xref: /netbsd-src/external/apache2/llvm/dist/llvm/lib/Transforms/Utils/PredicateInfo.cpp (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 //===-- PredicateInfo.cpp - PredicateInfo Builder--------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------===//
8 //
9 // This file implements the PredicateInfo class.
10 //
11 //===----------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Utils/PredicateInfo.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/DepthFirstIterator.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/AssumptionCache.h"
20 #include "llvm/Analysis/CFG.h"
21 #include "llvm/IR/AssemblyAnnotationWriter.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/Dominators.h"
24 #include "llvm/IR/GlobalVariable.h"
25 #include "llvm/IR/IRBuilder.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/IR/LLVMContext.h"
28 #include "llvm/IR/Metadata.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/IR/PatternMatch.h"
31 #include "llvm/InitializePasses.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/DebugCounter.h"
35 #include "llvm/Support/FormattedStream.h"
36 #include "llvm/Transforms/Utils.h"
37 #include <algorithm>
38 #define DEBUG_TYPE "predicateinfo"
39 using namespace llvm;
40 using namespace PatternMatch;
41 
42 INITIALIZE_PASS_BEGIN(PredicateInfoPrinterLegacyPass, "print-predicateinfo",
43                       "PredicateInfo Printer", false, false)
44 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
45 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
46 INITIALIZE_PASS_END(PredicateInfoPrinterLegacyPass, "print-predicateinfo",
47                     "PredicateInfo Printer", false, false)
48 static cl::opt<bool> VerifyPredicateInfo(
49     "verify-predicateinfo", cl::init(false), cl::Hidden,
50     cl::desc("Verify PredicateInfo in legacy printer pass."));
51 DEBUG_COUNTER(RenameCounter, "predicateinfo-rename",
52               "Controls which variables are renamed with predicateinfo");
53 
54 // Maximum number of conditions considered for renaming for each branch/assume.
55 // This limits renaming of deep and/or chains.
56 static const unsigned MaxCondsPerBranch = 8;
57 
58 namespace {
59 // Given a predicate info that is a type of branching terminator, get the
60 // branching block.
getBranchBlock(const PredicateBase * PB)61 const BasicBlock *getBranchBlock(const PredicateBase *PB) {
62   assert(isa<PredicateWithEdge>(PB) &&
63          "Only branches and switches should have PHIOnly defs that "
64          "require branch blocks.");
65   return cast<PredicateWithEdge>(PB)->From;
66 }
67 
68 // Given a predicate info that is a type of branching terminator, get the
69 // branching terminator.
getBranchTerminator(const PredicateBase * PB)70 static Instruction *getBranchTerminator(const PredicateBase *PB) {
71   assert(isa<PredicateWithEdge>(PB) &&
72          "Not a predicate info type we know how to get a terminator from.");
73   return cast<PredicateWithEdge>(PB)->From->getTerminator();
74 }
75 
76 // Given a predicate info that is a type of branching terminator, get the
77 // edge this predicate info represents
getBlockEdge(const PredicateBase * PB)78 std::pair<BasicBlock *, BasicBlock *> getBlockEdge(const PredicateBase *PB) {
79   assert(isa<PredicateWithEdge>(PB) &&
80          "Not a predicate info type we know how to get an edge from.");
81   const auto *PEdge = cast<PredicateWithEdge>(PB);
82   return std::make_pair(PEdge->From, PEdge->To);
83 }
84 }
85 
86 namespace llvm {
87 enum LocalNum {
88   // Operations that must appear first in the block.
89   LN_First,
90   // Operations that are somewhere in the middle of the block, and are sorted on
91   // demand.
92   LN_Middle,
93   // Operations that must appear last in a block, like successor phi node uses.
94   LN_Last
95 };
96 
97 // Associate global and local DFS info with defs and uses, so we can sort them
98 // into a global domination ordering.
99 struct ValueDFS {
100   int DFSIn = 0;
101   int DFSOut = 0;
102   unsigned int LocalNum = LN_Middle;
103   // Only one of Def or Use will be set.
104   Value *Def = nullptr;
105   Use *U = nullptr;
106   // Neither PInfo nor EdgeOnly participate in the ordering
107   PredicateBase *PInfo = nullptr;
108   bool EdgeOnly = false;
109 };
110 
111 // Perform a strict weak ordering on instructions and arguments.
valueComesBefore(const Value * A,const Value * B)112 static bool valueComesBefore(const Value *A, const Value *B) {
113   auto *ArgA = dyn_cast_or_null<Argument>(A);
114   auto *ArgB = dyn_cast_or_null<Argument>(B);
115   if (ArgA && !ArgB)
116     return true;
117   if (ArgB && !ArgA)
118     return false;
119   if (ArgA && ArgB)
120     return ArgA->getArgNo() < ArgB->getArgNo();
121   return cast<Instruction>(A)->comesBefore(cast<Instruction>(B));
122 }
123 
124 // This compares ValueDFS structures. Doing so allows us to walk the minimum
125 // number of instructions necessary to compute our def/use ordering.
126 struct ValueDFS_Compare {
127   DominatorTree &DT;
ValueDFS_Comparellvm::ValueDFS_Compare128   ValueDFS_Compare(DominatorTree &DT) : DT(DT) {}
129 
operator ()llvm::ValueDFS_Compare130   bool operator()(const ValueDFS &A, const ValueDFS &B) const {
131     if (&A == &B)
132       return false;
133     // The only case we can't directly compare them is when they in the same
134     // block, and both have localnum == middle.  In that case, we have to use
135     // comesbefore to see what the real ordering is, because they are in the
136     // same basic block.
137 
138     assert((A.DFSIn != B.DFSIn || A.DFSOut == B.DFSOut) &&
139            "Equal DFS-in numbers imply equal out numbers");
140     bool SameBlock = A.DFSIn == B.DFSIn;
141 
142     // We want to put the def that will get used for a given set of phi uses,
143     // before those phi uses.
144     // So we sort by edge, then by def.
145     // Note that only phi nodes uses and defs can come last.
146     if (SameBlock && A.LocalNum == LN_Last && B.LocalNum == LN_Last)
147       return comparePHIRelated(A, B);
148 
149     bool isADef = A.Def;
150     bool isBDef = B.Def;
151     if (!SameBlock || A.LocalNum != LN_Middle || B.LocalNum != LN_Middle)
152       return std::tie(A.DFSIn, A.LocalNum, isADef) <
153              std::tie(B.DFSIn, B.LocalNum, isBDef);
154     return localComesBefore(A, B);
155   }
156 
157   // For a phi use, or a non-materialized def, return the edge it represents.
getBlockEdgellvm::ValueDFS_Compare158   std::pair<BasicBlock *, BasicBlock *> getBlockEdge(const ValueDFS &VD) const {
159     if (!VD.Def && VD.U) {
160       auto *PHI = cast<PHINode>(VD.U->getUser());
161       return std::make_pair(PHI->getIncomingBlock(*VD.U), PHI->getParent());
162     }
163     // This is really a non-materialized def.
164     return ::getBlockEdge(VD.PInfo);
165   }
166 
167   // For two phi related values, return the ordering.
comparePHIRelatedllvm::ValueDFS_Compare168   bool comparePHIRelated(const ValueDFS &A, const ValueDFS &B) const {
169     BasicBlock *ASrc, *ADest, *BSrc, *BDest;
170     std::tie(ASrc, ADest) = getBlockEdge(A);
171     std::tie(BSrc, BDest) = getBlockEdge(B);
172 
173 #ifndef NDEBUG
174     // This function should only be used for values in the same BB, check that.
175     DomTreeNode *DomASrc = DT.getNode(ASrc);
176     DomTreeNode *DomBSrc = DT.getNode(BSrc);
177     assert(DomASrc->getDFSNumIn() == (unsigned)A.DFSIn &&
178            "DFS numbers for A should match the ones of the source block");
179     assert(DomBSrc->getDFSNumIn() == (unsigned)B.DFSIn &&
180            "DFS numbers for B should match the ones of the source block");
181     assert(A.DFSIn == B.DFSIn && "Values must be in the same block");
182 #endif
183     (void)ASrc;
184     (void)BSrc;
185 
186     // Use DFS numbers to compare destination blocks, to guarantee a
187     // deterministic order.
188     DomTreeNode *DomADest = DT.getNode(ADest);
189     DomTreeNode *DomBDest = DT.getNode(BDest);
190     unsigned AIn = DomADest->getDFSNumIn();
191     unsigned BIn = DomBDest->getDFSNumIn();
192     bool isADef = A.Def;
193     bool isBDef = B.Def;
194     assert((!A.Def || !A.U) && (!B.Def || !B.U) &&
195            "Def and U cannot be set at the same time");
196     // Now sort by edge destination and then defs before uses.
197     return std::tie(AIn, isADef) < std::tie(BIn, isBDef);
198   }
199 
200   // Get the definition of an instruction that occurs in the middle of a block.
getMiddleDefllvm::ValueDFS_Compare201   Value *getMiddleDef(const ValueDFS &VD) const {
202     if (VD.Def)
203       return VD.Def;
204     // It's possible for the defs and uses to be null.  For branches, the local
205     // numbering will say the placed predicaeinfos should go first (IE
206     // LN_beginning), so we won't be in this function. For assumes, we will end
207     // up here, beause we need to order the def we will place relative to the
208     // assume.  So for the purpose of ordering, we pretend the def is right
209     // after the assume, because that is where we will insert the info.
210     if (!VD.U) {
211       assert(VD.PInfo &&
212              "No def, no use, and no predicateinfo should not occur");
213       assert(isa<PredicateAssume>(VD.PInfo) &&
214              "Middle of block should only occur for assumes");
215       return cast<PredicateAssume>(VD.PInfo)->AssumeInst->getNextNode();
216     }
217     return nullptr;
218   }
219 
220   // Return either the Def, if it's not null, or the user of the Use, if the def
221   // is null.
getDefOrUserllvm::ValueDFS_Compare222   const Instruction *getDefOrUser(const Value *Def, const Use *U) const {
223     if (Def)
224       return cast<Instruction>(Def);
225     return cast<Instruction>(U->getUser());
226   }
227 
228   // This performs the necessary local basic block ordering checks to tell
229   // whether A comes before B, where both are in the same basic block.
localComesBeforellvm::ValueDFS_Compare230   bool localComesBefore(const ValueDFS &A, const ValueDFS &B) const {
231     auto *ADef = getMiddleDef(A);
232     auto *BDef = getMiddleDef(B);
233 
234     // See if we have real values or uses. If we have real values, we are
235     // guaranteed they are instructions or arguments. No matter what, we are
236     // guaranteed they are in the same block if they are instructions.
237     auto *ArgA = dyn_cast_or_null<Argument>(ADef);
238     auto *ArgB = dyn_cast_or_null<Argument>(BDef);
239 
240     if (ArgA || ArgB)
241       return valueComesBefore(ArgA, ArgB);
242 
243     auto *AInst = getDefOrUser(ADef, A.U);
244     auto *BInst = getDefOrUser(BDef, B.U);
245     return valueComesBefore(AInst, BInst);
246   }
247 };
248 
249 class PredicateInfoBuilder {
250   // Used to store information about each value we might rename.
251   struct ValueInfo {
252     SmallVector<PredicateBase *, 4> Infos;
253   };
254 
255   PredicateInfo &PI;
256   Function &F;
257   DominatorTree &DT;
258   AssumptionCache &AC;
259 
260   // This stores info about each operand or comparison result we make copies
261   // of. The real ValueInfos start at index 1, index 0 is unused so that we
262   // can more easily detect invalid indexing.
263   SmallVector<ValueInfo, 32> ValueInfos;
264 
265   // This gives the index into the ValueInfos array for a given Value. Because
266   // 0 is not a valid Value Info index, you can use DenseMap::lookup and tell
267   // whether it returned a valid result.
268   DenseMap<Value *, unsigned int> ValueInfoNums;
269 
270   // The set of edges along which we can only handle phi uses, due to critical
271   // edges.
272   DenseSet<std::pair<BasicBlock *, BasicBlock *>> EdgeUsesOnly;
273 
274   ValueInfo &getOrCreateValueInfo(Value *);
275   const ValueInfo &getValueInfo(Value *) const;
276 
277   void processAssume(IntrinsicInst *, BasicBlock *,
278                      SmallVectorImpl<Value *> &OpsToRename);
279   void processBranch(BranchInst *, BasicBlock *,
280                      SmallVectorImpl<Value *> &OpsToRename);
281   void processSwitch(SwitchInst *, BasicBlock *,
282                      SmallVectorImpl<Value *> &OpsToRename);
283   void renameUses(SmallVectorImpl<Value *> &OpsToRename);
284   void addInfoFor(SmallVectorImpl<Value *> &OpsToRename, Value *Op,
285                   PredicateBase *PB);
286 
287   typedef SmallVectorImpl<ValueDFS> ValueDFSStack;
288   void convertUsesToDFSOrdered(Value *, SmallVectorImpl<ValueDFS> &);
289   Value *materializeStack(unsigned int &, ValueDFSStack &, Value *);
290   bool stackIsInScope(const ValueDFSStack &, const ValueDFS &) const;
291   void popStackUntilDFSScope(ValueDFSStack &, const ValueDFS &);
292 
293 public:
PredicateInfoBuilder(PredicateInfo & PI,Function & F,DominatorTree & DT,AssumptionCache & AC)294   PredicateInfoBuilder(PredicateInfo &PI, Function &F, DominatorTree &DT,
295                        AssumptionCache &AC)
296       : PI(PI), F(F), DT(DT), AC(AC) {
297     // Push an empty operand info so that we can detect 0 as not finding one
298     ValueInfos.resize(1);
299   }
300 
301   void buildPredicateInfo();
302 };
303 
stackIsInScope(const ValueDFSStack & Stack,const ValueDFS & VDUse) const304 bool PredicateInfoBuilder::stackIsInScope(const ValueDFSStack &Stack,
305                                           const ValueDFS &VDUse) const {
306   if (Stack.empty())
307     return false;
308   // If it's a phi only use, make sure it's for this phi node edge, and that the
309   // use is in a phi node.  If it's anything else, and the top of the stack is
310   // EdgeOnly, we need to pop the stack.  We deliberately sort phi uses next to
311   // the defs they must go with so that we can know it's time to pop the stack
312   // when we hit the end of the phi uses for a given def.
313   if (Stack.back().EdgeOnly) {
314     if (!VDUse.U)
315       return false;
316     auto *PHI = dyn_cast<PHINode>(VDUse.U->getUser());
317     if (!PHI)
318       return false;
319     // Check edge
320     BasicBlock *EdgePred = PHI->getIncomingBlock(*VDUse.U);
321     if (EdgePred != getBranchBlock(Stack.back().PInfo))
322       return false;
323 
324     // Use dominates, which knows how to handle edge dominance.
325     return DT.dominates(getBlockEdge(Stack.back().PInfo), *VDUse.U);
326   }
327 
328   return (VDUse.DFSIn >= Stack.back().DFSIn &&
329           VDUse.DFSOut <= Stack.back().DFSOut);
330 }
331 
popStackUntilDFSScope(ValueDFSStack & Stack,const ValueDFS & VD)332 void PredicateInfoBuilder::popStackUntilDFSScope(ValueDFSStack &Stack,
333                                                  const ValueDFS &VD) {
334   while (!Stack.empty() && !stackIsInScope(Stack, VD))
335     Stack.pop_back();
336 }
337 
338 // Convert the uses of Op into a vector of uses, associating global and local
339 // DFS info with each one.
convertUsesToDFSOrdered(Value * Op,SmallVectorImpl<ValueDFS> & DFSOrderedSet)340 void PredicateInfoBuilder::convertUsesToDFSOrdered(
341     Value *Op, SmallVectorImpl<ValueDFS> &DFSOrderedSet) {
342   for (auto &U : Op->uses()) {
343     if (auto *I = dyn_cast<Instruction>(U.getUser())) {
344       ValueDFS VD;
345       // Put the phi node uses in the incoming block.
346       BasicBlock *IBlock;
347       if (auto *PN = dyn_cast<PHINode>(I)) {
348         IBlock = PN->getIncomingBlock(U);
349         // Make phi node users appear last in the incoming block
350         // they are from.
351         VD.LocalNum = LN_Last;
352       } else {
353         // If it's not a phi node use, it is somewhere in the middle of the
354         // block.
355         IBlock = I->getParent();
356         VD.LocalNum = LN_Middle;
357       }
358       DomTreeNode *DomNode = DT.getNode(IBlock);
359       // It's possible our use is in an unreachable block. Skip it if so.
360       if (!DomNode)
361         continue;
362       VD.DFSIn = DomNode->getDFSNumIn();
363       VD.DFSOut = DomNode->getDFSNumOut();
364       VD.U = &U;
365       DFSOrderedSet.push_back(VD);
366     }
367   }
368 }
369 
shouldRename(Value * V)370 bool shouldRename(Value *V) {
371   // Only want real values, not constants.  Additionally, operands with one use
372   // are only being used in the comparison, which means they will not be useful
373   // for us to consider for predicateinfo.
374   return (isa<Instruction>(V) || isa<Argument>(V)) && !V->hasOneUse();
375 }
376 
377 // Collect relevant operations from Comparison that we may want to insert copies
378 // for.
collectCmpOps(CmpInst * Comparison,SmallVectorImpl<Value * > & CmpOperands)379 void collectCmpOps(CmpInst *Comparison, SmallVectorImpl<Value *> &CmpOperands) {
380   auto *Op0 = Comparison->getOperand(0);
381   auto *Op1 = Comparison->getOperand(1);
382   if (Op0 == Op1)
383     return;
384 
385   CmpOperands.push_back(Op0);
386   CmpOperands.push_back(Op1);
387 }
388 
389 // Add Op, PB to the list of value infos for Op, and mark Op to be renamed.
addInfoFor(SmallVectorImpl<Value * > & OpsToRename,Value * Op,PredicateBase * PB)390 void PredicateInfoBuilder::addInfoFor(SmallVectorImpl<Value *> &OpsToRename,
391                                       Value *Op, PredicateBase *PB) {
392   auto &OperandInfo = getOrCreateValueInfo(Op);
393   if (OperandInfo.Infos.empty())
394     OpsToRename.push_back(Op);
395   PI.AllInfos.push_back(PB);
396   OperandInfo.Infos.push_back(PB);
397 }
398 
399 // Process an assume instruction and place relevant operations we want to rename
400 // into OpsToRename.
processAssume(IntrinsicInst * II,BasicBlock * AssumeBB,SmallVectorImpl<Value * > & OpsToRename)401 void PredicateInfoBuilder::processAssume(
402     IntrinsicInst *II, BasicBlock *AssumeBB,
403     SmallVectorImpl<Value *> &OpsToRename) {
404   SmallVector<Value *, 4> Worklist;
405   SmallPtrSet<Value *, 4> Visited;
406   Worklist.push_back(II->getOperand(0));
407   while (!Worklist.empty()) {
408     Value *Cond = Worklist.pop_back_val();
409     if (!Visited.insert(Cond).second)
410       continue;
411     if (Visited.size() > MaxCondsPerBranch)
412       break;
413 
414     Value *Op0, *Op1;
415     if (match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
416       Worklist.push_back(Op1);
417       Worklist.push_back(Op0);
418     }
419 
420     SmallVector<Value *, 4> Values;
421     Values.push_back(Cond);
422     if (auto *Cmp = dyn_cast<CmpInst>(Cond))
423       collectCmpOps(Cmp, Values);
424 
425     for (Value *V : Values) {
426       if (shouldRename(V)) {
427         auto *PA = new PredicateAssume(V, II, Cond);
428         addInfoFor(OpsToRename, V, PA);
429       }
430     }
431   }
432 }
433 
434 // Process a block terminating branch, and place relevant operations to be
435 // renamed into OpsToRename.
processBranch(BranchInst * BI,BasicBlock * BranchBB,SmallVectorImpl<Value * > & OpsToRename)436 void PredicateInfoBuilder::processBranch(
437     BranchInst *BI, BasicBlock *BranchBB,
438     SmallVectorImpl<Value *> &OpsToRename) {
439   BasicBlock *FirstBB = BI->getSuccessor(0);
440   BasicBlock *SecondBB = BI->getSuccessor(1);
441 
442   for (BasicBlock *Succ : {FirstBB, SecondBB}) {
443     bool TakenEdge = Succ == FirstBB;
444     // Don't try to insert on a self-edge. This is mainly because we will
445     // eliminate during renaming anyway.
446     if (Succ == BranchBB)
447       continue;
448 
449     SmallVector<Value *, 4> Worklist;
450     SmallPtrSet<Value *, 4> Visited;
451     Worklist.push_back(BI->getCondition());
452     while (!Worklist.empty()) {
453       Value *Cond = Worklist.pop_back_val();
454       if (!Visited.insert(Cond).second)
455         continue;
456       if (Visited.size() > MaxCondsPerBranch)
457         break;
458 
459       Value *Op0, *Op1;
460       if (TakenEdge ? match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))
461                     : match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
462         Worklist.push_back(Op1);
463         Worklist.push_back(Op0);
464       }
465 
466       SmallVector<Value *, 4> Values;
467       Values.push_back(Cond);
468       if (auto *Cmp = dyn_cast<CmpInst>(Cond))
469         collectCmpOps(Cmp, Values);
470 
471       for (Value *V : Values) {
472         if (shouldRename(V)) {
473           PredicateBase *PB =
474               new PredicateBranch(V, BranchBB, Succ, Cond, TakenEdge);
475           addInfoFor(OpsToRename, V, PB);
476           if (!Succ->getSinglePredecessor())
477             EdgeUsesOnly.insert({BranchBB, Succ});
478         }
479       }
480     }
481   }
482 }
483 // Process a block terminating switch, and place relevant operations to be
484 // renamed into OpsToRename.
processSwitch(SwitchInst * SI,BasicBlock * BranchBB,SmallVectorImpl<Value * > & OpsToRename)485 void PredicateInfoBuilder::processSwitch(
486     SwitchInst *SI, BasicBlock *BranchBB,
487     SmallVectorImpl<Value *> &OpsToRename) {
488   Value *Op = SI->getCondition();
489   if ((!isa<Instruction>(Op) && !isa<Argument>(Op)) || Op->hasOneUse())
490     return;
491 
492   // Remember how many outgoing edges there are to every successor.
493   SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
494   for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
495     BasicBlock *TargetBlock = SI->getSuccessor(i);
496     ++SwitchEdges[TargetBlock];
497   }
498 
499   // Now propagate info for each case value
500   for (auto C : SI->cases()) {
501     BasicBlock *TargetBlock = C.getCaseSuccessor();
502     if (SwitchEdges.lookup(TargetBlock) == 1) {
503       PredicateSwitch *PS = new PredicateSwitch(
504           Op, SI->getParent(), TargetBlock, C.getCaseValue(), SI);
505       addInfoFor(OpsToRename, Op, PS);
506       if (!TargetBlock->getSinglePredecessor())
507         EdgeUsesOnly.insert({BranchBB, TargetBlock});
508     }
509   }
510 }
511 
512 // Build predicate info for our function
buildPredicateInfo()513 void PredicateInfoBuilder::buildPredicateInfo() {
514   DT.updateDFSNumbers();
515   // Collect operands to rename from all conditional branch terminators, as well
516   // as assume statements.
517   SmallVector<Value *, 8> OpsToRename;
518   for (auto DTN : depth_first(DT.getRootNode())) {
519     BasicBlock *BranchBB = DTN->getBlock();
520     if (auto *BI = dyn_cast<BranchInst>(BranchBB->getTerminator())) {
521       if (!BI->isConditional())
522         continue;
523       // Can't insert conditional information if they all go to the same place.
524       if (BI->getSuccessor(0) == BI->getSuccessor(1))
525         continue;
526       processBranch(BI, BranchBB, OpsToRename);
527     } else if (auto *SI = dyn_cast<SwitchInst>(BranchBB->getTerminator())) {
528       processSwitch(SI, BranchBB, OpsToRename);
529     }
530   }
531   for (auto &Assume : AC.assumptions()) {
532     if (auto *II = dyn_cast_or_null<IntrinsicInst>(Assume))
533       if (DT.isReachableFromEntry(II->getParent()))
534         processAssume(II, II->getParent(), OpsToRename);
535   }
536   // Now rename all our operations.
537   renameUses(OpsToRename);
538 }
539 
540 // Given the renaming stack, make all the operands currently on the stack real
541 // by inserting them into the IR.  Return the last operation's value.
materializeStack(unsigned int & Counter,ValueDFSStack & RenameStack,Value * OrigOp)542 Value *PredicateInfoBuilder::materializeStack(unsigned int &Counter,
543                                              ValueDFSStack &RenameStack,
544                                              Value *OrigOp) {
545   // Find the first thing we have to materialize
546   auto RevIter = RenameStack.rbegin();
547   for (; RevIter != RenameStack.rend(); ++RevIter)
548     if (RevIter->Def)
549       break;
550 
551   size_t Start = RevIter - RenameStack.rbegin();
552   // The maximum number of things we should be trying to materialize at once
553   // right now is 4, depending on if we had an assume, a branch, and both used
554   // and of conditions.
555   for (auto RenameIter = RenameStack.end() - Start;
556        RenameIter != RenameStack.end(); ++RenameIter) {
557     auto *Op =
558         RenameIter == RenameStack.begin() ? OrigOp : (RenameIter - 1)->Def;
559     ValueDFS &Result = *RenameIter;
560     auto *ValInfo = Result.PInfo;
561     ValInfo->RenamedOp = (RenameStack.end() - Start) == RenameStack.begin()
562                              ? OrigOp
563                              : (RenameStack.end() - Start - 1)->Def;
564     // For edge predicates, we can just place the operand in the block before
565     // the terminator.  For assume, we have to place it right before the assume
566     // to ensure we dominate all of our uses.  Always insert right before the
567     // relevant instruction (terminator, assume), so that we insert in proper
568     // order in the case of multiple predicateinfo in the same block.
569     if (isa<PredicateWithEdge>(ValInfo)) {
570       IRBuilder<> B(getBranchTerminator(ValInfo));
571       Function *IF = Intrinsic::getDeclaration(
572           F.getParent(), Intrinsic::ssa_copy, Op->getType());
573       CallInst *PIC =
574           B.CreateCall(IF, Op, Op->getName() + "." + Twine(Counter++));
575       PI.PredicateMap.insert({PIC, ValInfo});
576       Result.Def = PIC;
577     } else {
578       auto *PAssume = dyn_cast<PredicateAssume>(ValInfo);
579       assert(PAssume &&
580              "Should not have gotten here without it being an assume");
581       // Insert the predicate directly after the assume. While it also holds
582       // directly before it, assume(i1 true) is not a useful fact.
583       IRBuilder<> B(PAssume->AssumeInst->getNextNode());
584       Function *IF = Intrinsic::getDeclaration(
585           F.getParent(), Intrinsic::ssa_copy, Op->getType());
586       CallInst *PIC = B.CreateCall(IF, Op);
587       PI.PredicateMap.insert({PIC, ValInfo});
588       Result.Def = PIC;
589     }
590   }
591   return RenameStack.back().Def;
592 }
593 
594 // Instead of the standard SSA renaming algorithm, which is O(Number of
595 // instructions), and walks the entire dominator tree, we walk only the defs +
596 // uses.  The standard SSA renaming algorithm does not really rely on the
597 // dominator tree except to order the stack push/pops of the renaming stacks, so
598 // that defs end up getting pushed before hitting the correct uses.  This does
599 // not require the dominator tree, only the *order* of the dominator tree. The
600 // complete and correct ordering of the defs and uses, in dominator tree is
601 // contained in the DFS numbering of the dominator tree. So we sort the defs and
602 // uses into the DFS ordering, and then just use the renaming stack as per
603 // normal, pushing when we hit a def (which is a predicateinfo instruction),
604 // popping when we are out of the dfs scope for that def, and replacing any uses
605 // with top of stack if it exists.  In order to handle liveness without
606 // propagating liveness info, we don't actually insert the predicateinfo
607 // instruction def until we see a use that it would dominate.  Once we see such
608 // a use, we materialize the predicateinfo instruction in the right place and
609 // use it.
610 //
611 // TODO: Use this algorithm to perform fast single-variable renaming in
612 // promotememtoreg and memoryssa.
renameUses(SmallVectorImpl<Value * > & OpsToRename)613 void PredicateInfoBuilder::renameUses(SmallVectorImpl<Value *> &OpsToRename) {
614   ValueDFS_Compare Compare(DT);
615   // Compute liveness, and rename in O(uses) per Op.
616   for (auto *Op : OpsToRename) {
617     LLVM_DEBUG(dbgs() << "Visiting " << *Op << "\n");
618     unsigned Counter = 0;
619     SmallVector<ValueDFS, 16> OrderedUses;
620     const auto &ValueInfo = getValueInfo(Op);
621     // Insert the possible copies into the def/use list.
622     // They will become real copies if we find a real use for them, and never
623     // created otherwise.
624     for (auto &PossibleCopy : ValueInfo.Infos) {
625       ValueDFS VD;
626       // Determine where we are going to place the copy by the copy type.
627       // The predicate info for branches always come first, they will get
628       // materialized in the split block at the top of the block.
629       // The predicate info for assumes will be somewhere in the middle,
630       // it will get materialized in front of the assume.
631       if (const auto *PAssume = dyn_cast<PredicateAssume>(PossibleCopy)) {
632         VD.LocalNum = LN_Middle;
633         DomTreeNode *DomNode = DT.getNode(PAssume->AssumeInst->getParent());
634         if (!DomNode)
635           continue;
636         VD.DFSIn = DomNode->getDFSNumIn();
637         VD.DFSOut = DomNode->getDFSNumOut();
638         VD.PInfo = PossibleCopy;
639         OrderedUses.push_back(VD);
640       } else if (isa<PredicateWithEdge>(PossibleCopy)) {
641         // If we can only do phi uses, we treat it like it's in the branch
642         // block, and handle it specially. We know that it goes last, and only
643         // dominate phi uses.
644         auto BlockEdge = getBlockEdge(PossibleCopy);
645         if (EdgeUsesOnly.count(BlockEdge)) {
646           VD.LocalNum = LN_Last;
647           auto *DomNode = DT.getNode(BlockEdge.first);
648           if (DomNode) {
649             VD.DFSIn = DomNode->getDFSNumIn();
650             VD.DFSOut = DomNode->getDFSNumOut();
651             VD.PInfo = PossibleCopy;
652             VD.EdgeOnly = true;
653             OrderedUses.push_back(VD);
654           }
655         } else {
656           // Otherwise, we are in the split block (even though we perform
657           // insertion in the branch block).
658           // Insert a possible copy at the split block and before the branch.
659           VD.LocalNum = LN_First;
660           auto *DomNode = DT.getNode(BlockEdge.second);
661           if (DomNode) {
662             VD.DFSIn = DomNode->getDFSNumIn();
663             VD.DFSOut = DomNode->getDFSNumOut();
664             VD.PInfo = PossibleCopy;
665             OrderedUses.push_back(VD);
666           }
667         }
668       }
669     }
670 
671     convertUsesToDFSOrdered(Op, OrderedUses);
672     // Here we require a stable sort because we do not bother to try to
673     // assign an order to the operands the uses represent. Thus, two
674     // uses in the same instruction do not have a strict sort order
675     // currently and will be considered equal. We could get rid of the
676     // stable sort by creating one if we wanted.
677     llvm::stable_sort(OrderedUses, Compare);
678     SmallVector<ValueDFS, 8> RenameStack;
679     // For each use, sorted into dfs order, push values and replaces uses with
680     // top of stack, which will represent the reaching def.
681     for (auto &VD : OrderedUses) {
682       // We currently do not materialize copy over copy, but we should decide if
683       // we want to.
684       bool PossibleCopy = VD.PInfo != nullptr;
685       if (RenameStack.empty()) {
686         LLVM_DEBUG(dbgs() << "Rename Stack is empty\n");
687       } else {
688         LLVM_DEBUG(dbgs() << "Rename Stack Top DFS numbers are ("
689                           << RenameStack.back().DFSIn << ","
690                           << RenameStack.back().DFSOut << ")\n");
691       }
692 
693       LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << VD.DFSIn << ","
694                         << VD.DFSOut << ")\n");
695 
696       bool ShouldPush = (VD.Def || PossibleCopy);
697       bool OutOfScope = !stackIsInScope(RenameStack, VD);
698       if (OutOfScope || ShouldPush) {
699         // Sync to our current scope.
700         popStackUntilDFSScope(RenameStack, VD);
701         if (ShouldPush) {
702           RenameStack.push_back(VD);
703         }
704       }
705       // If we get to this point, and the stack is empty we must have a use
706       // with no renaming needed, just skip it.
707       if (RenameStack.empty())
708         continue;
709       // Skip values, only want to rename the uses
710       if (VD.Def || PossibleCopy)
711         continue;
712       if (!DebugCounter::shouldExecute(RenameCounter)) {
713         LLVM_DEBUG(dbgs() << "Skipping execution due to debug counter\n");
714         continue;
715       }
716       ValueDFS &Result = RenameStack.back();
717 
718       // If the possible copy dominates something, materialize our stack up to
719       // this point. This ensures every comparison that affects our operation
720       // ends up with predicateinfo.
721       if (!Result.Def)
722         Result.Def = materializeStack(Counter, RenameStack, Op);
723 
724       LLVM_DEBUG(dbgs() << "Found replacement " << *Result.Def << " for "
725                         << *VD.U->get() << " in " << *(VD.U->getUser())
726                         << "\n");
727       assert(DT.dominates(cast<Instruction>(Result.Def), *VD.U) &&
728              "Predicateinfo def should have dominated this use");
729       VD.U->set(Result.Def);
730     }
731   }
732 }
733 
734 PredicateInfoBuilder::ValueInfo &
getOrCreateValueInfo(Value * Operand)735 PredicateInfoBuilder::getOrCreateValueInfo(Value *Operand) {
736   auto OIN = ValueInfoNums.find(Operand);
737   if (OIN == ValueInfoNums.end()) {
738     // This will grow it
739     ValueInfos.resize(ValueInfos.size() + 1);
740     // This will use the new size and give us a 0 based number of the info
741     auto InsertResult = ValueInfoNums.insert({Operand, ValueInfos.size() - 1});
742     assert(InsertResult.second && "Value info number already existed?");
743     return ValueInfos[InsertResult.first->second];
744   }
745   return ValueInfos[OIN->second];
746 }
747 
748 const PredicateInfoBuilder::ValueInfo &
getValueInfo(Value * Operand) const749 PredicateInfoBuilder::getValueInfo(Value *Operand) const {
750   auto OINI = ValueInfoNums.lookup(Operand);
751   assert(OINI != 0 && "Operand was not really in the Value Info Numbers");
752   assert(OINI < ValueInfos.size() &&
753          "Value Info Number greater than size of Value Info Table");
754   return ValueInfos[OINI];
755 }
756 
PredicateInfo(Function & F,DominatorTree & DT,AssumptionCache & AC)757 PredicateInfo::PredicateInfo(Function &F, DominatorTree &DT,
758                              AssumptionCache &AC)
759     : F(F) {
760   PredicateInfoBuilder Builder(*this, F, DT, AC);
761   Builder.buildPredicateInfo();
762 }
763 
getConstraint() const764 Optional<PredicateConstraint> PredicateBase::getConstraint() const {
765   switch (Type) {
766   case PT_Assume:
767   case PT_Branch: {
768     bool TrueEdge = true;
769     if (auto *PBranch = dyn_cast<PredicateBranch>(this))
770       TrueEdge = PBranch->TrueEdge;
771 
772     if (Condition == RenamedOp) {
773       return {{CmpInst::ICMP_EQ,
774                TrueEdge ? ConstantInt::getTrue(Condition->getType())
775                         : ConstantInt::getFalse(Condition->getType())}};
776     }
777 
778     CmpInst *Cmp = dyn_cast<CmpInst>(Condition);
779     if (!Cmp) {
780       // TODO: Make this an assertion once RenamedOp is fully accurate.
781       return None;
782     }
783 
784     CmpInst::Predicate Pred;
785     Value *OtherOp;
786     if (Cmp->getOperand(0) == RenamedOp) {
787       Pred = Cmp->getPredicate();
788       OtherOp = Cmp->getOperand(1);
789     } else if (Cmp->getOperand(1) == RenamedOp) {
790       Pred = Cmp->getSwappedPredicate();
791       OtherOp = Cmp->getOperand(0);
792     } else {
793       // TODO: Make this an assertion once RenamedOp is fully accurate.
794       return None;
795     }
796 
797     // Invert predicate along false edge.
798     if (!TrueEdge)
799       Pred = CmpInst::getInversePredicate(Pred);
800 
801     return {{Pred, OtherOp}};
802   }
803   case PT_Switch:
804     if (Condition != RenamedOp) {
805       // TODO: Make this an assertion once RenamedOp is fully accurate.
806       return None;
807     }
808 
809     return {{CmpInst::ICMP_EQ, cast<PredicateSwitch>(this)->CaseValue}};
810   }
811   llvm_unreachable("Unknown predicate type");
812 }
813 
verifyPredicateInfo() const814 void PredicateInfo::verifyPredicateInfo() const {}
815 
816 char PredicateInfoPrinterLegacyPass::ID = 0;
817 
PredicateInfoPrinterLegacyPass()818 PredicateInfoPrinterLegacyPass::PredicateInfoPrinterLegacyPass()
819     : FunctionPass(ID) {
820   initializePredicateInfoPrinterLegacyPassPass(
821       *PassRegistry::getPassRegistry());
822 }
823 
getAnalysisUsage(AnalysisUsage & AU) const824 void PredicateInfoPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
825   AU.setPreservesAll();
826   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
827   AU.addRequired<AssumptionCacheTracker>();
828 }
829 
runOnFunction(Function & F)830 bool PredicateInfoPrinterLegacyPass::runOnFunction(Function &F) {
831   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
832   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
833   auto PredInfo = std::make_unique<PredicateInfo>(F, DT, AC);
834   PredInfo->print(dbgs());
835   if (VerifyPredicateInfo)
836     PredInfo->verifyPredicateInfo();
837   return false;
838 }
839 
run(Function & F,FunctionAnalysisManager & AM)840 PreservedAnalyses PredicateInfoPrinterPass::run(Function &F,
841                                                 FunctionAnalysisManager &AM) {
842   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
843   auto &AC = AM.getResult<AssumptionAnalysis>(F);
844   OS << "PredicateInfo for function: " << F.getName() << "\n";
845   auto PredInfo = std::make_unique<PredicateInfo>(F, DT, AC);
846   PredInfo->print(OS);
847 
848   return PreservedAnalyses::all();
849 }
850 
851 /// An assembly annotator class to print PredicateInfo information in
852 /// comments.
853 class PredicateInfoAnnotatedWriter : public AssemblyAnnotationWriter {
854   friend class PredicateInfo;
855   const PredicateInfo *PredInfo;
856 
857 public:
PredicateInfoAnnotatedWriter(const PredicateInfo * M)858   PredicateInfoAnnotatedWriter(const PredicateInfo *M) : PredInfo(M) {}
859 
emitBasicBlockStartAnnot(const BasicBlock * BB,formatted_raw_ostream & OS)860   void emitBasicBlockStartAnnot(const BasicBlock *BB,
861                                 formatted_raw_ostream &OS) override {}
862 
emitInstructionAnnot(const Instruction * I,formatted_raw_ostream & OS)863   void emitInstructionAnnot(const Instruction *I,
864                             formatted_raw_ostream &OS) override {
865     if (const auto *PI = PredInfo->getPredicateInfoFor(I)) {
866       OS << "; Has predicate info\n";
867       if (const auto *PB = dyn_cast<PredicateBranch>(PI)) {
868         OS << "; branch predicate info { TrueEdge: " << PB->TrueEdge
869            << " Comparison:" << *PB->Condition << " Edge: [";
870         PB->From->printAsOperand(OS);
871         OS << ",";
872         PB->To->printAsOperand(OS);
873         OS << "]";
874       } else if (const auto *PS = dyn_cast<PredicateSwitch>(PI)) {
875         OS << "; switch predicate info { CaseValue: " << *PS->CaseValue
876            << " Switch:" << *PS->Switch << " Edge: [";
877         PS->From->printAsOperand(OS);
878         OS << ",";
879         PS->To->printAsOperand(OS);
880         OS << "]";
881       } else if (const auto *PA = dyn_cast<PredicateAssume>(PI)) {
882         OS << "; assume predicate info {"
883            << " Comparison:" << *PA->Condition;
884       }
885       OS << ", RenamedOp: ";
886       PI->RenamedOp->printAsOperand(OS, false);
887       OS << " }\n";
888     }
889   }
890 };
891 
print(raw_ostream & OS) const892 void PredicateInfo::print(raw_ostream &OS) const {
893   PredicateInfoAnnotatedWriter Writer(this);
894   F.print(OS, &Writer);
895 }
896 
dump() const897 void PredicateInfo::dump() const {
898   PredicateInfoAnnotatedWriter Writer(this);
899   F.print(dbgs(), &Writer);
900 }
901 
run(Function & F,FunctionAnalysisManager & AM)902 PreservedAnalyses PredicateInfoVerifierPass::run(Function &F,
903                                                  FunctionAnalysisManager &AM) {
904   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
905   auto &AC = AM.getResult<AssumptionAnalysis>(F);
906   std::make_unique<PredicateInfo>(F, DT, AC)->verifyPredicateInfo();
907 
908   return PreservedAnalyses::all();
909 }
910 }
911