//===-- NativeRegisterContextLinux_ppc64le.cpp ----------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // This implementation is related to the OpenPOWER ABI for Power Architecture // 64-bit ELF V2 ABI #if defined(__powerpc64__) #include "NativeRegisterContextLinux_ppc64le.h" #include "lldb/Host/HostInfo.h" #include "lldb/Host/common/NativeProcessProtocol.h" #include "lldb/Utility/DataBufferHeap.h" #include "lldb/Utility/Log.h" #include "lldb/Utility/RegisterValue.h" #include "lldb/Utility/Status.h" #include "Plugins/Process/Linux/NativeProcessLinux.h" #include "Plugins/Process/Linux/Procfs.h" #include "Plugins/Process/POSIX/ProcessPOSIXLog.h" #include "Plugins/Process/Utility/RegisterInfoPOSIX_ppc64le.h" // System includes - They have to be included after framework includes because // they define some macros which collide with variable names in other modules #include #include #include #define REG_CONTEXT_SIZE \ (GetGPRSize() + GetFPRSize() + sizeof(m_vmx_ppc64le) + sizeof(m_vsx_ppc64le)) using namespace lldb; using namespace lldb_private; using namespace lldb_private::process_linux; static const uint32_t g_gpr_regnums_ppc64le[] = { gpr_r0_ppc64le, gpr_r1_ppc64le, gpr_r2_ppc64le, gpr_r3_ppc64le, gpr_r4_ppc64le, gpr_r5_ppc64le, gpr_r6_ppc64le, gpr_r7_ppc64le, gpr_r8_ppc64le, gpr_r9_ppc64le, gpr_r10_ppc64le, gpr_r11_ppc64le, gpr_r12_ppc64le, gpr_r13_ppc64le, gpr_r14_ppc64le, gpr_r15_ppc64le, gpr_r16_ppc64le, gpr_r17_ppc64le, gpr_r18_ppc64le, gpr_r19_ppc64le, gpr_r20_ppc64le, gpr_r21_ppc64le, gpr_r22_ppc64le, gpr_r23_ppc64le, gpr_r24_ppc64le, gpr_r25_ppc64le, gpr_r26_ppc64le, gpr_r27_ppc64le, gpr_r28_ppc64le, gpr_r29_ppc64le, gpr_r30_ppc64le, gpr_r31_ppc64le, gpr_pc_ppc64le, gpr_msr_ppc64le, gpr_origr3_ppc64le, gpr_ctr_ppc64le, gpr_lr_ppc64le, gpr_xer_ppc64le, gpr_cr_ppc64le, gpr_softe_ppc64le, gpr_trap_ppc64le, LLDB_INVALID_REGNUM // register sets need to end with this flag }; static const uint32_t g_fpr_regnums_ppc64le[] = { fpr_f0_ppc64le, fpr_f1_ppc64le, fpr_f2_ppc64le, fpr_f3_ppc64le, fpr_f4_ppc64le, fpr_f5_ppc64le, fpr_f6_ppc64le, fpr_f7_ppc64le, fpr_f8_ppc64le, fpr_f9_ppc64le, fpr_f10_ppc64le, fpr_f11_ppc64le, fpr_f12_ppc64le, fpr_f13_ppc64le, fpr_f14_ppc64le, fpr_f15_ppc64le, fpr_f16_ppc64le, fpr_f17_ppc64le, fpr_f18_ppc64le, fpr_f19_ppc64le, fpr_f20_ppc64le, fpr_f21_ppc64le, fpr_f22_ppc64le, fpr_f23_ppc64le, fpr_f24_ppc64le, fpr_f25_ppc64le, fpr_f26_ppc64le, fpr_f27_ppc64le, fpr_f28_ppc64le, fpr_f29_ppc64le, fpr_f30_ppc64le, fpr_f31_ppc64le, fpr_fpscr_ppc64le, LLDB_INVALID_REGNUM // register sets need to end with this flag }; static const uint32_t g_vmx_regnums_ppc64le[] = { vmx_vr0_ppc64le, vmx_vr1_ppc64le, vmx_vr2_ppc64le, vmx_vr3_ppc64le, vmx_vr4_ppc64le, vmx_vr5_ppc64le, vmx_vr6_ppc64le, vmx_vr7_ppc64le, vmx_vr8_ppc64le, vmx_vr9_ppc64le, vmx_vr10_ppc64le, vmx_vr11_ppc64le, vmx_vr12_ppc64le, vmx_vr13_ppc64le, vmx_vr14_ppc64le, vmx_vr15_ppc64le, vmx_vr16_ppc64le, vmx_vr17_ppc64le, vmx_vr18_ppc64le, vmx_vr19_ppc64le, vmx_vr20_ppc64le, vmx_vr21_ppc64le, vmx_vr22_ppc64le, vmx_vr23_ppc64le, vmx_vr24_ppc64le, vmx_vr25_ppc64le, vmx_vr26_ppc64le, vmx_vr27_ppc64le, vmx_vr28_ppc64le, vmx_vr29_ppc64le, vmx_vr30_ppc64le, vmx_vr31_ppc64le, vmx_vscr_ppc64le, vmx_vrsave_ppc64le, LLDB_INVALID_REGNUM // register sets need to end with this flag }; static const uint32_t g_vsx_regnums_ppc64le[] = { vsx_vs0_ppc64le, vsx_vs1_ppc64le, vsx_vs2_ppc64le, vsx_vs3_ppc64le, vsx_vs4_ppc64le, vsx_vs5_ppc64le, vsx_vs6_ppc64le, vsx_vs7_ppc64le, vsx_vs8_ppc64le, vsx_vs9_ppc64le, vsx_vs10_ppc64le, vsx_vs11_ppc64le, vsx_vs12_ppc64le, vsx_vs13_ppc64le, vsx_vs14_ppc64le, vsx_vs15_ppc64le, vsx_vs16_ppc64le, vsx_vs17_ppc64le, vsx_vs18_ppc64le, vsx_vs19_ppc64le, vsx_vs20_ppc64le, vsx_vs21_ppc64le, vsx_vs22_ppc64le, vsx_vs23_ppc64le, vsx_vs24_ppc64le, vsx_vs25_ppc64le, vsx_vs26_ppc64le, vsx_vs27_ppc64le, vsx_vs28_ppc64le, vsx_vs29_ppc64le, vsx_vs30_ppc64le, vsx_vs31_ppc64le, vsx_vs32_ppc64le, vsx_vs33_ppc64le, vsx_vs34_ppc64le, vsx_vs35_ppc64le, vsx_vs36_ppc64le, vsx_vs37_ppc64le, vsx_vs38_ppc64le, vsx_vs39_ppc64le, vsx_vs40_ppc64le, vsx_vs41_ppc64le, vsx_vs42_ppc64le, vsx_vs43_ppc64le, vsx_vs44_ppc64le, vsx_vs45_ppc64le, vsx_vs46_ppc64le, vsx_vs47_ppc64le, vsx_vs48_ppc64le, vsx_vs49_ppc64le, vsx_vs50_ppc64le, vsx_vs51_ppc64le, vsx_vs52_ppc64le, vsx_vs53_ppc64le, vsx_vs54_ppc64le, vsx_vs55_ppc64le, vsx_vs56_ppc64le, vsx_vs57_ppc64le, vsx_vs58_ppc64le, vsx_vs59_ppc64le, vsx_vs60_ppc64le, vsx_vs61_ppc64le, vsx_vs62_ppc64le, vsx_vs63_ppc64le, LLDB_INVALID_REGNUM // register sets need to end with this flag }; // Number of register sets provided by this context. static constexpr int k_num_register_sets = 4; static const RegisterSet g_reg_sets_ppc64le[k_num_register_sets] = { {"General Purpose Registers", "gpr", k_num_gpr_registers_ppc64le, g_gpr_regnums_ppc64le}, {"Floating Point Registers", "fpr", k_num_fpr_registers_ppc64le, g_fpr_regnums_ppc64le}, {"AltiVec/VMX Registers", "vmx", k_num_vmx_registers_ppc64le, g_vmx_regnums_ppc64le}, {"VSX Registers", "vsx", k_num_vsx_registers_ppc64le, g_vsx_regnums_ppc64le}, }; std::unique_ptr NativeRegisterContextLinux::CreateHostNativeRegisterContextLinux( const ArchSpec &target_arch, NativeThreadLinux &native_thread) { switch (target_arch.GetMachine()) { case llvm::Triple::ppc64le: return std::make_unique(target_arch, native_thread); default: llvm_unreachable("have no register context for architecture"); } } llvm::Expected NativeRegisterContextLinux::DetermineArchitecture(lldb::tid_t tid) { return HostInfo::GetArchitecture(); } NativeRegisterContextLinux_ppc64le::NativeRegisterContextLinux_ppc64le( const ArchSpec &target_arch, NativeThreadProtocol &native_thread) : NativeRegisterContextRegisterInfo( native_thread, new RegisterInfoPOSIX_ppc64le(target_arch)), NativeRegisterContextLinux(native_thread) { if (target_arch.GetMachine() != llvm::Triple::ppc64le) { llvm_unreachable("Unhandled target architecture."); } ::memset(&m_gpr_ppc64le, 0, sizeof(m_gpr_ppc64le)); ::memset(&m_fpr_ppc64le, 0, sizeof(m_fpr_ppc64le)); ::memset(&m_vmx_ppc64le, 0, sizeof(m_vmx_ppc64le)); ::memset(&m_vsx_ppc64le, 0, sizeof(m_vsx_ppc64le)); ::memset(&m_hwp_regs, 0, sizeof(m_hwp_regs)); } uint32_t NativeRegisterContextLinux_ppc64le::GetRegisterSetCount() const { return k_num_register_sets; } const RegisterSet * NativeRegisterContextLinux_ppc64le::GetRegisterSet(uint32_t set_index) const { if (set_index < k_num_register_sets) return &g_reg_sets_ppc64le[set_index]; return nullptr; } uint32_t NativeRegisterContextLinux_ppc64le::GetUserRegisterCount() const { uint32_t count = 0; for (uint32_t set_index = 0; set_index < k_num_register_sets; ++set_index) count += g_reg_sets_ppc64le[set_index].num_registers; return count; } Status NativeRegisterContextLinux_ppc64le::ReadRegister( const RegisterInfo *reg_info, RegisterValue ®_value) { Status error; if (!reg_info) { error.SetErrorString("reg_info NULL"); return error; } const uint32_t reg = reg_info->kinds[lldb::eRegisterKindLLDB]; if (IsFPR(reg)) { error = ReadFPR(); if (error.Fail()) return error; // Get pointer to m_fpr_ppc64le variable and set the data from it. uint32_t fpr_offset = CalculateFprOffset(reg_info); assert(fpr_offset < sizeof m_fpr_ppc64le); uint8_t *src = (uint8_t *)&m_fpr_ppc64le + fpr_offset; reg_value.SetFromMemoryData(*reg_info, src, reg_info->byte_size, eByteOrderLittle, error); } else if (IsVSX(reg)) { uint32_t vsx_offset = CalculateVsxOffset(reg_info); assert(vsx_offset < sizeof(m_vsx_ppc64le)); if (vsx_offset < sizeof(m_vsx_ppc64le) / 2) { error = ReadVSX(); if (error.Fail()) return error; error = ReadFPR(); if (error.Fail()) return error; uint64_t value[2]; uint8_t *dst, *src; dst = (uint8_t *)&value; src = (uint8_t *)&m_vsx_ppc64le + vsx_offset / 2; ::memcpy(dst, src, 8); dst += 8; src = (uint8_t *)&m_fpr_ppc64le + vsx_offset / 2; ::memcpy(dst, src, 8); reg_value.SetFromMemoryData(*reg_info, &value, reg_info->byte_size, eByteOrderLittle, error); } else { error = ReadVMX(); if (error.Fail()) return error; // Get pointer to m_vmx_ppc64le variable and set the data from it. uint32_t vmx_offset = vsx_offset - sizeof(m_vsx_ppc64le) / 2; uint8_t *src = (uint8_t *)&m_vmx_ppc64le + vmx_offset; reg_value.SetFromMemoryData(*reg_info, src, reg_info->byte_size, eByteOrderLittle, error); } } else if (IsVMX(reg)) { error = ReadVMX(); if (error.Fail()) return error; // Get pointer to m_vmx_ppc64le variable and set the data from it. uint32_t vmx_offset = CalculateVmxOffset(reg_info); assert(vmx_offset < sizeof m_vmx_ppc64le); uint8_t *src = (uint8_t *)&m_vmx_ppc64le + vmx_offset; reg_value.SetFromMemoryData(*reg_info, src, reg_info->byte_size, eByteOrderLittle, error); } else if (IsGPR(reg)) { error = ReadGPR(); if (error.Fail()) return error; uint8_t *src = (uint8_t *) &m_gpr_ppc64le + reg_info->byte_offset; reg_value.SetFromMemoryData(*reg_info, src, reg_info->byte_size, eByteOrderLittle, error); } else { return Status("failed - register wasn't recognized to be a GPR, FPR, VSX " "or VMX, read strategy unknown"); } return error; } Status NativeRegisterContextLinux_ppc64le::WriteRegister( const RegisterInfo *reg_info, const RegisterValue ®_value) { Status error; if (!reg_info) return Status("reg_info NULL"); const uint32_t reg_index = reg_info->kinds[lldb::eRegisterKindLLDB]; if (reg_index == LLDB_INVALID_REGNUM) return Status("no lldb regnum for %s", reg_info && reg_info->name ? reg_info->name : ""); if (IsGPR(reg_index)) { error = ReadGPR(); if (error.Fail()) return error; uint8_t *dst = (uint8_t *)&m_gpr_ppc64le + reg_info->byte_offset; ::memcpy(dst, reg_value.GetBytes(), reg_value.GetByteSize()); error = WriteGPR(); if (error.Fail()) return error; return Status(); } if (IsFPR(reg_index)) { error = ReadFPR(); if (error.Fail()) return error; // Get pointer to m_fpr_ppc64le variable and set the data to it. uint32_t fpr_offset = CalculateFprOffset(reg_info); assert(fpr_offset < GetFPRSize()); uint8_t *dst = (uint8_t *)&m_fpr_ppc64le + fpr_offset; ::memcpy(dst, reg_value.GetBytes(), reg_value.GetByteSize()); error = WriteFPR(); if (error.Fail()) return error; return Status(); } if (IsVMX(reg_index)) { error = ReadVMX(); if (error.Fail()) return error; // Get pointer to m_vmx_ppc64le variable and set the data to it. uint32_t vmx_offset = CalculateVmxOffset(reg_info); assert(vmx_offset < sizeof(m_vmx_ppc64le)); uint8_t *dst = (uint8_t *)&m_vmx_ppc64le + vmx_offset; ::memcpy(dst, reg_value.GetBytes(), reg_value.GetByteSize()); error = WriteVMX(); if (error.Fail()) return error; return Status(); } if (IsVSX(reg_index)) { uint32_t vsx_offset = CalculateVsxOffset(reg_info); assert(vsx_offset < sizeof(m_vsx_ppc64le)); if (vsx_offset < sizeof(m_vsx_ppc64le) / 2) { error = ReadVSX(); if (error.Fail()) return error; error = ReadFPR(); if (error.Fail()) return error; uint64_t value[2]; ::memcpy(value, reg_value.GetBytes(), 16); uint8_t *dst, *src; src = (uint8_t *)value; dst = (uint8_t *)&m_vsx_ppc64le + vsx_offset / 2; ::memcpy(dst, src, 8); src += 8; dst = (uint8_t *)&m_fpr_ppc64le + vsx_offset / 2; ::memcpy(dst, src, 8); WriteVSX(); WriteFPR(); } else { error = ReadVMX(); if (error.Fail()) return error; // Get pointer to m_vmx_ppc64le variable and set the data from it. uint32_t vmx_offset = vsx_offset - sizeof(m_vsx_ppc64le) / 2; uint8_t *dst = (uint8_t *)&m_vmx_ppc64le + vmx_offset; ::memcpy(dst, reg_value.GetBytes(), reg_value.GetByteSize()); WriteVMX(); } return Status(); } return Status("failed - register wasn't recognized to be a GPR, FPR, VSX " "or VMX, write strategy unknown"); } Status NativeRegisterContextLinux_ppc64le::ReadAllRegisterValues( lldb::WritableDataBufferSP &data_sp) { Status error; data_sp.reset(new DataBufferHeap(REG_CONTEXT_SIZE, 0)); error = ReadGPR(); if (error.Fail()) return error; error = ReadFPR(); if (error.Fail()) return error; error = ReadVMX(); if (error.Fail()) return error; error = ReadVSX(); if (error.Fail()) return error; uint8_t *dst = data_sp->GetBytes(); ::memcpy(dst, &m_gpr_ppc64le, GetGPRSize()); dst += GetGPRSize(); ::memcpy(dst, &m_fpr_ppc64le, GetFPRSize()); dst += GetFPRSize(); ::memcpy(dst, &m_vmx_ppc64le, sizeof(m_vmx_ppc64le)); dst += sizeof(m_vmx_ppc64le); ::memcpy(dst, &m_vsx_ppc64le, sizeof(m_vsx_ppc64le)); return error; } Status NativeRegisterContextLinux_ppc64le::WriteAllRegisterValues( const lldb::DataBufferSP &data_sp) { Status error; if (!data_sp) { error.SetErrorStringWithFormat( "NativeRegisterContextLinux_ppc64le::%s invalid data_sp provided", __FUNCTION__); return error; } if (data_sp->GetByteSize() != REG_CONTEXT_SIZE) { error.SetErrorStringWithFormat( "NativeRegisterContextLinux_ppc64le::%s data_sp contained mismatched " "data size, expected %" PRIu64 ", actual %" PRIu64, __FUNCTION__, REG_CONTEXT_SIZE, data_sp->GetByteSize()); return error; } const uint8_t *src = data_sp->GetBytes(); if (src == nullptr) { error.SetErrorStringWithFormat("NativeRegisterContextLinux_ppc64le::%s " "DataBuffer::GetBytes() returned a null " "pointer", __FUNCTION__); return error; } ::memcpy(&m_gpr_ppc64le, src, GetGPRSize()); error = WriteGPR(); if (error.Fail()) return error; src += GetGPRSize(); ::memcpy(&m_fpr_ppc64le, src, GetFPRSize()); error = WriteFPR(); if (error.Fail()) return error; src += GetFPRSize(); ::memcpy(&m_vmx_ppc64le, src, sizeof(m_vmx_ppc64le)); error = WriteVMX(); if (error.Fail()) return error; src += sizeof(m_vmx_ppc64le); ::memcpy(&m_vsx_ppc64le, src, sizeof(m_vsx_ppc64le)); error = WriteVSX(); return error; } bool NativeRegisterContextLinux_ppc64le::IsGPR(unsigned reg) const { return reg <= k_last_gpr_ppc64le; // GPR's come first. } bool NativeRegisterContextLinux_ppc64le::IsFPR(unsigned reg) const { return (k_first_fpr_ppc64le <= reg && reg <= k_last_fpr_ppc64le); } uint32_t NativeRegisterContextLinux_ppc64le::CalculateFprOffset( const RegisterInfo *reg_info) const { return reg_info->byte_offset - GetRegisterInfoAtIndex(k_first_fpr_ppc64le)->byte_offset; } uint32_t NativeRegisterContextLinux_ppc64le::CalculateVmxOffset( const RegisterInfo *reg_info) const { return reg_info->byte_offset - GetRegisterInfoAtIndex(k_first_vmx_ppc64le)->byte_offset; } uint32_t NativeRegisterContextLinux_ppc64le::CalculateVsxOffset( const RegisterInfo *reg_info) const { return reg_info->byte_offset - GetRegisterInfoAtIndex(k_first_vsx_ppc64le)->byte_offset; } Status NativeRegisterContextLinux_ppc64le::ReadVMX() { int regset = NT_PPC_VMX; return NativeProcessLinux::PtraceWrapper(PTRACE_GETVRREGS, m_thread.GetID(), ®set, &m_vmx_ppc64le, sizeof(m_vmx_ppc64le)); } Status NativeRegisterContextLinux_ppc64le::WriteVMX() { int regset = NT_PPC_VMX; return NativeProcessLinux::PtraceWrapper(PTRACE_SETVRREGS, m_thread.GetID(), ®set, &m_vmx_ppc64le, sizeof(m_vmx_ppc64le)); } Status NativeRegisterContextLinux_ppc64le::ReadVSX() { int regset = NT_PPC_VSX; return NativeProcessLinux::PtraceWrapper(PTRACE_GETVSRREGS, m_thread.GetID(), ®set, &m_vsx_ppc64le, sizeof(m_vsx_ppc64le)); } Status NativeRegisterContextLinux_ppc64le::WriteVSX() { int regset = NT_PPC_VSX; return NativeProcessLinux::PtraceWrapper(PTRACE_SETVSRREGS, m_thread.GetID(), ®set, &m_vsx_ppc64le, sizeof(m_vsx_ppc64le)); } bool NativeRegisterContextLinux_ppc64le::IsVMX(unsigned reg) { return (reg >= k_first_vmx_ppc64le) && (reg <= k_last_vmx_ppc64le); } bool NativeRegisterContextLinux_ppc64le::IsVSX(unsigned reg) { return (reg >= k_first_vsx_ppc64le) && (reg <= k_last_vsx_ppc64le); } uint32_t NativeRegisterContextLinux_ppc64le::NumSupportedHardwareWatchpoints() { Log *log = GetLog(POSIXLog::Watchpoints); // Read hardware breakpoint and watchpoint information. Status error = ReadHardwareDebugInfo(); if (error.Fail()) return 0; LLDB_LOG(log, "{0}", m_max_hwp_supported); return m_max_hwp_supported; } uint32_t NativeRegisterContextLinux_ppc64le::SetHardwareWatchpoint( lldb::addr_t addr, size_t size, uint32_t watch_flags) { Log *log = GetLog(POSIXLog::Watchpoints); LLDB_LOG(log, "addr: {0:x}, size: {1:x} watch_flags: {2:x}", addr, size, watch_flags); // Read hardware breakpoint and watchpoint information. Status error = ReadHardwareDebugInfo(); if (error.Fail()) return LLDB_INVALID_INDEX32; uint32_t control_value = 0, wp_index = 0; lldb::addr_t real_addr = addr; uint32_t rw_mode = 0; // Check if we are setting watchpoint other than read/write/access Update // watchpoint flag to match ppc64le write-read bit configuration. switch (watch_flags) { case eWatchpointKindWrite: rw_mode = PPC_BREAKPOINT_TRIGGER_WRITE; watch_flags = 2; break; case eWatchpointKindRead: rw_mode = PPC_BREAKPOINT_TRIGGER_READ; watch_flags = 1; break; case (eWatchpointKindRead | eWatchpointKindWrite): rw_mode = PPC_BREAKPOINT_TRIGGER_RW; break; default: return LLDB_INVALID_INDEX32; } // Check if size has a valid hardware watchpoint length. if (size != 1 && size != 2 && size != 4 && size != 8) return LLDB_INVALID_INDEX32; // Check 8-byte alignment for hardware watchpoint target address. Below is a // hack to recalculate address and size in order to make sure we can watch // non 8-byte aligned addresses as well. if (addr & 0x07) { addr_t begin = llvm::alignDown(addr, 8); addr_t end = llvm::alignTo(addr + size, 8); size = llvm::PowerOf2Ceil(end - begin); addr = addr & (~0x07); } // Setup control value control_value = watch_flags << 3; control_value |= ((1 << size) - 1) << 5; control_value |= (2 << 1) | 1; // Iterate over stored watchpoints and find a free wp_index wp_index = LLDB_INVALID_INDEX32; for (uint32_t i = 0; i < m_max_hwp_supported; i++) { if ((m_hwp_regs[i].control & 1) == 0) { wp_index = i; // Mark last free slot } else if (m_hwp_regs[i].address == addr) { return LLDB_INVALID_INDEX32; // We do not support duplicate watchpoints. } } if (wp_index == LLDB_INVALID_INDEX32) return LLDB_INVALID_INDEX32; // Update watchpoint in local cache m_hwp_regs[wp_index].real_addr = real_addr; m_hwp_regs[wp_index].address = addr; m_hwp_regs[wp_index].control = control_value; m_hwp_regs[wp_index].mode = rw_mode; // PTRACE call to set corresponding watchpoint register. error = WriteHardwareDebugRegs(); if (error.Fail()) { m_hwp_regs[wp_index].address = 0; m_hwp_regs[wp_index].control &= llvm::maskTrailingZeros(1); return LLDB_INVALID_INDEX32; } return wp_index; } bool NativeRegisterContextLinux_ppc64le::ClearHardwareWatchpoint( uint32_t wp_index) { Log *log = GetLog(POSIXLog::Watchpoints); LLDB_LOG(log, "wp_index: {0}", wp_index); // Read hardware breakpoint and watchpoint information. Status error = ReadHardwareDebugInfo(); if (error.Fail()) return false; if (wp_index >= m_max_hwp_supported) return false; // Create a backup we can revert to in case of failure. lldb::addr_t tempAddr = m_hwp_regs[wp_index].address; uint32_t tempControl = m_hwp_regs[wp_index].control; long *tempSlot = reinterpret_cast(m_hwp_regs[wp_index].slot); // Update watchpoint in local cache m_hwp_regs[wp_index].control &= llvm::maskTrailingZeros(1); m_hwp_regs[wp_index].address = 0; m_hwp_regs[wp_index].slot = 0; m_hwp_regs[wp_index].mode = 0; // Ptrace call to update hardware debug registers error = NativeProcessLinux::PtraceWrapper(PPC_PTRACE_DELHWDEBUG, m_thread.GetID(), 0, tempSlot); if (error.Fail()) { m_hwp_regs[wp_index].control = tempControl; m_hwp_regs[wp_index].address = tempAddr; m_hwp_regs[wp_index].slot = reinterpret_cast(tempSlot); return false; } return true; } uint32_t NativeRegisterContextLinux_ppc64le::GetWatchpointSize(uint32_t wp_index) { Log *log = GetLog(POSIXLog::Watchpoints); LLDB_LOG(log, "wp_index: {0}", wp_index); unsigned control = (m_hwp_regs[wp_index].control >> 5) & 0xff; if (llvm::isPowerOf2_32(control + 1)) { return llvm::countPopulation(control); } return 0; } bool NativeRegisterContextLinux_ppc64le::WatchpointIsEnabled( uint32_t wp_index) { Log *log = GetLog(POSIXLog::Watchpoints); LLDB_LOG(log, "wp_index: {0}", wp_index); return !!((m_hwp_regs[wp_index].control & 0x1) == 0x1); } Status NativeRegisterContextLinux_ppc64le::GetWatchpointHitIndex( uint32_t &wp_index, lldb::addr_t trap_addr) { Log *log = GetLog(POSIXLog::Watchpoints); LLDB_LOG(log, "wp_index: {0}, trap_addr: {1:x}", wp_index, trap_addr); uint32_t watch_size; lldb::addr_t watch_addr; for (wp_index = 0; wp_index < m_max_hwp_supported; ++wp_index) { watch_size = GetWatchpointSize(wp_index); watch_addr = m_hwp_regs[wp_index].address; if (WatchpointIsEnabled(wp_index) && trap_addr >= watch_addr && trap_addr <= watch_addr + watch_size) { m_hwp_regs[wp_index].hit_addr = trap_addr; return Status(); } } wp_index = LLDB_INVALID_INDEX32; return Status(); } lldb::addr_t NativeRegisterContextLinux_ppc64le::GetWatchpointAddress(uint32_t wp_index) { Log *log = GetLog(POSIXLog::Watchpoints); LLDB_LOG(log, "wp_index: {0}", wp_index); if (wp_index >= m_max_hwp_supported) return LLDB_INVALID_ADDRESS; if (WatchpointIsEnabled(wp_index)) return m_hwp_regs[wp_index].real_addr; else return LLDB_INVALID_ADDRESS; } lldb::addr_t NativeRegisterContextLinux_ppc64le::GetWatchpointHitAddress(uint32_t wp_index) { Log *log = GetLog(POSIXLog::Watchpoints); LLDB_LOG(log, "wp_index: {0}", wp_index); if (wp_index >= m_max_hwp_supported) return LLDB_INVALID_ADDRESS; if (WatchpointIsEnabled(wp_index)) return m_hwp_regs[wp_index].hit_addr; return LLDB_INVALID_ADDRESS; } Status NativeRegisterContextLinux_ppc64le::ReadHardwareDebugInfo() { if (!m_refresh_hwdebug_info) { return Status(); } ::pid_t tid = m_thread.GetID(); struct ppc_debug_info hwdebug_info; Status error; error = NativeProcessLinux::PtraceWrapper( PPC_PTRACE_GETHWDBGINFO, tid, 0, &hwdebug_info, sizeof(hwdebug_info)); if (error.Fail()) return error; m_max_hwp_supported = hwdebug_info.num_data_bps; m_max_hbp_supported = hwdebug_info.num_instruction_bps; m_refresh_hwdebug_info = false; return error; } Status NativeRegisterContextLinux_ppc64le::WriteHardwareDebugRegs() { struct ppc_hw_breakpoint reg_state; Status error; long ret; for (uint32_t i = 0; i < m_max_hwp_supported; i++) { reg_state.addr = m_hwp_regs[i].address; reg_state.trigger_type = m_hwp_regs[i].mode; reg_state.version = 1; reg_state.addr_mode = PPC_BREAKPOINT_MODE_EXACT; reg_state.condition_mode = PPC_BREAKPOINT_CONDITION_NONE; reg_state.addr2 = 0; reg_state.condition_value = 0; error = NativeProcessLinux::PtraceWrapper(PPC_PTRACE_SETHWDEBUG, m_thread.GetID(), 0, ®_state, sizeof(reg_state), &ret); if (error.Fail()) return error; m_hwp_regs[i].slot = ret; } return error; } #endif // defined(__powerpc64__)