/* $NetBSD: cpu_subr.c,v 1.26 2005/12/24 20:07:28 perry Exp $ */ /*- * Copyright (c) 2001 Matt Thomas. * Copyright (c) 2001 Tsubai Masanari. * Copyright (c) 1998, 1999, 2001 Internet Research Institute, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by * Internet Research Institute, Inc. * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __KERNEL_RCSID(0, "$NetBSD: cpu_subr.c,v 1.26 2005/12/24 20:07:28 perry Exp $"); #include "opt_ppcparam.h" #include "opt_multiprocessor.h" #include "opt_altivec.h" #include "sysmon_envsys.h" #include #include #include #include #include #include #include #include #include static void cpu_enable_l2cr(register_t); static void cpu_enable_l3cr(register_t); static void cpu_config_l2cr(int); static void cpu_config_l3cr(int); static void cpu_probe_speed(struct cpu_info *); static void cpu_idlespin(void); #if NSYSMON_ENVSYS > 0 static void cpu_tau_setup(struct cpu_info *); static int cpu_tau_gtredata __P((struct sysmon_envsys *, struct envsys_tre_data *)); static int cpu_tau_streinfo __P((struct sysmon_envsys *, struct envsys_basic_info *)); #endif int cpu; int ncpus; struct fmttab { register_t fmt_mask; register_t fmt_value; const char *fmt_string; }; static const struct fmttab cpu_7450_l2cr_formats[] = { { L2CR_L2E, 0, " disabled" }, { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" }, { L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" }, { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" }, { L2CR_L2E, ~0, " 256KB L2 cache" }, { 0 } }; static const struct fmttab cpu_7448_l2cr_formats[] = { { L2CR_L2E, 0, " disabled" }, { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" }, { L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" }, { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" }, { L2CR_L2E, ~0, " 1MB L2 cache" }, { 0 } }; static const struct fmttab cpu_7457_l2cr_formats[] = { { L2CR_L2E, 0, " disabled" }, { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" }, { L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" }, { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" }, { L2CR_L2E, ~0, " 512KB L2 cache" }, { 0 } }; static const struct fmttab cpu_7450_l3cr_formats[] = { { L3CR_L3DO|L3CR_L3IO, L3CR_L3DO, " data-only" }, { L3CR_L3DO|L3CR_L3IO, L3CR_L3IO, " instruction-only" }, { L3CR_L3DO|L3CR_L3IO, L3CR_L3DO|L3CR_L3IO, " locked" }, { L3CR_L3SIZ, L3SIZ_2M, " 2MB" }, { L3CR_L3SIZ, L3SIZ_1M, " 1MB" }, { L3CR_L3PE|L3CR_L3APE, L3CR_L3PE|L3CR_L3APE, " parity" }, { L3CR_L3PE|L3CR_L3APE, L3CR_L3PE, " data-parity" }, { L3CR_L3PE|L3CR_L3APE, L3CR_L3APE, " address-parity" }, { L3CR_L3PE|L3CR_L3APE, 0, " no-parity" }, { L3CR_L3SIZ, ~0, " L3 cache" }, { L3CR_L3RT, L3RT_MSUG2_DDR, " (DDR SRAM)" }, { L3CR_L3RT, L3RT_PIPELINE_LATE, " (LW SRAM)" }, { L3CR_L3RT, L3RT_PB2_SRAM, " (PB2 SRAM)" }, { L3CR_L3CLK, ~0, " at" }, { L3CR_L3CLK, L3CLK_20, " 2:1" }, { L3CR_L3CLK, L3CLK_25, " 2.5:1" }, { L3CR_L3CLK, L3CLK_30, " 3:1" }, { L3CR_L3CLK, L3CLK_35, " 3.5:1" }, { L3CR_L3CLK, L3CLK_40, " 4:1" }, { L3CR_L3CLK, L3CLK_50, " 5:1" }, { L3CR_L3CLK, L3CLK_60, " 6:1" }, { L3CR_L3CLK, ~0, " ratio" }, { 0, 0 }, }; static const struct fmttab cpu_ibm750_l2cr_formats[] = { { L2CR_L2E, 0, " disabled" }, { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" }, { L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" }, { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" }, { 0, ~0, " 512KB" }, { L2CR_L2WT, L2CR_L2WT, " WT" }, { L2CR_L2WT, 0, " WB" }, { L2CR_L2PE, L2CR_L2PE, " with ECC" }, { 0, ~0, " L2 cache" }, { 0 } }; static const struct fmttab cpu_l2cr_formats[] = { { L2CR_L2E, 0, " disabled" }, { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" }, { L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" }, { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" }, { L2CR_L2PE, L2CR_L2PE, " parity" }, { L2CR_L2PE, 0, " no-parity" }, { L2CR_L2SIZ, L2SIZ_2M, " 2MB" }, { L2CR_L2SIZ, L2SIZ_1M, " 1MB" }, { L2CR_L2SIZ, L2SIZ_512K, " 512KB" }, { L2CR_L2SIZ, L2SIZ_256K, " 256KB" }, { L2CR_L2WT, L2CR_L2WT, " WT" }, { L2CR_L2WT, 0, " WB" }, { L2CR_L2E, ~0, " L2 cache" }, { L2CR_L2RAM, L2RAM_FLOWTHRU_BURST, " (FB SRAM)" }, { L2CR_L2RAM, L2RAM_PIPELINE_LATE, " (LW SRAM)" }, { L2CR_L2RAM, L2RAM_PIPELINE_BURST, " (PB SRAM)" }, { L2CR_L2CLK, ~0, " at" }, { L2CR_L2CLK, L2CLK_10, " 1:1" }, { L2CR_L2CLK, L2CLK_15, " 1.5:1" }, { L2CR_L2CLK, L2CLK_20, " 2:1" }, { L2CR_L2CLK, L2CLK_25, " 2.5:1" }, { L2CR_L2CLK, L2CLK_30, " 3:1" }, { L2CR_L2CLK, L2CLK_35, " 3.5:1" }, { L2CR_L2CLK, L2CLK_40, " 4:1" }, { L2CR_L2CLK, ~0, " ratio" }, { 0 } }; static void cpu_fmttab_print(const struct fmttab *, register_t); struct cputab { const char name[8]; uint16_t version; uint16_t revfmt; }; #define REVFMT_MAJMIN 1 /* %u.%u */ #define REVFMT_HEX 2 /* 0x%04x */ #define REVFMT_DEC 3 /* %u */ static const struct cputab models[] = { { "601", MPC601, REVFMT_DEC }, { "602", MPC602, REVFMT_DEC }, { "603", MPC603, REVFMT_MAJMIN }, { "603e", MPC603e, REVFMT_MAJMIN }, { "603ev", MPC603ev, REVFMT_MAJMIN }, { "604", MPC604, REVFMT_MAJMIN }, { "604e", MPC604e, REVFMT_MAJMIN }, { "604ev", MPC604ev, REVFMT_MAJMIN }, { "620", MPC620, REVFMT_HEX }, { "750", MPC750, REVFMT_MAJMIN }, { "750FX", IBM750FX, REVFMT_MAJMIN }, { "7400", MPC7400, REVFMT_MAJMIN }, { "7410", MPC7410, REVFMT_MAJMIN }, { "7450", MPC7450, REVFMT_MAJMIN }, { "7455", MPC7455, REVFMT_MAJMIN }, { "7457", MPC7457, REVFMT_MAJMIN }, { "7447A", MPC7447A, REVFMT_MAJMIN }, { "7448", MPC7448, REVFMT_MAJMIN }, { "8240", MPC8240, REVFMT_MAJMIN }, { "", 0, REVFMT_HEX } }; #ifdef MULTIPROCESSOR struct cpu_info cpu_info[CPU_MAXNUM]; #else struct cpu_info cpu_info[1]; #endif int cpu_altivec; int cpu_psluserset, cpu_pslusermod; char cpu_model[80]; void cpu_fmttab_print(const struct fmttab *fmt, register_t data) { for (; fmt->fmt_mask != 0 || fmt->fmt_value != 0; fmt++) { if ((~fmt->fmt_mask & fmt->fmt_value) != 0 || (data & fmt->fmt_mask) == fmt->fmt_value) aprint_normal("%s", fmt->fmt_string); } } void cpu_idlespin(void) { register_t msr; if (powersave <= 0) return; __asm volatile( "sync;" "mfmsr %0;" "oris %0,%0,%1@h;" /* enter power saving mode */ "mtmsr %0;" "isync;" : "=r"(msr) : "J"(PSL_POW)); } void cpu_probe_cache(void) { u_int assoc, pvr, vers; pvr = mfpvr(); vers = pvr >> 16; switch (vers) { #define K *1024 case IBM750FX: case MPC601: case MPC750: case MPC7447A: case MPC7448: case MPC7450: case MPC7455: case MPC7457: curcpu()->ci_ci.dcache_size = 32 K; curcpu()->ci_ci.icache_size = 32 K; assoc = 8; break; case MPC603: curcpu()->ci_ci.dcache_size = 8 K; curcpu()->ci_ci.icache_size = 8 K; assoc = 2; break; case MPC603e: case MPC603ev: case MPC604: case MPC8240: case MPC8245: curcpu()->ci_ci.dcache_size = 16 K; curcpu()->ci_ci.icache_size = 16 K; assoc = 4; break; case MPC604e: case MPC604ev: curcpu()->ci_ci.dcache_size = 32 K; curcpu()->ci_ci.icache_size = 32 K; assoc = 4; break; default: curcpu()->ci_ci.dcache_size = PAGE_SIZE; curcpu()->ci_ci.icache_size = PAGE_SIZE; assoc = 1; #undef K } /* Presently common across all implementations. */ curcpu()->ci_ci.dcache_line_size = CACHELINESIZE; curcpu()->ci_ci.icache_line_size = CACHELINESIZE; /* * Possibly recolor. */ uvm_page_recolor(atop(curcpu()->ci_ci.dcache_size / assoc)); } struct cpu_info * cpu_attach_common(struct device *self, int id) { struct cpu_info *ci; u_int pvr, vers; ncpus++; ci = &cpu_info[id]; #ifndef MULTIPROCESSOR /* * If this isn't the primary CPU, print an error message * and just bail out. */ if (id != 0) { aprint_normal(": ID %d\n", id); aprint_normal("%s: processor off-line; multiprocessor support " "not present in kernel\n", self->dv_xname); return (NULL); } #endif ci->ci_cpuid = id; ci->ci_intrdepth = -1; ci->ci_dev = self; ci->ci_idlespin = cpu_idlespin; pvr = mfpvr(); vers = (pvr >> 16) & 0xffff; switch (id) { case 0: /* load my cpu_number to PIR */ switch (vers) { case MPC601: case MPC604: case MPC604e: case MPC604ev: case MPC7400: case MPC7410: case MPC7447A: case MPC7448: case MPC7450: case MPC7455: case MPC7457: mtspr(SPR_PIR, id); } cpu_setup(self, ci); break; default: if (id >= CPU_MAXNUM) { aprint_normal(": more than %d cpus?\n", CPU_MAXNUM); panic("cpuattach"); } #ifndef MULTIPROCESSOR aprint_normal(" not configured\n"); return NULL; #endif } return (ci); } void cpu_setup(self, ci) struct device *self; struct cpu_info *ci; { u_int hid0, pvr, vers; const char *bitmask; char hidbuf[128]; char model[80]; pvr = mfpvr(); vers = (pvr >> 16) & 0xffff; cpu_identify(model, sizeof(model)); aprint_normal(": %s, ID %d%s\n", model, cpu_number(), cpu_number() == 0 ? " (primary)" : ""); hid0 = mfspr(SPR_HID0); cpu_probe_cache(); /* * Configure power-saving mode. */ switch (vers) { case MPC604: case MPC604e: case MPC604ev: /* * Do not have HID0 support settings, but can support * MSR[POW] off */ powersave = 1; break; case MPC603: case MPC603e: case MPC603ev: case MPC750: case IBM750FX: case MPC7400: case MPC7410: case MPC8240: case MPC8245: /* Select DOZE mode. */ hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP); hid0 |= HID0_DOZE | HID0_DPM; powersave = 1; break; case MPC7447A: case MPC7448: case MPC7457: case MPC7455: case MPC7450: /* Enable the 7450 branch caches */ hid0 |= HID0_SGE | HID0_BTIC; hid0 |= HID0_LRSTK | HID0_FOLD | HID0_BHT; /* Disable BTIC on 7450 Rev 2.0 or earlier */ if (vers == MPC7450 && (pvr & 0xFFFF) <= 0x0200) hid0 &= ~HID0_BTIC; /* Select NAP mode. */ hid0 &= ~(HID0_HIGH_BAT_EN | HID0_SLEEP); hid0 |= HID0_NAP | HID0_DPM /* | HID0_XBSEN */; powersave = 1; break; default: /* No power-saving mode is available. */ ; } #ifdef NAPMODE switch (vers) { case IBM750FX: case MPC750: case MPC7400: /* Select NAP mode. */ hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP); hid0 |= HID0_NAP; break; } #endif switch (vers) { case IBM750FX: case MPC750: hid0 &= ~HID0_DBP; /* XXX correct? */ hid0 |= HID0_EMCP | HID0_BTIC | HID0_SGE | HID0_BHT; break; case MPC7400: case MPC7410: hid0 &= ~HID0_SPD; hid0 |= HID0_EMCP | HID0_BTIC | HID0_SGE | HID0_BHT; hid0 |= HID0_EIEC; break; } mtspr(SPR_HID0, hid0); __asm volatile("sync;isync"); switch (vers) { case MPC601: bitmask = HID0_601_BITMASK; break; case MPC7450: case MPC7455: case MPC7457: bitmask = HID0_7450_BITMASK; break; default: bitmask = HID0_BITMASK; break; } bitmask_snprintf(hid0, bitmask, hidbuf, sizeof hidbuf); aprint_normal("%s: HID0 %s\n", self->dv_xname, hidbuf); ci->ci_khz = 0; /* * Display speed and cache configuration. */ switch (vers) { case MPC604: case MPC604e: case MPC604ev: case MPC750: case IBM750FX: case MPC7400: case MPC7410: case MPC7447A: case MPC7448: case MPC7450: case MPC7455: case MPC7457: aprint_normal("%s: ", self->dv_xname); cpu_probe_speed(ci); aprint_normal("%u.%02u MHz", ci->ci_khz / 1000, (ci->ci_khz / 10) % 100); if (vers == IBM750FX || vers == MPC750 || vers == MPC7400 || vers == MPC7410 || MPC745X_P(vers)) { if (MPC745X_P(vers)) { cpu_config_l3cr(vers); } else { cpu_config_l2cr(pvr); } } aprint_normal("\n"); break; } #if NSYSMON_ENVSYS > 0 /* * Attach MPC750 temperature sensor to the envsys subsystem. * XXX the 74xx series also has this sensor, but it is not * XXX supported by Motorola and may return values that are off by * XXX 35-55 degrees C. */ if (vers == MPC750 || vers == IBM750FX) cpu_tau_setup(ci); #endif evcnt_attach_dynamic(&ci->ci_ev_clock, EVCNT_TYPE_INTR, NULL, self->dv_xname, "clock"); evcnt_attach_dynamic(&ci->ci_ev_softclock, EVCNT_TYPE_INTR, NULL, self->dv_xname, "soft clock"); evcnt_attach_dynamic(&ci->ci_ev_softnet, EVCNT_TYPE_INTR, NULL, self->dv_xname, "soft net"); evcnt_attach_dynamic(&ci->ci_ev_softserial, EVCNT_TYPE_INTR, NULL, self->dv_xname, "soft serial"); evcnt_attach_dynamic(&ci->ci_ev_traps, EVCNT_TYPE_TRAP, NULL, self->dv_xname, "traps"); evcnt_attach_dynamic(&ci->ci_ev_kdsi, EVCNT_TYPE_TRAP, &ci->ci_ev_traps, self->dv_xname, "kernel DSI traps"); evcnt_attach_dynamic(&ci->ci_ev_udsi, EVCNT_TYPE_TRAP, &ci->ci_ev_traps, self->dv_xname, "user DSI traps"); evcnt_attach_dynamic(&ci->ci_ev_udsi_fatal, EVCNT_TYPE_TRAP, &ci->ci_ev_udsi, self->dv_xname, "user DSI failures"); evcnt_attach_dynamic(&ci->ci_ev_kisi, EVCNT_TYPE_TRAP, &ci->ci_ev_traps, self->dv_xname, "kernel ISI traps"); evcnt_attach_dynamic(&ci->ci_ev_isi, EVCNT_TYPE_TRAP, &ci->ci_ev_traps, self->dv_xname, "user ISI traps"); evcnt_attach_dynamic(&ci->ci_ev_isi_fatal, EVCNT_TYPE_TRAP, &ci->ci_ev_isi, self->dv_xname, "user ISI failures"); evcnt_attach_dynamic(&ci->ci_ev_scalls, EVCNT_TYPE_TRAP, &ci->ci_ev_traps, self->dv_xname, "system call traps"); evcnt_attach_dynamic(&ci->ci_ev_pgm, EVCNT_TYPE_TRAP, &ci->ci_ev_traps, self->dv_xname, "PGM traps"); evcnt_attach_dynamic(&ci->ci_ev_fpu, EVCNT_TYPE_TRAP, &ci->ci_ev_traps, self->dv_xname, "FPU unavailable traps"); evcnt_attach_dynamic(&ci->ci_ev_fpusw, EVCNT_TYPE_TRAP, &ci->ci_ev_fpu, self->dv_xname, "FPU context switches"); evcnt_attach_dynamic(&ci->ci_ev_ali, EVCNT_TYPE_TRAP, &ci->ci_ev_traps, self->dv_xname, "user alignment traps"); evcnt_attach_dynamic(&ci->ci_ev_ali_fatal, EVCNT_TYPE_TRAP, &ci->ci_ev_ali, self->dv_xname, "user alignment traps"); evcnt_attach_dynamic(&ci->ci_ev_umchk, EVCNT_TYPE_TRAP, &ci->ci_ev_umchk, self->dv_xname, "user MCHK failures"); evcnt_attach_dynamic(&ci->ci_ev_vec, EVCNT_TYPE_TRAP, &ci->ci_ev_traps, self->dv_xname, "AltiVec unavailable"); #ifdef ALTIVEC if (cpu_altivec) { evcnt_attach_dynamic(&ci->ci_ev_vecsw, EVCNT_TYPE_TRAP, &ci->ci_ev_vec, self->dv_xname, "AltiVec context switches"); } #endif } void cpu_identify(char *str, size_t len) { u_int pvr, major, minor; uint16_t vers, rev, revfmt; const struct cputab *cp; const char *name; size_t n; pvr = mfpvr(); vers = pvr >> 16; rev = pvr; switch (vers) { case MPC7410: minor = (pvr >> 0) & 0xff; major = minor <= 4 ? 1 : 2; break; default: major = (pvr >> 8) & 0xf; minor = (pvr >> 0) & 0xf; } for (cp = models; cp->name[0] != '\0'; cp++) { if (cp->version == vers) break; } if (str == NULL) { str = cpu_model; len = sizeof(cpu_model); cpu = vers; } revfmt = cp->revfmt; name = cp->name; if (rev == MPC750 && pvr == 15) { name = "755"; revfmt = REVFMT_HEX; } if (cp->name[0] != '\0') { n = snprintf(str, len, "%s (Revision ", cp->name); } else { n = snprintf(str, len, "Version %#x (Revision ", vers); } if (len > n) { switch (revfmt) { case REVFMT_MAJMIN: snprintf(str + n, len - n, "%u.%u)", major, minor); break; case REVFMT_HEX: snprintf(str + n, len - n, "0x%04x)", rev); break; case REVFMT_DEC: snprintf(str + n, len - n, "%u)", rev); break; } } } #ifdef L2CR_CONFIG u_int l2cr_config = L2CR_CONFIG; #else u_int l2cr_config = 0; #endif #ifdef L3CR_CONFIG u_int l3cr_config = L3CR_CONFIG; #else u_int l3cr_config = 0; #endif void cpu_enable_l2cr(register_t l2cr) { register_t msr, x; /* Disable interrupts and set the cache config bits. */ msr = mfmsr(); mtmsr(msr & ~PSL_EE); #ifdef ALTIVEC if (cpu_altivec) __asm volatile("dssall"); #endif __asm volatile("sync"); mtspr(SPR_L2CR, l2cr & ~L2CR_L2E); __asm volatile("sync"); /* Wait for L2 clock to be stable (640 L2 clocks). */ delay(100); /* Invalidate all L2 contents. */ mtspr(SPR_L2CR, l2cr | L2CR_L2I); do { x = mfspr(SPR_L2CR); } while (x & L2CR_L2IP); /* Enable L2 cache. */ l2cr |= L2CR_L2E; mtspr(SPR_L2CR, l2cr); mtmsr(msr); } void cpu_enable_l3cr(register_t l3cr) { register_t x; /* By The Book (numbered steps from section 3.7.1.3 of MPC7450UM) */ /* * 1: Set all L3CR bits for final config except L3E, L3I, L3PE, and * L3CLKEN. (also mask off reserved bits in case they were included * in L3CR_CONFIG) */ l3cr &= ~(L3CR_L3E|L3CR_L3I|L3CR_L3PE|L3CR_L3CLKEN|L3CR_RESERVED); mtspr(SPR_L3CR, l3cr); /* 2: Set L3CR[5] (otherwise reserved bit) to 1 */ l3cr |= 0x04000000; mtspr(SPR_L3CR, l3cr); /* 3: Set L3CLKEN to 1*/ l3cr |= L3CR_L3CLKEN; mtspr(SPR_L3CR, l3cr); /* 4/5: Perform a global cache invalidate (ref section 3.7.3.6) */ __asm volatile("dssall;sync"); /* L3 cache is already disabled, no need to clear L3E */ mtspr(SPR_L3CR, l3cr|L3CR_L3I); do { x = mfspr(SPR_L3CR); } while (x & L3CR_L3I); /* 6: Clear L3CLKEN to 0 */ l3cr &= ~L3CR_L3CLKEN; mtspr(SPR_L3CR, l3cr); /* 7: Perform a 'sync' and wait at least 100 CPU cycles */ __asm volatile("sync"); delay(100); /* 8: Set L3E and L3CLKEN */ l3cr |= (L3CR_L3E|L3CR_L3CLKEN); mtspr(SPR_L3CR, l3cr); /* 9: Perform a 'sync' and wait at least 100 CPU cycles */ __asm volatile("sync"); delay(100); } void cpu_config_l2cr(int pvr) { register_t l2cr; l2cr = mfspr(SPR_L2CR); /* * For MP systems, the firmware may only configure the L2 cache * on the first CPU. In this case, assume that the other CPUs * should use the same value for L2CR. */ if ((l2cr & L2CR_L2E) != 0 && l2cr_config == 0) { l2cr_config = l2cr; } /* * Configure L2 cache if not enabled. */ if ((l2cr & L2CR_L2E) == 0 && l2cr_config != 0) { cpu_enable_l2cr(l2cr_config); l2cr = mfspr(SPR_L2CR); } if ((l2cr & L2CR_L2E) == 0) { aprint_normal(" L2 cache present but not enabled "); return; } aprint_normal(","); if ((pvr >> 16) == IBM750FX || (pvr & 0xffffff00) == 0x00082200 /* IBM750CX */ || (pvr & 0xffffef00) == 0x00082300 /* IBM750CXe */) { cpu_fmttab_print(cpu_ibm750_l2cr_formats, l2cr); } else { cpu_fmttab_print(cpu_l2cr_formats, l2cr); } } void cpu_config_l3cr(int vers) { register_t l2cr; register_t l3cr; l2cr = mfspr(SPR_L2CR); /* * For MP systems, the firmware may only configure the L2 cache * on the first CPU. In this case, assume that the other CPUs * should use the same value for L2CR. */ if ((l2cr & L2CR_L2E) != 0 && l2cr_config == 0) { l2cr_config = l2cr; } /* * Configure L2 cache if not enabled. */ if ((l2cr & L2CR_L2E) == 0 && l2cr_config != 0) { cpu_enable_l2cr(l2cr_config); l2cr = mfspr(SPR_L2CR); } aprint_normal(","); switch (vers) { case MPC7447A: case MPC7457: cpu_fmttab_print(cpu_7457_l2cr_formats, l2cr); return; case MPC7448: cpu_fmttab_print(cpu_7448_l2cr_formats, l2cr); return; default: cpu_fmttab_print(cpu_7450_l2cr_formats, l2cr); break; } l3cr = mfspr(SPR_L3CR); /* * For MP systems, the firmware may only configure the L3 cache * on the first CPU. In this case, assume that the other CPUs * should use the same value for L3CR. */ if ((l3cr & L3CR_L3E) != 0 && l3cr_config == 0) { l3cr_config = l3cr; } /* * Configure L3 cache if not enabled. */ if ((l3cr & L3CR_L3E) == 0 && l3cr_config != 0) { cpu_enable_l3cr(l3cr_config); l3cr = mfspr(SPR_L3CR); } if (l3cr & L3CR_L3E) { aprint_normal(","); cpu_fmttab_print(cpu_7450_l3cr_formats, l3cr); } } void cpu_probe_speed(struct cpu_info *ci) { uint64_t cps; mtspr(SPR_MMCR0, MMCR0_FC); mtspr(SPR_PMC1, 0); mtspr(SPR_MMCR0, MMCR0_PMC1SEL(PMCN_CYCLES)); delay(100000); cps = (mfspr(SPR_PMC1) * 10) + 4999; mtspr(SPR_MMCR0, MMCR0_FC); ci->ci_khz = cps / 1000; } #if NSYSMON_ENVSYS > 0 const struct envsys_range cpu_tau_ranges[] = { { 0, 0, ENVSYS_STEMP} }; struct envsys_basic_info cpu_tau_info[] = { { 0, ENVSYS_STEMP, "CPU temp", 0, 0, ENVSYS_FVALID} }; void cpu_tau_setup(struct cpu_info *ci) { struct { struct sysmon_envsys sme; struct envsys_tre_data tau_info; } *datap; int error; datap = malloc(sizeof(*datap), M_DEVBUF, M_WAITOK | M_ZERO); ci->ci_sysmon_cookie = &datap->sme; datap->sme.sme_nsensors = 1; datap->sme.sme_envsys_version = 1000; datap->sme.sme_ranges = cpu_tau_ranges; datap->sme.sme_sensor_info = cpu_tau_info; datap->sme.sme_sensor_data = &datap->tau_info; datap->sme.sme_sensor_data->sensor = 0; datap->sme.sme_sensor_data->warnflags = ENVSYS_WARN_OK; datap->sme.sme_sensor_data->validflags = ENVSYS_FVALID|ENVSYS_FCURVALID; datap->sme.sme_cookie = ci; datap->sme.sme_gtredata = cpu_tau_gtredata; datap->sme.sme_streinfo = cpu_tau_streinfo; datap->sme.sme_flags = 0; if ((error = sysmon_envsys_register(&datap->sme)) != 0) aprint_error("%s: unable to register with sysmon (%d)\n", ci->ci_dev->dv_xname, error); } /* Find the temperature of the CPU. */ int cpu_tau_gtredata(struct sysmon_envsys *sme, struct envsys_tre_data *tred) { int i, threshold, count; if (tred->sensor != 0) { tred->validflags = 0; return 0; } threshold = 64; /* Half of the 7-bit sensor range */ mtspr(SPR_THRM1, 0); mtspr(SPR_THRM2, 0); /* XXX This counter is supposed to be "at least 20 microseonds, in * XXX units of clock cycles". Since we don't have convenient * XXX access to the CPU speed, set it to a conservative value, * XXX that is, assuming a fast (1GHz) G3 CPU (As of February 2002, * XXX the fastest G3 processor is 700MHz) . The cost is that * XXX measuring the temperature takes a bit longer. */ mtspr(SPR_THRM3, SPR_THRM_TIMER(20000) | SPR_THRM_ENABLE); /* Successive-approximation code adapted from Motorola * application note AN1800/D, "Programming the Thermal Assist * Unit in the MPC750 Microprocessor". */ for (i = 4; i >= 0 ; i--) { mtspr(SPR_THRM1, SPR_THRM_THRESHOLD(threshold) | SPR_THRM_VALID); count = 0; while ((count < 100) && ((mfspr(SPR_THRM1) & SPR_THRM_TIV) == 0)) { count++; delay(1); } if (mfspr(SPR_THRM1) & SPR_THRM_TIN) { /* The interrupt bit was set, meaning the * temperature was above the threshold */ threshold += 2 << i; } else { /* Temperature was below the threshold */ threshold -= 2 << i; } } threshold += 2; /* Convert the temperature in degrees C to microkelvin */ sme->sme_sensor_data->cur.data_us = (threshold * 1000000) + 273150000; *tred = *sme->sme_sensor_data; return 0; } int cpu_tau_streinfo(struct sysmon_envsys *sme, struct envsys_basic_info *binfo) { /* There is nothing to set here. */ return (EINVAL); } #endif /* NSYSMON_ENVSYS > 0 */