ADDC         |
12177   //                 \ :carry /
12178   //                  V      V
12179   //                    ADDE   <- hiAdd
12180   //
12181   // In the special case where only the higher part of a signed result is used
12182   // and the add to the low part of the result of ISD::UMUL_LOHI adds or subtracts
12183   // a constant with the exact value of 0x80000000, we recognize we are dealing
12184   // with a "rounded multiply and add" (or subtract) and transform it into
12185   // either a ARMISD::SMMLAR or ARMISD::SMMLSR respectively.
12186 
12187   assert((AddeSubeNode->getOpcode() == ARMISD::ADDE ||
12188           AddeSubeNode->getOpcode() == ARMISD::SUBE) &&
12189          "Expect an ADDE or SUBE");
12190 
12191   assert(AddeSubeNode->getNumOperands() == 3 &&
12192          AddeSubeNode->getOperand(2).getValueType() == MVT::i32 &&
12193          "ADDE node has the wrong inputs");
12194 
12195   // Check that we are chained to the right ADDC or SUBC node.
12196   SDNode *AddcSubcNode = AddeSubeNode->getOperand(2).getNode();
12197   if ((AddeSubeNode->getOpcode() == ARMISD::ADDE &&
12198        AddcSubcNode->getOpcode() != ARMISD::ADDC) ||
12199       (AddeSubeNode->getOpcode() == ARMISD::SUBE &&
12200        AddcSubcNode->getOpcode() != ARMISD::SUBC))
12201     return SDValue();
12202 
12203   SDValue AddcSubcOp0 = AddcSubcNode->getOperand(0);
12204   SDValue AddcSubcOp1 = AddcSubcNode->getOperand(1);
12205 
12206   // Check if the two operands are from the same mul_lohi node.
12207   if (AddcSubcOp0.getNode() == AddcSubcOp1.getNode())
12208     return SDValue();
12209 
12210   assert(AddcSubcNode->getNumValues() == 2 &&
12211          AddcSubcNode->getValueType(0) == MVT::i32 &&
12212          "Expect ADDC with two result values. First: i32");
12213 
12214   // Check that the ADDC adds the low result of the S/UMUL_LOHI. If not, it
12215   // maybe a SMLAL which multiplies two 16-bit values.
12216   if (AddeSubeNode->getOpcode() == ARMISD::ADDE &&
12217       AddcSubcOp0->getOpcode() != ISD::UMUL_LOHI &&
12218       AddcSubcOp0->getOpcode() != ISD::SMUL_LOHI &&
12219       AddcSubcOp1->getOpcode() != ISD::UMUL_LOHI &&
12220       AddcSubcOp1->getOpcode() != ISD::SMUL_LOHI)
12221     return AddCombineTo64BitSMLAL16(AddcSubcNode, AddeSubeNode, DCI, Subtarget);
12222 
12223   // Check for the triangle shape.
12224   SDValue AddeSubeOp0 = AddeSubeNode->getOperand(0);
12225   SDValue AddeSubeOp1 = AddeSubeNode->getOperand(1);
12226 
12227   // Make sure that the ADDE/SUBE operands are not coming from the same node.
12228   if (AddeSubeOp0.getNode() == AddeSubeOp1.getNode())
12229     return SDValue();
12230 
12231   // Find the MUL_LOHI node walking up ADDE/SUBE's operands.
12232   bool IsLeftOperandMUL = false;
12233   SDValue MULOp = findMUL_LOHI(AddeSubeOp0);
12234   if (MULOp == SDValue())
12235     MULOp = findMUL_LOHI(AddeSubeOp1);
12236   else
12237     IsLeftOperandMUL = true;
12238   if (MULOp == SDValue())
12239     return SDValue();
12240 
12241   // Figure out the right opcode.
12242   unsigned Opc = MULOp->getOpcode();
12243   unsigned FinalOpc = (Opc == ISD::SMUL_LOHI) ? ARMISD::SMLAL : ARMISD::UMLAL;
12244 
12245   // Figure out the high and low input values to the MLAL node.
12246   SDValue *HiAddSub = nullptr;
12247   SDValue *LoMul = nullptr;
12248   SDValue *LowAddSub = nullptr;
12249 
12250   // Ensure that ADDE/SUBE is from high result of ISD::xMUL_LOHI.
12251   if ((AddeSubeOp0 != MULOp.getValue(1)) && (AddeSubeOp1 != MULOp.getValue(1)))
12252     return SDValue();
12253 
12254   if (IsLeftOperandMUL)
12255     HiAddSub = &AddeSubeOp1;
12256   else
12257     HiAddSub = &AddeSubeOp0;
12258 
12259   // Ensure that LoMul and LowAddSub are taken from correct ISD::SMUL_LOHI node
12260   // whose low result is fed to the ADDC/SUBC we are checking.
12261 
12262   if (AddcSubcOp0 == MULOp.getValue(0)) {
12263     LoMul = &AddcSubcOp0;
12264     LowAddSub = &AddcSubcOp1;
12265   }
12266   if (AddcSubcOp1 == MULOp.getValue(0)) {
12267     LoMul = &AddcSubcOp1;
12268     LowAddSub = &AddcSubcOp0;
12269   }
12270 
12271   if (!LoMul)
12272     return SDValue();
12273 
12274   // If HiAddSub is the same node as ADDC/SUBC or is a predecessor of ADDC/SUBC
12275   // the replacement below will create a cycle.
12276   if (AddcSubcNode == HiAddSub->getNode() ||
12277       AddcSubcNode->isPredecessorOf(HiAddSub->getNode()))
12278     return SDValue();
12279 
12280   // Create the merged node.
12281   SelectionDAG &DAG = DCI.DAG;
12282 
12283   // Start building operand list.
12284   SmallVector<SDValue, 8> Ops;
12285   Ops.push_back(LoMul->getOperand(0));
12286   Ops.push_back(LoMul->getOperand(1));
12287 
12288   // Check whether we can use SMMLAR, SMMLSR or SMMULR instead.  For this to be
12289   // the case, we must be doing signed multiplication and only use the higher
12290   // part of the result of the MLAL, furthermore the LowAddSub must be a constant
12291   // addition or subtraction with the value of 0x800000.
12292   if (Subtarget->hasV6Ops() && Subtarget->hasDSP() && Subtarget->useMulOps() &&
12293       FinalOpc == ARMISD::SMLAL && !AddeSubeNode->hasAnyUseOfValue(1) &&
12294       LowAddSub->getNode()->getOpcode() == ISD::Constant &&
12295       static_cast<ConstantSDNode *>(LowAddSub->getNode())->getZExtValue() ==
12296           0x80000000) {
12297     Ops.push_back(*HiAddSub);
12298     if (AddcSubcNode->getOpcode() == ARMISD::SUBC) {
12299       FinalOpc = ARMISD::SMMLSR;
12300     } else {
12301       FinalOpc = ARMISD::SMMLAR;
12302     }
12303     SDValue NewNode = DAG.getNode(FinalOpc, SDLoc(AddcSubcNode), MVT::i32, Ops);
12304     DAG.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode, 0), NewNode);
12305 
12306     return SDValue(AddeSubeNode, 0);
12307   } else if (AddcSubcNode->getOpcode() == ARMISD::SUBC)
12308     // SMMLS is generated during instruction selection and the rest of this
12309     // function can not handle the case where AddcSubcNode is a SUBC.
12310     return SDValue();
12311 
12312   // Finish building the operand list for {U/S}MLAL
12313   Ops.push_back(*LowAddSub);
12314   Ops.push_back(*HiAddSub);
12315 
12316   SDValue MLALNode = DAG.getNode(FinalOpc, SDLoc(AddcSubcNode),
12317                                  DAG.getVTList(MVT::i32, MVT::i32), Ops);
12318 
12319   // Replace the ADDs' nodes uses by the MLA node's values.
12320   SDValue HiMLALResult(MLALNode.getNode(), 1);
12321   DAG.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode, 0), HiMLALResult);
12322 
12323   SDValue LoMLALResult(MLALNode.getNode(), 0);
12324   DAG.ReplaceAllUsesOfValueWith(SDValue(AddcSubcNode, 0), LoMLALResult);
12325 
12326   // Return original node to notify the driver to stop replacing.
12327   return SDValue(AddeSubeNode, 0);
12328 }
12329 
AddCombineTo64bitUMAAL(SDNode * AddeNode,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)12330 static SDValue AddCombineTo64bitUMAAL(SDNode *AddeNode,
12331                                       TargetLowering::DAGCombinerInfo &DCI,
12332                                       const ARMSubtarget *Subtarget) {
12333   // UMAAL is similar to UMLAL except that it adds two unsigned values.
12334   // While trying to combine for the other MLAL nodes, first search for the
12335   // chance to use UMAAL. Check if Addc uses a node which has already
12336   // been combined into a UMLAL. The other pattern is UMLAL using Addc/Adde
12337   // as the addend, and it's handled in PerformUMLALCombine.
12338 
12339   if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP())
12340     return AddCombineTo64bitMLAL(AddeNode, DCI, Subtarget);
12341 
12342   // Check that we have a glued ADDC node.
12343   SDNode* AddcNode = AddeNode->getOperand(2).getNode();
12344   if (AddcNode->getOpcode() != ARMISD::ADDC)
12345     return SDValue();
12346 
12347   // Find the converted UMAAL or quit if it doesn't exist.
12348   SDNode *UmlalNode = nullptr;
12349   SDValue AddHi;
12350   if (AddcNode->getOperand(0).getOpcode() == ARMISD::UMLAL) {
12351     UmlalNode = AddcNode->getOperand(0).getNode();
12352     AddHi = AddcNode->getOperand(1);
12353   } else if (AddcNode->getOperand(1).getOpcode() == ARMISD::UMLAL) {
12354     UmlalNode = AddcNode->getOperand(1).getNode();
12355     AddHi = AddcNode->getOperand(0);
12356   } else {
12357     return AddCombineTo64bitMLAL(AddeNode, DCI, Subtarget);
12358   }
12359 
12360   // The ADDC should be glued to an ADDE node, which uses the same UMLAL as
12361   // the ADDC as well as Zero.
12362   if (!isNullConstant(UmlalNode->getOperand(3)))
12363     return SDValue();
12364 
12365   if ((isNullConstant(AddeNode->getOperand(0)) &&
12366        AddeNode->getOperand(1).getNode() == UmlalNode) ||
12367       (AddeNode->getOperand(0).getNode() == UmlalNode &&
12368        isNullConstant(AddeNode->getOperand(1)))) {
12369     SelectionDAG &DAG = DCI.DAG;
12370     SDValue Ops[] = { UmlalNode->getOperand(0), UmlalNode->getOperand(1),
12371                       UmlalNode->getOperand(2), AddHi };
12372     SDValue UMAAL =  DAG.getNode(ARMISD::UMAAL, SDLoc(AddcNode),
12373                                  DAG.getVTList(MVT::i32, MVT::i32), Ops);
12374 
12375     // Replace the ADDs' nodes uses by the UMAAL node's values.
12376     DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), SDValue(UMAAL.getNode(), 1));
12377     DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), SDValue(UMAAL.getNode(), 0));
12378 
12379     // Return original node to notify the driver to stop replacing.
12380     return SDValue(AddeNode, 0);
12381   }
12382   return SDValue();
12383 }
12384 
PerformUMLALCombine(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * Subtarget)12385 static SDValue PerformUMLALCombine(SDNode *N, SelectionDAG &DAG,
12386                                    const ARMSubtarget *Subtarget) {
12387   if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP())
12388     return SDValue();
12389 
12390   // Check that we have a pair of ADDC and ADDE as operands.
12391   // Both addends of the ADDE must be zero.
12392   SDNode* AddcNode = N->getOperand(2).getNode();
12393   SDNode* AddeNode = N->getOperand(3).getNode();
12394   if ((AddcNode->getOpcode() == ARMISD::ADDC) &&
12395       (AddeNode->getOpcode() == ARMISD::ADDE) &&
12396       isNullConstant(AddeNode->getOperand(0)) &&
12397       isNullConstant(AddeNode->getOperand(1)) &&
12398       (AddeNode->getOperand(2).getNode() == AddcNode))
12399     return DAG.getNode(ARMISD::UMAAL, SDLoc(N),
12400                        DAG.getVTList(MVT::i32, MVT::i32),
12401                        {N->getOperand(0), N->getOperand(1),
12402                         AddcNode->getOperand(0), AddcNode->getOperand(1)});
12403   else
12404     return SDValue();
12405 }
12406 
PerformAddcSubcCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)12407 static SDValue PerformAddcSubcCombine(SDNode *N,
12408                                       TargetLowering::DAGCombinerInfo &DCI,
12409                                       const ARMSubtarget *Subtarget) {
12410   SelectionDAG &DAG(DCI.DAG);
12411 
12412   if (N->getOpcode() == ARMISD::SUBC) {
12413     // (SUBC (ADDE 0, 0, C), 1) -> C
12414     SDValue LHS = N->getOperand(0);
12415     SDValue RHS = N->getOperand(1);
12416     if (LHS->getOpcode() == ARMISD::ADDE &&
12417         isNullConstant(LHS->getOperand(0)) &&
12418         isNullConstant(LHS->getOperand(1)) && isOneConstant(RHS)) {
12419       return DCI.CombineTo(N, SDValue(N, 0), LHS->getOperand(2));
12420     }
12421   }
12422 
12423   if (Subtarget->isThumb1Only()) {
12424     SDValue RHS = N->getOperand(1);
12425     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
12426       int32_t imm = C->getSExtValue();
12427       if (imm < 0 && imm > std::numeric_limits<int>::min()) {
12428         SDLoc DL(N);
12429         RHS = DAG.getConstant(-imm, DL, MVT::i32);
12430         unsigned Opcode = (N->getOpcode() == ARMISD::ADDC) ? ARMISD::SUBC
12431                                                            : ARMISD::ADDC;
12432         return DAG.getNode(Opcode, DL, N->getVTList(), N->getOperand(0), RHS);
12433       }
12434     }
12435   }
12436 
12437   return SDValue();
12438 }
12439 
PerformAddeSubeCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)12440 static SDValue PerformAddeSubeCombine(SDNode *N,
12441                                       TargetLowering::DAGCombinerInfo &DCI,
12442                                       const ARMSubtarget *Subtarget) {
12443   if (Subtarget->isThumb1Only()) {
12444     SelectionDAG &DAG = DCI.DAG;
12445     SDValue RHS = N->getOperand(1);
12446     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
12447       int64_t imm = C->getSExtValue();
12448       if (imm < 0) {
12449         SDLoc DL(N);
12450 
12451         // The with-carry-in form matches bitwise not instead of the negation.
12452         // Effectively, the inverse interpretation of the carry flag already
12453         // accounts for part of the negation.
12454         RHS = DAG.getConstant(~imm, DL, MVT::i32);
12455 
12456         unsigned Opcode = (N->getOpcode() == ARMISD::ADDE) ? ARMISD::SUBE
12457                                                            : ARMISD::ADDE;
12458         return DAG.getNode(Opcode, DL, N->getVTList(),
12459                            N->getOperand(0), RHS, N->getOperand(2));
12460       }
12461     }
12462   } else if (N->getOperand(1)->getOpcode() == ISD::SMUL_LOHI) {
12463     return AddCombineTo64bitMLAL(N, DCI, Subtarget);
12464   }
12465   return SDValue();
12466 }
12467 
PerformSELECTCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)12468 static SDValue PerformSELECTCombine(SDNode *N,
12469                                     TargetLowering::DAGCombinerInfo &DCI,
12470                                     const ARMSubtarget *Subtarget) {
12471   if (!Subtarget->hasMVEIntegerOps())
12472     return SDValue();
12473 
12474   SDLoc dl(N);
12475   SDValue SetCC;
12476   SDValue LHS;
12477   SDValue RHS;
12478   ISD::CondCode CC;
12479   SDValue TrueVal;
12480   SDValue FalseVal;
12481 
12482   if (N->getOpcode() == ISD::SELECT &&
12483       N->getOperand(0)->getOpcode() == ISD::SETCC) {
12484     SetCC = N->getOperand(0);
12485     LHS = SetCC->getOperand(0);
12486     RHS = SetCC->getOperand(1);
12487     CC = cast<CondCodeSDNode>(SetCC->getOperand(2))->get();
12488     TrueVal = N->getOperand(1);
12489     FalseVal = N->getOperand(2);
12490   } else if (N->getOpcode() == ISD::SELECT_CC) {
12491     LHS = N->getOperand(0);
12492     RHS = N->getOperand(1);
12493     CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
12494     TrueVal = N->getOperand(2);
12495     FalseVal = N->getOperand(3);
12496   } else {
12497     return SDValue();
12498   }
12499 
12500   unsigned int Opcode = 0;
12501   if ((TrueVal->getOpcode() == ISD::VECREDUCE_UMIN ||
12502        FalseVal->getOpcode() == ISD::VECREDUCE_UMIN) &&
12503       (CC == ISD::SETULT || CC == ISD::SETUGT)) {
12504     Opcode = ARMISD::VMINVu;
12505     if (CC == ISD::SETUGT)
12506       std::swap(TrueVal, FalseVal);
12507   } else if ((TrueVal->getOpcode() == ISD::VECREDUCE_SMIN ||
12508               FalseVal->getOpcode() == ISD::VECREDUCE_SMIN) &&
12509              (CC == ISD::SETLT || CC == ISD::SETGT)) {
12510     Opcode = ARMISD::VMINVs;
12511     if (CC == ISD::SETGT)
12512       std::swap(TrueVal, FalseVal);
12513   } else if ((TrueVal->getOpcode() == ISD::VECREDUCE_UMAX ||
12514               FalseVal->getOpcode() == ISD::VECREDUCE_UMAX) &&
12515              (CC == ISD::SETUGT || CC == ISD::SETULT)) {
12516     Opcode = ARMISD::VMAXVu;
12517     if (CC == ISD::SETULT)
12518       std::swap(TrueVal, FalseVal);
12519   } else if ((TrueVal->getOpcode() == ISD::VECREDUCE_SMAX ||
12520               FalseVal->getOpcode() == ISD::VECREDUCE_SMAX) &&
12521              (CC == ISD::SETGT || CC == ISD::SETLT)) {
12522     Opcode = ARMISD::VMAXVs;
12523     if (CC == ISD::SETLT)
12524       std::swap(TrueVal, FalseVal);
12525   } else
12526     return SDValue();
12527 
12528   // Normalise to the right hand side being the vector reduction
12529   switch (TrueVal->getOpcode()) {
12530   case ISD::VECREDUCE_UMIN:
12531   case ISD::VECREDUCE_SMIN:
12532   case ISD::VECREDUCE_UMAX:
12533   case ISD::VECREDUCE_SMAX:
12534     std::swap(LHS, RHS);
12535     std::swap(TrueVal, FalseVal);
12536     break;
12537   }
12538 
12539   EVT VectorType = FalseVal->getOperand(0).getValueType();
12540 
12541   if (VectorType != MVT::v16i8 && VectorType != MVT::v8i16 &&
12542       VectorType != MVT::v4i32)
12543     return SDValue();
12544 
12545   EVT VectorScalarType = VectorType.getVectorElementType();
12546 
12547   // The values being selected must also be the ones being compared
12548   if (TrueVal != LHS || FalseVal != RHS)
12549     return SDValue();
12550 
12551   EVT LeftType = LHS->getValueType(0);
12552   EVT RightType = RHS->getValueType(0);
12553 
12554   // The types must match the reduced type too
12555   if (LeftType != VectorScalarType || RightType != VectorScalarType)
12556     return SDValue();
12557 
12558   // Legalise the scalar to an i32
12559   if (VectorScalarType != MVT::i32)
12560     LHS = DCI.DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
12561 
12562   // Generate the reduction as an i32 for legalisation purposes
12563   auto Reduction =
12564       DCI.DAG.getNode(Opcode, dl, MVT::i32, LHS, RHS->getOperand(0));
12565 
12566   // The result isn't actually an i32 so truncate it back to its original type
12567   if (VectorScalarType != MVT::i32)
12568     Reduction = DCI.DAG.getNode(ISD::TRUNCATE, dl, VectorScalarType, Reduction);
12569 
12570   return Reduction;
12571 }
12572 
12573 // A special combine for the vqdmulh family of instructions. This is one of the
12574 // potential set of patterns that could patch this instruction. The base pattern
12575 // you would expect to be min(max(ashr(mul(mul(sext(x), 2), sext(y)), 16))).
12576 // This matches the different min(max(ashr(mul(mul(sext(x), sext(y)), 2), 16))),
12577 // which llvm will have optimized to min(ashr(mul(sext(x), sext(y)), 15))) as
12578 // the max is unnecessary.
PerformVQDMULHCombine(SDNode * N,SelectionDAG & DAG)12579 static SDValue PerformVQDMULHCombine(SDNode *N, SelectionDAG &DAG) {
12580   EVT VT = N->getValueType(0);
12581   SDValue Shft;
12582   ConstantSDNode *Clamp;
12583 
12584   if (N->getOpcode() == ISD::SMIN) {
12585     Shft = N->getOperand(0);
12586     Clamp = isConstOrConstSplat(N->getOperand(1));
12587   } else if (N->getOpcode() == ISD::VSELECT) {
12588     // Detect a SMIN, which for an i64 node will be a vselect/setcc, not a smin.
12589     SDValue Cmp = N->getOperand(0);
12590     if (Cmp.getOpcode() != ISD::SETCC ||
12591         cast<CondCodeSDNode>(Cmp.getOperand(2))->get() != ISD::SETLT ||
12592         Cmp.getOperand(0) != N->getOperand(1) ||
12593         Cmp.getOperand(1) != N->getOperand(2))
12594       return SDValue();
12595     Shft = N->getOperand(1);
12596     Clamp = isConstOrConstSplat(N->getOperand(2));
12597   } else
12598     return SDValue();
12599 
12600   if (!Clamp)
12601     return SDValue();
12602 
12603   MVT ScalarType;
12604   int ShftAmt = 0;
12605   switch (Clamp->getSExtValue()) {
12606   case (1 << 7) - 1:
12607     ScalarType = MVT::i8;
12608     ShftAmt = 7;
12609     break;
12610   case (1 << 15) - 1:
12611     ScalarType = MVT::i16;
12612     ShftAmt = 15;
12613     break;
12614   case (1ULL << 31) - 1:
12615     ScalarType = MVT::i32;
12616     ShftAmt = 31;
12617     break;
12618   default:
12619     return SDValue();
12620   }
12621 
12622   if (Shft.getOpcode() != ISD::SRA)
12623     return SDValue();
12624   ConstantSDNode *N1 = isConstOrConstSplat(Shft.getOperand(1));
12625   if (!N1 || N1->getSExtValue() != ShftAmt)
12626     return SDValue();
12627 
12628   SDValue Mul = Shft.getOperand(0);
12629   if (Mul.getOpcode() != ISD::MUL)
12630     return SDValue();
12631 
12632   SDValue Ext0 = Mul.getOperand(0);
12633   SDValue Ext1 = Mul.getOperand(1);
12634   if (Ext0.getOpcode() != ISD::SIGN_EXTEND ||
12635       Ext1.getOpcode() != ISD::SIGN_EXTEND)
12636     return SDValue();
12637   EVT VecVT = Ext0.getOperand(0).getValueType();
12638   if (VecVT != MVT::v4i32 && VecVT != MVT::v8i16 && VecVT != MVT::v16i8)
12639     return SDValue();
12640   if (Ext1.getOperand(0).getValueType() != VecVT ||
12641       VecVT.getScalarType() != ScalarType ||
12642       VT.getScalarSizeInBits() < ScalarType.getScalarSizeInBits() * 2)
12643     return SDValue();
12644 
12645   SDLoc DL(Mul);
12646   SDValue VQDMULH = DAG.getNode(ARMISD::VQDMULH, DL, VecVT, Ext0.getOperand(0),
12647                                 Ext1.getOperand(0));
12648   return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, VQDMULH);
12649 }
12650 
PerformVSELECTCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)12651 static SDValue PerformVSELECTCombine(SDNode *N,
12652                                      TargetLowering::DAGCombinerInfo &DCI,
12653                                      const ARMSubtarget *Subtarget) {
12654   if (!Subtarget->hasMVEIntegerOps())
12655     return SDValue();
12656 
12657   if (SDValue V = PerformVQDMULHCombine(N, DCI.DAG))
12658     return V;
12659 
12660   // Transforms vselect(not(cond), lhs, rhs) into vselect(cond, rhs, lhs).
12661   //
12662   // We need to re-implement this optimization here as the implementation in the
12663   // Target-Independent DAGCombiner does not handle the kind of constant we make
12664   // (it calls isConstOrConstSplat with AllowTruncation set to false - and for
12665   // good reason, allowing truncation there would break other targets).
12666   //
12667   // Currently, this is only done for MVE, as it's the only target that benefits
12668   // from this transformation (e.g. VPNOT+VPSEL becomes a single VPSEL).
12669   if (N->getOperand(0).getOpcode() != ISD::XOR)
12670     return SDValue();
12671   SDValue XOR = N->getOperand(0);
12672 
12673   // Check if the XOR's RHS is either a 1, or a BUILD_VECTOR of 1s.
12674   // It is important to check with truncation allowed as the BUILD_VECTORs we
12675   // generate in those situations will truncate their operands.
12676   ConstantSDNode *Const =
12677       isConstOrConstSplat(XOR->getOperand(1), /*AllowUndefs*/ false,
12678                           /*AllowTruncation*/ true);
12679   if (!Const || !Const->isOne())
12680     return SDValue();
12681 
12682   // Rewrite into vselect(cond, rhs, lhs).
12683   SDValue Cond = XOR->getOperand(0);
12684   SDValue LHS = N->getOperand(1);
12685   SDValue RHS = N->getOperand(2);
12686   EVT Type = N->getValueType(0);
12687   return DCI.DAG.getNode(ISD::VSELECT, SDLoc(N), Type, Cond, RHS, LHS);
12688 }
12689 
PerformABSCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)12690 static SDValue PerformABSCombine(SDNode *N,
12691                                   TargetLowering::DAGCombinerInfo &DCI,
12692                                   const ARMSubtarget *Subtarget) {
12693   SDValue res;
12694   SelectionDAG &DAG = DCI.DAG;
12695   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12696 
12697   if (TLI.isOperationLegal(N->getOpcode(), N->getValueType(0)))
12698     return SDValue();
12699 
12700   if (!TLI.expandABS(N, res, DAG))
12701       return SDValue();
12702 
12703   return res;
12704 }
12705 
12706 /// PerformADDECombine - Target-specific dag combine transform from
12707 /// ARMISD::ADDC, ARMISD::ADDE, and ISD::MUL_LOHI to MLAL or
12708 /// ARMISD::ADDC, ARMISD::ADDE and ARMISD::UMLAL to ARMISD::UMAAL
PerformADDECombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)12709 static SDValue PerformADDECombine(SDNode *N,
12710                                   TargetLowering::DAGCombinerInfo &DCI,
12711                                   const ARMSubtarget *Subtarget) {
12712   // Only ARM and Thumb2 support UMLAL/SMLAL.
12713   if (Subtarget->isThumb1Only())
12714     return PerformAddeSubeCombine(N, DCI, Subtarget);
12715 
12716   // Only perform the checks after legalize when the pattern is available.
12717   if (DCI.isBeforeLegalize()) return SDValue();
12718 
12719   return AddCombineTo64bitUMAAL(N, DCI, Subtarget);
12720 }
12721 
12722 /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
12723 /// operands N0 and N1.  This is a helper for PerformADDCombine that is
12724 /// called with the default operands, and if that fails, with commuted
12725 /// operands.
PerformADDCombineWithOperands(SDNode * N,SDValue N0,SDValue N1,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)12726 static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
12727                                           TargetLowering::DAGCombinerInfo &DCI,
12728                                           const ARMSubtarget *Subtarget){
12729   // Attempt to create vpadd for this add.
12730   if (SDValue Result = AddCombineToVPADD(N, N0, N1, DCI, Subtarget))
12731     return Result;
12732 
12733   // Attempt to create vpaddl for this add.
12734   if (SDValue Result = AddCombineVUZPToVPADDL(N, N0, N1, DCI, Subtarget))
12735     return Result;
12736   if (SDValue Result = AddCombineBUILD_VECTORToVPADDL(N, N0, N1, DCI,
12737                                                       Subtarget))
12738     return Result;
12739 
12740   // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
12741   if (N0.getNode()->hasOneUse())
12742     if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI))
12743       return Result;
12744   return SDValue();
12745 }
12746 
PerformADDVecReduce(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)12747 static SDValue PerformADDVecReduce(SDNode *N,
12748                                    TargetLowering::DAGCombinerInfo &DCI,
12749                                    const ARMSubtarget *Subtarget) {
12750   if (!Subtarget->hasMVEIntegerOps() || N->getValueType(0) != MVT::i64)
12751     return SDValue();
12752 
12753   SDValue N0 = N->getOperand(0);
12754   SDValue N1 = N->getOperand(1);
12755 
12756   // We are looking for a i64 add of a VADDLVx. Due to these being i64's, this
12757   // will look like:
12758   //   t1: i32,i32 = ARMISD::VADDLVs x
12759   //   t2: i64 = build_pair t1, t1:1
12760   //   t3: i64 = add t2, y
12761   // We also need to check for sext / zext and commutitive adds.
12762   auto MakeVecReduce = [&](unsigned Opcode, unsigned OpcodeA, SDValue NA,
12763                            SDValue NB) {
12764     if (NB->getOpcode() != ISD::BUILD_PAIR)
12765       return SDValue();
12766     SDValue VecRed = NB->getOperand(0);
12767     if (VecRed->getOpcode() != Opcode || VecRed.getResNo() != 0 ||
12768         NB->getOperand(1) != SDValue(VecRed.getNode(), 1))
12769       return SDValue();
12770 
12771     SDLoc dl(N);
12772     SmallVector<SDValue, 4> Ops;
12773     Ops.push_back(DCI.DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, NA,
12774                                   DCI.DAG.getConstant(0, dl, MVT::i32)));
12775     Ops.push_back(DCI.DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, NA,
12776                                   DCI.DAG.getConstant(1, dl, MVT::i32)));
12777     for (unsigned i = 0, e = VecRed.getNumOperands(); i < e; i++)
12778       Ops.push_back(VecRed->getOperand(i));
12779     SDValue Red = DCI.DAG.getNode(OpcodeA, dl,
12780                                   DCI.DAG.getVTList({MVT::i32, MVT::i32}), Ops);
12781     return DCI.DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Red,
12782                            SDValue(Red.getNode(), 1));
12783   };
12784 
12785   if (SDValue M = MakeVecReduce(ARMISD::VADDLVs, ARMISD::VADDLVAs, N0, N1))
12786     return M;
12787   if (SDValue M = MakeVecReduce(ARMISD::VADDLVu, ARMISD::VADDLVAu, N0, N1))
12788     return M;
12789   if (SDValue M = MakeVecReduce(ARMISD::VADDLVs, ARMISD::VADDLVAs, N1, N0))
12790     return M;
12791   if (SDValue M = MakeVecReduce(ARMISD::VADDLVu, ARMISD::VADDLVAu, N1, N0))
12792     return M;
12793   if (SDValue M = MakeVecReduce(ARMISD::VADDLVps, ARMISD::VADDLVAps, N0, N1))
12794     return M;
12795   if (SDValue M = MakeVecReduce(ARMISD::VADDLVpu, ARMISD::VADDLVApu, N0, N1))
12796     return M;
12797   if (SDValue M = MakeVecReduce(ARMISD::VADDLVps, ARMISD::VADDLVAps, N1, N0))
12798     return M;
12799   if (SDValue M = MakeVecReduce(ARMISD::VADDLVpu, ARMISD::VADDLVApu, N1, N0))
12800     return M;
12801   if (SDValue M = MakeVecReduce(ARMISD::VMLALVs, ARMISD::VMLALVAs, N0, N1))
12802     return M;
12803   if (SDValue M = MakeVecReduce(ARMISD::VMLALVu, ARMISD::VMLALVAu, N0, N1))
12804     return M;
12805   if (SDValue M = MakeVecReduce(ARMISD::VMLALVs, ARMISD::VMLALVAs, N1, N0))
12806     return M;
12807   if (SDValue M = MakeVecReduce(ARMISD::VMLALVu, ARMISD::VMLALVAu, N1, N0))
12808     return M;
12809   if (SDValue M = MakeVecReduce(ARMISD::VMLALVps, ARMISD::VMLALVAps, N0, N1))
12810     return M;
12811   if (SDValue M = MakeVecReduce(ARMISD::VMLALVpu, ARMISD::VMLALVApu, N0, N1))
12812     return M;
12813   if (SDValue M = MakeVecReduce(ARMISD::VMLALVps, ARMISD::VMLALVAps, N1, N0))
12814     return M;
12815   if (SDValue M = MakeVecReduce(ARMISD::VMLALVpu, ARMISD::VMLALVApu, N1, N0))
12816     return M;
12817   return SDValue();
12818 }
12819 
12820 bool
isDesirableToCommuteWithShift(const SDNode * N,CombineLevel Level) const12821 ARMTargetLowering::isDesirableToCommuteWithShift(const SDNode *N,
12822                                                  CombineLevel Level) const {
12823   if (Level == BeforeLegalizeTypes)
12824     return true;
12825 
12826   if (N->getOpcode() != ISD::SHL)
12827     return true;
12828 
12829   if (Subtarget->isThumb1Only()) {
12830     // Avoid making expensive immediates by commuting shifts. (This logic
12831     // only applies to Thumb1 because ARM and Thumb2 immediates can be shifted
12832     // for free.)
12833     if (N->getOpcode() != ISD::SHL)
12834       return true;
12835     SDValue N1 = N->getOperand(0);
12836     if (N1->getOpcode() != ISD::ADD && N1->getOpcode() != ISD::AND &&
12837         N1->getOpcode() != ISD::OR && N1->getOpcode() != ISD::XOR)
12838       return true;
12839     if (auto *Const = dyn_cast<ConstantSDNode>(N1->getOperand(1))) {
12840       if (Const->getAPIntValue().ult(256))
12841         return false;
12842       if (N1->getOpcode() == ISD::ADD && Const->getAPIntValue().slt(0) &&
12843           Const->getAPIntValue().sgt(-256))
12844         return false;
12845     }
12846     return true;
12847   }
12848 
12849   // Turn off commute-with-shift transform after legalization, so it doesn't
12850   // conflict with PerformSHLSimplify.  (We could try to detect when
12851   // PerformSHLSimplify would trigger more precisely, but it isn't
12852   // really necessary.)
12853   return false;
12854 }
12855 
shouldFoldConstantShiftPairToMask(const SDNode * N,CombineLevel Level) const12856 bool ARMTargetLowering::shouldFoldConstantShiftPairToMask(
12857     const SDNode *N, CombineLevel Level) const {
12858   if (!Subtarget->isThumb1Only())
12859     return true;
12860 
12861   if (Level == BeforeLegalizeTypes)
12862     return true;
12863 
12864   return false;
12865 }
12866 
preferIncOfAddToSubOfNot(EVT VT) const12867 bool ARMTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const {
12868   if (!Subtarget->hasNEON()) {
12869     if (Subtarget->isThumb1Only())
12870       return VT.getScalarSizeInBits() <= 32;
12871     return true;
12872   }
12873   return VT.isScalarInteger();
12874 }
12875 
PerformSHLSimplify(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * ST)12876 static SDValue PerformSHLSimplify(SDNode *N,
12877                                 TargetLowering::DAGCombinerInfo &DCI,
12878                                 const ARMSubtarget *ST) {
12879   // Allow the generic combiner to identify potential bswaps.
12880   if (DCI.isBeforeLegalize())
12881     return SDValue();
12882 
12883   // DAG combiner will fold:
12884   // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
12885   // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2
12886   // Other code patterns that can be also be modified have the following form:
12887   // b + ((a << 1) | 510)
12888   // b + ((a << 1) & 510)
12889   // b + ((a << 1) ^ 510)
12890   // b + ((a << 1) + 510)
12891 
12892   // Many instructions can  perform the shift for free, but it requires both
12893   // the operands to be registers. If c1 << c2 is too large, a mov immediate
12894   // instruction will needed. So, unfold back to the original pattern if:
12895   // - if c1 and c2 are small enough that they don't require mov imms.
12896   // - the user(s) of the node can perform an shl
12897 
12898   // No shifted operands for 16-bit instructions.
12899   if (ST->isThumb() && ST->isThumb1Only())
12900     return SDValue();
12901 
12902   // Check that all the users could perform the shl themselves.
12903   for (auto U : N->uses()) {
12904     switch(U->getOpcode()) {
12905     default:
12906       return SDValue();
12907     case ISD::SUB:
12908     case ISD::ADD:
12909     case ISD::AND:
12910     case ISD::OR:
12911     case ISD::XOR:
12912     case ISD::SETCC:
12913     case ARMISD::CMP:
12914       // Check that the user isn't already using a constant because there
12915       // aren't any instructions that support an immediate operand and a
12916       // shifted operand.
12917       if (isa<ConstantSDNode>(U->getOperand(0)) ||
12918           isa<ConstantSDNode>(U->getOperand(1)))
12919         return SDValue();
12920 
12921       // Check that it's not already using a shift.
12922       if (U->getOperand(0).getOpcode() == ISD::SHL ||
12923           U->getOperand(1).getOpcode() == ISD::SHL)
12924         return SDValue();
12925       break;
12926     }
12927   }
12928 
12929   if (N->getOpcode() != ISD::ADD && N->getOpcode() != ISD::OR &&
12930       N->getOpcode() != ISD::XOR && N->getOpcode() != ISD::AND)
12931     return SDValue();
12932 
12933   if (N->getOperand(0).getOpcode() != ISD::SHL)
12934     return SDValue();
12935 
12936   SDValue SHL = N->getOperand(0);
12937 
12938   auto *C1ShlC2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
12939   auto *C2 = dyn_cast<ConstantSDNode>(SHL.getOperand(1));
12940   if (!C1ShlC2 || !C2)
12941     return SDValue();
12942 
12943   APInt C2Int = C2->getAPIntValue();
12944   APInt C1Int = C1ShlC2->getAPIntValue();
12945 
12946   // Check that performing a lshr will not lose any information.
12947   APInt Mask = APInt::getHighBitsSet(C2Int.getBitWidth(),
12948                                      C2Int.getBitWidth() - C2->getZExtValue());
12949   if ((C1Int & Mask) != C1Int)
12950     return SDValue();
12951 
12952   // Shift the first constant.
12953   C1Int.lshrInPlace(C2Int);
12954 
12955   // The immediates are encoded as an 8-bit value that can be rotated.
12956   auto LargeImm = [](const APInt &Imm) {
12957     unsigned Zeros = Imm.countLeadingZeros() + Imm.countTrailingZeros();
12958     return Imm.getBitWidth() - Zeros > 8;
12959   };
12960 
12961   if (LargeImm(C1Int) || LargeImm(C2Int))
12962     return SDValue();
12963 
12964   SelectionDAG &DAG = DCI.DAG;
12965   SDLoc dl(N);
12966   SDValue X = SHL.getOperand(0);
12967   SDValue BinOp = DAG.getNode(N->getOpcode(), dl, MVT::i32, X,
12968                               DAG.getConstant(C1Int, dl, MVT::i32));
12969   // Shift left to compensate for the lshr of C1Int.
12970   SDValue Res = DAG.getNode(ISD::SHL, dl, MVT::i32, BinOp, SHL.getOperand(1));
12971 
12972   LLVM_DEBUG(dbgs() << "Simplify shl use:\n"; SHL.getOperand(0).dump();
12973              SHL.dump(); N->dump());
12974   LLVM_DEBUG(dbgs() << "Into:\n"; X.dump(); BinOp.dump(); Res.dump());
12975   return Res;
12976 }
12977 
12978 
12979 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
12980 ///
PerformADDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)12981 static SDValue PerformADDCombine(SDNode *N,
12982                                  TargetLowering::DAGCombinerInfo &DCI,
12983                                  const ARMSubtarget *Subtarget) {
12984   SDValue N0 = N->getOperand(0);
12985   SDValue N1 = N->getOperand(1);
12986 
12987   // Only works one way, because it needs an immediate operand.
12988   if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
12989     return Result;
12990 
12991   if (SDValue Result = PerformADDVecReduce(N, DCI, Subtarget))
12992     return Result;
12993 
12994   // First try with the default operand order.
12995   if (SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget))
12996     return Result;
12997 
12998   // If that didn't work, try again with the operands commuted.
12999   return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget);
13000 }
13001 
13002 // Combine (sub 0, (csinc X, Y, CC)) -> (csinv -X, Y, CC)
13003 //   providing -X is as cheap as X (currently, just a constant).
PerformSubCSINCCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)13004 static SDValue PerformSubCSINCCombine(SDNode *N,
13005                                       TargetLowering::DAGCombinerInfo &DCI) {
13006   if (N->getValueType(0) != MVT::i32 || !isNullConstant(N->getOperand(0)))
13007     return SDValue();
13008   SDValue CSINC = N->getOperand(1);
13009   if (CSINC.getOpcode() != ARMISD::CSINC || !CSINC.hasOneUse())
13010     return SDValue();
13011 
13012   ConstantSDNode *X = dyn_cast<ConstantSDNode>(CSINC.getOperand(0));
13013   if (!X)
13014     return SDValue();
13015 
13016   return DCI.DAG.getNode(ARMISD::CSINV, SDLoc(N), MVT::i32,
13017                          DCI.DAG.getNode(ISD::SUB, SDLoc(N), MVT::i32,
13018                                          N->getOperand(0), CSINC.getOperand(0)),
13019                          CSINC.getOperand(1), CSINC.getOperand(2),
13020                          CSINC.getOperand(3));
13021 }
13022 
13023 /// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
13024 ///
PerformSUBCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)13025 static SDValue PerformSUBCombine(SDNode *N,
13026                                  TargetLowering::DAGCombinerInfo &DCI,
13027                                  const ARMSubtarget *Subtarget) {
13028   SDValue N0 = N->getOperand(0);
13029   SDValue N1 = N->getOperand(1);
13030 
13031   // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
13032   if (N1.getNode()->hasOneUse())
13033     if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI))
13034       return Result;
13035 
13036   if (SDValue R = PerformSubCSINCCombine(N, DCI))
13037     return R;
13038 
13039   if (!Subtarget->hasMVEIntegerOps() || !N->getValueType(0).isVector())
13040     return SDValue();
13041 
13042   // Fold (sub (ARMvmovImm 0), (ARMvdup x)) -> (ARMvdup (sub 0, x))
13043   // so that we can readily pattern match more mve instructions which can use
13044   // a scalar operand.
13045   SDValue VDup = N->getOperand(1);
13046   if (VDup->getOpcode() != ARMISD::VDUP)
13047     return SDValue();
13048 
13049   SDValue VMov = N->getOperand(0);
13050   if (VMov->getOpcode() == ISD::BITCAST)
13051     VMov = VMov->getOperand(0);
13052 
13053   if (VMov->getOpcode() != ARMISD::VMOVIMM || !isZeroVector(VMov))
13054     return SDValue();
13055 
13056   SDLoc dl(N);
13057   SDValue Negate = DCI.DAG.getNode(ISD::SUB, dl, MVT::i32,
13058                                    DCI.DAG.getConstant(0, dl, MVT::i32),
13059                                    VDup->getOperand(0));
13060   return DCI.DAG.getNode(ARMISD::VDUP, dl, N->getValueType(0), Negate);
13061 }
13062 
13063 /// PerformVMULCombine
13064 /// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
13065 /// special multiplier accumulator forwarding.
13066 ///   vmul d3, d0, d2
13067 ///   vmla d3, d1, d2
13068 /// is faster than
13069 ///   vadd d3, d0, d1
13070 ///   vmul d3, d3, d2
13071 //  However, for (A + B) * (A + B),
13072 //    vadd d2, d0, d1
13073 //    vmul d3, d0, d2
13074 //    vmla d3, d1, d2
13075 //  is slower than
13076 //    vadd d2, d0, d1
13077 //    vmul d3, d2, d2
PerformVMULCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)13078 static SDValue PerformVMULCombine(SDNode *N,
13079                                   TargetLowering::DAGCombinerInfo &DCI,
13080                                   const ARMSubtarget *Subtarget) {
13081   if (!Subtarget->hasVMLxForwarding())
13082     return SDValue();
13083 
13084   SelectionDAG &DAG = DCI.DAG;
13085   SDValue N0 = N->getOperand(0);
13086   SDValue N1 = N->getOperand(1);
13087   unsigned Opcode = N0.getOpcode();
13088   if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
13089       Opcode != ISD::FADD && Opcode != ISD::FSUB) {
13090     Opcode = N1.getOpcode();
13091     if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
13092         Opcode != ISD::FADD && Opcode != ISD::FSUB)
13093       return SDValue();
13094     std::swap(N0, N1);
13095   }
13096 
13097   if (N0 == N1)
13098     return SDValue();
13099 
13100   EVT VT = N->getValueType(0);
13101   SDLoc DL(N);
13102   SDValue N00 = N0->getOperand(0);
13103   SDValue N01 = N0->getOperand(1);
13104   return DAG.getNode(Opcode, DL, VT,
13105                      DAG.getNode(ISD::MUL, DL, VT, N00, N1),
13106                      DAG.getNode(ISD::MUL, DL, VT, N01, N1));
13107 }
13108 
PerformMVEVMULLCombine(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * Subtarget)13109 static SDValue PerformMVEVMULLCombine(SDNode *N, SelectionDAG &DAG,
13110                                       const ARMSubtarget *Subtarget) {
13111   EVT VT = N->getValueType(0);
13112   if (VT != MVT::v2i64)
13113     return SDValue();
13114 
13115   SDValue N0 = N->getOperand(0);
13116   SDValue N1 = N->getOperand(1);
13117 
13118   auto IsSignExt = [&](SDValue Op) {
13119     if (Op->getOpcode() != ISD::SIGN_EXTEND_INREG)
13120       return SDValue();
13121     EVT VT = cast<VTSDNode>(Op->getOperand(1))->getVT();
13122     if (VT.getScalarSizeInBits() == 32)
13123       return Op->getOperand(0);
13124     return SDValue();
13125   };
13126   auto IsZeroExt = [&](SDValue Op) {
13127     // Zero extends are a little more awkward. At the point we are matching
13128     // this, we are looking for an AND with a (-1, 0, -1, 0) buildvector mask.
13129     // That might be before of after a bitcast depending on how the and is
13130     // placed. Because this has to look through bitcasts, it is currently only
13131     // supported on LE.
13132     if (!Subtarget->isLittle())
13133       return SDValue();
13134 
13135     SDValue And = Op;
13136     if (And->getOpcode() == ISD::BITCAST)
13137       And = And->getOperand(0);
13138     if (And->getOpcode() != ISD::AND)
13139       return SDValue();
13140     SDValue Mask = And->getOperand(1);
13141     if (Mask->getOpcode() == ISD::BITCAST)
13142       Mask = Mask->getOperand(0);
13143 
13144     if (Mask->getOpcode() != ISD::BUILD_VECTOR ||
13145         Mask.getValueType() != MVT::v4i32)
13146       return SDValue();
13147     if (isAllOnesConstant(Mask->getOperand(0)) &&
13148         isNullConstant(Mask->getOperand(1)) &&
13149         isAllOnesConstant(Mask->getOperand(2)) &&
13150         isNullConstant(Mask->getOperand(3)))
13151       return And->getOperand(0);
13152     return SDValue();
13153   };
13154 
13155   SDLoc dl(N);
13156   if (SDValue Op0 = IsSignExt(N0)) {
13157     if (SDValue Op1 = IsSignExt(N1)) {
13158       SDValue New0a = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, MVT::v4i32, Op0);
13159       SDValue New1a = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, MVT::v4i32, Op1);
13160       return DAG.getNode(ARMISD::VMULLs, dl, VT, New0a, New1a);
13161     }
13162   }
13163   if (SDValue Op0 = IsZeroExt(N0)) {
13164     if (SDValue Op1 = IsZeroExt(N1)) {
13165       SDValue New0a = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, MVT::v4i32, Op0);
13166       SDValue New1a = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, MVT::v4i32, Op1);
13167       return DAG.getNode(ARMISD::VMULLu, dl, VT, New0a, New1a);
13168     }
13169   }
13170 
13171   return SDValue();
13172 }
13173 
PerformMULCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)13174 static SDValue PerformMULCombine(SDNode *N,
13175                                  TargetLowering::DAGCombinerInfo &DCI,
13176                                  const ARMSubtarget *Subtarget) {
13177   SelectionDAG &DAG = DCI.DAG;
13178 
13179   EVT VT = N->getValueType(0);
13180   if (Subtarget->hasMVEIntegerOps() && VT == MVT::v2i64)
13181     return PerformMVEVMULLCombine(N, DAG, Subtarget);
13182 
13183   if (Subtarget->isThumb1Only())
13184     return SDValue();
13185 
13186   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
13187     return SDValue();
13188 
13189   if (VT.is64BitVector() || VT.is128BitVector())
13190     return PerformVMULCombine(N, DCI, Subtarget);
13191   if (VT != MVT::i32)
13192     return SDValue();
13193 
13194   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
13195   if (!C)
13196     return SDValue();
13197 
13198   int64_t MulAmt = C->getSExtValue();
13199   unsigned ShiftAmt = countTrailingZeros<uint64_t>(MulAmt);
13200 
13201   ShiftAmt = ShiftAmt & (32 - 1);
13202   SDValue V = N->getOperand(0);
13203   SDLoc DL(N);
13204 
13205   SDValue Res;
13206   MulAmt >>= ShiftAmt;
13207 
13208   if (MulAmt >= 0) {
13209     if (isPowerOf2_32(MulAmt - 1)) {
13210       // (mul x, 2^N + 1) => (add (shl x, N), x)
13211       Res = DAG.getNode(ISD::ADD, DL, VT,
13212                         V,
13213                         DAG.getNode(ISD::SHL, DL, VT,
13214                                     V,
13215                                     DAG.getConstant(Log2_32(MulAmt - 1), DL,
13216                                                     MVT::i32)));
13217     } else if (isPowerOf2_32(MulAmt + 1)) {
13218       // (mul x, 2^N - 1) => (sub (shl x, N), x)
13219       Res = DAG.getNode(ISD::SUB, DL, VT,
13220                         DAG.getNode(ISD::SHL, DL, VT,
13221                                     V,
13222                                     DAG.getConstant(Log2_32(MulAmt + 1), DL,
13223                                                     MVT::i32)),
13224                         V);
13225     } else
13226       return SDValue();
13227   } else {
13228     uint64_t MulAmtAbs = -MulAmt;
13229     if (isPowerOf2_32(MulAmtAbs + 1)) {
13230       // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
13231       Res = DAG.getNode(ISD::SUB, DL, VT,
13232                         V,
13233                         DAG.getNode(ISD::SHL, DL, VT,
13234                                     V,
13235                                     DAG.getConstant(Log2_32(MulAmtAbs + 1), DL,
13236                                                     MVT::i32)));
13237     } else if (isPowerOf2_32(MulAmtAbs - 1)) {
13238       // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
13239       Res = DAG.getNode(ISD::ADD, DL, VT,
13240                         V,
13241                         DAG.getNode(ISD::SHL, DL, VT,
13242                                     V,
13243                                     DAG.getConstant(Log2_32(MulAmtAbs - 1), DL,
13244                                                     MVT::i32)));
13245       Res = DAG.getNode(ISD::SUB, DL, VT,
13246                         DAG.getConstant(0, DL, MVT::i32), Res);
13247     } else
13248       return SDValue();
13249   }
13250 
13251   if (ShiftAmt != 0)
13252     Res = DAG.getNode(ISD::SHL, DL, VT,
13253                       Res, DAG.getConstant(ShiftAmt, DL, MVT::i32));
13254 
13255   // Do not add new nodes to DAG combiner worklist.
13256   DCI.CombineTo(N, Res, false);
13257   return SDValue();
13258 }
13259 
CombineANDShift(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)13260 static SDValue CombineANDShift(SDNode *N,
13261                                TargetLowering::DAGCombinerInfo &DCI,
13262                                const ARMSubtarget *Subtarget) {
13263   // Allow DAGCombine to pattern-match before we touch the canonical form.
13264   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
13265     return SDValue();
13266 
13267   if (N->getValueType(0) != MVT::i32)
13268     return SDValue();
13269 
13270   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
13271   if (!N1C)
13272     return SDValue();
13273 
13274   uint32_t C1 = (uint32_t)N1C->getZExtValue();
13275   // Don't transform uxtb/uxth.
13276   if (C1 == 255 || C1 == 65535)
13277     return SDValue();
13278 
13279   SDNode *N0 = N->getOperand(0).getNode();
13280   if (!N0->hasOneUse())
13281     return SDValue();
13282 
13283   if (N0->getOpcode() != ISD::SHL && N0->getOpcode() != ISD::SRL)
13284     return SDValue();
13285 
13286   bool LeftShift = N0->getOpcode() == ISD::SHL;
13287 
13288   ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
13289   if (!N01C)
13290     return SDValue();
13291 
13292   uint32_t C2 = (uint32_t)N01C->getZExtValue();
13293   if (!C2 || C2 >= 32)
13294     return SDValue();
13295 
13296   // Clear irrelevant bits in the mask.
13297   if (LeftShift)
13298     C1 &= (-1U << C2);
13299   else
13300     C1 &= (-1U >> C2);
13301 
13302   SelectionDAG &DAG = DCI.DAG;
13303   SDLoc DL(N);
13304 
13305   // We have a pattern of the form "(and (shl x, c2) c1)" or
13306   // "(and (srl x, c2) c1)", where c1 is a shifted mask. Try to
13307   // transform to a pair of shifts, to save materializing c1.
13308 
13309   // First pattern: right shift, then mask off leading bits.
13310   // FIXME: Use demanded bits?
13311   if (!LeftShift && isMask_32(C1)) {
13312     uint32_t C3 = countLeadingZeros(C1);
13313     if (C2 < C3) {
13314       SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, N0->getOperand(0),
13315                                 DAG.getConstant(C3 - C2, DL, MVT::i32));
13316       return DAG.getNode(ISD::SRL, DL, MVT::i32, SHL,
13317                          DAG.getConstant(C3, DL, MVT::i32));
13318     }
13319   }
13320 
13321   // First pattern, reversed: left shift, then mask off trailing bits.
13322   if (LeftShift && isMask_32(~C1)) {
13323     uint32_t C3 = countTrailingZeros(C1);
13324     if (C2 < C3) {
13325       SDValue SHL = DAG.getNode(ISD::SRL, DL, MVT::i32, N0->getOperand(0),
13326                                 DAG.getConstant(C3 - C2, DL, MVT::i32));
13327       return DAG.getNode(ISD::SHL, DL, MVT::i32, SHL,
13328                          DAG.getConstant(C3, DL, MVT::i32));
13329     }
13330   }
13331 
13332   // Second pattern: left shift, then mask off leading bits.
13333   // FIXME: Use demanded bits?
13334   if (LeftShift && isShiftedMask_32(C1)) {
13335     uint32_t Trailing = countTrailingZeros(C1);
13336     uint32_t C3 = countLeadingZeros(C1);
13337     if (Trailing == C2 && C2 + C3 < 32) {
13338       SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, N0->getOperand(0),
13339                                 DAG.getConstant(C2 + C3, DL, MVT::i32));
13340       return DAG.getNode(ISD::SRL, DL, MVT::i32, SHL,
13341                         DAG.getConstant(C3, DL, MVT::i32));
13342     }
13343   }
13344 
13345   // Second pattern, reversed: right shift, then mask off trailing bits.
13346   // FIXME: Handle other patterns of known/demanded bits.
13347   if (!LeftShift && isShiftedMask_32(C1)) {
13348     uint32_t Leading = countLeadingZeros(C1);
13349     uint32_t C3 = countTrailingZeros(C1);
13350     if (Leading == C2 && C2 + C3 < 32) {
13351       SDValue SHL = DAG.getNode(ISD::SRL, DL, MVT::i32, N0->getOperand(0),
13352                                 DAG.getConstant(C2 + C3, DL, MVT::i32));
13353       return DAG.getNode(ISD::SHL, DL, MVT::i32, SHL,
13354                          DAG.getConstant(C3, DL, MVT::i32));
13355     }
13356   }
13357 
13358   // FIXME: Transform "(and (shl x, c2) c1)" ->
13359   // "(shl (and x, c1>>c2), c2)" if "c1 >> c2" is a cheaper immediate than
13360   // c1.
13361   return SDValue();
13362 }
13363 
PerformANDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)13364 static SDValue PerformANDCombine(SDNode *N,
13365                                  TargetLowering::DAGCombinerInfo &DCI,
13366                                  const ARMSubtarget *Subtarget) {
13367   // Attempt to use immediate-form VBIC
13368   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
13369   SDLoc dl(N);
13370   EVT VT = N->getValueType(0);
13371   SelectionDAG &DAG = DCI.DAG;
13372 
13373   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT) || VT == MVT::v4i1 ||
13374       VT == MVT::v8i1 || VT == MVT::v16i1)
13375     return SDValue();
13376 
13377   APInt SplatBits, SplatUndef;
13378   unsigned SplatBitSize;
13379   bool HasAnyUndefs;
13380   if (BVN && (Subtarget->hasNEON() || Subtarget->hasMVEIntegerOps()) &&
13381       BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
13382     if (SplatBitSize == 8 || SplatBitSize == 16 || SplatBitSize == 32 ||
13383         SplatBitSize == 64) {
13384       EVT VbicVT;
13385       SDValue Val = isVMOVModifiedImm((~SplatBits).getZExtValue(),
13386                                       SplatUndef.getZExtValue(), SplatBitSize,
13387                                       DAG, dl, VbicVT, VT, OtherModImm);
13388       if (Val.getNode()) {
13389         SDValue Input =
13390           DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
13391         SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
13392         return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
13393       }
13394     }
13395   }
13396 
13397   if (!Subtarget->isThumb1Only()) {
13398     // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
13399     if (SDValue Result = combineSelectAndUseCommutative(N, true, DCI))
13400       return Result;
13401 
13402     if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
13403       return Result;
13404   }
13405 
13406   if (Subtarget->isThumb1Only())
13407     if (SDValue Result = CombineANDShift(N, DCI, Subtarget))
13408       return Result;
13409 
13410   return SDValue();
13411 }
13412 
13413 // Try combining OR nodes to SMULWB, SMULWT.
PerformORCombineToSMULWBT(SDNode * OR,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)13414 static SDValue PerformORCombineToSMULWBT(SDNode *OR,
13415                                          TargetLowering::DAGCombinerInfo &DCI,
13416                                          const ARMSubtarget *Subtarget) {
13417   if (!Subtarget->hasV6Ops() ||
13418       (Subtarget->isThumb() &&
13419        (!Subtarget->hasThumb2() || !Subtarget->hasDSP())))
13420     return SDValue();
13421 
13422   SDValue SRL = OR->getOperand(0);
13423   SDValue SHL = OR->getOperand(1);
13424 
13425   if (SRL.getOpcode() != ISD::SRL || SHL.getOpcode() != ISD::SHL) {
13426     SRL = OR->getOperand(1);
13427     SHL = OR->getOperand(0);
13428   }
13429   if (!isSRL16(SRL) || !isSHL16(SHL))
13430     return SDValue();
13431 
13432   // The first operands to the shifts need to be the two results from the
13433   // same smul_lohi node.
13434   if ((SRL.getOperand(0).getNode() != SHL.getOperand(0).getNode()) ||
13435        SRL.getOperand(0).getOpcode() != ISD::SMUL_LOHI)
13436     return SDValue();
13437 
13438   SDNode *SMULLOHI = SRL.getOperand(0).getNode();
13439   if (SRL.getOperand(0) != SDValue(SMULLOHI, 0) ||
13440       SHL.getOperand(0) != SDValue(SMULLOHI, 1))
13441     return SDValue();
13442 
13443   // Now we have:
13444   // (or (srl (smul_lohi ?, ?), 16), (shl (smul_lohi ?, ?), 16)))
13445   // For SMUL[B|T] smul_lohi will take a 32-bit and a 16-bit arguments.
13446   // For SMUWB the 16-bit value will signed extended somehow.
13447   // For SMULWT only the SRA is required.
13448   // Check both sides of SMUL_LOHI
13449   SDValue OpS16 = SMULLOHI->getOperand(0);
13450   SDValue OpS32 = SMULLOHI->getOperand(1);
13451 
13452   SelectionDAG &DAG = DCI.DAG;
13453   if (!isS16(OpS16, DAG) && !isSRA16(OpS16)) {
13454     OpS16 = OpS32;
13455     OpS32 = SMULLOHI->getOperand(0);
13456   }
13457 
13458   SDLoc dl(OR);
13459   unsigned Opcode = 0;
13460   if (isS16(OpS16, DAG))
13461     Opcode = ARMISD::SMULWB;
13462   else if (isSRA16(OpS16)) {
13463     Opcode = ARMISD::SMULWT;
13464     OpS16 = OpS16->getOperand(0);
13465   }
13466   else
13467     return SDValue();
13468 
13469   SDValue Res = DAG.getNode(Opcode, dl, MVT::i32, OpS32, OpS16);
13470   DAG.ReplaceAllUsesOfValueWith(SDValue(OR, 0), Res);
13471   return SDValue(OR, 0);
13472 }
13473 
PerformORCombineToBFI(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)13474 static SDValue PerformORCombineToBFI(SDNode *N,
13475                                      TargetLowering::DAGCombinerInfo &DCI,
13476                                      const ARMSubtarget *Subtarget) {
13477   // BFI is only available on V6T2+
13478   if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
13479     return SDValue();
13480 
13481   EVT VT = N->getValueType(0);
13482   SDValue N0 = N->getOperand(0);
13483   SDValue N1 = N->getOperand(1);
13484   SelectionDAG &DAG = DCI.DAG;
13485   SDLoc DL(N);
13486   // 1) or (and A, mask), val => ARMbfi A, val, mask
13487   //      iff (val & mask) == val
13488   //
13489   // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
13490   //  2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
13491   //          && mask == ~mask2
13492   //  2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
13493   //          && ~mask == mask2
13494   //  (i.e., copy a bitfield value into another bitfield of the same width)
13495 
13496   if (VT != MVT::i32)
13497     return SDValue();
13498 
13499   SDValue N00 = N0.getOperand(0);
13500 
13501   // The value and the mask need to be constants so we can verify this is
13502   // actually a bitfield set. If the mask is 0xffff, we can do better
13503   // via a movt instruction, so don't use BFI in that case.
13504   SDValue MaskOp = N0.getOperand(1);
13505   ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
13506   if (!MaskC)
13507     return SDValue();
13508   unsigned Mask = MaskC->getZExtValue();
13509   if (Mask == 0xffff)
13510     return SDValue();
13511   SDValue Res;
13512   // Case (1): or (and A, mask), val => ARMbfi A, val, mask
13513   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
13514   if (N1C) {
13515     unsigned Val = N1C->getZExtValue();
13516     if ((Val & ~Mask) != Val)
13517       return SDValue();
13518 
13519     if (ARM::isBitFieldInvertedMask(Mask)) {
13520       Val >>= countTrailingZeros(~Mask);
13521 
13522       Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
13523                         DAG.getConstant(Val, DL, MVT::i32),
13524                         DAG.getConstant(Mask, DL, MVT::i32));
13525 
13526       DCI.CombineTo(N, Res, false);
13527       // Return value from the original node to inform the combiner than N is
13528       // now dead.
13529       return SDValue(N, 0);
13530     }
13531   } else if (N1.getOpcode() == ISD::AND) {
13532     // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
13533     ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
13534     if (!N11C)
13535       return SDValue();
13536     unsigned Mask2 = N11C->getZExtValue();
13537 
13538     // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
13539     // as is to match.
13540     if (ARM::isBitFieldInvertedMask(Mask) &&
13541         (Mask == ~Mask2)) {
13542       // The pack halfword instruction works better for masks that fit it,
13543       // so use that when it's available.
13544       if (Subtarget->hasDSP() &&
13545           (Mask == 0xffff || Mask == 0xffff0000))
13546         return SDValue();
13547       // 2a
13548       unsigned amt = countTrailingZeros(Mask2);
13549       Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
13550                         DAG.getConstant(amt, DL, MVT::i32));
13551       Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
13552                         DAG.getConstant(Mask, DL, MVT::i32));
13553       DCI.CombineTo(N, Res, false);
13554       // Return value from the original node to inform the combiner than N is
13555       // now dead.
13556       return SDValue(N, 0);
13557     } else if (ARM::isBitFieldInvertedMask(~Mask) &&
13558                (~Mask == Mask2)) {
13559       // The pack halfword instruction works better for masks that fit it,
13560       // so use that when it's available.
13561       if (Subtarget->hasDSP() &&
13562           (Mask2 == 0xffff || Mask2 == 0xffff0000))
13563         return SDValue();
13564       // 2b
13565       unsigned lsb = countTrailingZeros(Mask);
13566       Res = DAG.getNode(ISD::SRL, DL, VT, N00,
13567                         DAG.getConstant(lsb, DL, MVT::i32));
13568       Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
13569                         DAG.getConstant(Mask2, DL, MVT::i32));
13570       DCI.CombineTo(N, Res, false);
13571       // Return value from the original node to inform the combiner than N is
13572       // now dead.
13573       return SDValue(N, 0);
13574     }
13575   }
13576 
13577   if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
13578       N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
13579       ARM::isBitFieldInvertedMask(~Mask)) {
13580     // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
13581     // where lsb(mask) == #shamt and masked bits of B are known zero.
13582     SDValue ShAmt = N00.getOperand(1);
13583     unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
13584     unsigned LSB = countTrailingZeros(Mask);
13585     if (ShAmtC != LSB)
13586       return SDValue();
13587 
13588     Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
13589                       DAG.getConstant(~Mask, DL, MVT::i32));
13590 
13591     DCI.CombineTo(N, Res, false);
13592     // Return value from the original node to inform the combiner than N is
13593     // now dead.
13594     return SDValue(N, 0);
13595   }
13596 
13597   return SDValue();
13598 }
13599 
isValidMVECond(unsigned CC,bool IsFloat)13600 static bool isValidMVECond(unsigned CC, bool IsFloat) {
13601   switch (CC) {
13602   case ARMCC::EQ:
13603   case ARMCC::NE:
13604   case ARMCC::LE:
13605   case ARMCC::GT:
13606   case ARMCC::GE:
13607   case ARMCC::LT:
13608     return true;
13609   case ARMCC::HS:
13610   case ARMCC::HI:
13611     return !IsFloat;
13612   default:
13613     return false;
13614   };
13615 }
13616 
getVCMPCondCode(SDValue N)13617 static ARMCC::CondCodes getVCMPCondCode(SDValue N) {
13618   if (N->getOpcode() == ARMISD::VCMP)
13619     return (ARMCC::CondCodes)N->getConstantOperandVal(2);
13620   else if (N->getOpcode() == ARMISD::VCMPZ)
13621     return (ARMCC::CondCodes)N->getConstantOperandVal(1);
13622   else
13623     llvm_unreachable("Not a VCMP/VCMPZ!");
13624 }
13625 
CanInvertMVEVCMP(SDValue N)13626 static bool CanInvertMVEVCMP(SDValue N) {
13627   ARMCC::CondCodes CC = ARMCC::getOppositeCondition(getVCMPCondCode(N));
13628   return isValidMVECond(CC, N->getOperand(0).getValueType().isFloatingPoint());
13629 }
13630 
PerformORCombine_i1(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)13631 static SDValue PerformORCombine_i1(SDNode *N,
13632                                    TargetLowering::DAGCombinerInfo &DCI,
13633                                    const ARMSubtarget *Subtarget) {
13634   // Try to invert "or A, B" -> "and ~A, ~B", as the "and" is easier to chain
13635   // together with predicates
13636   EVT VT = N->getValueType(0);
13637   SDLoc DL(N);
13638   SDValue N0 = N->getOperand(0);
13639   SDValue N1 = N->getOperand(1);
13640 
13641   auto IsFreelyInvertable = [&](SDValue V) {
13642     if (V->getOpcode() == ARMISD::VCMP || V->getOpcode() == ARMISD::VCMPZ)
13643       return CanInvertMVEVCMP(V);
13644     return false;
13645   };
13646 
13647   // At least one operand must be freely invertable.
13648   if (!(IsFreelyInvertable(N0) || IsFreelyInvertable(N1)))
13649     return SDValue();
13650 
13651   SDValue NewN0 = DCI.DAG.getLogicalNOT(DL, N0, VT);
13652   SDValue NewN1 = DCI.DAG.getLogicalNOT(DL, N1, VT);
13653   SDValue And = DCI.DAG.getNode(ISD::AND, DL, VT, NewN0, NewN1);
13654   return DCI.DAG.getLogicalNOT(DL, And, VT);
13655 }
13656 
13657 /// PerformORCombine - Target-specific dag combine xforms for ISD::OR
PerformORCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)13658 static SDValue PerformORCombine(SDNode *N,
13659                                 TargetLowering::DAGCombinerInfo &DCI,
13660                                 const ARMSubtarget *Subtarget) {
13661   // Attempt to use immediate-form VORR
13662   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
13663   SDLoc dl(N);
13664   EVT VT = N->getValueType(0);
13665   SelectionDAG &DAG = DCI.DAG;
13666 
13667   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
13668     return SDValue();
13669 
13670   if (Subtarget->hasMVEIntegerOps() &&
13671       (VT == MVT::v4i1 || VT == MVT::v8i1 || VT == MVT::v16i1))
13672     return PerformORCombine_i1(N, DCI, Subtarget);
13673 
13674   APInt SplatBits, SplatUndef;
13675   unsigned SplatBitSize;
13676   bool HasAnyUndefs;
13677   if (BVN && (Subtarget->hasNEON() || Subtarget->hasMVEIntegerOps()) &&
13678       BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
13679     if (SplatBitSize == 8 || SplatBitSize == 16 || SplatBitSize == 32 ||
13680         SplatBitSize == 64) {
13681       EVT VorrVT;
13682       SDValue Val =
13683           isVMOVModifiedImm(SplatBits.getZExtValue(), SplatUndef.getZExtValue(),
13684                             SplatBitSize, DAG, dl, VorrVT, VT, OtherModImm);
13685       if (Val.getNode()) {
13686         SDValue Input =
13687           DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
13688         SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
13689         return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
13690       }
13691     }
13692   }
13693 
13694   if (!Subtarget->isThumb1Only()) {
13695     // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
13696     if (SDValue Result = combineSelectAndUseCommutative(N, false, DCI))
13697       return Result;
13698     if (SDValue Result = PerformORCombineToSMULWBT(N, DCI, Subtarget))
13699       return Result;
13700   }
13701 
13702   SDValue N0 = N->getOperand(0);
13703   SDValue N1 = N->getOperand(1);
13704 
13705   // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
13706   if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
13707       DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
13708 
13709     // The code below optimizes (or (and X, Y), Z).
13710     // The AND operand needs to have a single user to make these optimizations
13711     // profitable.
13712     if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
13713       return SDValue();
13714 
13715     APInt SplatUndef;
13716     unsigned SplatBitSize;
13717     bool HasAnyUndefs;
13718 
13719     APInt SplatBits0, SplatBits1;
13720     BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
13721     BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
13722     // Ensure that the second operand of both ands are constants
13723     if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
13724                                       HasAnyUndefs) && !HasAnyUndefs) {
13725         if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
13726                                           HasAnyUndefs) && !HasAnyUndefs) {
13727             // Ensure that the bit width of the constants are the same and that
13728             // the splat arguments are logical inverses as per the pattern we
13729             // are trying to simplify.
13730             if (SplatBits0.getBitWidth() == SplatBits1.getBitWidth() &&
13731                 SplatBits0 == ~SplatBits1) {
13732                 // Canonicalize the vector type to make instruction selection
13733                 // simpler.
13734                 EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
13735                 SDValue Result = DAG.getNode(ARMISD::VBSP, dl, CanonicalVT,
13736                                              N0->getOperand(1),
13737                                              N0->getOperand(0),
13738                                              N1->getOperand(0));
13739                 return DAG.getNode(ISD::BITCAST, dl, VT, Result);
13740             }
13741         }
13742     }
13743   }
13744 
13745   // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
13746   // reasonable.
13747   if (N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
13748     if (SDValue Res = PerformORCombineToBFI(N, DCI, Subtarget))
13749       return Res;
13750   }
13751 
13752   if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
13753     return Result;
13754 
13755   return SDValue();
13756 }
13757 
PerformXORCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)13758 static SDValue PerformXORCombine(SDNode *N,
13759                                  TargetLowering::DAGCombinerInfo &DCI,
13760                                  const ARMSubtarget *Subtarget) {
13761   EVT VT = N->getValueType(0);
13762   SelectionDAG &DAG = DCI.DAG;
13763 
13764   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
13765     return SDValue();
13766 
13767   if (!Subtarget->isThumb1Only()) {
13768     // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
13769     if (SDValue Result = combineSelectAndUseCommutative(N, false, DCI))
13770       return Result;
13771 
13772     if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
13773       return Result;
13774   }
13775 
13776   if (Subtarget->hasMVEIntegerOps()) {
13777     // fold (xor(vcmp/z, 1)) into a vcmp with the opposite condition.
13778     SDValue N0 = N->getOperand(0);
13779     SDValue N1 = N->getOperand(1);
13780     const TargetLowering *TLI = Subtarget->getTargetLowering();
13781     if (TLI->isConstTrueVal(N1.getNode()) &&
13782         (N0->getOpcode() == ARMISD::VCMP || N0->getOpcode() == ARMISD::VCMPZ)) {
13783       if (CanInvertMVEVCMP(N0)) {
13784         SDLoc DL(N0);
13785         ARMCC::CondCodes CC = ARMCC::getOppositeCondition(getVCMPCondCode(N0));
13786 
13787         SmallVector<SDValue, 4> Ops;
13788         Ops.push_back(N0->getOperand(0));
13789         if (N0->getOpcode() == ARMISD::VCMP)
13790           Ops.push_back(N0->getOperand(1));
13791         Ops.push_back(DCI.DAG.getConstant(CC, DL, MVT::i32));
13792         return DCI.DAG.getNode(N0->getOpcode(), DL, N0->getValueType(0), Ops);
13793       }
13794     }
13795   }
13796 
13797   return SDValue();
13798 }
13799 
13800 // ParseBFI - given a BFI instruction in N, extract the "from" value (Rn) and return it,
13801 // and fill in FromMask and ToMask with (consecutive) bits in "from" to be extracted and
13802 // their position in "to" (Rd).
ParseBFI(SDNode * N,APInt & ToMask,APInt & FromMask)13803 static SDValue ParseBFI(SDNode *N, APInt &ToMask, APInt &FromMask) {
13804   assert(N->getOpcode() == ARMISD::BFI);
13805 
13806   SDValue From = N->getOperand(1);
13807   ToMask = ~cast<ConstantSDNode>(N->getOperand(2))->getAPIntValue();
13808   FromMask = APInt::getLowBitsSet(ToMask.getBitWidth(), ToMask.countPopulation());
13809 
13810   // If the Base came from a SHR #C, we can deduce that it is really testing bit
13811   // #C in the base of the SHR.
13812   if (From->getOpcode() == ISD::SRL &&
13813       isa<ConstantSDNode>(From->getOperand(1))) {
13814     APInt Shift = cast<ConstantSDNode>(From->getOperand(1))->getAPIntValue();
13815     assert(Shift.getLimitedValue() < 32 && "Shift too large!");
13816     FromMask <<= Shift.getLimitedValue(31);
13817     From = From->getOperand(0);
13818   }
13819 
13820   return From;
13821 }
13822 
13823 // If A and B contain one contiguous set of bits, does A | B == A . B?
13824 //
13825 // Neither A nor B must be zero.
BitsProperlyConcatenate(const APInt & A,const APInt & B)13826 static bool BitsProperlyConcatenate(const APInt &A, const APInt &B) {
13827   unsigned LastActiveBitInA =  A.countTrailingZeros();
13828   unsigned FirstActiveBitInB = B.getBitWidth() - B.countLeadingZeros() - 1;
13829   return LastActiveBitInA - 1 == FirstActiveBitInB;
13830 }
13831 
FindBFIToCombineWith(SDNode * N)13832 static SDValue FindBFIToCombineWith(SDNode *N) {
13833   // We have a BFI in N. Follow a possible chain of BFIs and find a BFI it can combine with,
13834   // if one exists.
13835   APInt ToMask, FromMask;
13836   SDValue From = ParseBFI(N, ToMask, FromMask);
13837   SDValue To = N->getOperand(0);
13838 
13839   // Now check for a compatible BFI to merge with. We can pass through BFIs that
13840   // aren't compatible, but not if they set the same bit in their destination as
13841   // we do (or that of any BFI we're going to combine with).
13842   SDValue V = To;
13843   APInt CombinedToMask = ToMask;
13844   while (V.getOpcode() == ARMISD::BFI) {
13845     APInt NewToMask, NewFromMask;
13846     SDValue NewFrom = ParseBFI(V.getNode(), NewToMask, NewFromMask);
13847     if (NewFrom != From) {
13848       // This BFI has a different base. Keep going.
13849       CombinedToMask |= NewToMask;
13850       V = V.getOperand(0);
13851       continue;
13852     }
13853 
13854     // Do the written bits conflict with any we've seen so far?
13855     if ((NewToMask & CombinedToMask).getBoolValue())
13856       // Conflicting bits - bail out because going further is unsafe.
13857       return SDValue();
13858 
13859     // Are the new bits contiguous when combined with the old bits?
13860     if (BitsProperlyConcatenate(ToMask, NewToMask) &&
13861         BitsProperlyConcatenate(FromMask, NewFromMask))
13862       return V;
13863     if (BitsProperlyConcatenate(NewToMask, ToMask) &&
13864         BitsProperlyConcatenate(NewFromMask, FromMask))
13865       return V;
13866 
13867     // We've seen a write to some bits, so track it.
13868     CombinedToMask |= NewToMask;
13869     // Keep going...
13870     V = V.getOperand(0);
13871   }
13872 
13873   return SDValue();
13874 }
13875 
PerformBFICombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)13876 static SDValue PerformBFICombine(SDNode *N,
13877                                  TargetLowering::DAGCombinerInfo &DCI) {
13878   SDValue N1 = N->getOperand(1);
13879   if (N1.getOpcode() == ISD::AND) {
13880     // (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
13881     // the bits being cleared by the AND are not demanded by the BFI.
13882     ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
13883     if (!N11C)
13884       return SDValue();
13885     unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
13886     unsigned LSB = countTrailingZeros(~InvMask);
13887     unsigned Width = (32 - countLeadingZeros(~InvMask)) - LSB;
13888     assert(Width <
13889                static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
13890            "undefined behavior");
13891     unsigned Mask = (1u << Width) - 1;
13892     unsigned Mask2 = N11C->getZExtValue();
13893     if ((Mask & (~Mask2)) == 0)
13894       return DCI.DAG.getNode(ARMISD::BFI, SDLoc(N), N->getValueType(0),
13895                              N->getOperand(0), N1.getOperand(0),
13896                              N->getOperand(2));
13897   } else if (N->getOperand(0).getOpcode() == ARMISD::BFI) {
13898     // We have a BFI of a BFI. Walk up the BFI chain to see how long it goes.
13899     // Keep track of any consecutive bits set that all come from the same base
13900     // value. We can combine these together into a single BFI.
13901     SDValue CombineBFI = FindBFIToCombineWith(N);
13902     if (CombineBFI == SDValue())
13903       return SDValue();
13904 
13905     // We've found a BFI.
13906     APInt ToMask1, FromMask1;
13907     SDValue From1 = ParseBFI(N, ToMask1, FromMask1);
13908 
13909     APInt ToMask2, FromMask2;
13910     SDValue From2 = ParseBFI(CombineBFI.getNode(), ToMask2, FromMask2);
13911     assert(From1 == From2);
13912     (void)From2;
13913 
13914     // First, unlink CombineBFI.
13915     DCI.DAG.ReplaceAllUsesWith(CombineBFI, CombineBFI.getOperand(0));
13916     // Then create a new BFI, combining the two together.
13917     APInt NewFromMask = FromMask1 | FromMask2;
13918     APInt NewToMask = ToMask1 | ToMask2;
13919 
13920     EVT VT = N->getValueType(0);
13921     SDLoc dl(N);
13922 
13923     if (NewFromMask[0] == 0)
13924       From1 = DCI.DAG.getNode(
13925         ISD::SRL, dl, VT, From1,
13926         DCI.DAG.getConstant(NewFromMask.countTrailingZeros(), dl, VT));
13927     return DCI.DAG.getNode(ARMISD::BFI, dl, VT, N->getOperand(0), From1,
13928                            DCI.DAG.getConstant(~NewToMask, dl, VT));
13929   }
13930   return SDValue();
13931 }
13932 
13933 /// PerformVMOVRRDCombine - Target-specific dag combine xforms for
13934 /// ARMISD::VMOVRRD.
PerformVMOVRRDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)13935 static SDValue PerformVMOVRRDCombine(SDNode *N,
13936                                      TargetLowering::DAGCombinerInfo &DCI,
13937                                      const ARMSubtarget *Subtarget) {
13938   // vmovrrd(vmovdrr x, y) -> x,y
13939   SDValue InDouble = N->getOperand(0);
13940   if (InDouble.getOpcode() == ARMISD::VMOVDRR && Subtarget->hasFP64())
13941     return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
13942 
13943   // vmovrrd(load f64) -> (load i32), (load i32)
13944   SDNode *InNode = InDouble.getNode();
13945   if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
13946       InNode->getValueType(0) == MVT::f64 &&
13947       InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
13948       !cast<LoadSDNode>(InNode)->isVolatile()) {
13949     // TODO: Should this be done for non-FrameIndex operands?
13950     LoadSDNode *LD = cast<LoadSDNode>(InNode);
13951 
13952     SelectionDAG &DAG = DCI.DAG;
13953     SDLoc DL(LD);
13954     SDValue BasePtr = LD->getBasePtr();
13955     SDValue NewLD1 =
13956         DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr, LD->getPointerInfo(),
13957                     LD->getAlignment(), LD->getMemOperand()->getFlags());
13958 
13959     SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
13960                                     DAG.getConstant(4, DL, MVT::i32));
13961 
13962     SDValue NewLD2 = DAG.getLoad(MVT::i32, DL, LD->getChain(), OffsetPtr,
13963                                  LD->getPointerInfo().getWithOffset(4),
13964                                  std::min(4U, LD->getAlignment()),
13965                                  LD->getMemOperand()->getFlags());
13966 
13967     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
13968     if (DCI.DAG.getDataLayout().isBigEndian())
13969       std::swap (NewLD1, NewLD2);
13970     SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
13971     return Result;
13972   }
13973 
13974   // VMOVRRD(extract(..(build_vector(a, b, c, d)))) -> a,b or c,d
13975   // VMOVRRD(extract(insert_vector(insert_vector(.., a, l1), b, l2))) -> a,b
13976   if (InDouble.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
13977       isa<ConstantSDNode>(InDouble.getOperand(1))) {
13978     SDValue BV = InDouble.getOperand(0);
13979     // Look up through any nop bitcasts and vector_reg_casts. bitcasts may
13980     // change lane order under big endian.
13981     bool BVSwap = BV.getOpcode() == ISD::BITCAST;
13982     while (
13983         (BV.getOpcode() == ISD::BITCAST ||
13984          BV.getOpcode() == ARMISD::VECTOR_REG_CAST) &&
13985         (BV.getValueType() == MVT::v2f64 || BV.getValueType() == MVT::v2i64)) {
13986       BVSwap = BV.getOpcode() == ISD::BITCAST;
13987       BV = BV.getOperand(0);
13988     }
13989     if (BV.getValueType() != MVT::v4i32)
13990       return SDValue();
13991 
13992     // Handle buildvectors, pulling out the correct lane depending on
13993     // endianness.
13994     unsigned Offset = InDouble.getConstantOperandVal(1) == 1 ? 2 : 0;
13995     if (BV.getOpcode() == ISD::BUILD_VECTOR) {
13996       SDValue Op0 = BV.getOperand(Offset);
13997       SDValue Op1 = BV.getOperand(Offset + 1);
13998       if (!Subtarget->isLittle() && BVSwap)
13999         std::swap(Op0, Op1);
14000 
14001       return DCI.DAG.getMergeValues({Op0, Op1}, SDLoc(N));
14002     }
14003 
14004     // A chain of insert_vectors, grabbing the correct value of the chain of
14005     // inserts.
14006     SDValue Op0, Op1;
14007     while (BV.getOpcode() == ISD::INSERT_VECTOR_ELT) {
14008       if (isa<ConstantSDNode>(BV.getOperand(2))) {
14009         if (BV.getConstantOperandVal(2) == Offset)
14010           Op0 = BV.getOperand(1);
14011         if (BV.getConstantOperandVal(2) == Offset + 1)
14012           Op1 = BV.getOperand(1);
14013       }
14014       BV = BV.getOperand(0);
14015     }
14016     if (!Subtarget->isLittle() && BVSwap)
14017       std::swap(Op0, Op1);
14018     if (Op0 && Op1)
14019       return DCI.DAG.getMergeValues({Op0, Op1}, SDLoc(N));
14020   }
14021 
14022   return SDValue();
14023 }
14024 
14025 /// PerformVMOVDRRCombine - Target-specific dag combine xforms for
14026 /// ARMISD::VMOVDRR.  This is also used for BUILD_VECTORs with 2 operands.
PerformVMOVDRRCombine(SDNode * N,SelectionDAG & DAG)14027 static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
14028   // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
14029   SDValue Op0 = N->getOperand(0);
14030   SDValue Op1 = N->getOperand(1);
14031   if (Op0.getOpcode() == ISD::BITCAST)
14032     Op0 = Op0.getOperand(0);
14033   if (Op1.getOpcode() == ISD::BITCAST)
14034     Op1 = Op1.getOperand(0);
14035   if (Op0.getOpcode() == ARMISD::VMOVRRD &&
14036       Op0.getNode() == Op1.getNode() &&
14037       Op0.getResNo() == 0 && Op1.getResNo() == 1)
14038     return DAG.getNode(ISD::BITCAST, SDLoc(N),
14039                        N->getValueType(0), Op0.getOperand(0));
14040   return SDValue();
14041 }
14042 
PerformVMOVhrCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)14043 static SDValue PerformVMOVhrCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
14044   SDValue Op0 = N->getOperand(0);
14045 
14046   // VMOVhr (VMOVrh (X)) -> X
14047   if (Op0->getOpcode() == ARMISD::VMOVrh)
14048     return Op0->getOperand(0);
14049 
14050   // FullFP16: half values are passed in S-registers, and we don't
14051   // need any of the bitcast and moves:
14052   //
14053   //     t2: f32,ch = CopyFromReg t0, Register:f32 %0
14054   //   t5: i32 = bitcast t2
14055   // t18: f16 = ARMISD::VMOVhr t5
14056   if (Op0->getOpcode() == ISD::BITCAST) {
14057     SDValue Copy = Op0->getOperand(0);
14058     if (Copy.getValueType() == MVT::f32 &&
14059         Copy->getOpcode() == ISD::CopyFromReg) {
14060       SDValue Ops[] = {Copy->getOperand(0), Copy->getOperand(1)};
14061       SDValue NewCopy =
14062           DCI.DAG.getNode(ISD::CopyFromReg, SDLoc(N), N->getValueType(0), Ops);
14063       return NewCopy;
14064     }
14065   }
14066 
14067   // fold (VMOVhr (load x)) -> (load (f16*)x)
14068   if (LoadSDNode *LN0 = dyn_cast<LoadSDNode>(Op0)) {
14069     if (LN0->hasOneUse() && LN0->isUnindexed() &&
14070         LN0->getMemoryVT() == MVT::i16) {
14071       SDValue Load =
14072           DCI.DAG.getLoad(N->getValueType(0), SDLoc(N), LN0->getChain(),
14073                           LN0->getBasePtr(), LN0->getMemOperand());
14074       DCI.DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Load.getValue(0));
14075       DCI.DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), Load.getValue(1));
14076       return Load;
14077     }
14078   }
14079 
14080   // Only the bottom 16 bits of the source register are used.
14081   APInt DemandedMask = APInt::getLowBitsSet(32, 16);
14082   const TargetLowering &TLI = DCI.DAG.getTargetLoweringInfo();
14083   if (TLI.SimplifyDemandedBits(Op0, DemandedMask, DCI))
14084     return SDValue(N, 0);
14085 
14086   return SDValue();
14087 }
14088 
PerformVMOVrhCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)14089 static SDValue PerformVMOVrhCombine(SDNode *N,
14090                                     TargetLowering::DAGCombinerInfo &DCI) {
14091   SDValue N0 = N->getOperand(0);
14092   EVT VT = N->getValueType(0);
14093 
14094   // fold (VMOVrh (fpconst x)) -> const x
14095   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N0)) {
14096     APFloat V = C->getValueAPF();
14097     return DCI.DAG.getConstant(V.bitcastToAPInt().getZExtValue(), SDLoc(N), VT);
14098   }
14099 
14100   // fold (VMOVrh (load x)) -> (zextload (i16*)x)
14101   if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse()) {
14102     LoadSDNode *LN0 = cast<LoadSDNode>(N0);
14103 
14104     SDValue Load =
14105         DCI.DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT, LN0->getChain(),
14106                            LN0->getBasePtr(), MVT::i16, LN0->getMemOperand());
14107     DCI.DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Load.getValue(0));
14108     DCI.DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
14109     return Load;
14110   }
14111 
14112   // Fold VMOVrh(extract(x, n)) -> vgetlaneu(x, n)
14113   if (N0->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
14114       isa<ConstantSDNode>(N0->getOperand(1)))
14115     return DCI.DAG.getNode(ARMISD::VGETLANEu, SDLoc(N), VT, N0->getOperand(0),
14116                            N0->getOperand(1));
14117 
14118   return SDValue();
14119 }
14120 
14121 /// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
14122 /// are normal, non-volatile loads.  If so, it is profitable to bitcast an
14123 /// i64 vector to have f64 elements, since the value can then be loaded
14124 /// directly into a VFP register.
hasNormalLoadOperand(SDNode * N)14125 static bool hasNormalLoadOperand(SDNode *N) {
14126   unsigned NumElts = N->getValueType(0).getVectorNumElements();
14127   for (unsigned i = 0; i < NumElts; ++i) {
14128     SDNode *Elt = N->getOperand(i).getNode();
14129     if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
14130       return true;
14131   }
14132   return false;
14133 }
14134 
14135 /// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
14136 /// ISD::BUILD_VECTOR.
PerformBUILD_VECTORCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)14137 static SDValue PerformBUILD_VECTORCombine(SDNode *N,
14138                                           TargetLowering::DAGCombinerInfo &DCI,
14139                                           const ARMSubtarget *Subtarget) {
14140   // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
14141   // VMOVRRD is introduced when legalizing i64 types.  It forces the i64 value
14142   // into a pair of GPRs, which is fine when the value is used as a scalar,
14143   // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
14144   SelectionDAG &DAG = DCI.DAG;
14145   if (N->getNumOperands() == 2)
14146     if (SDValue RV = PerformVMOVDRRCombine(N, DAG))
14147       return RV;
14148 
14149   // Load i64 elements as f64 values so that type legalization does not split
14150   // them up into i32 values.
14151   EVT VT = N->getValueType(0);
14152   if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
14153     return SDValue();
14154   SDLoc dl(N);
14155   SmallVector<SDValue, 8> Ops;
14156   unsigned NumElts = VT.getVectorNumElements();
14157   for (unsigned i = 0; i < NumElts; ++i) {
14158     SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
14159     Ops.push_back(V);
14160     // Make the DAGCombiner fold the bitcast.
14161     DCI.AddToWorklist(V.getNode());
14162   }
14163   EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
14164   SDValue BV = DAG.getBuildVector(FloatVT, dl, Ops);
14165   return DAG.getNode(ISD::BITCAST, dl, VT, BV);
14166 }
14167 
14168 /// Target-specific dag combine xforms for ARMISD::BUILD_VECTOR.
14169 static SDValue
PerformARMBUILD_VECTORCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)14170 PerformARMBUILD_VECTORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
14171   // ARMISD::BUILD_VECTOR is introduced when legalizing ISD::BUILD_VECTOR.
14172   // At that time, we may have inserted bitcasts from integer to float.
14173   // If these bitcasts have survived DAGCombine, change the lowering of this
14174   // BUILD_VECTOR in something more vector friendly, i.e., that does not
14175   // force to use floating point types.
14176 
14177   // Make sure we can change the type of the vector.
14178   // This is possible iff:
14179   // 1. The vector is only used in a bitcast to a integer type. I.e.,
14180   //    1.1. Vector is used only once.
14181   //    1.2. Use is a bit convert to an integer type.
14182   // 2. The size of its operands are 32-bits (64-bits are not legal).
14183   EVT VT = N->getValueType(0);
14184   EVT EltVT = VT.getVectorElementType();
14185 
14186   // Check 1.1. and 2.
14187   if (EltVT.getSizeInBits() != 32 || !N->hasOneUse())
14188     return SDValue();
14189 
14190   // By construction, the input type must be float.
14191   assert(EltVT == MVT::f32 && "Unexpected type!");
14192 
14193   // Check 1.2.
14194   SDNode *Use = *N->use_begin();
14195   if (Use->getOpcode() != ISD::BITCAST ||
14196       Use->getValueType(0).isFloatingPoint())
14197     return SDValue();
14198 
14199   // Check profitability.
14200   // Model is, if more than half of the relevant operands are bitcast from
14201   // i32, turn the build_vector into a sequence of insert_vector_elt.
14202   // Relevant operands are everything that is not statically
14203   // (i.e., at compile time) bitcasted.
14204   unsigned NumOfBitCastedElts = 0;
14205   unsigned NumElts = VT.getVectorNumElements();
14206   unsigned NumOfRelevantElts = NumElts;
14207   for (unsigned Idx = 0; Idx < NumElts; ++Idx) {
14208     SDValue Elt = N->getOperand(Idx);
14209     if (Elt->getOpcode() == ISD::BITCAST) {
14210       // Assume only bit cast to i32 will go away.
14211       if (Elt->getOperand(0).getValueType() == MVT::i32)
14212         ++NumOfBitCastedElts;
14213     } else if (Elt.isUndef() || isa<ConstantSDNode>(Elt))
14214       // Constants are statically casted, thus do not count them as
14215       // relevant operands.
14216       --NumOfRelevantElts;
14217   }
14218 
14219   // Check if more than half of the elements require a non-free bitcast.
14220   if (NumOfBitCastedElts <= NumOfRelevantElts / 2)
14221     return SDValue();
14222 
14223   SelectionDAG &DAG = DCI.DAG;
14224   // Create the new vector type.
14225   EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
14226   // Check if the type is legal.
14227   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14228   if (!TLI.isTypeLegal(VecVT))
14229     return SDValue();
14230 
14231   // Combine:
14232   // ARMISD::BUILD_VECTOR E1, E2, ..., EN.
14233   // => BITCAST INSERT_VECTOR_ELT
14234   //                      (INSERT_VECTOR_ELT (...), (BITCAST EN-1), N-1),
14235   //                      (BITCAST EN), N.
14236   SDValue Vec = DAG.getUNDEF(VecVT);
14237   SDLoc dl(N);
14238   for (unsigned Idx = 0 ; Idx < NumElts; ++Idx) {
14239     SDValue V = N->getOperand(Idx);
14240     if (V.isUndef())
14241       continue;
14242     if (V.getOpcode() == ISD::BITCAST &&
14243         V->getOperand(0).getValueType() == MVT::i32)
14244       // Fold obvious case.
14245       V = V.getOperand(0);
14246     else {
14247       V = DAG.getNode(ISD::BITCAST, SDLoc(V), MVT::i32, V);
14248       // Make the DAGCombiner fold the bitcasts.
14249       DCI.AddToWorklist(V.getNode());
14250     }
14251     SDValue LaneIdx = DAG.getConstant(Idx, dl, MVT::i32);
14252     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VecVT, Vec, V, LaneIdx);
14253   }
14254   Vec = DAG.getNode(ISD::BITCAST, dl, VT, Vec);
14255   // Make the DAGCombiner fold the bitcasts.
14256   DCI.AddToWorklist(Vec.getNode());
14257   return Vec;
14258 }
14259 
14260 static SDValue
PerformPREDICATE_CASTCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)14261 PerformPREDICATE_CASTCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
14262   EVT VT = N->getValueType(0);
14263   SDValue Op = N->getOperand(0);
14264   SDLoc dl(N);
14265 
14266   // PREDICATE_CAST(PREDICATE_CAST(x)) == PREDICATE_CAST(x)
14267   if (Op->getOpcode() == ARMISD::PREDICATE_CAST) {
14268     // If the valuetypes are the same, we can remove the cast entirely.
14269     if (Op->getOperand(0).getValueType() == VT)
14270       return Op->getOperand(0);
14271     return DCI.DAG.getNode(ARMISD::PREDICATE_CAST, dl, VT, Op->getOperand(0));
14272   }
14273 
14274   // Turn pred_cast(xor x, -1) into xor(pred_cast x, -1), in order to produce
14275   // more VPNOT which might get folded as else predicates.
14276   if (Op.getValueType() == MVT::i32 && isBitwiseNot(Op)) {
14277     SDValue X =
14278         DCI.DAG.getNode(ARMISD::PREDICATE_CAST, dl, VT, Op->getOperand(0));
14279     SDValue C = DCI.DAG.getNode(ARMISD::PREDICATE_CAST, dl, VT,
14280                                 DCI.DAG.getConstant(65535, dl, MVT::i32));
14281     return DCI.DAG.getNode(ISD::XOR, dl, VT, X, C);
14282   }
14283 
14284   // Only the bottom 16 bits of the source register are used.
14285   if (Op.getValueType() == MVT::i32) {
14286     APInt DemandedMask = APInt::getLowBitsSet(32, 16);
14287     const TargetLowering &TLI = DCI.DAG.getTargetLoweringInfo();
14288     if (TLI.SimplifyDemandedBits(Op, DemandedMask, DCI))
14289       return SDValue(N, 0);
14290   }
14291   return SDValue();
14292 }
14293 
14294 static SDValue
PerformVECTOR_REG_CASTCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * ST)14295 PerformVECTOR_REG_CASTCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
14296                               const ARMSubtarget *ST) {
14297   EVT VT = N->getValueType(0);
14298   SDValue Op = N->getOperand(0);
14299   SDLoc dl(N);
14300 
14301   // Under Little endian, a VECTOR_REG_CAST is equivalent to a BITCAST
14302   if (ST->isLittle())
14303     return DCI.DAG.getNode(ISD::BITCAST, dl, VT, Op);
14304 
14305   // VECTOR_REG_CAST undef -> undef
14306   if (Op.isUndef())
14307     return DCI.DAG.getUNDEF(VT);
14308 
14309   // VECTOR_REG_CAST(VECTOR_REG_CAST(x)) == VECTOR_REG_CAST(x)
14310   if (Op->getOpcode() == ARMISD::VECTOR_REG_CAST) {
14311     // If the valuetypes are the same, we can remove the cast entirely.
14312     if (Op->getOperand(0).getValueType() == VT)
14313       return Op->getOperand(0);
14314     return DCI.DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, VT, Op->getOperand(0));
14315   }
14316 
14317   return SDValue();
14318 }
14319 
PerformVCMPCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)14320 static SDValue PerformVCMPCombine(SDNode *N,
14321                                   TargetLowering::DAGCombinerInfo &DCI,
14322                                   const ARMSubtarget *Subtarget) {
14323   if (!Subtarget->hasMVEIntegerOps())
14324     return SDValue();
14325 
14326   EVT VT = N->getValueType(0);
14327   SDValue Op0 = N->getOperand(0);
14328   SDValue Op1 = N->getOperand(1);
14329   ARMCC::CondCodes Cond =
14330       (ARMCC::CondCodes)cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
14331   SDLoc dl(N);
14332 
14333   // vcmp X, 0, cc -> vcmpz X, cc
14334   if (isZeroVector(Op1))
14335     return DCI.DAG.getNode(ARMISD::VCMPZ, dl, VT, Op0,
14336                            N->getOperand(2));
14337 
14338   unsigned SwappedCond = getSwappedCondition(Cond);
14339   if (isValidMVECond(SwappedCond, VT.isFloatingPoint())) {
14340     // vcmp 0, X, cc -> vcmpz X, reversed(cc)
14341     if (isZeroVector(Op0))
14342       return DCI.DAG.getNode(ARMISD::VCMPZ, dl, VT, Op1,
14343                              DCI.DAG.getConstant(SwappedCond, dl, MVT::i32));
14344     // vcmp vdup(Y), X, cc -> vcmp X, vdup(Y), reversed(cc)
14345     if (Op0->getOpcode() == ARMISD::VDUP && Op1->getOpcode() != ARMISD::VDUP)
14346       return DCI.DAG.getNode(ARMISD::VCMP, dl, VT, Op1, Op0,
14347                              DCI.DAG.getConstant(SwappedCond, dl, MVT::i32));
14348   }
14349 
14350   return SDValue();
14351 }
14352 
14353 /// PerformInsertEltCombine - Target-specific dag combine xforms for
14354 /// ISD::INSERT_VECTOR_ELT.
PerformInsertEltCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)14355 static SDValue PerformInsertEltCombine(SDNode *N,
14356                                        TargetLowering::DAGCombinerInfo &DCI) {
14357   // Bitcast an i64 load inserted into a vector to f64.
14358   // Otherwise, the i64 value will be legalized to a pair of i32 values.
14359   EVT VT = N->getValueType(0);
14360   SDNode *Elt = N->getOperand(1).getNode();
14361   if (VT.getVectorElementType() != MVT::i64 ||
14362       !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
14363     return SDValue();
14364 
14365   SelectionDAG &DAG = DCI.DAG;
14366   SDLoc dl(N);
14367   EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
14368                                  VT.getVectorNumElements());
14369   SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
14370   SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
14371   // Make the DAGCombiner fold the bitcasts.
14372   DCI.AddToWorklist(Vec.getNode());
14373   DCI.AddToWorklist(V.getNode());
14374   SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
14375                                Vec, V, N->getOperand(2));
14376   return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
14377 }
14378 
14379 // Convert a pair of extracts from the same base vector to a VMOVRRD. Either
14380 // directly or bitcast to an integer if the original is a float vector.
14381 // extract(x, n); extract(x, n+1)  ->  VMOVRRD(extract v2f64 x, n/2)
14382 // bitcast(extract(x, n)); bitcast(extract(x, n+1))  ->  VMOVRRD(extract x, n/2)
14383 static SDValue
PerformExtractEltToVMOVRRD(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)14384 PerformExtractEltToVMOVRRD(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
14385   EVT VT = N->getValueType(0);
14386   SDLoc dl(N);
14387 
14388   if (!DCI.isAfterLegalizeDAG() || VT != MVT::i32 ||
14389       !DCI.DAG.getTargetLoweringInfo().isTypeLegal(MVT::f64))
14390     return SDValue();
14391 
14392   SDValue Ext = SDValue(N, 0);
14393   if (Ext.getOpcode() == ISD::BITCAST &&
14394       Ext.getOperand(0).getValueType() == MVT::f32)
14395     Ext = Ext.getOperand(0);
14396   if (Ext.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
14397       !isa<ConstantSDNode>(Ext.getOperand(1)) ||
14398       Ext.getConstantOperandVal(1) % 2 != 0)
14399     return SDValue();
14400   if (Ext->use_size() == 1 &&
14401       (Ext->use_begin()->getOpcode() == ISD::SINT_TO_FP ||
14402        Ext->use_begin()->getOpcode() == ISD::UINT_TO_FP))
14403     return SDValue();
14404 
14405   SDValue Op0 = Ext.getOperand(0);
14406   EVT VecVT = Op0.getValueType();
14407   unsigned Lane = Ext.getConstantOperandVal(1);
14408   if (VecVT.getVectorNumElements() != 4)
14409     return SDValue();
14410 
14411   // Find another extract, of Lane + 1
14412   auto OtherIt = find_if(Op0->uses(), [&](SDNode *V) {
14413     return V->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
14414            isa<ConstantSDNode>(V->getOperand(1)) &&
14415            V->getConstantOperandVal(1) == Lane + 1;
14416   });
14417   if (OtherIt == Op0->uses().end())
14418     return SDValue();
14419 
14420   // For float extracts, we need to be converting to a i32 for both vector
14421   // lanes.
14422   SDValue OtherExt(*OtherIt, 0);
14423   if (OtherExt.getValueType() != MVT::i32) {
14424     if (OtherExt->use_size() != 1 ||
14425         OtherExt->use_begin()->getOpcode() != ISD::BITCAST ||
14426         OtherExt->use_begin()->getValueType(0) != MVT::i32)
14427       return SDValue();
14428     OtherExt = SDValue(*OtherExt->use_begin(), 0);
14429   }
14430 
14431   // Convert the type to a f64 and extract with a VMOVRRD.
14432   SDValue F64 = DCI.DAG.getNode(
14433       ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
14434       DCI.DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, MVT::v2f64, Op0),
14435       DCI.DAG.getConstant(Ext.getConstantOperandVal(1) / 2, dl, MVT::i32));
14436   SDValue VMOVRRD =
14437       DCI.DAG.getNode(ARMISD::VMOVRRD, dl, {MVT::i32, MVT::i32}, F64);
14438 
14439   DCI.CombineTo(OtherExt.getNode(), SDValue(VMOVRRD.getNode(), 1));
14440   return VMOVRRD;
14441 }
14442 
PerformExtractEltCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * ST)14443 static SDValue PerformExtractEltCombine(SDNode *N,
14444                                         TargetLowering::DAGCombinerInfo &DCI,
14445                                         const ARMSubtarget *ST) {
14446   SDValue Op0 = N->getOperand(0);
14447   EVT VT = N->getValueType(0);
14448   SDLoc dl(N);
14449 
14450   // extract (vdup x) -> x
14451   if (Op0->getOpcode() == ARMISD::VDUP) {
14452     SDValue X = Op0->getOperand(0);
14453     if (VT == MVT::f16 && X.getValueType() == MVT::i32)
14454       return DCI.DAG.getNode(ARMISD::VMOVhr, dl, VT, X);
14455     if (VT == MVT::i32 && X.getValueType() == MVT::f16)
14456       return DCI.DAG.getNode(ARMISD::VMOVrh, dl, VT, X);
14457 
14458     while (X.getValueType() != VT && X->getOpcode() == ISD::BITCAST)
14459       X = X->getOperand(0);
14460     if (X.getValueType() == VT)
14461       return X;
14462   }
14463 
14464   // extract(bitcast(BUILD_VECTOR(VMOVDRR(a, b), ..))) -> a or b
14465   if (Op0.getValueType() == MVT::v4i32 &&
14466       isa<ConstantSDNode>(N->getOperand(1)) &&
14467       Op0.getOpcode() == ISD::BITCAST &&
14468       Op0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR &&
14469       Op0.getOperand(0).getValueType() == MVT::v2f64) {
14470     SDValue BV = Op0.getOperand(0);
14471     unsigned Offset = N->getConstantOperandVal(1);
14472     SDValue MOV = BV.getOperand(Offset < 2 ? 0 : 1);
14473     if (MOV.getOpcode() == ARMISD::VMOVDRR)
14474       return MOV.getOperand(ST->isLittle() ? Offset % 2 : 1 - Offset % 2);
14475   }
14476 
14477   // extract x, n; extract x, n+1  ->  VMOVRRD x
14478   if (SDValue R = PerformExtractEltToVMOVRRD(N, DCI))
14479     return R;
14480 
14481   return SDValue();
14482 }
14483 
PerformSignExtendInregCombine(SDNode * N,SelectionDAG & DAG)14484 static SDValue PerformSignExtendInregCombine(SDNode *N, SelectionDAG &DAG) {
14485   SDValue Op = N->getOperand(0);
14486   EVT VT = N->getValueType(0);
14487 
14488   // sext_inreg(VGETLANEu) -> VGETLANEs
14489   if (Op.getOpcode() == ARMISD::VGETLANEu &&
14490       cast<VTSDNode>(N->getOperand(1))->getVT() ==
14491           Op.getOperand(0).getValueType().getScalarType())
14492     return DAG.getNode(ARMISD::VGETLANEs, SDLoc(N), VT, Op.getOperand(0),
14493                        Op.getOperand(1));
14494 
14495   return SDValue();
14496 }
14497 
14498 // When lowering complex nodes that we recognize, like VQDMULH and MULH, we
14499 // can end up with shuffle(binop(shuffle, shuffle)), that can be simplified to
14500 // binop as the shuffles cancel out.
FlattenVectorShuffle(ShuffleVectorSDNode * N,SelectionDAG & DAG)14501 static SDValue FlattenVectorShuffle(ShuffleVectorSDNode *N, SelectionDAG &DAG) {
14502   EVT VT = N->getValueType(0);
14503   if (!N->getOperand(1).isUndef() || N->getOperand(0).getValueType() != VT)
14504     return SDValue();
14505   SDValue Op = N->getOperand(0);
14506 
14507   // Looking for binary operators that will have been folded from
14508   // truncates/extends.
14509   switch (Op.getOpcode()) {
14510   case ARMISD::VQDMULH:
14511   case ISD::MULHS:
14512   case ISD::MULHU:
14513     break;
14514   default:
14515     return SDValue();
14516   }
14517 
14518   ShuffleVectorSDNode *Op0 = dyn_cast<ShuffleVectorSDNode>(Op.getOperand(0));
14519   ShuffleVectorSDNode *Op1 = dyn_cast<ShuffleVectorSDNode>(Op.getOperand(1));
14520   if (!Op0 || !Op1 || !Op0->getOperand(1).isUndef() ||
14521       !Op1->getOperand(1).isUndef() || Op0->getMask() != Op1->getMask() ||
14522       Op0->getOperand(0).getValueType() != VT)
14523     return SDValue();
14524 
14525   // Check the mask turns into an identity shuffle.
14526   ArrayRef<int> NMask = N->getMask();
14527   ArrayRef<int> OpMask = Op0->getMask();
14528   for (int i = 0, e = NMask.size(); i != e; i++) {
14529     if (NMask[i] > 0 && OpMask[NMask[i]] > 0 && OpMask[NMask[i]] != i)
14530       return SDValue();
14531   }
14532 
14533   return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
14534                      Op0->getOperand(0), Op1->getOperand(0));
14535 }
14536 
14537 /// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
14538 /// ISD::VECTOR_SHUFFLE.
PerformVECTOR_SHUFFLECombine(SDNode * N,SelectionDAG & DAG)14539 static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
14540   if (SDValue R = FlattenVectorShuffle(cast<ShuffleVectorSDNode>(N), DAG))
14541     return R;
14542 
14543   // The LLVM shufflevector instruction does not require the shuffle mask
14544   // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
14545   // have that requirement.  When translating to ISD::VECTOR_SHUFFLE, if the
14546   // operands do not match the mask length, they are extended by concatenating
14547   // them with undef vectors.  That is probably the right thing for other
14548   // targets, but for NEON it is better to concatenate two double-register
14549   // size vector operands into a single quad-register size vector.  Do that
14550   // transformation here:
14551   //   shuffle(concat(v1, undef), concat(v2, undef)) ->
14552   //   shuffle(concat(v1, v2), undef)
14553   SDValue Op0 = N->getOperand(0);
14554   SDValue Op1 = N->getOperand(1);
14555   if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
14556       Op1.getOpcode() != ISD::CONCAT_VECTORS ||
14557       Op0.getNumOperands() != 2 ||
14558       Op1.getNumOperands() != 2)
14559     return SDValue();
14560   SDValue Concat0Op1 = Op0.getOperand(1);
14561   SDValue Concat1Op1 = Op1.getOperand(1);
14562   if (!Concat0Op1.isUndef() || !Concat1Op1.isUndef())
14563     return SDValue();
14564   // Skip the transformation if any of the types are illegal.
14565   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14566   EVT VT = N->getValueType(0);
14567   if (!TLI.isTypeLegal(VT) ||
14568       !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
14569       !TLI.isTypeLegal(Concat1Op1.getValueType()))
14570     return SDValue();
14571 
14572   SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
14573                                   Op0.getOperand(0), Op1.getOperand(0));
14574   // Translate the shuffle mask.
14575   SmallVector<int, 16> NewMask;
14576   unsigned NumElts = VT.getVectorNumElements();
14577   unsigned HalfElts = NumElts/2;
14578   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
14579   for (unsigned n = 0; n < NumElts; ++n) {
14580     int MaskElt = SVN->getMaskElt(n);
14581     int NewElt = -1;
14582     if (MaskElt < (int)HalfElts)
14583       NewElt = MaskElt;
14584     else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
14585       NewElt = HalfElts + MaskElt - NumElts;
14586     NewMask.push_back(NewElt);
14587   }
14588   return DAG.getVectorShuffle(VT, SDLoc(N), NewConcat,
14589                               DAG.getUNDEF(VT), NewMask);
14590 }
14591 
14592 /// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP,
14593 /// NEON load/store intrinsics, and generic vector load/stores, to merge
14594 /// base address updates.
14595 /// For generic load/stores, the memory type is assumed to be a vector.
14596 /// The caller is assumed to have checked legality.
CombineBaseUpdate(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)14597 static SDValue CombineBaseUpdate(SDNode *N,
14598                                  TargetLowering::DAGCombinerInfo &DCI) {
14599   SelectionDAG &DAG = DCI.DAG;
14600   const bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
14601                             N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
14602   const bool isStore = N->getOpcode() == ISD::STORE;
14603   const unsigned AddrOpIdx = ((isIntrinsic || isStore) ? 2 : 1);
14604   SDValue Addr = N->getOperand(AddrOpIdx);
14605   MemSDNode *MemN = cast<MemSDNode>(N);
14606   SDLoc dl(N);
14607 
14608   // Search for a use of the address operand that is an increment.
14609   for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
14610          UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
14611     SDNode *User = *UI;
14612     if (User->getOpcode() != ISD::ADD ||
14613         UI.getUse().getResNo() != Addr.getResNo())
14614       continue;
14615 
14616     // Check that the add is independent of the load/store.  Otherwise, folding
14617     // it would create a cycle. We can avoid searching through Addr as it's a
14618     // predecessor to both.
14619     SmallPtrSet<const SDNode *, 32> Visited;
14620     SmallVector<const SDNode *, 16> Worklist;
14621     Visited.insert(Addr.getNode());
14622     Worklist.push_back(N);
14623     Worklist.push_back(User);
14624     if (SDNode::hasPredecessorHelper(N, Visited, Worklist) ||
14625         SDNode::hasPredecessorHelper(User, Visited, Worklist))
14626       continue;
14627 
14628     // Find the new opcode for the updating load/store.
14629     bool isLoadOp = true;
14630     bool isLaneOp = false;
14631     // Workaround for vst1x and vld1x which do not have alignment operand.
14632     bool hasAlignment = true;
14633     unsigned NewOpc = 0;
14634     unsigned NumVecs = 0;
14635     if (isIntrinsic) {
14636       unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
14637       switch (IntNo) {
14638       default: llvm_unreachable("unexpected intrinsic for Neon base update");
14639       case Intrinsic::arm_neon_vld1:     NewOpc = ARMISD::VLD1_UPD;
14640         NumVecs = 1; break;
14641       case Intrinsic::arm_neon_vld2:     NewOpc = ARMISD::VLD2_UPD;
14642         NumVecs = 2; break;
14643       case Intrinsic::arm_neon_vld3:     NewOpc = ARMISD::VLD3_UPD;
14644         NumVecs = 3; break;
14645       case Intrinsic::arm_neon_vld4:     NewOpc = ARMISD::VLD4_UPD;
14646         NumVecs = 4; break;
14647       case Intrinsic::arm_neon_vld1x2:
14648       case Intrinsic::arm_neon_vld1x3:
14649       case Intrinsic::arm_neon_vld1x4:
14650       case Intrinsic::arm_neon_vld2dup:
14651       case Intrinsic::arm_neon_vld3dup:
14652       case Intrinsic::arm_neon_vld4dup:
14653         // TODO: Support updating VLD1x and VLDxDUP nodes. For now, we just skip
14654         // combining base updates for such intrinsics.
14655         continue;
14656       case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD;
14657         NumVecs = 2; isLaneOp = true; break;
14658       case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD;
14659         NumVecs = 3; isLaneOp = true; break;
14660       case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD;
14661         NumVecs = 4; isLaneOp = true; break;
14662       case Intrinsic::arm_neon_vst1:     NewOpc = ARMISD::VST1_UPD;
14663         NumVecs = 1; isLoadOp = false; break;
14664       case Intrinsic::arm_neon_vst2:     NewOpc = ARMISD::VST2_UPD;
14665         NumVecs = 2; isLoadOp = false; break;
14666       case Intrinsic::arm_neon_vst3:     NewOpc = ARMISD::VST3_UPD;
14667         NumVecs = 3; isLoadOp = false; break;
14668       case Intrinsic::arm_neon_vst4:     NewOpc = ARMISD::VST4_UPD;
14669         NumVecs = 4; isLoadOp = false; break;
14670       case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD;
14671         NumVecs = 2; isLoadOp = false; isLaneOp = true; break;
14672       case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD;
14673         NumVecs = 3; isLoadOp = false; isLaneOp = true; break;
14674       case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD;
14675         NumVecs = 4; isLoadOp = false; isLaneOp = true; break;
14676       case Intrinsic::arm_neon_vst1x2:   NewOpc = ARMISD::VST1x2_UPD;
14677         NumVecs = 2; isLoadOp = false; hasAlignment = false; break;
14678       case Intrinsic::arm_neon_vst1x3:   NewOpc = ARMISD::VST1x3_UPD;
14679         NumVecs = 3; isLoadOp = false; hasAlignment = false; break;
14680       case Intrinsic::arm_neon_vst1x4:   NewOpc = ARMISD::VST1x4_UPD;
14681         NumVecs = 4; isLoadOp = false; hasAlignment = false; break;
14682       }
14683     } else {
14684       isLaneOp = true;
14685       switch (N->getOpcode()) {
14686       default: llvm_unreachable("unexpected opcode for Neon base update");
14687       case ARMISD::VLD1DUP: NewOpc = ARMISD::VLD1DUP_UPD; NumVecs = 1; break;
14688       case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
14689       case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
14690       case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
14691       case ISD::LOAD:       NewOpc = ARMISD::VLD1_UPD;
14692         NumVecs = 1; isLaneOp = false; break;
14693       case ISD::STORE:      NewOpc = ARMISD::VST1_UPD;
14694         NumVecs = 1; isLaneOp = false; isLoadOp = false; break;
14695       }
14696     }
14697 
14698     // Find the size of memory referenced by the load/store.
14699     EVT VecTy;
14700     if (isLoadOp) {
14701       VecTy = N->getValueType(0);
14702     } else if (isIntrinsic) {
14703       VecTy = N->getOperand(AddrOpIdx+1).getValueType();
14704     } else {
14705       assert(isStore && "Node has to be a load, a store, or an intrinsic!");
14706       VecTy = N->getOperand(1).getValueType();
14707     }
14708 
14709     unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
14710     if (isLaneOp)
14711       NumBytes /= VecTy.getVectorNumElements();
14712 
14713     // If the increment is a constant, it must match the memory ref size.
14714     SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
14715     ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode());
14716     if (NumBytes >= 3 * 16 && (!CInc || CInc->getZExtValue() != NumBytes)) {
14717       // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
14718       // separate instructions that make it harder to use a non-constant update.
14719       continue;
14720     }
14721 
14722     // OK, we found an ADD we can fold into the base update.
14723     // Now, create a _UPD node, taking care of not breaking alignment.
14724 
14725     EVT AlignedVecTy = VecTy;
14726     unsigned Alignment = MemN->getAlignment();
14727 
14728     // If this is a less-than-standard-aligned load/store, change the type to
14729     // match the standard alignment.
14730     // The alignment is overlooked when selecting _UPD variants; and it's
14731     // easier to introduce bitcasts here than fix that.
14732     // There are 3 ways to get to this base-update combine:
14733     // - intrinsics: they are assumed to be properly aligned (to the standard
14734     //   alignment of the memory type), so we don't need to do anything.
14735     // - ARMISD::VLDx nodes: they are only generated from the aforementioned
14736     //   intrinsics, so, likewise, there's nothing to do.
14737     // - generic load/store instructions: the alignment is specified as an
14738     //   explicit operand, rather than implicitly as the standard alignment
14739     //   of the memory type (like the intrisics).  We need to change the
14740     //   memory type to match the explicit alignment.  That way, we don't
14741     //   generate non-standard-aligned ARMISD::VLDx nodes.
14742     if (isa<LSBaseSDNode>(N)) {
14743       if (Alignment == 0)
14744         Alignment = 1;
14745       if (Alignment < VecTy.getScalarSizeInBits() / 8) {
14746         MVT EltTy = MVT::getIntegerVT(Alignment * 8);
14747         assert(NumVecs == 1 && "Unexpected multi-element generic load/store.");
14748         assert(!isLaneOp && "Unexpected generic load/store lane.");
14749         unsigned NumElts = NumBytes / (EltTy.getSizeInBits() / 8);
14750         AlignedVecTy = MVT::getVectorVT(EltTy, NumElts);
14751       }
14752       // Don't set an explicit alignment on regular load/stores that we want
14753       // to transform to VLD/VST 1_UPD nodes.
14754       // This matches the behavior of regular load/stores, which only get an
14755       // explicit alignment if the MMO alignment is larger than the standard
14756       // alignment of the memory type.
14757       // Intrinsics, however, always get an explicit alignment, set to the
14758       // alignment of the MMO.
14759       Alignment = 1;
14760     }
14761 
14762     // Create the new updating load/store node.
14763     // First, create an SDVTList for the new updating node's results.
14764     EVT Tys[6];
14765     unsigned NumResultVecs = (isLoadOp ? NumVecs : 0);
14766     unsigned n;
14767     for (n = 0; n < NumResultVecs; ++n)
14768       Tys[n] = AlignedVecTy;
14769     Tys[n++] = MVT::i32;
14770     Tys[n] = MVT::Other;
14771     SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs+2));
14772 
14773     // Then, gather the new node's operands.
14774     SmallVector<SDValue, 8> Ops;
14775     Ops.push_back(N->getOperand(0)); // incoming chain
14776     Ops.push_back(N->getOperand(AddrOpIdx));
14777     Ops.push_back(Inc);
14778 
14779     if (StoreSDNode *StN = dyn_cast<StoreSDNode>(N)) {
14780       // Try to match the intrinsic's signature
14781       Ops.push_back(StN->getValue());
14782     } else {
14783       // Loads (and of course intrinsics) match the intrinsics' signature,
14784       // so just add all but the alignment operand.
14785       unsigned LastOperand =
14786           hasAlignment ? N->getNumOperands() - 1 : N->getNumOperands();
14787       for (unsigned i = AddrOpIdx + 1; i < LastOperand; ++i)
14788         Ops.push_back(N->getOperand(i));
14789     }
14790 
14791     // For all node types, the alignment operand is always the last one.
14792     Ops.push_back(DAG.getConstant(Alignment, dl, MVT::i32));
14793 
14794     // If this is a non-standard-aligned STORE, the penultimate operand is the
14795     // stored value.  Bitcast it to the aligned type.
14796     if (AlignedVecTy != VecTy && N->getOpcode() == ISD::STORE) {
14797       SDValue &StVal = Ops[Ops.size()-2];
14798       StVal = DAG.getNode(ISD::BITCAST, dl, AlignedVecTy, StVal);
14799     }
14800 
14801     EVT LoadVT = isLaneOp ? VecTy.getVectorElementType() : AlignedVecTy;
14802     SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, dl, SDTys, Ops, LoadVT,
14803                                            MemN->getMemOperand());
14804 
14805     // Update the uses.
14806     SmallVector<SDValue, 5> NewResults;
14807     for (unsigned i = 0; i < NumResultVecs; ++i)
14808       NewResults.push_back(SDValue(UpdN.getNode(), i));
14809 
14810     // If this is an non-standard-aligned LOAD, the first result is the loaded
14811     // value.  Bitcast it to the expected result type.
14812     if (AlignedVecTy != VecTy && N->getOpcode() == ISD::LOAD) {
14813       SDValue &LdVal = NewResults[0];
14814       LdVal = DAG.getNode(ISD::BITCAST, dl, VecTy, LdVal);
14815     }
14816 
14817     NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
14818     DCI.CombineTo(N, NewResults);
14819     DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
14820 
14821     break;
14822   }
14823   return SDValue();
14824 }
14825 
PerformVLDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)14826 static SDValue PerformVLDCombine(SDNode *N,
14827                                  TargetLowering::DAGCombinerInfo &DCI) {
14828   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
14829     return SDValue();
14830 
14831   return CombineBaseUpdate(N, DCI);
14832 }
14833 
PerformMVEVLDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)14834 static SDValue PerformMVEVLDCombine(SDNode *N,
14835                                     TargetLowering::DAGCombinerInfo &DCI) {
14836   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
14837     return SDValue();
14838 
14839   SelectionDAG &DAG = DCI.DAG;
14840   SDValue Addr = N->getOperand(2);
14841   MemSDNode *MemN = cast<MemSDNode>(N);
14842   SDLoc dl(N);
14843 
14844   // For the stores, where there are multiple intrinsics we only actually want
14845   // to post-inc the last of the them.
14846   unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
14847   if (IntNo == Intrinsic::arm_mve_vst2q &&
14848       cast<ConstantSDNode>(N->getOperand(5))->getZExtValue() != 1)
14849     return SDValue();
14850   if (IntNo == Intrinsic::arm_mve_vst4q &&
14851       cast<ConstantSDNode>(N->getOperand(7))->getZExtValue() != 3)
14852     return SDValue();
14853 
14854   // Search for a use of the address operand that is an increment.
14855   for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
14856                             UE = Addr.getNode()->use_end();
14857        UI != UE; ++UI) {
14858     SDNode *User = *UI;
14859     if (User->getOpcode() != ISD::ADD ||
14860         UI.getUse().getResNo() != Addr.getResNo())
14861       continue;
14862 
14863     // Check that the add is independent of the load/store.  Otherwise, folding
14864     // it would create a cycle. We can avoid searching through Addr as it's a
14865     // predecessor to both.
14866     SmallPtrSet<const SDNode *, 32> Visited;
14867     SmallVector<const SDNode *, 16> Worklist;
14868     Visited.insert(Addr.getNode());
14869     Worklist.push_back(N);
14870     Worklist.push_back(User);
14871     if (SDNode::hasPredecessorHelper(N, Visited, Worklist) ||
14872         SDNode::hasPredecessorHelper(User, Visited, Worklist))
14873       continue;
14874 
14875     // Find the new opcode for the updating load/store.
14876     bool isLoadOp = true;
14877     unsigned NewOpc = 0;
14878     unsigned NumVecs = 0;
14879     switch (IntNo) {
14880     default:
14881       llvm_unreachable("unexpected intrinsic for MVE VLDn combine");
14882     case Intrinsic::arm_mve_vld2q:
14883       NewOpc = ARMISD::VLD2_UPD;
14884       NumVecs = 2;
14885       break;
14886     case Intrinsic::arm_mve_vld4q:
14887       NewOpc = ARMISD::VLD4_UPD;
14888       NumVecs = 4;
14889       break;
14890     case Intrinsic::arm_mve_vst2q:
14891       NewOpc = ARMISD::VST2_UPD;
14892       NumVecs = 2;
14893       isLoadOp = false;
14894       break;
14895     case Intrinsic::arm_mve_vst4q:
14896       NewOpc = ARMISD::VST4_UPD;
14897       NumVecs = 4;
14898       isLoadOp = false;
14899       break;
14900     }
14901 
14902     // Find the size of memory referenced by the load/store.
14903     EVT VecTy;
14904     if (isLoadOp) {
14905       VecTy = N->getValueType(0);
14906     } else {
14907       VecTy = N->getOperand(3).getValueType();
14908     }
14909 
14910     unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
14911 
14912     // If the increment is a constant, it must match the memory ref size.
14913     SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
14914     ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode());
14915     if (!CInc || CInc->getZExtValue() != NumBytes)
14916       continue;
14917 
14918     // Create the new updating load/store node.
14919     // First, create an SDVTList for the new updating node's results.
14920     EVT Tys[6];
14921     unsigned NumResultVecs = (isLoadOp ? NumVecs : 0);
14922     unsigned n;
14923     for (n = 0; n < NumResultVecs; ++n)
14924       Tys[n] = VecTy;
14925     Tys[n++] = MVT::i32;
14926     Tys[n] = MVT::Other;
14927     SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs + 2));
14928 
14929     // Then, gather the new node's operands.
14930     SmallVector<SDValue, 8> Ops;
14931     Ops.push_back(N->getOperand(0)); // incoming chain
14932     Ops.push_back(N->getOperand(2)); // ptr
14933     Ops.push_back(Inc);
14934 
14935     for (unsigned i = 3; i < N->getNumOperands(); ++i)
14936       Ops.push_back(N->getOperand(i));
14937 
14938     SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, dl, SDTys, Ops, VecTy,
14939                                            MemN->getMemOperand());
14940 
14941     // Update the uses.
14942     SmallVector<SDValue, 5> NewResults;
14943     for (unsigned i = 0; i < NumResultVecs; ++i)
14944       NewResults.push_back(SDValue(UpdN.getNode(), i));
14945 
14946     NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1)); // chain
14947     DCI.CombineTo(N, NewResults);
14948     DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
14949 
14950     break;
14951   }
14952 
14953   return SDValue();
14954 }
14955 
14956 /// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
14957 /// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
14958 /// are also VDUPLANEs.  If so, combine them to a vldN-dup operation and
14959 /// return true.
CombineVLDDUP(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)14960 static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
14961   SelectionDAG &DAG = DCI.DAG;
14962   EVT VT = N->getValueType(0);
14963   // vldN-dup instructions only support 64-bit vectors for N > 1.
14964   if (!VT.is64BitVector())
14965     return false;
14966 
14967   // Check if the VDUPLANE operand is a vldN-dup intrinsic.
14968   SDNode *VLD = N->getOperand(0).getNode();
14969   if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
14970     return false;
14971   unsigned NumVecs = 0;
14972   unsigned NewOpc = 0;
14973   unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
14974   if (IntNo == Intrinsic::arm_neon_vld2lane) {
14975     NumVecs = 2;
14976     NewOpc = ARMISD::VLD2DUP;
14977   } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
14978     NumVecs = 3;
14979     NewOpc = ARMISD::VLD3DUP;
14980   } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
14981     NumVecs = 4;
14982     NewOpc = ARMISD::VLD4DUP;
14983   } else {
14984     return false;
14985   }
14986 
14987   // First check that all the vldN-lane uses are VDUPLANEs and that the lane
14988   // numbers match the load.
14989   unsigned VLDLaneNo =
14990     cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
14991   for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
14992        UI != UE; ++UI) {
14993     // Ignore uses of the chain result.
14994     if (UI.getUse().getResNo() == NumVecs)
14995       continue;
14996     SDNode *User = *UI;
14997     if (User->getOpcode() != ARMISD::VDUPLANE ||
14998         VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
14999       return false;
15000   }
15001 
15002   // Create the vldN-dup node.
15003   EVT Tys[5];
15004   unsigned n;
15005   for (n = 0; n < NumVecs; ++n)
15006     Tys[n] = VT;
15007   Tys[n] = MVT::Other;
15008   SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumVecs+1));
15009   SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
15010   MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
15011   SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, SDLoc(VLD), SDTys,
15012                                            Ops, VLDMemInt->getMemoryVT(),
15013                                            VLDMemInt->getMemOperand());
15014 
15015   // Update the uses.
15016   for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
15017        UI != UE; ++UI) {
15018     unsigned ResNo = UI.getUse().getResNo();
15019     // Ignore uses of the chain result.
15020     if (ResNo == NumVecs)
15021       continue;
15022     SDNode *User = *UI;
15023     DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
15024   }
15025 
15026   // Now the vldN-lane intrinsic is dead except for its chain result.
15027   // Update uses of the chain.
15028   std::vector<SDValue> VLDDupResults;
15029   for (unsigned n = 0; n < NumVecs; ++n)
15030     VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
15031   VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
15032   DCI.CombineTo(VLD, VLDDupResults);
15033 
15034   return true;
15035 }
15036 
15037 /// PerformVDUPLANECombine - Target-specific dag combine xforms for
15038 /// ARMISD::VDUPLANE.
PerformVDUPLANECombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)15039 static SDValue PerformVDUPLANECombine(SDNode *N,
15040                                       TargetLowering::DAGCombinerInfo &DCI,
15041                                       const ARMSubtarget *Subtarget) {
15042   SDValue Op = N->getOperand(0);
15043   EVT VT = N->getValueType(0);
15044 
15045   // On MVE, we just convert the VDUPLANE to a VDUP with an extract.
15046   if (Subtarget->hasMVEIntegerOps()) {
15047     EVT ExtractVT = VT.getVectorElementType();
15048     // We need to ensure we are creating a legal type.
15049     if (!DCI.DAG.getTargetLoweringInfo().isTypeLegal(ExtractVT))
15050       ExtractVT = MVT::i32;
15051     SDValue Extract = DCI.DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), ExtractVT,
15052                               N->getOperand(0), N->getOperand(1));
15053     return DCI.DAG.getNode(ARMISD::VDUP, SDLoc(N), VT, Extract);
15054   }
15055 
15056   // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
15057   // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
15058   if (CombineVLDDUP(N, DCI))
15059     return SDValue(N, 0);
15060 
15061   // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
15062   // redundant.  Ignore bit_converts for now; element sizes are checked below.
15063   while (Op.getOpcode() == ISD::BITCAST)
15064     Op = Op.getOperand(0);
15065   if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
15066     return SDValue();
15067 
15068   // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
15069   unsigned EltSize = Op.getScalarValueSizeInBits();
15070   // The canonical VMOV for a zero vector uses a 32-bit element size.
15071   unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
15072   unsigned EltBits;
15073   if (ARM_AM::decodeVMOVModImm(Imm, EltBits) == 0)
15074     EltSize = 8;
15075   if (EltSize > VT.getScalarSizeInBits())
15076     return SDValue();
15077 
15078   return DCI.DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
15079 }
15080 
15081 /// PerformVDUPCombine - Target-specific dag combine xforms for ARMISD::VDUP.
PerformVDUPCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)15082 static SDValue PerformVDUPCombine(SDNode *N,
15083                                   TargetLowering::DAGCombinerInfo &DCI,
15084                                   const ARMSubtarget *Subtarget) {
15085   SelectionDAG &DAG = DCI.DAG;
15086   SDValue Op = N->getOperand(0);
15087   SDLoc dl(N);
15088 
15089   if (Subtarget->hasMVEIntegerOps()) {
15090     // Convert VDUP f32 -> VDUP BITCAST i32 under MVE, as we know the value will
15091     // need to come from a GPR.
15092     if (Op.getValueType() == MVT::f32)
15093       return DCI.DAG.getNode(ARMISD::VDUP, dl, N->getValueType(0),
15094                              DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op));
15095     else if (Op.getValueType() == MVT::f16)
15096       return DCI.DAG.getNode(ARMISD::VDUP, dl, N->getValueType(0),
15097                              DAG.getNode(ARMISD::VMOVrh, dl, MVT::i32, Op));
15098   }
15099 
15100   if (!Subtarget->hasNEON())
15101     return SDValue();
15102 
15103   // Match VDUP(LOAD) -> VLD1DUP.
15104   // We match this pattern here rather than waiting for isel because the
15105   // transform is only legal for unindexed loads.
15106   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode());
15107   if (LD && Op.hasOneUse() && LD->isUnindexed() &&
15108       LD->getMemoryVT() == N->getValueType(0).getVectorElementType()) {
15109     SDValue Ops[] = { LD->getOperand(0), LD->getOperand(1),
15110                       DAG.getConstant(LD->getAlignment(), SDLoc(N), MVT::i32) };
15111     SDVTList SDTys = DAG.getVTList(N->getValueType(0), MVT::Other);
15112     SDValue VLDDup = DAG.getMemIntrinsicNode(ARMISD::VLD1DUP, SDLoc(N), SDTys,
15113                                              Ops, LD->getMemoryVT(),
15114                                              LD->getMemOperand());
15115     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), VLDDup.getValue(1));
15116     return VLDDup;
15117   }
15118 
15119   return SDValue();
15120 }
15121 
PerformLOADCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)15122 static SDValue PerformLOADCombine(SDNode *N,
15123                                   TargetLowering::DAGCombinerInfo &DCI) {
15124   EVT VT = N->getValueType(0);
15125 
15126   // If this is a legal vector load, try to combine it into a VLD1_UPD.
15127   if (ISD::isNormalLoad(N) && VT.isVector() &&
15128       DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
15129     return CombineBaseUpdate(N, DCI);
15130 
15131   return SDValue();
15132 }
15133 
15134 // Optimize trunc store (of multiple scalars) to shuffle and store.  First,
15135 // pack all of the elements in one place.  Next, store to memory in fewer
15136 // chunks.
PerformTruncatingStoreCombine(StoreSDNode * St,SelectionDAG & DAG)15137 static SDValue PerformTruncatingStoreCombine(StoreSDNode *St,
15138                                              SelectionDAG &DAG) {
15139   SDValue StVal = St->getValue();
15140   EVT VT = StVal.getValueType();
15141   if (!St->isTruncatingStore() || !VT.isVector())
15142     return SDValue();
15143   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15144   EVT StVT = St->getMemoryVT();
15145   unsigned NumElems = VT.getVectorNumElements();
15146   assert(StVT != VT && "Cannot truncate to the same type");
15147   unsigned FromEltSz = VT.getScalarSizeInBits();
15148   unsigned ToEltSz = StVT.getScalarSizeInBits();
15149 
15150   // From, To sizes and ElemCount must be pow of two
15151   if (!isPowerOf2_32(NumElems * FromEltSz * ToEltSz))
15152     return SDValue();
15153 
15154   // We are going to use the original vector elt for storing.
15155   // Accumulated smaller vector elements must be a multiple of the store size.
15156   if (0 != (NumElems * FromEltSz) % ToEltSz)
15157     return SDValue();
15158 
15159   unsigned SizeRatio = FromEltSz / ToEltSz;
15160   assert(SizeRatio * NumElems * ToEltSz == VT.getSizeInBits());
15161 
15162   // Create a type on which we perform the shuffle.
15163   EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(),
15164                                    NumElems * SizeRatio);
15165   assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
15166 
15167   SDLoc DL(St);
15168   SDValue WideVec = DAG.getNode(ISD::BITCAST, DL, WideVecVT, StVal);
15169   SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
15170   for (unsigned i = 0; i < NumElems; ++i)
15171     ShuffleVec[i] = DAG.getDataLayout().isBigEndian() ? (i + 1) * SizeRatio - 1
15172                                                       : i * SizeRatio;
15173 
15174   // Can't shuffle using an illegal type.
15175   if (!TLI.isTypeLegal(WideVecVT))
15176     return SDValue();
15177 
15178   SDValue Shuff = DAG.getVectorShuffle(
15179       WideVecVT, DL, WideVec, DAG.getUNDEF(WideVec.getValueType()), ShuffleVec);
15180   // At this point all of the data is stored at the bottom of the
15181   // register. We now need to save it to mem.
15182 
15183   // Find the largest store unit
15184   MVT StoreType = MVT::i8;
15185   for (MVT Tp : MVT::integer_valuetypes()) {
15186     if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToEltSz)
15187       StoreType = Tp;
15188   }
15189   // Didn't find a legal store type.
15190   if (!TLI.isTypeLegal(StoreType))
15191     return SDValue();
15192 
15193   // Bitcast the original vector into a vector of store-size units
15194   EVT StoreVecVT =
15195       EVT::getVectorVT(*DAG.getContext(), StoreType,
15196                        VT.getSizeInBits() / EVT(StoreType).getSizeInBits());
15197   assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
15198   SDValue ShuffWide = DAG.getNode(ISD::BITCAST, DL, StoreVecVT, Shuff);
15199   SmallVector<SDValue, 8> Chains;
15200   SDValue Increment = DAG.getConstant(StoreType.getSizeInBits() / 8, DL,
15201                                       TLI.getPointerTy(DAG.getDataLayout()));
15202   SDValue BasePtr = St->getBasePtr();
15203 
15204   // Perform one or more big stores into memory.
15205   unsigned E = (ToEltSz * NumElems) / StoreType.getSizeInBits();
15206   for (unsigned I = 0; I < E; I++) {
15207     SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, StoreType,
15208                                  ShuffWide, DAG.getIntPtrConstant(I, DL));
15209     SDValue Ch =
15210         DAG.getStore(St->getChain(), DL, SubVec, BasePtr, St->getPointerInfo(),
15211                      St->getAlignment(), St->getMemOperand()->getFlags());
15212     BasePtr =
15213         DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr, Increment);
15214     Chains.push_back(Ch);
15215   }
15216   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
15217 }
15218 
15219 // Try taking a single vector store from an truncate (which would otherwise turn
15220 // into an expensive buildvector) and splitting it into a series of narrowing
15221 // stores.
PerformSplittingToNarrowingStores(StoreSDNode * St,SelectionDAG & DAG)15222 static SDValue PerformSplittingToNarrowingStores(StoreSDNode *St,
15223                                                  SelectionDAG &DAG) {
15224   if (!St->isSimple() || St->isTruncatingStore() || !St->isUnindexed())
15225     return SDValue();
15226   SDValue Trunc = St->getValue();
15227   if (Trunc->getOpcode() != ISD::TRUNCATE && Trunc->getOpcode() != ISD::FP_ROUND)
15228     return SDValue();
15229   EVT FromVT = Trunc->getOperand(0).getValueType();
15230   EVT ToVT = Trunc.getValueType();
15231   if (!ToVT.isVector())
15232     return SDValue();
15233   assert(FromVT.getVectorNumElements() == ToVT.getVectorNumElements());
15234   EVT ToEltVT = ToVT.getVectorElementType();
15235   EVT FromEltVT = FromVT.getVectorElementType();
15236 
15237   unsigned NumElements = 0;
15238   if (FromEltVT == MVT::i32 && (ToEltVT == MVT::i16 || ToEltVT == MVT::i8))
15239     NumElements = 4;
15240   if (FromEltVT == MVT::i16 && ToEltVT == MVT::i8)
15241     NumElements = 8;
15242   if (FromEltVT == MVT::f32 && ToEltVT == MVT::f16)
15243     NumElements = 4;
15244   if (NumElements == 0 ||
15245       (FromEltVT != MVT::f32 && FromVT.getVectorNumElements() == NumElements) ||
15246       FromVT.getVectorNumElements() % NumElements != 0)
15247     return SDValue();
15248 
15249   // Test if the Trunc will be convertable to a VMOVN with a shuffle, and if so
15250   // use the VMOVN over splitting the store. We are looking for patterns of:
15251   // !rev: 0 N 1 N+1 2 N+2 ...
15252   //  rev: N 0 N+1 1 N+2 2 ...
15253   // The shuffle may either be a single source (in which case N = NumElts/2) or
15254   // two inputs extended with concat to the same size (in which case N =
15255   // NumElts).
15256   auto isVMOVNShuffle = [&](ShuffleVectorSDNode *SVN, bool Rev) {
15257     ArrayRef<int> M = SVN->getMask();
15258     unsigned NumElts = ToVT.getVectorNumElements();
15259     if (SVN->getOperand(1).isUndef())
15260       NumElts /= 2;
15261 
15262     unsigned Off0 = Rev ? NumElts : 0;
15263     unsigned Off1 = Rev ? 0 : NumElts;
15264 
15265     for (unsigned I = 0; I < NumElts; I += 2) {
15266       if (M[I] >= 0 && M[I] != (int)(Off0 + I / 2))
15267         return false;
15268       if (M[I + 1] >= 0 && M[I + 1] != (int)(Off1 + I / 2))
15269         return false;
15270     }
15271 
15272     return true;
15273   };
15274 
15275   // It may be preferable to keep the store unsplit as the trunc may end up
15276   // being removed. Check that here.
15277   if (Trunc.getOperand(0).getOpcode() == ISD::SMIN) {
15278     if (SDValue U = PerformVQDMULHCombine(Trunc.getOperand(0).getNode(), DAG)) {
15279       DAG.ReplaceAllUsesWith(Trunc.getOperand(0), U);
15280       return SDValue();
15281     }
15282   }
15283   if (auto *Shuffle = dyn_cast<ShuffleVectorSDNode>(Trunc.getOperand(0)))
15284     if (isVMOVNShuffle(Shuffle, false) || isVMOVNShuffle(Shuffle, true))
15285       return SDValue();
15286 
15287   LLVMContext &C = *DAG.getContext();
15288   SDLoc DL(St);
15289   // Details about the old store
15290   SDValue Ch = St->getChain();
15291   SDValue BasePtr = St->getBasePtr();
15292   Align Alignment = St->getOriginalAlign();
15293   MachineMemOperand::Flags MMOFlags = St->getMemOperand()->getFlags();
15294   AAMDNodes AAInfo = St->getAAInfo();
15295 
15296   // We split the store into slices of NumElements. fp16 trunc stores are vcvt
15297   // and then stored as truncating integer stores.
15298   EVT NewFromVT = EVT::getVectorVT(C, FromEltVT, NumElements);
15299   EVT NewToVT = EVT::getVectorVT(
15300       C, EVT::getIntegerVT(C, ToEltVT.getSizeInBits()), NumElements);
15301 
15302   SmallVector<SDValue, 4> Stores;
15303   for (unsigned i = 0; i < FromVT.getVectorNumElements() / NumElements; i++) {
15304     unsigned NewOffset = i * NumElements * ToEltVT.getSizeInBits() / 8;
15305     SDValue NewPtr =
15306         DAG.getObjectPtrOffset(DL, BasePtr, TypeSize::Fixed(NewOffset));
15307 
15308     SDValue Extract =
15309         DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NewFromVT, Trunc.getOperand(0),
15310                     DAG.getConstant(i * NumElements, DL, MVT::i32));
15311 
15312     if (ToEltVT == MVT::f16) {
15313       SDValue FPTrunc =
15314           DAG.getNode(ARMISD::VCVTN, DL, MVT::v8f16, DAG.getUNDEF(MVT::v8f16),
15315                       Extract, DAG.getConstant(0, DL, MVT::i32));
15316       Extract = DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, MVT::v4i32, FPTrunc);
15317     }
15318 
15319     SDValue Store = DAG.getTruncStore(
15320         Ch, DL, Extract, NewPtr, St->getPointerInfo().getWithOffset(NewOffset),
15321         NewToVT, Alignment.value(), MMOFlags, AAInfo);
15322     Stores.push_back(Store);
15323   }
15324   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Stores);
15325 }
15326 
15327 // Given a floating point store from an extracted vector, with an integer
15328 // VGETLANE that already exists, store the existing VGETLANEu directly. This can
15329 // help reduce fp register pressure, doesn't require the fp extract and allows
15330 // use of more integer post-inc stores not available with vstr.
PerformExtractFpToIntStores(StoreSDNode * St,SelectionDAG & DAG)15331 static SDValue PerformExtractFpToIntStores(StoreSDNode *St, SelectionDAG &DAG) {
15332   if (!St->isSimple() || St->isTruncatingStore() || !St->isUnindexed())
15333     return SDValue();
15334   SDValue Extract = St->getValue();
15335   EVT VT = Extract.getValueType();
15336   // For now only uses f16. This may be useful for f32 too, but that will
15337   // be bitcast(extract), not the VGETLANEu we currently check here.
15338   if (VT != MVT::f16 || Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
15339     return SDValue();
15340 
15341   SDNode *GetLane =
15342       DAG.getNodeIfExists(ARMISD::VGETLANEu, DAG.getVTList(MVT::i32),
15343                           {Extract.getOperand(0), Extract.getOperand(1)});
15344   if (!GetLane)
15345     return SDValue();
15346 
15347   LLVMContext &C = *DAG.getContext();
15348   SDLoc DL(St);
15349   // Create a new integer store to replace the existing floating point version.
15350   SDValue Ch = St->getChain();
15351   SDValue BasePtr = St->getBasePtr();
15352   Align Alignment = St->getOriginalAlign();
15353   MachineMemOperand::Flags MMOFlags = St->getMemOperand()->getFlags();
15354   AAMDNodes AAInfo = St->getAAInfo();
15355   EVT NewToVT = EVT::getIntegerVT(C, VT.getSizeInBits());
15356   SDValue Store = DAG.getTruncStore(Ch, DL, SDValue(GetLane, 0), BasePtr,
15357                                     St->getPointerInfo(), NewToVT,
15358                                     Alignment.value(), MMOFlags, AAInfo);
15359 
15360   return Store;
15361 }
15362 
15363 /// PerformSTORECombine - Target-specific dag combine xforms for
15364 /// ISD::STORE.
PerformSTORECombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)15365 static SDValue PerformSTORECombine(SDNode *N,
15366                                    TargetLowering::DAGCombinerInfo &DCI,
15367                                    const ARMSubtarget *Subtarget) {
15368   StoreSDNode *St = cast<StoreSDNode>(N);
15369   if (St->isVolatile())
15370     return SDValue();
15371   SDValue StVal = St->getValue();
15372   EVT VT = StVal.getValueType();
15373 
15374   if (Subtarget->hasNEON())
15375     if (SDValue Store = PerformTruncatingStoreCombine(St, DCI.DAG))
15376       return Store;
15377 
15378   if (Subtarget->hasMVEIntegerOps()) {
15379     if (SDValue NewToken = PerformSplittingToNarrowingStores(St, DCI.DAG))
15380       return NewToken;
15381     if (SDValue NewChain = PerformExtractFpToIntStores(St, DCI.DAG))
15382       return NewChain;
15383   }
15384 
15385   if (!ISD::isNormalStore(St))
15386     return SDValue();
15387 
15388   // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
15389   // ARM stores of arguments in the same cache line.
15390   if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
15391       StVal.getNode()->hasOneUse()) {
15392     SelectionDAG  &DAG = DCI.DAG;
15393     bool isBigEndian = DAG.getDataLayout().isBigEndian();
15394     SDLoc DL(St);
15395     SDValue BasePtr = St->getBasePtr();
15396     SDValue NewST1 = DAG.getStore(
15397         St->getChain(), DL, StVal.getNode()->getOperand(isBigEndian ? 1 : 0),
15398         BasePtr, St->getPointerInfo(), St->getOriginalAlign(),
15399         St->getMemOperand()->getFlags());
15400 
15401     SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
15402                                     DAG.getConstant(4, DL, MVT::i32));
15403     return DAG.getStore(NewST1.getValue(0), DL,
15404                         StVal.getNode()->getOperand(isBigEndian ? 0 : 1),
15405                         OffsetPtr, St->getPointerInfo().getWithOffset(4),
15406                         St->getOriginalAlign(),
15407                         St->getMemOperand()->getFlags());
15408   }
15409 
15410   if (StVal.getValueType() == MVT::i64 &&
15411       StVal.getNode()->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
15412 
15413     // Bitcast an i64 store extracted from a vector to f64.
15414     // Otherwise, the i64 value will be legalized to a pair of i32 values.
15415     SelectionDAG &DAG = DCI.DAG;
15416     SDLoc dl(StVal);
15417     SDValue IntVec = StVal.getOperand(0);
15418     EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
15419                                    IntVec.getValueType().getVectorNumElements());
15420     SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
15421     SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
15422                                  Vec, StVal.getOperand(1));
15423     dl = SDLoc(N);
15424     SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
15425     // Make the DAGCombiner fold the bitcasts.
15426     DCI.AddToWorklist(Vec.getNode());
15427     DCI.AddToWorklist(ExtElt.getNode());
15428     DCI.AddToWorklist(V.getNode());
15429     return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
15430                         St->getPointerInfo(), St->getAlignment(),
15431                         St->getMemOperand()->getFlags(), St->getAAInfo());
15432   }
15433 
15434   // If this is a legal vector store, try to combine it into a VST1_UPD.
15435   if (Subtarget->hasNEON() && ISD::isNormalStore(N) && VT.isVector() &&
15436       DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
15437     return CombineBaseUpdate(N, DCI);
15438 
15439   return SDValue();
15440 }
15441 
15442 /// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
15443 /// can replace combinations of VMUL and VCVT (floating-point to integer)
15444 /// when the VMUL has a constant operand that is a power of 2.
15445 ///
15446 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
15447 ///  vmul.f32        d16, d17, d16
15448 ///  vcvt.s32.f32    d16, d16
15449 /// becomes:
15450 ///  vcvt.s32.f32    d16, d16, #3
PerformVCVTCombine(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * Subtarget)15451 static SDValue PerformVCVTCombine(SDNode *N, SelectionDAG &DAG,
15452                                   const ARMSubtarget *Subtarget) {
15453   if (!Subtarget->hasNEON())
15454     return SDValue();
15455 
15456   SDValue Op = N->getOperand(0);
15457   if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() ||
15458       Op.getOpcode() != ISD::FMUL)
15459     return SDValue();
15460 
15461   SDValue ConstVec = Op->getOperand(1);
15462   if (!isa<BuildVectorSDNode>(ConstVec))
15463     return SDValue();
15464 
15465   MVT FloatTy = Op.getSimpleValueType().getVectorElementType();
15466   uint32_t FloatBits = FloatTy.getSizeInBits();
15467   MVT IntTy = N->getSimpleValueType(0).getVectorElementType();
15468   uint32_t IntBits = IntTy.getSizeInBits();
15469   unsigned NumLanes = Op.getValueType().getVectorNumElements();
15470   if (FloatBits != 32 || IntBits > 32 || (NumLanes != 4 && NumLanes != 2)) {
15471     // These instructions only exist converting from f32 to i32. We can handle
15472     // smaller integers by generating an extra truncate, but larger ones would
15473     // be lossy. We also can't handle anything other than 2 or 4 lanes, since
15474     // these intructions only support v2i32/v4i32 types.
15475     return SDValue();
15476   }
15477 
15478   BitVector UndefElements;
15479   BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
15480   int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33);
15481   if (C == -1 || C == 0 || C > 32)
15482     return SDValue();
15483 
15484   SDLoc dl(N);
15485   bool isSigned = N->getOpcode() == ISD::FP_TO_SINT;
15486   unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
15487     Intrinsic::arm_neon_vcvtfp2fxu;
15488   SDValue FixConv = DAG.getNode(
15489       ISD::INTRINSIC_WO_CHAIN, dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
15490       DAG.getConstant(IntrinsicOpcode, dl, MVT::i32), Op->getOperand(0),
15491       DAG.getConstant(C, dl, MVT::i32));
15492 
15493   if (IntBits < FloatBits)
15494     FixConv = DAG.getNode(ISD::TRUNCATE, dl, N->getValueType(0), FixConv);
15495 
15496   return FixConv;
15497 }
15498 
15499 /// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
15500 /// can replace combinations of VCVT (integer to floating-point) and VDIV
15501 /// when the VDIV has a constant operand that is a power of 2.
15502 ///
15503 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
15504 ///  vcvt.f32.s32    d16, d16
15505 ///  vdiv.f32        d16, d17, d16
15506 /// becomes:
15507 ///  vcvt.f32.s32    d16, d16, #3
PerformVDIVCombine(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * Subtarget)15508 static SDValue PerformVDIVCombine(SDNode *N, SelectionDAG &DAG,
15509                                   const ARMSubtarget *Subtarget) {
15510   if (!Subtarget->hasNEON())
15511     return SDValue();
15512 
15513   SDValue Op = N->getOperand(0);
15514   unsigned OpOpcode = Op.getNode()->getOpcode();
15515   if (!N->getValueType(0).isVector() || !N->getValueType(0).isSimple() ||
15516       (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP))
15517     return SDValue();
15518 
15519   SDValue ConstVec = N->getOperand(1);
15520   if (!isa<BuildVectorSDNode>(ConstVec))
15521     return SDValue();
15522 
15523   MVT FloatTy = N->getSimpleValueType(0).getVectorElementType();
15524   uint32_t FloatBits = FloatTy.getSizeInBits();
15525   MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType();
15526   uint32_t IntBits = IntTy.getSizeInBits();
15527   unsigned NumLanes = Op.getValueType().getVectorNumElements();
15528   if (FloatBits != 32 || IntBits > 32 || (NumLanes != 4 && NumLanes != 2)) {
15529     // These instructions only exist converting from i32 to f32. We can handle
15530     // smaller integers by generating an extra extend, but larger ones would
15531     // be lossy. We also can't handle anything other than 2 or 4 lanes, since
15532     // these intructions only support v2i32/v4i32 types.
15533     return SDValue();
15534   }
15535 
15536   BitVector UndefElements;
15537   BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
15538   int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33);
15539   if (C == -1 || C == 0 || C > 32)
15540     return SDValue();
15541 
15542   SDLoc dl(N);
15543   bool isSigned = OpOpcode == ISD::SINT_TO_FP;
15544   SDValue ConvInput = Op.getOperand(0);
15545   if (IntBits < FloatBits)
15546     ConvInput = DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
15547                             dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
15548                             ConvInput);
15549 
15550   unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp :
15551     Intrinsic::arm_neon_vcvtfxu2fp;
15552   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl,
15553                      Op.getValueType(),
15554                      DAG.getConstant(IntrinsicOpcode, dl, MVT::i32),
15555                      ConvInput, DAG.getConstant(C, dl, MVT::i32));
15556 }
15557 
PerformVECREDUCE_ADDCombine(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)15558 static SDValue PerformVECREDUCE_ADDCombine(SDNode *N, SelectionDAG &DAG,
15559                                            const ARMSubtarget *ST) {
15560   if (!ST->hasMVEIntegerOps())
15561     return SDValue();
15562 
15563   assert(N->getOpcode() == ISD::VECREDUCE_ADD);
15564   EVT ResVT = N->getValueType(0);
15565   SDValue N0 = N->getOperand(0);
15566   SDLoc dl(N);
15567 
15568   // We are looking for something that will have illegal types if left alone,
15569   // but that we can convert to a single instruction undef MVE. For example
15570   // vecreduce_add(sext(A, v8i32)) => VADDV.s16 A
15571   // or
15572   // vecreduce_add(mul(zext(A, v16i32), zext(B, v16i32))) => VMLADAV.u8 A, B
15573 
15574   // Cases:
15575   //   VADDV u/s 8/16/32
15576   //   VMLAV u/s 8/16/32
15577   //   VADDLV u/s 32
15578   //   VMLALV u/s 16/32
15579 
15580   // If the input vector is smaller than legal (v4i8/v4i16 for example) we can
15581   // extend it and use v4i32 instead.
15582   auto ExtendIfNeeded = [&](SDValue A, unsigned ExtendCode) {
15583     EVT AVT = A.getValueType();
15584     if (!AVT.is128BitVector())
15585       A = DAG.getNode(ExtendCode, dl,
15586                       AVT.changeVectorElementType(MVT::getIntegerVT(
15587                           128 / AVT.getVectorMinNumElements())),
15588                       A);
15589     return A;
15590   };
15591   auto IsVADDV = [&](MVT RetTy, unsigned ExtendCode, ArrayRef<MVT> ExtTypes) {
15592     if (ResVT != RetTy || N0->getOpcode() != ExtendCode)
15593       return SDValue();
15594     SDValue A = N0->getOperand(0);
15595     if (llvm::any_of(ExtTypes, [&A](MVT Ty) { return A.getValueType() == Ty; }))
15596       return ExtendIfNeeded(A, ExtendCode);
15597     return SDValue();
15598   };
15599   auto IsPredVADDV = [&](MVT RetTy, unsigned ExtendCode,
15600                          ArrayRef<MVT> ExtTypes, SDValue &Mask) {
15601     if (ResVT != RetTy || N0->getOpcode() != ISD::VSELECT ||
15602         !ISD::isBuildVectorAllZeros(N0->getOperand(2).getNode()))
15603       return SDValue();
15604     Mask = N0->getOperand(0);
15605     SDValue Ext = N0->getOperand(1);
15606     if (Ext->getOpcode() != ExtendCode)
15607       return SDValue();
15608     SDValue A = Ext->getOperand(0);
15609     if (llvm::any_of(ExtTypes, [&A](MVT Ty) { return A.getValueType() == Ty; }))
15610       return ExtendIfNeeded(A, ExtendCode);
15611     return SDValue();
15612   };
15613   auto IsVMLAV = [&](MVT RetTy, unsigned ExtendCode, ArrayRef<MVT> ExtTypes,
15614                      SDValue &A, SDValue &B) {
15615     // For a vmla we are trying to match a larger pattern:
15616     // ExtA = sext/zext A
15617     // ExtB = sext/zext B
15618     // Mul = mul ExtA, ExtB
15619     // vecreduce.add Mul
15620     // There might also be en extra extend between the mul and the addreduce, so
15621     // long as the bitwidth is high enough to make them equivalent (for example
15622     // original v8i16 might be mul at v8i32 and the reduce happens at v8i64).
15623     if (ResVT != RetTy)
15624       return false;
15625     SDValue Mul = N0;
15626     if (Mul->getOpcode() == ExtendCode &&
15627         Mul->getOperand(0).getScalarValueSizeInBits() * 2 >=
15628             ResVT.getScalarSizeInBits())
15629       Mul = Mul->getOperand(0);
15630     if (Mul->getOpcode() != ISD::MUL)
15631       return false;
15632     SDValue ExtA = Mul->getOperand(0);
15633     SDValue ExtB = Mul->getOperand(1);
15634     if (ExtA->getOpcode() != ExtendCode && ExtB->getOpcode() != ExtendCode)
15635       return false;
15636     A = ExtA->getOperand(0);
15637     B = ExtB->getOperand(0);
15638     if (A.getValueType() == B.getValueType() &&
15639         llvm::any_of(ExtTypes,
15640                      [&A](MVT Ty) { return A.getValueType() == Ty; })) {
15641       A = ExtendIfNeeded(A, ExtendCode);
15642       B = ExtendIfNeeded(B, ExtendCode);
15643       return true;
15644     }
15645     return false;
15646   };
15647   auto IsPredVMLAV = [&](MVT RetTy, unsigned ExtendCode, ArrayRef<MVT> ExtTypes,
15648                      SDValue &A, SDValue &B, SDValue &Mask) {
15649     // Same as the pattern above with a select for the zero predicated lanes
15650     // ExtA = sext/zext A
15651     // ExtB = sext/zext B
15652     // Mul = mul ExtA, ExtB
15653     // N0 = select Mask, Mul, 0
15654     // vecreduce.add N0
15655     if (ResVT != RetTy || N0->getOpcode() != ISD::VSELECT ||
15656         !ISD::isBuildVectorAllZeros(N0->getOperand(2).getNode()))
15657       return false;
15658     Mask = N0->getOperand(0);
15659     SDValue Mul = N0->getOperand(1);
15660     if (Mul->getOpcode() == ExtendCode &&
15661         Mul->getOperand(0).getScalarValueSizeInBits() * 2 >=
15662             ResVT.getScalarSizeInBits())
15663       Mul = Mul->getOperand(0);
15664     if (Mul->getOpcode() != ISD::MUL)
15665       return false;
15666     SDValue ExtA = Mul->getOperand(0);
15667     SDValue ExtB = Mul->getOperand(1);
15668     if (ExtA->getOpcode() != ExtendCode && ExtB->getOpcode() != ExtendCode)
15669       return false;
15670     A = ExtA->getOperand(0);
15671     B = ExtB->getOperand(0);
15672     if (A.getValueType() == B.getValueType() &&
15673         llvm::any_of(ExtTypes,
15674                      [&A](MVT Ty) { return A.getValueType() == Ty; })) {
15675       A = ExtendIfNeeded(A, ExtendCode);
15676       B = ExtendIfNeeded(B, ExtendCode);
15677       return true;
15678     }
15679     return false;
15680   };
15681   auto Create64bitNode = [&](unsigned Opcode, ArrayRef<SDValue> Ops) {
15682     SDValue Node = DAG.getNode(Opcode, dl, {MVT::i32, MVT::i32}, Ops);
15683     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Node,
15684                        SDValue(Node.getNode(), 1));
15685   };
15686 
15687   if (SDValue A = IsVADDV(MVT::i32, ISD::SIGN_EXTEND, {MVT::v8i16, MVT::v16i8}))
15688     return DAG.getNode(ARMISD::VADDVs, dl, ResVT, A);
15689   if (SDValue A = IsVADDV(MVT::i32, ISD::ZERO_EXTEND, {MVT::v8i16, MVT::v16i8}))
15690     return DAG.getNode(ARMISD::VADDVu, dl, ResVT, A);
15691   if (SDValue A = IsVADDV(MVT::i64, ISD::SIGN_EXTEND,
15692                           {MVT::v4i8, MVT::v4i16, MVT::v4i32}))
15693     return Create64bitNode(ARMISD::VADDLVs, {A});
15694   if (SDValue A = IsVADDV(MVT::i64, ISD::ZERO_EXTEND,
15695                           {MVT::v4i8, MVT::v4i16, MVT::v4i32}))
15696     return Create64bitNode(ARMISD::VADDLVu, {A});
15697   if (SDValue A = IsVADDV(MVT::i16, ISD::SIGN_EXTEND, {MVT::v16i8}))
15698     return DAG.getNode(ISD::TRUNCATE, dl, ResVT,
15699                        DAG.getNode(ARMISD::VADDVs, dl, MVT::i32, A));
15700   if (SDValue A = IsVADDV(MVT::i16, ISD::ZERO_EXTEND, {MVT::v16i8}))
15701     return DAG.getNode(ISD::TRUNCATE, dl, ResVT,
15702                        DAG.getNode(ARMISD::VADDVu, dl, MVT::i32, A));
15703 
15704   SDValue Mask;
15705   if (SDValue A = IsPredVADDV(MVT::i32, ISD::SIGN_EXTEND, {MVT::v8i16, MVT::v16i8}, Mask))
15706     return DAG.getNode(ARMISD::VADDVps, dl, ResVT, A, Mask);
15707   if (SDValue A = IsPredVADDV(MVT::i32, ISD::ZERO_EXTEND, {MVT::v8i16, MVT::v16i8}, Mask))
15708     return DAG.getNode(ARMISD::VADDVpu, dl, ResVT, A, Mask);
15709   if (SDValue A = IsPredVADDV(MVT::i64, ISD::SIGN_EXTEND,
15710                               {MVT::v4i8, MVT::v4i16, MVT::v4i32}, Mask))
15711     return Create64bitNode(ARMISD::VADDLVps, {A, Mask});
15712   if (SDValue A = IsPredVADDV(MVT::i64, ISD::ZERO_EXTEND,
15713                               {MVT::v4i8, MVT::v4i16, MVT::v4i32}, Mask))
15714     return Create64bitNode(ARMISD::VADDLVpu, {A, Mask});
15715   if (SDValue A = IsPredVADDV(MVT::i16, ISD::SIGN_EXTEND, {MVT::v16i8}, Mask))
15716     return DAG.getNode(ISD::TRUNCATE, dl, ResVT,
15717                        DAG.getNode(ARMISD::VADDVps, dl, MVT::i32, A, Mask));
15718   if (SDValue A = IsPredVADDV(MVT::i16, ISD::ZERO_EXTEND, {MVT::v16i8}, Mask))
15719     return DAG.getNode(ISD::TRUNCATE, dl, ResVT,
15720                        DAG.getNode(ARMISD::VADDVpu, dl, MVT::i32, A, Mask));
15721 
15722   SDValue A, B;
15723   if (IsVMLAV(MVT::i32, ISD::SIGN_EXTEND, {MVT::v8i16, MVT::v16i8}, A, B))
15724     return DAG.getNode(ARMISD::VMLAVs, dl, ResVT, A, B);
15725   if (IsVMLAV(MVT::i32, ISD::ZERO_EXTEND, {MVT::v8i16, MVT::v16i8}, A, B))
15726     return DAG.getNode(ARMISD::VMLAVu, dl, ResVT, A, B);
15727   if (IsVMLAV(MVT::i64, ISD::SIGN_EXTEND,
15728               {MVT::v8i8, MVT::v8i16, MVT::v4i8, MVT::v4i16, MVT::v4i32}, A, B))
15729     return Create64bitNode(ARMISD::VMLALVs, {A, B});
15730   if (IsVMLAV(MVT::i64, ISD::ZERO_EXTEND,
15731               {MVT::v8i8, MVT::v8i16, MVT::v4i8, MVT::v4i16, MVT::v4i32}, A, B))
15732     return Create64bitNode(ARMISD::VMLALVu, {A, B});
15733   if (IsVMLAV(MVT::i16, ISD::SIGN_EXTEND, {MVT::v16i8}, A, B))
15734     return DAG.getNode(ISD::TRUNCATE, dl, ResVT,
15735                        DAG.getNode(ARMISD::VMLAVs, dl, MVT::i32, A, B));
15736   if (IsVMLAV(MVT::i16, ISD::ZERO_EXTEND, {MVT::v16i8}, A, B))
15737     return DAG.getNode(ISD::TRUNCATE, dl, ResVT,
15738                        DAG.getNode(ARMISD::VMLAVu, dl, MVT::i32, A, B));
15739 
15740   if (IsPredVMLAV(MVT::i32, ISD::SIGN_EXTEND, {MVT::v8i16, MVT::v16i8}, A, B, Mask))
15741     return DAG.getNode(ARMISD::VMLAVps, dl, ResVT, A, B, Mask);
15742   if (IsPredVMLAV(MVT::i32, ISD::ZERO_EXTEND, {MVT::v8i16, MVT::v16i8}, A, B, Mask))
15743     return DAG.getNode(ARMISD::VMLAVpu, dl, ResVT, A, B, Mask);
15744   if (IsPredVMLAV(MVT::i64, ISD::SIGN_EXTEND,
15745                   {MVT::v8i8, MVT::v8i16, MVT::v4i8, MVT::v4i16, MVT::v4i32}, A,
15746                   B, Mask))
15747     return Create64bitNode(ARMISD::VMLALVps, {A, B, Mask});
15748   if (IsPredVMLAV(MVT::i64, ISD::ZERO_EXTEND,
15749                   {MVT::v8i8, MVT::v8i16, MVT::v4i8, MVT::v4i16, MVT::v4i32}, A,
15750                   B, Mask))
15751     return Create64bitNode(ARMISD::VMLALVpu, {A, B, Mask});
15752   if (IsPredVMLAV(MVT::i16, ISD::SIGN_EXTEND, {MVT::v16i8}, A, B, Mask))
15753     return DAG.getNode(ISD::TRUNCATE, dl, ResVT,
15754                        DAG.getNode(ARMISD::VMLAVps, dl, MVT::i32, A, B, Mask));
15755   if (IsPredVMLAV(MVT::i16, ISD::ZERO_EXTEND, {MVT::v16i8}, A, B, Mask))
15756     return DAG.getNode(ISD::TRUNCATE, dl, ResVT,
15757                        DAG.getNode(ARMISD::VMLAVpu, dl, MVT::i32, A, B, Mask));
15758 
15759   // Some complications. We can get a case where the two inputs of the mul are
15760   // the same, then the output sext will have been helpfully converted to a
15761   // zext. Turn it back.
15762   SDValue Op = N0;
15763   if (Op->getOpcode() == ISD::VSELECT)
15764     Op = Op->getOperand(1);
15765   if (Op->getOpcode() == ISD::ZERO_EXTEND &&
15766       Op->getOperand(0)->getOpcode() == ISD::MUL) {
15767     SDValue Mul = Op->getOperand(0);
15768     if (Mul->getOperand(0) == Mul->getOperand(1) &&
15769         Mul->getOperand(0)->getOpcode() == ISD::SIGN_EXTEND) {
15770       SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, dl, N0->getValueType(0), Mul);
15771       if (Op != N0)
15772         Ext = DAG.getNode(ISD::VSELECT, dl, N0->getValueType(0),
15773                           N0->getOperand(0), Ext, N0->getOperand(2));
15774       return DAG.getNode(ISD::VECREDUCE_ADD, dl, ResVT, Ext);
15775     }
15776   }
15777 
15778   return SDValue();
15779 }
15780 
PerformVMOVNCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)15781 static SDValue PerformVMOVNCombine(SDNode *N,
15782                                    TargetLowering::DAGCombinerInfo &DCI) {
15783   SDValue Op0 = N->getOperand(0);
15784   SDValue Op1 = N->getOperand(1);
15785   unsigned IsTop = N->getConstantOperandVal(2);
15786 
15787   // VMOVNT a undef -> a
15788   // VMOVNB a undef -> a
15789   // VMOVNB undef a -> a
15790   if (Op1->isUndef())
15791     return Op0;
15792   if (Op0->isUndef() && !IsTop)
15793     return Op1;
15794 
15795   // VMOVNt(c, VQMOVNb(a, b)) => VQMOVNt(c, b)
15796   // VMOVNb(c, VQMOVNb(a, b)) => VQMOVNb(c, b)
15797   if ((Op1->getOpcode() == ARMISD::VQMOVNs ||
15798        Op1->getOpcode() == ARMISD::VQMOVNu) &&
15799       Op1->getConstantOperandVal(2) == 0)
15800     return DCI.DAG.getNode(Op1->getOpcode(), SDLoc(Op1), N->getValueType(0),
15801                            Op0, Op1->getOperand(1), N->getOperand(2));
15802 
15803   // Only the bottom lanes from Qm (Op1) and either the top or bottom lanes from
15804   // Qd (Op0) are demanded from a VMOVN, depending on whether we are inserting
15805   // into the top or bottom lanes.
15806   unsigned NumElts = N->getValueType(0).getVectorNumElements();
15807   APInt Op1DemandedElts = APInt::getSplat(NumElts, APInt::getLowBitsSet(2, 1));
15808   APInt Op0DemandedElts =
15809       IsTop ? Op1DemandedElts
15810             : APInt::getSplat(NumElts, APInt::getHighBitsSet(2, 1));
15811 
15812   APInt KnownUndef, KnownZero;
15813   const TargetLowering &TLI = DCI.DAG.getTargetLoweringInfo();
15814   if (TLI.SimplifyDemandedVectorElts(Op0, Op0DemandedElts, KnownUndef,
15815                                      KnownZero, DCI))
15816     return SDValue(N, 0);
15817   if (TLI.SimplifyDemandedVectorElts(Op1, Op1DemandedElts, KnownUndef,
15818                                      KnownZero, DCI))
15819     return SDValue(N, 0);
15820 
15821   return SDValue();
15822 }
15823 
PerformVQMOVNCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)15824 static SDValue PerformVQMOVNCombine(SDNode *N,
15825                                     TargetLowering::DAGCombinerInfo &DCI) {
15826   SDValue Op0 = N->getOperand(0);
15827   unsigned IsTop = N->getConstantOperandVal(2);
15828 
15829   unsigned NumElts = N->getValueType(0).getVectorNumElements();
15830   APInt Op0DemandedElts =
15831       APInt::getSplat(NumElts, IsTop ? APInt::getLowBitsSet(2, 1)
15832                                      : APInt::getHighBitsSet(2, 1));
15833 
15834   APInt KnownUndef, KnownZero;
15835   const TargetLowering &TLI = DCI.DAG.getTargetLoweringInfo();
15836   if (TLI.SimplifyDemandedVectorElts(Op0, Op0DemandedElts, KnownUndef,
15837                                      KnownZero, DCI))
15838     return SDValue(N, 0);
15839   return SDValue();
15840 }
15841 
PerformLongShiftCombine(SDNode * N,SelectionDAG & DAG)15842 static SDValue PerformLongShiftCombine(SDNode *N, SelectionDAG &DAG) {
15843   SDLoc DL(N);
15844   SDValue Op0 = N->getOperand(0);
15845   SDValue Op1 = N->getOperand(1);
15846 
15847   // Turn X << -C -> X >> C and viceversa. The negative shifts can come up from
15848   // uses of the intrinsics.
15849   if (auto C = dyn_cast<ConstantSDNode>(N->getOperand(2))) {
15850     int ShiftAmt = C->getSExtValue();
15851     if (ShiftAmt == 0) {
15852       SDValue Merge = DAG.getMergeValues({Op0, Op1}, DL);
15853       DAG.ReplaceAllUsesWith(N, Merge.getNode());
15854       return SDValue();
15855     }
15856 
15857     if (ShiftAmt >= -32 && ShiftAmt < 0) {
15858       unsigned NewOpcode =
15859           N->getOpcode() == ARMISD::LSLL ? ARMISD::LSRL : ARMISD::LSLL;
15860       SDValue NewShift = DAG.getNode(NewOpcode, DL, N->getVTList(), Op0, Op1,
15861                                      DAG.getConstant(-ShiftAmt, DL, MVT::i32));
15862       DAG.ReplaceAllUsesWith(N, NewShift.getNode());
15863       return NewShift;
15864     }
15865   }
15866 
15867   return SDValue();
15868 }
15869 
15870 /// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
PerformIntrinsicCombine(SDNode * N,DAGCombinerInfo & DCI) const15871 SDValue ARMTargetLowering::PerformIntrinsicCombine(SDNode *N,
15872                                                    DAGCombinerInfo &DCI) const {
15873   SelectionDAG &DAG = DCI.DAG;
15874   unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
15875   switch (IntNo) {
15876   default:
15877     // Don't do anything for most intrinsics.
15878     break;
15879 
15880   // Vector shifts: check for immediate versions and lower them.
15881   // Note: This is done during DAG combining instead of DAG legalizing because
15882   // the build_vectors for 64-bit vector element shift counts are generally
15883   // not legal, and it is hard to see their values after they get legalized to
15884   // loads from a constant pool.
15885   case Intrinsic::arm_neon_vshifts:
15886   case Intrinsic::arm_neon_vshiftu:
15887   case Intrinsic::arm_neon_vrshifts:
15888   case Intrinsic::arm_neon_vrshiftu:
15889   case Intrinsic::arm_neon_vrshiftn:
15890   case Intrinsic::arm_neon_vqshifts:
15891   case Intrinsic::arm_neon_vqshiftu:
15892   case Intrinsic::arm_neon_vqshiftsu:
15893   case Intrinsic::arm_neon_vqshiftns:
15894   case Intrinsic::arm_neon_vqshiftnu:
15895   case Intrinsic::arm_neon_vqshiftnsu:
15896   case Intrinsic::arm_neon_vqrshiftns:
15897   case Intrinsic::arm_neon_vqrshiftnu:
15898   case Intrinsic::arm_neon_vqrshiftnsu: {
15899     EVT VT = N->getOperand(1).getValueType();
15900     int64_t Cnt;
15901     unsigned VShiftOpc = 0;
15902 
15903     switch (IntNo) {
15904     case Intrinsic::arm_neon_vshifts:
15905     case Intrinsic::arm_neon_vshiftu:
15906       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
15907         VShiftOpc = ARMISD::VSHLIMM;
15908         break;
15909       }
15910       if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
15911         VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ? ARMISD::VSHRsIMM
15912                                                           : ARMISD::VSHRuIMM);
15913         break;
15914       }
15915       return SDValue();
15916 
15917     case Intrinsic::arm_neon_vrshifts:
15918     case Intrinsic::arm_neon_vrshiftu:
15919       if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
15920         break;
15921       return SDValue();
15922 
15923     case Intrinsic::arm_neon_vqshifts:
15924     case Intrinsic::arm_neon_vqshiftu:
15925       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
15926         break;
15927       return SDValue();
15928 
15929     case Intrinsic::arm_neon_vqshiftsu:
15930       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
15931         break;
15932       llvm_unreachable("invalid shift count for vqshlu intrinsic");
15933 
15934     case Intrinsic::arm_neon_vrshiftn:
15935     case Intrinsic::arm_neon_vqshiftns:
15936     case Intrinsic::arm_neon_vqshiftnu:
15937     case Intrinsic::arm_neon_vqshiftnsu:
15938     case Intrinsic::arm_neon_vqrshiftns:
15939     case Intrinsic::arm_neon_vqrshiftnu:
15940     case Intrinsic::arm_neon_vqrshiftnsu:
15941       // Narrowing shifts require an immediate right shift.
15942       if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
15943         break;
15944       llvm_unreachable("invalid shift count for narrowing vector shift "
15945                        "intrinsic");
15946 
15947     default:
15948       llvm_unreachable("unhandled vector shift");
15949     }
15950 
15951     switch (IntNo) {
15952     case Intrinsic::arm_neon_vshifts:
15953     case Intrinsic::arm_neon_vshiftu:
15954       // Opcode already set above.
15955       break;
15956     case Intrinsic::arm_neon_vrshifts:
15957       VShiftOpc = ARMISD::VRSHRsIMM;
15958       break;
15959     case Intrinsic::arm_neon_vrshiftu:
15960       VShiftOpc = ARMISD::VRSHRuIMM;
15961       break;
15962     case Intrinsic::arm_neon_vrshiftn:
15963       VShiftOpc = ARMISD::VRSHRNIMM;
15964       break;
15965     case Intrinsic::arm_neon_vqshifts:
15966       VShiftOpc = ARMISD::VQSHLsIMM;
15967       break;
15968     case Intrinsic::arm_neon_vqshiftu:
15969       VShiftOpc = ARMISD::VQSHLuIMM;
15970       break;
15971     case Intrinsic::arm_neon_vqshiftsu:
15972       VShiftOpc = ARMISD::VQSHLsuIMM;
15973       break;
15974     case Intrinsic::arm_neon_vqshiftns:
15975       VShiftOpc = ARMISD::VQSHRNsIMM;
15976       break;
15977     case Intrinsic::arm_neon_vqshiftnu:
15978       VShiftOpc = ARMISD::VQSHRNuIMM;
15979       break;
15980     case Intrinsic::arm_neon_vqshiftnsu:
15981       VShiftOpc = ARMISD::VQSHRNsuIMM;
15982       break;
15983     case Intrinsic::arm_neon_vqrshiftns:
15984       VShiftOpc = ARMISD::VQRSHRNsIMM;
15985       break;
15986     case Intrinsic::arm_neon_vqrshiftnu:
15987       VShiftOpc = ARMISD::VQRSHRNuIMM;
15988       break;
15989     case Intrinsic::arm_neon_vqrshiftnsu:
15990       VShiftOpc = ARMISD::VQRSHRNsuIMM;
15991       break;
15992     }
15993 
15994     SDLoc dl(N);
15995     return DAG.getNode(VShiftOpc, dl, N->getValueType(0),
15996                        N->getOperand(1), DAG.getConstant(Cnt, dl, MVT::i32));
15997   }
15998 
15999   case Intrinsic::arm_neon_vshiftins: {
16000     EVT VT = N->getOperand(1).getValueType();
16001     int64_t Cnt;
16002     unsigned VShiftOpc = 0;
16003 
16004     if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
16005       VShiftOpc = ARMISD::VSLIIMM;
16006     else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
16007       VShiftOpc = ARMISD::VSRIIMM;
16008     else {
16009       llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
16010     }
16011 
16012     SDLoc dl(N);
16013     return DAG.getNode(VShiftOpc, dl, N->getValueType(0),
16014                        N->getOperand(1), N->getOperand(2),
16015                        DAG.getConstant(Cnt, dl, MVT::i32));
16016   }
16017 
16018   case Intrinsic::arm_neon_vqrshifts:
16019   case Intrinsic::arm_neon_vqrshiftu:
16020     // No immediate versions of these to check for.
16021     break;
16022 
16023   case Intrinsic::arm_mve_vqdmlah:
16024   case Intrinsic::arm_mve_vqdmlash:
16025   case Intrinsic::arm_mve_vqrdmlah:
16026   case Intrinsic::arm_mve_vqrdmlash:
16027   case Intrinsic::arm_mve_vmla_n_predicated:
16028   case Intrinsic::arm_mve_vmlas_n_predicated:
16029   case Intrinsic::arm_mve_vqdmlah_predicated:
16030   case Intrinsic::arm_mve_vqdmlash_predicated:
16031   case Intrinsic::arm_mve_vqrdmlah_predicated:
16032   case Intrinsic::arm_mve_vqrdmlash_predicated: {
16033     // These intrinsics all take an i32 scalar operand which is narrowed to the
16034     // size of a single lane of the vector type they return. So we don't need
16035     // any bits of that operand above that point, which allows us to eliminate
16036     // uxth/sxth.
16037     unsigned BitWidth = N->getValueType(0).getScalarSizeInBits();
16038     APInt DemandedMask = APInt::getLowBitsSet(32, BitWidth);
16039     if (SimplifyDemandedBits(N->getOperand(3), DemandedMask, DCI))
16040       return SDValue();
16041     break;
16042   }
16043 
16044   case Intrinsic::arm_mve_minv:
16045   case Intrinsic::arm_mve_maxv:
16046   case Intrinsic::arm_mve_minav:
16047   case Intrinsic::arm_mve_maxav:
16048   case Intrinsic::arm_mve_minv_predicated:
16049   case Intrinsic::arm_mve_maxv_predicated:
16050   case Intrinsic::arm_mve_minav_predicated:
16051   case Intrinsic::arm_mve_maxav_predicated: {
16052     // These intrinsics all take an i32 scalar operand which is narrowed to the
16053     // size of a single lane of the vector type they take as the other input.
16054     unsigned BitWidth = N->getOperand(2)->getValueType(0).getScalarSizeInBits();
16055     APInt DemandedMask = APInt::getLowBitsSet(32, BitWidth);
16056     if (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI))
16057       return SDValue();
16058     break;
16059   }
16060 
16061   case Intrinsic::arm_mve_addv: {
16062     // Turn this intrinsic straight into the appropriate ARMISD::VADDV node,
16063     // which allow PerformADDVecReduce to turn it into VADDLV when possible.
16064     bool Unsigned = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
16065     unsigned Opc = Unsigned ? ARMISD::VADDVu : ARMISD::VADDVs;
16066     return DAG.getNode(Opc, SDLoc(N), N->getVTList(), N->getOperand(1));
16067   }
16068 
16069   case Intrinsic::arm_mve_addlv:
16070   case Intrinsic::arm_mve_addlv_predicated: {
16071     // Same for these, but ARMISD::VADDLV has to be followed by a BUILD_PAIR
16072     // which recombines the two outputs into an i64
16073     bool Unsigned = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
16074     unsigned Opc = IntNo == Intrinsic::arm_mve_addlv ?
16075                     (Unsigned ? ARMISD::VADDLVu : ARMISD::VADDLVs) :
16076                     (Unsigned ? ARMISD::VADDLVpu : ARMISD::VADDLVps);
16077 
16078     SmallVector<SDValue, 4> Ops;
16079     for (unsigned i = 1, e = N->getNumOperands(); i < e; i++)
16080       if (i != 2)                      // skip the unsigned flag
16081         Ops.push_back(N->getOperand(i));
16082 
16083     SDLoc dl(N);
16084     SDValue val = DAG.getNode(Opc, dl, {MVT::i32, MVT::i32}, Ops);
16085     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, val.getValue(0),
16086                        val.getValue(1));
16087   }
16088   }
16089 
16090   return SDValue();
16091 }
16092 
16093 /// PerformShiftCombine - Checks for immediate versions of vector shifts and
16094 /// lowers them.  As with the vector shift intrinsics, this is done during DAG
16095 /// combining instead of DAG legalizing because the build_vectors for 64-bit
16096 /// vector element shift counts are generally not legal, and it is hard to see
16097 /// their values after they get legalized to loads from a constant pool.
PerformShiftCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * ST)16098 static SDValue PerformShiftCombine(SDNode *N,
16099                                    TargetLowering::DAGCombinerInfo &DCI,
16100                                    const ARMSubtarget *ST) {
16101   SelectionDAG &DAG = DCI.DAG;
16102   EVT VT = N->getValueType(0);
16103   if (N->getOpcode() == ISD::SRL && VT == MVT::i32 && ST->hasV6Ops()) {
16104     // Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high
16105     // 16-bits of x is zero. This optimizes rev + lsr 16 to rev16.
16106     SDValue N1 = N->getOperand(1);
16107     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
16108       SDValue N0 = N->getOperand(0);
16109       if (C->getZExtValue() == 16 && N0.getOpcode() == ISD::BSWAP &&
16110           DAG.MaskedValueIsZero(N0.getOperand(0),
16111                                 APInt::getHighBitsSet(32, 16)))
16112         return DAG.getNode(ISD::ROTR, SDLoc(N), VT, N0, N1);
16113     }
16114   }
16115 
16116   if (ST->isThumb1Only() && N->getOpcode() == ISD::SHL && VT == MVT::i32 &&
16117       N->getOperand(0)->getOpcode() == ISD::AND &&
16118       N->getOperand(0)->hasOneUse()) {
16119     if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
16120       return SDValue();
16121     // Look for the pattern (shl (and x, AndMask), ShiftAmt). This doesn't
16122     // usually show up because instcombine prefers to canonicalize it to
16123     // (and (shl x, ShiftAmt) (shl AndMask, ShiftAmt)), but the shift can come
16124     // out of GEP lowering in some cases.
16125     SDValue N0 = N->getOperand(0);
16126     ConstantSDNode *ShiftAmtNode = dyn_cast<ConstantSDNode>(N->getOperand(1));
16127     if (!ShiftAmtNode)
16128       return SDValue();
16129     uint32_t ShiftAmt = static_cast<uint32_t>(ShiftAmtNode->getZExtValue());
16130     ConstantSDNode *AndMaskNode = dyn_cast<ConstantSDNode>(N0->getOperand(1));
16131     if (!AndMaskNode)
16132       return SDValue();
16133     uint32_t AndMask = static_cast<uint32_t>(AndMaskNode->getZExtValue());
16134     // Don't transform uxtb/uxth.
16135     if (AndMask == 255 || AndMask == 65535)
16136       return SDValue();
16137     if (isMask_32(AndMask)) {
16138       uint32_t MaskedBits = countLeadingZeros(AndMask);
16139       if (MaskedBits > ShiftAmt) {
16140         SDLoc DL(N);
16141         SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, N0->getOperand(0),
16142                                   DAG.getConstant(MaskedBits, DL, MVT::i32));
16143         return DAG.getNode(
16144             ISD::SRL, DL, MVT::i32, SHL,
16145             DAG.getConstant(MaskedBits - ShiftAmt, DL, MVT::i32));
16146       }
16147     }
16148   }
16149 
16150   // Nothing to be done for scalar shifts.
16151   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16152   if (!VT.isVector() || !TLI.isTypeLegal(VT))
16153     return SDValue();
16154   if (ST->hasMVEIntegerOps() && VT == MVT::v2i64)
16155     return SDValue();
16156 
16157   int64_t Cnt;
16158 
16159   switch (N->getOpcode()) {
16160   default: llvm_unreachable("unexpected shift opcode");
16161 
16162   case ISD::SHL:
16163     if (isVShiftLImm(N->getOperand(1), VT, false, Cnt)) {
16164       SDLoc dl(N);
16165       return DAG.getNode(ARMISD::VSHLIMM, dl, VT, N->getOperand(0),
16166                          DAG.getConstant(Cnt, dl, MVT::i32));
16167     }
16168     break;
16169 
16170   case ISD::SRA:
16171   case ISD::SRL:
16172     if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
16173       unsigned VShiftOpc =
16174           (N->getOpcode() == ISD::SRA ? ARMISD::VSHRsIMM : ARMISD::VSHRuIMM);
16175       SDLoc dl(N);
16176       return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0),
16177                          DAG.getConstant(Cnt, dl, MVT::i32));
16178     }
16179   }
16180   return SDValue();
16181 }
16182 
16183 // Look for a sign/zero/fpextend extend of a larger than legal load. This can be
16184 // split into multiple extending loads, which are simpler to deal with than an
16185 // arbitrary extend. For fp extends we use an integer extending load and a VCVTL
16186 // to convert the type to an f32.
PerformSplittingToWideningLoad(SDNode * N,SelectionDAG & DAG)16187 static SDValue PerformSplittingToWideningLoad(SDNode *N, SelectionDAG &DAG) {
16188   SDValue N0 = N->getOperand(0);
16189   if (N0.getOpcode() != ISD::LOAD)
16190     return SDValue();
16191   LoadSDNode *LD = cast<LoadSDNode>(N0.getNode());
16192   if (!LD->isSimple() || !N0.hasOneUse() || LD->isIndexed() ||
16193       LD->getExtensionType() != ISD::NON_EXTLOAD)
16194     return SDValue();
16195   EVT FromVT = LD->getValueType(0);
16196   EVT ToVT = N->getValueType(0);
16197   if (!ToVT.isVector())
16198     return SDValue();
16199   assert(FromVT.getVectorNumElements() == ToVT.getVectorNumElements());
16200   EVT ToEltVT = ToVT.getVectorElementType();
16201   EVT FromEltVT = FromVT.getVectorElementType();
16202 
16203   unsigned NumElements = 0;
16204   if (ToEltVT == MVT::i32 && (FromEltVT == MVT::i16 || FromEltVT == MVT::i8))
16205     NumElements = 4;
16206   if (ToEltVT == MVT::i16 && FromEltVT == MVT::i8)
16207     NumElements = 8;
16208   if (ToEltVT == MVT::f32 && FromEltVT == MVT::f16)
16209     NumElements = 4;
16210   if (NumElements == 0 ||
16211       (FromEltVT != MVT::f16 && FromVT.getVectorNumElements() == NumElements) ||
16212       FromVT.getVectorNumElements() % NumElements != 0 ||
16213       !isPowerOf2_32(NumElements))
16214     return SDValue();
16215 
16216   LLVMContext &C = *DAG.getContext();
16217   SDLoc DL(LD);
16218   // Details about the old load
16219   SDValue Ch = LD->getChain();
16220   SDValue BasePtr = LD->getBasePtr();
16221   Align Alignment = LD->getOriginalAlign();
16222   MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags();
16223   AAMDNodes AAInfo = LD->getAAInfo();
16224 
16225   ISD::LoadExtType NewExtType =
16226       N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
16227   SDValue Offset = DAG.getUNDEF(BasePtr.getValueType());
16228   EVT NewFromVT = EVT::getVectorVT(
16229       C, EVT::getIntegerVT(C, FromEltVT.getScalarSizeInBits()), NumElements);
16230   EVT NewToVT = EVT::getVectorVT(
16231       C, EVT::getIntegerVT(C, ToEltVT.getScalarSizeInBits()), NumElements);
16232 
16233   SmallVector<SDValue, 4> Loads;
16234   SmallVector<SDValue, 4> Chains;
16235   for (unsigned i = 0; i < FromVT.getVectorNumElements() / NumElements; i++) {
16236     unsigned NewOffset = (i * NewFromVT.getSizeInBits()) / 8;
16237     SDValue NewPtr =
16238         DAG.getObjectPtrOffset(DL, BasePtr, TypeSize::Fixed(NewOffset));
16239 
16240     SDValue NewLoad =
16241         DAG.getLoad(ISD::UNINDEXED, NewExtType, NewToVT, DL, Ch, NewPtr, Offset,
16242                     LD->getPointerInfo().getWithOffset(NewOffset), NewFromVT,
16243                     Alignment, MMOFlags, AAInfo);
16244     Loads.push_back(NewLoad);
16245     Chains.push_back(SDValue(NewLoad.getNode(), 1));
16246   }
16247 
16248   // Float truncs need to extended with VCVTB's into their floating point types.
16249   if (FromEltVT == MVT::f16) {
16250     SmallVector<SDValue, 4> Extends;
16251 
16252     for (unsigned i = 0; i < Loads.size(); i++) {
16253       SDValue LoadBC =
16254           DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, MVT::v8f16, Loads[i]);
16255       SDValue FPExt = DAG.getNode(ARMISD::VCVTL, DL, MVT::v4f32, LoadBC,
16256                                   DAG.getConstant(0, DL, MVT::i32));
16257       Extends.push_back(FPExt);
16258     }
16259 
16260     Loads = Extends;
16261   }
16262 
16263   SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
16264   DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewChain);
16265   return DAG.getNode(ISD::CONCAT_VECTORS, DL, ToVT, Loads);
16266 }
16267 
16268 /// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
16269 /// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
PerformExtendCombine(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)16270 static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
16271                                     const ARMSubtarget *ST) {
16272   SDValue N0 = N->getOperand(0);
16273 
16274   // Check for sign- and zero-extensions of vector extract operations of 8- and
16275   // 16-bit vector elements. NEON and MVE support these directly. They are
16276   // handled during DAG combining because type legalization will promote them
16277   // to 32-bit types and it is messy to recognize the operations after that.
16278   if ((ST->hasNEON() || ST->hasMVEIntegerOps()) &&
16279       N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
16280     SDValue Vec = N0.getOperand(0);
16281     SDValue Lane = N0.getOperand(1);
16282     EVT VT = N->getValueType(0);
16283     EVT EltVT = N0.getValueType();
16284     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16285 
16286     if (VT == MVT::i32 &&
16287         (EltVT == MVT::i8 || EltVT == MVT::i16) &&
16288         TLI.isTypeLegal(Vec.getValueType()) &&
16289         isa<ConstantSDNode>(Lane)) {
16290 
16291       unsigned Opc = 0;
16292       switch (N->getOpcode()) {
16293       default: llvm_unreachable("unexpected opcode");
16294       case ISD::SIGN_EXTEND:
16295         Opc = ARMISD::VGETLANEs;
16296         break;
16297       case ISD::ZERO_EXTEND:
16298       case ISD::ANY_EXTEND:
16299         Opc = ARMISD::VGETLANEu;
16300         break;
16301       }
16302       return DAG.getNode(Opc, SDLoc(N), VT, Vec, Lane);
16303     }
16304   }
16305 
16306   if (ST->hasMVEIntegerOps())
16307     if (SDValue NewLoad = PerformSplittingToWideningLoad(N, DAG))
16308       return NewLoad;
16309 
16310   return SDValue();
16311 }
16312 
PerformFPExtendCombine(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)16313 static SDValue PerformFPExtendCombine(SDNode *N, SelectionDAG &DAG,
16314                                       const ARMSubtarget *ST) {
16315   if (ST->hasMVEFloatOps())
16316     if (SDValue NewLoad = PerformSplittingToWideningLoad(N, DAG))
16317       return NewLoad;
16318 
16319   return SDValue();
16320 }
16321 
16322 /// PerformMinMaxCombine - Target-specific DAG combining for creating truncating
16323 /// saturates.
PerformMinMaxCombine(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)16324 static SDValue PerformMinMaxCombine(SDNode *N, SelectionDAG &DAG,
16325                                     const ARMSubtarget *ST) {
16326   EVT VT = N->getValueType(0);
16327   SDValue N0 = N->getOperand(0);
16328   if (!ST->hasMVEIntegerOps())
16329     return SDValue();
16330 
16331   if (SDValue V = PerformVQDMULHCombine(N, DAG))
16332     return V;
16333 
16334   if (VT != MVT::v4i32 && VT != MVT::v8i16)
16335     return SDValue();
16336 
16337   auto IsSignedSaturate = [&](SDNode *Min, SDNode *Max) {
16338     // Check one is a smin and the other is a smax
16339     if (Min->getOpcode() != ISD::SMIN)
16340       std::swap(Min, Max);
16341     if (Min->getOpcode() != ISD::SMIN || Max->getOpcode() != ISD::SMAX)
16342       return false;
16343 
16344     APInt SaturateC;
16345     if (VT == MVT::v4i32)
16346       SaturateC = APInt(32, (1 << 15) - 1, true);
16347     else //if (VT == MVT::v8i16)
16348       SaturateC = APInt(16, (1 << 7) - 1, true);
16349 
16350     APInt MinC, MaxC;
16351     if (!ISD::isConstantSplatVector(Min->getOperand(1).getNode(), MinC) ||
16352         MinC != SaturateC)
16353       return false;
16354     if (!ISD::isConstantSplatVector(Max->getOperand(1).getNode(), MaxC) ||
16355         MaxC != ~SaturateC)
16356       return false;
16357     return true;
16358   };
16359 
16360   if (IsSignedSaturate(N, N0.getNode())) {
16361     SDLoc DL(N);
16362     MVT ExtVT, HalfVT;
16363     if (VT == MVT::v4i32) {
16364       HalfVT = MVT::v8i16;
16365       ExtVT = MVT::v4i16;
16366     } else { // if (VT == MVT::v8i16)
16367       HalfVT = MVT::v16i8;
16368       ExtVT = MVT::v8i8;
16369     }
16370 
16371     // Create a VQMOVNB with undef top lanes, then signed extended into the top
16372     // half. That extend will hopefully be removed if only the bottom bits are
16373     // demanded (though a truncating store, for example).
16374     SDValue VQMOVN =
16375         DAG.getNode(ARMISD::VQMOVNs, DL, HalfVT, DAG.getUNDEF(HalfVT),
16376                     N0->getOperand(0), DAG.getConstant(0, DL, MVT::i32));
16377     SDValue Bitcast = DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, VQMOVN);
16378     return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Bitcast,
16379                        DAG.getValueType(ExtVT));
16380   }
16381 
16382   auto IsUnsignedSaturate = [&](SDNode *Min) {
16383     // For unsigned, we just need to check for <= 0xffff
16384     if (Min->getOpcode() != ISD::UMIN)
16385       return false;
16386 
16387     APInt SaturateC;
16388     if (VT == MVT::v4i32)
16389       SaturateC = APInt(32, (1 << 16) - 1, true);
16390     else //if (VT == MVT::v8i16)
16391       SaturateC = APInt(16, (1 << 8) - 1, true);
16392 
16393     APInt MinC;
16394     if (!ISD::isConstantSplatVector(Min->getOperand(1).getNode(), MinC) ||
16395         MinC != SaturateC)
16396       return false;
16397     return true;
16398   };
16399 
16400   if (IsUnsignedSaturate(N)) {
16401     SDLoc DL(N);
16402     MVT HalfVT;
16403     unsigned ExtConst;
16404     if (VT == MVT::v4i32) {
16405       HalfVT = MVT::v8i16;
16406       ExtConst = 0x0000FFFF;
16407     } else { //if (VT == MVT::v8i16)
16408       HalfVT = MVT::v16i8;
16409       ExtConst = 0x00FF;
16410     }
16411 
16412     // Create a VQMOVNB with undef top lanes, then ZExt into the top half with
16413     // an AND. That extend will hopefully be removed if only the bottom bits are
16414     // demanded (though a truncating store, for example).
16415     SDValue VQMOVN =
16416         DAG.getNode(ARMISD::VQMOVNu, DL, HalfVT, DAG.getUNDEF(HalfVT), N0,
16417                     DAG.getConstant(0, DL, MVT::i32));
16418     SDValue Bitcast = DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, VQMOVN);
16419     return DAG.getNode(ISD::AND, DL, VT, Bitcast,
16420                        DAG.getConstant(ExtConst, DL, VT));
16421   }
16422 
16423   return SDValue();
16424 }
16425 
isPowerOf2Constant(SDValue V)16426 static const APInt *isPowerOf2Constant(SDValue V) {
16427   ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
16428   if (!C)
16429     return nullptr;
16430   const APInt *CV = &C->getAPIntValue();
16431   return CV->isPowerOf2() ? CV : nullptr;
16432 }
16433 
PerformCMOVToBFICombine(SDNode * CMOV,SelectionDAG & DAG) const16434 SDValue ARMTargetLowering::PerformCMOVToBFICombine(SDNode *CMOV, SelectionDAG &DAG) const {
16435   // If we have a CMOV, OR and AND combination such as:
16436   //   if (x & CN)
16437   //     y |= CM;
16438   //
16439   // And:
16440   //   * CN is a single bit;
16441   //   * All bits covered by CM are known zero in y
16442   //
16443   // Then we can convert this into a sequence of BFI instructions. This will
16444   // always be a win if CM is a single bit, will always be no worse than the
16445   // TST&OR sequence if CM is two bits, and for thumb will be no worse if CM is
16446   // three bits (due to the extra IT instruction).
16447 
16448   SDValue Op0 = CMOV->getOperand(0);
16449   SDValue Op1 = CMOV->getOperand(1);
16450   auto CCNode = cast<ConstantSDNode>(CMOV->getOperand(2));
16451   auto CC = CCNode->getAPIntValue().getLimitedValue();
16452   SDValue CmpZ = CMOV->getOperand(4);
16453 
16454   // The compare must be against zero.
16455   if (!isNullConstant(CmpZ->getOperand(1)))
16456     return SDValue();
16457 
16458   assert(CmpZ->getOpcode() == ARMISD::CMPZ);
16459   SDValue And = CmpZ->getOperand(0);
16460   if (And->getOpcode() != ISD::AND)
16461     return SDValue();
16462   const APInt *AndC = isPowerOf2Constant(And->getOperand(1));
16463   if (!AndC)
16464     return SDValue();
16465   SDValue X = And->getOperand(0);
16466 
16467   if (CC == ARMCC::EQ) {
16468     // We're performing an "equal to zero" compare. Swap the operands so we
16469     // canonicalize on a "not equal to zero" compare.
16470     std::swap(Op0, Op1);
16471   } else {
16472     assert(CC == ARMCC::NE && "How can a CMPZ node not be EQ or NE?");
16473   }
16474 
16475   if (Op1->getOpcode() != ISD::OR)
16476     return SDValue();
16477 
16478   ConstantSDNode *OrC = dyn_cast<ConstantSDNode>(Op1->getOperand(1));
16479   if (!OrC)
16480     return SDValue();
16481   SDValue Y = Op1->getOperand(0);
16482 
16483   if (Op0 != Y)
16484     return SDValue();
16485 
16486   // Now, is it profitable to continue?
16487   APInt OrCI = OrC->getAPIntValue();
16488   unsigned Heuristic = Subtarget->isThumb() ? 3 : 2;
16489   if (OrCI.countPopulation() > Heuristic)
16490     return SDValue();
16491 
16492   // Lastly, can we determine that the bits defined by OrCI
16493   // are zero in Y?
16494   KnownBits Known = DAG.computeKnownBits(Y);
16495   if ((OrCI & Known.Zero) != OrCI)
16496     return SDValue();
16497 
16498   // OK, we can do the combine.
16499   SDValue V = Y;
16500   SDLoc dl(X);
16501   EVT VT = X.getValueType();
16502   unsigned BitInX = AndC->logBase2();
16503 
16504   if (BitInX != 0) {
16505     // We must shift X first.
16506     X = DAG.getNode(ISD::SRL, dl, VT, X,
16507                     DAG.getConstant(BitInX, dl, VT));
16508   }
16509 
16510   for (unsigned BitInY = 0, NumActiveBits = OrCI.getActiveBits();
16511        BitInY < NumActiveBits; ++BitInY) {
16512     if (OrCI[BitInY] == 0)
16513       continue;
16514     APInt Mask(VT.getSizeInBits(), 0);
16515     Mask.setBit(BitInY);
16516     V = DAG.getNode(ARMISD::BFI, dl, VT, V, X,
16517                     // Confusingly, the operand is an *inverted* mask.
16518                     DAG.getConstant(~Mask, dl, VT));
16519   }
16520 
16521   return V;
16522 }
16523 
16524 // Given N, the value controlling the conditional branch, search for the loop
16525 // intrinsic, returning it, along with how the value is used. We need to handle
16526 // patterns such as the following:
16527 // (brcond (xor (setcc (loop.decrement), 0, ne), 1), exit)
16528 // (brcond (setcc (loop.decrement), 0, eq), exit)
16529 // (brcond (setcc (loop.decrement), 0, ne), header)
SearchLoopIntrinsic(SDValue N,ISD::CondCode & CC,int & Imm,bool & Negate)16530 static SDValue SearchLoopIntrinsic(SDValue N, ISD::CondCode &CC, int &Imm,
16531                                    bool &Negate) {
16532   switch (N->getOpcode()) {
16533   default:
16534     break;
16535   case ISD::XOR: {
16536     if (!isa<ConstantSDNode>(N.getOperand(1)))
16537       return SDValue();
16538     if (!cast<ConstantSDNode>(N.getOperand(1))->isOne())
16539       return SDValue();
16540     Negate = !Negate;
16541     return SearchLoopIntrinsic(N.getOperand(0), CC, Imm, Negate);
16542   }
16543   case ISD::SETCC: {
16544     auto *Const = dyn_cast<ConstantSDNode>(N.getOperand(1));
16545     if (!Const)
16546       return SDValue();
16547     if (Const->isNullValue())
16548       Imm = 0;
16549     else if (Const->isOne())
16550       Imm = 1;
16551     else
16552       return SDValue();
16553     CC = cast<CondCodeSDNode>(N.getOperand(2))->get();
16554     return SearchLoopIntrinsic(N->getOperand(0), CC, Imm, Negate);
16555   }
16556   case ISD::INTRINSIC_W_CHAIN: {
16557     unsigned IntOp = cast<ConstantSDNode>(N.getOperand(1))->getZExtValue();
16558     if (IntOp != Intrinsic::test_start_loop_iterations &&
16559         IntOp != Intrinsic::loop_decrement_reg)
16560       return SDValue();
16561     return N;
16562   }
16563   }
16564   return SDValue();
16565 }
16566 
PerformHWLoopCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * ST)16567 static SDValue PerformHWLoopCombine(SDNode *N,
16568                                     TargetLowering::DAGCombinerInfo &DCI,
16569                                     const ARMSubtarget *ST) {
16570 
16571   // The hwloop intrinsics that we're interested are used for control-flow,
16572   // either for entering or exiting the loop:
16573   // - test.start.loop.iterations will test whether its operand is zero. If it
16574   //   is zero, the proceeding branch should not enter the loop.
16575   // - loop.decrement.reg also tests whether its operand is zero. If it is
16576   //   zero, the proceeding branch should not branch back to the beginning of
16577   //   the loop.
16578   // So here, we need to check that how the brcond is using the result of each
16579   // of the intrinsics to ensure that we're branching to the right place at the
16580   // right time.
16581 
16582   ISD::CondCode CC;
16583   SDValue Cond;
16584   int Imm = 1;
16585   bool Negate = false;
16586   SDValue Chain = N->getOperand(0);
16587   SDValue Dest;
16588 
16589   if (N->getOpcode() == ISD::BRCOND) {
16590     CC = ISD::SETEQ;
16591     Cond = N->getOperand(1);
16592     Dest = N->getOperand(2);
16593   } else {
16594     assert(N->getOpcode() == ISD::BR_CC && "Expected BRCOND or BR_CC!");
16595     CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
16596     Cond = N->getOperand(2);
16597     Dest = N->getOperand(4);
16598     if (auto *Const = dyn_cast<ConstantSDNode>(N->getOperand(3))) {
16599       if (!Const->isOne() && !Const->isNullValue())
16600         return SDValue();
16601       Imm = Const->getZExtValue();
16602     } else
16603       return SDValue();
16604   }
16605 
16606   SDValue Int = SearchLoopIntrinsic(Cond, CC, Imm, Negate);
16607   if (!Int)
16608     return SDValue();
16609 
16610   if (Negate)
16611     CC = ISD::getSetCCInverse(CC, /* Integer inverse */ MVT::i32);
16612 
16613   auto IsTrueIfZero = [](ISD::CondCode CC, int Imm) {
16614     return (CC == ISD::SETEQ && Imm == 0) ||
16615            (CC == ISD::SETNE && Imm == 1) ||
16616            (CC == ISD::SETLT && Imm == 1) ||
16617            (CC == ISD::SETULT && Imm == 1);
16618   };
16619 
16620   auto IsFalseIfZero = [](ISD::CondCode CC, int Imm) {
16621     return (CC == ISD::SETEQ && Imm == 1) ||
16622            (CC == ISD::SETNE && Imm == 0) ||
16623            (CC == ISD::SETGT && Imm == 0) ||
16624            (CC == ISD::SETUGT && Imm == 0) ||
16625            (CC == ISD::SETGE && Imm == 1) ||
16626            (CC == ISD::SETUGE && Imm == 1);
16627   };
16628 
16629   assert((IsTrueIfZero(CC, Imm) || IsFalseIfZero(CC, Imm)) &&
16630          "unsupported condition");
16631 
16632   SDLoc dl(Int);
16633   SelectionDAG &DAG = DCI.DAG;
16634   SDValue Elements = Int.getOperand(2);
16635   unsigned IntOp = cast<ConstantSDNode>(Int->getOperand(1))->getZExtValue();
16636   assert((N->hasOneUse() && N->use_begin()->getOpcode() == ISD::BR)
16637           && "expected single br user");
16638   SDNode *Br = *N->use_begin();
16639   SDValue OtherTarget = Br->getOperand(1);
16640 
16641   // Update the unconditional branch to branch to the given Dest.
16642   auto UpdateUncondBr = [](SDNode *Br, SDValue Dest, SelectionDAG &DAG) {
16643     SDValue NewBrOps[] = { Br->getOperand(0), Dest };
16644     SDValue NewBr = DAG.getNode(ISD::BR, SDLoc(Br), MVT::Other, NewBrOps);
16645     DAG.ReplaceAllUsesOfValueWith(SDValue(Br, 0), NewBr);
16646   };
16647 
16648   if (IntOp == Intrinsic::test_start_loop_iterations) {
16649     SDValue Res;
16650     SDValue Setup = DAG.getNode(ARMISD::WLSSETUP, dl, MVT::i32, Elements);
16651     // We expect this 'instruction' to branch when the counter is zero.
16652     if (IsTrueIfZero(CC, Imm)) {
16653       SDValue Ops[] = {Chain, Setup, Dest};
16654       Res = DAG.getNode(ARMISD::WLS, dl, MVT::Other, Ops);
16655     } else {
16656       // The logic is the reverse of what we need for WLS, so find the other
16657       // basic block target: the target of the proceeding br.
16658       UpdateUncondBr(Br, Dest, DAG);
16659 
16660       SDValue Ops[] = {Chain, Setup, OtherTarget};
16661       Res = DAG.getNode(ARMISD::WLS, dl, MVT::Other, Ops);
16662     }
16663     // Update LR count to the new value
16664     DAG.ReplaceAllUsesOfValueWith(Int.getValue(0), Setup);
16665     // Update chain
16666     DAG.ReplaceAllUsesOfValueWith(Int.getValue(2), Int.getOperand(0));
16667     return Res;
16668   } else {
16669     SDValue Size = DAG.getTargetConstant(
16670       cast<ConstantSDNode>(Int.getOperand(3))->getZExtValue(), dl, MVT::i32);
16671     SDValue Args[] = { Int.getOperand(0), Elements, Size, };
16672     SDValue LoopDec = DAG.getNode(ARMISD::LOOP_DEC, dl,
16673                                   DAG.getVTList(MVT::i32, MVT::Other), Args);
16674     DAG.ReplaceAllUsesWith(Int.getNode(), LoopDec.getNode());
16675 
16676     // We expect this instruction to branch when the count is not zero.
16677     SDValue Target = IsFalseIfZero(CC, Imm) ? Dest : OtherTarget;
16678 
16679     // Update the unconditional branch to target the loop preheader if we've
16680     // found the condition has been reversed.
16681     if (Target == OtherTarget)
16682       UpdateUncondBr(Br, Dest, DAG);
16683 
16684     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
16685                         SDValue(LoopDec.getNode(), 1), Chain);
16686 
16687     SDValue EndArgs[] = { Chain, SDValue(LoopDec.getNode(), 0), Target };
16688     return DAG.getNode(ARMISD::LE, dl, MVT::Other, EndArgs);
16689   }
16690   return SDValue();
16691 }
16692 
16693 /// PerformBRCONDCombine - Target-specific DAG combining for ARMISD::BRCOND.
16694 SDValue
PerformBRCONDCombine(SDNode * N,SelectionDAG & DAG) const16695 ARMTargetLowering::PerformBRCONDCombine(SDNode *N, SelectionDAG &DAG) const {
16696   SDValue Cmp = N->getOperand(4);
16697   if (Cmp.getOpcode() != ARMISD::CMPZ)
16698     // Only looking at NE cases.
16699     return SDValue();
16700 
16701   EVT VT = N->getValueType(0);
16702   SDLoc dl(N);
16703   SDValue LHS = Cmp.getOperand(0);
16704   SDValue RHS = Cmp.getOperand(1);
16705   SDValue Chain = N->getOperand(0);
16706   SDValue BB = N->getOperand(1);
16707   SDValue ARMcc = N->getOperand(2);
16708   ARMCC::CondCodes CC =
16709     (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
16710 
16711   // (brcond Chain BB ne CPSR (cmpz (and (cmov 0 1 CC CPSR Cmp) 1) 0))
16712   // -> (brcond Chain BB CC CPSR Cmp)
16713   if (CC == ARMCC::NE && LHS.getOpcode() == ISD::AND && LHS->hasOneUse() &&
16714       LHS->getOperand(0)->getOpcode() == ARMISD::CMOV &&
16715       LHS->getOperand(0)->hasOneUse()) {
16716     auto *LHS00C = dyn_cast<ConstantSDNode>(LHS->getOperand(0)->getOperand(0));
16717     auto *LHS01C = dyn_cast<ConstantSDNode>(LHS->getOperand(0)->getOperand(1));
16718     auto *LHS1C = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
16719     auto *RHSC = dyn_cast<ConstantSDNode>(RHS);
16720     if ((LHS00C && LHS00C->getZExtValue() == 0) &&
16721         (LHS01C && LHS01C->getZExtValue() == 1) &&
16722         (LHS1C && LHS1C->getZExtValue() == 1) &&
16723         (RHSC && RHSC->getZExtValue() == 0)) {
16724       return DAG.getNode(
16725           ARMISD::BRCOND, dl, VT, Chain, BB, LHS->getOperand(0)->getOperand(2),
16726           LHS->getOperand(0)->getOperand(3), LHS->getOperand(0)->getOperand(4));
16727     }
16728   }
16729 
16730   return SDValue();
16731 }
16732 
16733 /// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
16734 SDValue
PerformCMOVCombine(SDNode * N,SelectionDAG & DAG) const16735 ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const {
16736   SDValue Cmp = N->getOperand(4);
16737   if (Cmp.getOpcode() != ARMISD::CMPZ)
16738     // Only looking at EQ and NE cases.
16739     return SDValue();
16740 
16741   EVT VT = N->getValueType(0);
16742   SDLoc dl(N);
16743   SDValue LHS = Cmp.getOperand(0);
16744   SDValue RHS = Cmp.getOperand(1);
16745   SDValue FalseVal = N->getOperand(0);
16746   SDValue TrueVal = N->getOperand(1);
16747   SDValue ARMcc = N->getOperand(2);
16748   ARMCC::CondCodes CC =
16749     (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
16750 
16751   // BFI is only available on V6T2+.
16752   if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops()) {
16753     SDValue R = PerformCMOVToBFICombine(N, DAG);
16754     if (R)
16755       return R;
16756   }
16757 
16758   // Simplify
16759   //   mov     r1, r0
16760   //   cmp     r1, x
16761   //   mov     r0, y
16762   //   moveq   r0, x
16763   // to
16764   //   cmp     r0, x
16765   //   movne   r0, y
16766   //
16767   //   mov     r1, r0
16768   //   cmp     r1, x
16769   //   mov     r0, x
16770   //   movne   r0, y
16771   // to
16772   //   cmp     r0, x
16773   //   movne   r0, y
16774   /// FIXME: Turn this into a target neutral optimization?
16775   SDValue Res;
16776   if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) {
16777     Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc,
16778                       N->getOperand(3), Cmp);
16779   } else if (CC == ARMCC::EQ && TrueVal == RHS) {
16780     SDValue ARMcc;
16781     SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl);
16782     Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc,
16783                       N->getOperand(3), NewCmp);
16784   }
16785 
16786   // (cmov F T ne CPSR (cmpz (cmov 0 1 CC CPSR Cmp) 0))
16787   // -> (cmov F T CC CPSR Cmp)
16788   if (CC == ARMCC::NE && LHS.getOpcode() == ARMISD::CMOV && LHS->hasOneUse()) {
16789     auto *LHS0C = dyn_cast<ConstantSDNode>(LHS->getOperand(0));
16790     auto *LHS1C = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
16791     auto *RHSC = dyn_cast<ConstantSDNode>(RHS);
16792     if ((LHS0C && LHS0C->getZExtValue() == 0) &&
16793         (LHS1C && LHS1C->getZExtValue() == 1) &&
16794         (RHSC && RHSC->getZExtValue() == 0)) {
16795       return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
16796                          LHS->getOperand(2), LHS->getOperand(3),
16797                          LHS->getOperand(4));
16798     }
16799   }
16800 
16801   if (!VT.isInteger())
16802       return SDValue();
16803 
16804   // Materialize a boolean comparison for integers so we can avoid branching.
16805   if (isNullConstant(FalseVal)) {
16806     if (CC == ARMCC::EQ && isOneConstant(TrueVal)) {
16807       if (!Subtarget->isThumb1Only() && Subtarget->hasV5TOps()) {
16808         // If x == y then x - y == 0 and ARM's CLZ will return 32, shifting it
16809         // right 5 bits will make that 32 be 1, otherwise it will be 0.
16810         // CMOV 0, 1, ==, (CMPZ x, y) -> SRL (CTLZ (SUB x, y)), 5
16811         SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
16812         Res = DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::CTLZ, dl, VT, Sub),
16813                           DAG.getConstant(5, dl, MVT::i32));
16814       } else {
16815         // CMOV 0, 1, ==, (CMPZ x, y) ->
16816         //     (ADDCARRY (SUB x, y), t:0, t:1)
16817         // where t = (SUBCARRY 0, (SUB x, y), 0)
16818         //
16819         // The SUBCARRY computes 0 - (x - y) and this will give a borrow when
16820         // x != y. In other words, a carry C == 1 when x == y, C == 0
16821         // otherwise.
16822         // The final ADDCARRY computes
16823         //     x - y + (0 - (x - y)) + C == C
16824         SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
16825         SDVTList VTs = DAG.getVTList(VT, MVT::i32);
16826         SDValue Neg = DAG.getNode(ISD::USUBO, dl, VTs, FalseVal, Sub);
16827         // ISD::SUBCARRY returns a borrow but we want the carry here
16828         // actually.
16829         SDValue Carry =
16830             DAG.getNode(ISD::SUB, dl, MVT::i32,
16831                         DAG.getConstant(1, dl, MVT::i32), Neg.getValue(1));
16832         Res = DAG.getNode(ISD::ADDCARRY, dl, VTs, Sub, Neg, Carry);
16833       }
16834     } else if (CC == ARMCC::NE && !isNullConstant(RHS) &&
16835                (!Subtarget->isThumb1Only() || isPowerOf2Constant(TrueVal))) {
16836       // This seems pointless but will allow us to combine it further below.
16837       // CMOV 0, z, !=, (CMPZ x, y) -> CMOV (SUBS x, y), z, !=, (SUBS x, y):1
16838       SDValue Sub =
16839           DAG.getNode(ARMISD::SUBS, dl, DAG.getVTList(VT, MVT::i32), LHS, RHS);
16840       SDValue CPSRGlue = DAG.getCopyToReg(DAG.getEntryNode(), dl, ARM::CPSR,
16841                                           Sub.getValue(1), SDValue());
16842       Res = DAG.getNode(ARMISD::CMOV, dl, VT, Sub, TrueVal, ARMcc,
16843                         N->getOperand(3), CPSRGlue.getValue(1));
16844       FalseVal = Sub;
16845     }
16846   } else if (isNullConstant(TrueVal)) {
16847     if (CC == ARMCC::EQ && !isNullConstant(RHS) &&
16848         (!Subtarget->isThumb1Only() || isPowerOf2Constant(FalseVal))) {
16849       // This seems pointless but will allow us to combine it further below
16850       // Note that we change == for != as this is the dual for the case above.
16851       // CMOV z, 0, ==, (CMPZ x, y) -> CMOV (SUBS x, y), z, !=, (SUBS x, y):1
16852       SDValue Sub =
16853           DAG.getNode(ARMISD::SUBS, dl, DAG.getVTList(VT, MVT::i32), LHS, RHS);
16854       SDValue CPSRGlue = DAG.getCopyToReg(DAG.getEntryNode(), dl, ARM::CPSR,
16855                                           Sub.getValue(1), SDValue());
16856       Res = DAG.getNode(ARMISD::CMOV, dl, VT, Sub, FalseVal,
16857                         DAG.getConstant(ARMCC::NE, dl, MVT::i32),
16858                         N->getOperand(3), CPSRGlue.getValue(1));
16859       FalseVal = Sub;
16860     }
16861   }
16862 
16863   // On Thumb1, the DAG above may be further combined if z is a power of 2
16864   // (z == 2 ^ K).
16865   // CMOV (SUBS x, y), z, !=, (SUBS x, y):1 ->
16866   // t1 = (USUBO (SUB x, y), 1)
16867   // t2 = (SUBCARRY (SUB x, y), t1:0, t1:1)
16868   // Result = if K != 0 then (SHL t2:0, K) else t2:0
16869   //
16870   // This also handles the special case of comparing against zero; it's
16871   // essentially, the same pattern, except there's no SUBS:
16872   // CMOV x, z, !=, (CMPZ x, 0) ->
16873   // t1 = (USUBO x, 1)
16874   // t2 = (SUBCARRY x, t1:0, t1:1)
16875   // Result = if K != 0 then (SHL t2:0, K) else t2:0
16876   const APInt *TrueConst;
16877   if (Subtarget->isThumb1Only() && CC == ARMCC::NE &&
16878       ((FalseVal.getOpcode() == ARMISD::SUBS &&
16879         FalseVal.getOperand(0) == LHS && FalseVal.getOperand(1) == RHS) ||
16880        (FalseVal == LHS && isNullConstant(RHS))) &&
16881       (TrueConst = isPowerOf2Constant(TrueVal))) {
16882     SDVTList VTs = DAG.getVTList(VT, MVT::i32);
16883     unsigned ShiftAmount = TrueConst->logBase2();
16884     if (ShiftAmount)
16885       TrueVal = DAG.getConstant(1, dl, VT);
16886     SDValue Subc = DAG.getNode(ISD::USUBO, dl, VTs, FalseVal, TrueVal);
16887     Res = DAG.getNode(ISD::SUBCARRY, dl, VTs, FalseVal, Subc, Subc.getValue(1));
16888 
16889     if (ShiftAmount)
16890       Res = DAG.getNode(ISD::SHL, dl, VT, Res,
16891                         DAG.getConstant(ShiftAmount, dl, MVT::i32));
16892   }
16893 
16894   if (Res.getNode()) {
16895     KnownBits Known = DAG.computeKnownBits(SDValue(N,0));
16896     // Capture demanded bits information that would be otherwise lost.
16897     if (Known.Zero == 0xfffffffe)
16898       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
16899                         DAG.getValueType(MVT::i1));
16900     else if (Known.Zero == 0xffffff00)
16901       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
16902                         DAG.getValueType(MVT::i8));
16903     else if (Known.Zero == 0xffff0000)
16904       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
16905                         DAG.getValueType(MVT::i16));
16906   }
16907 
16908   return Res;
16909 }
16910 
PerformBITCASTCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * ST)16911 static SDValue PerformBITCASTCombine(SDNode *N,
16912                                      TargetLowering::DAGCombinerInfo &DCI,
16913                                      const ARMSubtarget *ST) {
16914   SelectionDAG &DAG = DCI.DAG;
16915   SDValue Src = N->getOperand(0);
16916   EVT DstVT = N->getValueType(0);
16917 
16918   // Convert v4f32 bitcast (v4i32 vdup (i32)) -> v4f32 vdup (i32) under MVE.
16919   if (ST->hasMVEIntegerOps() && Src.getOpcode() == ARMISD::VDUP) {
16920     EVT SrcVT = Src.getValueType();
16921     if (SrcVT.getScalarSizeInBits() == DstVT.getScalarSizeInBits())
16922       return DAG.getNode(ARMISD::VDUP, SDLoc(N), DstVT, Src.getOperand(0));
16923   }
16924 
16925   // We may have a bitcast of something that has already had this bitcast
16926   // combine performed on it, so skip past any VECTOR_REG_CASTs.
16927   while (Src.getOpcode() == ARMISD::VECTOR_REG_CAST)
16928     Src = Src.getOperand(0);
16929 
16930   // Bitcast from element-wise VMOV or VMVN doesn't need VREV if the VREV that
16931   // would be generated is at least the width of the element type.
16932   EVT SrcVT = Src.getValueType();
16933   if ((Src.getOpcode() == ARMISD::VMOVIMM ||
16934        Src.getOpcode() == ARMISD::VMVNIMM ||
16935        Src.getOpcode() == ARMISD::VMOVFPIMM) &&
16936       SrcVT.getScalarSizeInBits() <= DstVT.getScalarSizeInBits() &&
16937       DAG.getDataLayout().isBigEndian())
16938     return DAG.getNode(ARMISD::VECTOR_REG_CAST, SDLoc(N), DstVT, Src);
16939 
16940   // bitcast(extract(x, n)); bitcast(extract(x, n+1))  ->  VMOVRRD x
16941   if (SDValue R = PerformExtractEltToVMOVRRD(N, DCI))
16942     return R;
16943 
16944   return SDValue();
16945 }
16946 
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const16947 SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
16948                                              DAGCombinerInfo &DCI) const {
16949   switch (N->getOpcode()) {
16950   default: break;
16951   case ISD::SELECT_CC:
16952   case ISD::SELECT:     return PerformSELECTCombine(N, DCI, Subtarget);
16953   case ISD::VSELECT:    return PerformVSELECTCombine(N, DCI, Subtarget);
16954   case ISD::ABS:        return PerformABSCombine(N, DCI, Subtarget);
16955   case ARMISD::ADDE:    return PerformADDECombine(N, DCI, Subtarget);
16956   case ARMISD::UMLAL:   return PerformUMLALCombine(N, DCI.DAG, Subtarget);
16957   case ISD::ADD:        return PerformADDCombine(N, DCI, Subtarget);
16958   case ISD::SUB:        return PerformSUBCombine(N, DCI, Subtarget);
16959   case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget);
16960   case ISD::OR:         return PerformORCombine(N, DCI, Subtarget);
16961   case ISD::XOR:        return PerformXORCombine(N, DCI, Subtarget);
16962   case ISD::AND:        return PerformANDCombine(N, DCI, Subtarget);
16963   case ISD::BRCOND:
16964   case ISD::BR_CC:      return PerformHWLoopCombine(N, DCI, Subtarget);
16965   case ARMISD::ADDC:
16966   case ARMISD::SUBC:    return PerformAddcSubcCombine(N, DCI, Subtarget);
16967   case ARMISD::SUBE:    return PerformAddeSubeCombine(N, DCI, Subtarget);
16968   case ARMISD::BFI:     return PerformBFICombine(N, DCI);
16969   case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI, Subtarget);
16970   case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
16971   case ARMISD::VMOVhr:  return PerformVMOVhrCombine(N, DCI);
16972   case ARMISD::VMOVrh:  return PerformVMOVrhCombine(N, DCI);
16973   case ISD::STORE:      return PerformSTORECombine(N, DCI, Subtarget);
16974   case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI, Subtarget);
16975   case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
16976   case ISD::EXTRACT_VECTOR_ELT:
16977     return PerformExtractEltCombine(N, DCI, Subtarget);
16978   case ISD::SIGN_EXTEND_INREG: return PerformSignExtendInregCombine(N, DCI.DAG);
16979   case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
16980   case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI, Subtarget);
16981   case ARMISD::VDUP: return PerformVDUPCombine(N, DCI, Subtarget);
16982   case ISD::FP_TO_SINT:
16983   case ISD::FP_TO_UINT:
16984     return PerformVCVTCombine(N, DCI.DAG, Subtarget);
16985   case ISD::FDIV:
16986     return PerformVDIVCombine(N, DCI.DAG, Subtarget);
16987   case ISD::INTRINSIC_WO_CHAIN:
16988     return PerformIntrinsicCombine(N, DCI);
16989   case ISD::SHL:
16990   case ISD::SRA:
16991   case ISD::SRL:
16992     return PerformShiftCombine(N, DCI, Subtarget);
16993   case ISD::SIGN_EXTEND:
16994   case ISD::ZERO_EXTEND:
16995   case ISD::ANY_EXTEND:
16996     return PerformExtendCombine(N, DCI.DAG, Subtarget);
16997   case ISD::FP_EXTEND:
16998     return PerformFPExtendCombine(N, DCI.DAG, Subtarget);
16999   case ISD::SMIN:
17000   case ISD::UMIN:
17001   case ISD::SMAX:
17002   case ISD::UMAX:
17003     return PerformMinMaxCombine(N, DCI.DAG, Subtarget);
17004   case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG);
17005   case ARMISD::BRCOND: return PerformBRCONDCombine(N, DCI.DAG);
17006   case ISD::LOAD:       return PerformLOADCombine(N, DCI);
17007   case ARMISD::VLD1DUP:
17008   case ARMISD::VLD2DUP:
17009   case ARMISD::VLD3DUP:
17010   case ARMISD::VLD4DUP:
17011     return PerformVLDCombine(N, DCI);
17012   case ARMISD::BUILD_VECTOR:
17013     return PerformARMBUILD_VECTORCombine(N, DCI);
17014   case ISD::BITCAST:
17015     return PerformBITCASTCombine(N, DCI, Subtarget);
17016   case ARMISD::PREDICATE_CAST:
17017     return PerformPREDICATE_CASTCombine(N, DCI);
17018   case ARMISD::VECTOR_REG_CAST:
17019     return PerformVECTOR_REG_CASTCombine(N, DCI, Subtarget);
17020   case ARMISD::VCMP:
17021     return PerformVCMPCombine(N, DCI, Subtarget);
17022   case ISD::VECREDUCE_ADD:
17023     return PerformVECREDUCE_ADDCombine(N, DCI.DAG, Subtarget);
17024   case ARMISD::VMOVN:
17025     return PerformVMOVNCombine(N, DCI);
17026   case ARMISD::VQMOVNs:
17027   case ARMISD::VQMOVNu:
17028     return PerformVQMOVNCombine(N, DCI);
17029   case ARMISD::ASRL:
17030   case ARMISD::LSRL:
17031   case ARMISD::LSLL:
17032     return PerformLongShiftCombine(N, DCI.DAG);
17033   case ARMISD::SMULWB: {
17034     unsigned BitWidth = N->getValueType(0).getSizeInBits();
17035     APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
17036     if (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI))
17037       return SDValue();
17038     break;
17039   }
17040   case ARMISD::SMULWT: {
17041     unsigned BitWidth = N->getValueType(0).getSizeInBits();
17042     APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 16);
17043     if (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI))
17044       return SDValue();
17045     break;
17046   }
17047   case ARMISD::SMLALBB:
17048   case ARMISD::QADD16b:
17049   case ARMISD::QSUB16b: {
17050     unsigned BitWidth = N->getValueType(0).getSizeInBits();
17051     APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
17052     if ((SimplifyDemandedBits(N->getOperand(0), DemandedMask, DCI)) ||
17053         (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI)))
17054       return SDValue();
17055     break;
17056   }
17057   case ARMISD::SMLALBT: {
17058     unsigned LowWidth = N->getOperand(0).getValueType().getSizeInBits();
17059     APInt LowMask = APInt::getLowBitsSet(LowWidth, 16);
17060     unsigned HighWidth = N->getOperand(1).getValueType().getSizeInBits();
17061     APInt HighMask = APInt::getHighBitsSet(HighWidth, 16);
17062     if ((SimplifyDemandedBits(N->getOperand(0), LowMask, DCI)) ||
17063         (SimplifyDemandedBits(N->getOperand(1), HighMask, DCI)))
17064       return SDValue();
17065     break;
17066   }
17067   case ARMISD::SMLALTB: {
17068     unsigned HighWidth = N->getOperand(0).getValueType().getSizeInBits();
17069     APInt HighMask = APInt::getHighBitsSet(HighWidth, 16);
17070     unsigned LowWidth = N->getOperand(1).getValueType().getSizeInBits();
17071     APInt LowMask = APInt::getLowBitsSet(LowWidth, 16);
17072     if ((SimplifyDemandedBits(N->getOperand(0), HighMask, DCI)) ||
17073         (SimplifyDemandedBits(N->getOperand(1), LowMask, DCI)))
17074       return SDValue();
17075     break;
17076   }
17077   case ARMISD::SMLALTT: {
17078     unsigned BitWidth = N->getValueType(0).getSizeInBits();
17079     APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 16);
17080     if ((SimplifyDemandedBits(N->getOperand(0), DemandedMask, DCI)) ||
17081         (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI)))
17082       return SDValue();
17083     break;
17084   }
17085   case ARMISD::QADD8b:
17086   case ARMISD::QSUB8b: {
17087     unsigned BitWidth = N->getValueType(0).getSizeInBits();
17088     APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 8);
17089     if ((SimplifyDemandedBits(N->getOperand(0), DemandedMask, DCI)) ||
17090         (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI)))
17091       return SDValue();
17092     break;
17093   }
17094   case ISD::INTRINSIC_VOID:
17095   case ISD::INTRINSIC_W_CHAIN:
17096     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
17097     case Intrinsic::arm_neon_vld1:
17098     case Intrinsic::arm_neon_vld1x2:
17099     case Intrinsic::arm_neon_vld1x3:
17100     case Intrinsic::arm_neon_vld1x4:
17101     case Intrinsic::arm_neon_vld2:
17102     case Intrinsic::arm_neon_vld3:
17103     case Intrinsic::arm_neon_vld4:
17104     case Intrinsic::arm_neon_vld2lane:
17105     case Intrinsic::arm_neon_vld3lane:
17106     case Intrinsic::arm_neon_vld4lane:
17107     case Intrinsic::arm_neon_vld2dup:
17108     case Intrinsic::arm_neon_vld3dup:
17109     case Intrinsic::arm_neon_vld4dup:
17110     case Intrinsic::arm_neon_vst1:
17111     case Intrinsic::arm_neon_vst1x2:
17112     case Intrinsic::arm_neon_vst1x3:
17113     case Intrinsic::arm_neon_vst1x4:
17114     case Intrinsic::arm_neon_vst2:
17115     case Intrinsic::arm_neon_vst3:
17116     case Intrinsic::arm_neon_vst4:
17117     case Intrinsic::arm_neon_vst2lane:
17118     case Intrinsic::arm_neon_vst3lane:
17119     case Intrinsic::arm_neon_vst4lane:
17120       return PerformVLDCombine(N, DCI);
17121     case Intrinsic::arm_mve_vld2q:
17122     case Intrinsic::arm_mve_vld4q:
17123     case Intrinsic::arm_mve_vst2q:
17124     case Intrinsic::arm_mve_vst4q:
17125       return PerformMVEVLDCombine(N, DCI);
17126     default: break;
17127     }
17128     break;
17129   }
17130   return SDValue();
17131 }
17132 
isDesirableToTransformToIntegerOp(unsigned Opc,EVT VT) const17133 bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
17134                                                           EVT VT) const {
17135   return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
17136 }
17137 
allowsMisalignedMemoryAccesses(EVT VT,unsigned,Align Alignment,MachineMemOperand::Flags,bool * Fast) const17138 bool ARMTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, unsigned,
17139                                                        Align Alignment,
17140                                                        MachineMemOperand::Flags,
17141                                                        bool *Fast) const {
17142   // Depends what it gets converted into if the type is weird.
17143   if (!VT.isSimple())
17144     return false;
17145 
17146   // The AllowsUnaligned flag models the SCTLR.A setting in ARM cpus
17147   bool AllowsUnaligned = Subtarget->allowsUnalignedMem();
17148   auto Ty = VT.getSimpleVT().SimpleTy;
17149 
17150   if (Ty == MVT::i8 || Ty == MVT::i16 || Ty == MVT::i32) {
17151     // Unaligned access can use (for example) LRDB, LRDH, LDR
17152     if (AllowsUnaligned) {
17153       if (Fast)
17154         *Fast = Subtarget->hasV7Ops();
17155       return true;
17156     }
17157   }
17158 
17159   if (Ty == MVT::f64 || Ty == MVT::v2f64) {
17160     // For any little-endian targets with neon, we can support unaligned ld/st
17161     // of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8.
17162     // A big-endian target may also explicitly support unaligned accesses
17163     if (Subtarget->hasNEON() && (AllowsUnaligned || Subtarget->isLittle())) {
17164       if (Fast)
17165         *Fast = true;
17166       return true;
17167     }
17168   }
17169 
17170   if (!Subtarget->hasMVEIntegerOps())
17171     return false;
17172 
17173   // These are for predicates
17174   if ((Ty == MVT::v16i1 || Ty == MVT::v8i1 || Ty == MVT::v4i1)) {
17175     if (Fast)
17176       *Fast = true;
17177     return true;
17178   }
17179 
17180   // These are for truncated stores/narrowing loads. They are fine so long as
17181   // the alignment is at least the size of the item being loaded
17182   if ((Ty == MVT::v4i8 || Ty == MVT::v8i8 || Ty == MVT::v4i16) &&
17183       Alignment >= VT.getScalarSizeInBits() / 8) {
17184     if (Fast)
17185       *Fast = true;
17186     return true;
17187   }
17188 
17189   // In little-endian MVE, the store instructions VSTRB.U8, VSTRH.U16 and
17190   // VSTRW.U32 all store the vector register in exactly the same format, and
17191   // differ only in the range of their immediate offset field and the required
17192   // alignment. So there is always a store that can be used, regardless of
17193   // actual type.
17194   //
17195   // For big endian, that is not the case. But can still emit a (VSTRB.U8;
17196   // VREV64.8) pair and get the same effect. This will likely be better than
17197   // aligning the vector through the stack.
17198   if (Ty == MVT::v16i8 || Ty == MVT::v8i16 || Ty == MVT::v8f16 ||
17199       Ty == MVT::v4i32 || Ty == MVT::v4f32 || Ty == MVT::v2i64 ||
17200       Ty == MVT::v2f64) {
17201     if (Fast)
17202       *Fast = true;
17203     return true;
17204   }
17205 
17206   return false;
17207 }
17208 
17209 
getOptimalMemOpType(const MemOp & Op,const AttributeList & FuncAttributes) const17210 EVT ARMTargetLowering::getOptimalMemOpType(
17211     const MemOp &Op, const AttributeList &FuncAttributes) const {
17212   // See if we can use NEON instructions for this...
17213   if ((Op.isMemcpy() || Op.isZeroMemset()) && Subtarget->hasNEON() &&
17214       !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat)) {
17215     bool Fast;
17216     if (Op.size() >= 16 &&
17217         (Op.isAligned(Align(16)) ||
17218          (allowsMisalignedMemoryAccesses(MVT::v2f64, 0, Align(1),
17219                                          MachineMemOperand::MONone, &Fast) &&
17220           Fast))) {
17221       return MVT::v2f64;
17222     } else if (Op.size() >= 8 &&
17223                (Op.isAligned(Align(8)) ||
17224                 (allowsMisalignedMemoryAccesses(
17225                      MVT::f64, 0, Align(1), MachineMemOperand::MONone, &Fast) &&
17226                  Fast))) {
17227       return MVT::f64;
17228     }
17229   }
17230 
17231   // Let the target-independent logic figure it out.
17232   return MVT::Other;
17233 }
17234 
17235 // 64-bit integers are split into their high and low parts and held in two
17236 // different registers, so the trunc is free since the low register can just
17237 // be used.
isTruncateFree(Type * SrcTy,Type * DstTy) const17238 bool ARMTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
17239   if (!SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
17240     return false;
17241   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
17242   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
17243   return (SrcBits == 64 && DestBits == 32);
17244 }
17245 
isTruncateFree(EVT SrcVT,EVT DstVT) const17246 bool ARMTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
17247   if (SrcVT.isVector() || DstVT.isVector() || !SrcVT.isInteger() ||
17248       !DstVT.isInteger())
17249     return false;
17250   unsigned SrcBits = SrcVT.getSizeInBits();
17251   unsigned DestBits = DstVT.getSizeInBits();
17252   return (SrcBits == 64 && DestBits == 32);
17253 }
17254 
isZExtFree(SDValue Val,EVT VT2) const17255 bool ARMTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
17256   if (Val.getOpcode() != ISD::LOAD)
17257     return false;
17258 
17259   EVT VT1 = Val.getValueType();
17260   if (!VT1.isSimple() || !VT1.isInteger() ||
17261       !VT2.isSimple() || !VT2.isInteger())
17262     return false;
17263 
17264   switch (VT1.getSimpleVT().SimpleTy) {
17265   default: break;
17266   case MVT::i1:
17267   case MVT::i8:
17268   case MVT::i16:
17269     // 8-bit and 16-bit loads implicitly zero-extend to 32-bits.
17270     return true;
17271   }
17272 
17273   return false;
17274 }
17275 
isFNegFree(EVT VT) const17276 bool ARMTargetLowering::isFNegFree(EVT VT) const {
17277   if (!VT.isSimple())
17278     return false;
17279 
17280   // There are quite a few FP16 instructions (e.g. VNMLA, VNMLS, etc.) that
17281   // negate values directly (fneg is free). So, we don't want to let the DAG
17282   // combiner rewrite fneg into xors and some other instructions.  For f16 and
17283   // FullFP16 argument passing, some bitcast nodes may be introduced,
17284   // triggering this DAG combine rewrite, so we are avoiding that with this.
17285   switch (VT.getSimpleVT().SimpleTy) {
17286   default: break;
17287   case MVT::f16:
17288     return Subtarget->hasFullFP16();
17289   }
17290 
17291   return false;
17292 }
17293 
17294 /// Check if Ext1 and Ext2 are extends of the same type, doubling the bitwidth
17295 /// of the vector elements.
areExtractExts(Value * Ext1,Value * Ext2)17296 static bool areExtractExts(Value *Ext1, Value *Ext2) {
17297   auto areExtDoubled = [](Instruction *Ext) {
17298     return Ext->getType()->getScalarSizeInBits() ==
17299            2 * Ext->getOperand(0)->getType()->getScalarSizeInBits();
17300   };
17301 
17302   if (!match(Ext1, m_ZExtOrSExt(m_Value())) ||
17303       !match(Ext2, m_ZExtOrSExt(m_Value())) ||
17304       !areExtDoubled(cast<Instruction>(Ext1)) ||
17305       !areExtDoubled(cast<Instruction>(Ext2)))
17306     return false;
17307 
17308   return true;
17309 }
17310 
17311 /// Check if sinking \p I's operands to I's basic block is profitable, because
17312 /// the operands can be folded into a target instruction, e.g.
17313 /// sext/zext can be folded into vsubl.
shouldSinkOperands(Instruction * I,SmallVectorImpl<Use * > & Ops) const17314 bool ARMTargetLowering::shouldSinkOperands(Instruction *I,
17315                                            SmallVectorImpl<Use *> &Ops) const {
17316   if (!I->getType()->isVectorTy())
17317     return false;
17318 
17319   if (Subtarget->hasNEON()) {
17320     switch (I->getOpcode()) {
17321     case Instruction::Sub:
17322     case Instruction::Add: {
17323       if (!areExtractExts(I->getOperand(0), I->getOperand(1)))
17324         return false;
17325       Ops.push_back(&I->getOperandUse(0));
17326       Ops.push_back(&I->getOperandUse(1));
17327       return true;
17328     }
17329     default:
17330       return false;
17331     }
17332   }
17333 
17334   if (!Subtarget->hasMVEIntegerOps())
17335     return false;
17336 
17337   auto IsFMSMul = [&](Instruction *I) {
17338     if (!I->hasOneUse())
17339       return false;
17340     auto *Sub = cast<Instruction>(*I->users().begin());
17341     return Sub->getOpcode() == Instruction::FSub && Sub->getOperand(1) == I;
17342   };
17343   auto IsFMS = [&](Instruction *I) {
17344     if (match(I->getOperand(0), m_FNeg(m_Value())) ||
17345         match(I->getOperand(1), m_FNeg(m_Value())))
17346       return true;
17347     return false;
17348   };
17349 
17350   auto IsSinker = [&](Instruction *I, int Operand) {
17351     switch (I->getOpcode()) {
17352     case Instruction::Add:
17353     case Instruction::Mul:
17354     case Instruction::FAdd:
17355     case Instruction::ICmp:
17356     case Instruction::FCmp:
17357       return true;
17358     case Instruction::FMul:
17359       return !IsFMSMul(I);
17360     case Instruction::Sub:
17361     case Instruction::FSub:
17362     case Instruction::Shl:
17363     case Instruction::LShr:
17364     case Instruction::AShr:
17365       return Operand == 1;
17366     case Instruction::Call:
17367       if (auto *II = dyn_cast<IntrinsicInst>(I)) {
17368         switch (II->getIntrinsicID()) {
17369         case Intrinsic::fma:
17370           return !IsFMS(I);
17371         case Intrinsic::arm_mve_add_predicated:
17372         case Intrinsic::arm_mve_mul_predicated:
17373         case Intrinsic::arm_mve_qadd_predicated:
17374         case Intrinsic::arm_mve_hadd_predicated:
17375         case Intrinsic::arm_mve_vqdmull_predicated:
17376         case Intrinsic::arm_mve_qdmulh_predicated:
17377         case Intrinsic::arm_mve_qrdmulh_predicated:
17378         case Intrinsic::arm_mve_fma_predicated:
17379           return true;
17380         case Intrinsic::arm_mve_sub_predicated:
17381         case Intrinsic::arm_mve_qsub_predicated:
17382         case Intrinsic::arm_mve_hsub_predicated:
17383           return Operand == 1;
17384         default:
17385           return false;
17386         }
17387       }
17388       return false;
17389     default:
17390       return false;
17391     }
17392   };
17393 
17394   for (auto OpIdx : enumerate(I->operands())) {
17395     Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get());
17396     // Make sure we are not already sinking this operand
17397     if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; }))
17398       continue;
17399 
17400     Instruction *Shuffle = Op;
17401     if (Shuffle->getOpcode() == Instruction::BitCast)
17402       Shuffle = dyn_cast<Instruction>(Shuffle->getOperand(0));
17403     // We are looking for a splat that can be sunk.
17404     if (!Shuffle ||
17405         !match(Shuffle, m_Shuffle(
17406                             m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
17407                             m_Undef(), m_ZeroMask())))
17408       continue;
17409     if (!IsSinker(I, OpIdx.index()))
17410       continue;
17411 
17412     // All uses of the shuffle should be sunk to avoid duplicating it across gpr
17413     // and vector registers
17414     for (Use &U : Op->uses()) {
17415       Instruction *Insn = cast<Instruction>(U.getUser());
17416       if (!IsSinker(Insn, U.getOperandNo()))
17417         return false;
17418     }
17419 
17420     Ops.push_back(&Shuffle->getOperandUse(0));
17421     if (Shuffle != Op)
17422       Ops.push_back(&Op->getOperandUse(0));
17423     Ops.push_back(&OpIdx.value());
17424   }
17425   return true;
17426 }
17427 
shouldConvertSplatType(ShuffleVectorInst * SVI) const17428 Type *ARMTargetLowering::shouldConvertSplatType(ShuffleVectorInst *SVI) const {
17429   if (!Subtarget->hasMVEIntegerOps())
17430     return nullptr;
17431   Type *SVIType = SVI->getType();
17432   Type *ScalarType = SVIType->getScalarType();
17433 
17434   if (ScalarType->isFloatTy())
17435     return Type::getInt32Ty(SVIType->getContext());
17436   if (ScalarType->isHalfTy())
17437     return Type::getInt16Ty(SVIType->getContext());
17438   return nullptr;
17439 }
17440 
isVectorLoadExtDesirable(SDValue ExtVal) const17441 bool ARMTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
17442   EVT VT = ExtVal.getValueType();
17443 
17444   if (!isTypeLegal(VT))
17445     return false;
17446 
17447   if (auto *Ld = dyn_cast<MaskedLoadSDNode>(ExtVal.getOperand(0))) {
17448     if (Ld->isExpandingLoad())
17449       return false;
17450   }
17451 
17452   if (Subtarget->hasMVEIntegerOps())
17453     return true;
17454 
17455   // Don't create a loadext if we can fold the extension into a wide/long
17456   // instruction.
17457   // If there's more than one user instruction, the loadext is desirable no
17458   // matter what.  There can be two uses by the same instruction.
17459   if (ExtVal->use_empty() ||
17460       !ExtVal->use_begin()->isOnlyUserOf(ExtVal.getNode()))
17461     return true;
17462 
17463   SDNode *U = *ExtVal->use_begin();
17464   if ((U->getOpcode() == ISD::ADD || U->getOpcode() == ISD::SUB ||
17465        U->getOpcode() == ISD::SHL || U->getOpcode() == ARMISD::VSHLIMM))
17466     return false;
17467 
17468   return true;
17469 }
17470 
allowTruncateForTailCall(Type * Ty1,Type * Ty2) const17471 bool ARMTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
17472   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
17473     return false;
17474 
17475   if (!isTypeLegal(EVT::getEVT(Ty1)))
17476     return false;
17477 
17478   assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
17479 
17480   // Assuming the caller doesn't have a zeroext or signext return parameter,
17481   // truncation all the way down to i1 is valid.
17482   return true;
17483 }
17484 
getScalingFactorCost(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS) const17485 InstructionCost ARMTargetLowering::getScalingFactorCost(const DataLayout &DL,
17486                                                         const AddrMode &AM,
17487                                                         Type *Ty,
17488                                                         unsigned AS) const {
17489   if (isLegalAddressingMode(DL, AM, Ty, AS)) {
17490     if (Subtarget->hasFPAO())
17491       return AM.Scale < 0 ? 1 : 0; // positive offsets execute faster
17492     return 0;
17493   }
17494   return -1;
17495 }
17496 
17497 /// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster
17498 /// than a pair of fmul and fadd instructions. fmuladd intrinsics will be
17499 /// expanded to FMAs when this method returns true, otherwise fmuladd is
17500 /// expanded to fmul + fadd.
17501 ///
17502 /// ARM supports both fused and unfused multiply-add operations; we already
17503 /// lower a pair of fmul and fadd to the latter so it's not clear that there
17504 /// would be a gain or that the gain would be worthwhile enough to risk
17505 /// correctness bugs.
17506 ///
17507 /// For MVE, we set this to true as it helps simplify the need for some
17508 /// patterns (and we don't have the non-fused floating point instruction).
isFMAFasterThanFMulAndFAdd(const MachineFunction & MF,EVT VT) const17509 bool ARMTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
17510                                                    EVT VT) const {
17511   if (!VT.isSimple())
17512     return false;
17513 
17514   switch (VT.getSimpleVT().SimpleTy) {
17515   case MVT::v4f32:
17516   case MVT::v8f16:
17517     return Subtarget->hasMVEFloatOps();
17518   case MVT::f16:
17519     return Subtarget->useFPVFMx16();
17520   case MVT::f32:
17521     return Subtarget->useFPVFMx();
17522   case MVT::f64:
17523     return Subtarget->useFPVFMx64();
17524   default:
17525     break;
17526   }
17527 
17528   return false;
17529 }
17530 
isLegalT1AddressImmediate(int64_t V,EVT VT)17531 static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
17532   if (V < 0)
17533     return false;
17534 
17535   unsigned Scale = 1;
17536   switch (VT.getSimpleVT().SimpleTy) {
17537   case MVT::i1:
17538   case MVT::i8:
17539     // Scale == 1;
17540     break;
17541   case MVT::i16:
17542     // Scale == 2;
17543     Scale = 2;
17544     break;
17545   default:
17546     // On thumb1 we load most things (i32, i64, floats, etc) with a LDR
17547     // Scale == 4;
17548     Scale = 4;
17549     break;
17550   }
17551 
17552   if ((V & (Scale - 1)) != 0)
17553     return false;
17554   return isUInt<5>(V / Scale);
17555 }
17556 
isLegalT2AddressImmediate(int64_t V,EVT VT,const ARMSubtarget * Subtarget)17557 static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
17558                                       const ARMSubtarget *Subtarget) {
17559   if (!VT.isInteger() && !VT.isFloatingPoint())
17560     return false;
17561   if (VT.isVector() && Subtarget->hasNEON())
17562     return false;
17563   if (VT.isVector() && VT.isFloatingPoint() && Subtarget->hasMVEIntegerOps() &&
17564       !Subtarget->hasMVEFloatOps())
17565     return false;
17566 
17567   bool IsNeg = false;
17568   if (V < 0) {
17569     IsNeg = true;
17570     V = -V;
17571   }
17572 
17573   unsigned NumBytes = std::max((unsigned)VT.getSizeInBits() / 8, 1U);
17574 
17575   // MVE: size * imm7
17576   if (VT.isVector() && Subtarget->hasMVEIntegerOps()) {
17577     switch (VT.getSimpleVT().getVectorElementType().SimpleTy) {
17578     case MVT::i32:
17579     case MVT::f32:
17580       return isShiftedUInt<7,2>(V);
17581     case MVT::i16:
17582     case MVT::f16:
17583       return isShiftedUInt<7,1>(V);
17584     case MVT::i8:
17585       return isUInt<7>(V);
17586     default:
17587       return false;
17588     }
17589   }
17590 
17591   // half VLDR: 2 * imm8
17592   if (VT.isFloatingPoint() && NumBytes == 2 && Subtarget->hasFPRegs16())
17593     return isShiftedUInt<8, 1>(V);
17594   // VLDR and LDRD: 4 * imm8
17595   if ((VT.isFloatingPoint() && Subtarget->hasVFP2Base()) || NumBytes == 8)
17596     return isShiftedUInt<8, 2>(V);
17597 
17598   if (NumBytes == 1 || NumBytes == 2 || NumBytes == 4) {
17599     // + imm12 or - imm8
17600     if (IsNeg)
17601       return isUInt<8>(V);
17602     return isUInt<12>(V);
17603   }
17604 
17605   return false;
17606 }
17607 
17608 /// isLegalAddressImmediate - Return true if the integer value can be used
17609 /// as the offset of the target addressing mode for load / store of the
17610 /// given type.
isLegalAddressImmediate(int64_t V,EVT VT,const ARMSubtarget * Subtarget)17611 static bool isLegalAddressImmediate(int64_t V, EVT VT,
17612                                     const ARMSubtarget *Subtarget) {
17613   if (V == 0)
17614     return true;
17615 
17616   if (!VT.isSimple())
17617     return false;
17618 
17619   if (Subtarget->isThumb1Only())
17620     return isLegalT1AddressImmediate(V, VT);
17621   else if (Subtarget->isThumb2())
17622     return isLegalT2AddressImmediate(V, VT, Subtarget);
17623 
17624   // ARM mode.
17625   if (V < 0)
17626     V = - V;
17627   switch (VT.getSimpleVT().SimpleTy) {
17628   default: return false;
17629   case MVT::i1:
17630   case MVT::i8:
17631   case MVT::i32:
17632     // +- imm12
17633     return isUInt<12>(V);
17634   case MVT::i16:
17635     // +- imm8
17636     return isUInt<8>(V);
17637   case MVT::f32:
17638   case MVT::f64:
17639     if (!Subtarget->hasVFP2Base()) // FIXME: NEON?
17640       return false;
17641     return isShiftedUInt<8, 2>(V);
17642   }
17643 }
17644 
isLegalT2ScaledAddressingMode(const AddrMode & AM,EVT VT) const17645 bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
17646                                                       EVT VT) const {
17647   int Scale = AM.Scale;
17648   if (Scale < 0)
17649     return false;
17650 
17651   switch (VT.getSimpleVT().SimpleTy) {
17652   default: return false;
17653   case MVT::i1:
17654   case MVT::i8:
17655   case MVT::i16:
17656   case MVT::i32:
17657     if (Scale == 1)
17658       return true;
17659     // r + r << imm
17660     Scale = Scale & ~1;
17661     return Scale == 2 || Scale == 4 || Scale == 8;
17662   case MVT::i64:
17663     // FIXME: What are we trying to model here? ldrd doesn't have an r + r
17664     // version in Thumb mode.
17665     // r + r
17666     if (Scale == 1)
17667       return true;
17668     // r * 2 (this can be lowered to r + r).
17669     if (!AM.HasBaseReg && Scale == 2)
17670       return true;
17671     return false;
17672   case MVT::isVoid:
17673     // Note, we allow "void" uses (basically, uses that aren't loads or
17674     // stores), because arm allows folding a scale into many arithmetic
17675     // operations.  This should be made more precise and revisited later.
17676 
17677     // Allow r << imm, but the imm has to be a multiple of two.
17678     if (Scale & 1) return false;
17679     return isPowerOf2_32(Scale);
17680   }
17681 }
17682 
isLegalT1ScaledAddressingMode(const AddrMode & AM,EVT VT) const17683 bool ARMTargetLowering::isLegalT1ScaledAddressingMode(const AddrMode &AM,
17684                                                       EVT VT) const {
17685   const int Scale = AM.Scale;
17686 
17687   // Negative scales are not supported in Thumb1.
17688   if (Scale < 0)
17689     return false;
17690 
17691   // Thumb1 addressing modes do not support register scaling excepting the
17692   // following cases:
17693   // 1. Scale == 1 means no scaling.
17694   // 2. Scale == 2 this can be lowered to r + r if there is no base register.
17695   return (Scale == 1) || (!AM.HasBaseReg && Scale == 2);
17696 }
17697 
17698 /// isLegalAddressingMode - Return true if the addressing mode represented
17699 /// by AM is legal for this target, for a load/store of the specified type.
isLegalAddressingMode(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS,Instruction * I) const17700 bool ARMTargetLowering::isLegalAddressingMode(const DataLayout &DL,
17701                                               const AddrMode &AM, Type *Ty,
17702                                               unsigned AS, Instruction *I) const {
17703   EVT VT = getValueType(DL, Ty, true);
17704   if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
17705     return false;
17706 
17707   // Can never fold addr of global into load/store.
17708   if (AM.BaseGV)
17709     return false;
17710 
17711   switch (AM.Scale) {
17712   case 0:  // no scale reg, must be "r+i" or "r", or "i".
17713     break;
17714   default:
17715     // ARM doesn't support any R+R*scale+imm addr modes.
17716     if (AM.BaseOffs)
17717       return false;
17718 
17719     if (!VT.isSimple())
17720       return false;
17721 
17722     if (Subtarget->isThumb1Only())
17723       return isLegalT1ScaledAddressingMode(AM, VT);
17724 
17725     if (Subtarget->isThumb2())
17726       return isLegalT2ScaledAddressingMode(AM, VT);
17727 
17728     int Scale = AM.Scale;
17729     switch (VT.getSimpleVT().SimpleTy) {
17730     default: return false;
17731     case MVT::i1:
17732     case MVT::i8:
17733     case MVT::i32:
17734       if (Scale < 0) Scale = -Scale;
17735       if (Scale == 1)
17736         return true;
17737       // r + r << imm
17738       return isPowerOf2_32(Scale & ~1);
17739     case MVT::i16:
17740     case MVT::i64:
17741       // r +/- r
17742       if (Scale == 1 || (AM.HasBaseReg && Scale == -1))
17743         return true;
17744       // r * 2 (this can be lowered to r + r).
17745       if (!AM.HasBaseReg && Scale == 2)
17746         return true;
17747       return false;
17748 
17749     case MVT::isVoid:
17750       // Note, we allow "void" uses (basically, uses that aren't loads or
17751       // stores), because arm allows folding a scale into many arithmetic
17752       // operations.  This should be made more precise and revisited later.
17753 
17754       // Allow r << imm, but the imm has to be a multiple of two.
17755       if (Scale & 1) return false;
17756       return isPowerOf2_32(Scale);
17757     }
17758   }
17759   return true;
17760 }
17761 
17762 /// isLegalICmpImmediate - Return true if the specified immediate is legal
17763 /// icmp immediate, that is the target has icmp instructions which can compare
17764 /// a register against the immediate without having to materialize the
17765 /// immediate into a register.
isLegalICmpImmediate(int64_t Imm) const17766 bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
17767   // Thumb2 and ARM modes can use cmn for negative immediates.
17768   if (!Subtarget->isThumb())
17769     return ARM_AM::getSOImmVal((uint32_t)Imm) != -1 ||
17770            ARM_AM::getSOImmVal(-(uint32_t)Imm) != -1;
17771   if (Subtarget->isThumb2())
17772     return ARM_AM::getT2SOImmVal((uint32_t)Imm) != -1 ||
17773            ARM_AM::getT2SOImmVal(-(uint32_t)Imm) != -1;
17774   // Thumb1 doesn't have cmn, and only 8-bit immediates.
17775   return Imm >= 0 && Imm <= 255;
17776 }
17777 
17778 /// isLegalAddImmediate - Return true if the specified immediate is a legal add
17779 /// *or sub* immediate, that is the target has add or sub instructions which can
17780 /// add a register with the immediate without having to materialize the
17781 /// immediate into a register.
isLegalAddImmediate(int64_t Imm) const17782 bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
17783   // Same encoding for add/sub, just flip the sign.
17784   int64_t AbsImm = std::abs(Imm);
17785   if (!Subtarget->isThumb())
17786     return ARM_AM::getSOImmVal(AbsImm) != -1;
17787   if (Subtarget->isThumb2())
17788     return ARM_AM::getT2SOImmVal(AbsImm) != -1;
17789   // Thumb1 only has 8-bit unsigned immediate.
17790   return AbsImm >= 0 && AbsImm <= 255;
17791 }
17792 
getARMIndexedAddressParts(SDNode * Ptr,EVT VT,bool isSEXTLoad,SDValue & Base,SDValue & Offset,bool & isInc,SelectionDAG & DAG)17793 static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
17794                                       bool isSEXTLoad, SDValue &Base,
17795                                       SDValue &Offset, bool &isInc,
17796                                       SelectionDAG &DAG) {
17797   if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
17798     return false;
17799 
17800   if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
17801     // AddressingMode 3
17802     Base = Ptr->getOperand(0);
17803     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
17804       int RHSC = (int)RHS->getZExtValue();
17805       if (RHSC < 0 && RHSC > -256) {
17806         assert(Ptr->getOpcode() == ISD::ADD);
17807         isInc = false;
17808         Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
17809         return true;
17810       }
17811     }
17812     isInc = (Ptr->getOpcode() == ISD::ADD);
17813     Offset = Ptr->getOperand(1);
17814     return true;
17815   } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
17816     // AddressingMode 2
17817     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
17818       int RHSC = (int)RHS->getZExtValue();
17819       if (RHSC < 0 && RHSC > -0x1000) {
17820         assert(Ptr->getOpcode() == ISD::ADD);
17821         isInc = false;
17822         Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
17823         Base = Ptr->getOperand(0);
17824         return true;
17825       }
17826     }
17827 
17828     if (Ptr->getOpcode() == ISD::ADD) {
17829       isInc = true;
17830       ARM_AM::ShiftOpc ShOpcVal=
17831         ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode());
17832       if (ShOpcVal != ARM_AM::no_shift) {
17833         Base = Ptr->getOperand(1);
17834         Offset = Ptr->getOperand(0);
17835       } else {
17836         Base = Ptr->getOperand(0);
17837         Offset = Ptr->getOperand(1);
17838       }
17839       return true;
17840     }
17841 
17842     isInc = (Ptr->getOpcode() == ISD::ADD);
17843     Base = Ptr->getOperand(0);
17844     Offset = Ptr->getOperand(1);
17845     return true;
17846   }
17847 
17848   // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
17849   return false;
17850 }
17851 
getT2IndexedAddressParts(SDNode * Ptr,EVT VT,bool isSEXTLoad,SDValue & Base,SDValue & Offset,bool & isInc,SelectionDAG & DAG)17852 static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
17853                                      bool isSEXTLoad, SDValue &Base,
17854                                      SDValue &Offset, bool &isInc,
17855                                      SelectionDAG &DAG) {
17856   if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
17857     return false;
17858 
17859   Base = Ptr->getOperand(0);
17860   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
17861     int RHSC = (int)RHS->getZExtValue();
17862     if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
17863       assert(Ptr->getOpcode() == ISD::ADD);
17864       isInc = false;
17865       Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
17866       return true;
17867     } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
17868       isInc = Ptr->getOpcode() == ISD::ADD;
17869       Offset = DAG.getConstant(RHSC, SDLoc(Ptr), RHS->getValueType(0));
17870       return true;
17871     }
17872   }
17873 
17874   return false;
17875 }
17876 
getMVEIndexedAddressParts(SDNode * Ptr,EVT VT,Align Alignment,bool isSEXTLoad,bool IsMasked,bool isLE,SDValue & Base,SDValue & Offset,bool & isInc,SelectionDAG & DAG)17877 static bool getMVEIndexedAddressParts(SDNode *Ptr, EVT VT, Align Alignment,
17878                                       bool isSEXTLoad, bool IsMasked, bool isLE,
17879                                       SDValue &Base, SDValue &Offset,
17880                                       bool &isInc, SelectionDAG &DAG) {
17881   if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
17882     return false;
17883   if (!isa<ConstantSDNode>(Ptr->getOperand(1)))
17884     return false;
17885 
17886   // We allow LE non-masked loads to change the type (for example use a vldrb.8
17887   // as opposed to a vldrw.32). This can allow extra addressing modes or
17888   // alignments for what is otherwise an equivalent instruction.
17889   bool CanChangeType = isLE && !IsMasked;
17890 
17891   ConstantSDNode *RHS = cast<ConstantSDNode>(Ptr->getOperand(1));
17892   int RHSC = (int)RHS->getZExtValue();
17893 
17894   auto IsInRange = [&](int RHSC, int Limit, int Scale) {
17895     if (RHSC < 0 && RHSC > -Limit * Scale && RHSC % Scale == 0) {
17896       assert(Ptr->getOpcode() == ISD::ADD);
17897       isInc = false;
17898       Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
17899       return true;
17900     } else if (RHSC > 0 && RHSC < Limit * Scale && RHSC % Scale == 0) {
17901       isInc = Ptr->getOpcode() == ISD::ADD;
17902       Offset = DAG.getConstant(RHSC, SDLoc(Ptr), RHS->getValueType(0));
17903       return true;
17904     }
17905     return false;
17906   };
17907 
17908   // Try to find a matching instruction based on s/zext, Alignment, Offset and
17909   // (in BE/masked) type.
17910   Base = Ptr->getOperand(0);
17911   if (VT == MVT::v4i16) {
17912     if (Alignment >= 2 && IsInRange(RHSC, 0x80, 2))
17913       return true;
17914   } else if (VT == MVT::v4i8 || VT == MVT::v8i8) {
17915     if (IsInRange(RHSC, 0x80, 1))
17916       return true;
17917   } else if (Alignment >= 4 &&
17918              (CanChangeType || VT == MVT::v4i32 || VT == MVT::v4f32) &&
17919              IsInRange(RHSC, 0x80, 4))
17920     return true;
17921   else if (Alignment >= 2 &&
17922            (CanChangeType || VT == MVT::v8i16 || VT == MVT::v8f16) &&
17923            IsInRange(RHSC, 0x80, 2))
17924     return true;
17925   else if ((CanChangeType || VT == MVT::v16i8) && IsInRange(RHSC, 0x80, 1))
17926     return true;
17927   return false;
17928 }
17929 
17930 /// getPreIndexedAddressParts - returns true by value, base pointer and
17931 /// offset pointer and addressing mode by reference if the node's address
17932 /// can be legally represented as pre-indexed load / store address.
17933 bool
getPreIndexedAddressParts(SDNode * N,SDValue & Base,SDValue & Offset,ISD::MemIndexedMode & AM,SelectionDAG & DAG) const17934 ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
17935                                              SDValue &Offset,
17936                                              ISD::MemIndexedMode &AM,
17937                                              SelectionDAG &DAG) const {
17938   if (Subtarget->isThumb1Only())
17939     return false;
17940 
17941   EVT VT;
17942   SDValue Ptr;
17943   Align Alignment;
17944   bool isSEXTLoad = false;
17945   bool IsMasked = false;
17946   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
17947     Ptr = LD->getBasePtr();
17948     VT = LD->getMemoryVT();
17949     Alignment = LD->getAlign();
17950     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
17951   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
17952     Ptr = ST->getBasePtr();
17953     VT = ST->getMemoryVT();
17954     Alignment = ST->getAlign();
17955   } else if (MaskedLoadSDNode *LD = dyn_cast<MaskedLoadSDNode>(N)) {
17956     Ptr = LD->getBasePtr();
17957     VT = LD->getMemoryVT();
17958     Alignment = LD->getAlign();
17959     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
17960     IsMasked = true;
17961   } else if (MaskedStoreSDNode *ST = dyn_cast<MaskedStoreSDNode>(N)) {
17962     Ptr = ST->getBasePtr();
17963     VT = ST->getMemoryVT();
17964     Alignment = ST->getAlign();
17965     IsMasked = true;
17966   } else
17967     return false;
17968 
17969   bool isInc;
17970   bool isLegal = false;
17971   if (VT.isVector())
17972     isLegal = Subtarget->hasMVEIntegerOps() &&
17973               getMVEIndexedAddressParts(
17974                   Ptr.getNode(), VT, Alignment, isSEXTLoad, IsMasked,
17975                   Subtarget->isLittle(), Base, Offset, isInc, DAG);
17976   else {
17977     if (Subtarget->isThumb2())
17978       isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
17979                                          Offset, isInc, DAG);
17980     else
17981       isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
17982                                           Offset, isInc, DAG);
17983   }
17984   if (!isLegal)
17985     return false;
17986 
17987   AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
17988   return true;
17989 }
17990 
17991 /// getPostIndexedAddressParts - returns true by value, base pointer and
17992 /// offset pointer and addressing mode by reference if this node can be
17993 /// combined with a load / store to form a post-indexed load / store.
getPostIndexedAddressParts(SDNode * N,SDNode * Op,SDValue & Base,SDValue & Offset,ISD::MemIndexedMode & AM,SelectionDAG & DAG) const17994 bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
17995                                                    SDValue &Base,
17996                                                    SDValue &Offset,
17997                                                    ISD::MemIndexedMode &AM,
17998                                                    SelectionDAG &DAG) const {
17999   EVT VT;
18000   SDValue Ptr;
18001   Align Alignment;
18002   bool isSEXTLoad = false, isNonExt;
18003   bool IsMasked = false;
18004   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
18005     VT = LD->getMemoryVT();
18006     Ptr = LD->getBasePtr();
18007     Alignment = LD->getAlign();
18008     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
18009     isNonExt = LD->getExtensionType() == ISD::NON_EXTLOAD;
18010   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
18011     VT = ST->getMemoryVT();
18012     Ptr = ST->getBasePtr();
18013     Alignment = ST->getAlign();
18014     isNonExt = !ST->isTruncatingStore();
18015   } else if (MaskedLoadSDNode *LD = dyn_cast<MaskedLoadSDNode>(N)) {
18016     VT = LD->getMemoryVT();
18017     Ptr = LD->getBasePtr();
18018     Alignment = LD->getAlign();
18019     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
18020     isNonExt = LD->getExtensionType() == ISD::NON_EXTLOAD;
18021     IsMasked = true;
18022   } else if (MaskedStoreSDNode *ST = dyn_cast<MaskedStoreSDNode>(N)) {
18023     VT = ST->getMemoryVT();
18024     Ptr = ST->getBasePtr();
18025     Alignment = ST->getAlign();
18026     isNonExt = !ST->isTruncatingStore();
18027     IsMasked = true;
18028   } else
18029     return false;
18030 
18031   if (Subtarget->isThumb1Only()) {
18032     // Thumb-1 can do a limited post-inc load or store as an updating LDM. It
18033     // must be non-extending/truncating, i32, with an offset of 4.
18034     assert(Op->getValueType(0) == MVT::i32 && "Non-i32 post-inc op?!");
18035     if (Op->getOpcode() != ISD::ADD || !isNonExt)
18036       return false;
18037     auto *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1));
18038     if (!RHS || RHS->getZExtValue() != 4)
18039       return false;
18040 
18041     Offset = Op->getOperand(1);
18042     Base = Op->getOperand(0);
18043     AM = ISD::POST_INC;
18044     return true;
18045   }
18046 
18047   bool isInc;
18048   bool isLegal = false;
18049   if (VT.isVector())
18050     isLegal = Subtarget->hasMVEIntegerOps() &&
18051               getMVEIndexedAddressParts(Op, VT, Alignment, isSEXTLoad, IsMasked,
18052                                         Subtarget->isLittle(), Base, Offset,
18053                                         isInc, DAG);
18054   else {
18055     if (Subtarget->isThumb2())
18056       isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
18057                                          isInc, DAG);
18058     else
18059       isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
18060                                           isInc, DAG);
18061   }
18062   if (!isLegal)
18063     return false;
18064 
18065   if (Ptr != Base) {
18066     // Swap base ptr and offset to catch more post-index load / store when
18067     // it's legal. In Thumb2 mode, offset must be an immediate.
18068     if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
18069         !Subtarget->isThumb2())
18070       std::swap(Base, Offset);
18071 
18072     // Post-indexed load / store update the base pointer.
18073     if (Ptr != Base)
18074       return false;
18075   }
18076 
18077   AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
18078   return true;
18079 }
18080 
computeKnownBitsForTargetNode(const SDValue Op,KnownBits & Known,const APInt & DemandedElts,const SelectionDAG & DAG,unsigned Depth) const18081 void ARMTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
18082                                                       KnownBits &Known,
18083                                                       const APInt &DemandedElts,
18084                                                       const SelectionDAG &DAG,
18085                                                       unsigned Depth) const {
18086   unsigned BitWidth = Known.getBitWidth();
18087   Known.resetAll();
18088   switch (Op.getOpcode()) {
18089   default: break;
18090   case ARMISD::ADDC:
18091   case ARMISD::ADDE:
18092   case ARMISD::SUBC:
18093   case ARMISD::SUBE:
18094     // Special cases when we convert a carry to a boolean.
18095     if (Op.getResNo() == 0) {
18096       SDValue LHS = Op.getOperand(0);
18097       SDValue RHS = Op.getOperand(1);
18098       // (ADDE 0, 0, C) will give us a single bit.
18099       if (Op->getOpcode() == ARMISD::ADDE && isNullConstant(LHS) &&
18100           isNullConstant(RHS)) {
18101         Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
18102         return;
18103       }
18104     }
18105     break;
18106   case ARMISD::CMOV: {
18107     // Bits are known zero/one if known on the LHS and RHS.
18108     Known = DAG.computeKnownBits(Op.getOperand(0), Depth+1);
18109     if (Known.isUnknown())
18110       return;
18111 
18112     KnownBits KnownRHS = DAG.computeKnownBits(Op.getOperand(1), Depth+1);
18113     Known = KnownBits::commonBits(Known, KnownRHS);
18114     return;
18115   }
18116   case ISD::INTRINSIC_W_CHAIN: {
18117     ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
18118     Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
18119     switch (IntID) {
18120     default: return;
18121     case Intrinsic::arm_ldaex:
18122     case Intrinsic::arm_ldrex: {
18123       EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
18124       unsigned MemBits = VT.getScalarSizeInBits();
18125       Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
18126       return;
18127     }
18128     }
18129   }
18130   case ARMISD::BFI: {
18131     // Conservatively, we can recurse down the first operand
18132     // and just mask out all affected bits.
18133     Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
18134 
18135     // The operand to BFI is already a mask suitable for removing the bits it
18136     // sets.
18137     ConstantSDNode *CI = cast<ConstantSDNode>(Op.getOperand(2));
18138     const APInt &Mask = CI->getAPIntValue();
18139     Known.Zero &= Mask;
18140     Known.One &= Mask;
18141     return;
18142   }
18143   case ARMISD::VGETLANEs:
18144   case ARMISD::VGETLANEu: {
18145     const SDValue &SrcSV = Op.getOperand(0);
18146     EVT VecVT = SrcSV.getValueType();
18147     assert(VecVT.isVector() && "VGETLANE expected a vector type");
18148     const unsigned NumSrcElts = VecVT.getVectorNumElements();
18149     ConstantSDNode *Pos = cast<ConstantSDNode>(Op.getOperand(1).getNode());
18150     assert(Pos->getAPIntValue().ult(NumSrcElts) &&
18151            "VGETLANE index out of bounds");
18152     unsigned Idx = Pos->getZExtValue();
18153     APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx);
18154     Known = DAG.computeKnownBits(SrcSV, DemandedElt, Depth + 1);
18155 
18156     EVT VT = Op.getValueType();
18157     const unsigned DstSz = VT.getScalarSizeInBits();
18158     const unsigned SrcSz = VecVT.getVectorElementType().getSizeInBits();
18159     (void)SrcSz;
18160     assert(SrcSz == Known.getBitWidth());
18161     assert(DstSz > SrcSz);
18162     if (Op.getOpcode() == ARMISD::VGETLANEs)
18163       Known = Known.sext(DstSz);
18164     else {
18165       Known = Known.zext(DstSz);
18166     }
18167     assert(DstSz == Known.getBitWidth());
18168     break;
18169   }
18170   case ARMISD::VMOVrh: {
18171     KnownBits KnownOp = DAG.computeKnownBits(Op->getOperand(0), Depth + 1);
18172     assert(KnownOp.getBitWidth() == 16);
18173     Known = KnownOp.zext(32);
18174     break;
18175   }
18176   case ARMISD::CSINC:
18177   case ARMISD::CSINV:
18178   case ARMISD::CSNEG: {
18179     KnownBits KnownOp0 = DAG.computeKnownBits(Op->getOperand(0), Depth + 1);
18180     KnownBits KnownOp1 = DAG.computeKnownBits(Op->getOperand(1), Depth + 1);
18181 
18182     // The result is either:
18183     // CSINC: KnownOp0 or KnownOp1 + 1
18184     // CSINV: KnownOp0 or ~KnownOp1
18185     // CSNEG: KnownOp0 or KnownOp1 * -1
18186     if (Op.getOpcode() == ARMISD::CSINC)
18187       KnownOp1 = KnownBits::computeForAddSub(
18188           true, false, KnownOp1, KnownBits::makeConstant(APInt(32, 1)));
18189     else if (Op.getOpcode() == ARMISD::CSINV)
18190       std::swap(KnownOp1.Zero, KnownOp1.One);
18191     else if (Op.getOpcode() == ARMISD::CSNEG)
18192       KnownOp1 = KnownBits::mul(
18193           KnownOp1, KnownBits::makeConstant(APInt(32, -1)));
18194 
18195     Known = KnownBits::commonBits(KnownOp0, KnownOp1);
18196     break;
18197   }
18198   }
18199 }
18200 
targetShrinkDemandedConstant(SDValue Op,const APInt & DemandedBits,const APInt & DemandedElts,TargetLoweringOpt & TLO) const18201 bool ARMTargetLowering::targetShrinkDemandedConstant(
18202     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
18203     TargetLoweringOpt &TLO) const {
18204   // Delay optimization, so we don't have to deal with illegal types, or block
18205   // optimizations.
18206   if (!TLO.LegalOps)
18207     return false;
18208 
18209   // Only optimize AND for now.
18210   if (Op.getOpcode() != ISD::AND)
18211     return false;
18212 
18213   EVT VT = Op.getValueType();
18214 
18215   // Ignore vectors.
18216   if (VT.isVector())
18217     return false;
18218 
18219   assert(VT == MVT::i32 && "Unexpected integer type");
18220 
18221   // Make sure the RHS really is a constant.
18222   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
18223   if (!C)
18224     return false;
18225 
18226   unsigned Mask = C->getZExtValue();
18227 
18228   unsigned Demanded = DemandedBits.getZExtValue();
18229   unsigned ShrunkMask = Mask & Demanded;
18230   unsigned ExpandedMask = Mask | ~Demanded;
18231 
18232   // If the mask is all zeros, let the target-independent code replace the
18233   // result with zero.
18234   if (ShrunkMask == 0)
18235     return false;
18236 
18237   // If the mask is all ones, erase the AND. (Currently, the target-independent
18238   // code won't do this, so we have to do it explicitly to avoid an infinite
18239   // loop in obscure cases.)
18240   if (ExpandedMask == ~0U)
18241     return TLO.CombineTo(Op, Op.getOperand(0));
18242 
18243   auto IsLegalMask = [ShrunkMask, ExpandedMask](unsigned Mask) -> bool {
18244     return (ShrunkMask & Mask) == ShrunkMask && (~ExpandedMask & Mask) == 0;
18245   };
18246   auto UseMask = [Mask, Op, VT, &TLO](unsigned NewMask) -> bool {
18247     if (NewMask == Mask)
18248       return true;
18249     SDLoc DL(Op);
18250     SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT);
18251     SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
18252     return TLO.CombineTo(Op, NewOp);
18253   };
18254 
18255   // Prefer uxtb mask.
18256   if (IsLegalMask(0xFF))
18257     return UseMask(0xFF);
18258 
18259   // Prefer uxth mask.
18260   if (IsLegalMask(0xFFFF))
18261     return UseMask(0xFFFF);
18262 
18263   // [1, 255] is Thumb1 movs+ands, legal immediate for ARM/Thumb2.
18264   // FIXME: Prefer a contiguous sequence of bits for other optimizations.
18265   if (ShrunkMask < 256)
18266     return UseMask(ShrunkMask);
18267 
18268   // [-256, -2] is Thumb1 movs+bics, legal immediate for ARM/Thumb2.
18269   // FIXME: Prefer a contiguous sequence of bits for other optimizations.
18270   if ((int)ExpandedMask <= -2 && (int)ExpandedMask >= -256)
18271     return UseMask(ExpandedMask);
18272 
18273   // Potential improvements:
18274   //
18275   // We could try to recognize lsls+lsrs or lsrs+lsls pairs here.
18276   // We could try to prefer Thumb1 immediates which can be lowered to a
18277   // two-instruction sequence.
18278   // We could try to recognize more legal ARM/Thumb2 immediates here.
18279 
18280   return false;
18281 }
18282 
SimplifyDemandedBitsForTargetNode(SDValue Op,const APInt & OriginalDemandedBits,const APInt & OriginalDemandedElts,KnownBits & Known,TargetLoweringOpt & TLO,unsigned Depth) const18283 bool ARMTargetLowering::SimplifyDemandedBitsForTargetNode(
18284     SDValue Op, const APInt &OriginalDemandedBits,
18285     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
18286     unsigned Depth) const {
18287   unsigned Opc = Op.getOpcode();
18288 
18289   switch (Opc) {
18290   case ARMISD::ASRL:
18291   case ARMISD::LSRL: {
18292     // If this is result 0 and the other result is unused, see if the demand
18293     // bits allow us to shrink this long shift into a standard small shift in
18294     // the opposite direction.
18295     if (Op.getResNo() == 0 && !Op->hasAnyUseOfValue(1) &&
18296         isa<ConstantSDNode>(Op->getOperand(2))) {
18297       unsigned ShAmt = Op->getConstantOperandVal(2);
18298       if (ShAmt < 32 && OriginalDemandedBits.isSubsetOf(
18299                             APInt::getAllOnesValue(32) << (32 - ShAmt)))
18300         return TLO.CombineTo(
18301             Op, TLO.DAG.getNode(
18302                     ISD::SHL, SDLoc(Op), MVT::i32, Op.getOperand(1),
18303                     TLO.DAG.getConstant(32 - ShAmt, SDLoc(Op), MVT::i32)));
18304     }
18305     break;
18306   }
18307   }
18308 
18309   return TargetLowering::SimplifyDemandedBitsForTargetNode(
18310       Op, OriginalDemandedBits, OriginalDemandedElts, Known, TLO, Depth);
18311 }
18312 
18313 //===----------------------------------------------------------------------===//
18314 //                           ARM Inline Assembly Support
18315 //===----------------------------------------------------------------------===//
18316 
ExpandInlineAsm(CallInst * CI) const18317 bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
18318   // Looking for "rev" which is V6+.
18319   if (!Subtarget->hasV6Ops())
18320     return false;
18321 
18322   InlineAsm *IA = cast<InlineAsm>(CI->getCalledOperand());
18323   std::string AsmStr = IA->getAsmString();
18324   SmallVector<StringRef, 4> AsmPieces;
18325   SplitString(AsmStr, AsmPieces, ";\n");
18326 
18327   switch (AsmPieces.size()) {
18328   default: return false;
18329   case 1:
18330     AsmStr = std::string(AsmPieces[0]);
18331     AsmPieces.clear();
18332     SplitString(AsmStr, AsmPieces, " \t,");
18333 
18334     // rev $0, $1
18335     if (AsmPieces.size() == 3 &&
18336         AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
18337         IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
18338       IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
18339       if (Ty && Ty->getBitWidth() == 32)
18340         return IntrinsicLowering::LowerToByteSwap(CI);
18341     }
18342     break;
18343   }
18344 
18345   return false;
18346 }
18347 
LowerXConstraint(EVT ConstraintVT) const18348 const char *ARMTargetLowering::LowerXConstraint(EVT ConstraintVT) const {
18349   // At this point, we have to lower this constraint to something else, so we
18350   // lower it to an "r" or "w". However, by doing this we will force the result
18351   // to be in register, while the X constraint is much more permissive.
18352   //
18353   // Although we are correct (we are free to emit anything, without
18354   // constraints), we might break use cases that would expect us to be more
18355   // efficient and emit something else.
18356   if (!Subtarget->hasVFP2Base())
18357     return "r";
18358   if (ConstraintVT.isFloatingPoint())
18359     return "w";
18360   if (ConstraintVT.isVector() && Subtarget->hasNEON() &&
18361      (ConstraintVT.getSizeInBits() == 64 ||
18362       ConstraintVT.getSizeInBits() == 128))
18363     return "w";
18364 
18365   return "r";
18366 }
18367 
18368 /// getConstraintType - Given a constraint letter, return the type of
18369 /// constraint it is for this target.
18370 ARMTargetLowering::ConstraintType
getConstraintType(StringRef Constraint) const18371 ARMTargetLowering::getConstraintType(StringRef Constraint) const {
18372   unsigned S = Constraint.size();
18373   if (S == 1) {
18374     switch (Constraint[0]) {
18375     default:  break;
18376     case 'l': return C_RegisterClass;
18377     case 'w': return C_RegisterClass;
18378     case 'h': return C_RegisterClass;
18379     case 'x': return C_RegisterClass;
18380     case 't': return C_RegisterClass;
18381     case 'j': return C_Immediate; // Constant for movw.
18382     // An address with a single base register. Due to the way we
18383     // currently handle addresses it is the same as an 'r' memory constraint.
18384     case 'Q': return C_Memory;
18385     }
18386   } else if (S == 2) {
18387     switch (Constraint[0]) {
18388     default: break;
18389     case 'T': return C_RegisterClass;
18390     // All 'U+' constraints are addresses.
18391     case 'U': return C_Memory;
18392     }
18393   }
18394   return TargetLowering::getConstraintType(Constraint);
18395 }
18396 
18397 /// Examine constraint type and operand type and determine a weight value.
18398 /// This object must already have been set up with the operand type
18399 /// and the current alternative constraint selected.
18400 TargetLowering::ConstraintWeight
getSingleConstraintMatchWeight(AsmOperandInfo & info,const char * constraint) const18401 ARMTargetLowering::getSingleConstraintMatchWeight(
18402     AsmOperandInfo &info, const char *constraint) const {
18403   ConstraintWeight weight = CW_Invalid;
18404   Value *CallOperandVal = info.CallOperandVal;
18405     // If we don't have a value, we can't do a match,
18406     // but allow it at the lowest weight.
18407   if (!CallOperandVal)
18408     return CW_Default;
18409   Type *type = CallOperandVal->getType();
18410   // Look at the constraint type.
18411   switch (*constraint) {
18412   default:
18413     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
18414     break;
18415   case 'l':
18416     if (type->isIntegerTy()) {
18417       if (Subtarget->isThumb())
18418         weight = CW_SpecificReg;
18419       else
18420         weight = CW_Register;
18421     }
18422     break;
18423   case 'w':
18424     if (type->isFloatingPointTy())
18425       weight = CW_Register;
18426     break;
18427   }
18428   return weight;
18429 }
18430 
18431 using RCPair = std::pair<unsigned, const TargetRegisterClass *>;
18432 
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,StringRef Constraint,MVT VT) const18433 RCPair ARMTargetLowering::getRegForInlineAsmConstraint(
18434     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
18435   switch (Constraint.size()) {
18436   case 1:
18437     // GCC ARM Constraint Letters
18438     switch (Constraint[0]) {
18439     case 'l': // Low regs or general regs.
18440       if (Subtarget->isThumb())
18441         return RCPair(0U, &ARM::tGPRRegClass);
18442       return RCPair(0U, &ARM::GPRRegClass);
18443     case 'h': // High regs or no regs.
18444       if (Subtarget->isThumb())
18445         return RCPair(0U, &ARM::hGPRRegClass);
18446       break;
18447     case 'r':
18448       if (Subtarget->isThumb1Only())
18449         return RCPair(0U, &ARM::tGPRRegClass);
18450       return RCPair(0U, &ARM::GPRRegClass);
18451     case 'w':
18452       if (VT == MVT::Other)
18453         break;
18454       if (VT == MVT::f32)
18455         return RCPair(0U, &ARM::SPRRegClass);
18456       if (VT.getSizeInBits() == 64)
18457         return RCPair(0U, &ARM::DPRRegClass);
18458       if (VT.getSizeInBits() == 128)
18459         return RCPair(0U, &ARM::QPRRegClass);
18460       break;
18461     case 'x':
18462       if (VT == MVT::Other)
18463         break;
18464       if (VT == MVT::f32)
18465         return RCPair(0U, &ARM::SPR_8RegClass);
18466       if (VT.getSizeInBits() == 64)
18467         return RCPair(0U, &ARM::DPR_8RegClass);
18468       if (VT.getSizeInBits() == 128)
18469         return RCPair(0U, &ARM::QPR_8RegClass);
18470       break;
18471     case 't':
18472       if (VT == MVT::Other)
18473         break;
18474       if (VT == MVT::f32 || VT == MVT::i32)
18475         return RCPair(0U, &ARM::SPRRegClass);
18476       if (VT.getSizeInBits() == 64)
18477         return RCPair(0U, &ARM::DPR_VFP2RegClass);
18478       if (VT.getSizeInBits() == 128)
18479         return RCPair(0U, &ARM::QPR_VFP2RegClass);
18480       break;
18481     }
18482     break;
18483 
18484   case 2:
18485     if (Constraint[0] == 'T') {
18486       switch (Constraint[1]) {
18487       default:
18488         break;
18489       case 'e':
18490         return RCPair(0U, &ARM::tGPREvenRegClass);
18491       case 'o':
18492         return RCPair(0U, &ARM::tGPROddRegClass);
18493       }
18494     }
18495     break;
18496 
18497   default:
18498     break;
18499   }
18500 
18501   if (StringRef("{cc}").equals_lower(Constraint))
18502     return std::make_pair(unsigned(ARM::CPSR), &ARM::CCRRegClass);
18503 
18504   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
18505 }
18506 
18507 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
18508 /// vector.  If it is invalid, don't add anything to Ops.
LowerAsmOperandForConstraint(SDValue Op,std::string & Constraint,std::vector<SDValue> & Ops,SelectionDAG & DAG) const18509 void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
18510                                                      std::string &Constraint,
18511                                                      std::vector<SDValue>&Ops,
18512                                                      SelectionDAG &DAG) const {
18513   SDValue Result;
18514 
18515   // Currently only support length 1 constraints.
18516   if (Constraint.length() != 1) return;
18517 
18518   char ConstraintLetter = Constraint[0];
18519   switch (ConstraintLetter) {
18520   default: break;
18521   case 'j':
18522   case 'I': case 'J': case 'K': case 'L':
18523   case 'M': case 'N': case 'O':
18524     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
18525     if (!C)
18526       return;
18527 
18528     int64_t CVal64 = C->getSExtValue();
18529     int CVal = (int) CVal64;
18530     // None of these constraints allow values larger than 32 bits.  Check
18531     // that the value fits in an int.
18532     if (CVal != CVal64)
18533       return;
18534 
18535     switch (ConstraintLetter) {
18536       case 'j':
18537         // Constant suitable for movw, must be between 0 and
18538         // 65535.
18539         if (Subtarget->hasV6T2Ops() || (Subtarget->hasV8MBaselineOps()))
18540           if (CVal >= 0 && CVal <= 65535)
18541             break;
18542         return;
18543       case 'I':
18544         if (Subtarget->isThumb1Only()) {
18545           // This must be a constant between 0 and 255, for ADD
18546           // immediates.
18547           if (CVal >= 0 && CVal <= 255)
18548             break;
18549         } else if (Subtarget->isThumb2()) {
18550           // A constant that can be used as an immediate value in a
18551           // data-processing instruction.
18552           if (ARM_AM::getT2SOImmVal(CVal) != -1)
18553             break;
18554         } else {
18555           // A constant that can be used as an immediate value in a
18556           // data-processing instruction.
18557           if (ARM_AM::getSOImmVal(CVal) != -1)
18558             break;
18559         }
18560         return;
18561 
18562       case 'J':
18563         if (Subtarget->isThumb1Only()) {
18564           // This must be a constant between -255 and -1, for negated ADD
18565           // immediates. This can be used in GCC with an "n" modifier that
18566           // prints the negated value, for use with SUB instructions. It is
18567           // not useful otherwise but is implemented for compatibility.
18568           if (CVal >= -255 && CVal <= -1)
18569             break;
18570         } else {
18571           // This must be a constant between -4095 and 4095. It is not clear
18572           // what this constraint is intended for. Implemented for
18573           // compatibility with GCC.
18574           if (CVal >= -4095 && CVal <= 4095)
18575             break;
18576         }
18577         return;
18578 
18579       case 'K':
18580         if (Subtarget->isThumb1Only()) {
18581           // A 32-bit value where only one byte has a nonzero value. Exclude
18582           // zero to match GCC. This constraint is used by GCC internally for
18583           // constants that can be loaded with a move/shift combination.
18584           // It is not useful otherwise but is implemented for compatibility.
18585           if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
18586             break;
18587         } else if (Subtarget->isThumb2()) {
18588           // A constant whose bitwise inverse can be used as an immediate
18589           // value in a data-processing instruction. This can be used in GCC
18590           // with a "B" modifier that prints the inverted value, for use with
18591           // BIC and MVN instructions. It is not useful otherwise but is
18592           // implemented for compatibility.
18593           if (ARM_AM::getT2SOImmVal(~CVal) != -1)
18594             break;
18595         } else {
18596           // A constant whose bitwise inverse can be used as an immediate
18597           // value in a data-processing instruction. This can be used in GCC
18598           // with a "B" modifier that prints the inverted value, for use with
18599           // BIC and MVN instructions. It is not useful otherwise but is
18600           // implemented for compatibility.
18601           if (ARM_AM::getSOImmVal(~CVal) != -1)
18602             break;
18603         }
18604         return;
18605 
18606       case 'L':
18607         if (Subtarget->isThumb1Only()) {
18608           // This must be a constant between -7 and 7,
18609           // for 3-operand ADD/SUB immediate instructions.
18610           if (CVal >= -7 && CVal < 7)
18611             break;
18612         } else if (Subtarget->isThumb2()) {
18613           // A constant whose negation can be used as an immediate value in a
18614           // data-processing instruction. This can be used in GCC with an "n"
18615           // modifier that prints the negated value, for use with SUB
18616           // instructions. It is not useful otherwise but is implemented for
18617           // compatibility.
18618           if (ARM_AM::getT2SOImmVal(-CVal) != -1)
18619             break;
18620         } else {
18621           // A constant whose negation can be used as an immediate value in a
18622           // data-processing instruction. This can be used in GCC with an "n"
18623           // modifier that prints the negated value, for use with SUB
18624           // instructions. It is not useful otherwise but is implemented for
18625           // compatibility.
18626           if (ARM_AM::getSOImmVal(-CVal) != -1)
18627             break;
18628         }
18629         return;
18630 
18631       case 'M':
18632         if (Subtarget->isThumb1Only()) {
18633           // This must be a multiple of 4 between 0 and 1020, for
18634           // ADD sp + immediate.
18635           if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
18636             break;
18637         } else {
18638           // A power of two or a constant between 0 and 32.  This is used in
18639           // GCC for the shift amount on shifted register operands, but it is
18640           // useful in general for any shift amounts.
18641           if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
18642             break;
18643         }
18644         return;
18645 
18646       case 'N':
18647         if (Subtarget->isThumb1Only()) {
18648           // This must be a constant between 0 and 31, for shift amounts.
18649           if (CVal >= 0 && CVal <= 31)
18650             break;
18651         }
18652         return;
18653 
18654       case 'O':
18655         if (Subtarget->isThumb1Only()) {
18656           // This must be a multiple of 4 between -508 and 508, for
18657           // ADD/SUB sp = sp + immediate.
18658           if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
18659             break;
18660         }
18661         return;
18662     }
18663     Result = DAG.getTargetConstant(CVal, SDLoc(Op), Op.getValueType());
18664     break;
18665   }
18666 
18667   if (Result.getNode()) {
18668     Ops.push_back(Result);
18669     return;
18670   }
18671   return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
18672 }
18673 
getDivRemLibcall(const SDNode * N,MVT::SimpleValueType SVT)18674 static RTLIB::Libcall getDivRemLibcall(
18675     const SDNode *N, MVT::SimpleValueType SVT) {
18676   assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM ||
18677           N->getOpcode() == ISD::SREM    || N->getOpcode() == ISD::UREM) &&
18678          "Unhandled Opcode in getDivRemLibcall");
18679   bool isSigned = N->getOpcode() == ISD::SDIVREM ||
18680                   N->getOpcode() == ISD::SREM;
18681   RTLIB::Libcall LC;
18682   switch (SVT) {
18683   default: llvm_unreachable("Unexpected request for libcall!");
18684   case MVT::i8:  LC = isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
18685   case MVT::i16: LC = isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
18686   case MVT::i32: LC = isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
18687   case MVT::i64: LC = isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
18688   }
18689   return LC;
18690 }
18691 
getDivRemArgList(const SDNode * N,LLVMContext * Context,const ARMSubtarget * Subtarget)18692 static TargetLowering::ArgListTy getDivRemArgList(
18693     const SDNode *N, LLVMContext *Context, const ARMSubtarget *Subtarget) {
18694   assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM ||
18695           N->getOpcode() == ISD::SREM    || N->getOpcode() == ISD::UREM) &&
18696          "Unhandled Opcode in getDivRemArgList");
18697   bool isSigned = N->getOpcode() == ISD::SDIVREM ||
18698                   N->getOpcode() == ISD::SREM;
18699   TargetLowering::ArgListTy Args;
18700   TargetLowering::ArgListEntry Entry;
18701   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
18702     EVT ArgVT = N->getOperand(i).getValueType();
18703     Type *ArgTy = ArgVT.getTypeForEVT(*Context);
18704     Entry.Node = N->getOperand(i);
18705     Entry.Ty = ArgTy;
18706     Entry.IsSExt = isSigned;
18707     Entry.IsZExt = !isSigned;
18708     Args.push_back(Entry);
18709   }
18710   if (Subtarget->isTargetWindows() && Args.size() >= 2)
18711     std::swap(Args[0], Args[1]);
18712   return Args;
18713 }
18714 
LowerDivRem(SDValue Op,SelectionDAG & DAG) const18715 SDValue ARMTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const {
18716   assert((Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() ||
18717           Subtarget->isTargetGNUAEABI() || Subtarget->isTargetMuslAEABI() ||
18718           Subtarget->isTargetWindows()) &&
18719          "Register-based DivRem lowering only");
18720   unsigned Opcode = Op->getOpcode();
18721   assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) &&
18722          "Invalid opcode for Div/Rem lowering");
18723   bool isSigned = (Opcode == ISD::SDIVREM);
18724   EVT VT = Op->getValueType(0);
18725   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
18726   SDLoc dl(Op);
18727 
18728   // If the target has hardware divide, use divide + multiply + subtract:
18729   //     div = a / b
18730   //     rem = a - b * div
18731   //     return {div, rem}
18732   // This should be lowered into UDIV/SDIV + MLS later on.
18733   bool hasDivide = Subtarget->isThumb() ? Subtarget->hasDivideInThumbMode()
18734                                         : Subtarget->hasDivideInARMMode();
18735   if (hasDivide && Op->getValueType(0).isSimple() &&
18736       Op->getSimpleValueType(0) == MVT::i32) {
18737     unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV;
18738     const SDValue Dividend = Op->getOperand(0);
18739     const SDValue Divisor = Op->getOperand(1);
18740     SDValue Div = DAG.getNode(DivOpcode, dl, VT, Dividend, Divisor);
18741     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Div, Divisor);
18742     SDValue Rem = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
18743 
18744     SDValue Values[2] = {Div, Rem};
18745     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VT, VT), Values);
18746   }
18747 
18748   RTLIB::Libcall LC = getDivRemLibcall(Op.getNode(),
18749                                        VT.getSimpleVT().SimpleTy);
18750   SDValue InChain = DAG.getEntryNode();
18751 
18752   TargetLowering::ArgListTy Args = getDivRemArgList(Op.getNode(),
18753                                                     DAG.getContext(),
18754                                                     Subtarget);
18755 
18756   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
18757                                          getPointerTy(DAG.getDataLayout()));
18758 
18759   Type *RetTy = StructType::get(Ty, Ty);
18760 
18761   if (Subtarget->isTargetWindows())
18762     InChain = WinDBZCheckDenominator(DAG, Op.getNode(), InChain);
18763 
18764   TargetLowering::CallLoweringInfo CLI(DAG);
18765   CLI.setDebugLoc(dl).setChain(InChain)
18766     .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
18767     .setInRegister().setSExtResult(isSigned).setZExtResult(!isSigned);
18768 
18769   std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
18770   return CallInfo.first;
18771 }
18772 
18773 // Lowers REM using divmod helpers
18774 // see RTABI section 4.2/4.3
LowerREM(SDNode * N,SelectionDAG & DAG) const18775 SDValue ARMTargetLowering::LowerREM(SDNode *N, SelectionDAG &DAG) const {
18776   // Build return types (div and rem)
18777   std::vector<Type*> RetTyParams;
18778   Type *RetTyElement;
18779 
18780   switch (N->getValueType(0).getSimpleVT().SimpleTy) {
18781   default: llvm_unreachable("Unexpected request for libcall!");
18782   case MVT::i8:   RetTyElement = Type::getInt8Ty(*DAG.getContext());  break;
18783   case MVT::i16:  RetTyElement = Type::getInt16Ty(*DAG.getContext()); break;
18784   case MVT::i32:  RetTyElement = Type::getInt32Ty(*DAG.getContext()); break;
18785   case MVT::i64:  RetTyElement = Type::getInt64Ty(*DAG.getContext()); break;
18786   }
18787 
18788   RetTyParams.push_back(RetTyElement);
18789   RetTyParams.push_back(RetTyElement);
18790   ArrayRef<Type*> ret = ArrayRef<Type*>(RetTyParams);
18791   Type *RetTy = StructType::get(*DAG.getContext(), ret);
18792 
18793   RTLIB::Libcall LC = getDivRemLibcall(N, N->getValueType(0).getSimpleVT().
18794                                                              SimpleTy);
18795   SDValue InChain = DAG.getEntryNode();
18796   TargetLowering::ArgListTy Args = getDivRemArgList(N, DAG.getContext(),
18797                                                     Subtarget);
18798   bool isSigned = N->getOpcode() == ISD::SREM;
18799   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
18800                                          getPointerTy(DAG.getDataLayout()));
18801 
18802   if (Subtarget->isTargetWindows())
18803     InChain = WinDBZCheckDenominator(DAG, N, InChain);
18804 
18805   // Lower call
18806   CallLoweringInfo CLI(DAG);
18807   CLI.setChain(InChain)
18808      .setCallee(CallingConv::ARM_AAPCS, RetTy, Callee, std::move(Args))
18809      .setSExtResult(isSigned).setZExtResult(!isSigned).setDebugLoc(SDLoc(N));
18810   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
18811 
18812   // Return second (rem) result operand (first contains div)
18813   SDNode *ResNode = CallResult.first.getNode();
18814   assert(ResNode->getNumOperands() == 2 && "divmod should return two operands");
18815   return ResNode->getOperand(1);
18816 }
18817 
18818 SDValue
LowerDYNAMIC_STACKALLOC(SDValue Op,SelectionDAG & DAG) const18819 ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
18820   assert(Subtarget->isTargetWindows() && "unsupported target platform");
18821   SDLoc DL(Op);
18822 
18823   // Get the inputs.
18824   SDValue Chain = Op.getOperand(0);
18825   SDValue Size  = Op.getOperand(1);
18826 
18827   if (DAG.getMachineFunction().getFunction().hasFnAttribute(
18828           "no-stack-arg-probe")) {
18829     MaybeAlign Align =
18830         cast<ConstantSDNode>(Op.getOperand(2))->getMaybeAlignValue();
18831     SDValue SP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32);
18832     Chain = SP.getValue(1);
18833     SP = DAG.getNode(ISD::SUB, DL, MVT::i32, SP, Size);
18834     if (Align)
18835       SP =
18836           DAG.getNode(ISD::AND, DL, MVT::i32, SP.getValue(0),
18837                       DAG.getConstant(-(uint64_t)Align->value(), DL, MVT::i32));
18838     Chain = DAG.getCopyToReg(Chain, DL, ARM::SP, SP);
18839     SDValue Ops[2] = { SP, Chain };
18840     return DAG.getMergeValues(Ops, DL);
18841   }
18842 
18843   SDValue Words = DAG.getNode(ISD::SRL, DL, MVT::i32, Size,
18844                               DAG.getConstant(2, DL, MVT::i32));
18845 
18846   SDValue Flag;
18847   Chain = DAG.getCopyToReg(Chain, DL, ARM::R4, Words, Flag);
18848   Flag = Chain.getValue(1);
18849 
18850   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
18851   Chain = DAG.getNode(ARMISD::WIN__CHKSTK, DL, NodeTys, Chain, Flag);
18852 
18853   SDValue NewSP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32);
18854   Chain = NewSP.getValue(1);
18855 
18856   SDValue Ops[2] = { NewSP, Chain };
18857   return DAG.getMergeValues(Ops, DL);
18858 }
18859 
LowerFP_EXTEND(SDValue Op,SelectionDAG & DAG) const18860 SDValue ARMTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
18861   bool IsStrict = Op->isStrictFPOpcode();
18862   SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0);
18863   const unsigned DstSz = Op.getValueType().getSizeInBits();
18864   const unsigned SrcSz = SrcVal.getValueType().getSizeInBits();
18865   assert(DstSz > SrcSz && DstSz <= 64 && SrcSz >= 16 &&
18866          "Unexpected type for custom-lowering FP_EXTEND");
18867 
18868   assert((!Subtarget->hasFP64() || !Subtarget->hasFPARMv8Base()) &&
18869          "With both FP DP and 16, any FP conversion is legal!");
18870 
18871   assert(!(DstSz == 32 && Subtarget->hasFP16()) &&
18872          "With FP16, 16 to 32 conversion is legal!");
18873 
18874   // Converting from 32 -> 64 is valid if we have FP64.
18875   if (SrcSz == 32 && DstSz == 64 && Subtarget->hasFP64()) {
18876     // FIXME: Remove this when we have strict fp instruction selection patterns
18877     if (IsStrict) {
18878       SDLoc Loc(Op);
18879       SDValue Result = DAG.getNode(ISD::FP_EXTEND,
18880                                    Loc, Op.getValueType(), SrcVal);
18881       return DAG.getMergeValues({Result, Op.getOperand(0)}, Loc);
18882     }
18883     return Op;
18884   }
18885 
18886   // Either we are converting from 16 -> 64, without FP16 and/or
18887   // FP.double-precision or without Armv8-fp. So we must do it in two
18888   // steps.
18889   // Or we are converting from 32 -> 64 without fp.double-precision or 16 -> 32
18890   // without FP16. So we must do a function call.
18891   SDLoc Loc(Op);
18892   RTLIB::Libcall LC;
18893   MakeLibCallOptions CallOptions;
18894   SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
18895   for (unsigned Sz = SrcSz; Sz <= 32 && Sz < DstSz; Sz *= 2) {
18896     bool Supported = (Sz == 16 ? Subtarget->hasFP16() : Subtarget->hasFP64());
18897     MVT SrcVT = (Sz == 16 ? MVT::f16 : MVT::f32);
18898     MVT DstVT = (Sz == 16 ? MVT::f32 : MVT::f64);
18899     if (Supported) {
18900       if (IsStrict) {
18901         SrcVal = DAG.getNode(ISD::STRICT_FP_EXTEND, Loc,
18902                              {DstVT, MVT::Other}, {Chain, SrcVal});
18903         Chain = SrcVal.getValue(1);
18904       } else {
18905         SrcVal = DAG.getNode(ISD::FP_EXTEND, Loc, DstVT, SrcVal);
18906       }
18907     } else {
18908       LC = RTLIB::getFPEXT(SrcVT, DstVT);
18909       assert(LC != RTLIB::UNKNOWN_LIBCALL &&
18910              "Unexpected type for custom-lowering FP_EXTEND");
18911       std::tie(SrcVal, Chain) = makeLibCall(DAG, LC, DstVT, SrcVal, CallOptions,
18912                                             Loc, Chain);
18913     }
18914   }
18915 
18916   return IsStrict ? DAG.getMergeValues({SrcVal, Chain}, Loc) : SrcVal;
18917 }
18918 
LowerFP_ROUND(SDValue Op,SelectionDAG & DAG) const18919 SDValue ARMTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
18920   bool IsStrict = Op->isStrictFPOpcode();
18921 
18922   SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0);
18923   EVT SrcVT = SrcVal.getValueType();
18924   EVT DstVT = Op.getValueType();
18925   const unsigned DstSz = Op.getValueType().getSizeInBits();
18926   const unsigned SrcSz = SrcVT.getSizeInBits();
18927   (void)DstSz;
18928   assert(DstSz < SrcSz && SrcSz <= 64 && DstSz >= 16 &&
18929          "Unexpected type for custom-lowering FP_ROUND");
18930 
18931   assert((!Subtarget->hasFP64() || !Subtarget->hasFPARMv8Base()) &&
18932          "With both FP DP and 16, any FP conversion is legal!");
18933 
18934   SDLoc Loc(Op);
18935 
18936   // Instruction from 32 -> 16 if hasFP16 is valid
18937   if (SrcSz == 32 && Subtarget->hasFP16())
18938     return Op;
18939 
18940   // Lib call from 32 -> 16 / 64 -> [32, 16]
18941   RTLIB::Libcall LC = RTLIB::getFPROUND(SrcVT, DstVT);
18942   assert(LC != RTLIB::UNKNOWN_LIBCALL &&
18943          "Unexpected type for custom-lowering FP_ROUND");
18944   MakeLibCallOptions CallOptions;
18945   SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
18946   SDValue Result;
18947   std::tie(Result, Chain) = makeLibCall(DAG, LC, DstVT, SrcVal, CallOptions,
18948                                         Loc, Chain);
18949   return IsStrict ? DAG.getMergeValues({Result, Chain}, Loc) : Result;
18950 }
18951 
lowerABS(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const18952 void ARMTargetLowering::lowerABS(SDNode *N, SmallVectorImpl<SDValue> &Results,
18953                                  SelectionDAG &DAG) const {
18954   assert(N->getValueType(0) == MVT::i64 && "Unexpected type (!= i64) on ABS.");
18955   MVT HalfT = MVT::i32;
18956   SDLoc dl(N);
18957   SDValue Hi, Lo, Tmp;
18958 
18959   if (!isOperationLegalOrCustom(ISD::ADDCARRY, HalfT) ||
18960       !isOperationLegalOrCustom(ISD::UADDO, HalfT))
18961     return ;
18962 
18963   unsigned OpTypeBits = HalfT.getScalarSizeInBits();
18964   SDVTList VTList = DAG.getVTList(HalfT, MVT::i1);
18965 
18966   Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(0),
18967                    DAG.getConstant(0, dl, HalfT));
18968   Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(0),
18969                    DAG.getConstant(1, dl, HalfT));
18970 
18971   Tmp = DAG.getNode(ISD::SRA, dl, HalfT, Hi,
18972                     DAG.getConstant(OpTypeBits - 1, dl,
18973                     getShiftAmountTy(HalfT, DAG.getDataLayout())));
18974   Lo = DAG.getNode(ISD::UADDO, dl, VTList, Tmp, Lo);
18975   Hi = DAG.getNode(ISD::ADDCARRY, dl, VTList, Tmp, Hi,
18976                    SDValue(Lo.getNode(), 1));
18977   Hi = DAG.getNode(ISD::XOR, dl, HalfT, Tmp, Hi);
18978   Lo = DAG.getNode(ISD::XOR, dl, HalfT, Tmp, Lo);
18979 
18980   Results.push_back(Lo);
18981   Results.push_back(Hi);
18982 }
18983 
18984 bool
isOffsetFoldingLegal(const GlobalAddressSDNode * GA) const18985 ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
18986   // The ARM target isn't yet aware of offsets.
18987   return false;
18988 }
18989 
isBitFieldInvertedMask(unsigned v)18990 bool ARM::isBitFieldInvertedMask(unsigned v) {
18991   if (v == 0xffffffff)
18992     return false;
18993 
18994   // there can be 1's on either or both "outsides", all the "inside"
18995   // bits must be 0's
18996   return isShiftedMask_32(~v);
18997 }
18998 
18999 /// isFPImmLegal - Returns true if the target can instruction select the
19000 /// specified FP immediate natively. If false, the legalizer will
19001 /// materialize the FP immediate as a load from a constant pool.
isFPImmLegal(const APFloat & Imm,EVT VT,bool ForCodeSize) const19002 bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
19003                                      bool ForCodeSize) const {
19004   if (!Subtarget->hasVFP3Base())
19005     return false;
19006   if (VT == MVT::f16 && Subtarget->hasFullFP16())
19007     return ARM_AM::getFP16Imm(Imm) != -1;
19008   if (VT == MVT::f32 && Subtarget->hasFullFP16() &&
19009       ARM_AM::getFP32FP16Imm(Imm) != -1)
19010     return true;
19011   if (VT == MVT::f32)
19012     return ARM_AM::getFP32Imm(Imm) != -1;
19013   if (VT == MVT::f64 && Subtarget->hasFP64())
19014     return ARM_AM::getFP64Imm(Imm) != -1;
19015   return false;
19016 }
19017 
19018 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
19019 /// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
19020 /// specified in the intrinsic calls.
getTgtMemIntrinsic(IntrinsicInfo & Info,const CallInst & I,MachineFunction & MF,unsigned Intrinsic) const19021 bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
19022                                            const CallInst &I,
19023                                            MachineFunction &MF,
19024                                            unsigned Intrinsic) const {
19025   switch (Intrinsic) {
19026   case Intrinsic::arm_neon_vld1:
19027   case Intrinsic::arm_neon_vld2:
19028   case Intrinsic::arm_neon_vld3:
19029   case Intrinsic::arm_neon_vld4:
19030   case Intrinsic::arm_neon_vld2lane:
19031   case Intrinsic::arm_neon_vld3lane:
19032   case Intrinsic::arm_neon_vld4lane:
19033   case Intrinsic::arm_neon_vld2dup:
19034   case Intrinsic::arm_neon_vld3dup:
19035   case Intrinsic::arm_neon_vld4dup: {
19036     Info.opc = ISD::INTRINSIC_W_CHAIN;
19037     // Conservatively set memVT to the entire set of vectors loaded.
19038     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
19039     uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
19040     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
19041     Info.ptrVal = I.getArgOperand(0);
19042     Info.offset = 0;
19043     Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
19044     Info.align = cast<ConstantInt>(AlignArg)->getMaybeAlignValue();
19045     // volatile loads with NEON intrinsics not supported
19046     Info.flags = MachineMemOperand::MOLoad;
19047     return true;
19048   }
19049   case Intrinsic::arm_neon_vld1x2:
19050   case Intrinsic::arm_neon_vld1x3:
19051   case Intrinsic::arm_neon_vld1x4: {
19052     Info.opc = ISD::INTRINSIC_W_CHAIN;
19053     // Conservatively set memVT to the entire set of vectors loaded.
19054     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
19055     uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
19056     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
19057     Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
19058     Info.offset = 0;
19059     Info.align.reset();
19060     // volatile loads with NEON intrinsics not supported
19061     Info.flags = MachineMemOperand::MOLoad;
19062     return true;
19063   }
19064   case Intrinsic::arm_neon_vst1:
19065   case Intrinsic::arm_neon_vst2:
19066   case Intrinsic::arm_neon_vst3:
19067   case Intrinsic::arm_neon_vst4:
19068   case Intrinsic::arm_neon_vst2lane:
19069   case Intrinsic::arm_neon_vst3lane:
19070   case Intrinsic::arm_neon_vst4lane: {
19071     Info.opc = ISD::INTRINSIC_VOID;
19072     // Conservatively set memVT to the entire set of vectors stored.
19073     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
19074     unsigned NumElts = 0;
19075     for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
19076       Type *ArgTy = I.getArgOperand(ArgI)->getType();
19077       if (!ArgTy->isVectorTy())
19078         break;
19079       NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
19080     }
19081     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
19082     Info.ptrVal = I.getArgOperand(0);
19083     Info.offset = 0;
19084     Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
19085     Info.align = cast<ConstantInt>(AlignArg)->getMaybeAlignValue();
19086     // volatile stores with NEON intrinsics not supported
19087     Info.flags = MachineMemOperand::MOStore;
19088     return true;
19089   }
19090   case Intrinsic::arm_neon_vst1x2:
19091   case Intrinsic::arm_neon_vst1x3:
19092   case Intrinsic::arm_neon_vst1x4: {
19093     Info.opc = ISD::INTRINSIC_VOID;
19094     // Conservatively set memVT to the entire set of vectors stored.
19095     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
19096     unsigned NumElts = 0;
19097     for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
19098       Type *ArgTy = I.getArgOperand(ArgI)->getType();
19099       if (!ArgTy->isVectorTy())
19100         break;
19101       NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
19102     }
19103     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
19104     Info.ptrVal = I.getArgOperand(0);
19105     Info.offset = 0;
19106     Info.align.reset();
19107     // volatile stores with NEON intrinsics not supported
19108     Info.flags = MachineMemOperand::MOStore;
19109     return true;
19110   }
19111   case Intrinsic::arm_mve_vld2q:
19112   case Intrinsic::arm_mve_vld4q: {
19113     Info.opc = ISD::INTRINSIC_W_CHAIN;
19114     // Conservatively set memVT to the entire set of vectors loaded.
19115     Type *VecTy = cast<StructType>(I.getType())->getElementType(1);
19116     unsigned Factor = Intrinsic == Intrinsic::arm_mve_vld2q ? 2 : 4;
19117     Info.memVT = EVT::getVectorVT(VecTy->getContext(), MVT::i64, Factor * 2);
19118     Info.ptrVal = I.getArgOperand(0);
19119     Info.offset = 0;
19120     Info.align = Align(VecTy->getScalarSizeInBits() / 8);
19121     // volatile loads with MVE intrinsics not supported
19122     Info.flags = MachineMemOperand::MOLoad;
19123     return true;
19124   }
19125   case Intrinsic::arm_mve_vst2q:
19126   case Intrinsic::arm_mve_vst4q: {
19127     Info.opc = ISD::INTRINSIC_VOID;
19128     // Conservatively set memVT to the entire set of vectors stored.
19129     Type *VecTy = I.getArgOperand(1)->getType();
19130     unsigned Factor = Intrinsic == Intrinsic::arm_mve_vst2q ? 2 : 4;
19131     Info.memVT = EVT::getVectorVT(VecTy->getContext(), MVT::i64, Factor * 2);
19132     Info.ptrVal = I.getArgOperand(0);
19133     Info.offset = 0;
19134     Info.align = Align(VecTy->getScalarSizeInBits() / 8);
19135     // volatile stores with MVE intrinsics not supported
19136     Info.flags = MachineMemOperand::MOStore;
19137     return true;
19138   }
19139   case Intrinsic::arm_mve_vldr_gather_base:
19140   case Intrinsic::arm_mve_vldr_gather_base_predicated: {
19141     Info.opc = ISD::INTRINSIC_W_CHAIN;
19142     Info.ptrVal = nullptr;
19143     Info.memVT = MVT::getVT(I.getType());
19144     Info.align = Align(1);
19145     Info.flags |= MachineMemOperand::MOLoad;
19146     return true;
19147   }
19148   case Intrinsic::arm_mve_vldr_gather_base_wb:
19149   case Intrinsic::arm_mve_vldr_gather_base_wb_predicated: {
19150     Info.opc = ISD::INTRINSIC_W_CHAIN;
19151     Info.ptrVal = nullptr;
19152     Info.memVT = MVT::getVT(I.getType()->getContainedType(0));
19153     Info.align = Align(1);
19154     Info.flags |= MachineMemOperand::MOLoad;
19155     return true;
19156   }
19157   case Intrinsic::arm_mve_vldr_gather_offset:
19158   case Intrinsic::arm_mve_vldr_gather_offset_predicated: {
19159     Info.opc = ISD::INTRINSIC_W_CHAIN;
19160     Info.ptrVal = nullptr;
19161     MVT DataVT = MVT::getVT(I.getType());
19162     unsigned MemSize = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
19163     Info.memVT = MVT::getVectorVT(MVT::getIntegerVT(MemSize),
19164                                   DataVT.getVectorNumElements());
19165     Info.align = Align(1);
19166     Info.flags |= MachineMemOperand::MOLoad;
19167     return true;
19168   }
19169   case Intrinsic::arm_mve_vstr_scatter_base:
19170   case Intrinsic::arm_mve_vstr_scatter_base_predicated: {
19171     Info.opc = ISD::INTRINSIC_VOID;
19172     Info.ptrVal = nullptr;
19173     Info.memVT = MVT::getVT(I.getArgOperand(2)->getType());
19174     Info.align = Align(1);
19175     Info.flags |= MachineMemOperand::MOStore;
19176     return true;
19177   }
19178   case Intrinsic::arm_mve_vstr_scatter_base_wb:
19179   case Intrinsic::arm_mve_vstr_scatter_base_wb_predicated: {
19180     Info.opc = ISD::INTRINSIC_W_CHAIN;
19181     Info.ptrVal = nullptr;
19182     Info.memVT = MVT::getVT(I.getArgOperand(2)->getType());
19183     Info.align = Align(1);
19184     Info.flags |= MachineMemOperand::MOStore;
19185     return true;
19186   }
19187   case Intrinsic::arm_mve_vstr_scatter_offset:
19188   case Intrinsic::arm_mve_vstr_scatter_offset_predicated: {
19189     Info.opc = ISD::INTRINSIC_VOID;
19190     Info.ptrVal = nullptr;
19191     MVT DataVT = MVT::getVT(I.getArgOperand(2)->getType());
19192     unsigned MemSize = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
19193     Info.memVT = MVT::getVectorVT(MVT::getIntegerVT(MemSize),
19194                                   DataVT.getVectorNumElements());
19195     Info.align = Align(1);
19196     Info.flags |= MachineMemOperand::MOStore;
19197     return true;
19198   }
19199   case Intrinsic::arm_ldaex:
19200   case Intrinsic::arm_ldrex: {
19201     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
19202     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
19203     Info.opc = ISD::INTRINSIC_W_CHAIN;
19204     Info.memVT = MVT::getVT(PtrTy->getElementType());
19205     Info.ptrVal = I.getArgOperand(0);
19206     Info.offset = 0;
19207     Info.align = DL.getABITypeAlign(PtrTy->getElementType());
19208     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
19209     return true;
19210   }
19211   case Intrinsic::arm_stlex:
19212   case Intrinsic::arm_strex: {
19213     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
19214     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
19215     Info.opc = ISD::INTRINSIC_W_CHAIN;
19216     Info.memVT = MVT::getVT(PtrTy->getElementType());
19217     Info.ptrVal = I.getArgOperand(1);
19218     Info.offset = 0;
19219     Info.align = DL.getABITypeAlign(PtrTy->getElementType());
19220     Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
19221     return true;
19222   }
19223   case Intrinsic::arm_stlexd:
19224   case Intrinsic::arm_strexd:
19225     Info.opc = ISD::INTRINSIC_W_CHAIN;
19226     Info.memVT = MVT::i64;
19227     Info.ptrVal = I.getArgOperand(2);
19228     Info.offset = 0;
19229     Info.align = Align(8);
19230     Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
19231     return true;
19232 
19233   case Intrinsic::arm_ldaexd:
19234   case Intrinsic::arm_ldrexd:
19235     Info.opc = ISD::INTRINSIC_W_CHAIN;
19236     Info.memVT = MVT::i64;
19237     Info.ptrVal = I.getArgOperand(0);
19238     Info.offset = 0;
19239     Info.align = Align(8);
19240     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
19241     return true;
19242 
19243   default:
19244     break;
19245   }
19246 
19247   return false;
19248 }
19249 
19250 /// Returns true if it is beneficial to convert a load of a constant
19251 /// to just the constant itself.
shouldConvertConstantLoadToIntImm(const APInt & Imm,Type * Ty) const19252 bool ARMTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
19253                                                           Type *Ty) const {
19254   assert(Ty->isIntegerTy());
19255 
19256   unsigned Bits = Ty->getPrimitiveSizeInBits();
19257   if (Bits == 0 || Bits > 32)
19258     return false;
19259   return true;
19260 }
19261 
isExtractSubvectorCheap(EVT ResVT,EVT SrcVT,unsigned Index) const19262 bool ARMTargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
19263                                                 unsigned Index) const {
19264   if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT))
19265     return false;
19266 
19267   return (Index == 0 || Index == ResVT.getVectorNumElements());
19268 }
19269 
makeDMB(IRBuilder<> & Builder,ARM_MB::MemBOpt Domain) const19270 Instruction* ARMTargetLowering::makeDMB(IRBuilder<> &Builder,
19271                                         ARM_MB::MemBOpt Domain) const {
19272   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
19273 
19274   // First, if the target has no DMB, see what fallback we can use.
19275   if (!Subtarget->hasDataBarrier()) {
19276     // Some ARMv6 cpus can support data barriers with an mcr instruction.
19277     // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
19278     // here.
19279     if (Subtarget->hasV6Ops() && !Subtarget->isThumb()) {
19280       Function *MCR = Intrinsic::getDeclaration(M, Intrinsic::arm_mcr);
19281       Value* args[6] = {Builder.getInt32(15), Builder.getInt32(0),
19282                         Builder.getInt32(0), Builder.getInt32(7),
19283                         Builder.getInt32(10), Builder.getInt32(5)};
19284       return Builder.CreateCall(MCR, args);
19285     } else {
19286       // Instead of using barriers, atomic accesses on these subtargets use
19287       // libcalls.
19288       llvm_unreachable("makeDMB on a target so old that it has no barriers");
19289     }
19290   } else {
19291     Function *DMB = Intrinsic::getDeclaration(M, Intrinsic::arm_dmb);
19292     // Only a full system barrier exists in the M-class architectures.
19293     Domain = Subtarget->isMClass() ? ARM_MB::SY : Domain;
19294     Constant *CDomain = Builder.getInt32(Domain);
19295     return Builder.CreateCall(DMB, CDomain);
19296   }
19297 }
19298 
19299 // Based on http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
emitLeadingFence(IRBuilder<> & Builder,Instruction * Inst,AtomicOrdering Ord) const19300 Instruction *ARMTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
19301                                                  Instruction *Inst,
19302                                                  AtomicOrdering Ord) const {
19303   switch (Ord) {
19304   case AtomicOrdering::NotAtomic:
19305   case AtomicOrdering::Unordered:
19306     llvm_unreachable("Invalid fence: unordered/non-atomic");
19307   case AtomicOrdering::Monotonic:
19308   case AtomicOrdering::Acquire:
19309     return nullptr; // Nothing to do
19310   case AtomicOrdering::SequentiallyConsistent:
19311     if (!Inst->hasAtomicStore())
19312       return nullptr; // Nothing to do
19313     LLVM_FALLTHROUGH;
19314   case AtomicOrdering::Release:
19315   case AtomicOrdering::AcquireRelease:
19316     if (Subtarget->preferISHSTBarriers())
19317       return makeDMB(Builder, ARM_MB::ISHST);
19318     // FIXME: add a comment with a link to documentation justifying this.
19319     else
19320       return makeDMB(Builder, ARM_MB::ISH);
19321   }
19322   llvm_unreachable("Unknown fence ordering in emitLeadingFence");
19323 }
19324 
emitTrailingFence(IRBuilder<> & Builder,Instruction * Inst,AtomicOrdering Ord) const19325 Instruction *ARMTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
19326                                                   Instruction *Inst,
19327                                                   AtomicOrdering Ord) const {
19328   switch (Ord) {
19329   case AtomicOrdering::NotAtomic:
19330   case AtomicOrdering::Unordered:
19331     llvm_unreachable("Invalid fence: unordered/not-atomic");
19332   case AtomicOrdering::Monotonic:
19333   case AtomicOrdering::Release:
19334     return nullptr; // Nothing to do
19335   case AtomicOrdering::Acquire:
19336   case AtomicOrdering::AcquireRelease:
19337   case AtomicOrdering::SequentiallyConsistent:
19338     return makeDMB(Builder, ARM_MB::ISH);
19339   }
19340   llvm_unreachable("Unknown fence ordering in emitTrailingFence");
19341 }
19342 
19343 // Loads and stores less than 64-bits are already atomic; ones above that
19344 // are doomed anyway, so defer to the default libcall and blame the OS when
19345 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
19346 // anything for those.
shouldExpandAtomicStoreInIR(StoreInst * SI) const19347 bool ARMTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
19348   unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
19349   return (Size == 64) && !Subtarget->isMClass();
19350 }
19351 
19352 // Loads and stores less than 64-bits are already atomic; ones above that
19353 // are doomed anyway, so defer to the default libcall and blame the OS when
19354 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
19355 // anything for those.
19356 // FIXME: ldrd and strd are atomic if the CPU has LPAE (e.g. A15 has that
19357 // guarantee, see DDI0406C ARM architecture reference manual,
19358 // sections A8.8.72-74 LDRD)
19359 TargetLowering::AtomicExpansionKind
shouldExpandAtomicLoadInIR(LoadInst * LI) const19360 ARMTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
19361   unsigned Size = LI->getType()->getPrimitiveSizeInBits();
19362   return ((Size == 64) && !Subtarget->isMClass()) ? AtomicExpansionKind::LLOnly
19363                                                   : AtomicExpansionKind::None;
19364 }
19365 
19366 // For the real atomic operations, we have ldrex/strex up to 32 bits,
19367 // and up to 64 bits on the non-M profiles
19368 TargetLowering::AtomicExpansionKind
shouldExpandAtomicRMWInIR(AtomicRMWInst * AI) const19369 ARMTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
19370   if (AI->isFloatingPointOperation())
19371     return AtomicExpansionKind::CmpXChg;
19372 
19373   // At -O0, fast-regalloc cannot cope with the live vregs necessary to
19374   // implement atomicrmw without spilling. If the target address is also on the
19375   // stack and close enough to the spill slot, this can lead to a situation
19376   // where the monitor always gets cleared and the atomic operation can never
19377   // succeed. So at -O0 lower this operation to a CAS loop.
19378   if (getTargetMachine().getOptLevel() == CodeGenOpt::None)
19379     return AtomicExpansionKind::CmpXChg;
19380 
19381   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
19382   bool hasAtomicRMW = !Subtarget->isThumb() || Subtarget->hasV8MBaselineOps();
19383   return (Size <= (Subtarget->isMClass() ? 32U : 64U) && hasAtomicRMW)
19384              ? AtomicExpansionKind::LLSC
19385              : AtomicExpansionKind::None;
19386 }
19387 
19388 // Similar to shouldExpandAtomicRMWInIR, ldrex/strex can be used  up to 32
19389 // bits, and up to 64 bits on the non-M profiles.
19390 TargetLowering::AtomicExpansionKind
shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst * AI) const19391 ARMTargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const {
19392   // At -O0, fast-regalloc cannot cope with the live vregs necessary to
19393   // implement cmpxchg without spilling. If the address being exchanged is also
19394   // on the stack and close enough to the spill slot, this can lead to a
19395   // situation where the monitor always gets cleared and the atomic operation
19396   // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead.
19397   unsigned Size = AI->getOperand(1)->getType()->getPrimitiveSizeInBits();
19398   bool HasAtomicCmpXchg =
19399       !Subtarget->isThumb() || Subtarget->hasV8MBaselineOps();
19400   if (getTargetMachine().getOptLevel() != 0 && HasAtomicCmpXchg &&
19401       Size <= (Subtarget->isMClass() ? 32U : 64U))
19402     return AtomicExpansionKind::LLSC;
19403   return AtomicExpansionKind::None;
19404 }
19405 
shouldInsertFencesForAtomic(const Instruction * I) const19406 bool ARMTargetLowering::shouldInsertFencesForAtomic(
19407     const Instruction *I) const {
19408   return InsertFencesForAtomic;
19409 }
19410 
19411 // This has so far only been implemented for MachO.
useLoadStackGuardNode() const19412 bool ARMTargetLowering::useLoadStackGuardNode() const {
19413   return Subtarget->isTargetMachO();
19414 }
19415 
insertSSPDeclarations(Module & M) const19416 void ARMTargetLowering::insertSSPDeclarations(Module &M) const {
19417   if (!Subtarget->getTargetTriple().isWindowsMSVCEnvironment())
19418     return TargetLowering::insertSSPDeclarations(M);
19419 
19420   // MSVC CRT has a global variable holding security cookie.
19421   M.getOrInsertGlobal("__security_cookie",
19422                       Type::getInt8PtrTy(M.getContext()));
19423 
19424   // MSVC CRT has a function to validate security cookie.
19425   FunctionCallee SecurityCheckCookie = M.getOrInsertFunction(
19426       "__security_check_cookie", Type::getVoidTy(M.getContext()),
19427       Type::getInt8PtrTy(M.getContext()));
19428   if (Function *F = dyn_cast<Function>(SecurityCheckCookie.getCallee()))
19429     F->addAttribute(1, Attribute::AttrKind::InReg);
19430 }
19431 
getSDagStackGuard(const Module & M) const19432 Value *ARMTargetLowering::getSDagStackGuard(const Module &M) const {
19433   // MSVC CRT has a global variable holding security cookie.
19434   if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment())
19435     return M.getGlobalVariable("__security_cookie");
19436   return TargetLowering::getSDagStackGuard(M);
19437 }
19438 
getSSPStackGuardCheck(const Module & M) const19439 Function *ARMTargetLowering::getSSPStackGuardCheck(const Module &M) const {
19440   // MSVC CRT has a function to validate security cookie.
19441   if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment())
19442     return M.getFunction("__security_check_cookie");
19443   return TargetLowering::getSSPStackGuardCheck(M);
19444 }
19445 
canCombineStoreAndExtract(Type * VectorTy,Value * Idx,unsigned & Cost) const19446 bool ARMTargetLowering::canCombineStoreAndExtract(Type *VectorTy, Value *Idx,
19447                                                   unsigned &Cost) const {
19448   // If we do not have NEON, vector types are not natively supported.
19449   if (!Subtarget->hasNEON())
19450     return false;
19451 
19452   // Floating point values and vector values map to the same register file.
19453   // Therefore, although we could do a store extract of a vector type, this is
19454   // better to leave at float as we have more freedom in the addressing mode for
19455   // those.
19456   if (VectorTy->isFPOrFPVectorTy())
19457     return false;
19458 
19459   // If the index is unknown at compile time, this is very expensive to lower
19460   // and it is not possible to combine the store with the extract.
19461   if (!isa<ConstantInt>(Idx))
19462     return false;
19463 
19464   assert(VectorTy->isVectorTy() && "VectorTy is not a vector type");
19465   unsigned BitWidth = VectorTy->getPrimitiveSizeInBits().getFixedSize();
19466   // We can do a store + vector extract on any vector that fits perfectly in a D
19467   // or Q register.
19468   if (BitWidth == 64 || BitWidth == 128) {
19469     Cost = 0;
19470     return true;
19471   }
19472   return false;
19473 }
19474 
isCheapToSpeculateCttz() const19475 bool ARMTargetLowering::isCheapToSpeculateCttz() const {
19476   return Subtarget->hasV6T2Ops();
19477 }
19478 
isCheapToSpeculateCtlz() const19479 bool ARMTargetLowering::isCheapToSpeculateCtlz() const {
19480   return Subtarget->hasV6T2Ops();
19481 }
19482 
shouldExpandShift(SelectionDAG & DAG,SDNode * N) const19483 bool ARMTargetLowering::shouldExpandShift(SelectionDAG &DAG, SDNode *N) const {
19484   return !Subtarget->hasMinSize() || Subtarget->isTargetWindows();
19485 }
19486 
emitLoadLinked(IRBuilder<> & Builder,Value * Addr,AtomicOrdering Ord) const19487 Value *ARMTargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
19488                                          AtomicOrdering Ord) const {
19489   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
19490   Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
19491   bool IsAcquire = isAcquireOrStronger(Ord);
19492 
19493   // Since i64 isn't legal and intrinsics don't get type-lowered, the ldrexd
19494   // intrinsic must return {i32, i32} and we have to recombine them into a
19495   // single i64 here.
19496   if (ValTy->getPrimitiveSizeInBits() == 64) {
19497     Intrinsic::ID Int =
19498         IsAcquire ? Intrinsic::arm_ldaexd : Intrinsic::arm_ldrexd;
19499     Function *Ldrex = Intrinsic::getDeclaration(M, Int);
19500 
19501     Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
19502     Value *LoHi = Builder.CreateCall(Ldrex, Addr, "lohi");
19503 
19504     Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
19505     Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
19506     if (!Subtarget->isLittle())
19507       std::swap (Lo, Hi);
19508     Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
19509     Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
19510     return Builder.CreateOr(
19511         Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 32)), "val64");
19512   }
19513 
19514   Type *Tys[] = { Addr->getType() };
19515   Intrinsic::ID Int = IsAcquire ? Intrinsic::arm_ldaex : Intrinsic::arm_ldrex;
19516   Function *Ldrex = Intrinsic::getDeclaration(M, Int, Tys);
19517 
19518   return Builder.CreateTruncOrBitCast(
19519       Builder.CreateCall(Ldrex, Addr),
19520       cast<PointerType>(Addr->getType())->getElementType());
19521 }
19522 
emitAtomicCmpXchgNoStoreLLBalance(IRBuilder<> & Builder) const19523 void ARMTargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
19524     IRBuilder<> &Builder) const {
19525   if (!Subtarget->hasV7Ops())
19526     return;
19527   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
19528   Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::arm_clrex));
19529 }
19530 
emitStoreConditional(IRBuilder<> & Builder,Value * Val,Value * Addr,AtomicOrdering Ord) const19531 Value *ARMTargetLowering::emitStoreConditional(IRBuilder<> &Builder, Value *Val,
19532                                                Value *Addr,
19533                                                AtomicOrdering Ord) const {
19534   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
19535   bool IsRelease = isReleaseOrStronger(Ord);
19536 
19537   // Since the intrinsics must have legal type, the i64 intrinsics take two
19538   // parameters: "i32, i32". We must marshal Val into the appropriate form
19539   // before the call.
19540   if (Val->getType()->getPrimitiveSizeInBits() == 64) {
19541     Intrinsic::ID Int =
19542         IsRelease ? Intrinsic::arm_stlexd : Intrinsic::arm_strexd;
19543     Function *Strex = Intrinsic::getDeclaration(M, Int);
19544     Type *Int32Ty = Type::getInt32Ty(M->getContext());
19545 
19546     Value *Lo = Builder.CreateTrunc(Val, Int32Ty, "lo");
19547     Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 32), Int32Ty, "hi");
19548     if (!Subtarget->isLittle())
19549       std::swap(Lo, Hi);
19550     Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
19551     return Builder.CreateCall(Strex, {Lo, Hi, Addr});
19552   }
19553 
19554   Intrinsic::ID Int = IsRelease ? Intrinsic::arm_stlex : Intrinsic::arm_strex;
19555   Type *Tys[] = { Addr->getType() };
19556   Function *Strex = Intrinsic::getDeclaration(M, Int, Tys);
19557 
19558   return Builder.CreateCall(
19559       Strex, {Builder.CreateZExtOrBitCast(
19560                   Val, Strex->getFunctionType()->getParamType(0)),
19561               Addr});
19562 }
19563 
19564 
alignLoopsWithOptSize() const19565 bool ARMTargetLowering::alignLoopsWithOptSize() const {
19566   return Subtarget->isMClass();
19567 }
19568 
19569 /// A helper function for determining the number of interleaved accesses we
19570 /// will generate when lowering accesses of the given type.
19571 unsigned
getNumInterleavedAccesses(VectorType * VecTy,const DataLayout & DL) const19572 ARMTargetLowering::getNumInterleavedAccesses(VectorType *VecTy,
19573                                              const DataLayout &DL) const {
19574   return (DL.getTypeSizeInBits(VecTy) + 127) / 128;
19575 }
19576 
isLegalInterleavedAccessType(unsigned Factor,FixedVectorType * VecTy,Align Alignment,const DataLayout & DL) const19577 bool ARMTargetLowering::isLegalInterleavedAccessType(
19578     unsigned Factor, FixedVectorType *VecTy, Align Alignment,
19579     const DataLayout &DL) const {
19580 
19581   unsigned VecSize = DL.getTypeSizeInBits(VecTy);
19582   unsigned ElSize = DL.getTypeSizeInBits(VecTy->getElementType());
19583 
19584   if (!Subtarget->hasNEON() && !Subtarget->hasMVEIntegerOps())
19585     return false;
19586 
19587   // Ensure the vector doesn't have f16 elements. Even though we could do an
19588   // i16 vldN, we can't hold the f16 vectors and will end up converting via
19589   // f32.
19590   if (Subtarget->hasNEON() && VecTy->getElementType()->isHalfTy())
19591     return false;
19592   if (Subtarget->hasMVEIntegerOps() && Factor == 3)
19593     return false;
19594 
19595   // Ensure the number of vector elements is greater than 1.
19596   if (VecTy->getNumElements() < 2)
19597     return false;
19598 
19599   // Ensure the element type is legal.
19600   if (ElSize != 8 && ElSize != 16 && ElSize != 32)
19601     return false;
19602   // And the alignment if high enough under MVE.
19603   if (Subtarget->hasMVEIntegerOps() && Alignment < ElSize / 8)
19604     return false;
19605 
19606   // Ensure the total vector size is 64 or a multiple of 128. Types larger than
19607   // 128 will be split into multiple interleaved accesses.
19608   if (Subtarget->hasNEON() && VecSize == 64)
19609     return true;
19610   return VecSize % 128 == 0;
19611 }
19612 
getMaxSupportedInterleaveFactor() const19613 unsigned ARMTargetLowering::getMaxSupportedInterleaveFactor() const {
19614   if (Subtarget->hasNEON())
19615     return 4;
19616   if (Subtarget->hasMVEIntegerOps())
19617     return MVEMaxSupportedInterleaveFactor;
19618   return TargetLoweringBase::getMaxSupportedInterleaveFactor();
19619 }
19620 
19621 /// Lower an interleaved load into a vldN intrinsic.
19622 ///
19623 /// E.g. Lower an interleaved load (Factor = 2):
19624 ///        %wide.vec = load <8 x i32>, <8 x i32>* %ptr, align 4
19625 ///        %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6>  ; Extract even elements
19626 ///        %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7>  ; Extract odd elements
19627 ///
19628 ///      Into:
19629 ///        %vld2 = { <4 x i32>, <4 x i32> } call llvm.arm.neon.vld2(%ptr, 4)
19630 ///        %vec0 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 0
19631 ///        %vec1 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 1
lowerInterleavedLoad(LoadInst * LI,ArrayRef<ShuffleVectorInst * > Shuffles,ArrayRef<unsigned> Indices,unsigned Factor) const19632 bool ARMTargetLowering::lowerInterleavedLoad(
19633     LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
19634     ArrayRef<unsigned> Indices, unsigned Factor) const {
19635   assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
19636          "Invalid interleave factor");
19637   assert(!Shuffles.empty() && "Empty shufflevector input");
19638   assert(Shuffles.size() == Indices.size() &&
19639          "Unmatched number of shufflevectors and indices");
19640 
19641   auto *VecTy = cast<FixedVectorType>(Shuffles[0]->getType());
19642   Type *EltTy = VecTy->getElementType();
19643 
19644   const DataLayout &DL = LI->getModule()->getDataLayout();
19645   Align Alignment = LI->getAlign();
19646 
19647   // Skip if we do not have NEON and skip illegal vector types. We can
19648   // "legalize" wide vector types into multiple interleaved accesses as long as
19649   // the vector types are divisible by 128.
19650   if (!isLegalInterleavedAccessType(Factor, VecTy, Alignment, DL))
19651     return false;
19652 
19653   unsigned NumLoads = getNumInterleavedAccesses(VecTy, DL);
19654 
19655   // A pointer vector can not be the return type of the ldN intrinsics. Need to
19656   // load integer vectors first and then convert to pointer vectors.
19657   if (EltTy->isPointerTy())
19658     VecTy = FixedVectorType::get(DL.getIntPtrType(EltTy), VecTy);
19659 
19660   IRBuilder<> Builder(LI);
19661 
19662   // The base address of the load.
19663   Value *BaseAddr = LI->getPointerOperand();
19664 
19665   if (NumLoads > 1) {
19666     // If we're going to generate more than one load, reset the sub-vector type
19667     // to something legal.
19668     VecTy = FixedVectorType::get(VecTy->getElementType(),
19669                                  VecTy->getNumElements() / NumLoads);
19670 
19671     // We will compute the pointer operand of each load from the original base
19672     // address using GEPs. Cast the base address to a pointer to the scalar
19673     // element type.
19674     BaseAddr = Builder.CreateBitCast(
19675         BaseAddr,
19676         VecTy->getElementType()->getPointerTo(LI->getPointerAddressSpace()));
19677   }
19678 
19679   assert(isTypeLegal(EVT::getEVT(VecTy)) && "Illegal vldN vector type!");
19680 
19681   auto createLoadIntrinsic = [&](Value *BaseAddr) {
19682     if (Subtarget->hasNEON()) {
19683       Type *Int8Ptr = Builder.getInt8PtrTy(LI->getPointerAddressSpace());
19684       Type *Tys[] = {VecTy, Int8Ptr};
19685       static const Intrinsic::ID LoadInts[3] = {Intrinsic::arm_neon_vld2,
19686                                                 Intrinsic::arm_neon_vld3,
19687                                                 Intrinsic::arm_neon_vld4};
19688       Function *VldnFunc =
19689           Intrinsic::getDeclaration(LI->getModule(), LoadInts[Factor - 2], Tys);
19690 
19691       SmallVector<Value *, 2> Ops;
19692       Ops.push_back(Builder.CreateBitCast(BaseAddr, Int8Ptr));
19693       Ops.push_back(Builder.getInt32(LI->getAlignment()));
19694 
19695       return Builder.CreateCall(VldnFunc, Ops, "vldN");
19696     } else {
19697       assert((Factor == 2 || Factor == 4) &&
19698              "expected interleave factor of 2 or 4 for MVE");
19699       Intrinsic::ID LoadInts =
19700           Factor == 2 ? Intrinsic::arm_mve_vld2q : Intrinsic::arm_mve_vld4q;
19701       Type *VecEltTy =
19702           VecTy->getElementType()->getPointerTo(LI->getPointerAddressSpace());
19703       Type *Tys[] = {VecTy, VecEltTy};
19704       Function *VldnFunc =
19705           Intrinsic::getDeclaration(LI->getModule(), LoadInts, Tys);
19706 
19707       SmallVector<Value *, 2> Ops;
19708       Ops.push_back(Builder.CreateBitCast(BaseAddr, VecEltTy));
19709       return Builder.CreateCall(VldnFunc, Ops, "vldN");
19710     }
19711   };
19712 
19713   // Holds sub-vectors extracted from the load intrinsic return values. The
19714   // sub-vectors are associated with the shufflevector instructions they will
19715   // replace.
19716   DenseMap<ShuffleVectorInst *, SmallVector<Value *, 4>> SubVecs;
19717 
19718   for (unsigned LoadCount = 0; LoadCount < NumLoads; ++LoadCount) {
19719     // If we're generating more than one load, compute the base address of
19720     // subsequent loads as an offset from the previous.
19721     if (LoadCount > 0)
19722       BaseAddr = Builder.CreateConstGEP1_32(VecTy->getElementType(), BaseAddr,
19723                                             VecTy->getNumElements() * Factor);
19724 
19725     CallInst *VldN = createLoadIntrinsic(BaseAddr);
19726 
19727     // Replace uses of each shufflevector with the corresponding vector loaded
19728     // by ldN.
19729     for (unsigned i = 0; i < Shuffles.size(); i++) {
19730       ShuffleVectorInst *SV = Shuffles[i];
19731       unsigned Index = Indices[i];
19732 
19733       Value *SubVec = Builder.CreateExtractValue(VldN, Index);
19734 
19735       // Convert the integer vector to pointer vector if the element is pointer.
19736       if (EltTy->isPointerTy())
19737         SubVec = Builder.CreateIntToPtr(
19738             SubVec,
19739             FixedVectorType::get(SV->getType()->getElementType(), VecTy));
19740 
19741       SubVecs[SV].push_back(SubVec);
19742     }
19743   }
19744 
19745   // Replace uses of the shufflevector instructions with the sub-vectors
19746   // returned by the load intrinsic. If a shufflevector instruction is
19747   // associated with more than one sub-vector, those sub-vectors will be
19748   // concatenated into a single wide vector.
19749   for (ShuffleVectorInst *SVI : Shuffles) {
19750     auto &SubVec = SubVecs[SVI];
19751     auto *WideVec =
19752         SubVec.size() > 1 ? concatenateVectors(Builder, SubVec) : SubVec[0];
19753     SVI->replaceAllUsesWith(WideVec);
19754   }
19755 
19756   return true;
19757 }
19758 
19759 /// Lower an interleaved store into a vstN intrinsic.
19760 ///
19761 /// E.g. Lower an interleaved store (Factor = 3):
19762 ///        %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
19763 ///                                  <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
19764 ///        store <12 x i32> %i.vec, <12 x i32>* %ptr, align 4
19765 ///
19766 ///      Into:
19767 ///        %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
19768 ///        %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
19769 ///        %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
19770 ///        call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
19771 ///
19772 /// Note that the new shufflevectors will be removed and we'll only generate one
19773 /// vst3 instruction in CodeGen.
19774 ///
19775 /// Example for a more general valid mask (Factor 3). Lower:
19776 ///        %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1,
19777 ///                 <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
19778 ///        store <12 x i32> %i.vec, <12 x i32>* %ptr
19779 ///
19780 ///      Into:
19781 ///        %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7>
19782 ///        %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35>
19783 ///        %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19>
19784 ///        call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
lowerInterleavedStore(StoreInst * SI,ShuffleVectorInst * SVI,unsigned Factor) const19785 bool ARMTargetLowering::lowerInterleavedStore(StoreInst *SI,
19786                                               ShuffleVectorInst *SVI,
19787                                               unsigned Factor) const {
19788   assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
19789          "Invalid interleave factor");
19790 
19791   auto *VecTy = cast<FixedVectorType>(SVI->getType());
19792   assert(VecTy->getNumElements() % Factor == 0 && "Invalid interleaved store");
19793 
19794   unsigned LaneLen = VecTy->getNumElements() / Factor;
19795   Type *EltTy = VecTy->getElementType();
19796   auto *SubVecTy = FixedVectorType::get(EltTy, LaneLen);
19797 
19798   const DataLayout &DL = SI->getModule()->getDataLayout();
19799   Align Alignment = SI->getAlign();
19800 
19801   // Skip if we do not have NEON and skip illegal vector types. We can
19802   // "legalize" wide vector types into multiple interleaved accesses as long as
19803   // the vector types are divisible by 128.
19804   if (!isLegalInterleavedAccessType(Factor, SubVecTy, Alignment, DL))
19805     return false;
19806 
19807   unsigned NumStores = getNumInterleavedAccesses(SubVecTy, DL);
19808 
19809   Value *Op0 = SVI->getOperand(0);
19810   Value *Op1 = SVI->getOperand(1);
19811   IRBuilder<> Builder(SI);
19812 
19813   // StN intrinsics don't support pointer vectors as arguments. Convert pointer
19814   // vectors to integer vectors.
19815   if (EltTy->isPointerTy()) {
19816     Type *IntTy = DL.getIntPtrType(EltTy);
19817 
19818     // Convert to the corresponding integer vector.
19819     auto *IntVecTy =
19820         FixedVectorType::get(IntTy, cast<FixedVectorType>(Op0->getType()));
19821     Op0 = Builder.CreatePtrToInt(Op0, IntVecTy);
19822     Op1 = Builder.CreatePtrToInt(Op1, IntVecTy);
19823 
19824     SubVecTy = FixedVectorType::get(IntTy, LaneLen);
19825   }
19826 
19827   // The base address of the store.
19828   Value *BaseAddr = SI->getPointerOperand();
19829 
19830   if (NumStores > 1) {
19831     // If we're going to generate more than one store, reset the lane length
19832     // and sub-vector type to something legal.
19833     LaneLen /= NumStores;
19834     SubVecTy = FixedVectorType::get(SubVecTy->getElementType(), LaneLen);
19835 
19836     // We will compute the pointer operand of each store from the original base
19837     // address using GEPs. Cast the base address to a pointer to the scalar
19838     // element type.
19839     BaseAddr = Builder.CreateBitCast(
19840         BaseAddr,
19841         SubVecTy->getElementType()->getPointerTo(SI->getPointerAddressSpace()));
19842   }
19843 
19844   assert(isTypeLegal(EVT::getEVT(SubVecTy)) && "Illegal vstN vector type!");
19845 
19846   auto Mask = SVI->getShuffleMask();
19847 
19848   auto createStoreIntrinsic = [&](Value *BaseAddr,
19849                                   SmallVectorImpl<Value *> &Shuffles) {
19850     if (Subtarget->hasNEON()) {
19851       static const Intrinsic::ID StoreInts[3] = {Intrinsic::arm_neon_vst2,
19852                                                  Intrinsic::arm_neon_vst3,
19853                                                  Intrinsic::arm_neon_vst4};
19854       Type *Int8Ptr = Builder.getInt8PtrTy(SI->getPointerAddressSpace());
19855       Type *Tys[] = {Int8Ptr, SubVecTy};
19856 
19857       Function *VstNFunc = Intrinsic::getDeclaration(
19858           SI->getModule(), StoreInts[Factor - 2], Tys);
19859 
19860       SmallVector<Value *, 6> Ops;
19861       Ops.push_back(Builder.CreateBitCast(BaseAddr, Int8Ptr));
19862       append_range(Ops, Shuffles);
19863       Ops.push_back(Builder.getInt32(SI->getAlignment()));
19864       Builder.CreateCall(VstNFunc, Ops);
19865     } else {
19866       assert((Factor == 2 || Factor == 4) &&
19867              "expected interleave factor of 2 or 4 for MVE");
19868       Intrinsic::ID StoreInts =
19869           Factor == 2 ? Intrinsic::arm_mve_vst2q : Intrinsic::arm_mve_vst4q;
19870       Type *EltPtrTy = SubVecTy->getElementType()->getPointerTo(
19871           SI->getPointerAddressSpace());
19872       Type *Tys[] = {EltPtrTy, SubVecTy};
19873       Function *VstNFunc =
19874           Intrinsic::getDeclaration(SI->getModule(), StoreInts, Tys);
19875 
19876       SmallVector<Value *, 6> Ops;
19877       Ops.push_back(Builder.CreateBitCast(BaseAddr, EltPtrTy));
19878       append_range(Ops, Shuffles);
19879       for (unsigned F = 0; F < Factor; F++) {
19880         Ops.push_back(Builder.getInt32(F));
19881         Builder.CreateCall(VstNFunc, Ops);
19882         Ops.pop_back();
19883       }
19884     }
19885   };
19886 
19887   for (unsigned StoreCount = 0; StoreCount < NumStores; ++StoreCount) {
19888     // If we generating more than one store, we compute the base address of
19889     // subsequent stores as an offset from the previous.
19890     if (StoreCount > 0)
19891       BaseAddr = Builder.CreateConstGEP1_32(SubVecTy->getElementType(),
19892                                             BaseAddr, LaneLen * Factor);
19893 
19894     SmallVector<Value *, 4> Shuffles;
19895 
19896     // Split the shufflevector operands into sub vectors for the new vstN call.
19897     for (unsigned i = 0; i < Factor; i++) {
19898       unsigned IdxI = StoreCount * LaneLen * Factor + i;
19899       if (Mask[IdxI] >= 0) {
19900         Shuffles.push_back(Builder.CreateShuffleVector(
19901             Op0, Op1, createSequentialMask(Mask[IdxI], LaneLen, 0)));
19902       } else {
19903         unsigned StartMask = 0;
19904         for (unsigned j = 1; j < LaneLen; j++) {
19905           unsigned IdxJ = StoreCount * LaneLen * Factor + j;
19906           if (Mask[IdxJ * Factor + IdxI] >= 0) {
19907             StartMask = Mask[IdxJ * Factor + IdxI] - IdxJ;
19908             break;
19909           }
19910         }
19911         // Note: If all elements in a chunk are undefs, StartMask=0!
19912         // Note: Filling undef gaps with random elements is ok, since
19913         // those elements were being written anyway (with undefs).
19914         // In the case of all undefs we're defaulting to using elems from 0
19915         // Note: StartMask cannot be negative, it's checked in
19916         // isReInterleaveMask
19917         Shuffles.push_back(Builder.CreateShuffleVector(
19918             Op0, Op1, createSequentialMask(StartMask, LaneLen, 0)));
19919       }
19920     }
19921 
19922     createStoreIntrinsic(BaseAddr, Shuffles);
19923   }
19924   return true;
19925 }
19926 
19927 enum HABaseType {
19928   HA_UNKNOWN = 0,
19929   HA_FLOAT,
19930   HA_DOUBLE,
19931   HA_VECT64,
19932   HA_VECT128
19933 };
19934 
isHomogeneousAggregate(Type * Ty,HABaseType & Base,uint64_t & Members)19935 static bool isHomogeneousAggregate(Type *Ty, HABaseType &Base,
19936                                    uint64_t &Members) {
19937   if (auto *ST = dyn_cast<StructType>(Ty)) {
19938     for (unsigned i = 0; i < ST->getNumElements(); ++i) {
19939       uint64_t SubMembers = 0;
19940       if (!isHomogeneousAggregate(ST->getElementType(i), Base, SubMembers))
19941         return false;
19942       Members += SubMembers;
19943     }
19944   } else if (auto *AT = dyn_cast<ArrayType>(Ty)) {
19945     uint64_t SubMembers = 0;
19946     if (!isHomogeneousAggregate(AT->getElementType(), Base, SubMembers))
19947       return false;
19948     Members += SubMembers * AT->getNumElements();
19949   } else if (Ty->isFloatTy()) {
19950     if (Base != HA_UNKNOWN && Base != HA_FLOAT)
19951       return false;
19952     Members = 1;
19953     Base = HA_FLOAT;
19954   } else if (Ty->isDoubleTy()) {
19955     if (Base != HA_UNKNOWN && Base != HA_DOUBLE)
19956       return false;
19957     Members = 1;
19958     Base = HA_DOUBLE;
19959   } else if (auto *VT = dyn_cast<VectorType>(Ty)) {
19960     Members = 1;
19961     switch (Base) {
19962     case HA_FLOAT:
19963     case HA_DOUBLE:
19964       return false;
19965     case HA_VECT64:
19966       return VT->getPrimitiveSizeInBits().getFixedSize() == 64;
19967     case HA_VECT128:
19968       return VT->getPrimitiveSizeInBits().getFixedSize() == 128;
19969     case HA_UNKNOWN:
19970       switch (VT->getPrimitiveSizeInBits().getFixedSize()) {
19971       case 64:
19972         Base = HA_VECT64;
19973         return true;
19974       case 128:
19975         Base = HA_VECT128;
19976         return true;
19977       default:
19978         return false;
19979       }
19980     }
19981   }
19982 
19983   return (Members > 0 && Members <= 4);
19984 }
19985 
19986 /// Return the correct alignment for the current calling convention.
getABIAlignmentForCallingConv(Type * ArgTy,DataLayout DL) const19987 Align ARMTargetLowering::getABIAlignmentForCallingConv(Type *ArgTy,
19988                                                        DataLayout DL) const {
19989   const Align ABITypeAlign = DL.getABITypeAlign(ArgTy);
19990   if (!ArgTy->isVectorTy())
19991     return ABITypeAlign;
19992 
19993   // Avoid over-aligning vector parameters. It would require realigning the
19994   // stack and waste space for no real benefit.
19995   return std::min(ABITypeAlign, DL.getStackAlignment());
19996 }
19997 
19998 /// Return true if a type is an AAPCS-VFP homogeneous aggregate or one of
19999 /// [N x i32] or [N x i64]. This allows front-ends to skip emitting padding when
20000 /// passing according to AAPCS rules.
functionArgumentNeedsConsecutiveRegisters(Type * Ty,CallingConv::ID CallConv,bool isVarArg) const20001 bool ARMTargetLowering::functionArgumentNeedsConsecutiveRegisters(
20002     Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
20003   if (getEffectiveCallingConv(CallConv, isVarArg) !=
20004       CallingConv::ARM_AAPCS_VFP)
20005     return false;
20006 
20007   HABaseType Base = HA_UNKNOWN;
20008   uint64_t Members = 0;
20009   bool IsHA = isHomogeneousAggregate(Ty, Base, Members);
20010   LLVM_DEBUG(dbgs() << "isHA: " << IsHA << " "; Ty->dump());
20011 
20012   bool IsIntArray = Ty->isArrayTy() && Ty->getArrayElementType()->isIntegerTy();
20013   return IsHA || IsIntArray;
20014 }
20015 
getExceptionPointerRegister(const Constant * PersonalityFn) const20016 Register ARMTargetLowering::getExceptionPointerRegister(
20017     const Constant *PersonalityFn) const {
20018   // Platforms which do not use SjLj EH may return values in these registers
20019   // via the personality function.
20020   return Subtarget->useSjLjEH() ? Register() : ARM::R0;
20021 }
20022 
getExceptionSelectorRegister(const Constant * PersonalityFn) const20023 Register ARMTargetLowering::getExceptionSelectorRegister(
20024     const Constant *PersonalityFn) const {
20025   // Platforms which do not use SjLj EH may return values in these registers
20026   // via the personality function.
20027   return Subtarget->useSjLjEH() ? Register() : ARM::R1;
20028 }
20029 
initializeSplitCSR(MachineBasicBlock * Entry) const20030 void ARMTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
20031   // Update IsSplitCSR in ARMFunctionInfo.
20032   ARMFunctionInfo *AFI = Entry->getParent()->getInfo<ARMFunctionInfo>();
20033   AFI->setIsSplitCSR(true);
20034 }
20035 
insertCopiesSplitCSR(MachineBasicBlock * Entry,const SmallVectorImpl<MachineBasicBlock * > & Exits) const20036 void ARMTargetLowering::insertCopiesSplitCSR(
20037     MachineBasicBlock *Entry,
20038     const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
20039   const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
20040   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
20041   if (!IStart)
20042     return;
20043 
20044   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
20045   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
20046   MachineBasicBlock::iterator MBBI = Entry->begin();
20047   for (const MCPhysReg *I = IStart; *I; ++I) {
20048     const TargetRegisterClass *RC = nullptr;
20049     if (ARM::GPRRegClass.contains(*I))
20050       RC = &ARM::GPRRegClass;
20051     else if (ARM::DPRRegClass.contains(*I))
20052       RC = &ARM::DPRRegClass;
20053     else
20054       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
20055 
20056     Register NewVR = MRI->createVirtualRegister(RC);
20057     // Create copy from CSR to a virtual register.
20058     // FIXME: this currently does not emit CFI pseudo-instructions, it works
20059     // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
20060     // nounwind. If we want to generalize this later, we may need to emit
20061     // CFI pseudo-instructions.
20062     assert(Entry->getParent()->getFunction().hasFnAttribute(
20063                Attribute::NoUnwind) &&
20064            "Function should be nounwind in insertCopiesSplitCSR!");
20065     Entry->addLiveIn(*I);
20066     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
20067         .addReg(*I);
20068 
20069     // Insert the copy-back instructions right before the terminator.
20070     for (auto *Exit : Exits)
20071       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
20072               TII->get(TargetOpcode::COPY), *I)
20073           .addReg(NewVR);
20074   }
20075 }
20076 
finalizeLowering(MachineFunction & MF) const20077 void ARMTargetLowering::finalizeLowering(MachineFunction &MF) const {
20078   MF.getFrameInfo().computeMaxCallFrameSize(MF);
20079   TargetLoweringBase::finalizeLowering(MF);
20080 }
20081