/* SPDX-License-Identifier: BSD-3-Clause * Copyright (C) 2018 Intel Corporation. All rights reserved. * Copyright (c) 2019, 2020 Mellanox Technologies LTD. All rights reserved. * Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. */ #include "spdk/accel.h" #include "spdk/stdinc.h" #include "spdk/crc32.h" #include "spdk/endian.h" #include "spdk/assert.h" #include "spdk/thread.h" #include "spdk/nvmf_transport.h" #include "spdk/string.h" #include "spdk/trace.h" #include "spdk/util.h" #include "spdk/log.h" #include "spdk/keyring.h" #include "spdk_internal/assert.h" #include "spdk_internal/nvme_tcp.h" #include "spdk_internal/sock.h" #include "nvmf_internal.h" #include "transport.h" #include "spdk_internal/trace_defs.h" #define NVMF_TCP_MAX_ACCEPT_SOCK_ONE_TIME 16 #define SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY 16 #define SPDK_NVMF_TCP_DEFAULT_SOCK_PRIORITY 0 #define SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM 32 #define SPDK_NVMF_TCP_DEFAULT_SUCCESS_OPTIMIZATION true #define SPDK_NVMF_TCP_MIN_IO_QUEUE_DEPTH 2 #define SPDK_NVMF_TCP_MAX_IO_QUEUE_DEPTH 65535 #define SPDK_NVMF_TCP_MIN_ADMIN_QUEUE_DEPTH 2 #define SPDK_NVMF_TCP_MAX_ADMIN_QUEUE_DEPTH 4096 #define SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH 128 #define SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH 128 #define SPDK_NVMF_TCP_DEFAULT_MAX_QPAIRS_PER_CTRLR 128 #define SPDK_NVMF_TCP_DEFAULT_IN_CAPSULE_DATA_SIZE 4096 #define SPDK_NVMF_TCP_DEFAULT_MAX_IO_SIZE 131072 #define SPDK_NVMF_TCP_DEFAULT_IO_UNIT_SIZE 131072 #define SPDK_NVMF_TCP_DEFAULT_NUM_SHARED_BUFFERS 511 #define SPDK_NVMF_TCP_DEFAULT_BUFFER_CACHE_SIZE UINT32_MAX #define SPDK_NVMF_TCP_DEFAULT_DIF_INSERT_OR_STRIP false #define SPDK_NVMF_TCP_DEFAULT_ABORT_TIMEOUT_SEC 1 #define TCP_PSK_INVALID_PERMISSIONS 0177 const struct spdk_nvmf_transport_ops spdk_nvmf_transport_tcp; static bool g_tls_log = false; /* spdk nvmf related structure */ enum spdk_nvmf_tcp_req_state { /* The request is not currently in use */ TCP_REQUEST_STATE_FREE = 0, /* Initial state when request first received */ TCP_REQUEST_STATE_NEW = 1, /* The request is queued until a data buffer is available. */ TCP_REQUEST_STATE_NEED_BUFFER = 2, /* The request has the data buffer available */ TCP_REQUEST_STATE_HAVE_BUFFER = 3, /* The request is waiting for zcopy_start to finish */ TCP_REQUEST_STATE_AWAITING_ZCOPY_START = 4, /* The request has received a zero-copy buffer */ TCP_REQUEST_STATE_ZCOPY_START_COMPLETED = 5, /* The request is currently transferring data from the host to the controller. */ TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER = 6, /* The request is waiting for the R2T send acknowledgement. */ TCP_REQUEST_STATE_AWAITING_R2T_ACK = 7, /* The request is ready to execute at the block device */ TCP_REQUEST_STATE_READY_TO_EXECUTE = 8, /* The request is currently executing at the block device */ TCP_REQUEST_STATE_EXECUTING = 9, /* The request is waiting for zcopy buffers to be committed */ TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT = 10, /* The request finished executing at the block device */ TCP_REQUEST_STATE_EXECUTED = 11, /* The request is ready to send a completion */ TCP_REQUEST_STATE_READY_TO_COMPLETE = 12, /* The request is currently transferring final pdus from the controller to the host. */ TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST = 13, /* The request is waiting for zcopy buffers to be released (without committing) */ TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE = 14, /* The request completed and can be marked free. */ TCP_REQUEST_STATE_COMPLETED = 15, /* Terminator */ TCP_REQUEST_NUM_STATES, }; static const char *spdk_nvmf_tcp_term_req_fes_str[] = { "Invalid PDU Header Field", "PDU Sequence Error", "Header Digiest Error", "Data Transfer Out of Range", "R2T Limit Exceeded", "Unsupported parameter", }; SPDK_TRACE_REGISTER_FN(nvmf_tcp_trace, "nvmf_tcp", TRACE_GROUP_NVMF_TCP) { spdk_trace_register_owner_type(OWNER_TYPE_NVMF_TCP, 't'); spdk_trace_register_object(OBJECT_NVMF_TCP_IO, 'r'); spdk_trace_register_description("TCP_REQ_NEW", TRACE_TCP_REQUEST_STATE_NEW, OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 1, SPDK_TRACE_ARG_TYPE_INT, "qd"); spdk_trace_register_description("TCP_REQ_NEED_BUFFER", TRACE_TCP_REQUEST_STATE_NEED_BUFFER, OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0, SPDK_TRACE_ARG_TYPE_INT, ""); spdk_trace_register_description("TCP_REQ_HAVE_BUFFER", TRACE_TCP_REQUEST_STATE_HAVE_BUFFER, OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0, SPDK_TRACE_ARG_TYPE_INT, ""); spdk_trace_register_description("TCP_REQ_WAIT_ZCPY_START", TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_START, OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0, SPDK_TRACE_ARG_TYPE_INT, ""); spdk_trace_register_description("TCP_REQ_ZCPY_START_CPL", TRACE_TCP_REQUEST_STATE_ZCOPY_START_COMPLETED, OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0, SPDK_TRACE_ARG_TYPE_INT, ""); spdk_trace_register_description("TCP_REQ_TX_H_TO_C", TRACE_TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0, SPDK_TRACE_ARG_TYPE_INT, ""); spdk_trace_register_description("TCP_REQ_RDY_TO_EXECUTE", TRACE_TCP_REQUEST_STATE_READY_TO_EXECUTE, OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0, SPDK_TRACE_ARG_TYPE_INT, ""); spdk_trace_register_description("TCP_REQ_EXECUTING", TRACE_TCP_REQUEST_STATE_EXECUTING, OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0, SPDK_TRACE_ARG_TYPE_INT, ""); spdk_trace_register_description("TCP_REQ_WAIT_ZCPY_CMT", TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_COMMIT, OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0, SPDK_TRACE_ARG_TYPE_INT, ""); spdk_trace_register_description("TCP_REQ_EXECUTED", TRACE_TCP_REQUEST_STATE_EXECUTED, OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0, SPDK_TRACE_ARG_TYPE_INT, ""); spdk_trace_register_description("TCP_REQ_RDY_TO_COMPLETE", TRACE_TCP_REQUEST_STATE_READY_TO_COMPLETE, OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0, SPDK_TRACE_ARG_TYPE_INT, ""); spdk_trace_register_description("TCP_REQ_TRANSFER_C2H", TRACE_TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0, SPDK_TRACE_ARG_TYPE_INT, ""); spdk_trace_register_description("TCP_REQ_AWAIT_ZCPY_RLS", TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_RELEASE, OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0, SPDK_TRACE_ARG_TYPE_INT, ""); spdk_trace_register_description("TCP_REQ_COMPLETED", TRACE_TCP_REQUEST_STATE_COMPLETED, OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0, SPDK_TRACE_ARG_TYPE_INT, "qd"); spdk_trace_register_description("TCP_READ_DONE", TRACE_TCP_READ_FROM_SOCKET_DONE, OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0, SPDK_TRACE_ARG_TYPE_INT, ""); spdk_trace_register_description("TCP_REQ_AWAIT_R2T_ACK", TRACE_TCP_REQUEST_STATE_AWAIT_R2T_ACK, OWNER_TYPE_NVMF_TCP, OBJECT_NVMF_TCP_IO, 0, SPDK_TRACE_ARG_TYPE_INT, ""); spdk_trace_register_description("TCP_QP_CREATE", TRACE_TCP_QP_CREATE, OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0, SPDK_TRACE_ARG_TYPE_INT, ""); spdk_trace_register_description("TCP_QP_SOCK_INIT", TRACE_TCP_QP_SOCK_INIT, OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0, SPDK_TRACE_ARG_TYPE_INT, ""); spdk_trace_register_description("TCP_QP_STATE_CHANGE", TRACE_TCP_QP_STATE_CHANGE, OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0, SPDK_TRACE_ARG_TYPE_INT, "state"); spdk_trace_register_description("TCP_QP_DISCONNECT", TRACE_TCP_QP_DISCONNECT, OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0, SPDK_TRACE_ARG_TYPE_INT, ""); spdk_trace_register_description("TCP_QP_DESTROY", TRACE_TCP_QP_DESTROY, OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0, SPDK_TRACE_ARG_TYPE_INT, ""); spdk_trace_register_description("TCP_QP_ABORT_REQ", TRACE_TCP_QP_ABORT_REQ, OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0, SPDK_TRACE_ARG_TYPE_INT, ""); spdk_trace_register_description("TCP_QP_RCV_STATE_CHANGE", TRACE_TCP_QP_RCV_STATE_CHANGE, OWNER_TYPE_NVMF_TCP, OBJECT_NONE, 0, SPDK_TRACE_ARG_TYPE_INT, "state"); spdk_trace_tpoint_register_relation(TRACE_BDEV_IO_START, OBJECT_NVMF_TCP_IO, 1); spdk_trace_tpoint_register_relation(TRACE_BDEV_IO_DONE, OBJECT_NVMF_TCP_IO, 0); spdk_trace_tpoint_register_relation(TRACE_SOCK_REQ_QUEUE, OBJECT_NVMF_TCP_IO, 0); spdk_trace_tpoint_register_relation(TRACE_SOCK_REQ_PEND, OBJECT_NVMF_TCP_IO, 0); spdk_trace_tpoint_register_relation(TRACE_SOCK_REQ_COMPLETE, OBJECT_NVMF_TCP_IO, 0); } struct spdk_nvmf_tcp_req { struct spdk_nvmf_request req; struct spdk_nvme_cpl rsp; struct spdk_nvme_cmd cmd; /* A PDU that can be used for sending responses. This is * not the incoming PDU! */ struct nvme_tcp_pdu *pdu; /* In-capsule data buffer */ uint8_t *buf; struct spdk_nvmf_tcp_req *fused_pair; /* * The PDU for a request may be used multiple times in serial over * the request's lifetime. For example, first to send an R2T, then * to send a completion. To catch mistakes where the PDU is used * twice at the same time, add a debug flag here for init/fini. */ bool pdu_in_use; bool has_in_capsule_data; bool fused_failed; /* transfer_tag */ uint16_t ttag; enum spdk_nvmf_tcp_req_state state; /* * h2c_offset is used when we receive the h2c_data PDU. */ uint32_t h2c_offset; STAILQ_ENTRY(spdk_nvmf_tcp_req) link; TAILQ_ENTRY(spdk_nvmf_tcp_req) state_link; STAILQ_ENTRY(spdk_nvmf_tcp_req) control_msg_link; }; struct spdk_nvmf_tcp_qpair { struct spdk_nvmf_qpair qpair; struct spdk_nvmf_tcp_poll_group *group; struct spdk_sock *sock; enum nvme_tcp_pdu_recv_state recv_state; enum nvme_tcp_qpair_state state; /* PDU being actively received */ struct nvme_tcp_pdu *pdu_in_progress; struct spdk_nvmf_tcp_req *fused_first; /* Queues to track the requests in all states */ TAILQ_HEAD(, spdk_nvmf_tcp_req) tcp_req_working_queue; TAILQ_HEAD(, spdk_nvmf_tcp_req) tcp_req_free_queue; SLIST_HEAD(, nvme_tcp_pdu) tcp_pdu_free_queue; /* Number of working pdus */ uint32_t tcp_pdu_working_count; /* Number of requests in each state */ uint32_t state_cntr[TCP_REQUEST_NUM_STATES]; uint8_t cpda; bool host_hdgst_enable; bool host_ddgst_enable; /* This is a spare PDU used for sending special management * operations. Primarily, this is used for the initial * connection response and c2h termination request. */ struct nvme_tcp_pdu *mgmt_pdu; /* Arrays of in-capsule buffers, requests, and pdus. * Each array is 'resource_count' number of elements */ void *bufs; struct spdk_nvmf_tcp_req *reqs; struct nvme_tcp_pdu *pdus; uint32_t resource_count; uint32_t recv_buf_size; struct spdk_nvmf_tcp_port *port; /* IP address */ char initiator_addr[SPDK_NVMF_TRADDR_MAX_LEN]; char target_addr[SPDK_NVMF_TRADDR_MAX_LEN]; /* IP port */ uint16_t initiator_port; uint16_t target_port; /* Wait until the host terminates the connection (e.g. after sending C2HTermReq) */ bool wait_terminate; /* Timer used to destroy qpair after detecting transport error issue if initiator does * not close the connection. */ struct spdk_poller *timeout_poller; spdk_nvmf_transport_qpair_fini_cb fini_cb_fn; void *fini_cb_arg; TAILQ_ENTRY(spdk_nvmf_tcp_qpair) link; }; struct spdk_nvmf_tcp_control_msg { STAILQ_ENTRY(spdk_nvmf_tcp_control_msg) link; }; struct spdk_nvmf_tcp_control_msg_list { void *msg_buf; STAILQ_HEAD(, spdk_nvmf_tcp_control_msg) free_msgs; STAILQ_HEAD(, spdk_nvmf_tcp_req) waiting_for_msg_reqs; }; struct spdk_nvmf_tcp_poll_group { struct spdk_nvmf_transport_poll_group group; struct spdk_sock_group *sock_group; TAILQ_HEAD(, spdk_nvmf_tcp_qpair) qpairs; TAILQ_HEAD(, spdk_nvmf_tcp_qpair) await_req; struct spdk_io_channel *accel_channel; struct spdk_nvmf_tcp_control_msg_list *control_msg_list; TAILQ_ENTRY(spdk_nvmf_tcp_poll_group) link; }; struct spdk_nvmf_tcp_port { const struct spdk_nvme_transport_id *trid; struct spdk_sock *listen_sock; struct spdk_nvmf_transport *transport; TAILQ_ENTRY(spdk_nvmf_tcp_port) link; }; struct tcp_transport_opts { bool c2h_success; uint16_t control_msg_num; uint32_t sock_priority; }; struct tcp_psk_entry { char hostnqn[SPDK_NVMF_NQN_MAX_LEN + 1]; char subnqn[SPDK_NVMF_NQN_MAX_LEN + 1]; char pskid[NVMF_PSK_IDENTITY_LEN]; uint8_t psk[SPDK_TLS_PSK_MAX_LEN]; struct spdk_key *key; /* Original path saved to emit SPDK configuration via "save_config". */ char psk_path[PATH_MAX]; uint32_t psk_size; enum nvme_tcp_cipher_suite tls_cipher_suite; TAILQ_ENTRY(tcp_psk_entry) link; }; struct spdk_nvmf_tcp_transport { struct spdk_nvmf_transport transport; struct tcp_transport_opts tcp_opts; uint32_t ack_timeout; struct spdk_nvmf_tcp_poll_group *next_pg; struct spdk_poller *accept_poller; struct spdk_sock_group *listen_sock_group; TAILQ_HEAD(, spdk_nvmf_tcp_port) ports; TAILQ_HEAD(, spdk_nvmf_tcp_poll_group) poll_groups; TAILQ_HEAD(, tcp_psk_entry) psks; }; static const struct spdk_json_object_decoder tcp_transport_opts_decoder[] = { { "c2h_success", offsetof(struct tcp_transport_opts, c2h_success), spdk_json_decode_bool, true }, { "control_msg_num", offsetof(struct tcp_transport_opts, control_msg_num), spdk_json_decode_uint16, true }, { "sock_priority", offsetof(struct tcp_transport_opts, sock_priority), spdk_json_decode_uint32, true }, }; static bool nvmf_tcp_req_process(struct spdk_nvmf_tcp_transport *ttransport, struct spdk_nvmf_tcp_req *tcp_req); static void nvmf_tcp_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group); static void _nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair, struct spdk_nvmf_tcp_req *tcp_req); static inline void nvmf_tcp_req_set_state(struct spdk_nvmf_tcp_req *tcp_req, enum spdk_nvmf_tcp_req_state state) { struct spdk_nvmf_qpair *qpair; struct spdk_nvmf_tcp_qpair *tqpair; qpair = tcp_req->req.qpair; tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair); assert(tqpair->state_cntr[tcp_req->state] > 0); tqpair->state_cntr[tcp_req->state]--; tqpair->state_cntr[state]++; tcp_req->state = state; } static inline struct nvme_tcp_pdu * nvmf_tcp_req_pdu_init(struct spdk_nvmf_tcp_req *tcp_req) { assert(tcp_req->pdu_in_use == false); memset(tcp_req->pdu, 0, sizeof(*tcp_req->pdu)); tcp_req->pdu->qpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair); return tcp_req->pdu; } static struct spdk_nvmf_tcp_req * nvmf_tcp_req_get(struct spdk_nvmf_tcp_qpair *tqpair) { struct spdk_nvmf_tcp_req *tcp_req; tcp_req = TAILQ_FIRST(&tqpair->tcp_req_free_queue); if (spdk_unlikely(!tcp_req)) { return NULL; } memset(&tcp_req->rsp, 0, sizeof(tcp_req->rsp)); tcp_req->h2c_offset = 0; tcp_req->has_in_capsule_data = false; tcp_req->req.dif_enabled = false; tcp_req->req.zcopy_phase = NVMF_ZCOPY_PHASE_NONE; TAILQ_REMOVE(&tqpair->tcp_req_free_queue, tcp_req, state_link); TAILQ_INSERT_TAIL(&tqpair->tcp_req_working_queue, tcp_req, state_link); tqpair->qpair.queue_depth++; nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_NEW); return tcp_req; } static inline void nvmf_tcp_req_put(struct spdk_nvmf_tcp_qpair *tqpair, struct spdk_nvmf_tcp_req *tcp_req) { assert(!tcp_req->pdu_in_use); TAILQ_REMOVE(&tqpair->tcp_req_working_queue, tcp_req, state_link); TAILQ_INSERT_TAIL(&tqpair->tcp_req_free_queue, tcp_req, state_link); tqpair->qpair.queue_depth--; nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_FREE); } static void nvmf_tcp_req_get_buffers_done(struct spdk_nvmf_request *req) { struct spdk_nvmf_tcp_req *tcp_req; struct spdk_nvmf_transport *transport; struct spdk_nvmf_tcp_transport *ttransport; tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req); transport = req->qpair->transport; ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport); nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_HAVE_BUFFER); nvmf_tcp_req_process(ttransport, tcp_req); } static void nvmf_tcp_request_free(void *cb_arg) { struct spdk_nvmf_tcp_transport *ttransport; struct spdk_nvmf_tcp_req *tcp_req = cb_arg; assert(tcp_req != NULL); SPDK_DEBUGLOG(nvmf_tcp, "tcp_req=%p will be freed\n", tcp_req); ttransport = SPDK_CONTAINEROF(tcp_req->req.qpair->transport, struct spdk_nvmf_tcp_transport, transport); nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED); nvmf_tcp_req_process(ttransport, tcp_req); } static int nvmf_tcp_req_free(struct spdk_nvmf_request *req) { struct spdk_nvmf_tcp_req *tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req); nvmf_tcp_request_free(tcp_req); return 0; } static void nvmf_tcp_drain_state_queue(struct spdk_nvmf_tcp_qpair *tqpair, enum spdk_nvmf_tcp_req_state state) { struct spdk_nvmf_tcp_req *tcp_req, *req_tmp; assert(state != TCP_REQUEST_STATE_FREE); TAILQ_FOREACH_SAFE(tcp_req, &tqpair->tcp_req_working_queue, state_link, req_tmp) { if (state == tcp_req->state) { nvmf_tcp_request_free(tcp_req); } } } static inline void nvmf_tcp_request_get_buffers_abort(struct spdk_nvmf_tcp_req *tcp_req) { /* Request can wait either for the iobuf or control_msg */ struct spdk_nvmf_poll_group *group = tcp_req->req.qpair->group; struct spdk_nvmf_transport *transport = tcp_req->req.qpair->transport; struct spdk_nvmf_transport_poll_group *tgroup = nvmf_get_transport_poll_group(group, transport); struct spdk_nvmf_tcp_poll_group *tcp_group = SPDK_CONTAINEROF(tgroup, struct spdk_nvmf_tcp_poll_group, group); struct spdk_nvmf_tcp_req *tmp_req, *abort_req; assert(tcp_req->state == TCP_REQUEST_STATE_NEED_BUFFER); STAILQ_FOREACH_SAFE(abort_req, &tcp_group->control_msg_list->waiting_for_msg_reqs, control_msg_link, tmp_req) { if (abort_req == tcp_req) { STAILQ_REMOVE(&tcp_group->control_msg_list->waiting_for_msg_reqs, abort_req, spdk_nvmf_tcp_req, control_msg_link); return; } } if (!nvmf_request_get_buffers_abort(&tcp_req->req)) { SPDK_ERRLOG("Failed to abort tcp_req=%p\n", tcp_req); assert(0 && "Should never happen"); } } static void nvmf_tcp_cleanup_all_states(struct spdk_nvmf_tcp_qpair *tqpair) { struct spdk_nvmf_tcp_req *tcp_req, *req_tmp; nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST); nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_NEW); /* Wipe the requests waiting for buffer from the waiting list */ TAILQ_FOREACH_SAFE(tcp_req, &tqpair->tcp_req_working_queue, state_link, req_tmp) { if (tcp_req->state == TCP_REQUEST_STATE_NEED_BUFFER) { nvmf_tcp_request_get_buffers_abort(tcp_req); } } nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_NEED_BUFFER); nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_EXECUTING); nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER); nvmf_tcp_drain_state_queue(tqpair, TCP_REQUEST_STATE_AWAITING_R2T_ACK); } static void nvmf_tcp_dump_qpair_req_contents(struct spdk_nvmf_tcp_qpair *tqpair) { int i; struct spdk_nvmf_tcp_req *tcp_req; SPDK_ERRLOG("Dumping contents of queue pair (QID %d)\n", tqpair->qpair.qid); for (i = 1; i < TCP_REQUEST_NUM_STATES; i++) { SPDK_ERRLOG("\tNum of requests in state[%d] = %u\n", i, tqpair->state_cntr[i]); TAILQ_FOREACH(tcp_req, &tqpair->tcp_req_working_queue, state_link) { if ((int)tcp_req->state == i) { SPDK_ERRLOG("\t\tRequest Data From Pool: %d\n", tcp_req->req.data_from_pool); SPDK_ERRLOG("\t\tRequest opcode: %d\n", tcp_req->req.cmd->nvmf_cmd.opcode); } } } } static void _nvmf_tcp_qpair_destroy(void *_tqpair) { struct spdk_nvmf_tcp_qpair *tqpair = _tqpair; spdk_nvmf_transport_qpair_fini_cb cb_fn = tqpair->fini_cb_fn; void *cb_arg = tqpair->fini_cb_arg; int err = 0; spdk_trace_record(TRACE_TCP_QP_DESTROY, tqpair->qpair.trace_id, 0, 0); SPDK_DEBUGLOG(nvmf_tcp, "enter\n"); err = spdk_sock_close(&tqpair->sock); assert(err == 0); nvmf_tcp_cleanup_all_states(tqpair); if (tqpair->state_cntr[TCP_REQUEST_STATE_FREE] != tqpair->resource_count) { SPDK_ERRLOG("tqpair(%p) free tcp request num is %u but should be %u\n", tqpair, tqpair->state_cntr[TCP_REQUEST_STATE_FREE], tqpair->resource_count); err++; } if (err > 0) { nvmf_tcp_dump_qpair_req_contents(tqpair); } /* The timeout poller might still be registered here if we close the qpair before host * terminates the connection. */ spdk_poller_unregister(&tqpair->timeout_poller); spdk_dma_free(tqpair->pdus); free(tqpair->reqs); spdk_free(tqpair->bufs); spdk_trace_unregister_owner(tqpair->qpair.trace_id); free(tqpair); if (cb_fn != NULL) { cb_fn(cb_arg); } SPDK_DEBUGLOG(nvmf_tcp, "Leave\n"); } static void nvmf_tcp_qpair_destroy(struct spdk_nvmf_tcp_qpair *tqpair) { /* Delay the destruction to make sure it isn't performed from the context of a sock * callback. Otherwise, spdk_sock_close() might not abort pending requests, causing their * completions to be executed after the qpair is freed. (Note: this fixed issue #2471.) */ spdk_thread_send_msg(spdk_get_thread(), _nvmf_tcp_qpair_destroy, tqpair); } static void nvmf_tcp_dump_opts(struct spdk_nvmf_transport *transport, struct spdk_json_write_ctx *w) { struct spdk_nvmf_tcp_transport *ttransport; assert(w != NULL); ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport); spdk_json_write_named_bool(w, "c2h_success", ttransport->tcp_opts.c2h_success); spdk_json_write_named_uint32(w, "sock_priority", ttransport->tcp_opts.sock_priority); } static void nvmf_tcp_free_psk_entry(struct tcp_psk_entry *entry) { if (entry == NULL) { return; } spdk_memset_s(entry->psk, sizeof(entry->psk), 0, sizeof(entry->psk)); spdk_keyring_put_key(entry->key); free(entry); } static int nvmf_tcp_destroy(struct spdk_nvmf_transport *transport, spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg) { struct spdk_nvmf_tcp_transport *ttransport; struct tcp_psk_entry *entry, *tmp; assert(transport != NULL); ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport); TAILQ_FOREACH_SAFE(entry, &ttransport->psks, link, tmp) { TAILQ_REMOVE(&ttransport->psks, entry, link); nvmf_tcp_free_psk_entry(entry); } spdk_poller_unregister(&ttransport->accept_poller); spdk_sock_group_close(&ttransport->listen_sock_group); free(ttransport); if (cb_fn) { cb_fn(cb_arg); } return 0; } static int nvmf_tcp_accept(void *ctx); static void nvmf_tcp_accept_cb(void *ctx, struct spdk_sock_group *group, struct spdk_sock *sock); static struct spdk_nvmf_transport * nvmf_tcp_create(struct spdk_nvmf_transport_opts *opts) { struct spdk_nvmf_tcp_transport *ttransport; uint32_t sge_count; uint32_t min_shared_buffers; ttransport = calloc(1, sizeof(*ttransport)); if (!ttransport) { return NULL; } TAILQ_INIT(&ttransport->ports); TAILQ_INIT(&ttransport->poll_groups); TAILQ_INIT(&ttransport->psks); ttransport->transport.ops = &spdk_nvmf_transport_tcp; ttransport->tcp_opts.c2h_success = SPDK_NVMF_TCP_DEFAULT_SUCCESS_OPTIMIZATION; ttransport->tcp_opts.sock_priority = SPDK_NVMF_TCP_DEFAULT_SOCK_PRIORITY; ttransport->tcp_opts.control_msg_num = SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM; if (opts->transport_specific != NULL && spdk_json_decode_object_relaxed(opts->transport_specific, tcp_transport_opts_decoder, SPDK_COUNTOF(tcp_transport_opts_decoder), &ttransport->tcp_opts)) { SPDK_ERRLOG("spdk_json_decode_object_relaxed failed\n"); free(ttransport); return NULL; } SPDK_NOTICELOG("*** TCP Transport Init ***\n"); SPDK_INFOLOG(nvmf_tcp, "*** TCP Transport Init ***\n" " Transport opts: max_ioq_depth=%d, max_io_size=%d,\n" " max_io_qpairs_per_ctrlr=%d, io_unit_size=%d,\n" " in_capsule_data_size=%d, max_aq_depth=%d\n" " num_shared_buffers=%d, c2h_success=%d,\n" " dif_insert_or_strip=%d, sock_priority=%d\n" " abort_timeout_sec=%d, control_msg_num=%hu\n" " ack_timeout=%d\n", opts->max_queue_depth, opts->max_io_size, opts->max_qpairs_per_ctrlr - 1, opts->io_unit_size, opts->in_capsule_data_size, opts->max_aq_depth, opts->num_shared_buffers, ttransport->tcp_opts.c2h_success, opts->dif_insert_or_strip, ttransport->tcp_opts.sock_priority, opts->abort_timeout_sec, ttransport->tcp_opts.control_msg_num, opts->ack_timeout); if (ttransport->tcp_opts.sock_priority > SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY) { SPDK_ERRLOG("Unsupported socket_priority=%d, the current range is: 0 to %d\n" "you can use man 7 socket to view the range of priority under SO_PRIORITY item\n", ttransport->tcp_opts.sock_priority, SPDK_NVMF_TCP_DEFAULT_MAX_SOCK_PRIORITY); free(ttransport); return NULL; } if (ttransport->tcp_opts.control_msg_num == 0 && opts->in_capsule_data_size < SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE) { SPDK_WARNLOG("TCP param control_msg_num can't be 0 if ICD is less than %u bytes. Using default value %u\n", SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE, SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM); ttransport->tcp_opts.control_msg_num = SPDK_NVMF_TCP_DEFAULT_CONTROL_MSG_NUM; } /* I/O unit size cannot be larger than max I/O size */ if (opts->io_unit_size > opts->max_io_size) { SPDK_WARNLOG("TCP param io_unit_size %u can't be larger than max_io_size %u. Using max_io_size as io_unit_size\n", opts->io_unit_size, opts->max_io_size); opts->io_unit_size = opts->max_io_size; } /* In capsule data size cannot be larger than max I/O size */ if (opts->in_capsule_data_size > opts->max_io_size) { SPDK_WARNLOG("TCP param ICD size %u can't be larger than max_io_size %u. Using max_io_size as ICD size\n", opts->io_unit_size, opts->max_io_size); opts->in_capsule_data_size = opts->max_io_size; } /* max IO queue depth cannot be smaller than 2 or larger than 65535. * We will not check SPDK_NVMF_TCP_MAX_IO_QUEUE_DEPTH, because max_queue_depth is 16bits and always not larger than 64k. */ if (opts->max_queue_depth < SPDK_NVMF_TCP_MIN_IO_QUEUE_DEPTH) { SPDK_WARNLOG("TCP param max_queue_depth %u can't be smaller than %u or larger than %u. Using default value %u\n", opts->max_queue_depth, SPDK_NVMF_TCP_MIN_IO_QUEUE_DEPTH, SPDK_NVMF_TCP_MAX_IO_QUEUE_DEPTH, SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH); opts->max_queue_depth = SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH; } /* max admin queue depth cannot be smaller than 2 or larger than 4096 */ if (opts->max_aq_depth < SPDK_NVMF_TCP_MIN_ADMIN_QUEUE_DEPTH || opts->max_aq_depth > SPDK_NVMF_TCP_MAX_ADMIN_QUEUE_DEPTH) { SPDK_WARNLOG("TCP param max_aq_depth %u can't be smaller than %u or larger than %u. Using default value %u\n", opts->max_aq_depth, SPDK_NVMF_TCP_MIN_ADMIN_QUEUE_DEPTH, SPDK_NVMF_TCP_MAX_ADMIN_QUEUE_DEPTH, SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH); opts->max_aq_depth = SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH; } sge_count = opts->max_io_size / opts->io_unit_size; if (sge_count > SPDK_NVMF_MAX_SGL_ENTRIES) { SPDK_ERRLOG("Unsupported IO Unit size specified, %d bytes\n", opts->io_unit_size); free(ttransport); return NULL; } /* If buf_cache_size == UINT32_MAX, we will dynamically pick a cache size later that we know will fit. */ if (opts->buf_cache_size < UINT32_MAX) { min_shared_buffers = spdk_env_get_core_count() * opts->buf_cache_size; if (min_shared_buffers > opts->num_shared_buffers) { SPDK_ERRLOG("There are not enough buffers to satisfy " "per-poll group caches for each thread. (%" PRIu32 ") " "supplied. (%" PRIu32 ") required\n", opts->num_shared_buffers, min_shared_buffers); SPDK_ERRLOG("Please specify a larger number of shared buffers\n"); free(ttransport); return NULL; } } ttransport->accept_poller = SPDK_POLLER_REGISTER(nvmf_tcp_accept, &ttransport->transport, opts->acceptor_poll_rate); if (!ttransport->accept_poller) { free(ttransport); return NULL; } ttransport->listen_sock_group = spdk_sock_group_create(NULL); if (ttransport->listen_sock_group == NULL) { SPDK_ERRLOG("Failed to create socket group for listen sockets\n"); spdk_poller_unregister(&ttransport->accept_poller); free(ttransport); return NULL; } return &ttransport->transport; } static int nvmf_tcp_trsvcid_to_int(const char *trsvcid) { unsigned long long ull; char *end = NULL; ull = strtoull(trsvcid, &end, 10); if (end == NULL || end == trsvcid || *end != '\0') { return -1; } /* Valid TCP/IP port numbers are in [1, 65535] */ if (ull == 0 || ull > 65535) { return -1; } return (int)ull; } /** * Canonicalize a listen address trid. */ static int nvmf_tcp_canon_listen_trid(struct spdk_nvme_transport_id *canon_trid, const struct spdk_nvme_transport_id *trid) { int trsvcid_int; trsvcid_int = nvmf_tcp_trsvcid_to_int(trid->trsvcid); if (trsvcid_int < 0) { return -EINVAL; } memset(canon_trid, 0, sizeof(*canon_trid)); spdk_nvme_trid_populate_transport(canon_trid, SPDK_NVME_TRANSPORT_TCP); canon_trid->adrfam = trid->adrfam; snprintf(canon_trid->traddr, sizeof(canon_trid->traddr), "%s", trid->traddr); snprintf(canon_trid->trsvcid, sizeof(canon_trid->trsvcid), "%d", trsvcid_int); return 0; } /** * Find an existing listening port. */ static struct spdk_nvmf_tcp_port * nvmf_tcp_find_port(struct spdk_nvmf_tcp_transport *ttransport, const struct spdk_nvme_transport_id *trid) { struct spdk_nvme_transport_id canon_trid; struct spdk_nvmf_tcp_port *port; if (nvmf_tcp_canon_listen_trid(&canon_trid, trid) != 0) { return NULL; } TAILQ_FOREACH(port, &ttransport->ports, link) { if (spdk_nvme_transport_id_compare(&canon_trid, port->trid) == 0) { return port; } } return NULL; } static int tcp_sock_get_key(uint8_t *out, int out_len, const char **cipher, const char *pskid, void *get_key_ctx) { struct tcp_psk_entry *entry; struct spdk_nvmf_tcp_transport *ttransport = get_key_ctx; size_t psk_len; int rc; TAILQ_FOREACH(entry, &ttransport->psks, link) { if (strcmp(pskid, entry->pskid) != 0) { continue; } psk_len = entry->psk_size; if ((size_t)out_len < psk_len) { SPDK_ERRLOG("Out buffer of size: %" PRIu32 " cannot fit PSK of len: %lu\n", out_len, psk_len); return -ENOBUFS; } /* Convert PSK to the TLS PSK format. */ rc = nvme_tcp_derive_tls_psk(entry->psk, psk_len, pskid, out, out_len, entry->tls_cipher_suite); if (rc < 0) { SPDK_ERRLOG("Could not generate TLS PSK\n"); } switch (entry->tls_cipher_suite) { case NVME_TCP_CIPHER_AES_128_GCM_SHA256: *cipher = "TLS_AES_128_GCM_SHA256"; break; case NVME_TCP_CIPHER_AES_256_GCM_SHA384: *cipher = "TLS_AES_256_GCM_SHA384"; break; default: *cipher = NULL; return -ENOTSUP; } return rc; } SPDK_ERRLOG("Could not find PSK for identity: %s\n", pskid); return -EINVAL; } static int nvmf_tcp_listen(struct spdk_nvmf_transport *transport, const struct spdk_nvme_transport_id *trid, struct spdk_nvmf_listen_opts *listen_opts) { struct spdk_nvmf_tcp_transport *ttransport; struct spdk_nvmf_tcp_port *port; int trsvcid_int; uint8_t adrfam; const char *sock_impl_name; struct spdk_sock_impl_opts impl_opts; size_t impl_opts_size = sizeof(impl_opts); struct spdk_sock_opts opts; int rc; if (!strlen(trid->trsvcid)) { SPDK_ERRLOG("Service id is required\n"); return -EINVAL; } ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport); trsvcid_int = nvmf_tcp_trsvcid_to_int(trid->trsvcid); if (trsvcid_int < 0) { SPDK_ERRLOG("Invalid trsvcid '%s'\n", trid->trsvcid); return -EINVAL; } port = calloc(1, sizeof(*port)); if (!port) { SPDK_ERRLOG("Port allocation failed\n"); return -ENOMEM; } port->trid = trid; sock_impl_name = NULL; opts.opts_size = sizeof(opts); spdk_sock_get_default_opts(&opts); opts.priority = ttransport->tcp_opts.sock_priority; opts.ack_timeout = transport->opts.ack_timeout; if (listen_opts->secure_channel) { if (listen_opts->sock_impl && strncmp("ssl", listen_opts->sock_impl, strlen(listen_opts->sock_impl))) { SPDK_ERRLOG("Enabling secure_channel while specifying a sock_impl different from 'ssl' is unsupported"); free(port); return -EINVAL; } listen_opts->sock_impl = "ssl"; } if (listen_opts->sock_impl) { sock_impl_name = listen_opts->sock_impl; spdk_sock_impl_get_opts(sock_impl_name, &impl_opts, &impl_opts_size); if (!strncmp("ssl", sock_impl_name, strlen(sock_impl_name))) { if (!g_tls_log) { SPDK_NOTICELOG("TLS support is considered experimental\n"); g_tls_log = true; } impl_opts.tls_version = SPDK_TLS_VERSION_1_3; impl_opts.get_key = tcp_sock_get_key; impl_opts.get_key_ctx = ttransport; impl_opts.tls_cipher_suites = "TLS_AES_256_GCM_SHA384:TLS_AES_128_GCM_SHA256"; } opts.impl_opts = &impl_opts; opts.impl_opts_size = sizeof(impl_opts); } port->listen_sock = spdk_sock_listen_ext(trid->traddr, trsvcid_int, sock_impl_name, &opts); if (port->listen_sock == NULL) { SPDK_ERRLOG("spdk_sock_listen(%s, %d) failed: %s (%d)\n", trid->traddr, trsvcid_int, spdk_strerror(errno), errno); free(port); return -errno; } if (spdk_sock_is_ipv4(port->listen_sock)) { adrfam = SPDK_NVMF_ADRFAM_IPV4; } else if (spdk_sock_is_ipv6(port->listen_sock)) { adrfam = SPDK_NVMF_ADRFAM_IPV6; } else { SPDK_ERRLOG("Unhandled socket type\n"); adrfam = 0; } if (adrfam != trid->adrfam) { SPDK_ERRLOG("Socket address family mismatch\n"); spdk_sock_close(&port->listen_sock); free(port); return -EINVAL; } rc = spdk_sock_group_add_sock(ttransport->listen_sock_group, port->listen_sock, nvmf_tcp_accept_cb, port); if (rc < 0) { SPDK_ERRLOG("Failed to add socket to the listen socket group\n"); spdk_sock_close(&port->listen_sock); free(port); return -errno; } port->transport = transport; SPDK_NOTICELOG("*** NVMe/TCP Target Listening on %s port %s ***\n", trid->traddr, trid->trsvcid); TAILQ_INSERT_TAIL(&ttransport->ports, port, link); return 0; } static void nvmf_tcp_stop_listen(struct spdk_nvmf_transport *transport, const struct spdk_nvme_transport_id *trid) { struct spdk_nvmf_tcp_transport *ttransport; struct spdk_nvmf_tcp_port *port; ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport); SPDK_DEBUGLOG(nvmf_tcp, "Removing listen address %s port %s\n", trid->traddr, trid->trsvcid); port = nvmf_tcp_find_port(ttransport, trid); if (port) { spdk_sock_group_remove_sock(ttransport->listen_sock_group, port->listen_sock); TAILQ_REMOVE(&ttransport->ports, port, link); spdk_sock_close(&port->listen_sock); free(port); } } static void nvmf_tcp_qpair_set_recv_state(struct spdk_nvmf_tcp_qpair *tqpair, enum nvme_tcp_pdu_recv_state state); static void nvmf_tcp_qpair_set_state(struct spdk_nvmf_tcp_qpair *tqpair, enum nvme_tcp_qpair_state state) { tqpair->state = state; spdk_trace_record(TRACE_TCP_QP_STATE_CHANGE, tqpair->qpair.trace_id, 0, 0, (uint64_t)tqpair->state); } static void nvmf_tcp_qpair_disconnect(struct spdk_nvmf_tcp_qpair *tqpair) { SPDK_DEBUGLOG(nvmf_tcp, "Disconnecting qpair %p\n", tqpair); spdk_trace_record(TRACE_TCP_QP_DISCONNECT, tqpair->qpair.trace_id, 0, 0); if (tqpair->state <= NVME_TCP_QPAIR_STATE_RUNNING) { nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_EXITING); assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_ERROR); spdk_poller_unregister(&tqpair->timeout_poller); /* This will end up calling nvmf_tcp_close_qpair */ spdk_nvmf_qpair_disconnect(&tqpair->qpair); } } static void _mgmt_pdu_write_done(void *_tqpair, int err) { struct spdk_nvmf_tcp_qpair *tqpair = _tqpair; struct nvme_tcp_pdu *pdu = tqpair->mgmt_pdu; if (spdk_unlikely(err != 0)) { nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING); return; } assert(pdu->cb_fn != NULL); pdu->cb_fn(pdu->cb_arg); } static void _req_pdu_write_done(void *req, int err) { struct spdk_nvmf_tcp_req *tcp_req = req; struct nvme_tcp_pdu *pdu = tcp_req->pdu; struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair; assert(tcp_req->pdu_in_use); tcp_req->pdu_in_use = false; /* If the request is in a completed state, we're waiting for write completion to free it */ if (spdk_unlikely(tcp_req->state == TCP_REQUEST_STATE_COMPLETED)) { nvmf_tcp_request_free(tcp_req); return; } if (spdk_unlikely(err != 0)) { nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING); return; } assert(pdu->cb_fn != NULL); pdu->cb_fn(pdu->cb_arg); } static void _pdu_write_done(struct nvme_tcp_pdu *pdu, int err) { pdu->sock_req.cb_fn(pdu->sock_req.cb_arg, err); } static void _tcp_write_pdu(struct nvme_tcp_pdu *pdu) { int rc; uint32_t mapped_length; struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair; pdu->sock_req.iovcnt = nvme_tcp_build_iovs(pdu->iov, SPDK_COUNTOF(pdu->iov), pdu, tqpair->host_hdgst_enable, tqpair->host_ddgst_enable, &mapped_length); spdk_sock_writev_async(tqpair->sock, &pdu->sock_req); if (pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_RESP || pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ) { /* Try to force the send immediately. */ rc = spdk_sock_flush(tqpair->sock); if (rc > 0 && (uint32_t)rc == mapped_length) { _pdu_write_done(pdu, 0); } else { SPDK_ERRLOG("Could not write %s to socket: rc=%d, errno=%d\n", pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_RESP ? "IC_RESP" : "TERM_REQ", rc, errno); _pdu_write_done(pdu, rc >= 0 ? -EAGAIN : -errno); } } } static void data_crc32_accel_done(void *cb_arg, int status) { struct nvme_tcp_pdu *pdu = cb_arg; if (spdk_unlikely(status)) { SPDK_ERRLOG("Failed to compute the data digest for pdu =%p\n", pdu); _pdu_write_done(pdu, status); return; } pdu->data_digest_crc32 ^= SPDK_CRC32C_XOR; MAKE_DIGEST_WORD(pdu->data_digest, pdu->data_digest_crc32); _tcp_write_pdu(pdu); } static void pdu_data_crc32_compute(struct nvme_tcp_pdu *pdu) { struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair; int rc = 0; /* Data Digest */ if (pdu->data_len > 0 && g_nvme_tcp_ddgst[pdu->hdr.common.pdu_type] && tqpair->host_ddgst_enable) { /* Only support this limitated case for the first step */ if (spdk_likely(!pdu->dif_ctx && (pdu->data_len % SPDK_NVME_TCP_DIGEST_ALIGNMENT == 0) && tqpair->group)) { rc = spdk_accel_submit_crc32cv(tqpair->group->accel_channel, &pdu->data_digest_crc32, pdu->data_iov, pdu->data_iovcnt, 0, data_crc32_accel_done, pdu); if (spdk_likely(rc == 0)) { return; } } else { pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu); } data_crc32_accel_done(pdu, rc); } else { _tcp_write_pdu(pdu); } } static void nvmf_tcp_qpair_write_pdu(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu, nvme_tcp_qpair_xfer_complete_cb cb_fn, void *cb_arg) { int hlen; uint32_t crc32c; assert(tqpair->pdu_in_progress != pdu); hlen = pdu->hdr.common.hlen; pdu->cb_fn = cb_fn; pdu->cb_arg = cb_arg; pdu->iov[0].iov_base = &pdu->hdr.raw; pdu->iov[0].iov_len = hlen; /* Header Digest */ if (g_nvme_tcp_hdgst[pdu->hdr.common.pdu_type] && tqpair->host_hdgst_enable) { crc32c = nvme_tcp_pdu_calc_header_digest(pdu); MAKE_DIGEST_WORD((uint8_t *)pdu->hdr.raw + hlen, crc32c); } /* Data Digest */ pdu_data_crc32_compute(pdu); } static void nvmf_tcp_qpair_write_mgmt_pdu(struct spdk_nvmf_tcp_qpair *tqpair, nvme_tcp_qpair_xfer_complete_cb cb_fn, void *cb_arg) { struct nvme_tcp_pdu *pdu = tqpair->mgmt_pdu; pdu->sock_req.cb_fn = _mgmt_pdu_write_done; pdu->sock_req.cb_arg = tqpair; nvmf_tcp_qpair_write_pdu(tqpair, pdu, cb_fn, cb_arg); } static void nvmf_tcp_qpair_write_req_pdu(struct spdk_nvmf_tcp_qpair *tqpair, struct spdk_nvmf_tcp_req *tcp_req, nvme_tcp_qpair_xfer_complete_cb cb_fn, void *cb_arg) { struct nvme_tcp_pdu *pdu = tcp_req->pdu; pdu->sock_req.cb_fn = _req_pdu_write_done; pdu->sock_req.cb_arg = tcp_req; assert(!tcp_req->pdu_in_use); tcp_req->pdu_in_use = true; nvmf_tcp_qpair_write_pdu(tqpair, pdu, cb_fn, cb_arg); } static int nvmf_tcp_qpair_init_mem_resource(struct spdk_nvmf_tcp_qpair *tqpair) { uint32_t i; struct spdk_nvmf_transport_opts *opts; uint32_t in_capsule_data_size; opts = &tqpair->qpair.transport->opts; in_capsule_data_size = opts->in_capsule_data_size; if (opts->dif_insert_or_strip) { in_capsule_data_size = SPDK_BDEV_BUF_SIZE_WITH_MD(in_capsule_data_size); } tqpair->resource_count = opts->max_queue_depth; tqpair->reqs = calloc(tqpair->resource_count, sizeof(*tqpair->reqs)); if (!tqpair->reqs) { SPDK_ERRLOG("Unable to allocate reqs on tqpair=%p\n", tqpair); return -1; } if (in_capsule_data_size) { tqpair->bufs = spdk_zmalloc(tqpair->resource_count * in_capsule_data_size, 0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); if (!tqpair->bufs) { SPDK_ERRLOG("Unable to allocate bufs on tqpair=%p.\n", tqpair); return -1; } } /* prepare memory space for receiving pdus and tcp_req */ /* Add additional 1 member, which will be used for mgmt_pdu owned by the tqpair */ tqpair->pdus = spdk_dma_zmalloc((2 * tqpair->resource_count + 1) * sizeof(*tqpair->pdus), 0x1000, NULL); if (!tqpair->pdus) { SPDK_ERRLOG("Unable to allocate pdu pool on tqpair =%p.\n", tqpair); return -1; } for (i = 0; i < tqpair->resource_count; i++) { struct spdk_nvmf_tcp_req *tcp_req = &tqpair->reqs[i]; tcp_req->ttag = i + 1; tcp_req->req.qpair = &tqpair->qpair; tcp_req->pdu = &tqpair->pdus[i]; tcp_req->pdu->qpair = tqpair; /* Set up memory to receive commands */ if (tqpair->bufs) { tcp_req->buf = (void *)((uintptr_t)tqpair->bufs + (i * in_capsule_data_size)); } /* Set the cmdn and rsp */ tcp_req->req.rsp = (union nvmf_c2h_msg *)&tcp_req->rsp; tcp_req->req.cmd = (union nvmf_h2c_msg *)&tcp_req->cmd; tcp_req->req.stripped_data = NULL; /* Initialize request state to FREE */ tcp_req->state = TCP_REQUEST_STATE_FREE; TAILQ_INSERT_TAIL(&tqpair->tcp_req_free_queue, tcp_req, state_link); tqpair->state_cntr[TCP_REQUEST_STATE_FREE]++; } for (; i < 2 * tqpair->resource_count; i++) { struct nvme_tcp_pdu *pdu = &tqpair->pdus[i]; pdu->qpair = tqpair; SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, pdu, slist); } tqpair->mgmt_pdu = &tqpair->pdus[i]; tqpair->mgmt_pdu->qpair = tqpair; tqpair->pdu_in_progress = SLIST_FIRST(&tqpair->tcp_pdu_free_queue); SLIST_REMOVE_HEAD(&tqpair->tcp_pdu_free_queue, slist); tqpair->tcp_pdu_working_count = 1; tqpair->recv_buf_size = (in_capsule_data_size + sizeof(struct spdk_nvme_tcp_cmd) + 2 * SPDK_NVME_TCP_DIGEST_LEN) * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR; return 0; } static int nvmf_tcp_qpair_init(struct spdk_nvmf_qpair *qpair) { struct spdk_nvmf_tcp_qpair *tqpair; tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair); SPDK_DEBUGLOG(nvmf_tcp, "New TCP Connection: %p\n", qpair); spdk_trace_record(TRACE_TCP_QP_CREATE, tqpair->qpair.trace_id, 0, 0); /* Initialise request state queues of the qpair */ TAILQ_INIT(&tqpair->tcp_req_free_queue); TAILQ_INIT(&tqpair->tcp_req_working_queue); SLIST_INIT(&tqpair->tcp_pdu_free_queue); tqpair->qpair.queue_depth = 0; tqpair->host_hdgst_enable = true; tqpair->host_ddgst_enable = true; return 0; } static int nvmf_tcp_qpair_sock_init(struct spdk_nvmf_tcp_qpair *tqpair) { char saddr[32], caddr[32]; uint16_t sport, cport; char owner[256]; int rc; rc = spdk_sock_getaddr(tqpair->sock, saddr, sizeof(saddr), &sport, caddr, sizeof(caddr), &cport); if (rc != 0) { SPDK_ERRLOG("spdk_sock_getaddr() failed\n"); return rc; } snprintf(owner, sizeof(owner), "%s:%d", caddr, cport); tqpair->qpair.trace_id = spdk_trace_register_owner(OWNER_TYPE_NVMF_TCP, owner); spdk_trace_record(TRACE_TCP_QP_SOCK_INIT, tqpair->qpair.trace_id, 0, 0); /* set low water mark */ rc = spdk_sock_set_recvlowat(tqpair->sock, 1); if (rc != 0) { SPDK_ERRLOG("spdk_sock_set_recvlowat() failed\n"); return rc; } return 0; } static void nvmf_tcp_handle_connect(struct spdk_nvmf_tcp_port *port, struct spdk_sock *sock) { struct spdk_nvmf_tcp_qpair *tqpair; int rc; SPDK_DEBUGLOG(nvmf_tcp, "New connection accepted on %s port %s\n", port->trid->traddr, port->trid->trsvcid); tqpair = calloc(1, sizeof(struct spdk_nvmf_tcp_qpair)); if (tqpair == NULL) { SPDK_ERRLOG("Could not allocate new connection.\n"); spdk_sock_close(&sock); return; } tqpair->sock = sock; tqpair->state_cntr[TCP_REQUEST_STATE_FREE] = 0; tqpair->port = port; tqpair->qpair.transport = port->transport; rc = spdk_sock_getaddr(tqpair->sock, tqpair->target_addr, sizeof(tqpair->target_addr), &tqpair->target_port, tqpair->initiator_addr, sizeof(tqpair->initiator_addr), &tqpair->initiator_port); if (rc < 0) { SPDK_ERRLOG("spdk_sock_getaddr() failed of tqpair=%p\n", tqpair); nvmf_tcp_qpair_destroy(tqpair); return; } spdk_nvmf_tgt_new_qpair(port->transport->tgt, &tqpair->qpair); } static uint32_t nvmf_tcp_port_accept(struct spdk_nvmf_tcp_port *port) { struct spdk_sock *sock; uint32_t count = 0; int i; for (i = 0; i < NVMF_TCP_MAX_ACCEPT_SOCK_ONE_TIME; i++) { sock = spdk_sock_accept(port->listen_sock); if (sock == NULL) { break; } count++; nvmf_tcp_handle_connect(port, sock); } return count; } static int nvmf_tcp_accept(void *ctx) { struct spdk_nvmf_transport *transport = ctx; struct spdk_nvmf_tcp_transport *ttransport; int count; ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport); count = spdk_sock_group_poll(ttransport->listen_sock_group); if (count < 0) { SPDK_ERRLOG("Fail in TCP listen socket group poll\n"); } return count != 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE; } static void nvmf_tcp_accept_cb(void *ctx, struct spdk_sock_group *group, struct spdk_sock *sock) { struct spdk_nvmf_tcp_port *port = ctx; nvmf_tcp_port_accept(port); } static void nvmf_tcp_discover(struct spdk_nvmf_transport *transport, struct spdk_nvme_transport_id *trid, struct spdk_nvmf_discovery_log_page_entry *entry) { struct spdk_nvmf_tcp_port *port; struct spdk_nvmf_tcp_transport *ttransport; entry->trtype = SPDK_NVMF_TRTYPE_TCP; entry->adrfam = trid->adrfam; spdk_strcpy_pad(entry->trsvcid, trid->trsvcid, sizeof(entry->trsvcid), ' '); spdk_strcpy_pad(entry->traddr, trid->traddr, sizeof(entry->traddr), ' '); ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport); port = nvmf_tcp_find_port(ttransport, trid); assert(port != NULL); if (strcmp(spdk_sock_get_impl_name(port->listen_sock), "ssl") == 0) { entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_REQUIRED; entry->tsas.tcp.sectype = SPDK_NVME_TCP_SECURITY_TLS_1_3; } else { entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_NOT_REQUIRED; entry->tsas.tcp.sectype = SPDK_NVME_TCP_SECURITY_NONE; } } static struct spdk_nvmf_tcp_control_msg_list * nvmf_tcp_control_msg_list_create(uint16_t num_messages) { struct spdk_nvmf_tcp_control_msg_list *list; struct spdk_nvmf_tcp_control_msg *msg; uint16_t i; list = calloc(1, sizeof(*list)); if (!list) { SPDK_ERRLOG("Failed to allocate memory for list structure\n"); return NULL; } list->msg_buf = spdk_zmalloc(num_messages * SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE, NVMF_DATA_BUFFER_ALIGNMENT, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA); if (!list->msg_buf) { SPDK_ERRLOG("Failed to allocate memory for control message buffers\n"); free(list); return NULL; } STAILQ_INIT(&list->free_msgs); STAILQ_INIT(&list->waiting_for_msg_reqs); for (i = 0; i < num_messages; i++) { msg = (struct spdk_nvmf_tcp_control_msg *)((char *)list->msg_buf + i * SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE); STAILQ_INSERT_TAIL(&list->free_msgs, msg, link); } return list; } static void nvmf_tcp_control_msg_list_free(struct spdk_nvmf_tcp_control_msg_list *list) { if (!list) { return; } spdk_free(list->msg_buf); free(list); } static struct spdk_nvmf_transport_poll_group * nvmf_tcp_poll_group_create(struct spdk_nvmf_transport *transport, struct spdk_nvmf_poll_group *group) { struct spdk_nvmf_tcp_transport *ttransport; struct spdk_nvmf_tcp_poll_group *tgroup; if (spdk_interrupt_mode_is_enabled()) { SPDK_ERRLOG("TCP transport does not support interrupt mode\n"); return NULL; } tgroup = calloc(1, sizeof(*tgroup)); if (!tgroup) { return NULL; } tgroup->sock_group = spdk_sock_group_create(&tgroup->group); if (!tgroup->sock_group) { goto cleanup; } TAILQ_INIT(&tgroup->qpairs); TAILQ_INIT(&tgroup->await_req); ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport); if (transport->opts.in_capsule_data_size < SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE) { SPDK_DEBUGLOG(nvmf_tcp, "ICD %u is less than min required for admin/fabric commands (%u). " "Creating control messages list\n", transport->opts.in_capsule_data_size, SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE); tgroup->control_msg_list = nvmf_tcp_control_msg_list_create(ttransport->tcp_opts.control_msg_num); if (!tgroup->control_msg_list) { goto cleanup; } } tgroup->accel_channel = spdk_accel_get_io_channel(); if (spdk_unlikely(!tgroup->accel_channel)) { SPDK_ERRLOG("Cannot create accel_channel for tgroup=%p\n", tgroup); goto cleanup; } TAILQ_INSERT_TAIL(&ttransport->poll_groups, tgroup, link); if (ttransport->next_pg == NULL) { ttransport->next_pg = tgroup; } return &tgroup->group; cleanup: nvmf_tcp_poll_group_destroy(&tgroup->group); return NULL; } static struct spdk_nvmf_transport_poll_group * nvmf_tcp_get_optimal_poll_group(struct spdk_nvmf_qpair *qpair) { struct spdk_nvmf_tcp_transport *ttransport; struct spdk_nvmf_tcp_poll_group **pg; struct spdk_nvmf_tcp_qpair *tqpair; struct spdk_sock_group *group = NULL, *hint = NULL; int rc; ttransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_tcp_transport, transport); if (TAILQ_EMPTY(&ttransport->poll_groups)) { return NULL; } pg = &ttransport->next_pg; assert(*pg != NULL); hint = (*pg)->sock_group; tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair); rc = spdk_sock_get_optimal_sock_group(tqpair->sock, &group, hint); if (rc != 0) { return NULL; } else if (group != NULL) { /* Optimal poll group was found */ return spdk_sock_group_get_ctx(group); } /* The hint was used for optimal poll group, advance next_pg. */ *pg = TAILQ_NEXT(*pg, link); if (*pg == NULL) { *pg = TAILQ_FIRST(&ttransport->poll_groups); } return spdk_sock_group_get_ctx(hint); } static void nvmf_tcp_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group) { struct spdk_nvmf_tcp_poll_group *tgroup, *next_tgroup; struct spdk_nvmf_tcp_transport *ttransport; tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group); spdk_sock_group_close(&tgroup->sock_group); if (tgroup->control_msg_list) { nvmf_tcp_control_msg_list_free(tgroup->control_msg_list); } if (tgroup->accel_channel) { spdk_put_io_channel(tgroup->accel_channel); } if (tgroup->group.transport == NULL) { /* Transport can be NULL when nvmf_tcp_poll_group_create() * calls this function directly in a failure path. */ free(tgroup); return; } ttransport = SPDK_CONTAINEROF(tgroup->group.transport, struct spdk_nvmf_tcp_transport, transport); next_tgroup = TAILQ_NEXT(tgroup, link); TAILQ_REMOVE(&ttransport->poll_groups, tgroup, link); if (next_tgroup == NULL) { next_tgroup = TAILQ_FIRST(&ttransport->poll_groups); } if (ttransport->next_pg == tgroup) { ttransport->next_pg = next_tgroup; } free(tgroup); } static void nvmf_tcp_qpair_set_recv_state(struct spdk_nvmf_tcp_qpair *tqpair, enum nvme_tcp_pdu_recv_state state) { if (tqpair->recv_state == state) { SPDK_ERRLOG("The recv state of tqpair=%p is same with the state(%d) to be set\n", tqpair, state); return; } if (spdk_unlikely(state == NVME_TCP_PDU_RECV_STATE_QUIESCING)) { if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH && tqpair->pdu_in_progress) { SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, tqpair->pdu_in_progress, slist); tqpair->tcp_pdu_working_count--; } } if (spdk_unlikely(state == NVME_TCP_PDU_RECV_STATE_ERROR)) { assert(tqpair->tcp_pdu_working_count == 0); } if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) { /* When leaving the await req state, move the qpair to the main list */ TAILQ_REMOVE(&tqpair->group->await_req, tqpair, link); TAILQ_INSERT_TAIL(&tqpair->group->qpairs, tqpair, link); } else if (state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) { TAILQ_REMOVE(&tqpair->group->qpairs, tqpair, link); TAILQ_INSERT_TAIL(&tqpair->group->await_req, tqpair, link); } SPDK_DEBUGLOG(nvmf_tcp, "tqpair(%p) recv state=%d\n", tqpair, state); tqpair->recv_state = state; spdk_trace_record(TRACE_TCP_QP_RCV_STATE_CHANGE, tqpair->qpair.trace_id, 0, 0, (uint64_t)tqpair->recv_state); } static int nvmf_tcp_qpair_handle_timeout(void *ctx) { struct spdk_nvmf_tcp_qpair *tqpair = ctx; assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_ERROR); SPDK_ERRLOG("No pdu coming for tqpair=%p within %d seconds\n", tqpair, SPDK_NVME_TCP_QPAIR_EXIT_TIMEOUT); nvmf_tcp_qpair_disconnect(tqpair); return SPDK_POLLER_BUSY; } static void nvmf_tcp_send_c2h_term_req_complete(void *cb_arg) { struct spdk_nvmf_tcp_qpair *tqpair = (struct spdk_nvmf_tcp_qpair *)cb_arg; if (!tqpair->timeout_poller) { tqpair->timeout_poller = SPDK_POLLER_REGISTER(nvmf_tcp_qpair_handle_timeout, tqpair, SPDK_NVME_TCP_QPAIR_EXIT_TIMEOUT * 1000000); } } static void nvmf_tcp_send_c2h_term_req(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu, enum spdk_nvme_tcp_term_req_fes fes, uint32_t error_offset) { struct nvme_tcp_pdu *rsp_pdu; struct spdk_nvme_tcp_term_req_hdr *c2h_term_req; uint32_t c2h_term_req_hdr_len = sizeof(*c2h_term_req); uint32_t copy_len; rsp_pdu = tqpair->mgmt_pdu; c2h_term_req = &rsp_pdu->hdr.term_req; c2h_term_req->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ; c2h_term_req->common.hlen = c2h_term_req_hdr_len; c2h_term_req->fes = fes; if ((fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD) || (fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER)) { DSET32(&c2h_term_req->fei, error_offset); } copy_len = spdk_min(pdu->hdr.common.hlen, SPDK_NVME_TCP_TERM_REQ_ERROR_DATA_MAX_SIZE); /* Copy the error info into the buffer */ memcpy((uint8_t *)rsp_pdu->hdr.raw + c2h_term_req_hdr_len, pdu->hdr.raw, copy_len); nvme_tcp_pdu_set_data(rsp_pdu, (uint8_t *)rsp_pdu->hdr.raw + c2h_term_req_hdr_len, copy_len); /* Contain the header of the wrong received pdu */ c2h_term_req->common.plen = c2h_term_req->common.hlen + copy_len; tqpair->wait_terminate = true; nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING); nvmf_tcp_qpair_write_mgmt_pdu(tqpair, nvmf_tcp_send_c2h_term_req_complete, tqpair); } static void nvmf_tcp_capsule_cmd_hdr_handle(struct spdk_nvmf_tcp_transport *ttransport, struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu) { struct spdk_nvmf_tcp_req *tcp_req; assert(pdu->psh_valid_bytes == pdu->psh_len); assert(pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD); tcp_req = nvmf_tcp_req_get(tqpair); if (!tcp_req) { /* Directly return and make the allocation retry again. This can happen if we're * using asynchronous writes to send the response to the host or when releasing * zero-copy buffers after a response has been sent. In both cases, the host might * receive the response before we've finished processing the request and is free to * send another one. */ if (tqpair->state_cntr[TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST] > 0 || tqpair->state_cntr[TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE] > 0) { return; } /* The host sent more commands than the maximum queue depth. */ SPDK_ERRLOG("Cannot allocate tcp_req on tqpair=%p\n", tqpair); nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING); return; } pdu->req = tcp_req; assert(tcp_req->state == TCP_REQUEST_STATE_NEW); nvmf_tcp_req_process(ttransport, tcp_req); } static void nvmf_tcp_capsule_cmd_payload_handle(struct spdk_nvmf_tcp_transport *ttransport, struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu) { struct spdk_nvmf_tcp_req *tcp_req; struct spdk_nvme_tcp_cmd *capsule_cmd; uint32_t error_offset = 0; enum spdk_nvme_tcp_term_req_fes fes; struct spdk_nvme_cpl *rsp; capsule_cmd = &pdu->hdr.capsule_cmd; tcp_req = pdu->req; assert(tcp_req != NULL); /* Zero-copy requests don't support ICD */ assert(!spdk_nvmf_request_using_zcopy(&tcp_req->req)); if (capsule_cmd->common.pdo > SPDK_NVME_TCP_PDU_PDO_MAX_OFFSET) { SPDK_ERRLOG("Expected ICReq capsule_cmd pdu offset <= %d, got %c\n", SPDK_NVME_TCP_PDU_PDO_MAX_OFFSET, capsule_cmd->common.pdo); fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD; error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdo); goto err; } rsp = &tcp_req->req.rsp->nvme_cpl; if (spdk_unlikely(rsp->status.sc == SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR)) { nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE); } else { nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE); } nvmf_tcp_req_process(ttransport, tcp_req); return; err: nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset); } static void nvmf_tcp_h2c_data_hdr_handle(struct spdk_nvmf_tcp_transport *ttransport, struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu) { struct spdk_nvmf_tcp_req *tcp_req; uint32_t error_offset = 0; enum spdk_nvme_tcp_term_req_fes fes = 0; struct spdk_nvme_tcp_h2c_data_hdr *h2c_data; h2c_data = &pdu->hdr.h2c_data; SPDK_DEBUGLOG(nvmf_tcp, "tqpair=%p, r2t_info: datao=%u, datal=%u, cccid=%u, ttag=%u\n", tqpair, h2c_data->datao, h2c_data->datal, h2c_data->cccid, h2c_data->ttag); if (h2c_data->ttag > tqpair->resource_count) { SPDK_DEBUGLOG(nvmf_tcp, "ttag %u is larger than allowed %u.\n", h2c_data->ttag, tqpair->resource_count); fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR; error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, ttag); goto err; } tcp_req = &tqpair->reqs[h2c_data->ttag - 1]; if (spdk_unlikely(tcp_req->state != TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER && tcp_req->state != TCP_REQUEST_STATE_AWAITING_R2T_ACK)) { SPDK_DEBUGLOG(nvmf_tcp, "tcp_req(%p), tqpair=%p, has error state in %d\n", tcp_req, tqpair, tcp_req->state); fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD; error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, ttag); goto err; } if (spdk_unlikely(tcp_req->req.cmd->nvme_cmd.cid != h2c_data->cccid)) { SPDK_DEBUGLOG(nvmf_tcp, "tcp_req(%p), tqpair=%p, expected %u but %u for cccid.\n", tcp_req, tqpair, tcp_req->req.cmd->nvme_cmd.cid, h2c_data->cccid); fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR; error_offset = offsetof(struct spdk_nvme_tcp_h2c_data_hdr, cccid); goto err; } if (tcp_req->h2c_offset != h2c_data->datao) { SPDK_DEBUGLOG(nvmf_tcp, "tcp_req(%p), tqpair=%p, expected data offset %u, but data offset is %u\n", tcp_req, tqpair, tcp_req->h2c_offset, h2c_data->datao); fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE; goto err; } if ((h2c_data->datao + h2c_data->datal) > tcp_req->req.length) { SPDK_DEBUGLOG(nvmf_tcp, "tcp_req(%p), tqpair=%p, (datao=%u + datal=%u) exceeds requested length=%u\n", tcp_req, tqpair, h2c_data->datao, h2c_data->datal, tcp_req->req.length); fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE; goto err; } pdu->req = tcp_req; if (spdk_unlikely(tcp_req->req.dif_enabled)) { pdu->dif_ctx = &tcp_req->req.dif.dif_ctx; } nvme_tcp_pdu_set_data_buf(pdu, tcp_req->req.iov, tcp_req->req.iovcnt, h2c_data->datao, h2c_data->datal); nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD); return; err: nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset); } static void nvmf_tcp_send_capsule_resp_pdu(struct spdk_nvmf_tcp_req *tcp_req, struct spdk_nvmf_tcp_qpair *tqpair) { struct nvme_tcp_pdu *rsp_pdu; struct spdk_nvme_tcp_rsp *capsule_resp; SPDK_DEBUGLOG(nvmf_tcp, "enter, tqpair=%p\n", tqpair); rsp_pdu = nvmf_tcp_req_pdu_init(tcp_req); assert(rsp_pdu != NULL); capsule_resp = &rsp_pdu->hdr.capsule_resp; capsule_resp->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_CAPSULE_RESP; capsule_resp->common.plen = capsule_resp->common.hlen = sizeof(*capsule_resp); capsule_resp->rccqe = tcp_req->req.rsp->nvme_cpl; if (tqpair->host_hdgst_enable) { capsule_resp->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF; capsule_resp->common.plen += SPDK_NVME_TCP_DIGEST_LEN; } nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_request_free, tcp_req); } static void nvmf_tcp_pdu_c2h_data_complete(void *cb_arg) { struct spdk_nvmf_tcp_req *tcp_req = cb_arg; struct spdk_nvmf_tcp_qpair *tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair); assert(tqpair != NULL); if (spdk_unlikely(tcp_req->pdu->rw_offset < tcp_req->req.length)) { SPDK_DEBUGLOG(nvmf_tcp, "sending another C2H part, offset %u length %u\n", tcp_req->pdu->rw_offset, tcp_req->req.length); _nvmf_tcp_send_c2h_data(tqpair, tcp_req); return; } if (tcp_req->pdu->hdr.c2h_data.common.flags & SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS) { nvmf_tcp_request_free(tcp_req); } else { nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair); } } static void nvmf_tcp_r2t_complete(void *cb_arg) { struct spdk_nvmf_tcp_req *tcp_req = cb_arg; struct spdk_nvmf_tcp_transport *ttransport; ttransport = SPDK_CONTAINEROF(tcp_req->req.qpair->transport, struct spdk_nvmf_tcp_transport, transport); nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER); if (tcp_req->h2c_offset == tcp_req->req.length) { nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE); nvmf_tcp_req_process(ttransport, tcp_req); } } static void nvmf_tcp_send_r2t_pdu(struct spdk_nvmf_tcp_qpair *tqpair, struct spdk_nvmf_tcp_req *tcp_req) { struct nvme_tcp_pdu *rsp_pdu; struct spdk_nvme_tcp_r2t_hdr *r2t; rsp_pdu = nvmf_tcp_req_pdu_init(tcp_req); assert(rsp_pdu != NULL); r2t = &rsp_pdu->hdr.r2t; r2t->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_R2T; r2t->common.plen = r2t->common.hlen = sizeof(*r2t); if (tqpair->host_hdgst_enable) { r2t->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF; r2t->common.plen += SPDK_NVME_TCP_DIGEST_LEN; } r2t->cccid = tcp_req->req.cmd->nvme_cmd.cid; r2t->ttag = tcp_req->ttag; r2t->r2to = tcp_req->h2c_offset; r2t->r2tl = tcp_req->req.length; nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_R2T_ACK); SPDK_DEBUGLOG(nvmf_tcp, "tcp_req(%p) on tqpair(%p), r2t_info: cccid=%u, ttag=%u, r2to=%u, r2tl=%u\n", tcp_req, tqpair, r2t->cccid, r2t->ttag, r2t->r2to, r2t->r2tl); nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_r2t_complete, tcp_req); } static void nvmf_tcp_h2c_data_payload_handle(struct spdk_nvmf_tcp_transport *ttransport, struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu) { struct spdk_nvmf_tcp_req *tcp_req; struct spdk_nvme_cpl *rsp; tcp_req = pdu->req; assert(tcp_req != NULL); SPDK_DEBUGLOG(nvmf_tcp, "enter\n"); tcp_req->h2c_offset += pdu->data_len; /* Wait for all of the data to arrive AND for the initial R2T PDU send to be * acknowledged before moving on. */ if (tcp_req->h2c_offset == tcp_req->req.length && tcp_req->state == TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER) { /* After receiving all the h2c data, we need to check whether there is * transient transport error */ rsp = &tcp_req->req.rsp->nvme_cpl; if (spdk_unlikely(rsp->status.sc == SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR)) { nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE); } else { nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE); } nvmf_tcp_req_process(ttransport, tcp_req); } } static void nvmf_tcp_h2c_term_req_dump(struct spdk_nvme_tcp_term_req_hdr *h2c_term_req) { SPDK_ERRLOG("Error info of pdu(%p): %s\n", h2c_term_req, spdk_nvmf_tcp_term_req_fes_str[h2c_term_req->fes]); if ((h2c_term_req->fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD) || (h2c_term_req->fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER)) { SPDK_DEBUGLOG(nvmf_tcp, "The offset from the start of the PDU header is %u\n", DGET32(h2c_term_req->fei)); } } static void nvmf_tcp_h2c_term_req_hdr_handle(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu) { struct spdk_nvme_tcp_term_req_hdr *h2c_term_req = &pdu->hdr.term_req; uint32_t error_offset = 0; enum spdk_nvme_tcp_term_req_fes fes; if (h2c_term_req->fes > SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER) { SPDK_ERRLOG("Fatal Error Status(FES) is unknown for h2c_term_req pdu=%p\n", pdu); fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD; error_offset = offsetof(struct spdk_nvme_tcp_term_req_hdr, fes); goto end; } /* set the data buffer */ nvme_tcp_pdu_set_data(pdu, (uint8_t *)pdu->hdr.raw + h2c_term_req->common.hlen, h2c_term_req->common.plen - h2c_term_req->common.hlen); nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD); return; end: nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset); } static void nvmf_tcp_h2c_term_req_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu) { struct spdk_nvme_tcp_term_req_hdr *h2c_term_req = &pdu->hdr.term_req; nvmf_tcp_h2c_term_req_dump(h2c_term_req); nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING); } static void _nvmf_tcp_pdu_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu) { struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport, struct spdk_nvmf_tcp_transport, transport); switch (pdu->hdr.common.pdu_type) { case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD: nvmf_tcp_capsule_cmd_payload_handle(ttransport, tqpair, pdu); break; case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA: nvmf_tcp_h2c_data_payload_handle(ttransport, tqpair, pdu); break; case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ: nvmf_tcp_h2c_term_req_payload_handle(tqpair, pdu); break; default: /* The code should not go to here */ SPDK_ERRLOG("ERROR pdu type %d\n", pdu->hdr.common.pdu_type); break; } SLIST_INSERT_HEAD(&tqpair->tcp_pdu_free_queue, pdu, slist); tqpair->tcp_pdu_working_count--; } static inline void nvmf_tcp_req_set_cpl(struct spdk_nvmf_tcp_req *treq, int sct, int sc) { treq->req.rsp->nvme_cpl.status.sct = sct; treq->req.rsp->nvme_cpl.status.sc = sc; treq->req.rsp->nvme_cpl.cid = treq->req.cmd->nvme_cmd.cid; } static void data_crc32_calc_done(void *cb_arg, int status) { struct nvme_tcp_pdu *pdu = cb_arg; struct spdk_nvmf_tcp_qpair *tqpair = pdu->qpair; /* async crc32 calculation is failed and use direct calculation to check */ if (spdk_unlikely(status)) { SPDK_ERRLOG("Data digest on tqpair=(%p) with pdu=%p failed to be calculated asynchronously\n", tqpair, pdu); pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu); } pdu->data_digest_crc32 ^= SPDK_CRC32C_XOR; if (!MATCH_DIGEST_WORD(pdu->data_digest, pdu->data_digest_crc32)) { SPDK_ERRLOG("Data digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu); assert(pdu->req != NULL); nvmf_tcp_req_set_cpl(pdu->req, SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR); } _nvmf_tcp_pdu_payload_handle(tqpair, pdu); } static void nvmf_tcp_pdu_payload_handle(struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu) { int rc = 0; assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD); tqpair->pdu_in_progress = NULL; nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY); SPDK_DEBUGLOG(nvmf_tcp, "enter\n"); /* check data digest if need */ if (pdu->ddgst_enable) { if (tqpair->qpair.qid != 0 && !pdu->dif_ctx && tqpair->group && (pdu->data_len % SPDK_NVME_TCP_DIGEST_ALIGNMENT == 0)) { rc = spdk_accel_submit_crc32cv(tqpair->group->accel_channel, &pdu->data_digest_crc32, pdu->data_iov, pdu->data_iovcnt, 0, data_crc32_calc_done, pdu); if (spdk_likely(rc == 0)) { return; } } else { pdu->data_digest_crc32 = nvme_tcp_pdu_calc_data_digest(pdu); } data_crc32_calc_done(pdu, rc); } else { _nvmf_tcp_pdu_payload_handle(tqpair, pdu); } } static void nvmf_tcp_send_icresp_complete(void *cb_arg) { struct spdk_nvmf_tcp_qpair *tqpair = cb_arg; nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_RUNNING); } static void nvmf_tcp_icreq_handle(struct spdk_nvmf_tcp_transport *ttransport, struct spdk_nvmf_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu) { struct spdk_nvme_tcp_ic_req *ic_req = &pdu->hdr.ic_req; struct nvme_tcp_pdu *rsp_pdu; struct spdk_nvme_tcp_ic_resp *ic_resp; uint32_t error_offset = 0; enum spdk_nvme_tcp_term_req_fes fes; /* Only PFV 0 is defined currently */ if (ic_req->pfv != 0) { SPDK_ERRLOG("Expected ICReq PFV %u, got %u\n", 0u, ic_req->pfv); fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD; error_offset = offsetof(struct spdk_nvme_tcp_ic_req, pfv); goto end; } /* This value is 0’s based value in units of dwords should not be larger than SPDK_NVME_TCP_HPDA_MAX */ if (ic_req->hpda > SPDK_NVME_TCP_HPDA_MAX) { SPDK_ERRLOG("ICReq HPDA out of range 0 to 31, got %u\n", ic_req->hpda); fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD; error_offset = offsetof(struct spdk_nvme_tcp_ic_req, hpda); goto end; } /* MAXR2T is 0's based */ SPDK_DEBUGLOG(nvmf_tcp, "maxr2t =%u\n", (ic_req->maxr2t + 1u)); tqpair->host_hdgst_enable = ic_req->dgst.bits.hdgst_enable ? true : false; if (!tqpair->host_hdgst_enable) { tqpair->recv_buf_size -= SPDK_NVME_TCP_DIGEST_LEN * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR; } tqpair->host_ddgst_enable = ic_req->dgst.bits.ddgst_enable ? true : false; if (!tqpair->host_ddgst_enable) { tqpair->recv_buf_size -= SPDK_NVME_TCP_DIGEST_LEN * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR; } tqpair->recv_buf_size = spdk_max(tqpair->recv_buf_size, MIN_SOCK_PIPE_SIZE); /* Now that we know whether digests are enabled, properly size the receive buffer */ if (spdk_sock_set_recvbuf(tqpair->sock, tqpair->recv_buf_size) < 0) { SPDK_WARNLOG("Unable to allocate enough memory for receive buffer on tqpair=%p with size=%d\n", tqpair, tqpair->recv_buf_size); /* Not fatal. */ } tqpair->cpda = spdk_min(ic_req->hpda, SPDK_NVME_TCP_CPDA_MAX); SPDK_DEBUGLOG(nvmf_tcp, "cpda of tqpair=(%p) is : %u\n", tqpair, tqpair->cpda); rsp_pdu = tqpair->mgmt_pdu; ic_resp = &rsp_pdu->hdr.ic_resp; ic_resp->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_IC_RESP; ic_resp->common.hlen = ic_resp->common.plen = sizeof(*ic_resp); ic_resp->pfv = 0; ic_resp->cpda = tqpair->cpda; ic_resp->maxh2cdata = ttransport->transport.opts.max_io_size; ic_resp->dgst.bits.hdgst_enable = tqpair->host_hdgst_enable ? 1 : 0; ic_resp->dgst.bits.ddgst_enable = tqpair->host_ddgst_enable ? 1 : 0; SPDK_DEBUGLOG(nvmf_tcp, "host_hdgst_enable: %u\n", tqpair->host_hdgst_enable); SPDK_DEBUGLOG(nvmf_tcp, "host_ddgst_enable: %u\n", tqpair->host_ddgst_enable); nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_INITIALIZING); nvmf_tcp_qpair_write_mgmt_pdu(tqpair, nvmf_tcp_send_icresp_complete, tqpair); nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY); return; end: nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset); } static void nvmf_tcp_pdu_psh_handle(struct spdk_nvmf_tcp_qpair *tqpair, struct spdk_nvmf_tcp_transport *ttransport) { struct nvme_tcp_pdu *pdu; int rc; uint32_t crc32c, error_offset = 0; enum spdk_nvme_tcp_term_req_fes fes; assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH); pdu = tqpair->pdu_in_progress; SPDK_DEBUGLOG(nvmf_tcp, "pdu type of tqpair(%p) is %d\n", tqpair, pdu->hdr.common.pdu_type); /* check header digest if needed */ if (pdu->has_hdgst) { SPDK_DEBUGLOG(nvmf_tcp, "Compare the header of pdu=%p on tqpair=%p\n", pdu, tqpair); crc32c = nvme_tcp_pdu_calc_header_digest(pdu); rc = MATCH_DIGEST_WORD((uint8_t *)pdu->hdr.raw + pdu->hdr.common.hlen, crc32c); if (rc == 0) { SPDK_ERRLOG("Header digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu); fes = SPDK_NVME_TCP_TERM_REQ_FES_HDGST_ERROR; nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset); return; } } switch (pdu->hdr.common.pdu_type) { case SPDK_NVME_TCP_PDU_TYPE_IC_REQ: nvmf_tcp_icreq_handle(ttransport, tqpair, pdu); break; case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD: nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_REQ); break; case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA: nvmf_tcp_h2c_data_hdr_handle(ttransport, tqpair, pdu); break; case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ: nvmf_tcp_h2c_term_req_hdr_handle(tqpair, pdu); break; default: SPDK_ERRLOG("Unexpected PDU type 0x%02x\n", tqpair->pdu_in_progress->hdr.common.pdu_type); fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD; error_offset = 1; nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset); break; } } static void nvmf_tcp_pdu_ch_handle(struct spdk_nvmf_tcp_qpair *tqpair) { struct nvme_tcp_pdu *pdu; uint32_t error_offset = 0; enum spdk_nvme_tcp_term_req_fes fes; uint8_t expected_hlen, pdo; bool plen_error = false, pdo_error = false; assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH); pdu = tqpair->pdu_in_progress; assert(pdu); if (pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_REQ) { if (tqpair->state != NVME_TCP_QPAIR_STATE_INVALID) { SPDK_ERRLOG("Already received ICreq PDU, and reject this pdu=%p\n", pdu); fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR; goto err; } expected_hlen = sizeof(struct spdk_nvme_tcp_ic_req); if (pdu->hdr.common.plen != expected_hlen) { plen_error = true; } } else { if (tqpair->state != NVME_TCP_QPAIR_STATE_RUNNING) { SPDK_ERRLOG("The TCP/IP connection is not negotiated\n"); fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR; goto err; } switch (pdu->hdr.common.pdu_type) { case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD: expected_hlen = sizeof(struct spdk_nvme_tcp_cmd); pdo = pdu->hdr.common.pdo; if ((tqpair->cpda != 0) && (pdo % ((tqpair->cpda + 1) << 2) != 0)) { pdo_error = true; break; } if (pdu->hdr.common.plen < expected_hlen) { plen_error = true; } break; case SPDK_NVME_TCP_PDU_TYPE_H2C_DATA: expected_hlen = sizeof(struct spdk_nvme_tcp_h2c_data_hdr); pdo = pdu->hdr.common.pdo; if ((tqpair->cpda != 0) && (pdo % ((tqpair->cpda + 1) << 2) != 0)) { pdo_error = true; break; } if (pdu->hdr.common.plen < expected_hlen) { plen_error = true; } break; case SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ: expected_hlen = sizeof(struct spdk_nvme_tcp_term_req_hdr); if ((pdu->hdr.common.plen <= expected_hlen) || (pdu->hdr.common.plen > SPDK_NVME_TCP_TERM_REQ_PDU_MAX_SIZE)) { plen_error = true; } break; default: SPDK_ERRLOG("Unexpected PDU type 0x%02x\n", pdu->hdr.common.pdu_type); fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD; error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdu_type); goto err; } } if (pdu->hdr.common.hlen != expected_hlen) { SPDK_ERRLOG("PDU type=0x%02x, Expected ICReq header length %u, got %u on tqpair=%p\n", pdu->hdr.common.pdu_type, expected_hlen, pdu->hdr.common.hlen, tqpair); fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD; error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, hlen); goto err; } else if (pdo_error) { fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD; error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdo); } else if (plen_error) { fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD; error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, plen); goto err; } else { nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH); nvme_tcp_pdu_calc_psh_len(tqpair->pdu_in_progress, tqpair->host_hdgst_enable); return; } err: nvmf_tcp_send_c2h_term_req(tqpair, pdu, fes, error_offset); } static int nvmf_tcp_sock_process(struct spdk_nvmf_tcp_qpair *tqpair) { int rc = 0; struct nvme_tcp_pdu *pdu; enum nvme_tcp_pdu_recv_state prev_state; uint32_t data_len; struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport, struct spdk_nvmf_tcp_transport, transport); /* The loop here is to allow for several back-to-back state changes. */ do { prev_state = tqpair->recv_state; SPDK_DEBUGLOG(nvmf_tcp, "tqpair(%p) recv pdu entering state %d\n", tqpair, prev_state); pdu = tqpair->pdu_in_progress; assert(pdu != NULL || tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY || tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_QUIESCING || tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_ERROR); switch (tqpair->recv_state) { /* Wait for the common header */ case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY: if (!pdu) { pdu = SLIST_FIRST(&tqpair->tcp_pdu_free_queue); if (spdk_unlikely(!pdu)) { return NVME_TCP_PDU_IN_PROGRESS; } SLIST_REMOVE_HEAD(&tqpair->tcp_pdu_free_queue, slist); tqpair->pdu_in_progress = pdu; tqpair->tcp_pdu_working_count++; } memset(pdu, 0, offsetof(struct nvme_tcp_pdu, qpair)); nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH); /* FALLTHROUGH */ case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH: if (spdk_unlikely(tqpair->state == NVME_TCP_QPAIR_STATE_INITIALIZING)) { return rc; } rc = nvme_tcp_read_data(tqpair->sock, sizeof(struct spdk_nvme_tcp_common_pdu_hdr) - pdu->ch_valid_bytes, (void *)&pdu->hdr.common + pdu->ch_valid_bytes); if (rc < 0) { SPDK_DEBUGLOG(nvmf_tcp, "will disconnect tqpair=%p\n", tqpair); nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING); break; } else if (rc > 0) { pdu->ch_valid_bytes += rc; spdk_trace_record(TRACE_TCP_READ_FROM_SOCKET_DONE, tqpair->qpair.trace_id, rc, 0); } if (pdu->ch_valid_bytes < sizeof(struct spdk_nvme_tcp_common_pdu_hdr)) { return NVME_TCP_PDU_IN_PROGRESS; } /* The command header of this PDU has now been read from the socket. */ nvmf_tcp_pdu_ch_handle(tqpair); break; /* Wait for the pdu specific header */ case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH: rc = nvme_tcp_read_data(tqpair->sock, pdu->psh_len - pdu->psh_valid_bytes, (void *)&pdu->hdr.raw + sizeof(struct spdk_nvme_tcp_common_pdu_hdr) + pdu->psh_valid_bytes); if (rc < 0) { nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING); break; } else if (rc > 0) { spdk_trace_record(TRACE_TCP_READ_FROM_SOCKET_DONE, tqpair->qpair.trace_id, rc, 0); pdu->psh_valid_bytes += rc; } if (pdu->psh_valid_bytes < pdu->psh_len) { return NVME_TCP_PDU_IN_PROGRESS; } /* All header(ch, psh, head digits) of this PDU has now been read from the socket. */ nvmf_tcp_pdu_psh_handle(tqpair, ttransport); break; /* Wait for the req slot */ case NVME_TCP_PDU_RECV_STATE_AWAIT_REQ: nvmf_tcp_capsule_cmd_hdr_handle(ttransport, tqpair, pdu); break; /* Wait for the request processing loop to acquire a buffer for the PDU */ case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_BUF: break; case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD: /* check whether the data is valid, if not we just return */ if (!pdu->data_len) { return NVME_TCP_PDU_IN_PROGRESS; } data_len = pdu->data_len; /* data digest */ if (spdk_unlikely((pdu->hdr.common.pdu_type != SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ) && tqpair->host_ddgst_enable)) { data_len += SPDK_NVME_TCP_DIGEST_LEN; pdu->ddgst_enable = true; } rc = nvme_tcp_read_payload_data(tqpair->sock, pdu); if (rc < 0) { nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING); break; } pdu->rw_offset += rc; if (pdu->rw_offset < data_len) { return NVME_TCP_PDU_IN_PROGRESS; } /* Generate and insert DIF to whole data block received if DIF is enabled */ if (spdk_unlikely(pdu->dif_ctx != NULL) && spdk_dif_generate_stream(pdu->data_iov, pdu->data_iovcnt, 0, data_len, pdu->dif_ctx) != 0) { SPDK_ERRLOG("DIF generate failed\n"); nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING); break; } /* All of this PDU has now been read from the socket. */ nvmf_tcp_pdu_payload_handle(tqpair, pdu); break; case NVME_TCP_PDU_RECV_STATE_QUIESCING: if (tqpair->tcp_pdu_working_count != 0) { return NVME_TCP_PDU_IN_PROGRESS; } nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR); break; case NVME_TCP_PDU_RECV_STATE_ERROR: if (spdk_sock_is_connected(tqpair->sock) && tqpair->wait_terminate) { return NVME_TCP_PDU_IN_PROGRESS; } return NVME_TCP_PDU_FATAL; default: SPDK_ERRLOG("The state(%d) is invalid\n", tqpair->recv_state); abort(); break; } } while (tqpair->recv_state != prev_state); return rc; } static inline void * nvmf_tcp_control_msg_get(struct spdk_nvmf_tcp_control_msg_list *list, struct spdk_nvmf_tcp_req *tcp_req) { struct spdk_nvmf_tcp_control_msg *msg; assert(list); msg = STAILQ_FIRST(&list->free_msgs); if (!msg) { SPDK_DEBUGLOG(nvmf_tcp, "Out of control messages\n"); STAILQ_INSERT_TAIL(&list->waiting_for_msg_reqs, tcp_req, control_msg_link); return NULL; } STAILQ_REMOVE_HEAD(&list->free_msgs, link); return msg; } static inline void nvmf_tcp_control_msg_put(struct spdk_nvmf_tcp_control_msg_list *list, void *_msg) { struct spdk_nvmf_tcp_control_msg *msg = _msg; struct spdk_nvmf_tcp_req *tcp_req; struct spdk_nvmf_tcp_transport *ttransport; assert(list); STAILQ_INSERT_HEAD(&list->free_msgs, msg, link); if (!STAILQ_EMPTY(&list->waiting_for_msg_reqs)) { tcp_req = STAILQ_FIRST(&list->waiting_for_msg_reqs); STAILQ_REMOVE_HEAD(&list->waiting_for_msg_reqs, control_msg_link); ttransport = SPDK_CONTAINEROF(tcp_req->req.qpair->transport, struct spdk_nvmf_tcp_transport, transport); nvmf_tcp_req_process(ttransport, tcp_req); } } static void nvmf_tcp_req_parse_sgl(struct spdk_nvmf_tcp_req *tcp_req, struct spdk_nvmf_transport *transport, struct spdk_nvmf_transport_poll_group *group) { struct spdk_nvmf_request *req = &tcp_req->req; struct spdk_nvme_cmd *cmd; struct spdk_nvme_sgl_descriptor *sgl; struct spdk_nvmf_tcp_poll_group *tgroup; enum spdk_nvme_tcp_term_req_fes fes; struct nvme_tcp_pdu *pdu; struct spdk_nvmf_tcp_qpair *tqpair; uint32_t length, error_offset = 0; cmd = &req->cmd->nvme_cmd; sgl = &cmd->dptr.sgl1; if (sgl->generic.type == SPDK_NVME_SGL_TYPE_TRANSPORT_DATA_BLOCK && sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_TRANSPORT) { /* get request length from sgl */ length = sgl->unkeyed.length; if (spdk_unlikely(length > transport->opts.max_io_size)) { SPDK_ERRLOG("SGL length 0x%x exceeds max io size 0x%x\n", length, transport->opts.max_io_size); fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_LIMIT_EXCEEDED; goto fatal_err; } /* fill request length and populate iovs */ req->length = length; SPDK_DEBUGLOG(nvmf_tcp, "Data requested length= 0x%x\n", length); if (spdk_unlikely(req->dif_enabled)) { req->dif.orig_length = length; length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx); req->dif.elba_length = length; } if (nvmf_ctrlr_use_zcopy(req)) { SPDK_DEBUGLOG(nvmf_tcp, "Using zero-copy to execute request %p\n", tcp_req); req->data_from_pool = false; nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_HAVE_BUFFER); return; } if (spdk_nvmf_request_get_buffers(req, group, transport, length)) { /* No available buffers. Queue this request up. */ SPDK_DEBUGLOG(nvmf_tcp, "No available large data buffers. Queueing request %p\n", tcp_req); return; } nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_HAVE_BUFFER); SPDK_DEBUGLOG(nvmf_tcp, "Request %p took %d buffer/s from central pool, and data=%p\n", tcp_req, req->iovcnt, req->iov[0].iov_base); return; } else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK && sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) { uint64_t offset = sgl->address; uint32_t max_len = transport->opts.in_capsule_data_size; assert(tcp_req->has_in_capsule_data); /* Capsule Cmd with In-capsule Data should get data length from pdu header */ tqpair = tcp_req->pdu->qpair; /* receiving pdu is not same with the pdu in tcp_req */ pdu = tqpair->pdu_in_progress; length = pdu->hdr.common.plen - pdu->psh_len - sizeof(struct spdk_nvme_tcp_common_pdu_hdr); if (tqpair->host_ddgst_enable) { length -= SPDK_NVME_TCP_DIGEST_LEN; } /* This error is not defined in NVMe/TCP spec, take this error as fatal error */ if (spdk_unlikely(length != sgl->unkeyed.length)) { SPDK_ERRLOG("In-Capsule Data length 0x%x is not equal to SGL data length 0x%x\n", length, sgl->unkeyed.length); fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD; error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, plen); goto fatal_err; } SPDK_DEBUGLOG(nvmf_tcp, "In-capsule data: offset 0x%" PRIx64 ", length 0x%x\n", offset, length); /* The NVMe/TCP transport does not use ICDOFF to control the in-capsule data offset. ICDOFF should be '0' */ if (spdk_unlikely(offset != 0)) { /* Not defined fatal error in NVMe/TCP spec, handle this error as a fatal error */ SPDK_ERRLOG("In-capsule offset 0x%" PRIx64 " should be ZERO in NVMe/TCP\n", offset); fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER; error_offset = offsetof(struct spdk_nvme_tcp_cmd, ccsqe.dptr.sgl1.address); goto fatal_err; } if (spdk_unlikely(length > max_len)) { /* According to the SPEC we should support ICD up to 8192 bytes for admin and fabric commands */ if (length <= SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE && (cmd->opc == SPDK_NVME_OPC_FABRIC || req->qpair->qid == 0)) { /* Get a buffer from dedicated list */ SPDK_DEBUGLOG(nvmf_tcp, "Getting a buffer from control msg list\n"); tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group); assert(tgroup->control_msg_list); req->iov[0].iov_base = nvmf_tcp_control_msg_get(tgroup->control_msg_list, tcp_req); if (!req->iov[0].iov_base) { /* No available buffers. Queue this request up. */ SPDK_DEBUGLOG(nvmf_tcp, "No available ICD buffers. Queueing request %p\n", tcp_req); nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_BUF); return; } } else { SPDK_ERRLOG("In-capsule data length 0x%x exceeds capsule length 0x%x\n", length, max_len); fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_LIMIT_EXCEEDED; goto fatal_err; } } else { req->iov[0].iov_base = tcp_req->buf; } req->length = length; req->data_from_pool = false; if (spdk_unlikely(req->dif_enabled)) { length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx); req->dif.elba_length = length; } req->iov[0].iov_len = length; req->iovcnt = 1; nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_HAVE_BUFFER); return; } /* If we want to handle the problem here, then we can't skip the following data segment. * Because this function runs before reading data part, now handle all errors as fatal errors. */ SPDK_ERRLOG("Invalid NVMf I/O Command SGL: Type 0x%x, Subtype 0x%x\n", sgl->generic.type, sgl->generic.subtype); fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER; error_offset = offsetof(struct spdk_nvme_tcp_cmd, ccsqe.dptr.sgl1.generic); fatal_err: nvmf_tcp_send_c2h_term_req(tcp_req->pdu->qpair, tcp_req->pdu, fes, error_offset); } static inline enum spdk_nvme_media_error_status_code nvmf_tcp_dif_error_to_compl_status(uint8_t err_type) { enum spdk_nvme_media_error_status_code result; switch (err_type) { case SPDK_DIF_REFTAG_ERROR: result = SPDK_NVME_SC_REFERENCE_TAG_CHECK_ERROR; break; case SPDK_DIF_APPTAG_ERROR: result = SPDK_NVME_SC_APPLICATION_TAG_CHECK_ERROR; break; case SPDK_DIF_GUARD_ERROR: result = SPDK_NVME_SC_GUARD_CHECK_ERROR; break; default: SPDK_UNREACHABLE(); break; } return result; } static void _nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair, struct spdk_nvmf_tcp_req *tcp_req) { struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF( tqpair->qpair.transport, struct spdk_nvmf_tcp_transport, transport); struct nvme_tcp_pdu *rsp_pdu; struct spdk_nvme_tcp_c2h_data_hdr *c2h_data; uint32_t plen, pdo, alignment; int rc; SPDK_DEBUGLOG(nvmf_tcp, "enter\n"); rsp_pdu = tcp_req->pdu; assert(rsp_pdu != NULL); c2h_data = &rsp_pdu->hdr.c2h_data; c2h_data->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_C2H_DATA; plen = c2h_data->common.hlen = sizeof(*c2h_data); if (tqpair->host_hdgst_enable) { plen += SPDK_NVME_TCP_DIGEST_LEN; c2h_data->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF; } /* set the psh */ c2h_data->cccid = tcp_req->req.cmd->nvme_cmd.cid; c2h_data->datal = tcp_req->req.length - tcp_req->pdu->rw_offset; c2h_data->datao = tcp_req->pdu->rw_offset; /* set the padding */ rsp_pdu->padding_len = 0; pdo = plen; if (tqpair->cpda) { alignment = (tqpair->cpda + 1) << 2; if (plen % alignment != 0) { pdo = (plen + alignment) / alignment * alignment; rsp_pdu->padding_len = pdo - plen; plen = pdo; } } c2h_data->common.pdo = pdo; plen += c2h_data->datal; if (tqpair->host_ddgst_enable) { c2h_data->common.flags |= SPDK_NVME_TCP_CH_FLAGS_DDGSTF; plen += SPDK_NVME_TCP_DIGEST_LEN; } c2h_data->common.plen = plen; if (spdk_unlikely(tcp_req->req.dif_enabled)) { rsp_pdu->dif_ctx = &tcp_req->req.dif.dif_ctx; } nvme_tcp_pdu_set_data_buf(rsp_pdu, tcp_req->req.iov, tcp_req->req.iovcnt, c2h_data->datao, c2h_data->datal); c2h_data->common.flags |= SPDK_NVME_TCP_C2H_DATA_FLAGS_LAST_PDU; /* Need to send the capsule response if response is not all 0 */ if (ttransport->tcp_opts.c2h_success && tcp_req->rsp.cdw0 == 0 && tcp_req->rsp.cdw1 == 0) { c2h_data->common.flags |= SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS; } if (spdk_unlikely(tcp_req->req.dif_enabled)) { struct spdk_nvme_cpl *rsp = &tcp_req->req.rsp->nvme_cpl; struct spdk_dif_error err_blk = {}; uint32_t mapped_length = 0; uint32_t available_iovs = SPDK_COUNTOF(rsp_pdu->iov); uint32_t ddgst_len = 0; if (tqpair->host_ddgst_enable) { /* Data digest consumes additional iov entry */ available_iovs--; /* plen needs to be updated since nvme_tcp_build_iovs compares expected and actual plen */ ddgst_len = SPDK_NVME_TCP_DIGEST_LEN; c2h_data->common.plen -= ddgst_len; } /* Temp call to estimate if data can be described by limited number of iovs. * iov vector will be rebuilt in nvmf_tcp_qpair_write_pdu */ nvme_tcp_build_iovs(rsp_pdu->iov, available_iovs, rsp_pdu, tqpair->host_hdgst_enable, false, &mapped_length); if (mapped_length != c2h_data->common.plen) { c2h_data->datal = mapped_length - (c2h_data->common.plen - c2h_data->datal); SPDK_DEBUGLOG(nvmf_tcp, "Part C2H, data_len %u (of %u), PDU len %u, updated PDU len %u, offset %u\n", c2h_data->datal, tcp_req->req.length, c2h_data->common.plen, mapped_length, rsp_pdu->rw_offset); c2h_data->common.plen = mapped_length; /* Rebuild pdu->data_iov since data length is changed */ nvme_tcp_pdu_set_data_buf(rsp_pdu, tcp_req->req.iov, tcp_req->req.iovcnt, c2h_data->datao, c2h_data->datal); c2h_data->common.flags &= ~(SPDK_NVME_TCP_C2H_DATA_FLAGS_LAST_PDU | SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS); } c2h_data->common.plen += ddgst_len; assert(rsp_pdu->rw_offset <= tcp_req->req.length); rc = spdk_dif_verify_stream(rsp_pdu->data_iov, rsp_pdu->data_iovcnt, 0, rsp_pdu->data_len, rsp_pdu->dif_ctx, &err_blk); if (rc != 0) { SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n", err_blk.err_type, err_blk.err_offset); rsp->status.sct = SPDK_NVME_SCT_MEDIA_ERROR; rsp->status.sc = nvmf_tcp_dif_error_to_compl_status(err_blk.err_type); nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair); return; } } rsp_pdu->rw_offset += c2h_data->datal; nvmf_tcp_qpair_write_req_pdu(tqpair, tcp_req, nvmf_tcp_pdu_c2h_data_complete, tcp_req); } static void nvmf_tcp_send_c2h_data(struct spdk_nvmf_tcp_qpair *tqpair, struct spdk_nvmf_tcp_req *tcp_req) { nvmf_tcp_req_pdu_init(tcp_req); _nvmf_tcp_send_c2h_data(tqpair, tcp_req); } static int request_transfer_out(struct spdk_nvmf_request *req) { struct spdk_nvmf_tcp_req *tcp_req; struct spdk_nvmf_qpair *qpair; struct spdk_nvmf_tcp_qpair *tqpair; struct spdk_nvme_cpl *rsp; SPDK_DEBUGLOG(nvmf_tcp, "enter\n"); qpair = req->qpair; rsp = &req->rsp->nvme_cpl; tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req); /* Advance our sq_head pointer */ if (qpair->sq_head == qpair->sq_head_max) { qpair->sq_head = 0; } else { qpair->sq_head++; } rsp->sqhd = qpair->sq_head; tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair); nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST); if (rsp->status.sc == SPDK_NVME_SC_SUCCESS && req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) { nvmf_tcp_send_c2h_data(tqpair, tcp_req); } else { nvmf_tcp_send_capsule_resp_pdu(tcp_req, tqpair); } return 0; } static void nvmf_tcp_check_fused_ordering(struct spdk_nvmf_tcp_transport *ttransport, struct spdk_nvmf_tcp_qpair *tqpair, struct spdk_nvmf_tcp_req *tcp_req) { enum spdk_nvme_cmd_fuse last, next; last = tqpair->fused_first ? tqpair->fused_first->cmd.fuse : SPDK_NVME_CMD_FUSE_NONE; next = tcp_req->cmd.fuse; assert(last != SPDK_NVME_CMD_FUSE_SECOND); if (spdk_likely(last == SPDK_NVME_CMD_FUSE_NONE && next == SPDK_NVME_CMD_FUSE_NONE)) { return; } if (last == SPDK_NVME_CMD_FUSE_FIRST) { if (next == SPDK_NVME_CMD_FUSE_SECOND) { /* This is a valid pair of fused commands. Point them at each other * so they can be submitted consecutively once ready to be executed. */ tqpair->fused_first->fused_pair = tcp_req; tcp_req->fused_pair = tqpair->fused_first; tqpair->fused_first = NULL; return; } else { /* Mark the last req as failed since it wasn't followed by a SECOND. */ tqpair->fused_first->fused_failed = true; /* * If the last req is in READY_TO_EXECUTE state, then call * nvmf_tcp_req_process(), otherwise nothing else will kick it. */ if (tqpair->fused_first->state == TCP_REQUEST_STATE_READY_TO_EXECUTE) { nvmf_tcp_req_process(ttransport, tqpair->fused_first); } tqpair->fused_first = NULL; } } if (next == SPDK_NVME_CMD_FUSE_FIRST) { /* Set tqpair->fused_first here so that we know to check that the next request * is a SECOND (and to fail this one if it isn't). */ tqpair->fused_first = tcp_req; } else if (next == SPDK_NVME_CMD_FUSE_SECOND) { /* Mark this req failed since it is a SECOND and the last one was not a FIRST. */ tcp_req->fused_failed = true; } } static bool nvmf_tcp_req_process(struct spdk_nvmf_tcp_transport *ttransport, struct spdk_nvmf_tcp_req *tcp_req) { struct spdk_nvmf_tcp_qpair *tqpair; uint32_t plen; struct nvme_tcp_pdu *pdu; enum spdk_nvmf_tcp_req_state prev_state; bool progress = false; struct spdk_nvmf_transport *transport = &ttransport->transport; struct spdk_nvmf_transport_poll_group *group; struct spdk_nvmf_tcp_poll_group *tgroup; tqpair = SPDK_CONTAINEROF(tcp_req->req.qpair, struct spdk_nvmf_tcp_qpair, qpair); group = &tqpair->group->group; assert(tcp_req->state != TCP_REQUEST_STATE_FREE); /* If the qpair is not active, we need to abort the outstanding requests. */ if (!spdk_nvmf_qpair_is_active(&tqpair->qpair)) { if (tcp_req->state == TCP_REQUEST_STATE_NEED_BUFFER) { nvmf_tcp_request_get_buffers_abort(tcp_req); } nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED); } /* The loop here is to allow for several back-to-back state changes. */ do { prev_state = tcp_req->state; SPDK_DEBUGLOG(nvmf_tcp, "Request %p entering state %d on tqpair=%p\n", tcp_req, prev_state, tqpair); switch (tcp_req->state) { case TCP_REQUEST_STATE_FREE: /* Some external code must kick a request into TCP_REQUEST_STATE_NEW * to escape this state. */ break; case TCP_REQUEST_STATE_NEW: spdk_trace_record(TRACE_TCP_REQUEST_STATE_NEW, tqpair->qpair.trace_id, 0, (uintptr_t)tcp_req, tqpair->qpair.queue_depth); /* copy the cmd from the receive pdu */ tcp_req->cmd = tqpair->pdu_in_progress->hdr.capsule_cmd.ccsqe; if (spdk_unlikely(spdk_nvmf_request_get_dif_ctx(&tcp_req->req, &tcp_req->req.dif.dif_ctx))) { tcp_req->req.dif_enabled = true; tqpair->pdu_in_progress->dif_ctx = &tcp_req->req.dif.dif_ctx; } nvmf_tcp_check_fused_ordering(ttransport, tqpair, tcp_req); /* The next state transition depends on the data transfer needs of this request. */ tcp_req->req.xfer = spdk_nvmf_req_get_xfer(&tcp_req->req); if (spdk_unlikely(tcp_req->req.xfer == SPDK_NVME_DATA_BIDIRECTIONAL)) { nvmf_tcp_req_set_cpl(tcp_req, SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_INVALID_OPCODE); nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY); nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE); SPDK_DEBUGLOG(nvmf_tcp, "Request %p: invalid xfer type (BIDIRECTIONAL)\n", tcp_req); break; } /* If no data to transfer, ready to execute. */ if (tcp_req->req.xfer == SPDK_NVME_DATA_NONE) { /* Reset the tqpair receiving pdu state */ nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY); nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE); break; } pdu = tqpair->pdu_in_progress; plen = pdu->hdr.common.hlen; if (tqpair->host_hdgst_enable) { plen += SPDK_NVME_TCP_DIGEST_LEN; } if (pdu->hdr.common.plen != plen) { tcp_req->has_in_capsule_data = true; } else { /* Data is transmitted by C2H PDUs */ nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY); } nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_NEED_BUFFER); break; case TCP_REQUEST_STATE_NEED_BUFFER: spdk_trace_record(TRACE_TCP_REQUEST_STATE_NEED_BUFFER, tqpair->qpair.trace_id, 0, (uintptr_t)tcp_req); assert(tcp_req->req.xfer != SPDK_NVME_DATA_NONE); /* Try to get a data buffer */ nvmf_tcp_req_parse_sgl(tcp_req, transport, group); break; case TCP_REQUEST_STATE_HAVE_BUFFER: spdk_trace_record(TRACE_TCP_REQUEST_STATE_HAVE_BUFFER, tqpair->qpair.trace_id, 0, (uintptr_t)tcp_req); /* Get a zcopy buffer if the request can be serviced through zcopy */ if (spdk_nvmf_request_using_zcopy(&tcp_req->req)) { if (spdk_unlikely(tcp_req->req.dif_enabled)) { assert(tcp_req->req.dif.elba_length >= tcp_req->req.length); tcp_req->req.length = tcp_req->req.dif.elba_length; } nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_START); spdk_nvmf_request_zcopy_start(&tcp_req->req); break; } assert(tcp_req->req.iovcnt > 0); /* If data is transferring from host to controller, we need to do a transfer from the host. */ if (tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) { if (tcp_req->req.data_from_pool) { SPDK_DEBUGLOG(nvmf_tcp, "Sending R2T for tcp_req(%p) on tqpair=%p\n", tcp_req, tqpair); nvmf_tcp_send_r2t_pdu(tqpair, tcp_req); } else { struct nvme_tcp_pdu *pdu; nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER); pdu = tqpair->pdu_in_progress; SPDK_DEBUGLOG(nvmf_tcp, "Not need to send r2t for tcp_req(%p) on tqpair=%p\n", tcp_req, tqpair); /* No need to send r2t, contained in the capsuled data */ nvme_tcp_pdu_set_data_buf(pdu, tcp_req->req.iov, tcp_req->req.iovcnt, 0, tcp_req->req.length); nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD); } break; } nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_EXECUTE); break; case TCP_REQUEST_STATE_AWAITING_ZCOPY_START: spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_START, tqpair->qpair.trace_id, 0, (uintptr_t)tcp_req); /* Some external code must kick a request into TCP_REQUEST_STATE_ZCOPY_START_COMPLETED * to escape this state. */ break; case TCP_REQUEST_STATE_ZCOPY_START_COMPLETED: spdk_trace_record(TRACE_TCP_REQUEST_STATE_ZCOPY_START_COMPLETED, tqpair->qpair.trace_id, 0, (uintptr_t)tcp_req); if (spdk_unlikely(spdk_nvme_cpl_is_error(&tcp_req->req.rsp->nvme_cpl))) { SPDK_DEBUGLOG(nvmf_tcp, "Zero-copy start failed for tcp_req(%p) on tqpair=%p\n", tcp_req, tqpair); nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE); break; } if (tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) { SPDK_DEBUGLOG(nvmf_tcp, "Sending R2T for tcp_req(%p) on tqpair=%p\n", tcp_req, tqpair); nvmf_tcp_send_r2t_pdu(tqpair, tcp_req); } else { nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTED); } break; case TCP_REQUEST_STATE_AWAITING_R2T_ACK: spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_R2T_ACK, tqpair->qpair.trace_id, 0, (uintptr_t)tcp_req); /* The R2T completion or the h2c data incoming will kick it out of this state. */ break; case TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER: spdk_trace_record(TRACE_TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, tqpair->qpair.trace_id, 0, (uintptr_t)tcp_req); /* Some external code must kick a request into TCP_REQUEST_STATE_READY_TO_EXECUTE * to escape this state. */ break; case TCP_REQUEST_STATE_READY_TO_EXECUTE: spdk_trace_record(TRACE_TCP_REQUEST_STATE_READY_TO_EXECUTE, tqpair->qpair.trace_id, 0, (uintptr_t)tcp_req); if (spdk_unlikely(tcp_req->req.dif_enabled)) { assert(tcp_req->req.dif.elba_length >= tcp_req->req.length); tcp_req->req.length = tcp_req->req.dif.elba_length; } if (tcp_req->cmd.fuse != SPDK_NVME_CMD_FUSE_NONE) { if (tcp_req->fused_failed) { /* This request failed FUSED semantics. Fail it immediately, without * even sending it to the target layer. */ nvmf_tcp_req_set_cpl(tcp_req, SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_ABORTED_MISSING_FUSED); nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE); break; } if (tcp_req->fused_pair == NULL || tcp_req->fused_pair->state != TCP_REQUEST_STATE_READY_TO_EXECUTE) { /* This request is ready to execute, but either we don't know yet if it's * valid - i.e. this is a FIRST but we haven't received the next request yet), * or the other request of this fused pair isn't ready to execute. So * break here and this request will get processed later either when the * other request is ready or we find that this request isn't valid. */ break; } } if (!spdk_nvmf_request_using_zcopy(&tcp_req->req)) { nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTING); /* If we get to this point, and this request is a fused command, we know that * it is part of a valid sequence (FIRST followed by a SECOND) and that both * requests are READY_TO_EXECUTE. So call spdk_nvmf_request_exec() both on this * request, and the other request of the fused pair, in the correct order. * Also clear the ->fused_pair pointers on both requests, since after this point * we no longer need to maintain the relationship between these two requests. */ if (tcp_req->cmd.fuse == SPDK_NVME_CMD_FUSE_SECOND) { assert(tcp_req->fused_pair != NULL); assert(tcp_req->fused_pair->fused_pair == tcp_req); nvmf_tcp_req_set_state(tcp_req->fused_pair, TCP_REQUEST_STATE_EXECUTING); spdk_nvmf_request_exec(&tcp_req->fused_pair->req); tcp_req->fused_pair->fused_pair = NULL; tcp_req->fused_pair = NULL; } spdk_nvmf_request_exec(&tcp_req->req); if (tcp_req->cmd.fuse == SPDK_NVME_CMD_FUSE_FIRST) { assert(tcp_req->fused_pair != NULL); assert(tcp_req->fused_pair->fused_pair == tcp_req); nvmf_tcp_req_set_state(tcp_req->fused_pair, TCP_REQUEST_STATE_EXECUTING); spdk_nvmf_request_exec(&tcp_req->fused_pair->req); tcp_req->fused_pair->fused_pair = NULL; tcp_req->fused_pair = NULL; } } else { /* For zero-copy, only requests with data coming from host to the * controller can end up here. */ assert(tcp_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER); nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT); spdk_nvmf_request_zcopy_end(&tcp_req->req, true); } break; case TCP_REQUEST_STATE_EXECUTING: spdk_trace_record(TRACE_TCP_REQUEST_STATE_EXECUTING, tqpair->qpair.trace_id, 0, (uintptr_t)tcp_req); /* Some external code must kick a request into TCP_REQUEST_STATE_EXECUTED * to escape this state. */ break; case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT: spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_COMMIT, tqpair->qpair.trace_id, 0, (uintptr_t)tcp_req); /* Some external code must kick a request into TCP_REQUEST_STATE_EXECUTED * to escape this state. */ break; case TCP_REQUEST_STATE_EXECUTED: spdk_trace_record(TRACE_TCP_REQUEST_STATE_EXECUTED, tqpair->qpair.trace_id, 0, (uintptr_t)tcp_req); if (spdk_unlikely(tcp_req->req.dif_enabled)) { tcp_req->req.length = tcp_req->req.dif.orig_length; } nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_READY_TO_COMPLETE); break; case TCP_REQUEST_STATE_READY_TO_COMPLETE: spdk_trace_record(TRACE_TCP_REQUEST_STATE_READY_TO_COMPLETE, tqpair->qpair.trace_id, 0, (uintptr_t)tcp_req); if (request_transfer_out(&tcp_req->req) != 0) { assert(0); /* No good way to handle this currently */ } break; case TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST: spdk_trace_record(TRACE_TCP_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, tqpair->qpair.trace_id, 0, (uintptr_t)tcp_req); /* Some external code must kick a request into TCP_REQUEST_STATE_COMPLETED * to escape this state. */ break; case TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE: spdk_trace_record(TRACE_TCP_REQUEST_STATE_AWAIT_ZCOPY_RELEASE, tqpair->qpair.trace_id, 0, (uintptr_t)tcp_req); /* Some external code must kick a request into TCP_REQUEST_STATE_COMPLETED * to escape this state. */ break; case TCP_REQUEST_STATE_COMPLETED: spdk_trace_record(TRACE_TCP_REQUEST_STATE_COMPLETED, tqpair->qpair.trace_id, 0, (uintptr_t)tcp_req, tqpair->qpair.queue_depth); /* If there's an outstanding PDU sent to the host, the request is completed * due to the qpair being disconnected. We must delay the completion until * that write is done to avoid freeing the request twice. */ if (spdk_unlikely(tcp_req->pdu_in_use)) { SPDK_DEBUGLOG(nvmf_tcp, "Delaying completion due to outstanding " "write on req=%p\n", tcp_req); /* This can only happen for zcopy requests */ assert(spdk_nvmf_request_using_zcopy(&tcp_req->req)); assert(!spdk_nvmf_qpair_is_active(&tqpair->qpair)); break; } if (tcp_req->req.data_from_pool) { spdk_nvmf_request_free_buffers(&tcp_req->req, group, transport); } else if (spdk_unlikely(tcp_req->has_in_capsule_data && (tcp_req->cmd.opc == SPDK_NVME_OPC_FABRIC || tqpair->qpair.qid == 0) && tcp_req->req.length > transport->opts.in_capsule_data_size)) { tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group); assert(tgroup->control_msg_list); SPDK_DEBUGLOG(nvmf_tcp, "Put buf to control msg list\n"); nvmf_tcp_control_msg_put(tgroup->control_msg_list, tcp_req->req.iov[0].iov_base); } else if (tcp_req->req.zcopy_bdev_io != NULL) { /* If the request has an unreleased zcopy bdev_io, it's either a * read, a failed write, or the qpair is being disconnected */ assert(spdk_nvmf_request_using_zcopy(&tcp_req->req)); assert(tcp_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST || spdk_nvme_cpl_is_error(&tcp_req->req.rsp->nvme_cpl) || !spdk_nvmf_qpair_is_active(&tqpair->qpair)); nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE); spdk_nvmf_request_zcopy_end(&tcp_req->req, false); break; } tcp_req->req.length = 0; tcp_req->req.iovcnt = 0; tcp_req->fused_failed = false; if (tcp_req->fused_pair) { /* This req was part of a valid fused pair, but failed before it got to * READ_TO_EXECUTE state. This means we need to fail the other request * in the pair, because it is no longer part of a valid pair. If the pair * already reached READY_TO_EXECUTE state, we need to kick it. */ tcp_req->fused_pair->fused_failed = true; if (tcp_req->fused_pair->state == TCP_REQUEST_STATE_READY_TO_EXECUTE) { nvmf_tcp_req_process(ttransport, tcp_req->fused_pair); } tcp_req->fused_pair = NULL; } nvmf_tcp_req_put(tqpair, tcp_req); break; case TCP_REQUEST_NUM_STATES: default: assert(0); break; } if (tcp_req->state != prev_state) { progress = true; } } while (tcp_req->state != prev_state); return progress; } static void nvmf_tcp_sock_cb(void *arg, struct spdk_sock_group *group, struct spdk_sock *sock) { struct spdk_nvmf_tcp_qpair *tqpair = arg; int rc; assert(tqpair != NULL); rc = nvmf_tcp_sock_process(tqpair); /* If there was a new socket error, disconnect */ if (rc < 0) { nvmf_tcp_qpair_disconnect(tqpair); } } static int nvmf_tcp_poll_group_add(struct spdk_nvmf_transport_poll_group *group, struct spdk_nvmf_qpair *qpair) { struct spdk_nvmf_tcp_poll_group *tgroup; struct spdk_nvmf_tcp_qpair *tqpair; int rc; tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group); tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair); rc = nvmf_tcp_qpair_sock_init(tqpair); if (rc != 0) { SPDK_ERRLOG("Cannot set sock opt for tqpair=%p\n", tqpair); return -1; } rc = nvmf_tcp_qpair_init(&tqpair->qpair); if (rc < 0) { SPDK_ERRLOG("Cannot init tqpair=%p\n", tqpair); return -1; } rc = nvmf_tcp_qpair_init_mem_resource(tqpair); if (rc < 0) { SPDK_ERRLOG("Cannot init memory resource info for tqpair=%p\n", tqpair); return -1; } rc = spdk_sock_group_add_sock(tgroup->sock_group, tqpair->sock, nvmf_tcp_sock_cb, tqpair); if (rc != 0) { SPDK_ERRLOG("Could not add sock to sock_group: %s (%d)\n", spdk_strerror(errno), errno); return -1; } tqpair->group = tgroup; nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_INVALID); TAILQ_INSERT_TAIL(&tgroup->qpairs, tqpair, link); return 0; } static int nvmf_tcp_poll_group_remove(struct spdk_nvmf_transport_poll_group *group, struct spdk_nvmf_qpair *qpair) { struct spdk_nvmf_tcp_poll_group *tgroup; struct spdk_nvmf_tcp_qpair *tqpair; int rc; tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group); tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair); assert(tqpair->group == tgroup); SPDK_DEBUGLOG(nvmf_tcp, "remove tqpair=%p from the tgroup=%p\n", tqpair, tgroup); if (tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_REQ) { /* Change the state to move the qpair from the await_req list to the main list * and prevent adding it again later by nvmf_tcp_qpair_set_recv_state() */ nvmf_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_QUIESCING); } TAILQ_REMOVE(&tgroup->qpairs, tqpair, link); /* Try to force out any pending writes */ spdk_sock_flush(tqpair->sock); rc = spdk_sock_group_remove_sock(tgroup->sock_group, tqpair->sock); if (rc != 0) { SPDK_ERRLOG("Could not remove sock from sock_group: %s (%d)\n", spdk_strerror(errno), errno); } return rc; } static int nvmf_tcp_req_complete(struct spdk_nvmf_request *req) { struct spdk_nvmf_tcp_transport *ttransport; struct spdk_nvmf_tcp_req *tcp_req; ttransport = SPDK_CONTAINEROF(req->qpair->transport, struct spdk_nvmf_tcp_transport, transport); tcp_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_tcp_req, req); switch (tcp_req->state) { case TCP_REQUEST_STATE_EXECUTING: case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT: nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_EXECUTED); break; case TCP_REQUEST_STATE_AWAITING_ZCOPY_START: nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_ZCOPY_START_COMPLETED); break; case TCP_REQUEST_STATE_AWAITING_ZCOPY_RELEASE: nvmf_tcp_req_set_state(tcp_req, TCP_REQUEST_STATE_COMPLETED); break; default: SPDK_ERRLOG("Unexpected request state %d (cntlid:%d, qid:%d)\n", tcp_req->state, req->qpair->ctrlr->cntlid, req->qpair->qid); assert(0 && "Unexpected request state"); break; } nvmf_tcp_req_process(ttransport, tcp_req); return 0; } static void nvmf_tcp_close_qpair(struct spdk_nvmf_qpair *qpair, spdk_nvmf_transport_qpair_fini_cb cb_fn, void *cb_arg) { struct spdk_nvmf_tcp_qpair *tqpair; SPDK_DEBUGLOG(nvmf_tcp, "Qpair: %p\n", qpair); tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair); assert(tqpair->fini_cb_fn == NULL); tqpair->fini_cb_fn = cb_fn; tqpair->fini_cb_arg = cb_arg; nvmf_tcp_qpair_set_state(tqpair, NVME_TCP_QPAIR_STATE_EXITED); nvmf_tcp_qpair_destroy(tqpair); } static int nvmf_tcp_poll_group_poll(struct spdk_nvmf_transport_poll_group *group) { struct spdk_nvmf_tcp_poll_group *tgroup; int num_events, rc = 0, rc2; struct spdk_nvmf_tcp_qpair *tqpair, *tqpair_tmp; tgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_tcp_poll_group, group); if (spdk_unlikely(TAILQ_EMPTY(&tgroup->qpairs) && TAILQ_EMPTY(&tgroup->await_req))) { return 0; } num_events = spdk_sock_group_poll(tgroup->sock_group); if (spdk_unlikely(num_events < 0)) { SPDK_ERRLOG("Failed to poll sock_group=%p\n", tgroup->sock_group); } TAILQ_FOREACH_SAFE(tqpair, &tgroup->await_req, link, tqpair_tmp) { rc2 = nvmf_tcp_sock_process(tqpair); /* If there was a new socket error, disconnect */ if (spdk_unlikely(rc2 < 0)) { nvmf_tcp_qpair_disconnect(tqpair); if (rc == 0) { rc = rc2; } } } return rc == 0 ? num_events : rc; } static int nvmf_tcp_qpair_get_trid(struct spdk_nvmf_qpair *qpair, struct spdk_nvme_transport_id *trid, bool peer) { struct spdk_nvmf_tcp_qpair *tqpair; uint16_t port; tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair); spdk_nvme_trid_populate_transport(trid, SPDK_NVME_TRANSPORT_TCP); if (peer) { snprintf(trid->traddr, sizeof(trid->traddr), "%s", tqpair->initiator_addr); port = tqpair->initiator_port; } else { snprintf(trid->traddr, sizeof(trid->traddr), "%s", tqpair->target_addr); port = tqpair->target_port; } if (spdk_sock_is_ipv4(tqpair->sock)) { trid->adrfam = SPDK_NVMF_ADRFAM_IPV4; } else if (spdk_sock_is_ipv6(tqpair->sock)) { trid->adrfam = SPDK_NVMF_ADRFAM_IPV6; } else { return -1; } snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%d", port); return 0; } static int nvmf_tcp_qpair_get_local_trid(struct spdk_nvmf_qpair *qpair, struct spdk_nvme_transport_id *trid) { return nvmf_tcp_qpair_get_trid(qpair, trid, 0); } static int nvmf_tcp_qpair_get_peer_trid(struct spdk_nvmf_qpair *qpair, struct spdk_nvme_transport_id *trid) { return nvmf_tcp_qpair_get_trid(qpair, trid, 1); } static int nvmf_tcp_qpair_get_listen_trid(struct spdk_nvmf_qpair *qpair, struct spdk_nvme_transport_id *trid) { return nvmf_tcp_qpair_get_trid(qpair, trid, 0); } static void nvmf_tcp_req_set_abort_status(struct spdk_nvmf_request *req, struct spdk_nvmf_tcp_req *tcp_req_to_abort) { nvmf_tcp_req_set_cpl(tcp_req_to_abort, SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_ABORTED_BY_REQUEST); nvmf_tcp_req_set_state(tcp_req_to_abort, TCP_REQUEST_STATE_READY_TO_COMPLETE); req->rsp->nvme_cpl.cdw0 &= ~1U; /* Command was successfully aborted. */ } static int _nvmf_tcp_qpair_abort_request(void *ctx) { struct spdk_nvmf_request *req = ctx; struct spdk_nvmf_tcp_req *tcp_req_to_abort = SPDK_CONTAINEROF(req->req_to_abort, struct spdk_nvmf_tcp_req, req); struct spdk_nvmf_tcp_qpair *tqpair = SPDK_CONTAINEROF(req->req_to_abort->qpair, struct spdk_nvmf_tcp_qpair, qpair); struct spdk_nvmf_tcp_transport *ttransport = SPDK_CONTAINEROF(tqpair->qpair.transport, struct spdk_nvmf_tcp_transport, transport); int rc; spdk_poller_unregister(&req->poller); switch (tcp_req_to_abort->state) { case TCP_REQUEST_STATE_EXECUTING: case TCP_REQUEST_STATE_AWAITING_ZCOPY_START: case TCP_REQUEST_STATE_AWAITING_ZCOPY_COMMIT: rc = nvmf_ctrlr_abort_request(req); if (rc == SPDK_NVMF_REQUEST_EXEC_STATUS_ASYNCHRONOUS) { return SPDK_POLLER_BUSY; } break; case TCP_REQUEST_STATE_NEED_BUFFER: nvmf_tcp_request_get_buffers_abort(tcp_req_to_abort); nvmf_tcp_req_set_abort_status(req, tcp_req_to_abort); nvmf_tcp_req_process(ttransport, tcp_req_to_abort); break; case TCP_REQUEST_STATE_AWAITING_R2T_ACK: case TCP_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER: if (spdk_get_ticks() < req->timeout_tsc) { req->poller = SPDK_POLLER_REGISTER(_nvmf_tcp_qpair_abort_request, req, 0); return SPDK_POLLER_BUSY; } break; default: /* Requests in other states are either un-abortable (e.g. * TRANSFERRING_CONTROLLER_TO_HOST) or should never end up here, as they're * immediately transitioned to other states in nvmf_tcp_req_process() (e.g. * READY_TO_EXECUTE). But it is fine to end up here, as we'll simply complete the * abort request with the bit0 of dword0 set (command not aborted). */ break; } spdk_nvmf_request_complete(req); return SPDK_POLLER_BUSY; } static void nvmf_tcp_qpair_abort_request(struct spdk_nvmf_qpair *qpair, struct spdk_nvmf_request *req) { struct spdk_nvmf_tcp_qpair *tqpair; struct spdk_nvmf_tcp_transport *ttransport; struct spdk_nvmf_transport *transport; uint16_t cid; uint32_t i; struct spdk_nvmf_tcp_req *tcp_req_to_abort = NULL; tqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_tcp_qpair, qpair); ttransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_tcp_transport, transport); transport = &ttransport->transport; cid = req->cmd->nvme_cmd.cdw10_bits.abort.cid; for (i = 0; i < tqpair->resource_count; i++) { if (tqpair->reqs[i].state != TCP_REQUEST_STATE_FREE && tqpair->reqs[i].req.cmd->nvme_cmd.cid == cid) { tcp_req_to_abort = &tqpair->reqs[i]; break; } } spdk_trace_record(TRACE_TCP_QP_ABORT_REQ, tqpair->qpair.trace_id, 0, (uintptr_t)req); if (tcp_req_to_abort == NULL) { spdk_nvmf_request_complete(req); return; } req->req_to_abort = &tcp_req_to_abort->req; req->timeout_tsc = spdk_get_ticks() + transport->opts.abort_timeout_sec * spdk_get_ticks_hz(); req->poller = NULL; _nvmf_tcp_qpair_abort_request(req); } struct tcp_subsystem_add_host_opts { char *psk; }; static const struct spdk_json_object_decoder tcp_subsystem_add_host_opts_decoder[] = { {"psk", offsetof(struct tcp_subsystem_add_host_opts, psk), spdk_json_decode_string, true}, }; static int tcp_load_psk(const char *fname, char *buf, size_t bufsz) { FILE *psk_file; struct stat statbuf; int rc; if (stat(fname, &statbuf) != 0) { SPDK_ERRLOG("Could not read permissions for PSK file\n"); return -EACCES; } if ((statbuf.st_mode & TCP_PSK_INVALID_PERMISSIONS) != 0) { SPDK_ERRLOG("Incorrect permissions for PSK file\n"); return -EPERM; } if ((size_t)statbuf.st_size > bufsz) { SPDK_ERRLOG("Invalid PSK: too long\n"); return -EINVAL; } psk_file = fopen(fname, "r"); if (psk_file == NULL) { SPDK_ERRLOG("Could not open PSK file\n"); return -EINVAL; } rc = fread(buf, 1, statbuf.st_size, psk_file); if (rc != statbuf.st_size) { SPDK_ERRLOG("Failed to read PSK\n"); fclose(psk_file); return -EINVAL; } fclose(psk_file); return 0; } SPDK_LOG_DEPRECATION_REGISTER(nvmf_tcp_psk_path, "PSK path", "v24.09", 0); static int nvmf_tcp_subsystem_add_host(struct spdk_nvmf_transport *transport, const struct spdk_nvmf_subsystem *subsystem, const char *hostnqn, const struct spdk_json_val *transport_specific) { struct tcp_subsystem_add_host_opts opts; struct spdk_nvmf_tcp_transport *ttransport; struct tcp_psk_entry *tmp, *entry = NULL; uint8_t psk_configured[SPDK_TLS_PSK_MAX_LEN] = {}; char psk_interchange[SPDK_TLS_PSK_MAX_LEN + 1] = {}; uint8_t tls_cipher_suite; int rc = 0; uint8_t psk_retained_hash; uint64_t psk_configured_size; if (transport_specific == NULL) { return 0; } assert(transport != NULL); assert(subsystem != NULL); memset(&opts, 0, sizeof(opts)); /* Decode PSK (either name of a key or file path) */ if (spdk_json_decode_object_relaxed(transport_specific, tcp_subsystem_add_host_opts_decoder, SPDK_COUNTOF(tcp_subsystem_add_host_opts_decoder), &opts)) { SPDK_ERRLOG("spdk_json_decode_object failed\n"); return -EINVAL; } if (opts.psk == NULL) { return 0; } entry = calloc(1, sizeof(struct tcp_psk_entry)); if (entry == NULL) { SPDK_ERRLOG("Unable to allocate memory for PSK entry!\n"); rc = -ENOMEM; goto end; } entry->key = spdk_keyring_get_key(opts.psk); if (entry->key != NULL) { rc = spdk_key_get_key(entry->key, psk_interchange, SPDK_TLS_PSK_MAX_LEN); if (rc < 0) { SPDK_ERRLOG("Failed to retrieve PSK '%s'\n", opts.psk); rc = -EINVAL; goto end; } } else { if (strlen(opts.psk) >= sizeof(entry->psk)) { SPDK_ERRLOG("PSK path too long\n"); rc = -EINVAL; goto end; } rc = tcp_load_psk(opts.psk, psk_interchange, SPDK_TLS_PSK_MAX_LEN); if (rc) { SPDK_ERRLOG("Could not retrieve PSK from file\n"); goto end; } SPDK_LOG_DEPRECATED(nvmf_tcp_psk_path); } /* Parse PSK interchange to get length of base64 encoded data. * This is then used to decide which cipher suite should be used * to generate PSK identity and TLS PSK later on. */ rc = nvme_tcp_parse_interchange_psk(psk_interchange, psk_configured, sizeof(psk_configured), &psk_configured_size, &psk_retained_hash); if (rc < 0) { SPDK_ERRLOG("Failed to parse PSK interchange!\n"); goto end; } /* The Base64 string encodes the configured PSK (32 or 48 bytes binary). * This check also ensures that psk_configured_size is smaller than * psk_retained buffer size. */ if (psk_configured_size == SHA256_DIGEST_LENGTH) { tls_cipher_suite = NVME_TCP_CIPHER_AES_128_GCM_SHA256; } else if (psk_configured_size == SHA384_DIGEST_LENGTH) { tls_cipher_suite = NVME_TCP_CIPHER_AES_256_GCM_SHA384; } else { SPDK_ERRLOG("Unrecognized cipher suite!\n"); rc = -EINVAL; goto end; } ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport); /* Generate PSK identity. */ rc = nvme_tcp_generate_psk_identity(entry->pskid, sizeof(entry->pskid), hostnqn, subsystem->subnqn, tls_cipher_suite); if (rc) { rc = -EINVAL; goto end; } /* Check if PSK identity entry already exists. */ TAILQ_FOREACH(tmp, &ttransport->psks, link) { if (strncmp(tmp->pskid, entry->pskid, NVMF_PSK_IDENTITY_LEN) == 0) { SPDK_ERRLOG("Given PSK identity: %s entry already exists!\n", entry->pskid); rc = -EEXIST; goto end; } } if (snprintf(entry->hostnqn, sizeof(entry->hostnqn), "%s", hostnqn) < 0) { SPDK_ERRLOG("Could not write hostnqn string!\n"); rc = -EINVAL; goto end; } if (snprintf(entry->subnqn, sizeof(entry->subnqn), "%s", subsystem->subnqn) < 0) { SPDK_ERRLOG("Could not write subnqn string!\n"); rc = -EINVAL; goto end; } entry->tls_cipher_suite = tls_cipher_suite; /* No hash indicates that Configured PSK must be used as Retained PSK. */ if (psk_retained_hash == NVME_TCP_HASH_ALGORITHM_NONE) { /* Psk configured is either 32 or 48 bytes long. */ memcpy(entry->psk, psk_configured, psk_configured_size); entry->psk_size = psk_configured_size; } else { /* Derive retained PSK. */ rc = nvme_tcp_derive_retained_psk(psk_configured, psk_configured_size, hostnqn, entry->psk, SPDK_TLS_PSK_MAX_LEN, psk_retained_hash); if (rc < 0) { SPDK_ERRLOG("Unable to derive retained PSK!\n"); goto end; } entry->psk_size = rc; } if (entry->key == NULL) { rc = snprintf(entry->psk_path, sizeof(entry->psk_path), "%s", opts.psk); if (rc < 0 || (size_t)rc >= sizeof(entry->psk_path)) { SPDK_ERRLOG("Could not save PSK path!\n"); rc = -ENAMETOOLONG; goto end; } } TAILQ_INSERT_TAIL(&ttransport->psks, entry, link); rc = 0; end: spdk_memset_s(psk_configured, sizeof(psk_configured), 0, sizeof(psk_configured)); spdk_memset_s(psk_interchange, sizeof(psk_interchange), 0, sizeof(psk_interchange)); free(opts.psk); if (rc != 0) { nvmf_tcp_free_psk_entry(entry); } return rc; } static void nvmf_tcp_subsystem_remove_host(struct spdk_nvmf_transport *transport, const struct spdk_nvmf_subsystem *subsystem, const char *hostnqn) { struct spdk_nvmf_tcp_transport *ttransport; struct tcp_psk_entry *entry, *tmp; assert(transport != NULL); assert(subsystem != NULL); ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport); TAILQ_FOREACH_SAFE(entry, &ttransport->psks, link, tmp) { if ((strncmp(entry->hostnqn, hostnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0 && (strncmp(entry->subnqn, subsystem->subnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0) { TAILQ_REMOVE(&ttransport->psks, entry, link); nvmf_tcp_free_psk_entry(entry); break; } } } static void nvmf_tcp_subsystem_dump_host(struct spdk_nvmf_transport *transport, const struct spdk_nvmf_subsystem *subsystem, const char *hostnqn, struct spdk_json_write_ctx *w) { struct spdk_nvmf_tcp_transport *ttransport; struct tcp_psk_entry *entry; assert(transport != NULL); assert(subsystem != NULL); ttransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_tcp_transport, transport); TAILQ_FOREACH(entry, &ttransport->psks, link) { if ((strncmp(entry->hostnqn, hostnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0 && (strncmp(entry->subnqn, subsystem->subnqn, SPDK_NVMF_NQN_MAX_LEN)) == 0) { spdk_json_write_named_string(w, "psk", entry->key ? spdk_key_get_name(entry->key) : entry->psk_path); break; } } } static void nvmf_tcp_opts_init(struct spdk_nvmf_transport_opts *opts) { opts->max_queue_depth = SPDK_NVMF_TCP_DEFAULT_MAX_IO_QUEUE_DEPTH; opts->max_qpairs_per_ctrlr = SPDK_NVMF_TCP_DEFAULT_MAX_QPAIRS_PER_CTRLR; opts->in_capsule_data_size = SPDK_NVMF_TCP_DEFAULT_IN_CAPSULE_DATA_SIZE; opts->max_io_size = SPDK_NVMF_TCP_DEFAULT_MAX_IO_SIZE; opts->io_unit_size = SPDK_NVMF_TCP_DEFAULT_IO_UNIT_SIZE; opts->max_aq_depth = SPDK_NVMF_TCP_DEFAULT_MAX_ADMIN_QUEUE_DEPTH; opts->num_shared_buffers = SPDK_NVMF_TCP_DEFAULT_NUM_SHARED_BUFFERS; opts->buf_cache_size = SPDK_NVMF_TCP_DEFAULT_BUFFER_CACHE_SIZE; opts->dif_insert_or_strip = SPDK_NVMF_TCP_DEFAULT_DIF_INSERT_OR_STRIP; opts->abort_timeout_sec = SPDK_NVMF_TCP_DEFAULT_ABORT_TIMEOUT_SEC; opts->transport_specific = NULL; } const struct spdk_nvmf_transport_ops spdk_nvmf_transport_tcp = { .name = "TCP", .type = SPDK_NVME_TRANSPORT_TCP, .opts_init = nvmf_tcp_opts_init, .create = nvmf_tcp_create, .dump_opts = nvmf_tcp_dump_opts, .destroy = nvmf_tcp_destroy, .listen = nvmf_tcp_listen, .stop_listen = nvmf_tcp_stop_listen, .listener_discover = nvmf_tcp_discover, .poll_group_create = nvmf_tcp_poll_group_create, .get_optimal_poll_group = nvmf_tcp_get_optimal_poll_group, .poll_group_destroy = nvmf_tcp_poll_group_destroy, .poll_group_add = nvmf_tcp_poll_group_add, .poll_group_remove = nvmf_tcp_poll_group_remove, .poll_group_poll = nvmf_tcp_poll_group_poll, .req_free = nvmf_tcp_req_free, .req_complete = nvmf_tcp_req_complete, .req_get_buffers_done = nvmf_tcp_req_get_buffers_done, .qpair_fini = nvmf_tcp_close_qpair, .qpair_get_local_trid = nvmf_tcp_qpair_get_local_trid, .qpair_get_peer_trid = nvmf_tcp_qpair_get_peer_trid, .qpair_get_listen_trid = nvmf_tcp_qpair_get_listen_trid, .qpair_abort_request = nvmf_tcp_qpair_abort_request, .subsystem_add_host = nvmf_tcp_subsystem_add_host, .subsystem_remove_host = nvmf_tcp_subsystem_remove_host, .subsystem_dump_host = nvmf_tcp_subsystem_dump_host, }; SPDK_NVMF_TRANSPORT_REGISTER(tcp, &spdk_nvmf_transport_tcp); SPDK_LOG_REGISTER_COMPONENT(nvmf_tcp)