/* SPDX-License-Identifier: BSD-3-Clause * Copyright (C) 2022 Intel Corporation. * All rights reserved. */ #include "spdk_internal/cunit.h" #include "spdk/stdinc.h" #include "bdev/raid/bdev_raid.h" struct spdk_bdev_desc { struct spdk_bdev *bdev; }; typedef enum spdk_dif_type spdk_dif_type_t; spdk_dif_type_t spdk_bdev_get_dif_type(const struct spdk_bdev *bdev) { if (bdev->md_len != 0) { return bdev->dif_type; } else { return SPDK_DIF_DISABLE; } } enum raid_params_md_type { RAID_PARAMS_MD_NONE, RAID_PARAMS_MD_SEPARATE, RAID_PARAMS_MD_INTERLEAVED, }; struct raid_params { uint8_t num_base_bdevs; uint64_t base_bdev_blockcnt; uint32_t base_bdev_blocklen; uint32_t strip_size; enum raid_params_md_type md_type; }; int raid_test_params_alloc(size_t count); void raid_test_params_free(void); void raid_test_params_add(struct raid_params *params); struct raid_bdev *raid_test_create_raid_bdev(struct raid_params *params, struct raid_bdev_module *module); void raid_test_delete_raid_bdev(struct raid_bdev *raid_bdev); struct raid_bdev_io_channel *raid_test_create_io_channel(struct raid_bdev *raid_bdev); void raid_test_destroy_io_channel(struct raid_bdev_io_channel *raid_ch); void raid_test_bdev_io_init(struct raid_bdev_io *raid_io, struct raid_bdev *raid_bdev, struct raid_bdev_io_channel *raid_ch, enum spdk_bdev_io_type type, uint64_t offset_blocks, uint64_t num_blocks, struct iovec *iovs, int iovcnt, void *md_buf); /* needs to be implemented in module unit test files */ void raid_test_bdev_io_complete(struct raid_bdev_io *raid_io, enum spdk_bdev_io_status status); struct raid_params *g_params; size_t g_params_count; size_t g_params_size; #define ARRAY_FOR_EACH(a, e) \ for (e = a; e < a + SPDK_COUNTOF(a); e++) #define RAID_PARAMS_FOR_EACH(p) \ for (p = g_params; p < g_params + g_params_count; p++) struct spdk_bdev * spdk_bdev_desc_get_bdev(struct spdk_bdev_desc *desc) { return desc->bdev; } int raid_test_params_alloc(size_t count) { assert(g_params == NULL); g_params_size = count; g_params_count = 0; g_params = calloc(count, sizeof(*g_params)); return g_params ? 0 : -ENOMEM; } void raid_test_params_free(void) { g_params_count = 0; g_params_size = 0; free(g_params); } void raid_test_params_add(struct raid_params *params) { assert(g_params_count < g_params_size); memcpy(g_params + g_params_count, params, sizeof(*params)); g_params_count++; } struct raid_bdev * raid_test_create_raid_bdev(struct raid_params *params, struct raid_bdev_module *module) { struct raid_bdev *raid_bdev; struct raid_base_bdev_info *base_info; SPDK_CU_ASSERT_FATAL(spdk_u32_is_pow2(params->base_bdev_blocklen)); raid_bdev = calloc(1, sizeof(*raid_bdev)); SPDK_CU_ASSERT_FATAL(raid_bdev != NULL); raid_bdev->module = module; raid_bdev->level = module->level; raid_bdev->num_base_bdevs = params->num_base_bdevs; switch (raid_bdev->module->base_bdevs_constraint.type) { case CONSTRAINT_MAX_BASE_BDEVS_REMOVED: raid_bdev->min_base_bdevs_operational = raid_bdev->num_base_bdevs - raid_bdev->module->base_bdevs_constraint.value; break; case CONSTRAINT_MIN_BASE_BDEVS_OPERATIONAL: raid_bdev->min_base_bdevs_operational = raid_bdev->module->base_bdevs_constraint.value; break; case CONSTRAINT_UNSET: raid_bdev->min_base_bdevs_operational = raid_bdev->num_base_bdevs; break; default: CU_FAIL_FATAL("unsupported raid constraint type"); }; raid_bdev->bdev.blocklen = params->base_bdev_blocklen; raid_bdev->bdev.md_len = (params->md_type == RAID_PARAMS_MD_NONE ? 0 : 16); raid_bdev->bdev.md_interleave = (params->md_type == RAID_PARAMS_MD_INTERLEAVED); if (raid_bdev->bdev.md_interleave) { raid_bdev->bdev.blocklen += raid_bdev->bdev.md_len; } raid_bdev->strip_size = params->strip_size; raid_bdev->strip_size_kb = params->strip_size * params->base_bdev_blocklen / 1024; raid_bdev->strip_size_shift = spdk_u32log2(raid_bdev->strip_size); raid_bdev->base_bdev_info = calloc(raid_bdev->num_base_bdevs, sizeof(struct raid_base_bdev_info)); SPDK_CU_ASSERT_FATAL(raid_bdev->base_bdev_info != NULL); RAID_FOR_EACH_BASE_BDEV(raid_bdev, base_info) { struct spdk_bdev *bdev; struct spdk_bdev_desc *desc; bdev = calloc(1, sizeof(*bdev)); SPDK_CU_ASSERT_FATAL(bdev != NULL); bdev->ctxt = base_info; bdev->blockcnt = params->base_bdev_blockcnt; bdev->blocklen = raid_bdev->bdev.blocklen; bdev->md_len = raid_bdev->bdev.md_len; bdev->md_interleave = raid_bdev->bdev.md_interleave; desc = calloc(1, sizeof(*desc)); SPDK_CU_ASSERT_FATAL(desc != NULL); desc->bdev = bdev; base_info->raid_bdev = raid_bdev; base_info->desc = desc; base_info->data_offset = 0; base_info->data_size = bdev->blockcnt; } return raid_bdev; } void raid_test_delete_raid_bdev(struct raid_bdev *raid_bdev) { struct raid_base_bdev_info *base_info; RAID_FOR_EACH_BASE_BDEV(raid_bdev, base_info) { free(base_info->desc->bdev); free(base_info->desc); } free(raid_bdev->base_bdev_info); free(raid_bdev); } struct raid_bdev_io_channel { struct spdk_io_channel **_base_channels; struct spdk_io_channel *_module_channel; }; struct spdk_io_channel * raid_bdev_channel_get_base_channel(struct raid_bdev_io_channel *raid_ch, uint8_t idx) { return raid_ch->_base_channels[idx]; } void * raid_bdev_channel_get_module_ctx(struct raid_bdev_io_channel *raid_ch) { return spdk_io_channel_get_ctx(raid_ch->_module_channel); } struct raid_bdev_io_channel * raid_test_create_io_channel(struct raid_bdev *raid_bdev) { struct raid_bdev_io_channel *raid_ch; uint8_t i; raid_ch = calloc(1, sizeof(*raid_ch)); SPDK_CU_ASSERT_FATAL(raid_ch != NULL); raid_ch->_base_channels = calloc(raid_bdev->num_base_bdevs, sizeof(struct spdk_io_channel *)); SPDK_CU_ASSERT_FATAL(raid_ch->_base_channels != NULL); for (i = 0; i < raid_bdev->num_base_bdevs; i++) { raid_ch->_base_channels[i] = (void *)1; } if (raid_bdev->module->get_io_channel) { raid_ch->_module_channel = raid_bdev->module->get_io_channel(raid_bdev); SPDK_CU_ASSERT_FATAL(raid_ch->_module_channel != NULL); } return raid_ch; } void raid_test_destroy_io_channel(struct raid_bdev_io_channel *raid_ch) { free(raid_ch->_base_channels); if (raid_ch->_module_channel) { spdk_put_io_channel(raid_ch->_module_channel); poll_threads(); } free(raid_ch); } void raid_test_bdev_io_init(struct raid_bdev_io *raid_io, struct raid_bdev *raid_bdev, struct raid_bdev_io_channel *raid_ch, enum spdk_bdev_io_type type, uint64_t offset_blocks, uint64_t num_blocks, struct iovec *iovs, int iovcnt, void *md_buf) { memset(raid_io, 0, sizeof(*raid_io)); raid_io->raid_bdev = raid_bdev; raid_io->raid_ch = raid_ch; raid_io->type = type; raid_io->offset_blocks = offset_blocks; raid_io->num_blocks = num_blocks; raid_io->iovs = iovs; raid_io->iovcnt = iovcnt; raid_io->md_buf = md_buf; raid_bdev_io_set_default_status(raid_io, SPDK_BDEV_IO_STATUS_SUCCESS); } void raid_bdev_io_complete(struct raid_bdev_io *raid_io, enum spdk_bdev_io_status status) { if (raid_io->completion_cb != NULL) { raid_io->completion_cb(raid_io, status); } else { raid_test_bdev_io_complete(raid_io, status); } } bool raid_bdev_io_complete_part(struct raid_bdev_io *raid_io, uint64_t completed, enum spdk_bdev_io_status status) { SPDK_CU_ASSERT_FATAL(raid_io->base_bdev_io_remaining >= completed); raid_io->base_bdev_io_remaining -= completed; if (status != raid_io->base_bdev_io_status_default) { raid_io->base_bdev_io_status = status; } if (raid_io->base_bdev_io_remaining == 0) { raid_bdev_io_complete(raid_io, raid_io->base_bdev_io_status); return true; } else { return false; } } struct raid_base_bdev_info * raid_bdev_channel_get_base_info(struct raid_bdev_io_channel *raid_ch, struct spdk_bdev *base_bdev) { return base_bdev->ctxt; }