// RUN: mlir-opt %s --transform-interpreter --split-input-file | FileCheck %s // CHECK-LABEL: func @matmul_tensors func.func @matmul_tensors( %arg0: tensor<8x16xf32>, %arg1: tensor<16x32xf32>, %arg2: tensor<8x32xf32>) -> tensor<8x32xf32> { // CHECK-NOT: linalg // CHECK: vector.extract {{.*}} : vector<4xf32> from vector<8x4xf32> // CHECK: vector.store {{.*}} : memref<8x32xf32>, vector<4xf32> %0 = linalg.matmul ins(%arg0, %arg1: tensor<8x16xf32>, tensor<16x32xf32>) outs(%arg2: tensor<8x32xf32>) -> tensor<8x32xf32> return %0 : tensor<8x32xf32> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%module_op: !transform.any_op {transform.consumed}) { %0 = transform.structured.match ops{["linalg.matmul"]} in %module_op : (!transform.any_op) -> !transform.any_op %1, %loops:3 = transform.structured.tile_using_for %0 tile_sizes [8, 4, 2] : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op) %2 = transform.get_parent_op %1 {isolated_from_above} : (!transform.any_op) -> !transform.any_op transform.structured.vectorize_children_and_apply_patterns %2 : (!transform.any_op) -> !transform.any_op %b = transform.bufferization.one_shot_bufferize layout{IdentityLayoutMap} %module_op {bufferize_function_boundaries = true, allow_return_allocs = true} : (!transform.any_op) -> !transform.any_op %f = transform.structured.match ops{["func.func"]} in %b : (!transform.any_op) -> !transform.any_op // TODO: group these lower-level controls into various properly named vector // lowering TD macros. transform.apply_patterns to %f { transform.apply_patterns.vector.lower_contraction lowering_strategy = "outerproduct" } : !transform.any_op transform.apply_patterns to %f { transform.apply_patterns.vector.transfer_permutation_patterns } : !transform.any_op transform.apply_patterns to %f { transform.apply_patterns.vector.lower_multi_reduction lowering_strategy = "innerparallel" } : !transform.any_op transform.apply_patterns to %f { transform.apply_patterns.vector.split_transfer_full_partial split_transfer_strategy = "linalg-copy" } : !transform.any_op transform.apply_patterns to %f { transform.apply_patterns.vector.transfer_to_scf max_transfer_rank = 1 full_unroll = true } : !transform.any_op transform.apply_patterns to %f { transform.apply_patterns.vector.lower_transfer max_transfer_rank = 1 } : !transform.any_op transform.apply_patterns to %f { transform.apply_patterns.vector.lower_shape_cast } : !transform.any_op transform.apply_patterns to %f { transform.apply_patterns.vector.lower_transpose lowering_strategy = "shuffle_1d" } : !transform.any_op transform.yield } } // ----- // CHECK-DAG: #[[$map0:.*]] = affine_map<(d0, d1, d2) -> (d0, d2)> // CHECK-DAG: #[[$map1:.*]] = affine_map<(d0, d1, d2) -> (d2, d1)> // CHECK-DAG: #[[$map2:.*]] = affine_map<(d0, d1, d2) -> (d0, d1)> // CHECK-LABEL: func.func @fold_arith_extf_into_contract // CHECK-SAME: (%[[ARG0:.*]]: vector<64x64xf16>, %[[ARG1:.*]]: vector<64x64xf16>, %[[ARG2:.*]]: vector<64x64xf32>) // CHECK-NEXT: %[[R:.+]] = vector.contract {indexing_maps = [#[[$map0]], #[[$map1]], #[[$map2]]], // CHECK-SAME: iterator_types = ["parallel", "parallel", "reduction"], kind = #vector.kind} // CHECK-SAME: %[[ARG0]], %[[ARG1]], %[[ARG2]] : vector<64x64xf16>, vector<64x64xf16> into vector<64x64xf32> // CHECK-NEXT: return %[[R]] : vector<64x64xf32> func.func @fold_arith_extf_into_contract(%arg0: vector<64x64xf16>, %arg1: vector<64x64xf16>, %arg2: vector<64x64xf32>) -> vector<64x64xf32> { %lhs_f32 = arith.extf %arg0 : vector<64x64xf16> to vector<64x64xf32> %rhs_f32 = arith.extf %arg1 : vector<64x64xf16> to vector<64x64xf32> %result = vector.contract {indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d2)>, affine_map<(d0, d1, d2) -> (d2, d1)>, affine_map<(d0, d1, d2) -> (d0, d1)>], iterator_types = ["parallel", "parallel", "reduction"], kind = #vector.kind} %lhs_f32, %rhs_f32, %arg2 : vector<64x64xf32>, vector<64x64xf32> into vector<64x64xf32> return %result : vector<64x64xf32> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%module_op: !transform.any_op {transform.readonly}) { %func = transform.structured.match ops{["func.func"]} in %module_op : (!transform.any_op) -> !transform.any_op transform.apply_patterns to %func { transform.apply_patterns.vector.fold_arith_extension } : !transform.any_op transform.yield } } // ----- // CHECK-LABEL: func.func @arith_to_outerproduct_scalable_i32 // CHECK-SAME: %[[LHS:.*]]: vector<[4]xi32>, // CHECK-SAME: %[[RHS:.*]]: vector<[4]xi32>) -> vector<[4]x[4]xi32> { // CHECK: %[[RES:.*]] = vector.outerproduct %[[LHS]], %[[RHS]] : vector<[4]xi32>, vector<[4]xi32> // CHECK: return %[[RES]] : vector<[4]x[4]xi32> func.func @arith_to_outerproduct_scalable_i32(%lhs: vector<[4]xi32>, %rhs: vector<[4]xi32>) -> vector<[4]x[4]xi32> { %lhsBcast = vector.broadcast %lhs : vector<[4]xi32> to vector<[4]x[4]xi32> %lhsT = vector.transpose %lhsBcast, [1, 0] : vector<[4]x[4]xi32> to vector<[4]x[4]xi32> %rhsBcast = vector.broadcast %rhs : vector<[4]xi32> to vector<[4]x[4]xi32> %mul = arith.muli %lhsT, %rhsBcast : vector<[4]x[4]xi32> return %mul: vector<[4]x[4]xi32> } // CHECK-LABEL: func.func @arith_to_outerproduct_trans_rhs_f32 // CHECK-SAME: %[[LHS:.*]]: vector<16xf32>, // CHECK-SAME: %[[RHS:.*]]: vector<8xf32>) -> vector<8x16xf32> { // CHECK: %[[RES:.*]] = vector.outerproduct %[[RHS]], %[[LHS]] : vector<8xf32>, vector<16xf32> // CHECK: return %[[RES]] : vector<8x16xf32> func.func @arith_to_outerproduct_trans_rhs_f32(%lhs: vector<16xf32>, %rhs: vector<8xf32>) -> vector<8x16xf32> { %rhsBcast = vector.broadcast %rhs : vector<8xf32> to vector<16x8xf32> %rhsT = vector.transpose %rhsBcast, [1, 0] : vector<16x8xf32> to vector<8x16xf32> %lhsBcast = vector.broadcast %lhs : vector<16xf32> to vector<8x16xf32> %mul = arith.mulf %lhsBcast, %rhsT : vector<8x16xf32> return %mul: vector<8x16xf32> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%module_op: !transform.any_op {transform.readonly}) { %func = transform.structured.match ops{["func.func"]} in %module_op : (!transform.any_op) -> !transform.any_op transform.apply_patterns to %func { transform.apply_patterns.vector.elementwise_to_vector } : !transform.any_op transform.yield } }