//===-- PlatformLinux.cpp -------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "PlatformLinux.h" #include "lldb/Host/Config.h" #include #if LLDB_ENABLE_POSIX #include #endif #include "Utility/ARM64_DWARF_Registers.h" #include "lldb/Core/Debugger.h" #include "lldb/Core/PluginManager.h" #include "lldb/Host/HostInfo.h" #include "lldb/Symbol/UnwindPlan.h" #include "lldb/Target/Process.h" #include "lldb/Target/Target.h" #include "lldb/Utility/FileSpec.h" #include "lldb/Utility/LLDBLog.h" #include "lldb/Utility/Log.h" #include "lldb/Utility/State.h" #include "lldb/Utility/Status.h" #include "lldb/Utility/StreamString.h" // Define these constants from Linux mman.h for use when targeting remote linux // systems even when host has different values. #define MAP_PRIVATE 2 #define MAP_ANON 0x20 using namespace lldb; using namespace lldb_private; using namespace lldb_private::platform_linux; LLDB_PLUGIN_DEFINE(PlatformLinux) static uint32_t g_initialize_count = 0; PlatformSP PlatformLinux::CreateInstance(bool force, const ArchSpec *arch) { Log *log = GetLog(LLDBLog::Platform); LLDB_LOG(log, "force = {0}, arch=({1}, {2})", force, arch ? arch->GetArchitectureName() : "", arch ? arch->GetTriple().getTriple() : ""); bool create = force; if (!create && arch && arch->IsValid()) { const llvm::Triple &triple = arch->GetTriple(); switch (triple.getOS()) { case llvm::Triple::Linux: create = true; break; #if defined(__linux__) // Only accept "unknown" for the OS if the host is linux and it "unknown" // wasn't specified (it was just returned because it was NOT specified) case llvm::Triple::OSType::UnknownOS: create = !arch->TripleOSWasSpecified(); break; #endif default: break; } } LLDB_LOG(log, "create = {0}", create); if (create) { return PlatformSP(new PlatformLinux(false)); } return PlatformSP(); } llvm::StringRef PlatformLinux::GetPluginDescriptionStatic(bool is_host) { if (is_host) return "Local Linux user platform plug-in."; return "Remote Linux user platform plug-in."; } void PlatformLinux::Initialize() { PlatformPOSIX::Initialize(); if (g_initialize_count++ == 0) { #if defined(__linux__) && !defined(__ANDROID__) PlatformSP default_platform_sp(new PlatformLinux(true)); default_platform_sp->SetSystemArchitecture(HostInfo::GetArchitecture()); Platform::SetHostPlatform(default_platform_sp); #endif PluginManager::RegisterPlugin( PlatformLinux::GetPluginNameStatic(false), PlatformLinux::GetPluginDescriptionStatic(false), PlatformLinux::CreateInstance, nullptr); } } void PlatformLinux::Terminate() { if (g_initialize_count > 0) { if (--g_initialize_count == 0) { PluginManager::UnregisterPlugin(PlatformLinux::CreateInstance); } } PlatformPOSIX::Terminate(); } /// Default Constructor PlatformLinux::PlatformLinux(bool is_host) : PlatformPOSIX(is_host) // This is the local host platform { if (is_host) { ArchSpec hostArch = HostInfo::GetArchitecture(HostInfo::eArchKindDefault); m_supported_architectures.push_back(hostArch); if (hostArch.GetTriple().isArch64Bit()) { m_supported_architectures.push_back( HostInfo::GetArchitecture(HostInfo::eArchKind32)); } } else { m_supported_architectures = CreateArchList( {llvm::Triple::x86_64, llvm::Triple::x86, llvm::Triple::arm, llvm::Triple::aarch64, llvm::Triple::mips64, llvm::Triple::mips64, llvm::Triple::hexagon, llvm::Triple::mips, llvm::Triple::mips64el, llvm::Triple::mipsel, llvm::Triple::systemz}, llvm::Triple::Linux); } } std::vector PlatformLinux::GetSupportedArchitectures(const ArchSpec &process_host_arch) { if (m_remote_platform_sp) return m_remote_platform_sp->GetSupportedArchitectures(process_host_arch); return m_supported_architectures; } void PlatformLinux::GetStatus(Stream &strm) { Platform::GetStatus(strm); #if LLDB_ENABLE_POSIX // Display local kernel information only when we are running in host mode. // Otherwise, we would end up printing non-Linux information (when running on // Mac OS for example). if (IsHost()) { struct utsname un; if (uname(&un)) return; strm.Printf(" Kernel: %s\n", un.sysname); strm.Printf(" Release: %s\n", un.release); strm.Printf(" Version: %s\n", un.version); } #endif } uint32_t PlatformLinux::GetResumeCountForLaunchInfo(ProcessLaunchInfo &launch_info) { uint32_t resume_count = 0; // Always resume past the initial stop when we use eLaunchFlagDebug if (launch_info.GetFlags().Test(eLaunchFlagDebug)) { // Resume past the stop for the final exec into the true inferior. ++resume_count; } // If we're not launching a shell, we're done. const FileSpec &shell = launch_info.GetShell(); if (!shell) return resume_count; std::string shell_string = shell.GetPath(); // We're in a shell, so for sure we have to resume past the shell exec. ++resume_count; // Figure out what shell we're planning on using. const char *shell_name = strrchr(shell_string.c_str(), '/'); if (shell_name == nullptr) shell_name = shell_string.c_str(); else shell_name++; if (strcmp(shell_name, "csh") == 0 || strcmp(shell_name, "tcsh") == 0 || strcmp(shell_name, "zsh") == 0 || strcmp(shell_name, "sh") == 0) { // These shells seem to re-exec themselves. Add another resume. ++resume_count; } return resume_count; } bool PlatformLinux::CanDebugProcess() { if (IsHost()) { return true; } else { // If we're connected, we can debug. return IsConnected(); } } void PlatformLinux::CalculateTrapHandlerSymbolNames() { m_trap_handlers.push_back(ConstString("_sigtramp")); m_trap_handlers.push_back(ConstString("__kernel_rt_sigreturn")); m_trap_handlers.push_back(ConstString("__restore_rt")); } static lldb::UnwindPlanSP GetAArch64TrapHanlderUnwindPlan(ConstString name) { UnwindPlanSP unwind_plan_sp; if (name != "__kernel_rt_sigreturn") return unwind_plan_sp; UnwindPlan::RowSP row = std::make_shared(); row->SetOffset(0); // In the signal trampoline frame, sp points to an rt_sigframe[1], which is: // - 128-byte siginfo struct // - ucontext struct: // - 8-byte long (uc_flags) // - 8-byte pointer (uc_link) // - 24-byte stack_t // - 128-byte signal set // - 8 bytes of padding because sigcontext has 16-byte alignment // - sigcontext/mcontext_t // [1] // https://github.com/torvalds/linux/blob/master/arch/arm64/kernel/signal.c int32_t offset = 128 + 8 + 8 + 24 + 128 + 8; // Then sigcontext[2] is: // - 8 byte fault address // - 31 8 byte registers // - 8 byte sp // - 8 byte pc // [2] // https://github.com/torvalds/linux/blob/master/arch/arm64/include/uapi/asm/sigcontext.h // Skip fault address offset += 8; row->GetCFAValue().SetIsRegisterPlusOffset(arm64_dwarf::sp, offset); row->SetRegisterLocationToAtCFAPlusOffset(arm64_dwarf::x0, 0 * 8, false); row->SetRegisterLocationToAtCFAPlusOffset(arm64_dwarf::x1, 1 * 8, false); row->SetRegisterLocationToAtCFAPlusOffset(arm64_dwarf::x2, 2 * 8, false); row->SetRegisterLocationToAtCFAPlusOffset(arm64_dwarf::x3, 3 * 8, false); row->SetRegisterLocationToAtCFAPlusOffset(arm64_dwarf::x4, 4 * 8, false); row->SetRegisterLocationToAtCFAPlusOffset(arm64_dwarf::x5, 5 * 8, false); row->SetRegisterLocationToAtCFAPlusOffset(arm64_dwarf::x6, 6 * 8, false); row->SetRegisterLocationToAtCFAPlusOffset(arm64_dwarf::x7, 7 * 8, false); row->SetRegisterLocationToAtCFAPlusOffset(arm64_dwarf::x8, 8 * 8, false); row->SetRegisterLocationToAtCFAPlusOffset(arm64_dwarf::x9, 9 * 8, false); row->SetRegisterLocationToAtCFAPlusOffset(arm64_dwarf::x10, 10 * 8, false); row->SetRegisterLocationToAtCFAPlusOffset(arm64_dwarf::x11, 11 * 8, false); row->SetRegisterLocationToAtCFAPlusOffset(arm64_dwarf::x12, 12 * 8, false); row->SetRegisterLocationToAtCFAPlusOffset(arm64_dwarf::x13, 13 * 8, false); row->SetRegisterLocationToAtCFAPlusOffset(arm64_dwarf::x14, 14 * 8, false); row->SetRegisterLocationToAtCFAPlusOffset(arm64_dwarf::x15, 15 * 8, false); row->SetRegisterLocationToAtCFAPlusOffset(arm64_dwarf::x16, 16 * 8, false); row->SetRegisterLocationToAtCFAPlusOffset(arm64_dwarf::x17, 17 * 8, false); row->SetRegisterLocationToAtCFAPlusOffset(arm64_dwarf::x18, 18 * 8, false); row->SetRegisterLocationToAtCFAPlusOffset(arm64_dwarf::x19, 19 * 8, false); row->SetRegisterLocationToAtCFAPlusOffset(arm64_dwarf::x20, 20 * 8, false); row->SetRegisterLocationToAtCFAPlusOffset(arm64_dwarf::x21, 21 * 8, false); row->SetRegisterLocationToAtCFAPlusOffset(arm64_dwarf::x22, 22 * 8, false); row->SetRegisterLocationToAtCFAPlusOffset(arm64_dwarf::x23, 23 * 8, false); row->SetRegisterLocationToAtCFAPlusOffset(arm64_dwarf::x24, 24 * 8, false); row->SetRegisterLocationToAtCFAPlusOffset(arm64_dwarf::x25, 25 * 8, false); row->SetRegisterLocationToAtCFAPlusOffset(arm64_dwarf::x26, 26 * 8, false); row->SetRegisterLocationToAtCFAPlusOffset(arm64_dwarf::x27, 27 * 8, false); row->SetRegisterLocationToAtCFAPlusOffset(arm64_dwarf::x28, 28 * 8, false); row->SetRegisterLocationToAtCFAPlusOffset(arm64_dwarf::fp, 29 * 8, false); row->SetRegisterLocationToAtCFAPlusOffset(arm64_dwarf::x30, 30 * 8, false); row->SetRegisterLocationToAtCFAPlusOffset(arm64_dwarf::sp, 31 * 8, false); row->SetRegisterLocationToAtCFAPlusOffset(arm64_dwarf::pc, 32 * 8, false); // The sigcontext may also contain floating point and SVE registers. // However this would require a dynamic unwind plan so they are not included // here. unwind_plan_sp = std::make_shared(eRegisterKindDWARF); unwind_plan_sp->AppendRow(row); unwind_plan_sp->SetSourceName("AArch64 Linux sigcontext"); unwind_plan_sp->SetSourcedFromCompiler(eLazyBoolYes); // Because sp is the same throughout the function unwind_plan_sp->SetUnwindPlanValidAtAllInstructions(eLazyBoolYes); unwind_plan_sp->SetUnwindPlanForSignalTrap(eLazyBoolYes); return unwind_plan_sp; } lldb::UnwindPlanSP PlatformLinux::GetTrapHandlerUnwindPlan(const llvm::Triple &triple, ConstString name) { if (triple.isAArch64()) return GetAArch64TrapHanlderUnwindPlan(name); return {}; } MmapArgList PlatformLinux::GetMmapArgumentList(const ArchSpec &arch, addr_t addr, addr_t length, unsigned prot, unsigned flags, addr_t fd, addr_t offset) { uint64_t flags_platform = 0; uint64_t map_anon = arch.IsMIPS() ? 0x800 : MAP_ANON; if (flags & eMmapFlagsPrivate) flags_platform |= MAP_PRIVATE; if (flags & eMmapFlagsAnon) flags_platform |= map_anon; MmapArgList args({addr, length, prot, flags_platform, fd, offset}); return args; } CompilerType PlatformLinux::GetSiginfoType(const llvm::Triple &triple) { { std::lock_guard guard(m_mutex); if (!m_type_system) m_type_system = std::make_shared("siginfo", triple); } TypeSystemClang *ast = m_type_system.get(); bool si_errno_then_code = true; switch (triple.getArch()) { case llvm::Triple::mips: case llvm::Triple::mipsel: case llvm::Triple::mips64: case llvm::Triple::mips64el: // mips has si_code and si_errno swapped si_errno_then_code = false; break; default: break; } // generic types CompilerType int_type = ast->GetBasicType(eBasicTypeInt); CompilerType uint_type = ast->GetBasicType(eBasicTypeUnsignedInt); CompilerType short_type = ast->GetBasicType(eBasicTypeShort); CompilerType long_type = ast->GetBasicType(eBasicTypeLong); CompilerType voidp_type = ast->GetBasicType(eBasicTypeVoid).GetPointerType(); // platform-specific types CompilerType &pid_type = int_type; CompilerType &uid_type = uint_type; CompilerType &clock_type = long_type; CompilerType &band_type = long_type; CompilerType sigval_type = ast->CreateRecordType( nullptr, OptionalClangModuleID(), lldb::eAccessPublic, "__lldb_sigval_t", clang::TTK_Union, lldb::eLanguageTypeC); ast->StartTagDeclarationDefinition(sigval_type); ast->AddFieldToRecordType(sigval_type, "sival_int", int_type, lldb::eAccessPublic, 0); ast->AddFieldToRecordType(sigval_type, "sival_ptr", voidp_type, lldb::eAccessPublic, 0); ast->CompleteTagDeclarationDefinition(sigval_type); CompilerType sigfault_bounds_type = ast->CreateRecordType( nullptr, OptionalClangModuleID(), lldb::eAccessPublic, "", clang::TTK_Union, lldb::eLanguageTypeC); ast->StartTagDeclarationDefinition(sigfault_bounds_type); ast->AddFieldToRecordType(sigfault_bounds_type, "_addr_bnd", ast->CreateStructForIdentifier(ConstString(), { {"_lower", voidp_type}, {"_upper", voidp_type}, }), lldb::eAccessPublic, 0); ast->AddFieldToRecordType(sigfault_bounds_type, "_pkey", uint_type, lldb::eAccessPublic, 0); ast->CompleteTagDeclarationDefinition(sigfault_bounds_type); // siginfo_t CompilerType siginfo_type = ast->CreateRecordType( nullptr, OptionalClangModuleID(), lldb::eAccessPublic, "__lldb_siginfo_t", clang::TTK_Struct, lldb::eLanguageTypeC); ast->StartTagDeclarationDefinition(siginfo_type); ast->AddFieldToRecordType(siginfo_type, "si_signo", int_type, lldb::eAccessPublic, 0); if (si_errno_then_code) { ast->AddFieldToRecordType(siginfo_type, "si_errno", int_type, lldb::eAccessPublic, 0); ast->AddFieldToRecordType(siginfo_type, "si_code", int_type, lldb::eAccessPublic, 0); } else { ast->AddFieldToRecordType(siginfo_type, "si_code", int_type, lldb::eAccessPublic, 0); ast->AddFieldToRecordType(siginfo_type, "si_errno", int_type, lldb::eAccessPublic, 0); } // the structure is padded on 64-bit arches to fix alignment if (triple.isArch64Bit()) ast->AddFieldToRecordType(siginfo_type, "__pad0", int_type, lldb::eAccessPublic, 0); // union used to hold the signal data CompilerType union_type = ast->CreateRecordType( nullptr, OptionalClangModuleID(), lldb::eAccessPublic, "", clang::TTK_Union, lldb::eLanguageTypeC); ast->StartTagDeclarationDefinition(union_type); ast->AddFieldToRecordType( union_type, "_kill", ast->CreateStructForIdentifier(ConstString(), { {"si_pid", pid_type}, {"si_uid", uid_type}, }), lldb::eAccessPublic, 0); ast->AddFieldToRecordType( union_type, "_timer", ast->CreateStructForIdentifier(ConstString(), { {"si_tid", int_type}, {"si_overrun", int_type}, {"si_sigval", sigval_type}, }), lldb::eAccessPublic, 0); ast->AddFieldToRecordType( union_type, "_rt", ast->CreateStructForIdentifier(ConstString(), { {"si_pid", pid_type}, {"si_uid", uid_type}, {"si_sigval", sigval_type}, }), lldb::eAccessPublic, 0); ast->AddFieldToRecordType( union_type, "_sigchld", ast->CreateStructForIdentifier(ConstString(), { {"si_pid", pid_type}, {"si_uid", uid_type}, {"si_status", int_type}, {"si_utime", clock_type}, {"si_stime", clock_type}, }), lldb::eAccessPublic, 0); ast->AddFieldToRecordType( union_type, "_sigfault", ast->CreateStructForIdentifier(ConstString(), { {"si_addr", voidp_type}, {"si_addr_lsb", short_type}, {"_bounds", sigfault_bounds_type}, }), lldb::eAccessPublic, 0); ast->AddFieldToRecordType( union_type, "_sigpoll", ast->CreateStructForIdentifier(ConstString(), { {"si_band", band_type}, {"si_fd", int_type}, }), lldb::eAccessPublic, 0); // NB: SIGSYS is not present on ia64 but we don't seem to support that ast->AddFieldToRecordType( union_type, "_sigsys", ast->CreateStructForIdentifier(ConstString(), { {"_call_addr", voidp_type}, {"_syscall", int_type}, {"_arch", uint_type}, }), lldb::eAccessPublic, 0); ast->CompleteTagDeclarationDefinition(union_type); ast->AddFieldToRecordType(siginfo_type, "_sifields", union_type, lldb::eAccessPublic, 0); ast->CompleteTagDeclarationDefinition(siginfo_type); return siginfo_type; }