# RUN: env SUPPORT_LIB=%mlir_c_runner_utils \ # RUN: %PYTHON %s | FileCheck %s import ctypes import os import sys import tempfile from mlir import ir from mlir import runtime as rt from mlir.dialects import builtin from mlir.dialects import sparse_tensor as st _SCRIPT_PATH = os.path.dirname(os.path.abspath(__file__)) sys.path.append(_SCRIPT_PATH) from tools import sparse_compiler # TODO: move more into actual IR building. def boilerplate(attr: st.EncodingAttr): """Returns boilerplate main method.""" return f""" func.func @main(%p : !llvm.ptr) -> () attributes {{ llvm.emit_c_interface }} {{ %d = arith.constant sparse<[[0, 0], [1, 1], [0, 9], [9, 0], [4, 4]], [1.0, 2.0, 3.0, 4.0, 5.0]> : tensor<10x10xf64> %a = sparse_tensor.convert %d : tensor<10x10xf64> to tensor<10x10xf64, {attr}> sparse_tensor.out %a, %p : tensor<10x10xf64, {attr}>, !llvm.ptr return }} """ def expected(): """Returns expected contents of output. Regardless of the dimension ordering, compression, and bitwidths that are used in the sparse tensor, the output is always lexicographically sorted by natural index order. """ return f"""; extended FROSTT format 2 5 10 10 1 1 1 1 10 3 2 2 2 5 5 5 10 1 4 """ def build_compile_and_run_output(attr: st.EncodingAttr, compiler): # Build and Compile. module = ir.Module.parse(boilerplate(attr)) engine = compiler.compile_and_jit(module) # Invoke the kernel and compare output. with tempfile.TemporaryDirectory() as test_dir: out = os.path.join(test_dir, 'out.tns') buf = out.encode('utf-8') mem_a = ctypes.pointer(ctypes.pointer(ctypes.create_string_buffer(buf))) engine.invoke('main', mem_a) actual = open(out).read() if actual != expected(): quit('FAILURE') def main(): support_lib = os.getenv('SUPPORT_LIB') assert support_lib is not None, 'SUPPORT_LIB is undefined' if not os.path.exists(support_lib): raise FileNotFoundError(errno.ENOENT, os.strerror(errno.ENOENT), support_lib) # CHECK-LABEL: TEST: test_output print('\nTEST: test_output') count = 0 with ir.Context() as ctx, ir.Location.unknown(): # Loop over various sparse types: CSR, DCSR, CSC, DCSC. levels = [[st.DimLevelType.dense, st.DimLevelType.compressed], [st.DimLevelType.compressed, st.DimLevelType.compressed]] orderings = [ ir.AffineMap.get_permutation([0, 1]), ir.AffineMap.get_permutation([1, 0]) ] bitwidths = [8, 16, 32, 64] compiler = sparse_compiler.SparseCompiler( options='', opt_level=2, shared_libs=[support_lib]) for level in levels: for ordering in orderings: for bwidth in bitwidths: attr = st.EncodingAttr.get(level, ordering, None, bwidth, bwidth) build_compile_and_run_output(attr, compiler) count = count + 1 # CHECK: Passed 16 tests print('Passed', count, 'tests') if __name__ == '__main__': main()