//===- IntegerPolyhedron.cpp - Tests for IntegerPolyhedron class ----------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "./Utils.h" #include "mlir/Analysis/Presburger/IntegerRelation.h" #include "mlir/Analysis/Presburger/PWMAFunction.h" #include "mlir/Analysis/Presburger/Simplex.h" #include #include #include using namespace mlir; using namespace presburger; using testing::ElementsAre; enum class TestFunction { Sample, Empty }; /// Construct a IntegerPolyhedron from a set of inequality and /// equality constraints. static IntegerPolyhedron makeSetFromConstraints(unsigned ids, ArrayRef> ineqs, ArrayRef> eqs, unsigned syms = 0) { IntegerPolyhedron set( ineqs.size(), eqs.size(), ids + 1, PresburgerSpace::getSetSpace(ids - syms, syms, /*numLocals=*/0)); for (const auto &eq : eqs) set.addEquality(eq); for (const auto &ineq : ineqs) set.addInequality(ineq); return set; } static void dump(ArrayRef vec) { for (int64_t x : vec) llvm::errs() << x << ' '; llvm::errs() << '\n'; } /// If fn is TestFunction::Sample (default): /// /// If hasSample is true, check that findIntegerSample returns a valid sample /// for the IntegerPolyhedron poly. Also check that getIntegerLexmin finds a /// non-empty lexmin. /// /// If hasSample is false, check that findIntegerSample returns None and /// findIntegerLexMin returns Empty. /// /// If fn is TestFunction::Empty, check that isIntegerEmpty returns the /// opposite of hasSample. static void checkSample(bool hasSample, const IntegerPolyhedron &poly, TestFunction fn = TestFunction::Sample) { Optional> maybeSample; MaybeOptimum> maybeLexMin; switch (fn) { case TestFunction::Sample: maybeSample = poly.findIntegerSample(); maybeLexMin = poly.findIntegerLexMin(); if (!hasSample) { EXPECT_FALSE(maybeSample.hasValue()); if (maybeSample.hasValue()) { llvm::errs() << "findIntegerSample gave sample: "; dump(*maybeSample); } EXPECT_TRUE(maybeLexMin.isEmpty()); if (maybeLexMin.isBounded()) { llvm::errs() << "findIntegerLexMin gave sample: "; dump(*maybeLexMin); } } else { ASSERT_TRUE(maybeSample.hasValue()); EXPECT_TRUE(poly.containsPoint(*maybeSample)); ASSERT_FALSE(maybeLexMin.isEmpty()); if (maybeLexMin.isUnbounded()) { EXPECT_TRUE(Simplex(poly).isUnbounded()); } if (maybeLexMin.isBounded()) { EXPECT_TRUE(poly.containsPoint(*maybeLexMin)); } } break; case TestFunction::Empty: EXPECT_EQ(!hasSample, poly.isIntegerEmpty()); break; } } /// Check sampling for all the permutations of the dimensions for the given /// constraint set. Since the GBR algorithm progresses dimension-wise, different /// orderings may cause the algorithm to proceed differently. At least some of ///.these permutations should make it past the heuristics and test the /// implementation of the GBR algorithm itself. /// Use TestFunction fn to test. static void checkPermutationsSample(bool hasSample, unsigned nDim, ArrayRef> ineqs, ArrayRef> eqs, TestFunction fn = TestFunction::Sample) { SmallVector perm(nDim); std::iota(perm.begin(), perm.end(), 0); auto permute = [&perm](ArrayRef coeffs) { SmallVector permuted; for (unsigned id : perm) permuted.push_back(coeffs[id]); permuted.push_back(coeffs.back()); return permuted; }; do { SmallVector, 4> permutedIneqs, permutedEqs; for (const auto &ineq : ineqs) permutedIneqs.push_back(permute(ineq)); for (const auto &eq : eqs) permutedEqs.push_back(permute(eq)); checkSample(hasSample, makeSetFromConstraints(nDim, permutedIneqs, permutedEqs), fn); } while (std::next_permutation(perm.begin(), perm.end())); } TEST(IntegerPolyhedronTest, removeInequality) { IntegerPolyhedron set = makeSetFromConstraints(1, {{0, 0}, {1, 1}, {2, 2}, {3, 3}, {4, 4}}, {}); set.removeInequalityRange(0, 0); EXPECT_EQ(set.getNumInequalities(), 5u); set.removeInequalityRange(1, 3); EXPECT_EQ(set.getNumInequalities(), 3u); EXPECT_THAT(set.getInequality(0), ElementsAre(0, 0)); EXPECT_THAT(set.getInequality(1), ElementsAre(3, 3)); EXPECT_THAT(set.getInequality(2), ElementsAre(4, 4)); set.removeInequality(1); EXPECT_EQ(set.getNumInequalities(), 2u); EXPECT_THAT(set.getInequality(0), ElementsAre(0, 0)); EXPECT_THAT(set.getInequality(1), ElementsAre(4, 4)); } TEST(IntegerPolyhedronTest, removeEquality) { IntegerPolyhedron set = makeSetFromConstraints(1, {}, {{0, 0}, {1, 1}, {2, 2}, {3, 3}, {4, 4}}); set.removeEqualityRange(0, 0); EXPECT_EQ(set.getNumEqualities(), 5u); set.removeEqualityRange(1, 3); EXPECT_EQ(set.getNumEqualities(), 3u); EXPECT_THAT(set.getEquality(0), ElementsAre(0, 0)); EXPECT_THAT(set.getEquality(1), ElementsAre(3, 3)); EXPECT_THAT(set.getEquality(2), ElementsAre(4, 4)); set.removeEquality(1); EXPECT_EQ(set.getNumEqualities(), 2u); EXPECT_THAT(set.getEquality(0), ElementsAre(0, 0)); EXPECT_THAT(set.getEquality(1), ElementsAre(4, 4)); } TEST(IntegerPolyhedronTest, clearConstraints) { IntegerPolyhedron set = makeSetFromConstraints(1, {}, {}); set.addInequality({1, 0}); EXPECT_EQ(set.atIneq(0, 0), 1); EXPECT_EQ(set.atIneq(0, 1), 0); set.clearConstraints(); set.addInequality({1, 0}); EXPECT_EQ(set.atIneq(0, 0), 1); EXPECT_EQ(set.atIneq(0, 1), 0); } TEST(IntegerPolyhedronTest, removeIdRange) { IntegerPolyhedron set(PresburgerSpace::getSetSpace(3, 2, 1)); set.addInequality({10, 11, 12, 20, 21, 30, 40}); set.removeId(IdKind::Symbol, 1); EXPECT_THAT(set.getInequality(0), testing::ElementsAre(10, 11, 12, 20, 30, 40)); set.removeIdRange(IdKind::SetDim, 0, 2); EXPECT_THAT(set.getInequality(0), testing::ElementsAre(12, 20, 30, 40)); set.removeIdRange(IdKind::Local, 1, 1); EXPECT_THAT(set.getInequality(0), testing::ElementsAre(12, 20, 30, 40)); set.removeIdRange(IdKind::Local, 0, 1); EXPECT_THAT(set.getInequality(0), testing::ElementsAre(12, 20, 40)); } TEST(IntegerPolyhedronTest, FindSampleTest) { // Bounded sets with only inequalities. // 0 <= 7x <= 5 checkSample(true, parsePoly("(x) : (7 * x >= 0, -7 * x + 5 >= 0)")); // 1 <= 5x and 5x <= 4 (no solution). checkSample(false, parsePoly("(x) : (5 * x - 1 >= 0, -5 * x + 4 >= 0)")); // 1 <= 5x and 5x <= 9 (solution: x = 1). checkSample(true, parsePoly("(x) : (5 * x - 1 >= 0, -5 * x + 9 >= 0)")); // Bounded sets with equalities. // x >= 8 and 40 >= y and x = y. checkSample(true, parsePoly("(x,y) : (x - 8 >= 0, -y + 40 >= 0, x - y == 0)")); // x <= 10 and y <= 10 and 10 <= z and x + 2y = 3z. // solution: x = y = z = 10. checkSample(true, parsePoly("(x,y,z) : (-x + 10 >= 0, -y + 10 >= 0, " "z - 10 >= 0, x + 2 * y - 3 * z == 0)")); // x <= 10 and y <= 10 and 11 <= z and x + 2y = 3z. // This implies x + 2y >= 33 and x + 2y <= 30, which has no solution. checkSample(false, parsePoly("(x,y,z) : (-x + 10 >= 0, -y + 10 >= 0, " "z - 11 >= 0, x + 2 * y - 3 * z == 0)")); // 0 <= r and r <= 3 and 4q + r = 7. // Solution: q = 1, r = 3. checkSample(true, parsePoly("(q,r) : (r >= 0, -r + 3 >= 0, 4 * q + r - 7 == 0)")); // 4q + r = 7 and r = 0. // Solution: q = 1, r = 3. checkSample(false, parsePoly("(q,r) : (4 * q + r - 7 == 0, r == 0)")); // The next two sets are large sets that should take a long time to sample // with a naive branch and bound algorithm but can be sampled efficiently with // the GBR algorithm. // // This is a triangle with vertices at (1/3, 0), (2/3, 0) and (10000, 10000). checkSample(true, parsePoly("(x,y) : (y >= 0, " "300000 * x - 299999 * y - 100000 >= 0, " "-300000 * x + 299998 * y + 200000 >= 0)")); // This is a tetrahedron with vertices at // (1/3, 0, 0), (2/3, 0, 0), (2/3, 0, 10000), and (10000, 10000, 10000). // The first three points form a triangular base on the xz plane with the // apex at the fourth point, which is the only integer point. checkPermutationsSample( true, 3, { {0, 1, 0, 0}, // y >= 0 {0, -1, 1, 0}, // z >= y {300000, -299998, -1, -100000}, // -300000x + 299998y + 100000 + z <= 0. {-150000, 149999, 0, 100000}, // -150000x + 149999y + 100000 >= 0. }, {}); // Same thing with some spurious extra dimensions equated to constants. checkSample( true, parsePoly("(a,b,c,d,e) : (b + d - e >= 0, -b + c - d + e >= 0, " "300000 * a - 299998 * b - c - 9 * d + 21 * e - 112000 >= 0, " "-150000 * a + 149999 * b - 15 * d + 47 * e + 68000 >= 0, " "d - e == 0, d + e - 2000 == 0)")); // This is a tetrahedron with vertices at // (1/3, 0, 0), (2/3, 0, 0), (2/3, 0, 100), (100, 100 - 1/3, 100). checkPermutationsSample(false, 3, { {0, 1, 0, 0}, {0, -300, 299, 0}, {300 * 299, -89400, -299, -100 * 299}, {-897, 894, 0, 598}, }, {}); // Two tests involving equalities that are integer empty but not rational // empty. // This is a line segment from (0, 1/3) to (100, 100 + 1/3). checkSample( false, parsePoly("(x,y) : (x >= 0, -x + 100 >= 0, 3 * x - 3 * y + 1 == 0)")); // A thin parallelogram. 0 <= x <= 100 and x + 1/3 <= y <= x + 2/3. checkSample(false, parsePoly("(x,y) : (x >= 0, -x + 100 >= 0, " "3 * x - 3 * y + 2 >= 0, -3 * x + 3 * y - 1 >= 0)")); checkSample(true, parsePoly("(x,y) : (2 * x >= 0, -2 * x + 99 >= 0, " "2 * y >= 0, -2 * y + 99 >= 0)")); // 2D cone with apex at (10000, 10000) and // edges passing through (1/3, 0) and (2/3, 0). checkSample(true, parsePoly("(x,y) : (300000 * x - 299999 * y - 100000 >= 0, " "-300000 * x + 299998 * y + 200000 >= 0)")); // Cartesian product of a tetrahedron and a 2D cone. // The tetrahedron has vertices at // (1/3, 0, 0), (2/3, 0, 0), (2/3, 0, 10000), and (10000, 10000, 10000). // The first three points form a triangular base on the xz plane with the // apex at the fourth point, which is the only integer point. // The cone has apex at (10000, 10000) and // edges passing through (1/3, 0) and (2/3, 0). checkPermutationsSample( true /* not empty */, 5, { // Tetrahedron contraints: {0, 1, 0, 0, 0, 0}, // y >= 0 {0, -1, 1, 0, 0, 0}, // z >= y // -300000x + 299998y + 100000 + z <= 0. {300000, -299998, -1, 0, 0, -100000}, // -150000x + 149999y + 100000 >= 0. {-150000, 149999, 0, 0, 0, 100000}, // Triangle constraints: // 300000p - 299999q >= 100000 {0, 0, 0, 300000, -299999, -100000}, // -300000p + 299998q + 200000 >= 0 {0, 0, 0, -300000, 299998, 200000}, }, {}); // Cartesian product of same tetrahedron as above and {(p, q) : 1/3 <= p <= // 2/3}. Since the second set is empty, the whole set is too. checkPermutationsSample( false /* empty */, 5, { // Tetrahedron contraints: {0, 1, 0, 0, 0, 0}, // y >= 0 {0, -1, 1, 0, 0, 0}, // z >= y // -300000x + 299998y + 100000 + z <= 0. {300000, -299998, -1, 0, 0, -100000}, // -150000x + 149999y + 100000 >= 0. {-150000, 149999, 0, 0, 0, 100000}, // Second set constraints: // 3p >= 1 {0, 0, 0, 3, 0, -1}, // 3p <= 2 {0, 0, 0, -3, 0, 2}, }, {}); // Cartesian product of same tetrahedron as above and // {(p, q, r) : 1 <= p <= 2 and p = 3q + 3r}. // Since the second set is empty, the whole set is too. checkPermutationsSample( false /* empty */, 5, { // Tetrahedron contraints: {0, 1, 0, 0, 0, 0, 0}, // y >= 0 {0, -1, 1, 0, 0, 0, 0}, // z >= y // -300000x + 299998y + 100000 + z <= 0. {300000, -299998, -1, 0, 0, 0, -100000}, // -150000x + 149999y + 100000 >= 0. {-150000, 149999, 0, 0, 0, 0, 100000}, // Second set constraints: // p >= 1 {0, 0, 0, 1, 0, 0, -1}, // p <= 2 {0, 0, 0, -1, 0, 0, 2}, }, { {0, 0, 0, 1, -3, -3, 0}, // p = 3q + 3r }); // Cartesian product of a tetrahedron and a 2D cone. // The tetrahedron is empty and has vertices at // (1/3, 0, 0), (2/3, 0, 0), (2/3, 0, 100), and (100, 100 - 1/3, 100). // The cone has apex at (10000, 10000) and // edges passing through (1/3, 0) and (2/3, 0). // Since the tetrahedron is empty, the Cartesian product is too. checkPermutationsSample(false /* empty */, 5, { // Tetrahedron contraints: {0, 1, 0, 0, 0, 0}, {0, -300, 299, 0, 0, 0}, {300 * 299, -89400, -299, 0, 0, -100 * 299}, {-897, 894, 0, 0, 0, 598}, // Triangle constraints: // 300000p - 299999q >= 100000 {0, 0, 0, 300000, -299999, -100000}, // -300000p + 299998q + 200000 >= 0 {0, 0, 0, -300000, 299998, 200000}, }, {}); // Cartesian product of same tetrahedron as above and // {(p, q) : 1/3 <= p <= 2/3}. checkPermutationsSample(false /* empty */, 5, { // Tetrahedron contraints: {0, 1, 0, 0, 0, 0}, {0, -300, 299, 0, 0, 0}, {300 * 299, -89400, -299, 0, 0, -100 * 299}, {-897, 894, 0, 0, 0, 598}, // Second set constraints: // 3p >= 1 {0, 0, 0, 3, 0, -1}, // 3p <= 2 {0, 0, 0, -3, 0, 2}, }, {}); checkSample(true, parsePoly("(x, y, z) : (2 * x - 1 >= 0, x - y - 1 == 0, " "y - z == 0)")); // Regression tests for the computation of dual coefficients. checkSample(false, parsePoly("(x, y, z) : (" "6*x - 4*y + 9*z + 2 >= 0," "x + 5*y + z + 5 >= 0," "-4*x + y + 2*z - 1 >= 0," "-3*x - 2*y - 7*z - 1 >= 0," "-7*x - 5*y - 9*z - 1 >= 0)")); checkSample(true, parsePoly("(x, y, z) : (" "3*x + 3*y + 3 >= 0," "-4*x - 8*y - z + 4 >= 0," "-7*x - 4*y + z + 1 >= 0," "2*x - 7*y - 8*z - 7 >= 0," "9*x + 8*y - 9*z - 7 >= 0)")); } TEST(IntegerPolyhedronTest, IsIntegerEmptyTest) { // 1 <= 5x and 5x <= 4 (no solution). EXPECT_TRUE( parsePoly("(x) : (5 * x - 1 >= 0, -5 * x + 4 >= 0)").isIntegerEmpty()); // 1 <= 5x and 5x <= 9 (solution: x = 1). EXPECT_FALSE( parsePoly("(x) : (5 * x - 1 >= 0, -5 * x + 9 >= 0)").isIntegerEmpty()); // Unbounded sets. EXPECT_TRUE(parsePoly("(x,y,z) : (2 * y - 1 >= 0, -2 * y + 1 >= 0, " "2 * z - 1 >= 0, 2 * x - 1 == 0)") .isIntegerEmpty()); EXPECT_FALSE(parsePoly("(x,y,z) : (2 * x - 1 >= 0, -3 * x + 3 >= 0, " "5 * z - 6 >= 0, -7 * z + 17 >= 0, 3 * y - 2 >= 0)") .isIntegerEmpty()); EXPECT_FALSE( parsePoly("(x,y,z) : (2 * x - 1 >= 0, x - y - 1 == 0, y - z == 0)") .isIntegerEmpty()); // IntegerPolyhedron::isEmpty() does not detect the following sets to be // empty. // 3x + 7y = 1 and 0 <= x, y <= 10. // Since x and y are non-negative, 3x + 7y can never be 1. EXPECT_TRUE(parsePoly("(x,y) : (x >= 0, -x + 10 >= 0, y >= 0, -y + 10 >= 0, " "3 * x + 7 * y - 1 == 0)") .isIntegerEmpty()); // 2x = 3y and y = x - 1 and x + y = 6z + 2 and 0 <= x, y <= 100. // Substituting y = x - 1 in 3y = 2x, we obtain x = 3 and hence y = 2. // Since x + y = 5 cannot be equal to 6z + 2 for any z, the set is empty. EXPECT_TRUE( parsePoly("(x,y,z) : (x >= 0, -x + 100 >= 0, y >= 0, -y + 100 >= 0, " "2 * x - 3 * y == 0, x - y - 1 == 0, x + y - 6 * z - 2 == 0)") .isIntegerEmpty()); // 2x = 3y and y = x - 1 + 6z and x + y = 6q + 2 and 0 <= x, y <= 100. // 2x = 3y implies x is a multiple of 3 and y is even. // Now y = x - 1 + 6z implies y = 2 mod 3. In fact, since y is even, we have // y = 2 mod 6. Then since x = y + 1 + 6z, we have x = 3 mod 6, implying // x + y = 5 mod 6, which contradicts x + y = 6q + 2, so the set is empty. EXPECT_TRUE( parsePoly( "(x,y,z,q) : (x >= 0, -x + 100 >= 0, y >= 0, -y + 100 >= 0, " "2 * x - 3 * y == 0, x - y + 6 * z - 1 == 0, x + y - 6 * q - 2 == 0)") .isIntegerEmpty()); // Set with symbols. EXPECT_FALSE(parsePoly("(x)[s] : (x + s >= 0, x - s == 0)").isIntegerEmpty()); } TEST(IntegerPolyhedronTest, removeRedundantConstraintsTest) { IntegerPolyhedron poly = parsePoly("(x) : (x - 2 >= 0, -x + 2 >= 0, x - 2 == 0)"); poly.removeRedundantConstraints(); // Both inequalities are redundant given the equality. Both have been removed. EXPECT_EQ(poly.getNumInequalities(), 0u); EXPECT_EQ(poly.getNumEqualities(), 1u); IntegerPolyhedron poly2 = parsePoly("(x,y) : (x - 3 >= 0, y - 2 >= 0, x - y == 0)"); poly2.removeRedundantConstraints(); // The second inequality is redundant and should have been removed. The // remaining inequality should be the first one. EXPECT_EQ(poly2.getNumInequalities(), 1u); EXPECT_THAT(poly2.getInequality(0), ElementsAre(1, 0, -3)); EXPECT_EQ(poly2.getNumEqualities(), 1u); IntegerPolyhedron poly3 = parsePoly("(x,y,z) : (x - y == 0, x - z == 0, y - z == 0)"); poly3.removeRedundantConstraints(); // One of the three equalities can be removed. EXPECT_EQ(poly3.getNumInequalities(), 0u); EXPECT_EQ(poly3.getNumEqualities(), 2u); IntegerPolyhedron poly4 = parsePoly("(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q) : (" "b - 1 >= 0," "-b + 500 >= 0," "-16 * d + f >= 0," "f - 1 >= 0," "-f + 998 >= 0," "16 * d - f + 15 >= 0," "-16 * e + g >= 0," "g - 1 >= 0," "-g + 998 >= 0," "16 * e - g + 15 >= 0," "h >= 0," "-h + 1 >= 0," "j - 1 >= 0," "-j + 500 >= 0," "-f + 16 * l + 15 >= 0," "f - 16 * l >= 0," "-16 * m + o >= 0," "o - 1 >= 0," "-o + 998 >= 0," "16 * m - o + 15 >= 0," "p >= 0," "-p + 1 >= 0," "-g - h + 8 * q + 8 >= 0," "-o - p + 8 * q + 8 >= 0," "o + p - 8 * q - 1 >= 0," "g + h - 8 * q - 1 >= 0," "-f + n >= 0," "f - n >= 0," "k - 10 >= 0," "-k + 10 >= 0," "i - 13 >= 0," "-i + 13 >= 0," "c - 10 >= 0," "-c + 10 >= 0," "a - 13 >= 0," "-a + 13 >= 0" ")"); // The above is a large set of constraints without any redundant constraints, // as verified by the Fourier-Motzkin based removeRedundantInequalities. unsigned nIneq = poly4.getNumInequalities(); unsigned nEq = poly4.getNumEqualities(); poly4.removeRedundantInequalities(); ASSERT_EQ(poly4.getNumInequalities(), nIneq); ASSERT_EQ(poly4.getNumEqualities(), nEq); // Now we test that removeRedundantConstraints does not find any constraints // to be redundant either. poly4.removeRedundantConstraints(); EXPECT_EQ(poly4.getNumInequalities(), nIneq); EXPECT_EQ(poly4.getNumEqualities(), nEq); IntegerPolyhedron poly5 = parsePoly( "(x,y) : (128 * x + 127 >= 0, -x + 7 >= 0, -128 * x + y >= 0, y >= 0)"); // 128x + 127 >= 0 implies that 128x >= 0, since x has to be an integer. // (This should be caught by GCDTightenInqualities().) // So -128x + y >= 0 and 128x + 127 >= 0 imply y >= 0 since we have // y >= 128x >= 0. poly5.removeRedundantConstraints(); EXPECT_EQ(poly5.getNumInequalities(), 3u); SmallVector redundantConstraint = {0, 1, 0}; for (unsigned i = 0; i < 3; ++i) { // Ensure that the removed constraint was the redundant constraint [3]. EXPECT_NE(poly5.getInequality(i), ArrayRef(redundantConstraint)); } } TEST(IntegerPolyhedronTest, addConstantUpperBound) { IntegerPolyhedron poly(PresburgerSpace::getSetSpace(2)); poly.addBound(IntegerPolyhedron::UB, 0, 1); EXPECT_EQ(poly.atIneq(0, 0), -1); EXPECT_EQ(poly.atIneq(0, 1), 0); EXPECT_EQ(poly.atIneq(0, 2), 1); poly.addBound(IntegerPolyhedron::UB, {1, 2, 3}, 1); EXPECT_EQ(poly.atIneq(1, 0), -1); EXPECT_EQ(poly.atIneq(1, 1), -2); EXPECT_EQ(poly.atIneq(1, 2), -2); } TEST(IntegerPolyhedronTest, addConstantLowerBound) { IntegerPolyhedron poly(PresburgerSpace::getSetSpace(2)); poly.addBound(IntegerPolyhedron::LB, 0, 1); EXPECT_EQ(poly.atIneq(0, 0), 1); EXPECT_EQ(poly.atIneq(0, 1), 0); EXPECT_EQ(poly.atIneq(0, 2), -1); poly.addBound(IntegerPolyhedron::LB, {1, 2, 3}, 1); EXPECT_EQ(poly.atIneq(1, 0), 1); EXPECT_EQ(poly.atIneq(1, 1), 2); EXPECT_EQ(poly.atIneq(1, 2), 2); } /// Check if the expected division representation of local variables matches the /// computed representation. The expected division representation is given as /// a vector of expressions set in `expectedDividends` and the corressponding /// denominator in `expectedDenominators`. The `denominators` and `dividends` /// obtained through `getLocalRepr` function is verified against the /// `expectedDenominators` and `expectedDividends` respectively. static void checkDivisionRepresentation( IntegerPolyhedron &poly, const std::vector> &expectedDividends, const SmallVectorImpl &expectedDenominators) { std::vector> dividends; SmallVector denominators; poly.getLocalReprs(dividends, denominators); // Check that the `denominators` and `expectedDenominators` match. EXPECT_TRUE(expectedDenominators == denominators); // Check that the `dividends` and `expectedDividends` match. If the // denominator for a division is zero, we ignore its dividend. EXPECT_TRUE(dividends.size() == expectedDividends.size()); for (unsigned i = 0, e = dividends.size(); i < e; ++i) { if (denominators[i] != 0) { EXPECT_TRUE(expectedDividends[i] == dividends[i]); } } } TEST(IntegerPolyhedronTest, computeLocalReprSimple) { IntegerPolyhedron poly(PresburgerSpace::getSetSpace(1)); poly.addLocalFloorDiv({1, 4}, 10); poly.addLocalFloorDiv({1, 0, 100}, 10); std::vector> divisions = {{1, 0, 0, 4}, {1, 0, 0, 100}}; SmallVector denoms = {10, 10}; // Check if floordivs can be computed when no other inequalities exist // and floor divs do not depend on each other. checkDivisionRepresentation(poly, divisions, denoms); } TEST(IntegerPolyhedronTest, computeLocalReprConstantFloorDiv) { IntegerPolyhedron poly(PresburgerSpace::getSetSpace(4)); poly.addInequality({1, 0, 3, 1, 2}); poly.addInequality({1, 2, -8, 1, 10}); poly.addEquality({1, 2, -4, 1, 10}); poly.addLocalFloorDiv({0, 0, 0, 0, 100}, 30); poly.addLocalFloorDiv({0, 0, 0, 0, 0, 206}, 101); std::vector> divisions = {{0, 0, 0, 0, 0, 0, 3}, {0, 0, 0, 0, 0, 0, 2}}; SmallVector denoms = {1, 1}; // Check if floordivs with constant numerator can be computed. checkDivisionRepresentation(poly, divisions, denoms); } TEST(IntegerPolyhedronTest, computeLocalReprRecursive) { IntegerPolyhedron poly(PresburgerSpace::getSetSpace(4)); poly.addInequality({1, 0, 3, 1, 2}); poly.addInequality({1, 2, -8, 1, 10}); poly.addEquality({1, 2, -4, 1, 10}); poly.addLocalFloorDiv({0, -2, 7, 2, 10}, 3); poly.addLocalFloorDiv({3, 0, 9, 2, 2, 10}, 5); poly.addLocalFloorDiv({0, 1, -123, 2, 0, -4, 10}, 3); poly.addInequality({1, 2, -2, 1, -5, 0, 6, 100}); poly.addInequality({1, 2, -8, 1, 3, 7, 0, -9}); std::vector> divisions = { {0, -2, 7, 2, 0, 0, 0, 10}, {3, 0, 9, 2, 2, 0, 0, 10}, {0, 1, -123, 2, 0, -4, 0, 10}}; SmallVector denoms = {3, 5, 3}; // Check if floordivs which may depend on other floordivs can be computed. checkDivisionRepresentation(poly, divisions, denoms); } TEST(IntegerPolyhedronTest, computeLocalReprTightUpperBound) { { IntegerPolyhedron poly = parsePoly("(i) : (i mod 3 - 1 >= 0)"); // The set formed by the poly is: // 3q - i + 2 >= 0 <-- Division lower bound // -3q + i - 1 >= 0 // -3q + i >= 0 <-- Division upper bound // We remove redundant constraints to get the set: // 3q - i + 2 >= 0 <-- Division lower bound // -3q + i - 1 >= 0 <-- Tighter division upper bound // thus, making the upper bound tighter. poly.removeRedundantConstraints(); std::vector> divisions = {{1, 0, 0}}; SmallVector denoms = {3}; // Check if the divisions can be computed even with a tighter upper bound. checkDivisionRepresentation(poly, divisions, denoms); } { IntegerPolyhedron poly = parsePoly("(i, j, q) : (4*q - i - j + 2 >= 0, -4*q + i + j >= 0)"); // Convert `q` to a local variable. poly.convertToLocal(IdKind::SetDim, 2, 3); std::vector> divisions = {{1, 1, 0, 1}}; SmallVector denoms = {4}; // Check if the divisions can be computed even with a tighter upper bound. checkDivisionRepresentation(poly, divisions, denoms); } } TEST(IntegerPolyhedronTest, computeLocalReprFromEquality) { { IntegerPolyhedron poly = parsePoly("(i, j, q) : (-4*q + i + j == 0)"); // Convert `q` to a local variable. poly.convertToLocal(IdKind::SetDim, 2, 3); std::vector> divisions = {{1, 1, 0, 0}}; SmallVector denoms = {4}; checkDivisionRepresentation(poly, divisions, denoms); } { IntegerPolyhedron poly = parsePoly("(i, j, q) : (4*q - i - j == 0)"); // Convert `q` to a local variable. poly.convertToLocal(IdKind::SetDim, 2, 3); std::vector> divisions = {{1, 1, 0, 0}}; SmallVector denoms = {4}; checkDivisionRepresentation(poly, divisions, denoms); } { IntegerPolyhedron poly = parsePoly("(i, j, q) : (3*q + i + j - 2 == 0)"); // Convert `q` to a local variable. poly.convertToLocal(IdKind::SetDim, 2, 3); std::vector> divisions = {{-1, -1, 0, 2}}; SmallVector denoms = {3}; checkDivisionRepresentation(poly, divisions, denoms); } } TEST(IntegerPolyhedronTest, computeLocalReprFromEqualityAndInequality) { { IntegerPolyhedron poly = parsePoly("(i, j, q, k) : (-3*k + i + j == 0, 4*q - " "i - j + 2 >= 0, -4*q + i + j >= 0)"); // Convert `q` and `k` to local variables. poly.convertToLocal(IdKind::SetDim, 2, 4); std::vector> divisions = {{1, 1, 0, 0, 1}, {1, 1, 0, 0, 0}}; SmallVector denoms = {4, 3}; checkDivisionRepresentation(poly, divisions, denoms); } } TEST(IntegerPolyhedronTest, computeLocalReprNoRepr) { IntegerPolyhedron poly = parsePoly("(x, q) : (x - 3 * q >= 0, -x + 3 * q + 3 >= 0)"); // Convert q to a local variable. poly.convertToLocal(IdKind::SetDim, 1, 2); std::vector> divisions = {{0, 0, 0}}; SmallVector denoms = {0}; // Check that no division is computed. checkDivisionRepresentation(poly, divisions, denoms); } TEST(IntegerPolyhedronTest, computeLocalReprNegConstNormalize) { IntegerPolyhedron poly = parsePoly("(x, q) : (-1 - 3*x - 6 * q >= 0, 6 + 3*x + 6*q >= 0)"); // Convert q to a local variable. poly.convertToLocal(IdKind::SetDim, 1, 2); // q = floor((-1/3 - x)/2) // = floor((1/3) + (-1 - x)/2) // = floor((-1 - x)/2). std::vector> divisions = {{-1, 0, -1}}; SmallVector denoms = {2}; checkDivisionRepresentation(poly, divisions, denoms); } TEST(IntegerPolyhedronTest, simplifyLocalsTest) { // (x) : (exists y: 2x + y = 1 and y = 2). IntegerPolyhedron poly(PresburgerSpace::getSetSpace(1, 0, 1)); poly.addEquality({2, 1, -1}); poly.addEquality({0, 1, -2}); EXPECT_TRUE(poly.isEmpty()); // (x) : (exists y, z, w: 3x + y = 1 and 2y = z and 3y = w and z = w). IntegerPolyhedron poly2(PresburgerSpace::getSetSpace(1, 0, 3)); poly2.addEquality({3, 1, 0, 0, -1}); poly2.addEquality({0, 2, -1, 0, 0}); poly2.addEquality({0, 3, 0, -1, 0}); poly2.addEquality({0, 0, 1, -1, 0}); EXPECT_TRUE(poly2.isEmpty()); // (x) : (exists y: x >= y + 1 and 2x + y = 0 and y >= -1). IntegerPolyhedron poly3(PresburgerSpace::getSetSpace(1, 0, 1)); poly3.addInequality({1, -1, -1}); poly3.addInequality({0, 1, 1}); poly3.addEquality({2, 1, 0}); EXPECT_TRUE(poly3.isEmpty()); } TEST(IntegerPolyhedronTest, mergeDivisionsSimple) { { // (x) : (exists z, y = [x / 2] : x = 3y and x + z + 1 >= 0). IntegerPolyhedron poly1(PresburgerSpace::getSetSpace(1, 0, 1)); poly1.addLocalFloorDiv({1, 0, 0}, 2); // y = [x / 2]. poly1.addEquality({1, 0, -3, 0}); // x = 3y. poly1.addInequality({1, 1, 0, 1}); // x + z + 1 >= 0. // (x) : (exists y = [x / 2], z : x = 5y). IntegerPolyhedron poly2(PresburgerSpace::getSetSpace(1)); poly2.addLocalFloorDiv({1, 0}, 2); // y = [x / 2]. poly2.addEquality({1, -5, 0}); // x = 5y. poly2.appendId(IdKind::Local); // Add local id z. poly1.mergeLocalIds(poly2); // Local space should be same. EXPECT_EQ(poly1.getNumLocalIds(), poly2.getNumLocalIds()); // 1 division should be matched + 2 unmatched local ids. EXPECT_EQ(poly1.getNumLocalIds(), 3u); EXPECT_EQ(poly2.getNumLocalIds(), 3u); } { // (x) : (exists z = [x / 5], y = [x / 2] : x = 3y). IntegerPolyhedron poly1(PresburgerSpace::getSetSpace(1)); poly1.addLocalFloorDiv({1, 0}, 5); // z = [x / 5]. poly1.addLocalFloorDiv({1, 0, 0}, 2); // y = [x / 2]. poly1.addEquality({1, 0, -3, 0}); // x = 3y. // (x) : (exists y = [x / 2], z = [x / 5]: x = 5z). IntegerPolyhedron poly2(PresburgerSpace::getSetSpace(1)); poly2.addLocalFloorDiv({1, 0}, 2); // y = [x / 2]. poly2.addLocalFloorDiv({1, 0, 0}, 5); // z = [x / 5]. poly2.addEquality({1, 0, -5, 0}); // x = 5z. poly1.mergeLocalIds(poly2); // Local space should be same. EXPECT_EQ(poly1.getNumLocalIds(), poly2.getNumLocalIds()); // 2 divisions should be matched. EXPECT_EQ(poly1.getNumLocalIds(), 2u); EXPECT_EQ(poly2.getNumLocalIds(), 2u); } { // Division Normalization test. // (x) : (exists z, y = [x / 2] : x = 3y and x + z + 1 >= 0). IntegerPolyhedron poly1(PresburgerSpace::getSetSpace(1, 0, 1)); // This division would be normalized. poly1.addLocalFloorDiv({3, 0, 0}, 6); // y = [3x / 6] -> [x/2]. poly1.addEquality({1, 0, -3, 0}); // x = 3z. poly1.addInequality({1, 1, 0, 1}); // x + y + 1 >= 0. // (x) : (exists y = [x / 2], z : x = 5y). IntegerPolyhedron poly2(PresburgerSpace::getSetSpace(1)); poly2.addLocalFloorDiv({1, 0}, 2); // y = [x / 2]. poly2.addEquality({1, -5, 0}); // x = 5y. poly2.appendId(IdKind::Local); // Add local id z. poly1.mergeLocalIds(poly2); // Local space should be same. EXPECT_EQ(poly1.getNumLocalIds(), poly2.getNumLocalIds()); // One division should be matched + 2 unmatched local ids. EXPECT_EQ(poly1.getNumLocalIds(), 3u); EXPECT_EQ(poly2.getNumLocalIds(), 3u); } } TEST(IntegerPolyhedronTest, mergeDivisionsNestedDivsions) { { // (x) : (exists y = [x / 2], z = [x + y / 3]: y + z >= x). IntegerPolyhedron poly1(PresburgerSpace::getSetSpace(1)); poly1.addLocalFloorDiv({1, 0}, 2); // y = [x / 2]. poly1.addLocalFloorDiv({1, 1, 0}, 3); // z = [x + y / 3]. poly1.addInequality({-1, 1, 1, 0}); // y + z >= x. // (x) : (exists y = [x / 2], z = [x + y / 3]: y + z <= x). IntegerPolyhedron poly2(PresburgerSpace::getSetSpace(1)); poly2.addLocalFloorDiv({1, 0}, 2); // y = [x / 2]. poly2.addLocalFloorDiv({1, 1, 0}, 3); // z = [x + y / 3]. poly2.addInequality({1, -1, -1, 0}); // y + z <= x. poly1.mergeLocalIds(poly2); // Local space should be same. EXPECT_EQ(poly1.getNumLocalIds(), poly2.getNumLocalIds()); // 2 divisions should be matched. EXPECT_EQ(poly1.getNumLocalIds(), 2u); EXPECT_EQ(poly2.getNumLocalIds(), 2u); } { // (x) : (exists y = [x / 2], z = [x + y / 3], w = [z + 1 / 5]: y + z >= x). IntegerPolyhedron poly1(PresburgerSpace::getSetSpace(1)); poly1.addLocalFloorDiv({1, 0}, 2); // y = [x / 2]. poly1.addLocalFloorDiv({1, 1, 0}, 3); // z = [x + y / 3]. poly1.addLocalFloorDiv({0, 0, 1, 1}, 5); // w = [z + 1 / 5]. poly1.addInequality({-1, 1, 1, 0, 0}); // y + z >= x. // (x) : (exists y = [x / 2], z = [x + y / 3], w = [z + 1 / 5]: y + z <= x). IntegerPolyhedron poly2(PresburgerSpace::getSetSpace(1)); poly2.addLocalFloorDiv({1, 0}, 2); // y = [x / 2]. poly2.addLocalFloorDiv({1, 1, 0}, 3); // z = [x + y / 3]. poly2.addLocalFloorDiv({0, 0, 1, 1}, 5); // w = [z + 1 / 5]. poly2.addInequality({1, -1, -1, 0, 0}); // y + z <= x. poly1.mergeLocalIds(poly2); // Local space should be same. EXPECT_EQ(poly1.getNumLocalIds(), poly2.getNumLocalIds()); // 3 divisions should be matched. EXPECT_EQ(poly1.getNumLocalIds(), 3u); EXPECT_EQ(poly2.getNumLocalIds(), 3u); } { // (x) : (exists y = [x / 2], z = [x + y / 3]: y + z >= x). IntegerPolyhedron poly1(PresburgerSpace::getSetSpace(1)); poly1.addLocalFloorDiv({2, 0}, 4); // y = [2x / 4] -> [x / 2]. poly1.addLocalFloorDiv({1, 1, 0}, 3); // z = [x + y / 3]. poly1.addInequality({-1, 1, 1, 0}); // y + z >= x. // (x) : (exists y = [x / 2], z = [x + y / 3]: y + z <= x). IntegerPolyhedron poly2(PresburgerSpace::getSetSpace(1)); poly2.addLocalFloorDiv({1, 0}, 2); // y = [x / 2]. // This division would be normalized. poly2.addLocalFloorDiv({3, 3, 0}, 9); // z = [3x + 3y / 9] -> [x + y / 3]. poly2.addInequality({1, -1, -1, 0}); // y + z <= x. poly1.mergeLocalIds(poly2); // Local space should be same. EXPECT_EQ(poly1.getNumLocalIds(), poly2.getNumLocalIds()); // 2 divisions should be matched. EXPECT_EQ(poly1.getNumLocalIds(), 2u); EXPECT_EQ(poly2.getNumLocalIds(), 2u); } } TEST(IntegerPolyhedronTest, mergeDivisionsConstants) { { // (x) : (exists y = [x + 1 / 3], z = [x + 2 / 3]: y + z >= x). IntegerPolyhedron poly1(PresburgerSpace::getSetSpace(1)); poly1.addLocalFloorDiv({1, 1}, 2); // y = [x + 1 / 2]. poly1.addLocalFloorDiv({1, 0, 2}, 3); // z = [x + 2 / 3]. poly1.addInequality({-1, 1, 1, 0}); // y + z >= x. // (x) : (exists y = [x + 1 / 3], z = [x + 2 / 3]: y + z <= x). IntegerPolyhedron poly2(PresburgerSpace::getSetSpace(1)); poly2.addLocalFloorDiv({1, 1}, 2); // y = [x + 1 / 2]. poly2.addLocalFloorDiv({1, 0, 2}, 3); // z = [x + 2 / 3]. poly2.addInequality({1, -1, -1, 0}); // y + z <= x. poly1.mergeLocalIds(poly2); // Local space should be same. EXPECT_EQ(poly1.getNumLocalIds(), poly2.getNumLocalIds()); // 2 divisions should be matched. EXPECT_EQ(poly1.getNumLocalIds(), 2u); EXPECT_EQ(poly2.getNumLocalIds(), 2u); } { // (x) : (exists y = [x + 1 / 3], z = [x + 2 / 3]: y + z >= x). IntegerPolyhedron poly1(PresburgerSpace::getSetSpace(1)); poly1.addLocalFloorDiv({1, 1}, 2); // y = [x + 1 / 2]. // Normalization test. poly1.addLocalFloorDiv({3, 0, 6}, 9); // z = [3x + 6 / 9] -> [x + 2 / 3]. poly1.addInequality({-1, 1, 1, 0}); // y + z >= x. // (x) : (exists y = [x + 1 / 3], z = [x + 2 / 3]: y + z <= x). IntegerPolyhedron poly2(PresburgerSpace::getSetSpace(1)); // Normalization test. poly2.addLocalFloorDiv({2, 2}, 4); // y = [2x + 2 / 4] -> [x + 1 / 2]. poly2.addLocalFloorDiv({1, 0, 2}, 3); // z = [x + 2 / 3]. poly2.addInequality({1, -1, -1, 0}); // y + z <= x. poly1.mergeLocalIds(poly2); // Local space should be same. EXPECT_EQ(poly1.getNumLocalIds(), poly2.getNumLocalIds()); // 2 divisions should be matched. EXPECT_EQ(poly1.getNumLocalIds(), 2u); EXPECT_EQ(poly2.getNumLocalIds(), 2u); } } TEST(IntegerPolyhedronTest, mergeDivisionsDuplicateInSameSet) { // (x) : (exists y = [x + 1 / 3], z = [x + 1 / 3]: y + z >= x). IntegerPolyhedron poly1(PresburgerSpace::getSetSpace(1)); poly1.addLocalFloorDiv({1, 1}, 3); // y = [x + 1 / 2]. poly1.addLocalFloorDiv({1, 0, 1}, 3); // z = [x + 1 / 3]. poly1.addInequality({-1, 1, 1, 0}); // y + z >= x. // (x) : (exists y = [x + 1 / 3], z = [x + 2 / 3]: y + z <= x). IntegerPolyhedron poly2(PresburgerSpace::getSetSpace(1)); poly2.addLocalFloorDiv({1, 1}, 3); // y = [x + 1 / 3]. poly2.addLocalFloorDiv({1, 0, 2}, 3); // z = [x + 2 / 3]. poly2.addInequality({1, -1, -1, 0}); // y + z <= x. poly1.mergeLocalIds(poly2); // Local space should be same. EXPECT_EQ(poly1.getNumLocalIds(), poly2.getNumLocalIds()); // 1 divisions should be matched. EXPECT_EQ(poly1.getNumLocalIds(), 3u); EXPECT_EQ(poly2.getNumLocalIds(), 3u); } TEST(IntegerPolyhedronTest, negativeDividends) { // (x) : (exists y = [-x + 1 / 2], z = [-x - 2 / 3]: y + z >= x). IntegerPolyhedron poly1(PresburgerSpace::getSetSpace(1)); poly1.addLocalFloorDiv({-1, 1}, 2); // y = [x + 1 / 2]. // Normalization test with negative dividends poly1.addLocalFloorDiv({-3, 0, -6}, 9); // z = [3x + 6 / 9] -> [x + 2 / 3]. poly1.addInequality({-1, 1, 1, 0}); // y + z >= x. // (x) : (exists y = [x + 1 / 3], z = [x + 2 / 3]: y + z <= x). IntegerPolyhedron poly2(PresburgerSpace::getSetSpace(1)); // Normalization test. poly2.addLocalFloorDiv({-2, 2}, 4); // y = [-2x + 2 / 4] -> [-x + 1 / 2]. poly2.addLocalFloorDiv({-1, 0, -2}, 3); // z = [-x - 2 / 3]. poly2.addInequality({1, -1, -1, 0}); // y + z <= x. poly1.mergeLocalIds(poly2); // Merging triggers normalization. std::vector> divisions = {{-1, 0, 0, 1}, {-1, 0, 0, -2}}; SmallVector denoms = {2, 3}; checkDivisionRepresentation(poly1, divisions, denoms); } void expectRationalLexMin(const IntegerPolyhedron &poly, ArrayRef min) { auto lexMin = poly.findRationalLexMin(); ASSERT_TRUE(lexMin.isBounded()); EXPECT_EQ(ArrayRef(*lexMin), min); } void expectNoRationalLexMin(OptimumKind kind, const IntegerPolyhedron &poly) { ASSERT_NE(kind, OptimumKind::Bounded) << "Use expectRationalLexMin for bounded min"; EXPECT_EQ(poly.findRationalLexMin().getKind(), kind); } TEST(IntegerPolyhedronTest, findRationalLexMin) { expectRationalLexMin( parsePoly("(x, y, z) : (x + 10 >= 0, y + 40 >= 0, z + 30 >= 0)"), {{-10, 1}, {-40, 1}, {-30, 1}}); expectRationalLexMin( parsePoly( "(x, y, z) : (2*x + 7 >= 0, 3*y - 5 >= 0, 8*z + 10 >= 0, 9*z >= 0)"), {{-7, 2}, {5, 3}, {0, 1}}); expectRationalLexMin(parsePoly("(x, y) : (3*x + 2*y + 10 >= 0, -3*y + 10 >= " "0, 4*x - 7*y - 10 >= 0)"), {{-50, 29}, {-70, 29}}); // Test with some locals. This is basically x >= 11, 0 <= x - 2e <= 1. // It'll just choose x = 11, e = 5.5 since it's rational lexmin. expectRationalLexMin( parsePoly( "(x, y) : (x - 2*(x floordiv 2) == 0, y - 2*x >= 0, x - 11 >= 0)"), {{11, 1}, {22, 1}}); expectRationalLexMin(parsePoly("(x, y) : (3*x + 2*y + 10 >= 0," "-4*x + 7*y + 10 >= 0, -3*y + 10 >= 0)"), {{-50, 9}, {10, 3}}); // Cartesian product of above with itself. expectRationalLexMin( parsePoly("(x, y, z, w) : (3*x + 2*y + 10 >= 0, -4*x + 7*y + 10 >= 0," "-3*y + 10 >= 0, 3*z + 2*w + 10 >= 0, -4*z + 7*w + 10 >= 0," "-3*w + 10 >= 0)"), {{-50, 9}, {10, 3}, {-50, 9}, {10, 3}}); // Same as above but for the constraints on z and w, we express "10" in terms // of x and y. We know that x and y still have to take the values // -50/9 and 10/3 since their constraints are the same and their values are // minimized first. Accordingly, the values -9x - 12y, -9x - 0y - 10, // and -9x - 15y + 10 are all equal to 10. expectRationalLexMin( parsePoly( "(x, y, z, w) : (3*x + 2*y + 10 >= 0, -4*x + 7*y + 10 >= 0, " "-3*y + 10 >= 0, 3*z + 2*w - 9*x - 12*y >= 0," "-4*z + 7*w + - 9*x - 9*y - 10 >= 0, -3*w - 9*x - 15*y + 10 >= 0)"), {{-50, 9}, {10, 3}, {-50, 9}, {10, 3}}); // Same as above with one constraint removed, making the lexmin unbounded. expectNoRationalLexMin( OptimumKind::Unbounded, parsePoly("(x, y, z, w) : (3*x + 2*y + 10 >= 0, -4*x + 7*y + 10 >= 0," "-3*y + 10 >= 0, 3*z + 2*w - 9*x - 12*y >= 0," "-4*z + 7*w + - 9*x - 9*y - 10>= 0)")); // Again, the lexmin is unbounded. expectNoRationalLexMin( OptimumKind::Unbounded, parsePoly("(x, y, z) : (2*x + 5*y + 8*z - 10 >= 0," "2*x + 10*y + 8*z - 10 >= 0, 2*x + 5*y + 10*z - 10 >= 0)")); // The set is empty. expectNoRationalLexMin(OptimumKind::Empty, parsePoly("(x) : (2*x >= 0, -x - 1 >= 0)")); } void expectIntegerLexMin(const IntegerPolyhedron &poly, ArrayRef min) { auto lexMin = poly.findIntegerLexMin(); ASSERT_TRUE(lexMin.isBounded()); EXPECT_EQ(ArrayRef(*lexMin), min); } void expectNoIntegerLexMin(OptimumKind kind, const IntegerPolyhedron &poly) { ASSERT_NE(kind, OptimumKind::Bounded) << "Use expectRationalLexMin for bounded min"; EXPECT_EQ(poly.findRationalLexMin().getKind(), kind); } TEST(IntegerPolyhedronTest, findIntegerLexMin) { expectIntegerLexMin(parsePoly("(x, y, z) : (2*x + 13 >= 0, 4*y - 3*x - 2 >= " "0, 11*z + 5*y - 3*x + 7 >= 0)"), {-6, -4, 0}); // Similar to above but no lower bound on z. expectNoIntegerLexMin(OptimumKind::Unbounded, parsePoly("(x, y, z) : (2*x + 13 >= 0, 4*y - 3*x - 2 " ">= 0, -11*z + 5*y - 3*x + 7 >= 0)")); } void expectSymbolicIntegerLexMin( StringRef polyStr, ArrayRef, 8>>> expectedLexminRepr, ArrayRef expectedUnboundedDomainRepr) { IntegerPolyhedron poly = parsePoly(polyStr); ASSERT_NE(poly.getNumDimIds(), 0u); ASSERT_NE(poly.getNumSymbolIds(), 0u); PWMAFunction expectedLexmin = parsePWMAF(/*numInputs=*/poly.getNumSymbolIds(), /*numOutputs=*/poly.getNumDimIds(), expectedLexminRepr); PresburgerSet expectedUnboundedDomain = parsePresburgerSetFromPolyStrings( poly.getNumSymbolIds(), expectedUnboundedDomainRepr); SymbolicLexMin result = poly.findSymbolicIntegerLexMin(); EXPECT_TRUE(result.lexmin.isEqual(expectedLexmin)); if (!result.lexmin.isEqual(expectedLexmin)) { llvm::errs() << "got:\n"; result.lexmin.dump(); llvm::errs() << "expected:\n"; expectedLexmin.dump(); } EXPECT_TRUE(result.unboundedDomain.isEqual(expectedUnboundedDomain)); if (!result.unboundedDomain.isEqual(expectedUnboundedDomain)) result.unboundedDomain.dump(); } void expectSymbolicIntegerLexMin( StringRef polyStr, ArrayRef, 8>>> result) { expectSymbolicIntegerLexMin(polyStr, result, {}); } TEST(IntegerPolyhedronTest, findSymbolicIntegerLexMin) { expectSymbolicIntegerLexMin("(x)[a] : (x - a >= 0)", { {"(a) : ()", {{1, 0}}}, // a }); expectSymbolicIntegerLexMin( "(x)[a, b] : (x - a >= 0, x - b >= 0)", { {"(a, b) : (a - b >= 0)", {{1, 0, 0}}}, // a {"(a, b) : (b - a - 1 >= 0)", {{0, 1, 0}}}, // b }); expectSymbolicIntegerLexMin( "(x)[a, b, c] : (x -a >= 0, x - b >= 0, x - c >= 0)", { {"(a, b, c) : (a - b >= 0, a - c >= 0)", {{1, 0, 0, 0}}}, // a {"(a, b, c) : (b - a - 1 >= 0, b - c >= 0)", {{0, 1, 0, 0}}}, // b {"(a, b, c) : (c - a - 1 >= 0, c - b - 1 >= 0)", {{0, 0, 1, 0}}}, // c }); expectSymbolicIntegerLexMin("(x, y)[a] : (x - a >= 0, x + y >= 0)", { {"(a) : ()", {{1, 0}, {-1, 0}}}, // (a, -a) }); expectSymbolicIntegerLexMin( "(x, y)[a] : (x - a >= 0, x + y >= 0, y >= 0)", { {"(a) : (a >= 0)", {{1, 0}, {0, 0}}}, // (a, 0) {"(a) : (-a - 1 >= 0)", {{1, 0}, {-1, 0}}}, // (a, -a) }); expectSymbolicIntegerLexMin( "(x, y)[a, b, c] : (x - a >= 0, y - b >= 0, c - x - y >= 0)", { {"(a, b, c) : (c - a - b >= 0)", {{1, 0, 0, 0}, {0, 1, 0, 0}}}, // (a, b) }); expectSymbolicIntegerLexMin( "(x, y, z)[a, b, c] : (c - z >= 0, b - y >= 0, x + y + z - a == 0)", { {"(a, b, c) : ()", {{1, -1, -1, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}}}, // (a - b - c, b, c) }); expectSymbolicIntegerLexMin( "(x)[a, b] : (a >= 0, b >= 0, x >= 0, a + b + x - 1 >= 0)", { {"(a, b) : (a >= 0, b >= 0, a + b - 1 >= 0)", {{0, 0, 0}}}, // 0 {"(a, b) : (a == 0, b == 0)", {{0, 0, 1}}}, // 1 }); expectSymbolicIntegerLexMin( "(x)[a, b] : (1 - a >= 0, a >= 0, 1 - b >= 0, b >= 0, 1 - x >= 0, x >= " "0, a + b + x - 1 >= 0)", { {"(a, b) : (1 - a >= 0, a >= 0, 1 - b >= 0, b >= 0, a + b - 1 >= 0)", {{0, 0, 0}}}, // 0 {"(a, b) : (a == 0, b == 0)", {{0, 0, 1}}}, // 1 }); expectSymbolicIntegerLexMin( "(x, y, z)[a, b] : (x - a == 0, y - b == 0, x >= 0, y >= 0, z >= 0, x + " "y + z - 1 >= 0)", { {"(a, b) : (a >= 0, b >= 0, 1 - a - b >= 0)", {{1, 0, 0}, {0, 1, 0}, {-1, -1, 1}}}, // (a, b, 1 - a - b) {"(a, b) : (a >= 0, b >= 0, a + b - 2 >= 0)", {{1, 0, 0}, {0, 1, 0}, {0, 0, 0}}}, // (a, b, 0) }); expectSymbolicIntegerLexMin("(x)[a, b] : (x - a == 0, x - b >= 0)", { {"(a, b) : (a - b >= 0)", {{1, 0, 0}}}, // a }); expectSymbolicIntegerLexMin( "(q)[a] : (a - 1 - 3*q == 0, q >= 0)", { {"(a) : (a - 1 - 3*(a floordiv 3) == 0, a >= 0)", {{0, 1, 0}}}, // a floordiv 3 }); expectSymbolicIntegerLexMin( "(r, q)[a] : (a - r - 3*q == 0, q >= 0, 1 - r >= 0, r >= 0)", { {"(a) : (a - 0 - 3*(a floordiv 3) == 0, a >= 0)", {{0, 0, 0}, {0, 1, 0}}}, // (0, a floordiv 3) {"(a) : (a - 1 - 3*(a floordiv 3) == 0, a >= 0)", {{0, 0, 1}, {0, 1, 0}}}, // (1 a floordiv 3) }); expectSymbolicIntegerLexMin( "(r, q)[a] : (a - r - 3*q == 0, q >= 0, 2 - r >= 0, r - 1 >= 0)", { {"(a) : (a - 1 - 3*(a floordiv 3) == 0, a >= 0)", {{0, 0, 1}, {0, 1, 0}}}, // (1, a floordiv 3) {"(a) : (a - 2 - 3*(a floordiv 3) == 0, a >= 0)", {{0, 0, 2}, {0, 1, 0}}}, // (2, a floordiv 3) }); expectSymbolicIntegerLexMin( "(r, q)[a] : (a - r - 3*q == 0, q >= 0, r >= 0)", { {"(a) : (a - 3*(a floordiv 3) == 0, a >= 0)", {{0, 0, 0}, {0, 1, 0}}}, // (0, a floordiv 3) {"(a) : (a - 1 - 3*(a floordiv 3) == 0, a >= 0)", {{0, 0, 1}, {0, 1, 0}}}, // (1, a floordiv 3) {"(a) : (a - 2 - 3*(a floordiv 3) == 0, a >= 0)", {{0, 0, 2}, {0, 1, 0}}}, // (2, a floordiv 3) }); expectSymbolicIntegerLexMin( "(x, y, z, w)[g] : (" // x, y, z, w are boolean variables. "1 - x >= 0, x >= 0, 1 - y >= 0, y >= 0," "1 - z >= 0, z >= 0, 1 - w >= 0, w >= 0," // We have some constraints on them: "x + y + z - 1 >= 0," // x or y or z "x + y + w - 1 >= 0," // x or y or w "1 - x + 1 - y + 1 - w - 1 >= 0," // ~x or ~y or ~w // What's the lexmin solution using exactly g true vars? "g - x - y - z - w == 0)", { {"(g) : (g - 1 == 0)", {{0, 0}, {0, 1}, {0, 0}, {0, 0}}}, // (0, 1, 0, 0) {"(g) : (g - 2 == 0)", {{0, 0}, {0, 0}, {0, 1}, {0, 1}}}, // (0, 0, 1, 1) {"(g) : (g - 3 == 0)", {{0, 0}, {0, 1}, {0, 1}, {0, 1}}}, // (0, 1, 1, 1) }); // Bezout's lemma: if a, b are constants, // the set of values that ax + by can take is all multiples of gcd(a, b). expectSymbolicIntegerLexMin( // If (x, y) is a solution for a given [a, r], then so is (x - 5, y + 2). // So the lexmin is unbounded if it exists. "(x, y)[a, r] : (a >= 0, r - a + 14*x + 35*y == 0)", {}, // According to Bezout's lemma, 14x + 35y can take on all multiples // of 7 and no other values. So the solution exists iff r - a is a // multiple of 7. {"(a, r) : (a >= 0, r - a - 7*((r - a) floordiv 7) == 0)"}); // The lexmins are unbounded. expectSymbolicIntegerLexMin("(x, y)[a] : (9*x - 4*y - 2*a >= 0)", {}, {"(a) : ()"}); // Test cases adapted from isl. expectSymbolicIntegerLexMin( // a = 2b - 2(c - b), c - b >= 0. // So b is minimized when c = b. "(b, c)[a] : (a - 4*b + 2*c == 0, c - b >= 0)", { {"(a) : (a - 2*(a floordiv 2) == 0)", {{0, 1, 0}, {0, 1, 0}}}, // (a floordiv 2, a floordiv 2) }); expectSymbolicIntegerLexMin( // 0 <= b <= 255, 1 <= a - 512b <= 509, // b + 8 >= 1 + 16*(b + 8 floordiv 16) // i.e. b % 16 != 8 "(b)[a] : (255 - b >= 0, b >= 0, a - 512*b - 1 >= 0, 512*b -a + 509 >= " "0, b + 7 - 16*((8 + b) floordiv 16) >= 0)", { {"(a) : (255 - (a floordiv 512) >= 0, a >= 0, a - 512*(a floordiv " "512) - 1 >= 0, 512*(a floordiv 512) - a + 509 >= 0, (a floordiv " "512) + 7 - 16*((8 + (a floordiv 512)) floordiv 16) >= 0)", {{0, 1, 0, 0}}}, // (a floordiv 2, a floordiv 2) }); expectSymbolicIntegerLexMin( "(a, b)[K, N, x, y] : (N - K - 2 >= 0, K + 4 - N >= 0, x - 4 >= 0, x + 6 " "- 2*N >= 0, K+N - x - 1 >= 0, a - N + 1 >= 0, K+N-1-a >= 0,a + 6 - b - " "N >= 0, 2*N - 4 - a >= 0," "2*N - 3*K + a - b >= 0, 4*N - K + 1 - 3*b >= 0, b - N >= 0, a - x - 1 " ">= 0)", {{ "(K, N, x, y) : (x + 6 - 2*N >= 0, 2*N - 5 - x >= 0, x + 1 -3*K + N " ">= 0, N + K - 2 - x >= 0, x - 4 >= 0)", {{0, 0, 1, 0, 1}, {0, 1, 0, 0, 0}} // (1 + x, N) }}); } static void expectComputedVolumeIsValidOverapprox(const IntegerPolyhedron &poly, Optional trueVolume, Optional resultBound) { expectComputedVolumeIsValidOverapprox(poly.computeVolume(), trueVolume, resultBound); } TEST(IntegerPolyhedronTest, computeVolume) { // 0 <= x <= 3 + 1/3, -5.5 <= y <= 2 + 3/5, 3 <= z <= 1.75. // i.e. 0 <= x <= 3, -5 <= y <= 2, 3 <= z <= 3 + 1/4. // So volume is 4 * 8 * 1 = 32. expectComputedVolumeIsValidOverapprox( parsePoly("(x, y, z) : (x >= 0, -3*x + 10 >= 0, 2*y + 11 >= 0," "-5*y + 13 >= 0, z - 3 >= 0, -4*z + 13 >= 0)"), /*trueVolume=*/32ull, /*resultBound=*/32ull); // Same as above but y has bounds 2 + 1/5 <= y <= 2 + 3/5. So the volume is // zero. expectComputedVolumeIsValidOverapprox( parsePoly("(x, y, z) : (x >= 0, -3*x + 10 >= 0, 5*y - 11 >= 0," "-5*y + 13 >= 0, z - 3 >= 0, -4*z + 13 >= 0)"), /*trueVolume=*/0ull, /*resultBound=*/0ull); // Now x is unbounded below but y still has no integer values. expectComputedVolumeIsValidOverapprox( parsePoly("(x, y, z) : (-3*x + 10 >= 0, 5*y - 11 >= 0," "-5*y + 13 >= 0, z - 3 >= 0, -4*z + 13 >= 0)"), /*trueVolume=*/0ull, /*resultBound=*/0ull); // A diamond shape, 0 <= x + y <= 10, 0 <= x - y <= 10, // with vertices at (0, 0), (5, 5), (5, 5), (10, 0). // x and y can take 11 possible values so result computed is 11*11 = 121. expectComputedVolumeIsValidOverapprox( parsePoly("(x, y) : (x + y >= 0, -x - y + 10 >= 0, x - y >= 0," "-x + y + 10 >= 0)"), /*trueVolume=*/61ull, /*resultBound=*/121ull); // Effectively the same diamond as above; constrain the variables to be even // and double the constant terms of the constraints. The algorithm can't // eliminate locals exactly, so the result is an overapproximation by // computing that x and y can take 21 possible values so result is 21*21 = // 441. expectComputedVolumeIsValidOverapprox( parsePoly("(x, y) : (x + y >= 0, -x - y + 20 >= 0, x - y >= 0," " -x + y + 20 >= 0, x - 2*(x floordiv 2) == 0," "y - 2*(y floordiv 2) == 0)"), /*trueVolume=*/61ull, /*resultBound=*/441ull); // Unbounded polytope. expectComputedVolumeIsValidOverapprox( parsePoly("(x, y) : (2*x - y >= 0, y - 3*x >= 0)"), /*trueVolume=*/{}, /*resultBound=*/{}); } TEST(IntegerPolyhedronTest, containsPointNoLocal) { IntegerPolyhedron poly1 = parsePoly("(x) : ((x floordiv 2) - x == 0)"); EXPECT_TRUE(poly1.containsPointNoLocal({0})); EXPECT_FALSE(poly1.containsPointNoLocal({1})); IntegerPolyhedron poly2 = parsePoly( "(x) : (x - 2*(x floordiv 2) == 0, x - 4*(x floordiv 4) - 2 == 0)"); EXPECT_TRUE(poly2.containsPointNoLocal({6})); EXPECT_FALSE(poly2.containsPointNoLocal({4})); IntegerPolyhedron poly3 = parsePoly("(x, y) : (2*x - y >= 0, y - 3*x >= 0)"); EXPECT_TRUE(poly3.containsPointNoLocal({0, 0})); EXPECT_FALSE(poly3.containsPointNoLocal({1, 0})); } TEST(IntegerPolyhedronTest, truncateEqualityRegressionTest) { // IntegerRelation::truncate was truncating inequalities to the number of // equalities. IntegerRelation set(PresburgerSpace::getSetSpace(1)); IntegerRelation::CountsSnapshot snapshot = set.getCounts(); set.addEquality({1, 0}); set.truncate(snapshot); EXPECT_EQ(set.getNumEqualities(), 0u); }