/* SPDX-License-Identifier: BSD-3-Clause * Copyright (C) 2018 Intel Corporation. * All rights reserved. * Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. */ #include "spdk/stdinc.h" #include "spdk_internal/cunit.h" #include "spdk/env.h" #include "spdk_internal/mock.h" #include "thread/thread_internal.h" #include "bdev/raid/bdev_raid.c" #include "bdev/raid/bdev_raid_rpc.c" #include "bdev/raid/raid0.c" #include "common/lib/ut_multithread.c" #define MAX_BASE_DRIVES 32 #define MAX_RAIDS 2 #define INVALID_IO_SUBMIT 0xFFFF #define MAX_TEST_IO_RANGE (3 * 3 * 3 * (MAX_BASE_DRIVES + 5)) #define BLOCK_CNT (1024ul * 1024ul * 1024ul * 1024ul) #define MD_SIZE 8 struct spdk_bdev_channel { struct spdk_io_channel *channel; }; struct spdk_bdev_desc { struct spdk_bdev *bdev; }; /* Data structure to capture the output of IO for verification */ struct io_output { struct spdk_bdev_desc *desc; struct spdk_io_channel *ch; uint64_t offset_blocks; uint64_t num_blocks; spdk_bdev_io_completion_cb cb; void *cb_arg; enum spdk_bdev_io_type iotype; struct iovec *iovs; int iovcnt; void *md_buf; }; struct raid_io_ranges { uint64_t lba; uint64_t nblocks; }; /* Globals */ int g_bdev_io_submit_status; struct io_output *g_io_output = NULL; uint32_t g_io_output_index; uint32_t g_io_comp_status; bool g_child_io_status_flag; void *g_rpc_req; uint32_t g_rpc_req_size; TAILQ_HEAD(bdev, spdk_bdev); struct bdev g_bdev_list; TAILQ_HEAD(waitq, spdk_bdev_io_wait_entry); struct waitq g_io_waitq; uint32_t g_block_len; uint32_t g_strip_size; uint32_t g_max_io_size; uint8_t g_max_base_drives; uint8_t g_max_raids; uint8_t g_ignore_io_output; uint8_t g_rpc_err; char *g_get_raids_output[MAX_RAIDS]; uint32_t g_get_raids_count; uint8_t g_json_decode_obj_err; uint8_t g_json_decode_obj_create; uint8_t g_config_level_create = 0; uint8_t g_test_multi_raids; struct raid_io_ranges g_io_ranges[MAX_TEST_IO_RANGE]; uint32_t g_io_range_idx; uint64_t g_lba_offset; uint64_t g_bdev_ch_io_device; bool g_bdev_io_defer_completion; TAILQ_HEAD(, spdk_bdev_io) g_deferred_ios = TAILQ_HEAD_INITIALIZER(g_deferred_ios); bool g_enable_dif; DEFINE_STUB_V(spdk_bdev_module_examine_done, (struct spdk_bdev_module *module)); DEFINE_STUB_V(spdk_bdev_module_list_add, (struct spdk_bdev_module *bdev_module)); DEFINE_STUB(spdk_bdev_io_type_supported, bool, (struct spdk_bdev *bdev, enum spdk_bdev_io_type io_type), true); DEFINE_STUB_V(spdk_bdev_close, (struct spdk_bdev_desc *desc)); DEFINE_STUB(spdk_bdev_flush_blocks, int, (struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, uint64_t offset_blocks, uint64_t num_blocks, spdk_bdev_io_completion_cb cb, void *cb_arg), 0); DEFINE_STUB(spdk_conf_next_section, struct spdk_conf_section *, (struct spdk_conf_section *sp), NULL); DEFINE_STUB_V(spdk_rpc_register_method, (const char *method, spdk_rpc_method_handler func, uint32_t state_mask)); DEFINE_STUB_V(spdk_rpc_register_alias_deprecated, (const char *method, const char *alias)); DEFINE_STUB_V(spdk_jsonrpc_end_result, (struct spdk_jsonrpc_request *request, struct spdk_json_write_ctx *w)); DEFINE_STUB_V(spdk_jsonrpc_send_bool_response, (struct spdk_jsonrpc_request *request, bool value)); DEFINE_STUB(spdk_json_decode_string, int, (const struct spdk_json_val *val, void *out), 0); DEFINE_STUB(spdk_json_decode_uint32, int, (const struct spdk_json_val *val, void *out), 0); DEFINE_STUB(spdk_json_decode_uuid, int, (const struct spdk_json_val *val, void *out), 0); DEFINE_STUB(spdk_json_decode_array, int, (const struct spdk_json_val *values, spdk_json_decode_fn decode_func, void *out, size_t max_size, size_t *out_size, size_t stride), 0); DEFINE_STUB(spdk_json_decode_bool, int, (const struct spdk_json_val *val, void *out), 0); DEFINE_STUB(spdk_json_write_name, int, (struct spdk_json_write_ctx *w, const char *name), 0); DEFINE_STUB(spdk_json_write_object_begin, int, (struct spdk_json_write_ctx *w), 0); DEFINE_STUB(spdk_json_write_named_object_begin, int, (struct spdk_json_write_ctx *w, const char *name), 0); DEFINE_STUB(spdk_json_write_string, int, (struct spdk_json_write_ctx *w, const char *val), 0); DEFINE_STUB(spdk_json_write_object_end, int, (struct spdk_json_write_ctx *w), 0); DEFINE_STUB(spdk_json_write_array_begin, int, (struct spdk_json_write_ctx *w), 0); DEFINE_STUB(spdk_json_write_array_end, int, (struct spdk_json_write_ctx *w), 0); DEFINE_STUB(spdk_json_write_named_array_begin, int, (struct spdk_json_write_ctx *w, const char *name), 0); DEFINE_STUB(spdk_json_write_bool, int, (struct spdk_json_write_ctx *w, bool val), 0); DEFINE_STUB(spdk_json_write_null, int, (struct spdk_json_write_ctx *w), 0); DEFINE_STUB(spdk_json_write_named_uint64, int, (struct spdk_json_write_ctx *w, const char *name, uint64_t val), 0); DEFINE_STUB(spdk_strerror, const char *, (int errnum), NULL); DEFINE_STUB(spdk_bdev_queue_io_wait, int, (struct spdk_bdev *bdev, struct spdk_io_channel *ch, struct spdk_bdev_io_wait_entry *entry), 0); DEFINE_STUB(spdk_bdev_get_memory_domains, int, (struct spdk_bdev *bdev, struct spdk_memory_domain **domains, int array_size), 0); DEFINE_STUB(spdk_bdev_get_name, const char *, (const struct spdk_bdev *bdev), "test_bdev"); DEFINE_STUB(spdk_bdev_is_dif_head_of_md, bool, (const struct spdk_bdev *bdev), false); DEFINE_STUB(spdk_bdev_notify_blockcnt_change, int, (struct spdk_bdev *bdev, uint64_t size), 0); DEFINE_STUB_V(raid_bdev_init_superblock, (struct raid_bdev *raid_bdev)); DEFINE_STUB(raid_bdev_alloc_superblock, int, (struct raid_bdev *raid_bdev, uint32_t block_size), 0); DEFINE_STUB_V(raid_bdev_free_superblock, (struct raid_bdev *raid_bdev)); uint32_t spdk_bdev_get_data_block_size(const struct spdk_bdev *bdev) { return g_block_len; } typedef enum spdk_dif_type spdk_dif_type_t; spdk_dif_type_t spdk_bdev_get_dif_type(const struct spdk_bdev *bdev) { if (bdev->md_len != 0) { return bdev->dif_type; } else { return SPDK_DIF_DISABLE; } } bool spdk_bdev_is_md_interleaved(const struct spdk_bdev *bdev) { return (bdev->md_len != 0) && bdev->md_interleave; } bool spdk_bdev_is_md_separate(const struct spdk_bdev *bdev) { return (bdev->md_len != 0) && !bdev->md_interleave; } uint32_t spdk_bdev_get_md_size(const struct spdk_bdev *bdev) { return bdev->md_len; } uint32_t spdk_bdev_get_block_size(const struct spdk_bdev *bdev) { return bdev->blocklen; } int raid_bdev_load_base_bdev_superblock(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, raid_bdev_load_sb_cb cb, void *cb_ctx) { cb(NULL, -EINVAL, cb_ctx); return 0; } void raid_bdev_write_superblock(struct raid_bdev *raid_bdev, raid_bdev_write_sb_cb cb, void *cb_ctx) { cb(0, raid_bdev, cb_ctx); } const struct spdk_uuid * spdk_bdev_get_uuid(const struct spdk_bdev *bdev) { return &bdev->uuid; } struct spdk_io_channel * spdk_bdev_get_io_channel(struct spdk_bdev_desc *desc) { return spdk_get_io_channel(&g_bdev_ch_io_device); } static int set_test_opts(void) { g_max_base_drives = MAX_BASE_DRIVES; g_max_raids = MAX_RAIDS; g_block_len = 4096; g_strip_size = 64; g_max_io_size = 1024; g_enable_dif = false; printf("Test Options\n"); printf("blocklen = %u, strip_size = %u, max_io_size = %u, g_max_base_drives = %u, " "g_max_raids = %u, g_enable_dif = %d\n", g_block_len, g_strip_size, g_max_io_size, g_max_base_drives, g_max_raids, g_enable_dif); return 0; } static int set_test_opts_dif(void) { g_max_base_drives = MAX_BASE_DRIVES; g_max_raids = MAX_RAIDS; g_block_len = 4096; g_strip_size = 64; g_max_io_size = 1024; g_enable_dif = true; printf("Test Options\n"); printf("blocklen = %u, strip_size = %u, max_io_size = %u, g_max_base_drives = %u, " "g_max_raids = %u, g_enable_dif = %d\n", g_block_len, g_strip_size, g_max_io_size, g_max_base_drives, g_max_raids, g_enable_dif); return 0; } /* Set globals before every test run */ static void set_globals(void) { uint32_t max_splits; g_bdev_io_submit_status = 0; if (g_max_io_size < g_strip_size) { max_splits = 2; } else { max_splits = (g_max_io_size / g_strip_size) + 1; } if (max_splits < g_max_base_drives) { max_splits = g_max_base_drives; } g_io_output = calloc(max_splits, sizeof(struct io_output)); SPDK_CU_ASSERT_FATAL(g_io_output != NULL); g_io_output_index = 0; memset(g_get_raids_output, 0, sizeof(g_get_raids_output)); g_get_raids_count = 0; g_io_comp_status = 0; g_ignore_io_output = 0; g_config_level_create = 0; g_rpc_err = 0; g_test_multi_raids = 0; g_child_io_status_flag = true; TAILQ_INIT(&g_bdev_list); TAILQ_INIT(&g_io_waitq); g_rpc_req = NULL; g_rpc_req_size = 0; g_json_decode_obj_err = 0; g_json_decode_obj_create = 0; g_lba_offset = 0; g_bdev_io_defer_completion = false; } static void base_bdevs_cleanup(void) { struct spdk_bdev *bdev; struct spdk_bdev *bdev_next; if (!TAILQ_EMPTY(&g_bdev_list)) { TAILQ_FOREACH_SAFE(bdev, &g_bdev_list, internal.link, bdev_next) { free(bdev->name); TAILQ_REMOVE(&g_bdev_list, bdev, internal.link); free(bdev); } } } static void check_and_remove_raid_bdev(struct raid_bdev *raid_bdev) { struct raid_base_bdev_info *base_info; assert(raid_bdev != NULL); assert(raid_bdev->base_bdev_info != NULL); RAID_FOR_EACH_BASE_BDEV(raid_bdev, base_info) { if (base_info->desc) { raid_bdev_free_base_bdev_resource(base_info); } } assert(raid_bdev->num_base_bdevs_discovered == 0); raid_bdev_cleanup_and_free(raid_bdev); } /* Reset globals */ static void reset_globals(void) { if (g_io_output) { free(g_io_output); g_io_output = NULL; } g_rpc_req = NULL; g_rpc_req_size = 0; } void spdk_bdev_io_get_buf(struct spdk_bdev_io *bdev_io, spdk_bdev_io_get_buf_cb cb, uint64_t len) { cb(bdev_io->internal.ch->channel, bdev_io, true); } static void generate_dif(struct iovec *iovs, int iovcnt, void *md_buf, uint64_t offset_blocks, uint32_t num_blocks, struct spdk_bdev *bdev) { struct spdk_dif_ctx dif_ctx; int rc; struct spdk_dif_ctx_init_ext_opts dif_opts; spdk_dif_type_t dif_type; bool md_interleaved; struct iovec md_iov; dif_type = spdk_bdev_get_dif_type(bdev); md_interleaved = spdk_bdev_is_md_interleaved(bdev); if (dif_type == SPDK_DIF_DISABLE) { return; } dif_opts.size = SPDK_SIZEOF(&dif_opts, dif_pi_format); dif_opts.dif_pi_format = SPDK_DIF_PI_FORMAT_16; rc = spdk_dif_ctx_init(&dif_ctx, spdk_bdev_get_block_size(bdev), spdk_bdev_get_md_size(bdev), md_interleaved, spdk_bdev_is_dif_head_of_md(bdev), dif_type, bdev->dif_check_flags, offset_blocks, 0xFFFF, 0x123, 0, 0, &dif_opts); SPDK_CU_ASSERT_FATAL(rc == 0); if (!md_interleaved) { md_iov.iov_base = md_buf; md_iov.iov_len = spdk_bdev_get_md_size(bdev) * num_blocks; rc = spdk_dix_generate(iovs, iovcnt, &md_iov, num_blocks, &dif_ctx); SPDK_CU_ASSERT_FATAL(rc == 0); } } static void verify_dif(struct iovec *iovs, int iovcnt, void *md_buf, uint64_t offset_blocks, uint32_t num_blocks, struct spdk_bdev *bdev) { struct spdk_dif_ctx dif_ctx; int rc; struct spdk_dif_ctx_init_ext_opts dif_opts; struct spdk_dif_error errblk; spdk_dif_type_t dif_type; bool md_interleaved; struct iovec md_iov; dif_type = spdk_bdev_get_dif_type(bdev); md_interleaved = spdk_bdev_is_md_interleaved(bdev); if (dif_type == SPDK_DIF_DISABLE) { return; } dif_opts.size = SPDK_SIZEOF(&dif_opts, dif_pi_format); dif_opts.dif_pi_format = SPDK_DIF_PI_FORMAT_16; rc = spdk_dif_ctx_init(&dif_ctx, spdk_bdev_get_block_size(bdev), spdk_bdev_get_md_size(bdev), md_interleaved, spdk_bdev_is_dif_head_of_md(bdev), dif_type, bdev->dif_check_flags, offset_blocks, 0xFFFF, 0x123, 0, 0, &dif_opts); SPDK_CU_ASSERT_FATAL(rc == 0); if (!md_interleaved) { md_iov.iov_base = md_buf; md_iov.iov_len = spdk_bdev_get_md_size(bdev) * num_blocks; rc = spdk_dix_verify(iovs, iovcnt, &md_iov, num_blocks, &dif_ctx, &errblk); SPDK_CU_ASSERT_FATAL(rc == 0); } } /* Store the IO completion status in global variable to verify by various tests */ void spdk_bdev_io_complete(struct spdk_bdev_io *bdev_io, enum spdk_bdev_io_status status) { g_io_comp_status = ((status == SPDK_BDEV_IO_STATUS_SUCCESS) ? true : false); if (g_io_comp_status && bdev_io->type == SPDK_BDEV_IO_TYPE_READ) { verify_dif(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt, bdev_io->u.bdev.md_buf, bdev_io->u.bdev.offset_blocks, bdev_io->u.bdev.num_blocks, bdev_io->bdev); } } static void set_io_output(struct io_output *output, struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, uint64_t offset_blocks, uint64_t num_blocks, spdk_bdev_io_completion_cb cb, void *cb_arg, enum spdk_bdev_io_type iotype, struct iovec *iovs, int iovcnt, void *md) { output->desc = desc; output->ch = ch; output->offset_blocks = offset_blocks; output->num_blocks = num_blocks; output->cb = cb; output->cb_arg = cb_arg; output->iotype = iotype; output->iovs = iovs; output->iovcnt = iovcnt; output->md_buf = md; } static void child_io_complete(struct spdk_bdev_io *child_io, spdk_bdev_io_completion_cb cb, void *cb_arg) { if (g_bdev_io_defer_completion) { child_io->internal.cb = cb; child_io->internal.caller_ctx = cb_arg; TAILQ_INSERT_TAIL(&g_deferred_ios, child_io, internal.link); } else { cb(child_io, g_child_io_status_flag, cb_arg); } } static void complete_deferred_ios(void) { struct spdk_bdev_io *child_io, *tmp; TAILQ_FOREACH_SAFE(child_io, &g_deferred_ios, internal.link, tmp) { TAILQ_REMOVE(&g_deferred_ios, child_io, internal.link); child_io->internal.cb(child_io, g_child_io_status_flag, child_io->internal.caller_ctx); } } /* It will cache the split IOs for verification */ int spdk_bdev_writev_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, struct iovec *iov, int iovcnt, uint64_t offset_blocks, uint64_t num_blocks, spdk_bdev_io_completion_cb cb, void *cb_arg) { return spdk_bdev_writev_blocks_ext(desc, ch, iov, iovcnt, offset_blocks, num_blocks, cb, cb_arg, NULL); } int spdk_bdev_writev_blocks_ext(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, struct iovec *iov, int iovcnt, uint64_t offset_blocks, uint64_t num_blocks, spdk_bdev_io_completion_cb cb, void *cb_arg, struct spdk_bdev_ext_io_opts *opts) { struct io_output *output = &g_io_output[g_io_output_index]; struct spdk_bdev_io *child_io; if (g_ignore_io_output) { return 0; } if (g_max_io_size < g_strip_size) { SPDK_CU_ASSERT_FATAL(g_io_output_index < 2); } else { SPDK_CU_ASSERT_FATAL(g_io_output_index < (g_max_io_size / g_strip_size) + 1); } if (g_bdev_io_submit_status == 0) { set_io_output(output, desc, ch, offset_blocks, num_blocks, cb, cb_arg, SPDK_BDEV_IO_TYPE_WRITE, iov, iovcnt, opts->metadata); g_io_output_index++; child_io = calloc(1, sizeof(struct spdk_bdev_io)); SPDK_CU_ASSERT_FATAL(child_io != NULL); child_io_complete(child_io, cb, cb_arg); } return g_bdev_io_submit_status; } int spdk_bdev_writev_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, struct iovec *iov, int iovcnt, void *md, uint64_t offset_blocks, uint64_t num_blocks, spdk_bdev_io_completion_cb cb, void *cb_arg) { struct spdk_bdev_ext_io_opts opts = { .metadata = md }; return spdk_bdev_writev_blocks_ext(desc, ch, iov, iovcnt, offset_blocks, num_blocks, cb, cb_arg, &opts); } int spdk_bdev_reset(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, spdk_bdev_io_completion_cb cb, void *cb_arg) { struct io_output *output = &g_io_output[g_io_output_index]; struct spdk_bdev_io *child_io; if (g_ignore_io_output) { return 0; } if (g_bdev_io_submit_status == 0) { set_io_output(output, desc, ch, 0, 0, cb, cb_arg, SPDK_BDEV_IO_TYPE_RESET, NULL, 0, NULL); g_io_output_index++; child_io = calloc(1, sizeof(struct spdk_bdev_io)); SPDK_CU_ASSERT_FATAL(child_io != NULL); child_io_complete(child_io, cb, cb_arg); } return g_bdev_io_submit_status; } int spdk_bdev_unmap_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, uint64_t offset_blocks, uint64_t num_blocks, spdk_bdev_io_completion_cb cb, void *cb_arg) { struct io_output *output = &g_io_output[g_io_output_index]; struct spdk_bdev_io *child_io; if (g_ignore_io_output) { return 0; } if (g_bdev_io_submit_status == 0) { set_io_output(output, desc, ch, offset_blocks, num_blocks, cb, cb_arg, SPDK_BDEV_IO_TYPE_UNMAP, NULL, 0, NULL); g_io_output_index++; child_io = calloc(1, sizeof(struct spdk_bdev_io)); SPDK_CU_ASSERT_FATAL(child_io != NULL); child_io_complete(child_io, cb, cb_arg); } return g_bdev_io_submit_status; } void spdk_bdev_destruct_done(struct spdk_bdev *bdev, int bdeverrno) { CU_ASSERT(bdeverrno == 0); SPDK_CU_ASSERT_FATAL(bdev->internal.unregister_cb != NULL); bdev->internal.unregister_cb(bdev->internal.unregister_ctx, bdeverrno); } int spdk_bdev_register(struct spdk_bdev *bdev) { TAILQ_INSERT_TAIL(&g_bdev_list, bdev, internal.link); return 0; } void spdk_bdev_unregister(struct spdk_bdev *bdev, spdk_bdev_unregister_cb cb_fn, void *cb_arg) { int ret; SPDK_CU_ASSERT_FATAL(spdk_bdev_get_by_name(bdev->name) == bdev); TAILQ_REMOVE(&g_bdev_list, bdev, internal.link); bdev->internal.unregister_cb = cb_fn; bdev->internal.unregister_ctx = cb_arg; ret = bdev->fn_table->destruct(bdev->ctxt); CU_ASSERT(ret == 1); poll_threads(); } int spdk_bdev_open_ext(const char *bdev_name, bool write, spdk_bdev_event_cb_t event_cb, void *event_ctx, struct spdk_bdev_desc **_desc) { struct spdk_bdev *bdev; bdev = spdk_bdev_get_by_name(bdev_name); if (bdev == NULL) { return -ENODEV; } *_desc = (void *)bdev; return 0; } struct spdk_bdev * spdk_bdev_desc_get_bdev(struct spdk_bdev_desc *desc) { return (void *)desc; } int spdk_json_write_named_uint32(struct spdk_json_write_ctx *w, const char *name, uint32_t val) { if (!g_test_multi_raids) { struct rpc_bdev_raid_create *req = g_rpc_req; if (strcmp(name, "strip_size_kb") == 0) { CU_ASSERT(req->strip_size_kb == val); } else if (strcmp(name, "blocklen_shift") == 0) { CU_ASSERT(spdk_u32log2(g_block_len) == val); } else if (strcmp(name, "num_base_bdevs") == 0) { CU_ASSERT(req->base_bdevs.num_base_bdevs == val); } else if (strcmp(name, "state") == 0) { CU_ASSERT(val == RAID_BDEV_STATE_ONLINE); } else if (strcmp(name, "destruct_called") == 0) { CU_ASSERT(val == 0); } else if (strcmp(name, "num_base_bdevs_discovered") == 0) { CU_ASSERT(req->base_bdevs.num_base_bdevs == val); } } return 0; } int spdk_json_write_named_string(struct spdk_json_write_ctx *w, const char *name, const char *val) { if (g_test_multi_raids) { if (strcmp(name, "name") == 0) { g_get_raids_output[g_get_raids_count] = strdup(val); SPDK_CU_ASSERT_FATAL(g_get_raids_output[g_get_raids_count] != NULL); g_get_raids_count++; } } else { struct rpc_bdev_raid_create *req = g_rpc_req; if (strcmp(name, "raid_level") == 0) { CU_ASSERT(strcmp(val, raid_bdev_level_to_str(req->level)) == 0); } } return 0; } int spdk_json_write_named_bool(struct spdk_json_write_ctx *w, const char *name, bool val) { if (!g_test_multi_raids) { struct rpc_bdev_raid_create *req = g_rpc_req; if (strcmp(name, "superblock") == 0) { CU_ASSERT(val == req->superblock_enabled); } } return 0; } void spdk_bdev_free_io(struct spdk_bdev_io *bdev_io) { if (bdev_io) { free(bdev_io); } } /* It will cache split IOs for verification */ int spdk_bdev_readv_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, struct iovec *iov, int iovcnt, uint64_t offset_blocks, uint64_t num_blocks, spdk_bdev_io_completion_cb cb, void *cb_arg) { return spdk_bdev_readv_blocks_ext(desc, ch, iov, iovcnt, offset_blocks, num_blocks, cb, cb_arg, NULL); } int spdk_bdev_readv_blocks_ext(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, struct iovec *iov, int iovcnt, uint64_t offset_blocks, uint64_t num_blocks, spdk_bdev_io_completion_cb cb, void *cb_arg, struct spdk_bdev_ext_io_opts *opts) { struct io_output *output = &g_io_output[g_io_output_index]; struct spdk_bdev_io *child_io; if (g_ignore_io_output) { return 0; } SPDK_CU_ASSERT_FATAL(g_io_output_index <= (g_max_io_size / g_strip_size) + 1); if (g_bdev_io_submit_status == 0) { set_io_output(output, desc, ch, offset_blocks, num_blocks, cb, cb_arg, SPDK_BDEV_IO_TYPE_READ, iov, iovcnt, opts->metadata); generate_dif(iov, iovcnt, opts->metadata, offset_blocks, num_blocks, spdk_bdev_desc_get_bdev(desc)); g_io_output_index++; child_io = calloc(1, sizeof(struct spdk_bdev_io)); SPDK_CU_ASSERT_FATAL(child_io != NULL); child_io_complete(child_io, cb, cb_arg); } return g_bdev_io_submit_status; } int spdk_bdev_readv_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, struct iovec *iov, int iovcnt, void *md, uint64_t offset_blocks, uint64_t num_blocks, spdk_bdev_io_completion_cb cb, void *cb_arg) { struct spdk_bdev_ext_io_opts opts = { .metadata = md }; return spdk_bdev_readv_blocks_ext(desc, ch, iov, iovcnt, offset_blocks, num_blocks, cb, cb_arg, &opts); } void spdk_bdev_module_release_bdev(struct spdk_bdev *bdev) { CU_ASSERT(bdev->internal.claim_type == SPDK_BDEV_CLAIM_EXCL_WRITE); CU_ASSERT(bdev->internal.claim.v1.module != NULL); bdev->internal.claim_type = SPDK_BDEV_CLAIM_NONE; bdev->internal.claim.v1.module = NULL; } int spdk_bdev_module_claim_bdev(struct spdk_bdev *bdev, struct spdk_bdev_desc *desc, struct spdk_bdev_module *module) { if (bdev->internal.claim_type != SPDK_BDEV_CLAIM_NONE) { CU_ASSERT(bdev->internal.claim.v1.module != NULL); return -1; } CU_ASSERT(bdev->internal.claim.v1.module == NULL); bdev->internal.claim_type = SPDK_BDEV_CLAIM_EXCL_WRITE; bdev->internal.claim.v1.module = module; return 0; } int spdk_json_decode_object(const struct spdk_json_val *values, const struct spdk_json_object_decoder *decoders, size_t num_decoders, void *out) { struct rpc_bdev_raid_create *req, *_out; size_t i; if (g_json_decode_obj_err) { return -1; } else if (g_json_decode_obj_create) { req = g_rpc_req; _out = out; _out->name = strdup(req->name); SPDK_CU_ASSERT_FATAL(_out->name != NULL); _out->strip_size_kb = req->strip_size_kb; _out->level = req->level; _out->superblock_enabled = req->superblock_enabled; _out->base_bdevs.num_base_bdevs = req->base_bdevs.num_base_bdevs; for (i = 0; i < req->base_bdevs.num_base_bdevs; i++) { _out->base_bdevs.base_bdevs[i] = strdup(req->base_bdevs.base_bdevs[i]); SPDK_CU_ASSERT_FATAL(_out->base_bdevs.base_bdevs[i]); } } else { memcpy(out, g_rpc_req, g_rpc_req_size); } return 0; } struct spdk_json_write_ctx * spdk_jsonrpc_begin_result(struct spdk_jsonrpc_request *request) { return (void *)1; } void spdk_jsonrpc_send_error_response(struct spdk_jsonrpc_request *request, int error_code, const char *msg) { g_rpc_err = 1; } void spdk_jsonrpc_send_error_response_fmt(struct spdk_jsonrpc_request *request, int error_code, const char *fmt, ...) { g_rpc_err = 1; } struct spdk_bdev * spdk_bdev_get_by_name(const char *bdev_name) { struct spdk_bdev *bdev; if (!TAILQ_EMPTY(&g_bdev_list)) { TAILQ_FOREACH(bdev, &g_bdev_list, internal.link) { if (strcmp(bdev_name, bdev->name) == 0) { return bdev; } } } return NULL; } int spdk_bdev_quiesce(struct spdk_bdev *bdev, struct spdk_bdev_module *module, spdk_bdev_quiesce_cb cb_fn, void *cb_arg) { if (cb_fn) { cb_fn(cb_arg, 0); } return 0; } int spdk_bdev_unquiesce(struct spdk_bdev *bdev, struct spdk_bdev_module *module, spdk_bdev_quiesce_cb cb_fn, void *cb_arg) { if (cb_fn) { cb_fn(cb_arg, 0); } return 0; } int spdk_bdev_quiesce_range(struct spdk_bdev *bdev, struct spdk_bdev_module *module, uint64_t offset, uint64_t length, spdk_bdev_quiesce_cb cb_fn, void *cb_arg) { if (cb_fn) { cb_fn(cb_arg, 0); } return 0; } int spdk_bdev_unquiesce_range(struct spdk_bdev *bdev, struct spdk_bdev_module *module, uint64_t offset, uint64_t length, spdk_bdev_quiesce_cb cb_fn, void *cb_arg) { if (cb_fn) { cb_fn(cb_arg, 0); } return 0; } static void bdev_io_cleanup(struct spdk_bdev_io *bdev_io) { if (bdev_io->u.bdev.iovs) { int i; for (i = 0; i < bdev_io->u.bdev.iovcnt; i++) { free(bdev_io->u.bdev.iovs[i].iov_base); } free(bdev_io->u.bdev.iovs); } free(bdev_io->u.bdev.md_buf); free(bdev_io); } static void _bdev_io_initialize(struct spdk_bdev_io *bdev_io, struct spdk_io_channel *ch, struct spdk_bdev *bdev, uint64_t lba, uint64_t blocks, int16_t iotype, int iovcnt, size_t iov_len) { struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch); int i; bdev_io->bdev = bdev; bdev_io->u.bdev.offset_blocks = lba; bdev_io->u.bdev.num_blocks = blocks; bdev_io->type = iotype; bdev_io->internal.ch = channel; bdev_io->u.bdev.iovcnt = iovcnt; if (iovcnt == 0) { bdev_io->u.bdev.iovs = NULL; bdev_io->u.bdev.md_buf = NULL; return; } SPDK_CU_ASSERT_FATAL(iov_len * iovcnt == blocks * g_block_len); bdev_io->u.bdev.iovs = calloc(iovcnt, sizeof(struct iovec)); SPDK_CU_ASSERT_FATAL(bdev_io->u.bdev.iovs != NULL); for (i = 0; i < iovcnt; i++) { struct iovec *iov = &bdev_io->u.bdev.iovs[i]; iov->iov_base = calloc(1, iov_len); SPDK_CU_ASSERT_FATAL(iov->iov_base != NULL); iov->iov_len = iov_len; } if (spdk_bdev_get_dif_type(bdev) != SPDK_DIF_DISABLE && !spdk_bdev_is_md_interleaved(bdev)) { bdev_io->u.bdev.md_buf = calloc(1, blocks * spdk_bdev_get_md_size(bdev)); } } static void bdev_io_initialize(struct spdk_bdev_io *bdev_io, struct spdk_io_channel *ch, struct spdk_bdev *bdev, uint64_t lba, uint64_t blocks, int16_t iotype) { int iovcnt; size_t iov_len; if (bdev_io->type == SPDK_BDEV_IO_TYPE_UNMAP || bdev_io->type == SPDK_BDEV_IO_TYPE_FLUSH) { iovcnt = 0; iov_len = 0; } else { iovcnt = 1; iov_len = blocks * g_block_len; } _bdev_io_initialize(bdev_io, ch, bdev, lba, blocks, iotype, iovcnt, iov_len); } static void verify_reset_io(struct spdk_bdev_io *bdev_io, uint8_t num_base_drives, struct raid_bdev_io_channel *ch_ctx, struct raid_bdev *raid_bdev, uint32_t io_status) { uint8_t index = 0; struct io_output *output; SPDK_CU_ASSERT_FATAL(raid_bdev != NULL); SPDK_CU_ASSERT_FATAL(num_base_drives != 0); SPDK_CU_ASSERT_FATAL(io_status != INVALID_IO_SUBMIT); SPDK_CU_ASSERT_FATAL(ch_ctx->base_channel != NULL); CU_ASSERT(g_io_output_index == num_base_drives); for (index = 0; index < g_io_output_index; index++) { output = &g_io_output[index]; CU_ASSERT(ch_ctx->base_channel[index] == output->ch); CU_ASSERT(raid_bdev->base_bdev_info[index].desc == output->desc); CU_ASSERT(bdev_io->type == output->iotype); } CU_ASSERT(g_io_comp_status == io_status); } static void verify_io(struct spdk_bdev_io *bdev_io, uint8_t num_base_drives, struct raid_bdev_io_channel *ch_ctx, struct raid_bdev *raid_bdev, uint32_t io_status) { uint32_t strip_shift = spdk_u32log2(g_strip_size); uint64_t start_strip = bdev_io->u.bdev.offset_blocks >> strip_shift; uint64_t end_strip = (bdev_io->u.bdev.offset_blocks + bdev_io->u.bdev.num_blocks - 1) >> strip_shift; uint32_t splits_reqd = (end_strip - start_strip + 1); uint32_t strip; uint64_t pd_strip; uint8_t pd_idx; uint32_t offset_in_strip; uint64_t pd_lba; uint64_t pd_blocks; uint32_t index = 0; struct io_output *output; if (io_status == INVALID_IO_SUBMIT) { CU_ASSERT(g_io_comp_status == false); return; } SPDK_CU_ASSERT_FATAL(raid_bdev != NULL); SPDK_CU_ASSERT_FATAL(num_base_drives != 0); CU_ASSERT(splits_reqd == g_io_output_index); for (strip = start_strip; strip <= end_strip; strip++, index++) { pd_strip = strip / num_base_drives; pd_idx = strip % num_base_drives; if (strip == start_strip) { offset_in_strip = bdev_io->u.bdev.offset_blocks & (g_strip_size - 1); pd_lba = (pd_strip << strip_shift) + offset_in_strip; if (strip == end_strip) { pd_blocks = bdev_io->u.bdev.num_blocks; } else { pd_blocks = g_strip_size - offset_in_strip; } } else if (strip == end_strip) { pd_lba = pd_strip << strip_shift; pd_blocks = ((bdev_io->u.bdev.offset_blocks + bdev_io->u.bdev.num_blocks - 1) & (g_strip_size - 1)) + 1; } else { pd_lba = pd_strip << raid_bdev->strip_size_shift; pd_blocks = raid_bdev->strip_size; } output = &g_io_output[index]; CU_ASSERT(pd_lba == output->offset_blocks); CU_ASSERT(pd_blocks == output->num_blocks); CU_ASSERT(ch_ctx->base_channel[pd_idx] == output->ch); CU_ASSERT(raid_bdev->base_bdev_info[pd_idx].desc == output->desc); CU_ASSERT(bdev_io->type == output->iotype); if (bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) { verify_dif(output->iovs, output->iovcnt, output->md_buf, output->offset_blocks, output->num_blocks, spdk_bdev_desc_get_bdev(raid_bdev->base_bdev_info[pd_idx].desc)); } } CU_ASSERT(g_io_comp_status == io_status); } static void verify_io_without_payload(struct spdk_bdev_io *bdev_io, uint8_t num_base_drives, struct raid_bdev_io_channel *ch_ctx, struct raid_bdev *raid_bdev, uint32_t io_status) { uint32_t strip_shift = spdk_u32log2(g_strip_size); uint64_t start_offset_in_strip = bdev_io->u.bdev.offset_blocks % g_strip_size; uint64_t end_offset_in_strip = (bdev_io->u.bdev.offset_blocks + bdev_io->u.bdev.num_blocks - 1) % g_strip_size; uint64_t start_strip = bdev_io->u.bdev.offset_blocks >> strip_shift; uint64_t end_strip = (bdev_io->u.bdev.offset_blocks + bdev_io->u.bdev.num_blocks - 1) >> strip_shift; uint8_t n_disks_involved; uint64_t start_strip_disk_idx; uint64_t end_strip_disk_idx; uint64_t nblocks_in_start_disk; uint64_t offset_in_start_disk; uint8_t disk_idx; uint64_t base_io_idx; uint64_t sum_nblocks = 0; struct io_output *output; if (io_status == INVALID_IO_SUBMIT) { CU_ASSERT(g_io_comp_status == false); return; } SPDK_CU_ASSERT_FATAL(raid_bdev != NULL); SPDK_CU_ASSERT_FATAL(num_base_drives != 0); SPDK_CU_ASSERT_FATAL(bdev_io->type != SPDK_BDEV_IO_TYPE_READ); SPDK_CU_ASSERT_FATAL(bdev_io->type != SPDK_BDEV_IO_TYPE_WRITE); n_disks_involved = spdk_min(end_strip - start_strip + 1, num_base_drives); CU_ASSERT(n_disks_involved == g_io_output_index); start_strip_disk_idx = start_strip % num_base_drives; end_strip_disk_idx = end_strip % num_base_drives; offset_in_start_disk = g_io_output[0].offset_blocks; nblocks_in_start_disk = g_io_output[0].num_blocks; for (base_io_idx = 0, disk_idx = start_strip_disk_idx; base_io_idx < n_disks_involved; base_io_idx++, disk_idx++) { uint64_t start_offset_in_disk; uint64_t end_offset_in_disk; output = &g_io_output[base_io_idx]; /* round disk_idx */ if (disk_idx >= num_base_drives) { disk_idx %= num_base_drives; } /* start_offset_in_disk aligned in strip check: * The first base io has a same start_offset_in_strip with the whole raid io. * Other base io should have aligned start_offset_in_strip which is 0. */ start_offset_in_disk = output->offset_blocks; if (base_io_idx == 0) { CU_ASSERT(start_offset_in_disk % g_strip_size == start_offset_in_strip); } else { CU_ASSERT(start_offset_in_disk % g_strip_size == 0); } /* end_offset_in_disk aligned in strip check: * Base io on disk at which end_strip is located, has a same end_offset_in_strip * with the whole raid io. * Other base io should have aligned end_offset_in_strip. */ end_offset_in_disk = output->offset_blocks + output->num_blocks - 1; if (disk_idx == end_strip_disk_idx) { CU_ASSERT(end_offset_in_disk % g_strip_size == end_offset_in_strip); } else { CU_ASSERT(end_offset_in_disk % g_strip_size == g_strip_size - 1); } /* start_offset_in_disk compared with start_disk. * 1. For disk_idx which is larger than start_strip_disk_idx: Its start_offset_in_disk * mustn't be larger than the start offset of start_offset_in_disk; And the gap * must be less than strip size. * 2. For disk_idx which is less than start_strip_disk_idx, Its start_offset_in_disk * must be larger than the start offset of start_offset_in_disk; And the gap mustn't * be less than strip size. */ if (disk_idx > start_strip_disk_idx) { CU_ASSERT(start_offset_in_disk <= offset_in_start_disk); CU_ASSERT(offset_in_start_disk - start_offset_in_disk < g_strip_size); } else if (disk_idx < start_strip_disk_idx) { CU_ASSERT(start_offset_in_disk > offset_in_start_disk); CU_ASSERT(output->offset_blocks - offset_in_start_disk <= g_strip_size); } /* nblocks compared with start_disk: * The gap between them must be within a strip size. */ if (output->num_blocks <= nblocks_in_start_disk) { CU_ASSERT(nblocks_in_start_disk - output->num_blocks <= g_strip_size); } else { CU_ASSERT(output->num_blocks - nblocks_in_start_disk < g_strip_size); } sum_nblocks += output->num_blocks; CU_ASSERT(ch_ctx->base_channel[disk_idx] == output->ch); CU_ASSERT(raid_bdev->base_bdev_info[disk_idx].desc == output->desc); CU_ASSERT(bdev_io->type == output->iotype); } /* Sum of each nblocks should be same with raid bdev_io */ CU_ASSERT(bdev_io->u.bdev.num_blocks == sum_nblocks); CU_ASSERT(g_io_comp_status == io_status); } static void verify_raid_bdev_present(const char *name, bool presence) { struct raid_bdev *pbdev; bool pbdev_found; pbdev_found = false; TAILQ_FOREACH(pbdev, &g_raid_bdev_list, global_link) { if (strcmp(pbdev->bdev.name, name) == 0) { pbdev_found = true; break; } } if (presence == true) { CU_ASSERT(pbdev_found == true); } else { CU_ASSERT(pbdev_found == false); } } static void verify_raid_bdev(struct rpc_bdev_raid_create *r, bool presence, uint32_t raid_state) { struct raid_bdev *pbdev; struct raid_base_bdev_info *base_info; struct spdk_bdev *bdev = NULL; bool pbdev_found; uint64_t min_blockcnt = 0xFFFFFFFFFFFFFFFF; pbdev_found = false; TAILQ_FOREACH(pbdev, &g_raid_bdev_list, global_link) { if (strcmp(pbdev->bdev.name, r->name) == 0) { pbdev_found = true; if (presence == false) { break; } CU_ASSERT(pbdev->base_bdev_info != NULL); CU_ASSERT(pbdev->strip_size == ((r->strip_size_kb * 1024) / g_block_len)); CU_ASSERT(pbdev->strip_size_shift == spdk_u32log2(((r->strip_size_kb * 1024) / g_block_len))); CU_ASSERT(pbdev->blocklen_shift == spdk_u32log2(g_block_len)); CU_ASSERT((uint32_t)pbdev->state == raid_state); CU_ASSERT(pbdev->num_base_bdevs == r->base_bdevs.num_base_bdevs); CU_ASSERT(pbdev->num_base_bdevs_discovered == r->base_bdevs.num_base_bdevs); CU_ASSERT(pbdev->level == r->level); CU_ASSERT(pbdev->base_bdev_info != NULL); RAID_FOR_EACH_BASE_BDEV(pbdev, base_info) { CU_ASSERT(base_info->desc != NULL); bdev = spdk_bdev_desc_get_bdev(base_info->desc); CU_ASSERT(bdev != NULL); CU_ASSERT(base_info->remove_scheduled == false); CU_ASSERT((pbdev->superblock_enabled && base_info->data_offset != 0) || (!pbdev->superblock_enabled && base_info->data_offset == 0)); CU_ASSERT(base_info->data_offset + base_info->data_size == bdev->blockcnt); if (bdev && base_info->data_size < min_blockcnt) { min_blockcnt = base_info->data_size; } } CU_ASSERT((((min_blockcnt / (r->strip_size_kb * 1024 / g_block_len)) * (r->strip_size_kb * 1024 / g_block_len)) * r->base_bdevs.num_base_bdevs) == pbdev->bdev.blockcnt); CU_ASSERT(strcmp(pbdev->bdev.product_name, "Raid Volume") == 0); CU_ASSERT(pbdev->bdev.write_cache == 0); CU_ASSERT(pbdev->bdev.blocklen == g_block_len); if (pbdev->num_base_bdevs > 1) { CU_ASSERT(pbdev->bdev.optimal_io_boundary == pbdev->strip_size); CU_ASSERT(pbdev->bdev.split_on_optimal_io_boundary == true); } else { CU_ASSERT(pbdev->bdev.optimal_io_boundary == 0); CU_ASSERT(pbdev->bdev.split_on_optimal_io_boundary == false); } CU_ASSERT(pbdev->bdev.ctxt == pbdev); CU_ASSERT(pbdev->bdev.fn_table == &g_raid_bdev_fn_table); CU_ASSERT(pbdev->bdev.module == &g_raid_if); break; } } if (presence == true) { CU_ASSERT(pbdev_found == true); } else { CU_ASSERT(pbdev_found == false); } } static void verify_get_raids(struct rpc_bdev_raid_create *construct_req, uint8_t g_max_raids, char **g_get_raids_output, uint32_t g_get_raids_count) { uint8_t i, j; bool found; CU_ASSERT(g_max_raids == g_get_raids_count); if (g_max_raids == g_get_raids_count) { for (i = 0; i < g_max_raids; i++) { found = false; for (j = 0; j < g_max_raids; j++) { if (construct_req[i].name && strcmp(construct_req[i].name, g_get_raids_output[i]) == 0) { found = true; break; } } CU_ASSERT(found == true); } } } static void create_base_bdevs(uint32_t bbdev_start_idx) { uint8_t i; struct spdk_bdev *base_bdev; char name[16]; for (i = 0; i < g_max_base_drives; i++, bbdev_start_idx++) { snprintf(name, 16, "%s%u%s", "Nvme", bbdev_start_idx, "n1"); base_bdev = calloc(1, sizeof(struct spdk_bdev)); SPDK_CU_ASSERT_FATAL(base_bdev != NULL); base_bdev->name = strdup(name); spdk_uuid_generate(&base_bdev->uuid); SPDK_CU_ASSERT_FATAL(base_bdev->name != NULL); base_bdev->blocklen = g_block_len; base_bdev->blockcnt = BLOCK_CNT; if (g_enable_dif) { base_bdev->md_interleave = false; base_bdev->md_len = MD_SIZE; base_bdev->dif_check_flags = SPDK_DIF_FLAGS_GUARD_CHECK | SPDK_DIF_FLAGS_REFTAG_CHECK | SPDK_DIF_FLAGS_APPTAG_CHECK; base_bdev->dif_type = SPDK_DIF_TYPE1; } TAILQ_INSERT_TAIL(&g_bdev_list, base_bdev, internal.link); } } static void create_test_req(struct rpc_bdev_raid_create *r, const char *raid_name, uint8_t bbdev_start_idx, bool create_base_bdev, bool superblock_enabled) { uint8_t i; char name[16]; uint8_t bbdev_idx = bbdev_start_idx; r->name = strdup(raid_name); SPDK_CU_ASSERT_FATAL(r->name != NULL); r->strip_size_kb = (g_strip_size * g_block_len) / 1024; r->level = RAID0; r->superblock_enabled = superblock_enabled; r->base_bdevs.num_base_bdevs = g_max_base_drives; for (i = 0; i < g_max_base_drives; i++, bbdev_idx++) { snprintf(name, 16, "%s%u%s", "Nvme", bbdev_idx, "n1"); r->base_bdevs.base_bdevs[i] = strdup(name); SPDK_CU_ASSERT_FATAL(r->base_bdevs.base_bdevs[i] != NULL); } if (create_base_bdev == true) { create_base_bdevs(bbdev_start_idx); } g_rpc_req = r; g_rpc_req_size = sizeof(*r); } static void create_raid_bdev_create_req(struct rpc_bdev_raid_create *r, const char *raid_name, uint8_t bbdev_start_idx, bool create_base_bdev, uint8_t json_decode_obj_err, bool superblock_enabled) { create_test_req(r, raid_name, bbdev_start_idx, create_base_bdev, superblock_enabled); g_rpc_err = 0; g_json_decode_obj_create = 1; g_json_decode_obj_err = json_decode_obj_err; g_config_level_create = 0; g_test_multi_raids = 0; } static void free_test_req(struct rpc_bdev_raid_create *r) { uint8_t i; free(r->name); for (i = 0; i < r->base_bdevs.num_base_bdevs; i++) { free(r->base_bdevs.base_bdevs[i]); } } static void create_raid_bdev_delete_req(struct rpc_bdev_raid_delete *r, const char *raid_name, uint8_t json_decode_obj_err) { r->name = strdup(raid_name); SPDK_CU_ASSERT_FATAL(r->name != NULL); g_rpc_req = r; g_rpc_req_size = sizeof(*r); g_rpc_err = 0; g_json_decode_obj_create = 0; g_json_decode_obj_err = json_decode_obj_err; g_config_level_create = 0; g_test_multi_raids = 0; } static void create_get_raids_req(struct rpc_bdev_raid_get_bdevs *r, const char *category, uint8_t json_decode_obj_err) { r->category = strdup(category); SPDK_CU_ASSERT_FATAL(r->category != NULL); g_rpc_req = r; g_rpc_req_size = sizeof(*r); g_rpc_err = 0; g_json_decode_obj_create = 0; g_json_decode_obj_err = json_decode_obj_err; g_config_level_create = 0; g_test_multi_raids = 1; g_get_raids_count = 0; } static void test_create_raid(void) { struct rpc_bdev_raid_create req; struct rpc_bdev_raid_delete delete_req; set_globals(); CU_ASSERT(raid_bdev_init() == 0); verify_raid_bdev_present("raid1", false); create_raid_bdev_create_req(&req, "raid1", 0, true, 0, false); rpc_bdev_raid_create(NULL, NULL); CU_ASSERT(g_rpc_err == 0); verify_raid_bdev(&req, true, RAID_BDEV_STATE_ONLINE); free_test_req(&req); create_raid_bdev_delete_req(&delete_req, "raid1", 0); rpc_bdev_raid_delete(NULL, NULL); CU_ASSERT(g_rpc_err == 0); raid_bdev_exit(); base_bdevs_cleanup(); reset_globals(); } static void test_delete_raid(void) { struct rpc_bdev_raid_create construct_req; struct rpc_bdev_raid_delete delete_req; set_globals(); CU_ASSERT(raid_bdev_init() == 0); verify_raid_bdev_present("raid1", false); create_raid_bdev_create_req(&construct_req, "raid1", 0, true, 0, false); rpc_bdev_raid_create(NULL, NULL); CU_ASSERT(g_rpc_err == 0); verify_raid_bdev(&construct_req, true, RAID_BDEV_STATE_ONLINE); free_test_req(&construct_req); create_raid_bdev_delete_req(&delete_req, "raid1", 0); rpc_bdev_raid_delete(NULL, NULL); CU_ASSERT(g_rpc_err == 0); verify_raid_bdev_present("raid1", false); raid_bdev_exit(); base_bdevs_cleanup(); reset_globals(); } static void test_create_raid_invalid_args(void) { struct rpc_bdev_raid_create req; struct rpc_bdev_raid_delete destroy_req; struct raid_bdev *raid_bdev; set_globals(); CU_ASSERT(raid_bdev_init() == 0); verify_raid_bdev_present("raid1", false); create_raid_bdev_create_req(&req, "raid1", 0, true, 0, false); req.level = INVALID_RAID_LEVEL; rpc_bdev_raid_create(NULL, NULL); CU_ASSERT(g_rpc_err == 1); free_test_req(&req); verify_raid_bdev_present("raid1", false); create_raid_bdev_create_req(&req, "raid1", 0, false, 1, false); rpc_bdev_raid_create(NULL, NULL); CU_ASSERT(g_rpc_err == 1); free_test_req(&req); verify_raid_bdev_present("raid1", false); create_raid_bdev_create_req(&req, "raid1", 0, false, 0, false); req.strip_size_kb = 1231; rpc_bdev_raid_create(NULL, NULL); CU_ASSERT(g_rpc_err == 1); free_test_req(&req); verify_raid_bdev_present("raid1", false); create_raid_bdev_create_req(&req, "raid1", 0, false, 0, false); rpc_bdev_raid_create(NULL, NULL); CU_ASSERT(g_rpc_err == 0); verify_raid_bdev(&req, true, RAID_BDEV_STATE_ONLINE); free_test_req(&req); create_raid_bdev_create_req(&req, "raid1", 0, false, 0, false); rpc_bdev_raid_create(NULL, NULL); CU_ASSERT(g_rpc_err == 1); free_test_req(&req); create_raid_bdev_create_req(&req, "raid2", 0, false, 0, false); rpc_bdev_raid_create(NULL, NULL); CU_ASSERT(g_rpc_err == 1); free_test_req(&req); verify_raid_bdev_present("raid2", false); create_raid_bdev_create_req(&req, "raid2", g_max_base_drives, true, 0, false); free(req.base_bdevs.base_bdevs[g_max_base_drives - 1]); req.base_bdevs.base_bdevs[g_max_base_drives - 1] = strdup("Nvme0n1"); SPDK_CU_ASSERT_FATAL(req.base_bdevs.base_bdevs[g_max_base_drives - 1] != NULL); rpc_bdev_raid_create(NULL, NULL); CU_ASSERT(g_rpc_err == 1); free_test_req(&req); verify_raid_bdev_present("raid2", false); create_raid_bdev_create_req(&req, "raid2", g_max_base_drives, true, 0, false); free(req.base_bdevs.base_bdevs[g_max_base_drives - 1]); req.base_bdevs.base_bdevs[g_max_base_drives - 1] = strdup("Nvme100000n1"); SPDK_CU_ASSERT_FATAL(req.base_bdevs.base_bdevs[g_max_base_drives - 1] != NULL); rpc_bdev_raid_create(NULL, NULL); CU_ASSERT(g_rpc_err == 0); free_test_req(&req); verify_raid_bdev_present("raid2", true); raid_bdev = raid_bdev_find_by_name("raid2"); SPDK_CU_ASSERT_FATAL(raid_bdev != NULL); check_and_remove_raid_bdev(raid_bdev); create_raid_bdev_create_req(&req, "raid2", g_max_base_drives, false, 0, false); rpc_bdev_raid_create(NULL, NULL); CU_ASSERT(g_rpc_err == 0); free_test_req(&req); verify_raid_bdev_present("raid2", true); verify_raid_bdev_present("raid1", true); create_raid_bdev_delete_req(&destroy_req, "raid1", 0); rpc_bdev_raid_delete(NULL, NULL); create_raid_bdev_delete_req(&destroy_req, "raid2", 0); rpc_bdev_raid_delete(NULL, NULL); raid_bdev_exit(); base_bdevs_cleanup(); reset_globals(); } static void test_delete_raid_invalid_args(void) { struct rpc_bdev_raid_create construct_req; struct rpc_bdev_raid_delete destroy_req; set_globals(); CU_ASSERT(raid_bdev_init() == 0); verify_raid_bdev_present("raid1", false); create_raid_bdev_create_req(&construct_req, "raid1", 0, true, 0, false); rpc_bdev_raid_create(NULL, NULL); CU_ASSERT(g_rpc_err == 0); verify_raid_bdev(&construct_req, true, RAID_BDEV_STATE_ONLINE); free_test_req(&construct_req); create_raid_bdev_delete_req(&destroy_req, "raid2", 0); rpc_bdev_raid_delete(NULL, NULL); CU_ASSERT(g_rpc_err == 1); create_raid_bdev_delete_req(&destroy_req, "raid1", 1); rpc_bdev_raid_delete(NULL, NULL); CU_ASSERT(g_rpc_err == 1); free(destroy_req.name); verify_raid_bdev_present("raid1", true); create_raid_bdev_delete_req(&destroy_req, "raid1", 0); rpc_bdev_raid_delete(NULL, NULL); CU_ASSERT(g_rpc_err == 0); verify_raid_bdev_present("raid1", false); raid_bdev_exit(); base_bdevs_cleanup(); reset_globals(); } static void test_io_channel(void) { struct rpc_bdev_raid_create req; struct rpc_bdev_raid_delete destroy_req; struct raid_bdev *pbdev; struct spdk_io_channel *ch; struct raid_bdev_io_channel *ch_ctx; set_globals(); CU_ASSERT(raid_bdev_init() == 0); create_raid_bdev_create_req(&req, "raid1", 0, true, 0, false); verify_raid_bdev_present("raid1", false); rpc_bdev_raid_create(NULL, NULL); CU_ASSERT(g_rpc_err == 0); verify_raid_bdev(&req, true, RAID_BDEV_STATE_ONLINE); TAILQ_FOREACH(pbdev, &g_raid_bdev_list, global_link) { if (strcmp(pbdev->bdev.name, "raid1") == 0) { break; } } CU_ASSERT(pbdev != NULL); ch = spdk_get_io_channel(pbdev); SPDK_CU_ASSERT_FATAL(ch != NULL); ch_ctx = spdk_io_channel_get_ctx(ch); SPDK_CU_ASSERT_FATAL(ch_ctx != NULL); free_test_req(&req); spdk_put_io_channel(ch); create_raid_bdev_delete_req(&destroy_req, "raid1", 0); rpc_bdev_raid_delete(NULL, NULL); CU_ASSERT(g_rpc_err == 0); verify_raid_bdev_present("raid1", false); raid_bdev_exit(); base_bdevs_cleanup(); reset_globals(); } static void test_write_io(void) { struct rpc_bdev_raid_create req; struct rpc_bdev_raid_delete destroy_req; struct raid_bdev *pbdev; struct spdk_io_channel *ch; struct raid_bdev_io_channel *ch_ctx; uint8_t i; struct spdk_bdev_io *bdev_io; uint64_t io_len; uint64_t lba = 0; set_globals(); CU_ASSERT(raid_bdev_init() == 0); create_raid_bdev_create_req(&req, "raid1", 0, true, 0, false); verify_raid_bdev_present("raid1", false); rpc_bdev_raid_create(NULL, NULL); CU_ASSERT(g_rpc_err == 0); verify_raid_bdev(&req, true, RAID_BDEV_STATE_ONLINE); TAILQ_FOREACH(pbdev, &g_raid_bdev_list, global_link) { if (strcmp(pbdev->bdev.name, "raid1") == 0) { break; } } CU_ASSERT(pbdev != NULL); ch = spdk_get_io_channel(pbdev); SPDK_CU_ASSERT_FATAL(ch != NULL); ch_ctx = spdk_io_channel_get_ctx(ch); SPDK_CU_ASSERT_FATAL(ch_ctx != NULL); /* test 2 IO sizes based on global strip size set earlier */ for (i = 0; i < 2; i++) { bdev_io = calloc(1, sizeof(struct spdk_bdev_io) + sizeof(struct raid_bdev_io)); SPDK_CU_ASSERT_FATAL(bdev_io != NULL); io_len = (g_strip_size / 2) << i; bdev_io_initialize(bdev_io, ch, &pbdev->bdev, lba, io_len, SPDK_BDEV_IO_TYPE_WRITE); lba += g_strip_size; memset(g_io_output, 0, ((g_max_io_size / g_strip_size) + 1) * sizeof(struct io_output)); g_io_output_index = 0; generate_dif(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt, bdev_io->u.bdev.md_buf, bdev_io->u.bdev.offset_blocks, bdev_io->u.bdev.num_blocks, bdev_io->bdev); raid_bdev_submit_request(ch, bdev_io); verify_io(bdev_io, req.base_bdevs.num_base_bdevs, ch_ctx, pbdev, g_child_io_status_flag); bdev_io_cleanup(bdev_io); } free_test_req(&req); spdk_put_io_channel(ch); create_raid_bdev_delete_req(&destroy_req, "raid1", 0); rpc_bdev_raid_delete(NULL, NULL); CU_ASSERT(g_rpc_err == 0); verify_raid_bdev_present("raid1", false); raid_bdev_exit(); base_bdevs_cleanup(); reset_globals(); } static void test_read_io(void) { struct rpc_bdev_raid_create req; struct rpc_bdev_raid_delete destroy_req; struct raid_bdev *pbdev; struct spdk_io_channel *ch; struct raid_bdev_io_channel *ch_ctx; uint8_t i; struct spdk_bdev_io *bdev_io; uint64_t io_len; uint64_t lba; set_globals(); CU_ASSERT(raid_bdev_init() == 0); verify_raid_bdev_present("raid1", false); create_raid_bdev_create_req(&req, "raid1", 0, true, 0, false); rpc_bdev_raid_create(NULL, NULL); CU_ASSERT(g_rpc_err == 0); verify_raid_bdev(&req, true, RAID_BDEV_STATE_ONLINE); TAILQ_FOREACH(pbdev, &g_raid_bdev_list, global_link) { if (strcmp(pbdev->bdev.name, "raid1") == 0) { break; } } CU_ASSERT(pbdev != NULL); ch = spdk_get_io_channel(pbdev); SPDK_CU_ASSERT_FATAL(ch != NULL); ch_ctx = spdk_io_channel_get_ctx(ch); SPDK_CU_ASSERT_FATAL(ch_ctx != NULL); /* test 2 IO sizes based on global strip size set earlier */ lba = 0; for (i = 0; i < 2; i++) { bdev_io = calloc(1, sizeof(struct spdk_bdev_io) + sizeof(struct raid_bdev_io)); SPDK_CU_ASSERT_FATAL(bdev_io != NULL); io_len = (g_strip_size / 2) << i; bdev_io_initialize(bdev_io, ch, &pbdev->bdev, lba, io_len, SPDK_BDEV_IO_TYPE_READ); lba += g_strip_size; memset(g_io_output, 0, ((g_max_io_size / g_strip_size) + 1) * sizeof(struct io_output)); g_io_output_index = 0; raid_bdev_submit_request(ch, bdev_io); verify_io(bdev_io, req.base_bdevs.num_base_bdevs, ch_ctx, pbdev, g_child_io_status_flag); bdev_io_cleanup(bdev_io); } free_test_req(&req); spdk_put_io_channel(ch); create_raid_bdev_delete_req(&destroy_req, "raid1", 0); rpc_bdev_raid_delete(NULL, NULL); CU_ASSERT(g_rpc_err == 0); verify_raid_bdev_present("raid1", false); raid_bdev_exit(); base_bdevs_cleanup(); reset_globals(); } static void raid_bdev_io_generate_by_strips(uint64_t n_strips) { uint64_t lba; uint64_t nblocks; uint64_t start_offset; uint64_t end_offset; uint64_t offsets_in_strip[3]; uint64_t start_bdev_idx; uint64_t start_bdev_offset; uint64_t start_bdev_idxs[3]; int i, j, l; /* 3 different situations of offset in strip */ offsets_in_strip[0] = 0; offsets_in_strip[1] = g_strip_size >> 1; offsets_in_strip[2] = g_strip_size - 1; /* 3 different situations of start_bdev_idx */ start_bdev_idxs[0] = 0; start_bdev_idxs[1] = g_max_base_drives >> 1; start_bdev_idxs[2] = g_max_base_drives - 1; /* consider different offset in strip */ for (i = 0; i < 3; i++) { start_offset = offsets_in_strip[i]; for (j = 0; j < 3; j++) { end_offset = offsets_in_strip[j]; if (n_strips == 1 && start_offset > end_offset) { continue; } /* consider at which base_bdev lba is started. */ for (l = 0; l < 3; l++) { start_bdev_idx = start_bdev_idxs[l]; start_bdev_offset = start_bdev_idx * g_strip_size; lba = g_lba_offset + start_bdev_offset + start_offset; nblocks = (n_strips - 1) * g_strip_size + end_offset - start_offset + 1; g_io_ranges[g_io_range_idx].lba = lba; g_io_ranges[g_io_range_idx].nblocks = nblocks; SPDK_CU_ASSERT_FATAL(g_io_range_idx < MAX_TEST_IO_RANGE); g_io_range_idx++; } } } } static void raid_bdev_io_generate(void) { uint64_t n_strips; uint64_t n_strips_span = g_max_base_drives; uint64_t n_strips_times[5] = {g_max_base_drives + 1, g_max_base_drives * 2 - 1, g_max_base_drives * 2, g_max_base_drives * 3, g_max_base_drives * 4 }; uint32_t i; g_io_range_idx = 0; /* consider different number of strips from 1 to strips spanned base bdevs, * and even to times of strips spanned base bdevs */ for (n_strips = 1; n_strips < n_strips_span; n_strips++) { raid_bdev_io_generate_by_strips(n_strips); } for (i = 0; i < SPDK_COUNTOF(n_strips_times); i++) { n_strips = n_strips_times[i]; raid_bdev_io_generate_by_strips(n_strips); } } static void test_unmap_io(void) { struct rpc_bdev_raid_create req; struct rpc_bdev_raid_delete destroy_req; struct raid_bdev *pbdev; struct spdk_io_channel *ch; struct raid_bdev_io_channel *ch_ctx; struct spdk_bdev_io *bdev_io; uint32_t count; uint64_t io_len; uint64_t lba; set_globals(); CU_ASSERT(raid_bdev_init() == 0); verify_raid_bdev_present("raid1", false); create_raid_bdev_create_req(&req, "raid1", 0, true, 0, false); rpc_bdev_raid_create(NULL, NULL); CU_ASSERT(g_rpc_err == 0); verify_raid_bdev(&req, true, RAID_BDEV_STATE_ONLINE); TAILQ_FOREACH(pbdev, &g_raid_bdev_list, global_link) { if (strcmp(pbdev->bdev.name, "raid1") == 0) { break; } } CU_ASSERT(pbdev != NULL); ch = spdk_get_io_channel(pbdev); SPDK_CU_ASSERT_FATAL(ch != NULL); ch_ctx = spdk_io_channel_get_ctx(ch); SPDK_CU_ASSERT_FATAL(ch_ctx != NULL); CU_ASSERT(raid_bdev_io_type_supported(pbdev, SPDK_BDEV_IO_TYPE_UNMAP) == true); CU_ASSERT(raid_bdev_io_type_supported(pbdev, SPDK_BDEV_IO_TYPE_FLUSH) == true); raid_bdev_io_generate(); for (count = 0; count < g_io_range_idx; count++) { bdev_io = calloc(1, sizeof(struct spdk_bdev_io) + sizeof(struct raid_bdev_io)); SPDK_CU_ASSERT_FATAL(bdev_io != NULL); io_len = g_io_ranges[count].nblocks; lba = g_io_ranges[count].lba; bdev_io_initialize(bdev_io, ch, &pbdev->bdev, lba, io_len, SPDK_BDEV_IO_TYPE_UNMAP); memset(g_io_output, 0, g_max_base_drives * sizeof(struct io_output)); g_io_output_index = 0; raid_bdev_submit_request(ch, bdev_io); verify_io_without_payload(bdev_io, req.base_bdevs.num_base_bdevs, ch_ctx, pbdev, g_child_io_status_flag); bdev_io_cleanup(bdev_io); } free_test_req(&req); spdk_put_io_channel(ch); create_raid_bdev_delete_req(&destroy_req, "raid1", 0); rpc_bdev_raid_delete(NULL, NULL); CU_ASSERT(g_rpc_err == 0); verify_raid_bdev_present("raid1", false); raid_bdev_exit(); base_bdevs_cleanup(); reset_globals(); } /* Test IO failures */ static void test_io_failure(void) { struct rpc_bdev_raid_create req; struct rpc_bdev_raid_delete destroy_req; struct raid_bdev *pbdev; struct spdk_io_channel *ch; struct raid_bdev_io_channel *ch_ctx; struct spdk_bdev_io *bdev_io; uint32_t count; uint64_t io_len; uint64_t lba; set_globals(); CU_ASSERT(raid_bdev_init() == 0); verify_raid_bdev_present("raid1", false); create_raid_bdev_create_req(&req, "raid1", 0, true, 0, false); rpc_bdev_raid_create(NULL, NULL); CU_ASSERT(g_rpc_err == 0); verify_raid_bdev(&req, true, RAID_BDEV_STATE_ONLINE); TAILQ_FOREACH(pbdev, &g_raid_bdev_list, global_link) { if (strcmp(pbdev->bdev.name, req.name) == 0) { break; } } CU_ASSERT(pbdev != NULL); ch = spdk_get_io_channel(pbdev); SPDK_CU_ASSERT_FATAL(ch != NULL); ch_ctx = spdk_io_channel_get_ctx(ch); SPDK_CU_ASSERT_FATAL(ch_ctx != NULL); lba = 0; for (count = 0; count < 1; count++) { bdev_io = calloc(1, sizeof(struct spdk_bdev_io) + sizeof(struct raid_bdev_io)); SPDK_CU_ASSERT_FATAL(bdev_io != NULL); io_len = (g_strip_size / 2) << count; bdev_io_initialize(bdev_io, ch, &pbdev->bdev, lba, io_len, SPDK_BDEV_IO_TYPE_INVALID); lba += g_strip_size; memset(g_io_output, 0, ((g_max_io_size / g_strip_size) + 1) * sizeof(struct io_output)); g_io_output_index = 0; raid_bdev_submit_request(ch, bdev_io); verify_io(bdev_io, req.base_bdevs.num_base_bdevs, ch_ctx, pbdev, INVALID_IO_SUBMIT); bdev_io_cleanup(bdev_io); } lba = 0; g_child_io_status_flag = false; for (count = 0; count < 1; count++) { bdev_io = calloc(1, sizeof(struct spdk_bdev_io) + sizeof(struct raid_bdev_io)); SPDK_CU_ASSERT_FATAL(bdev_io != NULL); io_len = (g_strip_size / 2) << count; bdev_io_initialize(bdev_io, ch, &pbdev->bdev, lba, io_len, SPDK_BDEV_IO_TYPE_WRITE); lba += g_strip_size; memset(g_io_output, 0, ((g_max_io_size / g_strip_size) + 1) * sizeof(struct io_output)); g_io_output_index = 0; generate_dif(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt, bdev_io->u.bdev.md_buf, bdev_io->u.bdev.offset_blocks, bdev_io->u.bdev.num_blocks, bdev_io->bdev); raid_bdev_submit_request(ch, bdev_io); verify_io(bdev_io, req.base_bdevs.num_base_bdevs, ch_ctx, pbdev, g_child_io_status_flag); bdev_io_cleanup(bdev_io); } free_test_req(&req); spdk_put_io_channel(ch); create_raid_bdev_delete_req(&destroy_req, "raid1", 0); rpc_bdev_raid_delete(NULL, NULL); CU_ASSERT(g_rpc_err == 0); verify_raid_bdev_present("raid1", false); raid_bdev_exit(); base_bdevs_cleanup(); reset_globals(); } /* Test reset IO */ static void test_reset_io(void) { struct rpc_bdev_raid_create req; struct rpc_bdev_raid_delete destroy_req; struct raid_bdev *pbdev; struct spdk_io_channel *ch; struct raid_bdev_io_channel *ch_ctx; struct spdk_bdev_io *bdev_io; set_globals(); CU_ASSERT(raid_bdev_init() == 0); verify_raid_bdev_present("raid1", false); create_raid_bdev_create_req(&req, "raid1", 0, true, 0, false); rpc_bdev_raid_create(NULL, NULL); CU_ASSERT(g_rpc_err == 0); verify_raid_bdev(&req, true, RAID_BDEV_STATE_ONLINE); TAILQ_FOREACH(pbdev, &g_raid_bdev_list, global_link) { if (strcmp(pbdev->bdev.name, "raid1") == 0) { break; } } CU_ASSERT(pbdev != NULL); ch = spdk_get_io_channel(pbdev); SPDK_CU_ASSERT_FATAL(ch != NULL); ch_ctx = spdk_io_channel_get_ctx(ch); SPDK_CU_ASSERT_FATAL(ch_ctx != NULL); g_bdev_io_submit_status = 0; g_child_io_status_flag = true; CU_ASSERT(raid_bdev_io_type_supported(pbdev, SPDK_BDEV_IO_TYPE_RESET) == true); bdev_io = calloc(1, sizeof(struct spdk_bdev_io) + sizeof(struct raid_bdev_io)); SPDK_CU_ASSERT_FATAL(bdev_io != NULL); bdev_io_initialize(bdev_io, ch, &pbdev->bdev, 0, 1, SPDK_BDEV_IO_TYPE_RESET); memset(g_io_output, 0, g_max_base_drives * sizeof(struct io_output)); g_io_output_index = 0; raid_bdev_submit_request(ch, bdev_io); verify_reset_io(bdev_io, req.base_bdevs.num_base_bdevs, ch_ctx, pbdev, true); bdev_io_cleanup(bdev_io); free_test_req(&req); spdk_put_io_channel(ch); create_raid_bdev_delete_req(&destroy_req, "raid1", 0); rpc_bdev_raid_delete(NULL, NULL); CU_ASSERT(g_rpc_err == 0); verify_raid_bdev_present("raid1", false); raid_bdev_exit(); base_bdevs_cleanup(); reset_globals(); } /* Create multiple raids, destroy raids without IO, get_raids related tests */ static void test_multi_raid_no_io(void) { struct rpc_bdev_raid_create *construct_req; struct rpc_bdev_raid_delete destroy_req; struct rpc_bdev_raid_get_bdevs get_raids_req; uint8_t i; char name[16]; uint8_t bbdev_idx = 0; set_globals(); construct_req = calloc(MAX_RAIDS, sizeof(struct rpc_bdev_raid_create)); SPDK_CU_ASSERT_FATAL(construct_req != NULL); CU_ASSERT(raid_bdev_init() == 0); for (i = 0; i < g_max_raids; i++) { snprintf(name, 16, "%s%u", "raid", i); verify_raid_bdev_present(name, false); create_raid_bdev_create_req(&construct_req[i], name, bbdev_idx, true, 0, false); bbdev_idx += g_max_base_drives; rpc_bdev_raid_create(NULL, NULL); CU_ASSERT(g_rpc_err == 0); verify_raid_bdev(&construct_req[i], true, RAID_BDEV_STATE_ONLINE); } create_get_raids_req(&get_raids_req, "all", 0); rpc_bdev_raid_get_bdevs(NULL, NULL); CU_ASSERT(g_rpc_err == 0); verify_get_raids(construct_req, g_max_raids, g_get_raids_output, g_get_raids_count); for (i = 0; i < g_get_raids_count; i++) { free(g_get_raids_output[i]); } create_get_raids_req(&get_raids_req, "online", 0); rpc_bdev_raid_get_bdevs(NULL, NULL); CU_ASSERT(g_rpc_err == 0); verify_get_raids(construct_req, g_max_raids, g_get_raids_output, g_get_raids_count); for (i = 0; i < g_get_raids_count; i++) { free(g_get_raids_output[i]); } create_get_raids_req(&get_raids_req, "configuring", 0); rpc_bdev_raid_get_bdevs(NULL, NULL); CU_ASSERT(g_rpc_err == 0); CU_ASSERT(g_get_raids_count == 0); create_get_raids_req(&get_raids_req, "offline", 0); rpc_bdev_raid_get_bdevs(NULL, NULL); CU_ASSERT(g_rpc_err == 0); CU_ASSERT(g_get_raids_count == 0); create_get_raids_req(&get_raids_req, "invalid_category", 0); rpc_bdev_raid_get_bdevs(NULL, NULL); CU_ASSERT(g_rpc_err == 1); CU_ASSERT(g_get_raids_count == 0); create_get_raids_req(&get_raids_req, "all", 1); rpc_bdev_raid_get_bdevs(NULL, NULL); CU_ASSERT(g_rpc_err == 1); free(get_raids_req.category); CU_ASSERT(g_get_raids_count == 0); create_get_raids_req(&get_raids_req, "all", 0); rpc_bdev_raid_get_bdevs(NULL, NULL); CU_ASSERT(g_rpc_err == 0); CU_ASSERT(g_get_raids_count == g_max_raids); for (i = 0; i < g_get_raids_count; i++) { free(g_get_raids_output[i]); } for (i = 0; i < g_max_raids; i++) { SPDK_CU_ASSERT_FATAL(construct_req[i].name != NULL); snprintf(name, 16, "%s", construct_req[i].name); create_raid_bdev_delete_req(&destroy_req, name, 0); rpc_bdev_raid_delete(NULL, NULL); CU_ASSERT(g_rpc_err == 0); verify_raid_bdev_present(name, false); } raid_bdev_exit(); for (i = 0; i < g_max_raids; i++) { free_test_req(&construct_req[i]); } free(construct_req); base_bdevs_cleanup(); reset_globals(); } /* Create multiple raids, fire IOs on raids */ static void test_multi_raid_with_io(void) { struct rpc_bdev_raid_create *construct_req; struct rpc_bdev_raid_delete destroy_req; uint8_t i; char name[16]; uint8_t bbdev_idx = 0; struct raid_bdev *pbdev; struct spdk_io_channel **channels; struct spdk_bdev_io *bdev_io; uint64_t io_len; uint64_t lba = 0; int16_t iotype; set_globals(); construct_req = calloc(g_max_raids, sizeof(struct rpc_bdev_raid_create)); SPDK_CU_ASSERT_FATAL(construct_req != NULL); CU_ASSERT(raid_bdev_init() == 0); channels = calloc(g_max_raids, sizeof(*channels)); SPDK_CU_ASSERT_FATAL(channels != NULL); for (i = 0; i < g_max_raids; i++) { snprintf(name, 16, "%s%u", "raid", i); verify_raid_bdev_present(name, false); create_raid_bdev_create_req(&construct_req[i], name, bbdev_idx, true, 0, false); bbdev_idx += g_max_base_drives; rpc_bdev_raid_create(NULL, NULL); CU_ASSERT(g_rpc_err == 0); verify_raid_bdev(&construct_req[i], true, RAID_BDEV_STATE_ONLINE); TAILQ_FOREACH(pbdev, &g_raid_bdev_list, global_link) { if (strcmp(pbdev->bdev.name, construct_req[i].name) == 0) { break; } } CU_ASSERT(pbdev != NULL); channels[i] = spdk_get_io_channel(pbdev); SPDK_CU_ASSERT_FATAL(channels[i] != NULL); } /* This will perform a write on the first raid and a read on the second. It can be * expanded in the future to perform r/w on each raid device in the event that * multiple raid levels are supported. */ for (i = 0; i < g_max_raids; i++) { struct spdk_io_channel *ch = channels[i]; struct raid_bdev_io_channel *ch_ctx = spdk_io_channel_get_ctx(ch); SPDK_CU_ASSERT_FATAL(ch_ctx != NULL); bdev_io = calloc(1, sizeof(struct spdk_bdev_io) + sizeof(struct raid_bdev_io)); SPDK_CU_ASSERT_FATAL(bdev_io != NULL); io_len = g_strip_size; iotype = (i) ? SPDK_BDEV_IO_TYPE_WRITE : SPDK_BDEV_IO_TYPE_READ; memset(g_io_output, 0, ((g_max_io_size / g_strip_size) + 1) * sizeof(struct io_output)); g_io_output_index = 0; TAILQ_FOREACH(pbdev, &g_raid_bdev_list, global_link) { if (strcmp(pbdev->bdev.name, construct_req[i].name) == 0) { break; } } bdev_io_initialize(bdev_io, ch, &pbdev->bdev, lba, io_len, iotype); CU_ASSERT(pbdev != NULL); if (iotype == SPDK_BDEV_IO_TYPE_WRITE) { generate_dif(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt, bdev_io->u.bdev.md_buf, bdev_io->u.bdev.offset_blocks, bdev_io->u.bdev.num_blocks, bdev_io->bdev); } raid_bdev_submit_request(ch, bdev_io); verify_io(bdev_io, g_max_base_drives, ch_ctx, pbdev, g_child_io_status_flag); bdev_io_cleanup(bdev_io); } for (i = 0; i < g_max_raids; i++) { spdk_put_io_channel(channels[i]); snprintf(name, 16, "%s", construct_req[i].name); create_raid_bdev_delete_req(&destroy_req, name, 0); rpc_bdev_raid_delete(NULL, NULL); CU_ASSERT(g_rpc_err == 0); verify_raid_bdev_present(name, false); } raid_bdev_exit(); for (i = 0; i < g_max_raids; i++) { free_test_req(&construct_req[i]); } free(construct_req); free(channels); base_bdevs_cleanup(); reset_globals(); } static void test_io_type_supported(void) { CU_ASSERT(raid_bdev_io_type_supported(NULL, SPDK_BDEV_IO_TYPE_READ) == true); CU_ASSERT(raid_bdev_io_type_supported(NULL, SPDK_BDEV_IO_TYPE_WRITE) == true); CU_ASSERT(raid_bdev_io_type_supported(NULL, SPDK_BDEV_IO_TYPE_INVALID) == false); } static void test_raid_json_dump_info(void) { struct rpc_bdev_raid_create req; struct rpc_bdev_raid_delete destroy_req; struct raid_bdev *pbdev; set_globals(); CU_ASSERT(raid_bdev_init() == 0); verify_raid_bdev_present("raid1", false); create_raid_bdev_create_req(&req, "raid1", 0, true, 0, false); rpc_bdev_raid_create(NULL, NULL); CU_ASSERT(g_rpc_err == 0); verify_raid_bdev(&req, true, RAID_BDEV_STATE_ONLINE); TAILQ_FOREACH(pbdev, &g_raid_bdev_list, global_link) { if (strcmp(pbdev->bdev.name, "raid1") == 0) { break; } } CU_ASSERT(pbdev != NULL); CU_ASSERT(raid_bdev_dump_info_json(pbdev, NULL) == 0); free_test_req(&req); create_raid_bdev_delete_req(&destroy_req, "raid1", 0); rpc_bdev_raid_delete(NULL, NULL); CU_ASSERT(g_rpc_err == 0); verify_raid_bdev_present("raid1", false); raid_bdev_exit(); base_bdevs_cleanup(); reset_globals(); } static void test_context_size(void) { CU_ASSERT(raid_bdev_get_ctx_size() == sizeof(struct raid_bdev_io)); } static void test_raid_level_conversions(void) { const char *raid_str; CU_ASSERT(raid_bdev_str_to_level("abcd123") == INVALID_RAID_LEVEL); CU_ASSERT(raid_bdev_str_to_level("0") == RAID0); CU_ASSERT(raid_bdev_str_to_level("raid0") == RAID0); CU_ASSERT(raid_bdev_str_to_level("RAID0") == RAID0); raid_str = raid_bdev_level_to_str(INVALID_RAID_LEVEL); CU_ASSERT(raid_str != NULL && strlen(raid_str) == 0); raid_str = raid_bdev_level_to_str(1234); CU_ASSERT(raid_str != NULL && strlen(raid_str) == 0); raid_str = raid_bdev_level_to_str(RAID0); CU_ASSERT(raid_str != NULL && strcmp(raid_str, "raid0") == 0); } static void test_create_raid_superblock(void) { struct rpc_bdev_raid_create req; struct rpc_bdev_raid_delete delete_req; set_globals(); CU_ASSERT(raid_bdev_init() == 0); verify_raid_bdev_present("raid1", false); create_raid_bdev_create_req(&req, "raid1", 0, true, 0, true); rpc_bdev_raid_create(NULL, NULL); CU_ASSERT(g_rpc_err == 0); verify_raid_bdev(&req, true, RAID_BDEV_STATE_ONLINE); free_test_req(&req); create_raid_bdev_delete_req(&delete_req, "raid1", 0); rpc_bdev_raid_delete(NULL, NULL); CU_ASSERT(g_rpc_err == 0); raid_bdev_exit(); base_bdevs_cleanup(); reset_globals(); } static void complete_process_request(void *ctx) { struct raid_bdev_process_request *process_req = ctx; raid_bdev_process_request_complete(process_req, 0); } static int submit_process_request(struct raid_bdev_process_request *process_req, struct raid_bdev_io_channel *raid_ch) { struct raid_bdev *raid_bdev = spdk_io_channel_get_io_device(spdk_io_channel_from_ctx(raid_ch)); *(uint64_t *)raid_bdev->module_private += process_req->num_blocks; spdk_thread_send_msg(spdk_get_thread(), complete_process_request, process_req); return process_req->num_blocks; } static void test_raid_process(void) { struct rpc_bdev_raid_create req; struct rpc_bdev_raid_delete destroy_req; struct raid_bdev *pbdev; struct spdk_bdev *base_bdev; struct spdk_thread *process_thread; uint64_t num_blocks_processed = 0; set_globals(); CU_ASSERT(raid_bdev_init() == 0); create_raid_bdev_create_req(&req, "raid1", 0, true, 0, false); verify_raid_bdev_present("raid1", false); TAILQ_FOREACH(base_bdev, &g_bdev_list, internal.link) { base_bdev->blockcnt = 128; } rpc_bdev_raid_create(NULL, NULL); CU_ASSERT(g_rpc_err == 0); verify_raid_bdev(&req, true, RAID_BDEV_STATE_ONLINE); free_test_req(&req); TAILQ_FOREACH(pbdev, &g_raid_bdev_list, global_link) { if (strcmp(pbdev->bdev.name, "raid1") == 0) { break; } } CU_ASSERT(pbdev != NULL); pbdev->module->submit_process_request = submit_process_request; pbdev->module_private = &num_blocks_processed; CU_ASSERT(raid_bdev_start_rebuild(&pbdev->base_bdev_info[0]) == 0); poll_threads(); SPDK_CU_ASSERT_FATAL(pbdev->process != NULL); process_thread = spdk_thread_get_by_id(spdk_thread_get_id(spdk_get_thread()) + 1); while (spdk_thread_poll(process_thread, 0, 0) > 0) { poll_threads(); } CU_ASSERT(pbdev->process == NULL); CU_ASSERT(num_blocks_processed == pbdev->bdev.blockcnt); poll_threads(); create_raid_bdev_delete_req(&destroy_req, "raid1", 0); rpc_bdev_raid_delete(NULL, NULL); CU_ASSERT(g_rpc_err == 0); verify_raid_bdev_present("raid1", false); raid_bdev_exit(); base_bdevs_cleanup(); reset_globals(); } static void test_raid_io_split(void) { struct rpc_bdev_raid_create req; struct rpc_bdev_raid_delete destroy_req; struct raid_bdev *pbdev; struct spdk_io_channel *ch; struct raid_bdev_io_channel *raid_ch; struct spdk_bdev_io *bdev_io; struct raid_bdev_io *raid_io; uint64_t split_offset; struct iovec iovs_orig[4]; struct raid_bdev_process process = { }; set_globals(); CU_ASSERT(raid_bdev_init() == 0); verify_raid_bdev_present("raid1", false); create_raid_bdev_create_req(&req, "raid1", 0, true, 0, false); rpc_bdev_raid_create(NULL, NULL); CU_ASSERT(g_rpc_err == 0); verify_raid_bdev(&req, true, RAID_BDEV_STATE_ONLINE); TAILQ_FOREACH(pbdev, &g_raid_bdev_list, global_link) { if (strcmp(pbdev->bdev.name, "raid1") == 0) { break; } } CU_ASSERT(pbdev != NULL); pbdev->bdev.md_len = 8; process.raid_bdev = pbdev; process.target = &pbdev->base_bdev_info[0]; pbdev->process = &process; ch = spdk_get_io_channel(pbdev); SPDK_CU_ASSERT_FATAL(ch != NULL); raid_ch = spdk_io_channel_get_ctx(ch); g_bdev_io_defer_completion = true; /* test split of bdev_io with 1 iovec */ bdev_io = calloc(1, sizeof(struct spdk_bdev_io) + sizeof(struct raid_bdev_io)); SPDK_CU_ASSERT_FATAL(bdev_io != NULL); raid_io = (struct raid_bdev_io *)bdev_io->driver_ctx; bdev_io_initialize(bdev_io, ch, &pbdev->bdev, 0, g_strip_size, SPDK_BDEV_IO_TYPE_WRITE); memcpy(iovs_orig, bdev_io->u.bdev.iovs, sizeof(*iovs_orig) * bdev_io->u.bdev.iovcnt); memset(g_io_output, 0, ((g_max_io_size / g_strip_size) + 1) * sizeof(struct io_output)); g_io_output_index = 0; split_offset = 1; raid_ch->process.offset = split_offset; generate_dif(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt, bdev_io->u.bdev.md_buf, bdev_io->u.bdev.offset_blocks, bdev_io->u.bdev.num_blocks, bdev_io->bdev); raid_bdev_submit_request(ch, bdev_io); CU_ASSERT(raid_io->num_blocks == g_strip_size - split_offset); CU_ASSERT(raid_io->offset_blocks == split_offset); CU_ASSERT(raid_io->iovcnt == 1); CU_ASSERT(raid_io->iovs == bdev_io->u.bdev.iovs); CU_ASSERT(raid_io->iovs == raid_io->split.iov); CU_ASSERT(raid_io->iovs[0].iov_base == iovs_orig->iov_base + split_offset * g_block_len); CU_ASSERT(raid_io->iovs[0].iov_len == iovs_orig->iov_len - split_offset * g_block_len); if (spdk_bdev_get_dif_type(&pbdev->bdev) != SPDK_DIF_DISABLE && !spdk_bdev_is_md_interleaved(&pbdev->bdev)) { CU_ASSERT(raid_io->md_buf == bdev_io->u.bdev.md_buf + split_offset * pbdev->bdev.md_len); } complete_deferred_ios(); CU_ASSERT(raid_io->num_blocks == split_offset); CU_ASSERT(raid_io->offset_blocks == 0); CU_ASSERT(raid_io->iovcnt == 1); CU_ASSERT(raid_io->iovs[0].iov_base == iovs_orig->iov_base); CU_ASSERT(raid_io->iovs[0].iov_len == split_offset * g_block_len); if (spdk_bdev_get_dif_type(&pbdev->bdev) != SPDK_DIF_DISABLE && !spdk_bdev_is_md_interleaved(&pbdev->bdev)) { CU_ASSERT(raid_io->md_buf == bdev_io->u.bdev.md_buf); } complete_deferred_ios(); CU_ASSERT(raid_io->num_blocks == g_strip_size); CU_ASSERT(raid_io->offset_blocks == 0); CU_ASSERT(raid_io->iovcnt == 1); CU_ASSERT(raid_io->iovs[0].iov_base == iovs_orig->iov_base); CU_ASSERT(raid_io->iovs[0].iov_len == iovs_orig->iov_len); if (spdk_bdev_get_dif_type(&pbdev->bdev) != SPDK_DIF_DISABLE && !spdk_bdev_is_md_interleaved(&pbdev->bdev)) { CU_ASSERT(raid_io->md_buf == bdev_io->u.bdev.md_buf); } CU_ASSERT(g_io_comp_status == g_child_io_status_flag); CU_ASSERT(g_io_output_index == 2); CU_ASSERT(g_io_output[0].offset_blocks == split_offset); CU_ASSERT(g_io_output[0].num_blocks == g_strip_size - split_offset); CU_ASSERT(g_io_output[1].offset_blocks == 0); CU_ASSERT(g_io_output[1].num_blocks == split_offset); bdev_io_cleanup(bdev_io); /* test split of bdev_io with 4 iovecs */ bdev_io = calloc(1, sizeof(struct spdk_bdev_io) + sizeof(struct raid_bdev_io)); SPDK_CU_ASSERT_FATAL(bdev_io != NULL); raid_io = (struct raid_bdev_io *)bdev_io->driver_ctx; _bdev_io_initialize(bdev_io, ch, &pbdev->bdev, 0, g_strip_size, SPDK_BDEV_IO_TYPE_WRITE, 4, g_strip_size / 4 * g_block_len); memcpy(iovs_orig, bdev_io->u.bdev.iovs, sizeof(*iovs_orig) * bdev_io->u.bdev.iovcnt); memset(g_io_output, 0, ((g_max_io_size / g_strip_size) + 1) * sizeof(struct io_output)); g_io_output_index = 0; split_offset = 1; /* split at the first iovec */ raid_ch->process.offset = split_offset; generate_dif(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt, bdev_io->u.bdev.md_buf, bdev_io->u.bdev.offset_blocks, bdev_io->u.bdev.num_blocks, bdev_io->bdev); raid_bdev_submit_request(ch, bdev_io); CU_ASSERT(raid_io->num_blocks == g_strip_size - split_offset); CU_ASSERT(raid_io->offset_blocks == split_offset); CU_ASSERT(raid_io->iovcnt == 4); CU_ASSERT(raid_io->split.iov == &bdev_io->u.bdev.iovs[0]); CU_ASSERT(raid_io->iovs == &bdev_io->u.bdev.iovs[0]); CU_ASSERT(raid_io->iovs[0].iov_base == iovs_orig[0].iov_base + g_block_len); CU_ASSERT(raid_io->iovs[0].iov_len == iovs_orig[0].iov_len - g_block_len); CU_ASSERT(memcmp(raid_io->iovs + 1, iovs_orig + 1, sizeof(*iovs_orig) * 3) == 0); if (spdk_bdev_get_dif_type(&pbdev->bdev) != SPDK_DIF_DISABLE && !spdk_bdev_is_md_interleaved(&pbdev->bdev)) { CU_ASSERT(raid_io->md_buf == bdev_io->u.bdev.md_buf + split_offset * pbdev->bdev.md_len); } complete_deferred_ios(); CU_ASSERT(raid_io->num_blocks == split_offset); CU_ASSERT(raid_io->offset_blocks == 0); CU_ASSERT(raid_io->iovcnt == 1); CU_ASSERT(raid_io->iovs == bdev_io->u.bdev.iovs); CU_ASSERT(raid_io->iovs[0].iov_base == iovs_orig[0].iov_base); CU_ASSERT(raid_io->iovs[0].iov_len == g_block_len); if (spdk_bdev_get_dif_type(&pbdev->bdev) != SPDK_DIF_DISABLE && !spdk_bdev_is_md_interleaved(&pbdev->bdev)) { CU_ASSERT(raid_io->md_buf == bdev_io->u.bdev.md_buf); } complete_deferred_ios(); CU_ASSERT(raid_io->num_blocks == g_strip_size); CU_ASSERT(raid_io->offset_blocks == 0); CU_ASSERT(raid_io->iovcnt == 4); CU_ASSERT(raid_io->iovs == bdev_io->u.bdev.iovs); CU_ASSERT(memcmp(raid_io->iovs, iovs_orig, sizeof(*iovs_orig) * raid_io->iovcnt) == 0); if (spdk_bdev_get_dif_type(&pbdev->bdev) != SPDK_DIF_DISABLE && !spdk_bdev_is_md_interleaved(&pbdev->bdev)) { CU_ASSERT(raid_io->md_buf == bdev_io->u.bdev.md_buf); } CU_ASSERT(g_io_comp_status == g_child_io_status_flag); CU_ASSERT(g_io_output_index == 2); CU_ASSERT(g_io_output[0].offset_blocks == split_offset); CU_ASSERT(g_io_output[0].num_blocks == g_strip_size - split_offset); CU_ASSERT(g_io_output[1].offset_blocks == 0); CU_ASSERT(g_io_output[1].num_blocks == split_offset); memset(g_io_output, 0, ((g_max_io_size / g_strip_size) + 1) * sizeof(struct io_output)); g_io_output_index = 0; split_offset = g_strip_size / 2; /* split exactly between second and third iovec */ raid_ch->process.offset = split_offset; raid_bdev_submit_request(ch, bdev_io); CU_ASSERT(raid_io->num_blocks == g_strip_size - split_offset); CU_ASSERT(raid_io->offset_blocks == split_offset); CU_ASSERT(raid_io->iovcnt == 2); CU_ASSERT(raid_io->split.iov == NULL); CU_ASSERT(raid_io->iovs == &bdev_io->u.bdev.iovs[2]); CU_ASSERT(memcmp(raid_io->iovs, iovs_orig + 2, sizeof(*iovs_orig) * raid_io->iovcnt) == 0); if (spdk_bdev_get_dif_type(&pbdev->bdev) != SPDK_DIF_DISABLE && !spdk_bdev_is_md_interleaved(&pbdev->bdev)) { CU_ASSERT(raid_io->md_buf == bdev_io->u.bdev.md_buf + split_offset * pbdev->bdev.md_len); } complete_deferred_ios(); CU_ASSERT(raid_io->num_blocks == split_offset); CU_ASSERT(raid_io->offset_blocks == 0); CU_ASSERT(raid_io->iovcnt == 2); CU_ASSERT(raid_io->iovs == bdev_io->u.bdev.iovs); CU_ASSERT(memcmp(raid_io->iovs, iovs_orig, sizeof(*iovs_orig) * raid_io->iovcnt) == 0); if (spdk_bdev_get_dif_type(&pbdev->bdev) != SPDK_DIF_DISABLE && !spdk_bdev_is_md_interleaved(&pbdev->bdev)) { CU_ASSERT(raid_io->md_buf == bdev_io->u.bdev.md_buf); } complete_deferred_ios(); CU_ASSERT(raid_io->num_blocks == g_strip_size); CU_ASSERT(raid_io->offset_blocks == 0); CU_ASSERT(raid_io->iovcnt == 4); CU_ASSERT(raid_io->iovs == bdev_io->u.bdev.iovs); CU_ASSERT(memcmp(raid_io->iovs, iovs_orig, sizeof(*iovs_orig) * raid_io->iovcnt) == 0); if (spdk_bdev_get_dif_type(&pbdev->bdev) != SPDK_DIF_DISABLE && !spdk_bdev_is_md_interleaved(&pbdev->bdev)) { CU_ASSERT(raid_io->md_buf == bdev_io->u.bdev.md_buf); } CU_ASSERT(g_io_comp_status == g_child_io_status_flag); CU_ASSERT(g_io_output_index == 2); CU_ASSERT(g_io_output[0].offset_blocks == split_offset); CU_ASSERT(g_io_output[0].num_blocks == g_strip_size - split_offset); CU_ASSERT(g_io_output[1].offset_blocks == 0); CU_ASSERT(g_io_output[1].num_blocks == split_offset); memset(g_io_output, 0, ((g_max_io_size / g_strip_size) + 1) * sizeof(struct io_output)); g_io_output_index = 0; split_offset = g_strip_size / 2 + 1; /* split at the third iovec */ raid_ch->process.offset = split_offset; raid_bdev_submit_request(ch, bdev_io); CU_ASSERT(raid_io->num_blocks == g_strip_size - split_offset); CU_ASSERT(raid_io->offset_blocks == split_offset); CU_ASSERT(raid_io->iovcnt == 2); CU_ASSERT(raid_io->split.iov == &bdev_io->u.bdev.iovs[2]); CU_ASSERT(raid_io->iovs == &bdev_io->u.bdev.iovs[2]); CU_ASSERT(raid_io->iovs[0].iov_base == iovs_orig[2].iov_base + g_block_len); CU_ASSERT(raid_io->iovs[0].iov_len == iovs_orig[2].iov_len - g_block_len); CU_ASSERT(raid_io->iovs[1].iov_base == iovs_orig[3].iov_base); CU_ASSERT(raid_io->iovs[1].iov_len == iovs_orig[3].iov_len); if (spdk_bdev_get_dif_type(&pbdev->bdev) != SPDK_DIF_DISABLE && !spdk_bdev_is_md_interleaved(&pbdev->bdev)) { CU_ASSERT(raid_io->md_buf == bdev_io->u.bdev.md_buf + split_offset * pbdev->bdev.md_len); } complete_deferred_ios(); CU_ASSERT(raid_io->num_blocks == split_offset); CU_ASSERT(raid_io->offset_blocks == 0); CU_ASSERT(raid_io->iovcnt == 3); CU_ASSERT(raid_io->iovs == bdev_io->u.bdev.iovs); CU_ASSERT(memcmp(raid_io->iovs, iovs_orig, sizeof(*iovs_orig) * 2) == 0); CU_ASSERT(raid_io->iovs[2].iov_base == iovs_orig[2].iov_base); CU_ASSERT(raid_io->iovs[2].iov_len == g_block_len); if (spdk_bdev_get_dif_type(&pbdev->bdev) != SPDK_DIF_DISABLE && !spdk_bdev_is_md_interleaved(&pbdev->bdev)) { CU_ASSERT(raid_io->md_buf == bdev_io->u.bdev.md_buf); } complete_deferred_ios(); CU_ASSERT(raid_io->num_blocks == g_strip_size); CU_ASSERT(raid_io->offset_blocks == 0); CU_ASSERT(raid_io->iovcnt == 4); CU_ASSERT(raid_io->iovs == bdev_io->u.bdev.iovs); CU_ASSERT(memcmp(raid_io->iovs, iovs_orig, sizeof(*iovs_orig) * raid_io->iovcnt) == 0); if (spdk_bdev_get_dif_type(&pbdev->bdev) != SPDK_DIF_DISABLE && !spdk_bdev_is_md_interleaved(&pbdev->bdev)) { CU_ASSERT(raid_io->md_buf == bdev_io->u.bdev.md_buf); } CU_ASSERT(g_io_comp_status == g_child_io_status_flag); CU_ASSERT(g_io_output_index == 2); CU_ASSERT(g_io_output[0].offset_blocks == split_offset); CU_ASSERT(g_io_output[0].num_blocks == g_strip_size - split_offset); CU_ASSERT(g_io_output[1].offset_blocks == 0); CU_ASSERT(g_io_output[1].num_blocks == split_offset); memset(g_io_output, 0, ((g_max_io_size / g_strip_size) + 1) * sizeof(struct io_output)); g_io_output_index = 0; split_offset = g_strip_size - 1; /* split at the last iovec */ raid_ch->process.offset = split_offset; raid_bdev_submit_request(ch, bdev_io); CU_ASSERT(raid_io->num_blocks == g_strip_size - split_offset); CU_ASSERT(raid_io->offset_blocks == split_offset); CU_ASSERT(raid_io->iovcnt == 1); CU_ASSERT(raid_io->split.iov == &bdev_io->u.bdev.iovs[3]); CU_ASSERT(raid_io->iovs == &bdev_io->u.bdev.iovs[3]); CU_ASSERT(raid_io->iovs[0].iov_base == iovs_orig[3].iov_base + iovs_orig[3].iov_len - g_block_len); CU_ASSERT(raid_io->iovs[0].iov_len == g_block_len); if (spdk_bdev_get_dif_type(&pbdev->bdev) != SPDK_DIF_DISABLE && !spdk_bdev_is_md_interleaved(&pbdev->bdev)) { CU_ASSERT(raid_io->md_buf == bdev_io->u.bdev.md_buf + split_offset * pbdev->bdev.md_len); } complete_deferred_ios(); CU_ASSERT(raid_io->num_blocks == split_offset); CU_ASSERT(raid_io->offset_blocks == 0); CU_ASSERT(raid_io->iovcnt == 4); CU_ASSERT(raid_io->iovs == bdev_io->u.bdev.iovs); CU_ASSERT(memcmp(raid_io->iovs, iovs_orig, sizeof(*iovs_orig) * 3) == 0); CU_ASSERT(raid_io->iovs[3].iov_base == iovs_orig[3].iov_base); CU_ASSERT(raid_io->iovs[3].iov_len == iovs_orig[3].iov_len - g_block_len); if (spdk_bdev_get_dif_type(&pbdev->bdev) != SPDK_DIF_DISABLE && !spdk_bdev_is_md_interleaved(&pbdev->bdev)) { CU_ASSERT(raid_io->md_buf == bdev_io->u.bdev.md_buf); } complete_deferred_ios(); CU_ASSERT(raid_io->num_blocks == g_strip_size); CU_ASSERT(raid_io->offset_blocks == 0); CU_ASSERT(raid_io->iovcnt == 4); CU_ASSERT(raid_io->iovs == bdev_io->u.bdev.iovs); CU_ASSERT(memcmp(raid_io->iovs, iovs_orig, sizeof(*iovs_orig) * raid_io->iovcnt) == 0); if (spdk_bdev_get_dif_type(&pbdev->bdev) != SPDK_DIF_DISABLE && !spdk_bdev_is_md_interleaved(&pbdev->bdev)) { CU_ASSERT(raid_io->md_buf == bdev_io->u.bdev.md_buf); } CU_ASSERT(g_io_comp_status == g_child_io_status_flag); CU_ASSERT(g_io_output_index == 2); CU_ASSERT(g_io_output[0].offset_blocks == split_offset); CU_ASSERT(g_io_output[0].num_blocks == g_strip_size - split_offset); CU_ASSERT(g_io_output[1].offset_blocks == 0); CU_ASSERT(g_io_output[1].num_blocks == split_offset); bdev_io_cleanup(bdev_io); spdk_put_io_channel(ch); free_test_req(&req); pbdev->process = NULL; create_raid_bdev_delete_req(&destroy_req, "raid1", 0); rpc_bdev_raid_delete(NULL, NULL); CU_ASSERT(g_rpc_err == 0); verify_raid_bdev_present("raid1", false); raid_bdev_exit(); base_bdevs_cleanup(); reset_globals(); } static int test_bdev_ioch_create(void *io_device, void *ctx_buf) { return 0; } static void test_bdev_ioch_destroy(void *io_device, void *ctx_buf) { } int main(int argc, char **argv) { unsigned int num_failures; CU_TestInfo tests[] = { { "test_create_raid", test_create_raid }, { "test_create_raid_superblock", test_create_raid_superblock }, { "test_delete_raid", test_delete_raid }, { "test_create_raid_invalid_args", test_create_raid_invalid_args }, { "test_delete_raid_invalid_args", test_delete_raid_invalid_args }, { "test_io_channel", test_io_channel }, { "test_reset_io", test_reset_io }, { "test_write_io", test_write_io }, { "test_read_io", test_read_io }, { "test_unmap_io", test_unmap_io }, { "test_io_failure", test_io_failure }, { "test_multi_raid_no_io", test_multi_raid_no_io }, { "test_multi_raid_with_io", test_multi_raid_with_io }, { "test_io_type_supported", test_io_type_supported }, { "test_raid_json_dump_info", test_raid_json_dump_info }, { "test_context_size", test_context_size }, { "test_raid_level_conversions", test_raid_level_conversions }, { "test_raid_io_split", test_raid_io_split }, CU_TEST_INFO_NULL, }; /* TODO The RAID process test can only be run once for now, until the fix for getting the * process thread is merged */ CU_TestInfo tests_single_run[] = { { "test_raid_process", test_raid_process }, CU_TEST_INFO_NULL, }; CU_SuiteInfo suites[] = { { "raid", set_test_opts, NULL, NULL, NULL, tests }, { "raid_dif", set_test_opts_dif, NULL, NULL, NULL, tests }, { "raid_single_run", set_test_opts, NULL, NULL, NULL, tests_single_run }, CU_SUITE_INFO_NULL, }; CU_initialize_registry(); CU_register_suites(suites); allocate_threads(1); set_thread(0); spdk_io_device_register(&g_bdev_ch_io_device, test_bdev_ioch_create, test_bdev_ioch_destroy, 0, NULL); num_failures = spdk_ut_run_tests(argc, argv, NULL); CU_cleanup_registry(); spdk_io_device_unregister(&g_bdev_ch_io_device, NULL); free_threads(); return num_failures; }