// RUN: mlir-opt %s -split-input-file -canonicalize="test-convergence" | FileCheck %s // CHECK-LABEL: expand_shape_identity_fold // CHECK-NEXT: return func.func @expand_shape_identity_fold(%arg0 : tensor<5xf32>) -> tensor<5xf32> { %0 = tensor.expand_shape %arg0 [[0]] output_shape [5] : tensor<5xf32> into tensor<5xf32> return %0 : tensor<5xf32> } // ----- // CHECK-LABEL: expand_shape_rank0_identity_fold // CHECK-NEXT: return func.func @expand_shape_rank0_identity_fold(%arg0 : tensor) -> tensor { %0 = tensor.expand_shape %arg0 [] output_shape [] : tensor into tensor return %0 : tensor } // ----- // CHECK-LABEL: collapse_shape_identity_fold // CHECK-NEXT: return func.func @collapse_shape_identity_fold(%arg0 : tensor<5x4xf32>) -> tensor<5x4xf32> { %0 = tensor.collapse_shape %arg0 [[0], [1]] : tensor<5x4xf32> into tensor<5x4xf32> return %0 : tensor<5x4xf32> } // ----- // CHECK-LABEL: collapse_shape_rank0_identity_fold // CHECK-NEXT: return func.func @collapse_shape_rank0_identity_fold(%arg0 : tensor) -> tensor { %0 = tensor.collapse_shape %arg0 [] : tensor into tensor return %0 : tensor } // ----- // CHECK-LABEL: @tensor_bitcast_chain_ok // CHECK-SAME: %[[IN:.*]]: tensor<2xi32> func.func @tensor_bitcast_chain_ok(%input: tensor<2xi32>) -> tensor<2xf32> { // CHECK-NEXT: %[[RES:.*]] = tensor.bitcast %[[IN]] : tensor<2xi32> to tensor<2xf32> %0 = tensor.bitcast %input : tensor<2xi32> to tensor<2xui32> %1 = tensor.bitcast %0 : tensor<2xui32> to tensor<2xf32> // CHECK-NEXT: return %[[RES]] return %1 : tensor<2xf32> } // ----- // CHECK-LABEL: @tensor_bitcast_chain_nop // CHECK-SAME: %[[IN:.*]]: tensor<4xi32> func.func @tensor_bitcast_chain_nop(%input: tensor<4xi32>) -> tensor<4xi32> { %0 = tensor.bitcast %input : tensor<4xi32> to tensor<4xui32> %1 = tensor.bitcast %0 : tensor<4xui32> to tensor<4xi32> // CHECK-NEXT: return %[[IN]] return %1 : tensor<4xi32> } // ----- // Checks that NOP casts are removed. // CHECK-LABEL: cast_values func.func @cast_values(%arg0: tensor<*xi32>) -> tensor<2xi32> { // NOP cast %0 = tensor.cast %arg0 : tensor<*xi32> to tensor<*xi32> // CHECK-NEXT: %[[RET:.*]] = tensor.cast %arg0 : tensor<*xi32> to tensor<2xi32> %2 = tensor.cast %0 : tensor<*xi32> to tensor<2xi32> // NOP cast %4 = tensor.cast %2 : tensor<2xi32> to tensor<2xi32> // CHECK-NEXT: return %[[RET]] : tensor<2xi32> return %4 : tensor<2xi32> } // ----- // CHECK-LABEL: @tensor.cast_chain_ok // CHECK-SAME: %[[IN:.*]]: tensor<*xi32> func.func @tensor.cast_chain_ok(%input: tensor<*xi32>) -> tensor<4x8xi32> { // CHECK-NEXT: %[[RES:.*]] = tensor.cast %[[IN]] : tensor<*xi32> to tensor<4x8xi32> %0 = tensor.cast %input : tensor<*xi32> to tensor<4x?xi32> %1 = tensor.cast %0 : tensor<4x?xi32> to tensor<4x8xi32> // CHECK-NEXT: return %[[RES]] return %1 : tensor<4x8xi32> } // ----- // CHECK-LABEL: @tensor.cast_chain_regain // CHECK-SAME: %[[IN:.*]]: tensor<4xi32> func.func @tensor.cast_chain_regain(%input: tensor<4xi32>) -> tensor<4xi32> { %0 = tensor.cast %input : tensor<4xi32> to tensor %1 = tensor.cast %0 : tensor to tensor<4xi32> // CHECK-NEXT: return %[[IN]] return %1 : tensor<4xi32> } // ----- // CHECK-LABEL: @tensor.cast_chain_keep // CHECK-SAME: %[[IN:.*]]: tensor func.func @tensor.cast_chain_keep(%input: tensor) -> tensor { // CHECK-NEXT: %[[C1:.*]] = tensor.cast %[[IN]] %0 = tensor.cast %input : tensor to tensor<4x?xi32> // CHECK-NEXT: %[[C2:.*]] = tensor.cast %[[C1]] %1 = tensor.cast %0 : tensor<4x?xi32> to tensor // CHECK-NEXT: return %[[C2]] return %1 : tensor } // ----- // CHECK-LABEL: @tensor.cast_chain_invalid // CHECK-SAME: %[[IN:.*]]: tensor<4x8xi32> func.func @tensor.cast_chain_invalid(%input: tensor<4x8xi32>) -> tensor<8x4xi32> { // CHECK-NEXT: %[[C1:.*]] = tensor.cast %[[IN]] %0 = tensor.cast %input : tensor<4x8xi32> to tensor // CHECK-NEXT: %[[C2:.*]] = tensor.cast %[[C1]] %1 = tensor.cast %0 : tensor to tensor<8x4xi32> // CHECK-NEXT: return %[[C2]] return %1 : tensor<8x4xi32> } // ----- // CHECK-LABEL: fold_concat // CHECK-SAME: %[[ARG0:.*]]: tensor<1x2x?xi32> func.func @fold_concat(%arg0: tensor<1x2x?xi32>) -> (tensor<1x2x3xi32>, tensor<1x2x?xi32>) { %0 = tensor.concat dim(2) %arg0 : (tensor<1x2x?xi32>) -> tensor<1x2x3xi32> // CHECK-NEXT: %[[CAST:.*]] = tensor.cast %[[ARG0]] : tensor<1x2x?xi32> to tensor<1x2x3xi32> %1 = tensor.concat dim(2) %arg0 : (tensor<1x2x?xi32>) -> tensor<1x2x?xi32> // CHECK-NEXT: return %[[CAST]], %[[ARG0]] : tensor<1x2x3xi32>, tensor<1x2x?xi32> return %0, %1 : tensor<1x2x3xi32>, tensor<1x2x?xi32> } // ----- // CHECK-LABEL: func @fold_extract func.func @fold_extract(%arg0 : index) -> (f32, f16, f16, i32, complex) { %const_0 = arith.constant 0 : index %const_1 = arith.constant 1 : index %const_3 = arith.constant 3 : index // CHECK-DAG: [[C64:%.+]] = arith.constant 64 : i32 // CHECK-DAG: [[C0:%.+]] = arith.constant 0.{{0*}}e+00 : f16 // CHECK-DAG: [[CM2:%.+]] = arith.constant -2.{{0*}}e+00 : f16 // Fold an extract into a splat. // CHECK-DAG: [[C4:%.+]] = arith.constant 4.{{0*}}e+00 : f32 %0 = arith.constant dense<4.0> : tensor<4xf32> %ext_1 = tensor.extract %0[%arg0] : tensor<4xf32> // Fold an extract into a sparse with a sparse index. %1 = arith.constant sparse<[[0, 0, 0], [1, 1, 1]], [-5.0, -2.0]> : tensor<4x4x4xf16> %ext_2 = tensor.extract %1[%const_1, %const_1, %const_1] : tensor<4x4x4xf16> // Fold an extract into a sparse with a non sparse index. %2 = arith.constant sparse<[[1, 1, 1]], [-2.0]> : tensor<2x2x2xf16> %ext_3 = tensor.extract %2[%const_0, %const_0, %const_0] : tensor<2x2x2xf16> // Fold an extract into a dense tensor. %3 = arith.constant dense<[[[1, -2, 1, 36]], [[0, 2, -1, 64]]]> : tensor<2x1x4xi32> %ext_4 = tensor.extract %3[%const_1, %const_0, %const_3] : tensor<2x1x4xi32> // Fold an extract into a complex constant. // CHECK-DAG: [[C5:%.+]] = complex.constant [1.200000e+00 : f32, 2.300000e+00 : f32] : complex %4 = arith.constant dense<(1.2, 2.3)> : tensor> %ext_5 = tensor.extract %4[] : tensor> // CHECK-NEXT: return [[C4]], [[CM2]], [[C0]], [[C64]], [[C5]] return %ext_1, %ext_2, %ext_3, %ext_4, %ext_5 : f32, f16, f16, i32, complex } // ----- // Ensure extract dense resource elements not crash. // CHECK-LABEL: func @extract_dense_resource_nofold func.func @extract_dense_resource_nofold() -> i64 { // CHECK: %[[EXT:.+]] = tensor.extract // CHECK-NEXT: return %[[EXT]] %c0 = arith.constant 0 : index %cst = arith.constant dense_resource<__elided__> : tensor<1xi64> %extracted = tensor.extract %cst[%c0] : tensor<1xi64> return %extracted : i64 } // ----- // CHECK-LABEL: func @fold_insert func.func @fold_insert(%arg0 : index) -> (tensor<4xf32>) { // Fold an insert into a splat. // CHECK-DAG: %[[C4:.+]] = arith.constant dense<4.{{0*}}e+00> : tensor<4xf32> %0 = arith.constant dense<4.0> : tensor<4xf32> %1 = arith.constant 4.0 : f32 %ins_1 = tensor.insert %1 into %0[%arg0] : tensor<4xf32> // CHECK-NEXT: return %[[C4]] return %ins_1 : tensor<4xf32> } // ----- // CHECK-LABEL: func @extract_from_tensor.cast // CHECK-SAME: %[[TENSOR:.*]]: tensor<9xf32> func.func @extract_from_tensor.cast(%tensor: tensor<9xf32>) -> f32 { // CHECK-NEXT: %[[C0:.*]] = arith.constant 0 : index %c0 = arith.constant 0 : index // CHECK-NOT: tensor.cast %casted = tensor.cast %tensor : tensor<9xf32> to tensor // CHECK-NEXT: tensor.extract %[[TENSOR]][%[[C0]]] %result = tensor.extract %casted[%c0] : tensor return %result : f32 } // ----- // CHECK-LABEL: func @extract_from_tensor.from_elements func.func @extract_from_tensor.from_elements(%element : index) -> index { // CHECK-SAME: ([[ARG:%.*]]: index) %c0 = arith.constant 0 : index %tensor = tensor.from_elements %element : tensor<1xindex> %extracted_element = tensor.extract %tensor[%c0] : tensor<1xindex> // CHECK: [[ARG]] : index return %extracted_element : index } // ----- // CHECK-LABEL: func @extract_from_tensor.from_elements_0d func.func @extract_from_tensor.from_elements_0d(%element : index) -> index { // CHECK-SAME: ([[ARG:%.*]]: index) %c0 = arith.constant 0 : index %tensor = tensor.from_elements %element : tensor %extracted_element = tensor.extract %tensor[] : tensor // CHECK: [[ARG]] : index return %extracted_element : index } // ----- // CHECK-LABEL: func @extract_from_tensor.from_elements_3d func.func @extract_from_tensor.from_elements_3d() -> (f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32) { %f0 = arith.constant 0.0 : f32 %f1 = arith.constant 1.0 : f32 %f2 = arith.constant 2.0 : f32 %f3 = arith.constant 3.0 : f32 %f4 = arith.constant 4.0 : f32 %f5 = arith.constant 5.0 : f32 %f6 = arith.constant 6.0 : f32 %f7 = arith.constant 7.0 : f32 %f8 = arith.constant 8.0 : f32 %f9 = arith.constant 9.0 : f32 %f10 = arith.constant 10.0 : f32 %f11 = arith.constant 11.0 : f32 %tensor = tensor.from_elements %f0,%f1,%f2,%f3,%f4,%f5,%f6,%f7,%f8,%f9,%f10,%f11 : tensor<3x2x2xf32> %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index %c2 = arith.constant 2 : index %r0 = tensor.extract %tensor[%c0, %c0, %c0] : tensor<3x2x2xf32> %r1 = tensor.extract %tensor[%c0, %c0, %c1] : tensor<3x2x2xf32> %r2 = tensor.extract %tensor[%c0, %c1, %c0] : tensor<3x2x2xf32> %r3 = tensor.extract %tensor[%c0, %c1, %c1] : tensor<3x2x2xf32> %r4 = tensor.extract %tensor[%c1, %c0, %c0] : tensor<3x2x2xf32> %r5 = tensor.extract %tensor[%c1, %c0, %c1] : tensor<3x2x2xf32> %r6 = tensor.extract %tensor[%c1, %c1, %c0] : tensor<3x2x2xf32> %r7 = tensor.extract %tensor[%c1, %c1, %c1] : tensor<3x2x2xf32> %r8 = tensor.extract %tensor[%c2, %c0, %c0] : tensor<3x2x2xf32> %r9 = tensor.extract %tensor[%c2, %c0, %c1] : tensor<3x2x2xf32> %r10 = tensor.extract %tensor[%c2, %c1, %c0] : tensor<3x2x2xf32> %r11 = tensor.extract %tensor[%c2, %c1, %c1] : tensor<3x2x2xf32> return %r0,%r1,%r2,%r3,%r4,%r5,%r6,%r7,%r8,%r9,%r10,%r11 : f32,f32,f32,f32,f32,f32,f32,f32,f32,f32,f32,f32 } // CHECK-DAG: %[[F0:.*]] = arith.constant 0.0 // CHECK-DAG: %[[F1:.*]] = arith.constant 1.0{{0+}}e+00 // CHECK-DAG: %[[F2:.*]] = arith.constant 2.0 // CHECK-DAG: %[[F3:.*]] = arith.constant 3.0 // CHECK-DAG: %[[F4:.*]] = arith.constant 4.0 // CHECK-DAG: %[[F5:.*]] = arith.constant 5.0 // CHECK-DAG: %[[F6:.*]] = arith.constant 6.0 // CHECK-DAG: %[[F7:.*]] = arith.constant 7.0 // CHECK-DAG: %[[F8:.*]] = arith.constant 8.0 // CHECK-DAG: %[[F9:.*]] = arith.constant 9.0 // CHECK-DAG: %[[F10:.*]] = arith.constant 1.0{{0+}}e+01 // CHECK-DAG: %[[F11:.*]] = arith.constant 1.1{{0+}}e+01 // CHECK: return %[[F0]], %[[F1]], %[[F2]], %[[F3]], %[[F4]], %[[F5]], // CHECK-SAME: %[[F6]], %[[F7]], %[[F8]], %[[F9]], %[[F10]], %[[F11]] // ----- // CHECK-LABEL: func @extract_from_tensor.from_elements_variable_3d // CHECK-SAME: %[[ARG_0:[a-zA-Z0-9_]+]]: f32 // CHECK-SAME: %[[ARG_1:[a-zA-Z0-9_]+]]: f32 // CHECK-SAME: %[[ARG_2:[a-zA-Z0-9_]+]]: f32 // CHECK-SAME: %[[ARG_3:[a-zA-Z0-9_]+]]: f32 // CHECK-SAME: %[[ARG_4:[a-zA-Z0-9_]+]]: f32 // CHECK-SAME: %[[ARG_5:[a-zA-Z0-9_]+]]: f32 // CHECK-SAME: %[[ARG_6:[a-zA-Z0-9_]+]]: f32 // CHECK-SAME: %[[ARG_7:[a-zA-Z0-9_]+]]: f32 // CHECK-SAME: %[[ARG_8:[a-zA-Z0-9_]+]]: f32 // CHECK-SAME: %[[ARG_9:[a-zA-Z0-9_]+]]: f32 // CHECK-SAME: %[[ARG_10:[a-zA-Z0-9_]+]]: f32 // CHECK-SAME: %[[ARG_11:[a-zA-Z0-9_]+]]: f32 func.func @extract_from_tensor.from_elements_variable_3d( %f0: f32, %f1: f32, %f2: f32, %f3: f32, %f4: f32, %f5: f32, %f6: f32, %f7: f32, %f8: f32, %f9: f32, %f10: f32, %f11: f32) -> (f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32, f32) { %tensor = tensor.from_elements %f0,%f1,%f2,%f3,%f4,%f5,%f6,%f7,%f8,%f9,%f10,%f11 : tensor<3x2x2xf32> %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index %c2 = arith.constant 2 : index %r0 = tensor.extract %tensor[%c0, %c0, %c0] : tensor<3x2x2xf32> %r1 = tensor.extract %tensor[%c0, %c0, %c1] : tensor<3x2x2xf32> %r2 = tensor.extract %tensor[%c0, %c1, %c0] : tensor<3x2x2xf32> %r3 = tensor.extract %tensor[%c0, %c1, %c1] : tensor<3x2x2xf32> %r4 = tensor.extract %tensor[%c1, %c0, %c0] : tensor<3x2x2xf32> %r5 = tensor.extract %tensor[%c1, %c0, %c1] : tensor<3x2x2xf32> %r6 = tensor.extract %tensor[%c1, %c1, %c0] : tensor<3x2x2xf32> %r7 = tensor.extract %tensor[%c1, %c1, %c1] : tensor<3x2x2xf32> %r8 = tensor.extract %tensor[%c2, %c0, %c0] : tensor<3x2x2xf32> %r9 = tensor.extract %tensor[%c2, %c0, %c1] : tensor<3x2x2xf32> %r10 = tensor.extract %tensor[%c2, %c1, %c0] : tensor<3x2x2xf32> %r11 = tensor.extract %tensor[%c2, %c1, %c1] : tensor<3x2x2xf32> return %r0,%r1,%r2,%r3,%r4,%r5,%r6,%r7,%r8,%r9,%r10,%r11 : f32,f32,f32,f32,f32,f32,f32,f32,f32,f32,f32,f32 } // CHECK: return %[[ARG_0]], %[[ARG_1]], %[[ARG_2]], %[[ARG_3]], %[[ARG_4]], %[[ARG_5]], // CHECK-SAME: %[[ARG_6]], %[[ARG_7]], %[[ARG_8]], %[[ARG_9]], %[[ARG_10]], %[[ARG_11]] // ----- // CHECK-LABEL: func.func @extract_from_elements_complex_i() -> tensor<3xcomplex> { // CHECK-NEXT: %cst = arith.constant dense<[(1,2), (3,2), (1,2)]> : tensor<3xcomplex> // CHECK-NEXT: return %cst : tensor<3xcomplex> func.func @extract_from_elements_complex_i() -> tensor<3xcomplex> { %c1 = arith.constant dense<(1, 2)> : tensor> %complex1 = tensor.extract %c1[] : tensor> %c2 = arith.constant dense<(3, 2)> : tensor> %complex2 = tensor.extract %c2[] : tensor> %tensor = tensor.from_elements %complex1, %complex2, %complex1 : tensor<3xcomplex> return %tensor : tensor<3xcomplex> } // ----- // CHECK-LABEL: func.func @extract_from_elements_complex_f() -> tensor<3xcomplex> { // CHECK-NEXT: %cst = arith.constant dense<[(1.200000e+00,2.300000e+00), (3.200000e+00,2.100000e+00), (1.200000e+00,2.300000e+00)]> : tensor<3xcomplex> // CHECK-NEXT: return %cst : tensor<3xcomplex> func.func @extract_from_elements_complex_f() -> tensor<3xcomplex> { %c1 = arith.constant dense<(1.2, 2.3)> : tensor> %complex1 = tensor.extract %c1[] : tensor> %c2 = arith.constant dense<(3.2, 2.1)> : tensor> %complex2 = tensor.extract %c2[] : tensor> %tensor = tensor.from_elements %complex1, %complex2, %complex1 : tensor<3xcomplex> return %tensor : tensor<3xcomplex> } // ----- // Ensure the optimization doesn't segfault from bad constants // CHECK-LABEL: func @extract_negative_from_tensor.from_elements func.func @extract_negative_from_tensor.from_elements(%element : index) -> index { // CHECK-SAME: ([[ARG:%.*]]: index) %c-1 = arith.constant -1 : index %tensor = tensor.from_elements %element : tensor<1xindex> %extracted_element = tensor.extract %tensor[%c-1] : tensor<1xindex> // CHECK: tensor.from_elements // CHECK: %[[RESULT:.*]] = tensor.extract // CHECK: return %[[RESULT]] return %extracted_element : index } // ----- // Ensure the optimization doesn't segfault from bad constants // CHECK-LABEL: func @extract_oob_from_tensor.from_elements func.func @extract_oob_from_tensor.from_elements(%element : index) -> index { // CHECK-SAME: ([[ARG:%.*]]: index) %c1 = arith.constant 1 : index %tensor = tensor.from_elements %element : tensor<1xindex> %extracted_element = tensor.extract %tensor[%c1] : tensor<1xindex> // CHECK: tensor.from_elements // CHECK: %[[RESULT:.*]] = tensor.extract // CHECK: return %[[RESULT]] return %extracted_element : index } // ----- // Ensure the optimization doesn't segfault from bad constants // CHECK-LABEL: func @extract_oob_from_tensor.from_elements func.func @extract_oob_from_tensor.from_elements(%element : index) -> index { // CHECK-SAME: ([[ARG:%.*]]: index) %c2 = arith.constant 2 : index %tensor = tensor.from_elements %element : tensor<1xindex> %extracted_element = tensor.extract %tensor[%c2] : tensor<1xindex> // CHECK: tensor.from_elements // CHECK: %[[RESULT:.*]] = tensor.extract // CHECK: return %[[RESULT]] return %extracted_element : index } // ----- // CHECK-LABEL: func @extract_from_tensor.generate // CHECK-SAME: %[[IDX:.*]]: index, %[[TENSOR:.*]]: tensor<*xf32> func.func @extract_from_tensor.generate(%idx: index, %tensor: tensor<*xf32>) -> index { %size = tensor.rank %tensor : tensor<*xf32> // CHECK-NEXT: %[[RES:.*]] = tensor.dim %[[TENSOR]], %[[IDX]] %0 = tensor.generate %size { ^bb0(%arg0: index): %1 = tensor.dim %tensor, %arg0 : tensor<*xf32> tensor.yield %1 : index } : tensor %1 = tensor.extract %0[%idx] : tensor // CHECK-NEXT: return %[[RES]] return %1 : index } // ----- // CHECK-LABEL: func @extract_from_tensor.generate_2d // CHECK-SAME: %[[IDX0:.*]]: index, %[[IDX1:.*]]: index, %[[TENSOR:.*]]: tensor<*xf32> func.func @extract_from_tensor.generate_2d(%idx0: index, %idx1: index, %tensor: tensor<*xf32>) -> index { %size = tensor.rank %tensor : tensor<*xf32> // CHECK-NEXT: %[[DIM0:.*]] = tensor.dim %[[TENSOR]], %[[IDX0]] // CHECK-NEXT: %[[DIM1:.*]] = tensor.dim %[[TENSOR]], %[[IDX1]] // CHECK-NEXT: %[[RES:.*]] = arith.addi %[[DIM0]], %[[DIM1]] %0 = tensor.generate %size, %size { ^bb0(%arg0: index, %arg1: index): %1 = tensor.dim %tensor, %arg0 : tensor<*xf32> %2 = tensor.dim %tensor, %arg1 : tensor<*xf32> %3 = arith.addi %1, %2 : index tensor.yield %3 : index } : tensor %4 = tensor.extract %0[%idx0, %idx1] : tensor // CHECK-NEXT: return %[[RES]] return %4 : index } // ----- // CHECK-LABEL: func @extract_from_tensor.generate_sideeffects // CHECK-SAME: %[[IDX:.*]]: index func.func @extract_from_tensor.generate_sideeffects(%idx: index, %tensor: tensor<*xf32>, %mem: memref) -> index { %size = tensor.rank %tensor : tensor<*xf32> // CHECK: %[[DTENSOR:.*]] = tensor.generate %0 = tensor.generate %size { ^bb0(%arg0: index): %1 = tensor.dim %tensor, %arg0 : tensor<*xf32> memref.store %1, %mem[%arg0] : memref tensor.yield %1 : index } : tensor // CHECK: %[[RES:.*]] = tensor.extract %[[DTENSOR]][%[[IDX]]] %1 = tensor.extract %0[%idx] : tensor // CHECK-NEXT: return %[[RES]] return %1 : index } // ----- // CHECK-LABEL: @static_tensor.generate // CHECK-SAME: %[[SIZE1:.*]]: index, %[[SIZE4:.*]]: index) func.func @static_tensor.generate(%size1: index, %size4: index) -> tensor<3x?x?x7x?xindex> { %c5 = arith.constant 5 : index // CHECK: tensor.generate %[[SIZE1]], %[[SIZE4]] %0 = tensor.generate %size1, %c5, %size4 { ^bb0(%arg0: index, %arg1: index, %arg2: index, %arg3: index, %arg4: index): %1 = arith.constant 32 : index tensor.yield %1 : index // CHECK: : tensor<3x?x5x7x?xindex> } : tensor<3x?x?x7x?xindex> // CHECK: tensor.cast %{{.*}} : tensor<3x?x5x7x?xindex> to tensor<3x?x?x7x?xindex> return %0 : tensor<3x?x?x7x?xindex> } // ----- // CHECK-LABEL: @from_elements.constant func.func @from_elements.constant() -> tensor<3xindex> { // CHECK: %[[CST:.*]] = arith.constant dense<[1, 2, 1]> : tensor<3xindex> // CHECK: return %[[CST]] %c1 = arith.constant 1 : index %c2 = arith.constant 2 : index %tensor = tensor.from_elements %c1, %c2, %c1 : tensor<3xindex> return %tensor : tensor<3xindex> } // ----- func.func @slice_canonicalize(%arg0 : tensor, %arg1 : index, %arg2 : index) -> tensor { %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index %c4 = arith.constant 4 : index %0 = tensor.extract_slice %arg0[%c0, %arg1, %c1] [%c4, %c1, %arg2] [%c1, %c1, %c1] : tensor to tensor return %0 : tensor } // CHECK-LABEL: func @slice_canonicalize // CHECK-SAME: %[[ARG0:.+]]: tensor // CHECK: %[[SLICE:.+]] = tensor.extract_slice %[[ARG0]][0, %{{[a-zA-Z0-9_]+}}, 1] // CHECK-SAME: [4, 1, %{{[a-zA-Z0-9_]+}}] [1, 1, 1] // CHECK-SAME: : tensor to tensor<4x1x?xf32> // CHECK: %[[RESULT:.+]] = tensor.cast %[[SLICE]] // CHECK: return %[[RESULT]] // ----- func.func @rank_reducing_slice_canonicalize(%arg0 : tensor, %arg1 : index, %arg2 : index) -> tensor { %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index %c4 = arith.constant 4 : index %0 = tensor.extract_slice %arg0[%c0, %arg1, %c1] [%c4, 1, %arg2] [%c1, %c1, %c1] : tensor to tensor return %0 : tensor } // CHECK-LABEL: func @rank_reducing_slice_canonicalize // CHECK-SAME: %[[ARG0:.+]]: tensor // CHECK: %[[SLICE:.+]] = tensor.extract_slice %[[ARG0]][0, %{{[a-zA-Z0-9_]+}}, 1] // CHECK-SAME: [4, 1, %{{[a-zA-Z0-9_]+}}] [1, 1, 1] // CHECK-SAME: : tensor to tensor<4x?xf32> // CHECK: %[[RESULT:.+]] = tensor.cast %[[SLICE]] // CHECK: return %[[RESULT]] // ----- // CHECK-LABEL: func @trivial_slice // CHECK-SAME: %[[ARG0:.[a-z0-9A-Z_]+]]: tensor<4x6x16x32xi8> // CHECK-NOT: tensor.extract_slice // CHECK: return %[[ARG0]] : tensor<4x6x16x32xi8> func.func @trivial_slice(%arg0 : tensor<4x6x16x32xi8>) -> tensor<4x6x16x32xi8> { %0 = tensor.extract_slice %arg0[0, 0, 0, 0] [4, 6, 16, 32] [1, 1, 1, 1] : tensor<4x6x16x32xi8> to tensor<4x6x16x32xi8> return %0 : tensor<4x6x16x32xi8> } // ----- // CHECK-LABEL: func @trivial_insert_slice // CHECK-SAME: %[[ARG0:.[a-z0-9A-Z_]+]]: tensor<4x6x16x32xi8> // CHECK-NOT: tensor.extract_slice // CHECK: return %[[ARG0]] : tensor<4x6x16x32xi8> func.func @trivial_insert_slice(%arg0 : tensor<4x6x16x32xi8>, %arg1 : tensor<4x6x16x32xi8>) -> tensor<4x6x16x32xi8> { %0 = tensor.insert_slice %arg0 into %arg1[0, 0, 0, 0] [4, 6, 16, 32] [1, 1, 1, 1] : tensor<4x6x16x32xi8> into tensor<4x6x16x32xi8> return %0 : tensor<4x6x16x32xi8> } // ----- // CHECK-LABEL: func @empty_insert_slice // CHECK-SAME: %[[ARG0:.[a-z0-9A-Z_]+]]: tensor<0x2xi8> // CHECK-SAME: %[[ARG1:.[a-z0-9A-Z_]+]]: tensor<3x3xi8> // CHECK-NOT: tensor.extract_slice // CHECK: return %[[ARG1]] : tensor<3x3xi8> func.func @empty_insert_slice(%arg0 : tensor<0x2xi8>, %arg1 : tensor<3x3xi8>) -> tensor<3x3xi8> { %0 = tensor.insert_slice %arg0 into %arg1[0, 0] [0, 2] [1, 1] : tensor<0x2xi8> into tensor<3x3xi8> return %0 : tensor<3x3xi8> } // ----- // CHECK-LABEL: func @rank_reducing_tensor_of_cast // CHECK-SAME: %[[ARG0:.[a-z0-9A-Z_]+]]: tensor<4x6x16x32xi8> // CHECK: %[[S:.+]] = tensor.extract_slice %arg0[0, 1, 0, 0] [1, 1, 16, 32] [1, 1, 1, 1] : tensor<4x6x16x32xi8> to tensor<16x32xi8> // Tensor cast is moved after slice and then gets canonicalized away. // CHECK-NOT: tensor.cast // CHECK: return %[[S]] : tensor<16x32xi8> func.func @rank_reducing_tensor_of_cast(%arg : tensor<4x6x16x32xi8>) -> tensor<16x32xi8> { %0 = tensor.cast %arg : tensor<4x6x16x32xi8> to tensor %1 = tensor.extract_slice %0[0, 1, 0, 0] [1, 1, 16, 32] [1, 1, 1, 1] : tensor to tensor<16x32xi8> return %1 : tensor<16x32xi8> } // ----- // CHECK-LABEL: func @rank_reducing_insert_slice_of_cast // CHECK-SAME: %[[A:.[a-z0-9A-Z_]+]]: tensor<16x32xi8> // CHECK-SAME: %[[B:.[a-z0-9A-Z_]+]]: tensor<4x6x16x32xi8> // CHECK: %[[S:.+]] = tensor.insert_slice %[[A]] into %[[B]][0, 1, 0, 0] [1, 1, 16, 32] [1, 1, 1, 1] : tensor<16x32xi8> into tensor<4x6x16x32xi8> // Tensor cast is folded away. // CHECK-NOT: tensor.cast // CHECK: return %[[S]] : tensor<4x6x16x32xi8> func.func @rank_reducing_insert_slice_of_cast(%a : tensor<16x32xi8>, %b : tensor<4x6x16x32xi8>) -> tensor<4x6x16x32xi8> { %c0 = arith.constant 0: index %cast = tensor.cast %a : tensor<16x32xi8> to tensor %sz = tensor.dim %cast, %c0: tensor %res = tensor.insert_slice %cast into %b[0, 1, 0, 0] [1, 1, %sz, 32] [1, 1, 1, 1] : tensor into tensor<4x6x16x32xi8> return %res : tensor<4x6x16x32xi8> } // ----- func.func @insert_slice_canonicalize(%arg0 : tensor, %arg1 : index, %arg2 : index, %arg3 : tensor) -> tensor { %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index %c4 = arith.constant 4 : index %0 = tensor.insert_slice %arg0 into %arg3[%c0, %arg1, %c1] [%c4, %c1, %arg2] [%c1, %c1, %c1] : tensor into tensor return %0 : tensor } // CHECK-LABEL: func @insert_slice_canonicalize // CHECK-SAME: %[[ARG0:[a-zA-Z0-9_]+]]: tensor // CHECK: %[[CAST:.+]] = tensor.cast %[[ARG0]] : tensor to tensor<4x1x?xf32> // CHECK: %[[RESULT:.+]] = tensor.insert_slice %[[CAST]] // CHECK-SAME: [0, %{{.+}}, 1] [4, 1, %{{.+}}] [1, 1, 1] // CHECK-SAME: : tensor<4x1x?xf32> into tensor // CHECK: return %[[RESULT]] // ----- // Do not insert a cast for the following example. The new source type wouldn't be "more static" than the old one. func.func @insert_slice_canonicalize_encoding(%arg0 : tensor<2x2xf32, "foo">, %arg1 : tensor<4x4xf32, "foo">) -> tensor<4x4xf32, "foo"> { %0 = tensor.insert_slice %arg0 into %arg1[0, 0] [2, 2] [1, 1] : tensor<2x2xf32, "foo"> into tensor<4x4xf32, "foo"> return %0 : tensor<4x4xf32, "foo"> } // CHECK-LABEL: func @insert_slice_canonicalize_encoding // CHECK-SAME: %[[ARG0:[a-zA-Z0-9_]+]]: tensor<2x2xf32, "foo"> // CHECK-SAME: %[[ARG1:[a-zA-Z0-9_]+]]: tensor<4x4xf32, "foo"> // CHECK-NOT: tensor.cast // CHECK: %[[RESULT:.+]] = tensor.insert_slice %[[ARG0]] into %[[ARG1]] // CHECK-SAME: [0, 0] [2, 2] [1, 1] // CHECK-SAME: : tensor<2x2xf32, "foo"> into tensor<4x4xf32, "foo"> // CHECK: return %[[RESULT]] // ----- func.func @slice_to_insert_slice_canonicalize(%arg0 : tensor, %arg1 : index, %arg2 : index, %arg3 : tensor) -> tensor { %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index %c4 = arith.constant 4 : index %0 = tensor.extract_slice %arg0[%c0, %arg1, %c1] [%c4, %c1, %arg2] [%c1, %c1, %c1] : tensor to tensor %1 = tensor.insert_slice %0 into %arg3[%c0, %arg1, %c1] [%c4, %c1, %arg2] [%c1, %c1, %c1] : tensor into tensor return %1 : tensor } // CHECK-LABEL: func @slice_to_insert_slice_canonicalize // CHECK-SAME: %[[ARG0:[a-zA-Z0-9_]+]]: tensor // CHECK-SAME: %[[ARG3:[a-zA-Z0-9_]+]]: tensor // CHECK: %[[SLICE:.+]] = tensor.extract_slice %[[ARG0]] // CHECK-SAME: [0, %{{.+}}, 1] [4, 1, %{{.+}} [1, 1, 1] // CHECK-SAME: : tensor to tensor<4x1x?xf32> // CHECK: %[[RESULT:.+]] = tensor.insert_slice %[[SLICE]] // CHECK-SAME: [0, %{{.+}}, 1] [4, 1, %{{.+}}] [1, 1, 1] // CHECK-SAME: : tensor<4x1x?xf32> into tensor // CHECK: return %[[RESULT]] // ----- func.func @rank_reducing_insert_slice_canonicalize(%arg0 : tensor, %arg1 : index, %arg2 : index, %arg3 : tensor) -> tensor { %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index %c4 = arith.constant 4 : index %0 = tensor.insert_slice %arg0 into %arg3[%c0, %arg1, %c1] [%c4, 1, %arg2] [%c1, %c1, %c1] : tensor into tensor return %0 : tensor } // CHECK-LABEL: func @rank_reducing_insert_slice_canonicalize // CHECK-SAME: %[[ARG0:.+]]: tensor // CHECK: %[[CAST:.*]] = tensor.cast %[[ARG0]] : tensor to tensor<4x?xf32> // CHECK: %[[RESULT:.+]] = tensor.insert_slice %[[CAST]] // CHECK-SAME: [0, %{{.+}}, 1] [4, 1, %{{.+}}] [1, 1, 1] // CHECK-SAME: : tensor<4x?xf32> into tensor // CHECK: return %[[RESULT]] // ----- func.func @rank_reducing_slice_to_insert_slice_canonicalize(%arg0 : tensor, %arg1 : index, %arg2 : index, %arg3 : tensor) -> tensor { %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index %c4 = arith.constant 4 : index %0 = tensor.extract_slice %arg0[%c0, %arg1, %c1] [%c4, 1, %arg2] [%c1, %c1, %c1] : tensor to tensor %1 = tensor.insert_slice %0 into %arg3[%c0, %arg1, %c1] [%c4, 1, %arg2] [%c1, %c1, %c1] : tensor into tensor return %1 : tensor } // CHECK-LABEL: func @rank_reducing_slice_to_insert_slice_canonicalize // CHECK-SAME: %[[ARG0:[a-zA-Z0-9_]+]]: tensor // CHECK-SAME: %[[ARG3:[a-zA-Z0-9_]+]]: tensor // CHECK: %[[SLICE:.+]] = tensor.extract_slice %[[ARG0]] // CHECK-SAME: [0, %{{.+}}, 1] [4, 1, %{{.+}}] [1, 1, 1] // CHECK-SAME: : tensor to tensor<4x?xf32> // CHECK: %[[RESULT:.+]] = tensor.insert_slice %[[SLICE]] into %[[ARG3]] // CHECK-SAME: [0, %{{.+}}, 1] [4, 1, %{{.+}}] [1, 1, 1] // CHECK-SAME: : tensor<4x?xf32> into tensor // CHECK: return %[[RESULT]] // ----- func.func @insert_slice_propagate_dest_cast(%arg0 : tensor<2x?xi32>, %arg1 : tensor, %arg2 : index, %arg3 : index) -> tensor { %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index %c2 = arith.constant 2 : index %c8 = arith.constant 8 : index %0 = tensor.dim %arg0, %c1 : tensor<2x?xi32> %1 = tensor.extract %arg1[] : tensor %2 = tensor.generate %arg2, %c8 { ^bb0(%arg4: index, %arg5: index): tensor.yield %1 : i32 } : tensor %3 = tensor.insert_slice %arg0 into %2[0, %arg3] [2, %0] [1, 1] : tensor<2x?xi32> into tensor return %3 : tensor } // CHECK-LABEL: func @insert_slice_propagate_dest_cast // CHECK: %[[UPDATED:.+]] = tensor.insert_slice %{{.+}} into %{{.+}}[0, %{{.+}}] [2, %{{.+}}] [1, 1] // CHECK-SAME: tensor<2x?xi32> into tensor // CHECK: %[[CAST:.+]] = tensor.cast %[[UPDATED]] // CHECK: return %[[CAST]] // ----- func.func @insert_slice_output_dest_canonicalize(%arg0 : tensor<2x3xi32>, %arg1 : tensor) -> tensor<3x9xi32> { %c9 = arith.constant 9 : index %c3 = arith.constant 3 : index %2 = tensor.extract %arg1[] : tensor %4 = tensor.generate %c3, %c9 { ^bb0(%arg2: index, %arg3: index): tensor.yield %2 : i32 } : tensor %5 = tensor.insert_slice %arg0 into %4[0, 1] [2, 3] [1, 1] : tensor<2x3xi32> into tensor %6 = tensor.cast %5 : tensor to tensor<3x9xi32> return %6 : tensor<3x9xi32> } // CHECK-LABEL: func @insert_slice_output_dest_canonicalize // CHECK-SAME: %[[ARG0:[a-zA-z0-9_]+]]: tensor<2x3xi32> // CHECK-SAME: %[[ARG1:[a-zA-Z0-9_]+]]: tensor // CHECK: %[[PAD:.+]] = tensor.extract %[[ARG1]] // CHECK: %[[GENERATE:.+]] = tensor.generate // CHECK: %[[RESULT:.+]] = tensor.insert_slice %[[ARG0]] into %[[GENERATE]] // CHECK: return %[[RESULT]] // ----- // Test case: Folding of tensor.dim(tensor.generate %idx) -> %idx // CHECK-LABEL: func @dim_of_tensor.generate( // CHECK-SAME: %[[IDX0:[0-9a-z]+]]: index, %[[IDX1:[0-9a-z]+]]: index // CHECK-NOT: tensor.dim // CHECK: return %[[IDX1]] : index func.func @dim_of_tensor.generate(%arg0: index, %arg1: index) -> index { %c3 = arith.constant 3 : index %0 = tensor.generate %arg0, %arg1 { ^bb0(%arg2: index, %arg3: index, %arg4: index, %arg5: index, %arg6: index): tensor.yield %c3 : index } : tensor<2x?x4x?x5xindex> %1 = tensor.dim %0, %c3 : tensor<2x?x4x?x5xindex> return %1 : index } // ----- // Test case: Folding tensor.dim(tensor.cast %0, %idx) -> tensor.dim %0, %idx // CHECK-LABEL: func @fold_dim_of_tensor.cast // CHECK-SAME: %[[ARG0:.[a-z0-9A-Z_]+]]: tensor<4x?xf32> // CHECK-DAG: %[[C1:.+]] = arith.constant 1 : index // CHECK-DAG: %[[C4:.+]] = arith.constant 4 : index // CHECK: %[[T0:.+]] = tensor.dim %[[ARG0]], %[[C1]] // CHECK-NEXT: return %[[C4]], %[[T0]] func.func @fold_dim_of_tensor.cast(%arg0 : tensor<4x?xf32>) -> (index, index) { %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index %0 = tensor.cast %arg0 : tensor<4x?xf32> to tensor %1 = tensor.dim %0, %c0 : tensor %2 = tensor.dim %0, %c1 : tensor return %1, %2: index, index } // ----- // CHECK-LABEL: func @insert_slice_cast func.func @insert_slice_cast(%arg0 : tensor<1x?xf32>, %arg1 : tensor, %arg2 : index, %arg3 : index, %arg4 : index, %arg5 : index, %arg6 : index, %arg7 : index) -> tensor { // CHECK-SAME: %[[ARG0:.*]]: tensor<1x?xf32> %0 = tensor.cast %arg0 : tensor<1x?xf32> to tensor // CHECK: %[[RES:.*]] = tensor.insert_slice %[[ARG0]] // CHECK-SAME: [{{.*}}, {{.*}}] [1, {{.*}}] [{{.*}}, {{.*}}] // CHECK-SAME: : tensor<1x?xf32> into tensor %1 = tensor.insert_slice %0 into %arg1[%arg2, %arg3] [%arg4, %arg5] [%arg6, %arg7] : tensor into tensor // CHECK: return %[[RES]] : tensor return %1 : tensor } // ----- // CHECK-LABEL: func @insert_slice_cast_no_fold func.func @insert_slice_cast_no_fold(%arg0 : tensor<1x?xf32>, %arg1 : tensor, %arg2 : index, %arg3 : index, %arg4 : index, %arg5 : index, %arg6 : index, %arg7 : index) -> tensor { %0 = tensor.cast %arg0 : tensor<1x?xf32> to tensor // CHECK: %[[CAST:.*]] = tensor.cast // CHECK: %[[RES:.*]] = tensor.insert_slice %[[CAST]] // CHECK-SAME: [{{.*}}, {{.*}}] [{{.*}}, 5] [{{.*}}, {{.*}}] // CHECK-SAME: : tensor into tensor %1 = tensor.insert_slice %0 into %arg1[%arg2, %arg3] [%arg4, 5] [%arg6, %arg7] : tensor into tensor // CHECK: return %[[RES]] : tensor return %1 : tensor } // ----- // CHECK-LABEL: func @insert_tensor_cast_on_insert_slice_src( // CHECK-SAME: %[[arg0:.*]]: tensor, %[[arg1:.*]]: tensor // CHECK: %[[cast:.*]] = tensor.cast %[[arg0]] : tensor to tensor<64x5x64xf32> // CHECK: %[[r:.*]] = tensor.insert_slice %[[cast]] into %[[arg1]][0, 1, 2] [64, 5, 64] [1, 1, 1] : tensor<64x5x64xf32> into tensor // CHECK: return %[[r]] func.func @insert_tensor_cast_on_insert_slice_src( %arg0 : tensor, %arg1 : tensor, %sz0: index, %sz2: index) -> tensor { %c64 = arith.constant 64: index %r = tensor.insert_slice %arg0 into %arg1[0, 1, 2] [%c64, 5, %c64] [1, 1, 1] : tensor into tensor return %r : tensor } // ----- // CHECK-LABEL: func @fold_extract_insert // CHECK-SAME: %{{.+}}: tensor, %[[SLICE:.+]]: tensor<4x?x8xf32> func.func @fold_extract_insert(%input : tensor, %slice: tensor<4x?x8xf32>, %i: index, %size: index) -> (tensor<4x?x8xf32>) { %c0 = arith.constant 0: index %c1 = arith.constant 1: index %0 = tensor.insert_slice %slice into %input[%c0, %i, 0] [4, %size, 8] [1, 1, %c1] : tensor<4x?x8xf32> into tensor %1 = tensor.extract_slice %0[%c0, %i, 0] [4, %size, 8] [1, 1, %c1] : tensor to tensor<4x?x8xf32> // CHECK: return %[[SLICE]] return %1 : tensor<4x?x8xf32> } // ----- // CHECK-LABEL: func @fold_gather_constant_splat // CHECK-NOT: tensor.gather // CHECK: arith.constant dense<1.000000e-01> : tensor<1x2x1x1x1xf32> func.func @fold_gather_constant_splat(%indices : tensor<1x2x3xindex>) -> tensor<1x2x1x1x1xf32> { %cst = arith.constant dense<1.000000e-01> : tensor<4x4x4xf32> %0 = tensor.gather %cst[%indices] gather_dims([0, 1, 2]) : (tensor<4x4x4xf32>, tensor<1x2x 3xindex>) -> tensor<1x2x 1x1x1xf32> return %0 : tensor<1x2x 1x1x1xf32> } // ----- // CHECK-LABEL: func @fold_reshape_constant_splat // CHECK-NOT: tensor.reshape // CHECK: arith.constant dense<1.000000e-01> : tensor<4xf32> func.func @fold_reshape_constant_splat(%shape : tensor<1xi32>) -> tensor<4xf32> { %cst = arith.constant dense<1.000000e-01> : tensor<4x1xf32> %0 = tensor.reshape %cst(%shape) : (tensor<4x1xf32>, tensor<1xi32>) -> tensor<4xf32> return %0 : tensor<4xf32> } // ----- // CHECK-LABEL: func @fold_reshape_chain // CHECK-SAME: %[[INPUT:[a-zA-Z0-9_]+]]: tensor<*xf32> // CHECK-SAME: %[[SHAPE_0:[a-zA-Z0-9_]+]]: tensor // CHECK-SAME: %[[SHAPE_1:[a-zA-Z0-9_]+]]: tensor // CHECK-SAME: %[[SHAPE_2:[a-zA-Z0-9_]+]]: tensor // CHECK: %[[RESULT:.*]] = tensor.reshape %[[INPUT]](%[[SHAPE_2]]) // CHECK: return %[[RESULT]] func.func @fold_reshape_chain(%input: tensor<*xf32>, %shape_0: tensor, %shape_1: tensor, %shape_2: tensor) -> tensor<*xf32> { %0 = tensor.reshape %input(%shape_0) : (tensor<*xf32>, tensor) -> tensor<*xf32> %1 = tensor.reshape %0(%shape_1) : (tensor<*xf32>, tensor) -> tensor<*xf32> %2 = tensor.reshape %1(%shape_2) : (tensor<*xf32>, tensor) -> tensor<*xf32> return %2 : tensor<*xf32> } // ----- // CHECK-LABEL: func @fold_reshape_1d // CHECK-SAME: %[[INPUT:[a-zA-Z0-9_]+]]: tensor // CHECK-SAME: %[[SHAPE:[a-zA-Z0-9_]+]]: tensor<1xindex> // CHECK: return %[[INPUT]] func.func @fold_reshape_1d(%input: tensor, %shape: tensor<1xindex>) -> tensor { %0 = tensor.reshape %input(%shape) : (tensor, tensor<1xindex>) -> tensor return %0 : tensor } // ----- // CHECK-LABEL: func @fold_extract_constant_splat // CHECK-NOT: tensor.extract_slice // CHECK: arith.constant dense<42> : tensor<4x4xi32> func.func @fold_extract_constant_splat() -> (tensor<4x4xi32>) { %cst = arith.constant dense<42> : tensor<1024x1024xi32> %1 = tensor.extract_slice %cst[0,0] [4,4] [1, 1] : tensor<1024x1024xi32> to tensor<4x4xi32> return %1 : tensor<4x4xi32> } // ----- // CHECK-LABEL: func @fold_pack_constant_splat // CHECK-NOT: tensor.pack // CHECK: arith.constant dense<1.000000e-01> : tensor<8x16x8x32xf32> func.func @fold_pack_constant_splat(%dest : tensor<8x16x8x32xf32>) -> tensor<8x16x8x32xf32> { %cst = arith.constant dense<1.000000e-01> : tensor<64x128xf32> %0 = tensor.pack %cst outer_dims_perm = [1, 0] inner_dims_pos = [0, 1] inner_tiles = [8, 32] into %dest : tensor<64x128xf32> -> tensor<8x16x8x32xf32> return %0 : tensor<8x16x8x32xf32> } // ----- // CHECK-LABEL: func @fold_padding_value_pack_constant_splat // CHECK-NOT: tensor.pack // CHECK: arith.constant dense<1.000000e-01> : tensor<8x16x8x32xf32> func.func @fold_padding_value_pack_constant_splat(%dest : tensor<8x16x8x32xf32>) -> tensor<8x16x8x32xf32> { %pad = arith.constant 1.000000e-01 : f32 %cst = arith.constant dense<1.000000e-01> : tensor<63x127xf32> %0 = tensor.pack %cst padding_value(%pad : f32) outer_dims_perm = [1, 0] inner_dims_pos = [0, 1] inner_tiles = [8, 32] into %dest : tensor<63x127xf32> -> tensor<8x16x8x32xf32> return %0 : tensor<8x16x8x32xf32> } // ----- // CHECK-LABEL: func @nofold_padding_value_pack_constant_splat // CHECK: arith.constant dense<1.000000e-01> : tensor<63x127xf32> // CHECK: tensor.pack func.func @nofold_padding_value_pack_constant_splat(%dest : tensor<8x16x8x32xf32>) -> tensor<8x16x8x32xf32> { %pad = arith.constant 0.0 : f32 %cst = arith.constant dense<1.000000e-01> : tensor<63x127xf32> %0 = tensor.pack %cst padding_value(%pad : f32) outer_dims_perm = [1, 0] inner_dims_pos = [0, 1] inner_tiles = [8, 32] into %dest : tensor<63x127xf32> -> tensor<8x16x8x32xf32> return %0 : tensor<8x16x8x32xf32> } // ----- func.func @fold_padding_value_pack(%arg0: tensor<1200x500000xf32>) -> tensor<31250x1200x16x1xf32> { %cst = arith.constant 0.000000e+00 : f32 %0 = tensor.empty() : tensor<31250x1200x16x1xf32> %pack = tensor.pack %arg0 padding_value(%cst : f32) outer_dims_perm = [1, 0] inner_dims_pos = [1, 0] inner_tiles = [16, 1] into %0 : tensor<1200x500000xf32> -> tensor<31250x1200x16x1xf32> return %pack : tensor<31250x1200x16x1xf32> } // CHECK-LABEL: func @fold_padding_value_pack // CHECK-NOT: padding_value // ----- func.func @infer_src_shape_pack(%src: tensor, %dest: tensor<10x20x30x40x16xf32>) -> tensor<10x20x30x40x16xf32> { %cst = arith.constant 0.000000e+00 : f32 %pack = tensor.pack %src padding_value(%cst : f32) outer_dims_perm = [2, 1, 3, 0] inner_dims_pos = [2] inner_tiles = [16] into %dest : tensor -> tensor<10x20x30x40x16xf32> return %pack : tensor<10x20x30x40x16xf32> } // CHECK-LABEL: func.func @infer_src_shape_pack // CHECK-SAME: %[[SRC:[0-9a-zA-Z]+]] // CHECK-SAME: %[[DEST:[0-9a-zA-Z]+]] // CHECK: %[[CAST_SRC:.+]] = tensor.cast %[[SRC]] : tensor to tensor<40x20x?x30xf32> // CHECK: %[[PACK:.+]] = tensor.pack %[[CAST_SRC]] {{.+}} into %[[DEST]] // CHECK: return %[[PACK]] // ----- func.func @infer_dest_shape_pack(%src: tensor<30x20x?x10xf32>, %dest: tensor) -> tensor { %cst = arith.constant 0.000000e+00 : f32 %pack = tensor.pack %src padding_value(%cst : f32) outer_dims_perm = [2, 1, 3, 0] inner_dims_pos = [2] inner_tiles = [16] into %dest : tensor<30x20x?x10xf32> -> tensor return %pack : tensor } // CHECK-LABEL: func.func @infer_dest_shape_pack // CHECK-SAME: %[[SRC:[0-9a-zA-Z]+]] // CHECK-SAME: %[[DEST:[0-9a-zA-Z]+]] // CHECK: %[[CAST_DEST:.+]] = tensor.cast %[[DEST]] : tensor to tensor // CHECK: %[[PACK:.+]] = tensor.pack %[[SRC]] {{.+}} into %[[CAST_DEST]] // CHECK: %[[CAST_PACK:.+]] = tensor.cast %[[PACK]] : tensor to tensor // CHECK: return %[[CAST_PACK]] // ----- func.func @no_infer_pack_shape(%arg0: tensor, %arg1: index) -> tensor<32x7x?x16x1xf32> { %cst = arith.constant 0.000000e+00 : f32 %0 = tensor.empty(%arg1) : tensor<32x7x?x16x1xf32> %pack = tensor.pack %arg0 padding_value(%cst : f32) outer_dims_perm = [1, 2, 0] inner_dims_pos = [2, 0] inner_tiles = [16, 1] into %0 : tensor -> tensor<32x7x?x16x1xf32> return %pack : tensor<32x7x?x16x1xf32> } // CHECK-LABEL: func.func @no_infer_pack_shape // CHECK-NOT: tensor.cast // ----- func.func @fold_padding_value_pack_negative1(%arg0: tensor<1200x499999xf32>) -> tensor<31250x1200x16x1xf32> { %cst = arith.constant 0.000000e+00 : f32 %0 = tensor.empty() : tensor<31250x1200x16x1xf32> %pack = tensor.pack %arg0 padding_value(%cst : f32) outer_dims_perm = [1, 0] inner_dims_pos = [1, 0] inner_tiles = [16, 1] into %0 : tensor<1200x499999xf32> -> tensor<31250x1200x16x1xf32> return %pack : tensor<31250x1200x16x1xf32> } // CHECK-LABEL: func @fold_padding_value_pack_negative1 // CHECK: tensor.pack // CHECK-SAME: padding_value // ----- func.func @fold_padding_value_pack_negative2(%arg0: tensor<1200x?xf32>, %arg1: tensor) -> tensor { %cst = arith.constant 0.000000e+00 : f32 %pack = tensor.pack %arg0 padding_value(%cst : f32) outer_dims_perm = [1, 0] inner_dims_pos = [1, 0] inner_tiles = [16, 1] into %arg1 : tensor<1200x?xf32> -> tensor return %pack : tensor } // CHECK-LABEL: func @fold_padding_value_pack_negative2 // CHECK: tensor.pack // CHECK-SAME: padding_value // ----- func.func @fold_padding_value_pack_negative3(%arg0: tensor<1200x500000xf32>, %arg1: tensor, %tile : index) -> tensor { %cst = arith.constant 0.000000e+00 : f32 %pack = tensor.pack %arg0 padding_value(%cst : f32) outer_dims_perm = [1, 0] inner_dims_pos = [1, 0] inner_tiles = [%tile, 1] into %arg1 : tensor<1200x500000xf32> -> tensor return %pack : tensor } // CHECK-LABEL: func @fold_padding_value_pack_negative3 // CHECK: tensor.pack // CHECK-SAME: padding_value // ----- // CHECK-LABEL: func @fold_unpack_constant_splat // CHECK-NOT: tensor.unpack // CHECK: arith.constant dense<1.000000e-01> : tensor<128x256xf32> func.func @fold_unpack_constant_splat(%dest : tensor<128x256xf32>) -> tensor<128x256xf32> { %cst = arith.constant dense<1.000000e-01> : tensor<16x8x8x32xf32> %0 = tensor.unpack %cst inner_dims_pos = [0, 1] inner_tiles = [8, 32] into %dest : tensor<16x8x8x32xf32> -> tensor<128x256xf32> return %0 : tensor<128x256xf32> } // ----- func.func @infer_dest_shape_unpack(%src: tensor<10x20x30x40x16xf32>, %dest: tensor) -> tensor { %unpack = tensor.unpack %src outer_dims_perm = [2, 1, 3, 0] inner_dims_pos = [2] inner_tiles = [16] into %dest : tensor<10x20x30x40x16xf32> -> tensor return %unpack : tensor } // CHECK-LABEL: func.func @infer_dest_shape_unpack // CHECK-SAME: %[[SRC:[0-9a-zA-Z]+]] // CHECK-SAME: %[[DEST:[0-9a-zA-Z]+]] // CHECK: %[[CAST_DEST:.+]] = tensor.cast %[[DEST]] : tensor to tensor<40x20x?x30xf32> // CHECK: %[[UNPACK:.+]] = tensor.unpack %[[SRC]] {{.+}} into %[[CAST_DEST]] // CHECK: %[[CAST_UNPACK:.+]] = tensor.cast %[[UNPACK]] : tensor<40x20x?x30xf32> to tensor // CHECK: return %[[CAST_UNPACK]] // ----- func.func @infer_src_shape_unpack(%src: tensor, %dest: tensor<30x20x?x10xf32>) -> tensor<30x20x?x10xf32> { %unpack = tensor.unpack %src outer_dims_perm = [2, 1, 3, 0] inner_dims_pos = [2] inner_tiles = [16] into %dest : tensor -> tensor<30x20x?x10xf32> return %unpack : tensor<30x20x?x10xf32> } // CHECK-LABEL: func.func @infer_src_shape_unpack // CHECK-SAME: %[[SRC:[0-9a-zA-Z]+]] // CHECK-SAME: %[[DEST:[0-9a-zA-Z]+]] // CHECK: %[[CAST_SRC:.+]] = tensor.cast %[[SRC]] : tensor to tensor // CHECK: %[[UNPACK:.+]] = tensor.unpack %[[CAST_SRC]] // CHECK: return %[[UNPACK]] // ----- func.func @no_infer_unpack_shape(%arg1: tensor<32x7x?x16x1xf32>, %arg2: index) -> tensor { %cst = arith.constant 0.000000e+00 : f32 %0 = tensor.empty(%arg2) : tensor %unpack = tensor.unpack %arg1 outer_dims_perm = [1, 2, 0] inner_dims_pos = [2, 0] inner_tiles = [16, 1] into %0 : tensor<32x7x?x16x1xf32> -> tensor return %unpack : tensor } // CHECK-LABEL: func.func @no_infer_unpack_shape // CHECK-NOT: tensor.cast // ----- // CHECK-LABEL: func @fold_overlapping_insert // CHECK-SAME: %[[INPUT:.+]]: tensor, %{{.+}}: tensor<4x?x8xf32>, %[[SLICE2:.+]]: tensor<4x?x8xf32> func.func @fold_overlapping_insert(%input : tensor, %slice1: tensor<4x?x8xf32>, %slice2: tensor<4x?x8xf32>, %i: index, %size: index) -> (tensor) { %c0 = arith.constant 0: index %c1 = arith.constant 1: index %0 = tensor.insert_slice %slice1 into %input[%c0, %i, 0] [4, %size, 8] [1, 1, %c1] : tensor<4x?x8xf32> into tensor // CHECK: %[[INSERT:.+]] = tensor.insert_slice %[[SLICE2]] into %[[INPUT]] %1 = tensor.insert_slice %slice2 into %0[0, %i, 0] [4, %size, 8] [1, 1, %c1] : tensor<4x?x8xf32> into tensor // CHECK: return %[[INSERT]] return %1 : tensor } // ----- func.func @compose_expand_of_expand(%arg0 : tensor, %arg1: index, %arg2: index, %arg3: index, %arg4: index) -> tensor { %0 = tensor.expand_shape %arg0 [[0, 1], [2]] output_shape [%arg1, 4, %arg2] : tensor into tensor %1 = tensor.expand_shape %0 [[0, 1], [2], [3, 4]] output_shape [%arg3, 6, 4, %arg4, 5] : tensor into tensor return %1 : tensor } // CHECK-LABEL: compose_expand_of_expand // CHECK: tensor.expand_shape %{{.*}} {{\[}}[0, 1, 2], [3, 4]] output_shape [%arg3, 6, 4, %arg4, 5] // CHECK-NOT: tensor.expand_shape // ----- func.func @compose_expand_of_expand_of_zero_dim(%arg0 : tensor) -> tensor<1x1x1xf32> { %0 = tensor.expand_shape %arg0 [] output_shape [1] : tensor into tensor<1xf32> %1 = tensor.expand_shape %0 [[0, 1, 2]] output_shape [1, 1, 1] : tensor<1xf32> into tensor<1x1x1xf32> return %1 : tensor<1x1x1xf32> } // CHECK-LABEL: compose_expand_of_expand_of_zero_dim // CHECK: tensor.expand_shape %{{.*}} [] output_shape [1, 1, 1] // CHECK-SAME: tensor into tensor<1x1x1xf32> // ----- // CHECK-LABEL: func.func @collapse_of_cast( // CHECK-SAME: %[[IN:.*]]: tensor<8x12x32xf32>) -> tensor { // CHECK-NEXT: %[[COLLAPSE:.*]] = tensor.collapse_shape %[[IN]] {{\[}}[0, 1], [2]] : tensor<8x12x32xf32> into tensor<96x32xf32> // CHECK-NEXT: %[[CAST:.*]] = tensor.cast %[[COLLAPSE]] : tensor<96x32xf32> to tensor // CHECK-NEXT: return %[[CAST]] : tensor func.func @collapse_of_cast(%t: tensor<8x12x32xf32>) -> tensor { %0 = tensor.cast %t : tensor<8x12x32xf32> to tensor %1 = tensor.collapse_shape %0 [[0, 1], [2]] : tensor into tensor %2 = tensor.cast %1 : tensor to tensor return %2 : tensor } // ----- func.func @fold_collapse_of_expand(%arg0 : tensor<12x4xf32>) -> tensor<12x4xf32> { %0 = tensor.expand_shape %arg0 [[0, 1], [2]] output_shape [3, 4, 4] : tensor<12x4xf32> into tensor<3x4x4xf32> %1 = tensor.collapse_shape %0 [[0, 1], [2]] : tensor<3x4x4xf32> into tensor<12x4xf32> return %1 : tensor<12x4xf32> } // CHECK-LABEL: @fold_collapse_of_expand // CHECK-NOT: tensor.{{.*}}_shape // ----- func.func @fold_collapse_of_expand_dynamic(%arg0 : tensor, %arg1: index, %arg2: index) -> tensor { %0 = tensor.expand_shape %arg0 [[0, 1], [2]] output_shape [%arg1, 4, %arg2] : tensor into tensor %1 = tensor.collapse_shape %0 [[0, 1], [2]] : tensor into tensor return %1 : tensor } // CHECK-LABEL: @fold_collapse_of_expand_dynamic // CHECK-NOT: tensor.{{.*}}_shape // ----- func.func @fold_collapse_of_expand_fully_dynamic(%arg0 : tensor, %arg1: index, %arg2: index, %arg3: index) -> tensor { %0 = tensor.expand_shape %arg0 [[0, 1], [2]] output_shape [%arg1, %arg2, %arg3] : tensor into tensor %1 = tensor.collapse_shape %0 [[0, 1], [2]] : tensor into tensor return %1 : tensor } // CHECK-LABEL: @fold_collapse_of_expand_fully_dynamic // CHECK-NOT: tensor.{{.*}}_shape // ----- func.func @no_fold_parallel_collapse_of_expand_dynamic(%arg0 : tensor, %arg1: index, %arg2: index, %arg3: index, %arg4: index) -> tensor { %0 = tensor.expand_shape %arg0 [[0, 1], [2], [3]] output_shape [%arg1, %arg2, %arg3, %arg4] : tensor into tensor %1 = tensor.collapse_shape %0 [[0], [1], [2, 3]] : tensor into tensor return %1 : tensor } // CHECK-LABEL: @no_fold_parallel_collapse_of_expand_dynamic // CHECK: tensor.expand_shape // CHECK: %[[COLLAPSE:.+]] = tensor.collapse_shape // CHECK: return %[[COLLAPSE]] // ----- func.func @fold_expand_of_collapse(%arg0 : tensor<3x4x4xf32>) -> tensor<3x4x4xf32> { %0 = tensor.collapse_shape %arg0 [[0, 1], [2]] : tensor<3x4x4xf32> into tensor<12x4xf32> %1 = tensor.expand_shape %0 [[0, 1], [2]] output_shape [3, 4, 4] : tensor<12x4xf32> into tensor<3x4x4xf32> return %1 : tensor<3x4x4xf32> } // CHECK-LABEL: @fold_expand_of_collapse // CHECK-NOT: tensor.{{.*}}_shape // ----- func.func @fold_expand_of_collapse_dynamic(%arg0 : tensor, %arg1: index, %arg2: index) -> tensor { %0 = tensor.collapse_shape %arg0 [[0, 1], [2]] : tensor into tensor %1 = tensor.expand_shape %0 [[0, 1], [2]] output_shape [%arg1, 4, %arg2] : tensor into tensor return %1 : tensor } // CHECK-LABEL: @fold_expand_of_collapse_dynamic // CHECK-NOT: tensor.{{.*}}_shape // ----- func.func @no_fold_expand_of_collapse_dynamic(%arg0 : tensor, %arg1: index, %arg2: index, %arg3: index) -> tensor { %0 = tensor.collapse_shape %arg0 [[0, 1], [2]] : tensor into tensor %1 = tensor.expand_shape %0 [[0, 1], [2]] output_shape [%arg1, %arg2, %arg3] : tensor into tensor return %1 : tensor } // CHECK-LABEL: @no_fold_expand_of_collapse_dynamic // CHECK: tensor.collapse_shape // CHECK: %[[EXPAND:.+]] = tensor.expand_shape // CHECK: return %[[EXPAND]] // ----- func.func @compose_expand_of_collapse_last_two_dims(%arg0: tensor) -> tensor { %collapsed = tensor.collapse_shape %arg0 [[0, 1, 2]] : tensor into tensor %c0 = arith.constant 0 : index %dim = tensor.dim %collapsed, %c0 : tensor %c384= arith.constant 384 : index %div = arith.divui %dim, %c384 : index %expanded = tensor.expand_shape %collapsed [[0, 1]] output_shape [%div, 384] : tensor into tensor return %expanded : tensor } // CHECK: #[[$MAP:.*]] = affine_map<()[s0] -> (s0 * 64)> // CHECK-LABEL: @compose_expand_of_collapse_last_two_dims // CHECK-SAME: %[[ARG0:.+]]: tensor // CHECK: %[[CONSTANT0:.+]] = arith.constant 0 : index // CHECK: %[[CONSTANT384:.+]] = arith.constant 384 : index // CHECK: %[[COLLAPSE:.+]] = tensor.collapse_shape %[[ARG0]] {{\[}}[0, 1, 2]] : tensor into tensor // CHECK: %[[DIM:.+]] = tensor.dim %[[ARG0]], %[[CONSTANT0]] : tensor // CHECK: %[[AFFAPPLY:.+]] = affine.apply #[[$MAP]]()[%[[DIM]]] // CHECK: %[[DIVUI:.+]] = arith.divui %[[AFFAPPLY]], %[[CONSTANT384]] : index // CHECK: %[[RESULT:.+]] = tensor.expand_shape %[[COLLAPSE]] {{\[}}[0, 1]] output_shape [%[[DIVUI]], 384] : tensor into tensor // CHECK: return %[[RESULT]] // ----- func.func @compose_expand_of_collapse(%arg0 : tensor<2x3x4x5x6x7x8xf32>) -> tensor<24x5x42x8xf32> { %0 = tensor.collapse_shape %arg0 [[0, 1, 2, 3, 4, 5, 6]] : tensor<2x3x4x5x6x7x8xf32> into tensor<40320xf32> %1 = tensor.expand_shape %0 [[0, 1, 2, 3]] output_shape [24, 5, 42, 8] : tensor<40320xf32> into tensor<24x5x42x8xf32> return %1 : tensor<24x5x42x8xf32> } // CHECK: func @compose_expand_of_collapse // CHECK-SAME: %[[ARG0:.+]]: tensor<2x3x4x5x6x7x8xf32> // CHECK: %[[RESULT:.+]] = tensor.collapse_shape %[[ARG0]] // CHECK-SAME: [0, 1, 2], [3], [4, 5], [6] // CHECK: return %[[RESULT]] // ----- func.func @compose_expand_of_collapse_7D(%arg0 : tensor<24x5x42x8xf32>) -> tensor<2x3x4x5x6x7x8xf32> { %0 = tensor.collapse_shape %arg0 [[0, 1, 2, 3]] : tensor<24x5x42x8xf32> into tensor<40320xf32> %1 = tensor.expand_shape %0 [[0, 1, 2, 3, 4, 5, 6]] output_shape [2, 3, 4, 5, 6, 7, 8] : tensor<40320xf32> into tensor<2x3x4x5x6x7x8xf32> return %1 : tensor<2x3x4x5x6x7x8xf32> } // CHECK: func @compose_expand_of_collapse_7D // CHECK-SAME: %[[ARG0:.+]]: tensor<24x5x42x8xf32> // CHECK: %[[RESULT:.+]] = tensor.expand_shape %[[ARG0]] // CHECK-SAME: [0, 1, 2], [3], [4, 5], [6] // CHECK: return %[[RESULT]] // ----- func.func @compose_collapse_of_expand(%arg : tensor, %arg1: index, %arg2: index, %arg3: index) -> tensor { %0 = tensor.expand_shape %arg [[0], [1], [2, 3]] output_shape [%arg1, %arg2, %arg3, 1] : tensor into tensor %1 = tensor.collapse_shape %0 [[0, 1], [2, 3]] : tensor into tensor return %1 : tensor } // CHECK-LABEL: func @compose_collapse_of_expand // CHECK: (%[[ARG:.*]]: tensor, %[[ARG1:.*]]: index, %[[ARG2:.*]]: index, %[[ARG3:.*]]: index) // CHECK-NEXT: tensor.collapse_shape %[[ARG]] // CHECK-SAME: [0, 1], [2] // CHECK-SAME: : tensor into tensor // ----- func.func @compose_collapse_of_expand_1D(%arg0 : tensor<2048xf32>) -> tensor<4x512xf32> { %0 = tensor.expand_shape %arg0 [[0, 1, 2, 3]] output_shape [1, 4, 1, 512] : tensor<2048xf32> into tensor<1x4x1x512xf32> %1 = tensor.collapse_shape %0 [[0, 1, 2], [3]] : tensor<1x4x1x512xf32> into tensor<4x512xf32> return %1 : tensor<4x512xf32> } // CHECK: func @compose_collapse_of_expand_1D // CHECK: tensor.expand_shape %{{.*}} {{\[}}[0, 1]] output_shape [4, 512] // CHECK-SAME: tensor<2048xf32> into tensor<4x512xf32> // ----- func.func @compose_expand_of_collapse_0_rank_to_expand(%arg0 : tensor<1x1x1xf32>) -> tensor<1x1x1x1xf32> { %0 = tensor.collapse_shape %arg0 [] : tensor<1x1x1xf32> into tensor %1 = tensor.expand_shape %0 [] output_shape [1, 1, 1, 1] : tensor into tensor<1x1x1x1xf32> return %1 : tensor<1x1x1x1xf32> } // CHECK: func @compose_expand_of_collapse_0_rank_to_expand // CHECK-SAME: %[[ARG0:.+]]: tensor<1x1x1xf32> // CHECK: %[[RESULT:.+]] = tensor.expand_shape %[[ARG0]] // CHECK-SAME: {{\[}}[0], [1], [2, 3]] output_shape [1, 1, 1, 1] // CHECK: return %[[RESULT]] // ----- func.func @compose_expand_of_collapse_0_rank_to_collapse(%arg0 : tensor<1x1x1x1xf32>) -> tensor<1x1x1xf32> { %0 = tensor.collapse_shape %arg0 [] : tensor<1x1x1x1xf32> into tensor %1 = tensor.expand_shape %0 [] output_shape [1, 1, 1] : tensor into tensor<1x1x1xf32> return %1 : tensor<1x1x1xf32> } // CHECK: func @compose_expand_of_collapse_0_rank_to_collapse // CHECK-SAME: %[[ARG0:.+]]: tensor<1x1x1x1xf32> // CHECK: %[[RESULT:.+]] = tensor.collapse_shape %[[ARG0]] // CHECK-SAME: [0], [1], [2, 3] // CHECK: return %[[RESULT]] // ----- func.func @compose_expand_of_collapse_static(%arg0 : tensor<4x32x10x64x2xf16>) -> tensor<4x32x10x128xf16> { %collapsed = tensor.collapse_shape %arg0 [[0, 1], [2], [3, 4]] : tensor<4x32x10x64x2xf16> into tensor<128x10x128xf16> %expanded = tensor.expand_shape %collapsed [[0, 1], [2], [3]] output_shape [4, 32, 10, 128] : tensor<128x10x128xf16> into tensor<4x32x10x128xf16> return %expanded : tensor<4x32x10x128xf16> } // CHECK-LABEL: func @compose_expand_of_collapse_static // CHECK-SAME: %[[ARG0:.+]]: tensor<4x32x10x64x2xf16> // CHECK: %[[RESULT:.+]] = tensor.collapse_shape %[[ARG0]] // CHECK-SAME: [0], [1], [2], [3, 4] // CHECK: return %[[RESULT]] // ----- func.func @compose_expand_of_collapse_dynamic(%arg0 : tensor<4x?x10x64x2xf16>, %arg1 : index) -> tensor<4x?x10x128xf16> { %collapsed = tensor.collapse_shape %arg0 [[0, 1], [2], [3, 4]] : tensor<4x?x10x64x2xf16> into tensor %expanded = tensor.expand_shape %collapsed [[0, 1], [2], [3]] output_shape [4, %arg1, 10, 128] : tensor into tensor<4x?x10x128xf16> return %expanded : tensor<4x?x10x128xf16> } // CHECK-LABEL: func @compose_expand_of_collapse_dynamic // CHECK-SAME: %[[ARG0:.+]]: tensor<4x?x10x64x2xf16> // CHECK: %[[RESULT:.+]] = tensor.collapse_shape %[[ARG0]] // CHECK-SAME: [0], [1], [2], [3, 4] // CHECK: return %[[RESULT]] // ----- // CHECK-LABEL: func @zero_rank_reshape_multi func.func @zero_rank_reshape_multi(%arg0: tensor) -> tensor { // CHECK: return %arg0 %0 = tensor.expand_shape %arg0 [] output_shape [1] : tensor into tensor<1xf32> %1 = tensor.expand_shape %0 [[0, 1]] output_shape [1, 1] : tensor<1xf32> into tensor<1x1xf32> %2 = tensor.collapse_shape %1 [] : tensor<1x1xf32> into tensor return %2 : tensor } // ----- func.func @compose_collapse_of_collapse(%arg0 : tensor) -> tensor { %0 = tensor.collapse_shape %arg0 [[0, 1], [2], [3, 4]] : tensor into tensor %1 = tensor.collapse_shape %0 [[0, 1], [2]] : tensor into tensor return %1 : tensor } // CHECK-LABEL: func @compose_collapse_of_collapse // CHECK: tensor.collapse_shape %{{.*}} {{\[}}[0, 1, 2], [3, 4]] // CHECK-NOT: tensor.collapse_shape // ----- func.func @compose_collapse_of_collapse_zero_dim(%arg0 : tensor<1x1x1xf32>) -> tensor { %0 = tensor.collapse_shape %arg0 [[0, 1, 2]] : tensor<1x1x1xf32> into tensor<1xf32> %1 = tensor.collapse_shape %0 [] : tensor<1xf32> into tensor return %1 : tensor } // CHECK-LABEL: func @compose_collapse_of_collapse_zero_dim // CHECK: tensor.collapse_shape %{{.*}} [] // CHECK-SAME: tensor<1x1x1xf32> into tensor // ----- func.func @fold_collapse_of_expand_1D(%arg0 : tensor<4x512xf32>) -> tensor<2048xf32> { %0 = tensor.expand_shape %arg0 [[0, 1, 2], [3]] output_shape [1, 4, 1, 512] : tensor<4x512xf32> into tensor<1x4x1x512xf32> %1 = tensor.collapse_shape %0 [[0, 1, 2, 3]] : tensor<1x4x1x512xf32> into tensor<2048xf32> return %1 : tensor<2048xf32> } // CHECK: func @fold_collapse_of_expand_1D // CHECK: tensor.collapse_shape %{{.*}} {{\[}}[0, 1]] // CHECK-SAME: tensor<4x512xf32> into tensor<2048xf32> // ----- func.func @fold_collapse_of_expand_unit_dims(%arg0 : tensor<2048x1x1xf32>) -> tensor<4x512x1x1xf32> { %0 = tensor.expand_shape %arg0 [[0, 1, 2, 3], [4], [5]] output_shape [1, 4, 1, 512, 1, 1] : tensor<2048x1x1xf32> into tensor<1x4x1x512x1x1xf32> %1 = tensor.collapse_shape %0 [[0, 1, 2], [3], [4], [5]] : tensor<1x4x1x512x1x1xf32> into tensor<4x512x1x1xf32> return %1 : tensor<4x512x1x1xf32> } // CHECK: func @fold_collapse_of_expand_unit_dims // CHECK: tensor.expand_shape %{{.*}} {{\[}}[0, 1], [2], [3]] output_shape [4, 512, 1, 1] // CHECK-SAME: tensor<2048x1x1xf32> into tensor<4x512x1x1xf32> // ----- func.func @compose_collapse_of_expand_unit_dims(%arg0 : tensor<2048x1x2048xf32>) -> tensor<4x512x1x512x4xf32> { %0 = tensor.expand_shape %arg0 [[0, 1, 2, 3, 4], [5], [6, 7, 8]] output_shape [1, 4, 1, 512, 1, 1, 512, 1, 4] : tensor<2048x1x2048xf32> into tensor<1x4x1x512x1x1x512x1x4xf32> %1 = tensor.collapse_shape %0 [[0, 1, 2], [3, 4], [5], [6, 7], [8]] : tensor<1x4x1x512x1x1x512x1x4xf32> into tensor<4x512x1x512x4xf32> return %1 : tensor<4x512x1x512x4xf32> } // CHECK: func @compose_collapse_of_expand_unit_dims // CHECK: tensor.expand_shape %{{.*}} {{\[}}[0, 1], [2], [3, 4]] output_shape [4, 512, 1, 512, 4] // CHECK-SAME: tensor<2048x1x2048xf32> into tensor<4x512x1x512x4xf32> // ----- func.func @compose_collapse_of_expand_trailing_unit_dims(%arg0: tensor<2xf32>) -> tensor<2x1xf32> { %0 = tensor.expand_shape %arg0 [[0, 1, 2]] output_shape [2, 1, 1] : tensor<2xf32> into tensor<2x1x1xf32> %1 = tensor.collapse_shape %0 [[0], [1, 2]] : tensor<2x1x1xf32> into tensor<2x1xf32> return %1 : tensor<2x1xf32> } // CHECK: func @compose_collapse_of_expand_trailing_unit_dims // CHECK: tensor.expand_shape %{{.*}} {{\[}}[0, 1]] output_shape [2, 1] // CHECK-SAME: tensor<2xf32> into tensor<2x1xf32> // ----- func.func @compose_collapse_of_collapse_unit_dims_dynamic( %arg0 : tensor) -> tensor { %0 = tensor.collapse_shape %arg0 [[0], [1, 2], [3], [4], [5], [6, 7, 8]] : tensor into tensor %1 = tensor.collapse_shape %0 [[0], [1], [2, 3, 4], [5]] : tensor into tensor return %1 : tensor } // CHECK: func @compose_collapse_of_collapse_unit_dims_dynamic // CHECK: tensor.collapse_shape // CHECK-SAME: [0], [1, 2], [3, 4, 5], [6, 7, 8] // CHECK-SAME: tensor into tensor // ----- func.func @fold_collapse_of_expand_trailing_unit_dims(%arg0: tensor<2xf32>) -> tensor<2x1xf32> { %0 = tensor.expand_shape %arg0 [[0, 1, 2]] output_shape [2, 1, 1] : tensor<2xf32> into tensor<2x1x1xf32> %1 = tensor.collapse_shape %0 [[0], [1, 2]] : tensor<2x1x1xf32> into tensor<2x1xf32> return %1 : tensor<2x1xf32> } // CHECK: func @fold_collapse_of_expand_trailing_unit_dims // CHECK: tensor.expand_shape %{{.*}} {{\[}}[0, 1]] output_shape [2, 1] // CHECK-SAME: tensor<2xf32> into tensor<2x1xf32> // ----- func.func @fold_collapse_of_collapse_trailing_unit_dims_dynamic( %arg0: tensor<1x1x?x1x1x1xf32>) -> tensor { %0 = tensor.collapse_shape %arg0 [[0, 1, 2], [3], [4], [5]] : tensor<1x1x?x1x1x1xf32> into tensor %1 = tensor.collapse_shape %0 [[0, 1, 2, 3]] : tensor into tensor return %1 : tensor } // CHECK: func @fold_collapse_of_collapse_trailing_unit_dims_dynamic // CHECK: tensor.collapse_shape %{{.*}} {{\[}}[0, 1, 2, 3, 4, 5]] // CHECK-SAME: tensor<1x1x?x1x1x1xf32> into tensor // ----- func.func @fold_collapse_of_expand_trailing_unit_dims(%arg0: tensor<12x42x1x1xf32>) -> tensor<12x42xf32> { %0 = tensor.expand_shape %arg0 [[0], [1], [2], [3, 4]] output_shape [12, 42, 1, 1, 1] : tensor<12x42x1x1xf32> into tensor<12x42x1x1x1xf32> %1 = tensor.collapse_shape %0 [[0], [1, 2, 3, 4]] : tensor<12x42x1x1x1xf32> into tensor<12x42xf32> return %1 : tensor<12x42xf32> } // CHECK: func @fold_collapse_of_expand_trailing_unit_dims // CHECK: tensor.collapse_shape %{{.*}} {{\[}}[0], [1, 2, 3]] // CHECK-SAME: tensor<12x42x1x1xf32> into tensor<12x42xf32> // ----- func.func @fold_collapse_of_expand_unit_dims_in_middle(%arg0 : tensor, %sz0: index, %sz1: index, %sz2: index) -> tensor { %0 = tensor.expand_shape %arg0 [[0], [1], [2, 3]] output_shape [%sz0, %sz1, 1, %sz2] : tensor into tensor %1 = tensor.collapse_shape %0 [[0], [1, 2, 3]] : tensor into tensor return %1 : tensor } // CHECK-LABEL: func @fold_collapse_of_expand_unit_dims_in_middle // CHECK-SAME: (%[[ARG:.*]]: tensor // CHECK: tensor.collapse_shape %[[ARG]] {{\[}}[0], [1, 2]] // CHECK-SAME: tensor into tensor // ----- func.func @no_fold_collapse_of_expand_incompatible(%arg0 : tensor<4x6x8xf32>) -> tensor<2x6x16xf32> { %0 = tensor.expand_shape %arg0 [[0, 1], [2, 3], [4]] output_shape [2, 2, 3, 2, 8] : tensor<4x6x8xf32> into tensor<2x2x3x2x8xf32> %1 = tensor.collapse_shape %0 [[0], [1, 2], [3, 4]] : tensor<2x2x3x2x8xf32> into tensor<2x6x16xf32> return %1 : tensor<2x6x16xf32> } // CHECK-LABEL: func @no_fold_collapse_of_expand_incompatible // CHECK: tensor.expand_shape // CHECK: tensor.collapse_shape // ----- func.func @no_fold_collapse_of_expand_empty_expr(%arg0: tensor<3x2x2xf32>) -> tensor<12x1xf32> { %0 = tensor.expand_shape %arg0 [[0], [1], [2, 3]] output_shape [3, 2, 2, 1] : tensor<3x2x2xf32> into tensor<3x2x2x1xf32> %1 = tensor.collapse_shape %0 [[0, 1, 2], [3]] : tensor<3x2x2x1xf32> into tensor<12x1xf32> return %1 : tensor<12x1xf32> } // CHECK: func @no_fold_collapse_of_expand_empty_expr // CHECK-SAME: %[[ARG0:.+]]: tensor<3x2x2xf32> // CHECK: %[[RARG0:.+]] = tensor.expand_shape %[[ARG0]] // CHECK-SAME: {{\[}}[0], [1], [2, 3]] output_shape [3, 2, 2, 1] // CHECK: %[[RES:.+]] = tensor.collapse_shape %[[RARG0]] // CHECK-SAME: [0, 1, 2], [3] // CHECK: return %[[RES:.+]] : tensor<12x1xf32> // ----- func.func @reshape_splat_constant_int32() -> tensor<2x4x2xi32> { %c0 = arith.constant dense<42> : tensor<2x8xi32> %0 = tensor.expand_shape %c0 [[0], [1, 2]] output_shape [2, 4, 2] : tensor<2x8xi32> into tensor<2x4x2xi32> return %0 : tensor<2x4x2xi32> } // CHECK-LABEL: @reshape_splat_constant_int32 // CHECK: %[[CST:.*]] = arith.constant dense<{{.*}}> : tensor<2x4x2xi32> // CHECK-NOT: tensor.expand_shape // CHECK: return %[[CST]] // ----- func.func @expand_shape_splat(%arg : f32) -> tensor<2x2x2xf32> { %c0 = tensor.splat %arg : tensor<2x4xf32> %0 = tensor.expand_shape %c0 [[0], [1, 2]] output_shape [2, 2, 2] : tensor<2x4xf32> into tensor<2x2x2xf32> return %0 : tensor<2x2x2xf32> } // CHECK-LABEL: @expand_shape_splat // CHECK-SAME: %[[ARG0:.+]]: f32 // CHECK: %[[CST:.*]] = tensor.splat %[[ARG0:.+]] : tensor<2x2x2xf32> // CHECK-NOT: tensor.expand_shape // CHECK: return %[[CST]] // ----- // CHECK-LABEL: @expand_shape_splat_dynamic_no_fold // CHECK-SAME: (%[[F:.+]]: f32, %[[M:.+]]: index, %[[SZ0:.+]]: index) func.func @expand_shape_splat_dynamic_no_fold(%arg: f32, %m: index, %sz0: index) -> tensor<2x2x?xf32> { // CHECK: %[[SPLAT:.+]] = tensor.splat %[[F]][%[[M]]] : tensor<2x?xf32> // CHECK: %[[EXPANDED:.+]] = tensor.expand_shape %[[SPLAT]] %c0 = tensor.splat %arg[%m] : tensor<2x?xf32> %0 = tensor.expand_shape %c0 [[0], [1, 2]] output_shape [2, 2, %sz0] : tensor<2x?xf32> into tensor<2x2x?xf32> return %0 : tensor<2x2x?xf32> } // ----- func.func @collapse_shape_splat(%arg : f32) -> tensor<2x4xf32> { %c0 = tensor.splat %arg : tensor<2x2x2xf32> %0 = tensor.collapse_shape %c0 [[0], [1, 2]] : tensor<2x2x2xf32> into tensor<2x4xf32> return %0 : tensor<2x4xf32> } // CHECK-LABEL: @collapse_shape_splat // CHECK-SAME: %[[ARG0:.+]]: f32 // CHECK: %[[CST:.*]] = tensor.splat %[[ARG0:.+]] : tensor<2x4xf32> // CHECK-NOT: tensor.collapse_shape // CHECK: return %[[CST]] // ----- // CHECK-LABEL: @collapse_shape_splat_dynamic_no_fold // CHECK-SAME: %[[F:.+]]: f32 // CHECK-SAME: %[[M:.+]]: index func.func @collapse_shape_splat_dynamic_no_fold(%f: f32, %m: index) -> tensor<2x?xf32> { // CHECK: %[[SPLAT:.+]] = tensor.splat %[[F]][%[[M]]] // CHECK: %[[COLLAPSED:.+]] = tensor.collapse_shape %[[SPLAT]] %c0 = tensor.splat %f[%m] : tensor<2x2x?xf32> %0 = tensor.collapse_shape %c0 [[0], [1, 2]] : tensor<2x2x?xf32> into tensor<2x?xf32> return %0 : tensor<2x?xf32> } // ----- func.func @reshape_splat_constant_int16() -> tensor<2x4x2xi16> { %c0 = arith.constant dense<42> : tensor<2x8xi16> %0 = tensor.expand_shape %c0 [[0], [1, 2]] output_shape [2, 4, 2] : tensor<2x8xi16> into tensor<2x4x2xi16> return %0 : tensor<2x4x2xi16> } // CHECK-LABEL: @reshape_splat_constant_int16 // CHECK: %[[CST:.*]] = arith.constant dense<{{.*}}> : tensor<2x4x2xi16> // CHECK-NOT: tensor.expand_shape // CHECK: return %[[CST]] // ----- func.func @reshape_splat_constant_float32() -> tensor<2x4x2xf32> { %c0 = arith.constant dense<42.0> : tensor<2x8xf32> %0 = tensor.expand_shape %c0 [[0], [1, 2]] output_shape [2, 4, 2] : tensor<2x8xf32> into tensor<2x4x2xf32> return %0 : tensor<2x4x2xf32> } // CHECK-LABEL: @reshape_splat_constant_float32 // CHECK: %[[CST:.*]] = arith.constant dense<{{.*}}> : tensor<2x4x2xf32> // CHECK-NOT: tensor.expand_shape // CHECK: return %[[CST]] // ----- func.func @reshape_splat_constant_float64() -> tensor<2x4x2xf64> { %c0 = arith.constant dense<42.0> : tensor<2x8xf64> %0 = tensor.expand_shape %c0 [[0], [1, 2]] output_shape [2, 4, 2] : tensor<2x8xf64> into tensor<2x4x2xf64> return %0 : tensor<2x4x2xf64> } // CHECK-LABEL: @reshape_splat_constant_float64 // CHECK: %[[CST:.*]] = arith.constant dense<{{.*}}> : tensor<2x4x2xf64> // CHECK-NOT: tensor.expand_shape // CHECK: return %[[CST]] // ----- // CHECK-LABEL: func @fold_rank func.func @fold_rank() -> (index) { %const_0 = arith.constant dense<[[[1, -2, 1, 36]], [[0, 2, -1, 64]]]> : tensor<2x1x4xi32> // Fold a ank into a constant // CHECK-NEXT: [[C3:%.+]] = arith.constant 3 : index %rank_0 = tensor.rank %const_0 : tensor<2x1x4xi32> // CHECK-NEXT: return [[C3]] return %rank_0 : index } // ----- // CHECK-LABEL: func @pad_same_static_shape( // CHECK-SAME: %[[ARG0:.*]]: tensor<5x6xf32> // CHECK-NOT: tensor.pad // CHECK: return %[[ARG0]] func.func @pad_same_static_shape(%arg0: tensor<5x6xf32>, %a: index) -> tensor<5x6xf32> { %cst = arith.constant 0.000000e+00 : f32 %0 = tensor.pad %arg0 low[%a, 0] high[0, %a] { ^bb0(%arg1: index, %arg2: index): tensor.yield %cst : f32 } : tensor<5x6xf32> to tensor<5x6xf32> return %0 : tensor<5x6xf32> } // ----- // CHECK-LABEL: func @pad_fold_static( // CHECK-SAME: %[[INPUT:.*]]: tensor) -> tensor { // CHECK: %[[CST:.*]] = arith.constant 0.000000e+00 : f32 // CHECK-NOT: arith.constant 4 : index // CHECK: %[[PADDED:.*]] = tensor.pad %[[INPUT]] // CHECK-SAME: low[0, 4, 1, 1] high[0, 4, 1, 1] { // CHECK: ^bb0(%[[ARG1:.*]]: index, %[[ARG2:.*]]: index, %[[ARG3:.*]]: index, %[[ARG4:.*]]: index): // CHECK: tensor.yield %[[CST]] : f32 // CHECK: } : tensor to tensor // CHECK: tensor.cast func.func @pad_fold_static(%arg0: tensor) -> tensor { %c0 = arith.constant 0 : index %cst = arith.constant 0.000000e+00 : f32 %padding = arith.constant 4 : index %padded = tensor.pad %arg0 low[0, %padding, 1, 1] high[0, %padding, 1, 1] { ^bb0(%arg1: index, %arg2: index, %arg3: index, %arg4: index): tensor.yield %cst: f32 } : tensor to tensor return %padded : tensor } // ----- // CHECK-LABEL: func @pad_nofold_same_static_shape( // CHECK-SAME: %[[ARG0:.*]]: tensor<5x6xf32> // CHECK: %[[PAD:.*]] = tensor.pad // CHECK: return %[[PAD]] func.func @pad_nofold_same_static_shape(%arg0: tensor<5x6xf32>, %a: index) -> tensor<5x6xf32> { %cst = arith.constant 0.000000e+00 : f32 %0 = tensor.pad %arg0 nofold low[%a, 0] high[0, %a] { ^bb0(%arg1: index, %arg2: index): tensor.yield %cst : f32 } : tensor<5x6xf32> to tensor<5x6xf32> return %0 : tensor<5x6xf32> } // ----- // CHECK-LABEL: func @pad_after_cast_different_shape( // CHECK-SAME: %[[INPUT:.*]]: tensor) -> tensor { // CHECK: %[[CST:.*]] = arith.constant 0.000000e+00 : f32 // CHECK: %[[PADDED:.*]] = tensor.pad %[[INPUT]] // CHECK-SAME: low[0, 0, 1, 1] high[0, 0, 1, 1] { // CHECK: ^bb0(%[[ARG1:.*]]: index, %[[ARG2:.*]]: index, %[[ARG3:.*]]: index, %[[ARG4:.*]]: index): // CHECK: tensor.yield %[[CST]] : f32 // CHECK: } : tensor to tensor // CHECK: %[[DYNAMIC:.*]] = tensor.cast %[[PADDED:.*]] : // CHECK-SAME: tensor to tensor // CHECK: return %[[DYNAMIC]] : tensor // CHECK: } func.func @pad_after_cast_different_shape(%arg0: tensor) -> tensor { %cst = arith.constant 0.000000e+00 : f32 %dynamic = tensor.cast %arg0 : tensor to tensor %padded = tensor.pad %dynamic low[0, 0, 1, 1] high[0, 0, 1, 1] { ^bb0(%arg1: index, %arg2: index, %arg3: index, %arg4: index): tensor.yield %cst: f32 } : tensor to tensor return %padded: tensor } // ----- // CHECK-LABEL: func @pad_after_cast_same_shape( // CHECK-SAME: %[[INPUT:.*]]: tensor, // CHECK-SAME: %[[PADDING:.*]]: index) -> tensor { // CHECK: %[[CST:.*]] = arith.constant 0.000000e+00 : f32 // CHECK: %[[PADDED:.*]] = tensor.pad %[[INPUT]] // CHECK-SAME: low[0, %[[PADDING]], 1, 1] high[0, %[[PADDING]], 1, 1] { // CHECK: ^bb0(%[[ARG1:.*]]: index, %[[ARG2:.*]]: index, %[[ARG3:.*]]: index, %[[ARG4:.*]]: index): // CHECK: tensor.yield %[[CST]] : f32 // CHECK: } : tensor to tensor // CHECK: return %[[PADDED:.*]] : tensor // CHECK: } func.func @pad_after_cast_same_shape(%arg0: tensor, %padding : index) -> tensor { %cst = arith.constant 0.000000e+00 : f32 %dynamic = tensor.cast %arg0 : tensor to tensor %padded = tensor.pad %dynamic low[0, %padding, 1, 1] high[0, %padding, 1, 1] { ^bb0(%arg1: index, %arg2: index, %arg3: index, %arg4: index): tensor.yield %cst: f32 } : tensor to tensor return %padded: tensor } // ----- // CHECK-LABEL: func @pad_of_cast( // CHECK-NOT: tensor.cast // CHECK: tensor.pad // CHECK: tensor<8x?xf32> to tensor<8x32xf32> func.func @pad_of_cast(%t: tensor<8x?xf32>, %s: index) -> tensor<8x32xf32> { %c0 = arith.constant 0 : index %cst = arith.constant 0.000000e+00 : f32 %0 = tensor.cast %t : tensor<8x?xf32> to tensor %1 = tensor.pad %0 low[%c0, %c0] high[%c0, %s] { ^bb0(%arg9: index, %arg10: index): tensor.yield %cst : f32 } : tensor to tensor<8x32xf32> return %1 : tensor<8x32xf32> } // ----- // CHECK-LABEL: @cast_of_pad_more_static func.func @cast_of_pad_more_static(%arg0: tensor, %padding: index) -> tensor<32x32xf32> { %cst = arith.constant 0.000000e+00 : f32 // CHECK: %[[PAD:.*]] = tensor.pad // CHECK: tensor to tensor<32x32xf32> %padded = tensor.pad %arg0 low[%padding, %padding] high[0, 0] { ^bb0(%arg1: index, %arg2: index): tensor.yield %cst : f32 } : tensor to tensor // CHECK-NOT: tensor.cast %casted = tensor.cast %padded : tensor to tensor<32x32xf32> // CHECK: return %[[PAD]] return %casted : tensor<32x32xf32> } // ----- // CHECK-LABEL: @cast_of_pad_less_static func.func @cast_of_pad_less_static(%arg0: tensor<32x?x?xf32>, %padding: index) -> tensor { %cst = arith.constant 0.000000e+00 : f32 // CHECK: tensor.pad %padded = tensor.pad %arg0 low[%padding, %padding, %padding] high[0, 0, 0] { ^bb0(%arg1: index, %arg2: index, %arg3: index): tensor.yield %cst : f32 } : tensor<32x?x?xf32> to tensor<32x?x?xf32> // CHECK: %[[CAST:.*]] = tensor.cast %casted = tensor.cast %padded : tensor<32x?x?xf32> to tensor // CHECK: return %[[CAST]] return %casted : tensor } // ----- func.func @pad_cast_fold(%arg0: tensor<4x4xf32>) -> tensor<4x4xf32> { %c0 = arith.constant 0 : index %cst = arith.constant 0.0 : f32 %0 = tensor.cast %arg0 : tensor<4x4xf32> to tensor %1 = tensor.pad %0 low[%c0, %c0] high[%c0, %c0] { ^bb0(%arg1: index, %arg2: index): tensor.yield %cst : f32 } : tensor to tensor<4x4xf32> return %1 : tensor<4x4xf32> } // CHECK-LABEL: @pad_cast // CHECK-SAME: %[[ARG0:.+]]: tensor<4x4xf32> // CHECK: return %[[ARG0]] // ----- // CHECK-LABEL: func @fold_pad_source_cast( // CHECK-SAME: %[[ARG0:.*]]: tensor<4x?xf32> // CHECK-NOT: tensor.cast // CHECK: %[[RESULT:.*]] = tensor.pad %[[ARG0]] func.func @fold_pad_source_cast(%arg0: tensor<4x?xf32>) -> tensor<4x4xf32> { %cst = arith.constant 0.0 : f32 %0 = tensor.cast %arg0 : tensor<4x?xf32> to tensor %1 = tensor.pad %0 low[0, 0] high[0, 1] { ^bb0(%arg1: index, %arg2: index): tensor.yield %cst : f32 } : tensor to tensor<4x4xf32> return %1 : tensor<4x4xf32> } // ----- // CHECK-LABEL: func @pad_static_zero_cast( // CHECK-SAME: %[[ARG0:.*]]: tensor // CHECK-NOT: tensor.pad // CHECK: %[[RESULT:.*]] = tensor.cast %[[ARG0]] : tensor to tensor<2x3x4xf32> // CHECK: return %[[RESULT]] func.func @pad_static_zero_cast(%arg0: tensor, %pad_value: f32) -> tensor<2x3x4xf32> { %c0 = arith.constant 0 : index %0 = tensor.pad %arg0 low[0, %c0, 0] high[0, 0, %c0] { ^bb0(%arg1: index, %arg2: index, %arg3: index): tensor.yield %pad_value : f32 } : tensor to tensor<2x3x4xf32> return %0 : tensor<2x3x4xf32> } // ----- // CHECK-LABEL: func @pad_nofold_static_zero( // CHECK-SAME: %[[ARG0:.*]]: tensor // CHECK: %[[PAD:.*]] = tensor.pad // CHECK: return %[[PAD]] func.func @pad_nofold_static_zero(%arg0: tensor, %pad_value: f32) -> tensor<2x3x4xf32> { %c0 = arith.constant 0 : index %0 = tensor.pad %arg0 nofold low[0, %c0, 0] high[0, 0, %c0] { ^bb0(%arg1: index, %arg2: index, %arg3: index): tensor.yield %pad_value : f32 } : tensor to tensor<2x3x4xf32> return %0 : tensor<2x3x4xf32> } // ----- // CHECK-LABEL: func @fold_orthogonal_pad_chains( // CHECK-SAME: %[[ARG0:.*]]: tensor<64x64xf32>, // CHECK-SAME: %[[SZ0:.*]]: index, %[[SZ1:.*]]: index, %[[PW0:.*]]: index, %[[PW1:.*]]: index func.func @fold_orthogonal_pad_chains(%arg0: tensor<64x64xf32>, %sz0 : index, %sz1 : index, %pw0 : index, %pw1 : index) -> tensor<8x4xf32> { // CHECK: %[[T0:.*]] = tensor.extract_slice %[[ARG0]] // CHECK-SAME: [16, 4] [%[[SZ0]], %[[SZ1]]] // CHECK: %[[PAD:.*]] = tensor.pad %[[T0]] nofold // CHECK-SAME: high[%[[PW0]], %[[PW1]]] // CHECK: return %[[PAD]] %pad_value = arith.constant 0.0 : f32 %0 = tensor.extract_slice %arg0[16, 0] [%sz0, 64] [1, 1] : tensor<64x64xf32> to tensor %1 = tensor.pad %0 low[0, 0] high[%pw0, 0] { ^bb0(%arg1: index, %arg2: index): tensor.yield %pad_value : f32 } : tensor to tensor<8x64xf32> %2 = tensor.extract_slice %1[0, 4] [8, %sz1] [1, 1] : tensor<8x64xf32> to tensor<8x?xf32> %3 = tensor.pad %2 nofold low[0, 0] high[0, %pw1] { ^bb0(%arg1: index, %arg2: index): tensor.yield %pad_value : f32 } : tensor<8x?xf32> to tensor<8x4xf32> func.return %3 : tensor<8x4xf32> } // ----- // CHECK-LABEL: func @dont_fold_pad_chains( // CHECK-SAME: %[[ARG0:.*]]: tensor<64x64xf32>, // CHECK-SAME: %[[SZ0:.*]]: index, %[[SZ1:.*]]: index, %[[PW0:.*]]: index, %[[PW1:.*]]: index func.func @dont_fold_pad_chains(%arg0: tensor<64x64xf32>, %sz0 : index, %sz1 : index, %pw0 : index, %pw1 : index) -> (tensor<8x4xf32>, tensor<4x64xf32>, tensor<8x4xf32>, tensor<6x4xf32>) { // CHECK: %[[T0:.*]] = tensor.extract_slice %[[ARG0]] // CHECK: %[[T1:.*]] = tensor.pad %[[T0]] %pad_value = arith.constant 0.0 : f32 %0 = tensor.extract_slice %arg0[16, 0] [%sz0, 64] [1, 1] : tensor<64x64xf32> to tensor %1 = tensor.pad %0 low[0, 0] high[%pw0, 0] { ^bb0(%arg1: index, %arg2: index): tensor.yield %pad_value : f32 } : tensor to tensor<8x64xf32> // Don't fold if the padding values are different. // CHECK: %[[T2:.*]] = tensor.extract_slice %[[T1]] // CHECK-SAME: [0, 4] [8, %[[SZ1]]] // CHECK: %[[PAD0:.*]] = tensor.pad %[[T2]] %different_value = arith.constant 1.0 : f32 %2 = tensor.extract_slice %1[0, 4] [8, %sz1] [1, 1] : tensor<8x64xf32> to tensor<8x?xf32> %3 = tensor.pad %2 nofold low[0, 0] high[0, %pw1] { ^bb0(%arg1: index, %arg2: index): tensor.yield %different_value : f32 } : tensor<8x?xf32> to tensor<8x4xf32> // Don't fold if the pad ops have common padding dimensions. // CHECK: %[[T3:.*]] = tensor.extract_slice %[[T1]] // CHECK-SAME: [4, 0] [%[[SZ1]], 64] // CHECK: %[[PAD1:.*]] = tensor.pad %[[T3]] %4 = tensor.extract_slice %1[4, 0] [%sz1, 64] [1, 1] : tensor<8x64xf32> to tensor %5 = tensor.pad %4 nofold low[0, 0] high[%pw1, 0] { ^bb0(%arg1: index, %arg2: index): tensor.yield %pad_value : f32 } : tensor to tensor<4x64xf32> // Don't fold if padded source tensor dimension is accessed at an offset. // CHECK: %[[T4:.*]] = tensor.extract_slice %[[T1]] // CHECK-SAME: [%[[SZ0]], 4] [8, %[[SZ1]] // CHECK: %[[PAD2:.*]] = tensor.pad %[[T4]] %6 = tensor.extract_slice %1[%sz0, 4] [8, %sz1] [1, 1] : tensor<8x64xf32> to tensor<8x?xf32> %7 = tensor.pad %6 nofold low[0, 0] high[0, %pw1] { ^bb0(%arg1: index, %arg2: index): tensor.yield %pad_value : f32 } : tensor<8x?xf32> to tensor<8x4xf32> // Don't fold if a padded source tensor dimension is sliced. // CHECK: %[[T5:.*]] = tensor.extract_slice %[[T1]] // CHECK-SAME: [0, 4] [6, %[[SZ1]] // CHECK: %[[PAD3:.*]] = tensor.pad %[[T5]] %8 = tensor.extract_slice %1[0, 4] [6, %sz1] [1, 1] : tensor<8x64xf32> to tensor<6x?xf32> %9 = tensor.pad %8 nofold low[0, 0] high[0, %pw1] { ^bb0(%arg1: index, %arg2: index): tensor.yield %pad_value : f32 } : tensor<6x?xf32> to tensor<6x4xf32> // CHECK: return %[[PAD0]], %[[PAD1]], %[[PAD2]], %[[PAD3]] func.return %3, %5, %7, %9 : tensor<8x4xf32>, tensor<4x64xf32>, tensor<8x4xf32>, tensor<6x4xf32> } // ----- // CHECK-LABEL: func @merge_constant_padding // CHECK-SAME: %[[ARG0:[A-Za-z0-9]+]]: tensor<2x3xf32> // CHECK-SAME: %[[PADVAL:[A-Za-z0-9]+]]: f32 // CHECK: %[[PAD:.+]] = tensor.pad %[[ARG0]] low[1, 3] high[4, 2] // CHECK: tensor.yield %[[PADVAL]] // CHECK: return %[[PAD]] func.func @merge_constant_padding(%arg0: tensor<2x3xf32>, %pad_value: f32) -> tensor<7x8xf32> { %pad0 = tensor.pad %arg0 low[1, 1] high[1, 0] { ^bb0(%b0: index, %b1 : index): tensor.yield %pad_value : f32 } : tensor<2x3xf32> to tensor<4x4xf32> %pad1 = tensor.pad %pad0 low[0, 2] high[3, 2] { ^bb0(%b2: index, %b3 : index): tensor.yield %pad_value : f32 } : tensor<4x4xf32> to tensor<7x8xf32> return %pad1 : tensor<7x8xf32> } // ----- // CHECK: #[[$MAP:.*]] = affine_map<()[s0] -> (s0 + 1)> // CHECK-LABEL: func @merge_constant_padding_dynamic // CHECK-SAME: %[[ARG0:[A-Za-z0-9]+]]: tensor // CHECK-SAME: %[[IDX:[A-Za-z0-9]+]]: index // CHECK-SAME: %[[PADVAL:[A-Za-z0-9]+]]: f32 // CHECK: %[[HIGH:.+]] = affine.apply #[[$MAP]]()[%[[IDX]]] // CHECK: %[[PAD:.+]] = tensor.pad %[[ARG0]] low[%[[IDX]], 3] high[%[[HIGH]], 2] // CHECK: tensor.yield %[[PADVAL]] // CHECK: return %[[PAD]] func.func @merge_constant_padding_dynamic(%arg0: tensor, %idx: index, %pad_value: f32) -> tensor { %pad0 = tensor.pad %arg0 low[%idx, 1] high[1, 0] { ^bb0(%b0: index, %b1 : index): tensor.yield %pad_value : f32 } : tensor to tensor %pad1 = tensor.pad %pad0 low[0, 2] high[%idx, 2] { ^bb0(%b2: index, %b3 : index): tensor.yield %pad_value : f32 } : tensor to tensor return %pad1 : tensor } // ----- // Verify that folding does not happen if it would drop a nofold attribute // CHECK-LABEL: func @dont_merge_constant_padding_nofold // CHECK: tensor.pad {{.*}} nofold // CHECK: tensor.pad func.func @dont_merge_constant_padding_nofold(%arg0: tensor<2x3xf32>, %pad_value: f32) -> tensor<7x8xf32> { %pad0 = tensor.pad %arg0 nofold low[1, 1] high[1, 0] { ^bb0(%b0: index, %b1 : index): tensor.yield %pad_value : f32 } : tensor<2x3xf32> to tensor<4x4xf32> %pad1 = tensor.pad %pad0 low[0, 2] high[3, 2] { ^bb0(%b2: index, %b3 : index): tensor.yield %pad_value : f32 } : tensor<4x4xf32> to tensor<7x8xf32> return %pad1 : tensor<7x8xf32> } // ----- // Verify that folding does not happen if it would drop a nofold attribute // CHECK-LABEL: func @dont_merge_constant_padding_different_vals // CHECK: tensor.pad // CHECK: tensor.pad func.func @dont_merge_constant_padding_different_vals( %arg0: tensor<2x3xf32>, %pad_value0: f32, %pad_value1: f32) -> tensor<7x8xf32> { %pad0 = tensor.pad %arg0 low[1, 1] high[1, 0] { ^bb0(%b0: index, %b1 : index): tensor.yield %pad_value0 : f32 } : tensor<2x3xf32> to tensor<4x4xf32> %pad1 = tensor.pad %pad0 low[0, 2] high[3, 2] { ^bb0(%b2: index, %b3 : index): tensor.yield %pad_value1 : f32 } : tensor<4x4xf32> to tensor<7x8xf32> return %pad1 : tensor<7x8xf32> } // ----- // CHECK-LABEL: func @fold_collapse_shape_from_elements func.func @fold_collapse_shape_from_elements(%arg0: i32) -> tensor { // CHECK: %[[FROM:.+]] = tensor.from_elements %arg0 : tensor // CHECK: return %[[FROM]] : tensor %0 = tensor.from_elements %arg0 : tensor<1xi32> %1 = tensor.collapse_shape %0 [] : tensor<1xi32> into tensor return %1 : tensor } // ----- // CHECK-LABEL: func @fold_expand_shape_from_elements func.func @fold_expand_shape_from_elements(%arg0: i32) -> tensor<1xi32> { // CHECK: %[[FROM:.+]] = tensor.from_elements %arg0 : tensor<1xi32> // CHECK: return %[[FROM]] : tensor<1xi32> %0 = tensor.from_elements %arg0 : tensor %1 = tensor.expand_shape %0 [] output_shape [1] : tensor into tensor<1xi32> return %1 : tensor<1xi32> } // ----- // CHECK-LABEL: func @propagate_index_cast func.func @propagate_index_cast(%arg0: tensor<1xi32>) -> index { // CHECK: %[[IDX:.+]] = arith.constant 0 // CHECK: %[[EXT:.+]] = tensor.extract %arg0[%[[IDX]]] : tensor<1xi32> // CHECK: %[[CAST:.+]] = arith.index_cast %[[EXT]] // CHECK: return %[[CAST]] : index %c0 = arith.constant 0 : index %0 = arith.index_cast %arg0 : tensor<1xi32> to tensor<1xindex> %1 = tensor.extract %0[%c0] : tensor<1xindex> return %1 : index } // ----- // CHECK-LABEL: func @splat_fold func.func @splat_fold() -> tensor<4xf32> { %c = arith.constant 1.0 : f32 %t = tensor.splat %c : tensor<4xf32> return %t : tensor<4xf32> // CHECK-NEXT: [[T:%.*]] = arith.constant dense<1.000000e+00> : tensor<4xf32> // CHECK-NEXT: return [[T]] : tensor<4xf32> } // ----- // CHECK-LABEL: func @splat_dynamic_no_fold // CHECK-SAME: %[[M:.+]]: index func.func @splat_dynamic_no_fold(%m: index) -> tensor<4x?xf32> { // CHECK: %[[F:.+]] = arith.constant %f = arith.constant 1.0 : f32 // CHECK: tensor.splat %[[F]][%[[M]]] : tensor<4x?xf32> %t = tensor.splat %f[%m] : tensor<4x?xf32> return %t : tensor<4x?xf32> } // ----- // CHECK-LABEL: func @cast_extract_slice func.func @cast_extract_slice(%arg0 : tensor<128x512xf32>, %s : index, %o : index) -> tensor<16x512xf32> { // CHECK: %[[E:.*]] = tensor.extract_slice %{{.*}}[%{{.*}}, 0] [16, 512] [1, 1] : tensor<128x512xf32> to tensor<16x512xf32> %0 = tensor.extract_slice %arg0[%o, 0] [%s, 512] [1, 1] : tensor<128x512xf32> to tensor %1 = tensor.cast %0 : tensor to tensor<16x512xf32> // CHECK: return %[[E]] : tensor<16x512xf32> return %1 : tensor<16x512xf32> } // ----- // CHECK-LABEL: func @cast_extract_slice_rank_reduce func.func @cast_extract_slice_rank_reduce(%arg0 : tensor<128x512xf32>, %s : index, %o : index) -> tensor<16xf32> { // CHECK: %[[E:.*]] = tensor.extract_slice %{{.*}}[%{{.*}}, 0] [16, 1] [1, 1] : tensor<128x512xf32> to tensor<16xf32> %0 = tensor.extract_slice %arg0[%o, 0] [%s, 1] [1, 1] : tensor<128x512xf32> to tensor %1 = tensor.cast %0 : tensor to tensor<16xf32> // CHECK: return %[[E]] : tensor<16xf32> return %1 : tensor<16xf32> } // ----- // CHECK-LABEL: func.func @canonicalize_parallel_insert_slice_indices( // CHECK-SAME: %[[arg0:[0-9a-z]*]]: tensor<1x5xf32>, // CHECK-SAME: %[[arg1:[0-9a-z]*]]: tensor, // CHECK-SAME: %[[num_threads:[0-9a-z]*]]: index func.func @canonicalize_parallel_insert_slice_indices( %arg0 : tensor<1x5xf32>, %arg1: tensor, %num_threads : index) -> tensor { %cst = arith.constant 4.200000e+01 : f32 %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index // CHECK-NOT: tensor.cast // CHECK: scf.forall (%[[tidx:[0-9a-z]*]]) in (%[[num_threads]]) shared_outs(%[[o:.*]] = %[[arg1]]) -> (tensor) { // CHECK-NEXT: scf.forall.in_parallel { // CHECK-NEXT: tensor.parallel_insert_slice %[[arg0]] into %[[o]][%[[tidx]], 0] [1, 5] [1, 1] %2 = scf.forall (%tidx) in (%num_threads) shared_outs(%o = %arg1) -> (tensor) { %3 = tensor.cast %arg0 : tensor<1x5xf32> to tensor scf.forall.in_parallel { tensor.parallel_insert_slice %3 into %o[%tidx, %c0] [%c1, 5] [%c1, %c1] : tensor into tensor } } return %2 : tensor } // ----- // CHECK-LABEL: func.func @fold_insert_slice_after_extract_slice // CHECK-SAME: (%[[INPUT:.+]]: tensor<1x2x2x4xf32>) func.func @fold_insert_slice_after_extract_slice(%input: tensor<1x2x2x4xf32>) -> tensor<1x2x2x4xf32> { %c0 = arith.constant 0 : index %0 = tensor.extract_slice %input[0, 0, 0, 0] [1, 1, 2, 4] [1, 1, 1, 1] : tensor<1x2x2x4xf32> to tensor<1x2x4xf32> %1 = tensor.insert_slice %0 into %input[%c0, 0, %c0, 0] [1, 1, 2, 4] [1, 1, 1, 1] : tensor<1x2x4xf32> into tensor<1x2x2x4xf32> // CHECK: return %[[INPUT]] return %1: tensor<1x2x2x4xf32> } // ----- // CHECK-LABEL: func.func @dont_fold_mismatched_source_dst func.func @dont_fold_mismatched_source_dst(%input0: tensor<1x2x2x4xf32>, %input1: tensor<1x2x2x4xf32>) -> tensor<1x2x2x4xf32> { %c0 = arith.constant 0 : index // CHECK: tensor.extract_slice %0 = tensor.extract_slice %input0[0, 0, 0, 0] [1, 1, 2, 4] [1, 1, 1, 1] : tensor<1x2x2x4xf32> to tensor<1x2x4xf32> // CHECK: tensor.insert_slice %1 = tensor.insert_slice %0 into %input1[%c0, 0, %c0, 0] [1, 1, 2, 4] [1, 1, 1, 1] : tensor<1x2x4xf32> into tensor<1x2x2x4xf32> return %1: tensor<1x2x2x4xf32> } // ----- // CHECK-LABEL: func.func @dont_fold_mismatched_parameters func.func @dont_fold_mismatched_parameters(%input: tensor<1x2x2x4xf32>) -> tensor<1x2x2x4xf32> { %c0 = arith.constant 0 : index // CHECK: tensor.extract_slice %0 = tensor.extract_slice %input[0, 0, 0, 0] [1, 1, 2, 4] [1, 1, 1, 1] : tensor<1x2x2x4xf32> to tensor<1x2x4xf32> // CHECK: tensor.insert_slice %1 = tensor.insert_slice %0 into %input[%c0, 1, %c0, 0] [1, 1, 2, 4] [1, 1, 1, 1] : tensor<1x2x4xf32> into tensor<1x2x2x4xf32> return %1: tensor<1x2x2x4xf32> } // ----- func.func @empty_canonicalize() -> (tensor<4x5x?xf32>) { %c6 = arith.constant 6 : index %0 = tensor.empty(%c6) : tensor<4x5x?xf32> return %0 : tensor<4x5x?xf32> } // CHECK: func @empty_canonicalize // CHECK: %[[T0:.+]] = tensor.empty() : tensor<4x5x6xf32> // CHECK: %[[T1:.+]] = tensor.cast %[[T0]] : tensor<4x5x6xf32> to tensor<4x5x?xf32> // CHECK: return %[[T1]] // ----- func.func @fold_empty_tensor_with_cast(%arg0 : index) -> tensor<1x12xf32> { %0 = tensor.empty(%arg0) : tensor %1 = tensor.cast %0 : tensor to tensor<1x12xf32> return %1 : tensor<1x12xf32> } // CHECK: func @fold_empty_tensor_with_cast(%[[ARG0:.+]]: index) // CHECK: %[[T0:.+]] = tensor.empty() : tensor<1x12xf32> // CHECK: return %[[T0]] : tensor<1x12xf32> // ----- func.func private @some_use(%i : index, %j : index) // CHECK-LABEL: func @empty_tensor_canonicalize // CHECK-SAME: %[[I:.*]]: index func.func @empty_tensor_canonicalize(%i : index) { %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index // CHECK-NOT: tensor.empty %0 = tensor.empty(%i) : tensor // CHECK-NOT: tensor.dim %1 = tensor.dim %0, %c0: tensor %2 = tensor.dim %0, %c1: tensor // CHECK: %[[c42:.*]] = arith.constant 42 : index // CHECK: call @some_use(%[[I]], %[[c42]]) call @some_use(%1, %2) : (index, index) -> () return } // ----- // CHECK: #[[$map:.*]] = affine_map<()[s0] -> (s0 floordiv 40)> // CHECK-LABEL: func @dim_of_expand_shape( // CHECK-SAME: %[[t:.*]]: tensor // CHECK: %[[c1:.*]] = arith.constant 1 : index // CHECK: %[[dim:.*]] = tensor.dim %[[t]], %[[c1]] : tensor // CHECK: %[[apply:.*]] = affine.apply #[[$map]]()[%[[dim]]] // CHECK: return %[[apply]] func.func @dim_of_expand_shape(%t: tensor, %sz0: index, %sz1: index) -> index { %c2 = arith.constant 2 : index %0 = tensor.expand_shape %t [[0], [1, 2, 3, 4, 5]] output_shape [%sz0, 1, %sz1, 5, 1, 8] : tensor into tensor %1 = tensor.dim %0, %c2 : tensor return %1 : index } // ----- // CHECK: #[[$map:.*]] = affine_map<()[s0, s1, s2] -> (((s0 * s1) * s2) * 7)> // CHECK-LABEL: func @dim_of_collapse_shape( // CHECK-SAME: %[[t:.*]]: tensor // CHECK-DAG: %[[c1:.*]] = arith.constant 1 : index // CHECK-DAG: %[[c2:.*]] = arith.constant 2 : index // CHECK-DAG: %[[c4:.*]] = arith.constant 4 : index // CHECK-DAG: %[[dim1:.*]] = tensor.dim %[[t]], %[[c1]] // CHECK-DAG: %[[dim2:.*]] = tensor.dim %[[t]], %[[c2]] // CHECK-DAG: %[[dim4:.*]] = tensor.dim %[[t]], %[[c4]] // CHECK: %[[apply:.*]] = affine.apply #[[$map]]()[%[[dim1]], %[[dim2]], %[[dim4]]] // CHECK: return %[[apply]] func.func @dim_of_collapse_shape(%t: tensor) -> index { %c1 = arith.constant 1 : index %0 = tensor.collapse_shape %t [[0], [1, 2, 3, 4]] : tensor into tensor %1 = tensor.dim %0, %c1 : tensor return %1 : index } // ----- // Can't fold when dim is out of bound. // CHECK-LABEL: func @out_of_bound_dim_of_collapse_shape( // CHECK: %[[DIM:.*]] = tensor.dim // CHECK: return %[[DIM]] func.func @out_of_bound_dim_of_collapse_shape(%t: tensor) -> index { %c5 = arith.constant 5 : index %0 = tensor.collapse_shape %t [[0], [1, 2, 3, 4]] : tensor into tensor %1 = tensor.dim %0, %c5 : tensor return %1 : index } // ----- // CHECK-LABEL: func @collapse_expand_fold_to_cast( // CHECK-SAME: %[[t:.*]]: tensor // CHECK: return %[[t]] func.func @collapse_expand_fold_to_cast(%t: tensor, %sz0: index) -> (tensor) { %0 = tensor.expand_shape %t [[0, 1]] output_shape [1, %sz0] : tensor into tensor<1x?xf32> %1 = tensor.collapse_shape %0 [[0, 1]] : tensor<1x?xf32> into tensor return %1 : tensor } // ----- // Chain: NC -> NCnc -> NCnc -> NC // CHECK: func.func @unpack_pack( // CHECK-SAME: %[[T:.+]]: tensor<128x128xf32>) // CHECK: return %[[T]] : tensor<128x128xf32> func.func @unpack_pack(%t: tensor<128x128xf32>) -> tensor<128x128xf32> { %tensor_empty = tensor.empty() : tensor<16x16x8x8xf32> %packed = tensor.pack %t inner_dims_pos = [0, 1] inner_tiles = [8, 8] into %tensor_empty : tensor<128x128xf32> -> tensor<16x16x8x8xf32> %tensor_empty1 = tensor.empty() : tensor<128x128xf32> %unpacked = tensor.unpack %packed inner_dims_pos = [0, 1] inner_tiles = [8, 8] into %tensor_empty1 : tensor<16x16x8x8xf32> -> tensor<128x128xf32> return %unpacked : tensor<128x128xf32> } // ----- // Chain: NC -> NCcn -> NCnc -> NC // CHECK: func.func @unpack_pack( // CHECK-SAME: %[[T:.+]]: tensor<128x128xf32>) // CHECK-NOT: return %[[T]] : tensor<128x128xf32> func.func @unpack_pack(%t: tensor<128x128xf32>) -> tensor<128x128xf32> { %tensor_empty = tensor.empty() : tensor<16x16x8x8xf32> %packed = tensor.pack %t inner_dims_pos = [1, 0] inner_tiles = [8, 8] into %tensor_empty : tensor<128x128xf32> -> tensor<16x16x8x8xf32> %tensor_empty1 = tensor.empty() : tensor<128x128xf32> %unpacked = tensor.unpack %packed inner_dims_pos = [0, 1] inner_tiles = [8, 8] into %tensor_empty1 : tensor<16x16x8x8xf32> -> tensor <128x128xf32> return %unpacked : tensor<128x128xf32> } // ----- // Chain: NC -> CNcn -> NCnc -> NC // CHECK: func.func @unpack_pack( // CHECK-SAME: %[[T:.+]]: tensor<128x128xf32>) // CHECK-NOT: return %[[T]] : tensor<128x128xf32> func.func @unpack_pack(%t: tensor<128x128xf32>) -> tensor<128x128xf32> { %tensor_empty = tensor.empty() : tensor<16x16x8x8xf32> %packed = tensor.pack %t outer_dims_perm = [1, 0] inner_dims_pos = [1, 0] inner_tiles = [8, 8] into %tensor_empty : tensor<128x128xf32> -> tensor<16x16x8x8xf32> %tensor_empty1 = tensor.empty() : tensor<128x128xf32> %unpacked = tensor.unpack %packed inner_dims_pos = [0, 1] inner_tiles = [8, 8] into %tensor_empty1 : tensor<16x16x8x8xf32> -> tensor <128x128xf32> return %unpacked : tensor<128x128xf32> } // ----- // Chain: NC -> NCnc -> NCnc -> NC // CHECK: func.func @unpack_pack( // CHECK-SAME: %[[T:.+]]: tensor<128x128xf32>, // CHECK: return %[[T]] : tensor<128x128xf32> func.func @unpack_pack(%t: tensor<128x128xf32>, %tile1: index, %tile2: index) -> tensor<128x128xf32> { %tensor_empty = tensor.empty(%tile1, %tile2) : tensor<16x16x?x?xf32> %packed = tensor.pack %t inner_dims_pos = [0, 1] inner_tiles = [%tile1, %tile2] into %tensor_empty : tensor<128x128xf32> -> tensor<16x16x?x?xf32> %tensor_empty1 = tensor.empty() : tensor<128x128xf32> %unpacked = tensor.unpack %packed inner_dims_pos = [0, 1] inner_tiles = [%tile1, %tile2] into %tensor_empty1 : tensor<16x16x?x?xf32> -> tensor <128x128xf32> return %unpacked : tensor<128x128xf32> } // ----- // CHECK: func.func @unpack_pack_with_padding_no_canonicalization( // CHECK: tensor.pack // CHECK: tensor.unpack func.func @unpack_pack_with_padding_no_canonicalization(%t: tensor<256x512xbf16>) -> tensor<224x512xbf16> { %tensor_empty = tensor.empty() : tensor<4x16x64x32xbf16> %tensor_empty1 = tensor.empty() : tensor<224x512xbf16> %packed = tensor.pack %t outer_dims_perm = [0, 1] inner_dims_pos = [0, 1] inner_tiles = [64, 32] into %tensor_empty : tensor<256x512xbf16> -> tensor<4x16x64x32xbf16> %unpacked = tensor.unpack %packed inner_dims_pos = [0, 1] inner_tiles = [64, 32] into %tensor_empty1 : tensor<4x16x64x32xbf16> -> tensor<224x512xbf16> return %unpacked : tensor<224x512xbf16> } // ----- // Chain NCnc -> NC -> NC -> NCnc // CHECK: func.func @pack_unpack( // CHECK-SAME: %[[T:.+]]: tensor<16x16x?x?xf32>, // CHECK: return %[[T]] : tensor<16x16x?x?xf32> func.func @pack_unpack(%t: tensor<16x16x?x?xf32>, %tile1: index, %tile2: index) -> tensor<16x16x?x?xf32> { %tensor_empty = tensor.empty() : tensor<128x128xf32> %unpacked = tensor.unpack %t inner_dims_pos = [0, 1] inner_tiles = [%tile1, %tile2] into %tensor_empty : tensor<16x16x?x?xf32> -> tensor<128x128xf32> %tensor_empty1 = tensor.empty(%tile1, %tile2) : tensor<16x16x?x?xf32> %packed = tensor.pack %unpacked inner_dims_pos = [0, 1] inner_tiles = [%tile1, %tile2] into %tensor_empty1 : tensor<128x128xf32> -> tensor<16x16x?x?xf32> return %packed : tensor<16x16x?x?xf32> } // ----- // Chain NCnc -> NC -> NC -> NCnc // CHECK: func.func @pack_unpack( // CHECK-SAME: %[[T:.+]]: tensor<16x16x8x8xf32> // CHECK: return %[[T]] : tensor<16x16x8x8xf32> func.func @pack_unpack(%t: tensor<16x16x8x8xf32>) -> tensor<16x16x8x8xf32> { %tensor_empty = tensor.empty() : tensor<128x128xf32> %unpacked = tensor.unpack %t inner_dims_pos = [0, 1] inner_tiles = [8, 8] into %tensor_empty : tensor<16x16x8x8xf32> -> tensor<128x128xf32> %tensor_empty1 = tensor.empty() : tensor<16x16x8x8xf32> %packed = tensor.pack %unpacked inner_dims_pos = [0, 1] inner_tiles = [8, 8] into %tensor_empty1 : tensor<128x128xf32> -> tensor<16x16x8x8xf32> return %packed : tensor<16x16x8x8xf32> } // ----- // CHECK: func.func @pack_unpack_same_tiles( // CHECK-SAME: %[[T:.+]]: tensor, // CHECK: return %[[T]] : tensor func.func @pack_unpack_same_tiles(%t: tensor, %dim1: index, %dim2: index, %dim3: index, %dim4: index, %dim5: index, %dim6: index, %tile1: index, %tile2: index) -> tensor { %tensor_empty = tensor.empty(%dim1, %dim2) : tensor %unpacked = tensor.unpack %t inner_dims_pos = [0, 1] inner_tiles = [%tile1, %tile2] into %tensor_empty : tensor -> tensor %tensor_empty1 = tensor.empty(%dim3, %dim4, %dim5, %dim6) : tensor %packed = tensor.pack %unpacked inner_dims_pos = [0, 1] inner_tiles = [%tile1, %tile2] into %tensor_empty1 : tensor -> tensor return %packed : tensor } // ----- // CHECK: func.func @pack_unpack_different_tiles( // CHECK-SAME: %[[T:.+]]: tensor, // CHECK-NOT: return %[[T]] : tensor func.func @pack_unpack_different_tiles(%t: tensor, %dim1: index, %dim2: index, %dim3: index, %dim4: index, %dim5: index, %dim6: index, %tile1: index, %tile2: index) -> tensor { %tensor_empty = tensor.empty(%dim1, %dim2) : tensor %unpacked = tensor.unpack %t inner_dims_pos = [0, 1] inner_tiles = [%tile1, %tile2] into %tensor_empty : tensor -> tensor %tensor_empty1 = tensor.empty(%dim3, %dim4, %dim5, %dim6) : tensor %packed = tensor.pack %unpacked inner_dims_pos = [0, 1] inner_tiles = [%tile2, %tile1] into %tensor_empty1 : tensor -> tensor return %packed : tensor } // ----- // CHECK: func.func @pack_unpack_dynamic_with_padding( // CHECK-SAME: %[[T:.+]]: tensor, // CHECK-NOT: return %[[T]] : tensor func.func @pack_unpack_dynamic_with_padding(%t: tensor, %dim1: index, %dim2: index, %dim3: index, %dim4: index, %dim5: index, %dim6: index, %tile1: index, %tile2: index, %pad: f32) -> tensor { %tensor_empty = tensor.empty(%dim1, %dim2) : tensor %unpacked = tensor.unpack %t inner_dims_pos = [0, 1] inner_tiles = [%tile1, %tile2] into %tensor_empty : tensor -> tensor %tensor_empty1 = tensor.empty(%dim3, %dim4, %dim5, %dim6) : tensor %packed = tensor.pack %unpacked padding_value(%pad: f32) inner_dims_pos = [0, 1] inner_tiles = [%tile1, %tile2] into %tensor_empty1 : tensor -> tensor return %packed : tensor } // ----- // CHECK: func.func @pack_outer_dims_unpack_no_outer_dims( // CHECK-SAME: %[[T:.+]]: tensor<16x16x?x?xf32>, // CHECK: return %[[T]] : tensor<16x16x?x?xf32> func.func @pack_outer_dims_unpack_no_outer_dims(%t: tensor<16x16x?x?xf32>, %tile1: index, %tile2: index) -> tensor<16x16x?x?xf32> { %tensor_empty = tensor.empty() : tensor<128x128xf32> %unpacked = tensor.unpack %t inner_dims_pos = [0, 1] inner_tiles = [%tile1, %tile2] into %tensor_empty : tensor<16x16x?x?xf32> -> tensor<128x128xf32> %tensor_empty1 = tensor.empty(%tile1, %tile2) : tensor<16x16x?x?xf32> %packed = tensor.pack %unpacked outer_dims_perm = [0, 1] inner_dims_pos = [0, 1] inner_tiles = [%tile1, %tile2] into %tensor_empty1 : tensor<128x128xf32> -> tensor<16x16x?x?xf32> return %packed : tensor<16x16x?x?xf32> } // ----- // CHECK: func.func @pack_no_outer_dims_unpack_outer_dims( // CHECK-SAME: %[[T:.+]]: tensor<16x16x?x?xf32>, // CHECK: return %[[T]] : tensor<16x16x?x?xf32> func.func @pack_no_outer_dims_unpack_outer_dims(%t: tensor<16x16x?x?xf32>, %tile1: index, %tile2: index) -> tensor<16x16x?x?xf32> { %tensor_empty = tensor.empty() : tensor<128x128xf32> %unpacked = tensor.unpack %t outer_dims_perm = [0, 1] inner_dims_pos = [0, 1] inner_tiles = [%tile1, %tile2] into %tensor_empty : tensor<16x16x?x?xf32> -> tensor<128x128xf32> %tensor_empty1 = tensor.empty(%tile1, %tile2) : tensor<16x16x?x?xf32> %packed = tensor.pack %unpacked inner_dims_pos = [0, 1] inner_tiles = [%tile1, %tile2] into %tensor_empty1 : tensor<128x128xf32> -> tensor<16x16x?x?xf32> return %packed : tensor<16x16x?x?xf32> } // ----- // CHECK: func.func @invalid_empty_negative_size // CHECK: %[[IDX:.*]] = index.constant // CHECK: %[[T:.*]] = tensor.empty(%[[IDX]]) : tensor<4x5x?xf32> func.func @invalid_empty_negative_size() -> (tensor<4x5x?xf32>) { %c1 = arith.constant 1 : index %cn2 = arith.constant 2 : index %0 = index.sub %c1, %cn2 %1 = tensor.empty(%0) : tensor<4x5x?xf32> return %1 : tensor<4x5x?xf32> } // ----- // Fold DstStyleOp -> tensor.unpack operations. func.func @fold_dst_style_ops_into_unpack(%arg0 : tensor, %init : tensor) -> tensor { %cst = arith.constant 0.0 : f32 %fill = linalg.fill ins(%cst : f32) outs(%init : tensor) -> tensor %unpack = tensor.unpack %arg0 inner_dims_pos = [0, 1] inner_tiles = [16, 64] into %fill : tensor -> tensor return %unpack : tensor } // CHECK-LABEL: func @fold_dst_style_ops_into_unpack // CHECK-SAME: %[[ARG0:.+]]: tensor // CHECK-SAME: %[[INIT:.+]]: tensor // CHECK: %[[UNPACK:.+]] = tensor.unpack %[[ARG0]] // CHECK-SAME: into %[[INIT]] // CHECK: return %[[UNPACK]] // ----- // The IR in this test case in invalid. This test tests that the canonicalizer // does not crash. // CHECK-LABEL: func @invalid_slice_ops( // CHECK: %[[c:.*]] = arith.constant -5 : index // CHECK: tensor.extract_slice {{.*}}%[[c]] // CHECK: tensor.insert_slice {{.*}}%[[c]] func.func @invalid_slice_ops(%t: tensor, %t2: tensor) -> tensor { %c = arith.constant -5 : index %0 = tensor.extract_slice %t[0][%c][1] : tensor to tensor %1 = tensor.insert_slice %0 into %t2[2][%c][1] : tensor into tensor return %1 : tensor } // ----- // CHECK-LABEL: func @generate_negative_size_verifies( // CHECK: %[[c:.*]] = arith.constant -8 : index // CHECK: tensor.generate %[[c]] // CHECK: : tensor func.func @generate_negative_size_verifies() -> tensor { %cst = arith.constant 0 : i32 %c0 = arith.constant 0 : index %size = affine.max affine_map<(d0) -> (d0 mod 64 - 8)>(%c0) %tensor = tensor.generate %size { ^bb0(%arg0: index, %arg1: index): tensor.yield %cst : i32 } : tensor return %tensor : tensor } // ----- func.func @infer_and_fold_pack_unpack_same_tiles(%t: tensor<10x20x4x4xf32>) -> tensor<10x20x4x4xf32> { %dim1 = arith.constant 40 : index %dim2 = arith.constant 80 : index %tensor_empty = tensor.empty(%dim1, %dim2) : tensor %unpacked = tensor.unpack %t inner_dims_pos = [0, 1] inner_tiles = [4, 4] into %tensor_empty : tensor<10x20x4x4xf32> -> tensor %cast = tensor.cast %unpacked : tensor to tensor<40x80xf32> %tensor_empty1 = tensor.empty() : tensor<10x20x4x4xf32> %packed = tensor.pack %cast inner_dims_pos = [0, 1] inner_tiles = [4, 4] into %tensor_empty1 : tensor<40x80xf32> -> tensor<10x20x4x4xf32> return %packed : tensor<10x20x4x4xf32> } // CHECK-LABEL: func.func @infer_and_fold_pack_unpack_same_tiles // CHECK-SAME: %[[SRC:[0-9a-zA-Z]+]] // CHECK: return %[[SRC]] // ----- // Test case: Folding of tensor.dim(tensor.reshape %v %shp, %idx) -> tensor.extract %shp[%idx] // CHECK-LABEL: func @dim_of_reshape( // CHECK-SAME: %[[MEM:[0-9a-z]+]]: tensor<*xf32>, // CHECK-SAME: %[[SHP:[0-9a-z]+]]: tensor // CHECK-NEXT: %[[IDX:.*]] = arith.constant 3 // CHECK-NEXT: %[[DIM:.*]] = tensor.extract %[[SHP]][%[[IDX]]] // CHECK-NOT: tensor.store // CHECK-NOT: tensor.dim // CHECK-NOT: tensor.reshape // CHECK: return %[[DIM]] : index func.func @dim_of_reshape(%arg0: tensor<*xf32>, %arg1: tensor) -> index { %c3 = arith.constant 3 : index %0 = tensor.reshape %arg0(%arg1) : (tensor<*xf32>, tensor) -> tensor<*xf32> // Update the shape to test that the load ends up in the right place. tensor.insert %c3 into %arg1[%c3] : tensor %1 = tensor.dim %0, %c3 : tensor<*xf32> return %1 : index } // ----- // Test case: Folding of tensor.dim(tensor.reshape %v %shp, %idx) -> tensor.extract %shp[%idx] // CHECK-LABEL: func @dim_of_reshape_i32( // CHECK: tensor.extract // CHECK-NEXT: %[[CAST:.*]] = arith.index_cast // CHECK-NOT: tensor.dim // CHECK-NOT: tensor.reshape // CHECK: return %[[CAST]] : index func.func @dim_of_reshape_i32(%arg0: tensor<*xf32>, %arg1: tensor) -> index { %c3 = arith.constant 3 : index %0 = tensor.reshape %arg0(%arg1) : (tensor<*xf32>, tensor) -> tensor<*xf32> %1 = tensor.dim %0, %c3 : tensor<*xf32> return %1 : index } // ----- // Test case: tensor.dim(tensor.reshape %v %shp, %idx) is folded into tensor.extract %shp[%idx] // CHECK-LABEL: func @dim_of_reshape_for( // CHECK: scf.for // CHECK-NEXT: tensor.extract // CHECK-NOT: tensor.dim // CHECK-NOT: tensor.reshape func.func @dim_of_reshape_for( %arg0: tensor<*xf32>, %arg1: tensor) -> index { %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index %c4 = arith.constant 4 : index %0 = tensor.reshape %arg0(%arg1) : (tensor<*xf32>, tensor) -> tensor<*xf32> %1 = scf.for %arg2 = %c0 to %c4 step %c1 iter_args(%arg3 = %c1) -> (index) { %2 = tensor.dim %0, %arg2 : tensor<*xf32> %3 = arith.muli %arg3, %2 : index scf.yield %3 : index } return %1 : index } // ----- // Test case: tensor.dim(tensor.reshape %v %shp, %idx) is folded into tensor.extract %shp[%idx] // CHECK-LABEL: func @dim_of_reshape_undominated( // CHECK: arith.muli // CHECK-NEXT: tensor.extract // CHECK-NOT: tensor.dim // CHECK-NOT: tensor.reshape func.func @dim_of_reshape_undominated(%arg0: tensor<*xf32>, %arg1: tensor, %arg2: index) -> index { %c4 = arith.constant 4 : index %reshape = tensor.reshape %arg0(%arg1) : (tensor<*xf32>, tensor) -> tensor<*xf32> %0 = arith.muli %arg2, %c4 : index %dim = tensor.dim %reshape, %0 : tensor<*xf32> return %dim : index } // ----- // CHECK-LABEL: @reshape_fold_2d // CHECK-SAME: %[[ARG0:.+]]: tensor func.func @reshape_fold_2d(%arg0 : tensor) -> tensor { %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index %d0 = tensor.dim %arg0, %c0 : tensor %d1 = tensor.dim %arg0, %c1 : tensor %ds = tensor.from_elements %d0, %d1 : tensor<2xindex> %reshape = tensor.reshape %arg0(%ds) : (tensor, tensor<2xindex>) -> tensor // CHECK: return %[[ARG0]] return %reshape : tensor } // ----- // CHECK-LABEL: @reshape_nofold_2d // CHECK-SAME: %[[ARG0:.+]]: tensor func.func @reshape_nofold_2d(%arg0 : tensor) -> tensor { %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index %d0 = tensor.dim %arg0, %c0 : tensor %d1 = tensor.dim %arg0, %c1 : tensor %ds = tensor.from_elements %d1, %d0 : tensor<2xindex> // CHECK: tensor.reshape %reshape = tensor.reshape %arg0(%ds) : (tensor, tensor<2xindex>) -> tensor return %reshape : tensor } // ----- // CHECK-LABEL: @reshape_nofold_2d_ins func.func @reshape_nofold_2d_ins(%arg0 : tensor, %arg1: index, %arg2: index) -> tensor { %ds = tensor.from_elements %arg1, %arg2 : tensor<2xindex> // CHECK: tensor.reshape %reshape = tensor.reshape %arg0(%ds) : (tensor, tensor<2xindex>) -> tensor return %reshape : tensor } // ----- // CHECK-LABEL: @reshape_fold_3d_cst // CHECK-SAME: %[[ARG0:.+]]: tensor<5x?x?xi32> func.func @reshape_fold_3d_cst(%arg0 : tensor<5x?x?xi32>) -> tensor<5x?x?xi32> { %c1 = arith.constant 1 : index %c2 = arith.constant 2 : index %d0 = arith.constant 5 : index %d1 = tensor.dim %arg0, %c1 : tensor<5x?x?xi32> %d2 = tensor.dim %arg0, %c2 : tensor<5x?x?xi32> %ds = tensor.from_elements %d0, %d1, %d2 : tensor<3xindex> %reshape = tensor.reshape %arg0(%ds) : (tensor<5x?x?xi32>, tensor<3xindex>) -> tensor<5x?x?xi32> // CHECK: return %[[ARG0]] return %reshape : tensor<5x?x?xi32> } // ----- // Test case: This test fails to fold because the index of tensor.dim is out_of_bounds // CHECK-LABEL: func @dim_out_of_bounds( // CHECK: %[[IDX:.*]] = index.constant 28 // CHECK-NEXT: bufferization.alloc_tensor // CHECK-NEXT: %[[DIM:.*]] = tensor.dim %{{.*}}, %[[IDX]] // CHECK-NEXT: memref.alloc // CHECK-NEXT: memref.cast // CHECK-NEXT: affine.vector_load %{{.*}}[{{.*}}, {{.*}}, symbol(%[[DIM]])] // CHECK-NEXT: return func.func @dim_out_of_bounds() -> vector<7xi32> { %c1 = arith.constant 1 : index %idx28 = index.constant 28 %c29 = arith.constant 29 : index %3 = bufferization.alloc_tensor(%c29) : tensor %dim = tensor.dim %3, %idx28 : tensor %alloc_21 = memref.alloc(%c29) : memref %16 = affine.vector_load %alloc_21[%c1, %c1, %dim] : memref, vector<7xi32> return %16 : vector<7xi32> } // ----- // CHECK-LABEL: func.func @fold_cast_multiple_results( // CHECK-SAME: %[[ARG1:.*]]: tensor<2x2xf32>, // CHECK-SAME: %[[ARG2:.*]]: tensor<2x2xf32>) -> index { // CHECK: %[[RES:.*]]:2 = test.destination_style_op ins(%[[ARG1]] : tensor<2x2xf32>) // CHECK-SAME: outs(%[[ARG2]] : tensor<2x2xf32>) -> tensor<2x2xf32>, index // CHECK: return %[[RES]]#1 : index func.func @fold_cast_multiple_results(%arg0: tensor<2x2xf32>, %arg1: tensor<2x2xf32>) -> index { %cast = tensor.cast %arg0 : tensor<2x2xf32> to tensor %cast_0 = tensor.cast %arg1 : tensor<2x2xf32> to tensor %0:2 = test.destination_style_op ins(%cast : tensor) outs(%cast_0 : tensor) -> tensor, index return %0#1 : index } // ----- // CHECK-LABEL: func.func @fold_cast_pack_dynamic_tile_size // CHECK-SAME: %[[DEST:.*]]: tensor<1x1x8x1xi32>, // CHECK-SAME: %[[SRC:.*]]: tensor<7x?xi32>, // CHECK-SAME: %[[PAD:.*]]: i32) -> tensor<1x1x8x1xi32> { // CHECK: %[[PACK:.*]] = tensor.pack %[[SRC]] padding_value(%[[PAD]] : i32) // CHECK-SAME: inner_dims_pos = [0, 1] inner_tiles = [8, 1] into %[[DEST]] // CHECK-SAME: test_attr // CHECK-SAME: : tensor<7x?xi32> -> tensor<1x1x8x1xi32> // CHECK: return %[[PACK]] : tensor<1x1x8x1xi32> func.func @fold_cast_pack_dynamic_tile_size( %dest: tensor<1x1x8x1xi32>, %src: tensor<7x?xi32>, %pad: i32) -> tensor<1x1x8x1xi32> { %cast = tensor.cast %dest : tensor<1x1x8x1xi32> to tensor<1x1x?x1xi32> %c8 = arith.constant 8 : index %pack = tensor.pack %src padding_value(%pad : i32) inner_dims_pos = [0, 1] inner_tiles = [%c8, 1] into %cast {test_attr} : tensor<7x?xi32> -> tensor<1x1x?x1xi32> %res = tensor.cast %pack : tensor<1x1x?x1xi32> to tensor<1x1x8x1xi32> return %res : tensor<1x1x8x1xi32> } // ----- // CHECK-LABEL: func.func @fold_cast_unpack_dynamic_tile_size( // CHECK-SAME: %[[SRC:.*]]: tensor<1x1x8x1xi32>, // CHECK-SAME: %[[DEST:.*]]: tensor<7x?xi32>) -> tensor<7x?xi32> { // CHECK: %[[RES:.*]] = tensor.unpack %[[SRC]] inner_dims_pos = [0, 1] inner_tiles = [8, 1] into %[[DEST]] {test_attr} : tensor<1x1x8x1xi32> -> tensor<7x?xi32> // CHECK: return %[[RES]] : tensor<7x?xi32> func.func @fold_cast_unpack_dynamic_tile_size( %src: tensor<1x1x8x1xi32>, %res: tensor<7x?xi32>) -> tensor<7x?xi32> { %cast = tensor.cast %src : tensor<1x1x8x1xi32> to tensor<1x1x?x1xi32> %c8 = arith.constant 8 : index %unpack = tensor.unpack %cast inner_dims_pos = [0, 1] inner_tiles = [%c8, 1] into %res {test_attr} : tensor<1x1x?x1xi32> -> tensor<7x?xi32> return %unpack : tensor<7x?xi32> } // ----- // CHECK-LABEL: func.func @pack_dont_drop_attributes( // CHECK: tensor.pack {{.*}} {test_attr} func.func @pack_dont_drop_attributes(%arg0: tensor, %arg1: tensor<128x?x100x16x1xf16>) -> tensor<128x?x100x16x1xf16> { %c32_i64 = arith.constant 32 : i64 %cst = arith.constant 0.000000e+00 : f16 %pack = tensor.pack %arg0 padding_value(%cst : f16) outer_dims_perm = [0, 1, 2] inner_dims_pos = [1, 2] inner_tiles = [16, 1] into %arg1 {test_attr} : tensor -> tensor<128x?x100x16x1xf16> return %pack : tensor<128x?x100x16x1xf16> } // ----- func.func @fold_expand_of_cast(%arg0 : tensor<10x10xf32>) -> tensor<10x1x10xf32> { %c1 = arith.constant 1 : index %c10 = arith.constant 10 : index %0 = tensor.cast %arg0 : tensor<10x10xf32> to tensor %1 = tensor.expand_shape %0 [[0, 1], [2]] output_shape [%c10, %c1, %c10] : tensor into tensor %2 = tensor.cast %1 : tensor to tensor<10x1x10xf32> return %2 : tensor<10x1x10xf32> } // CHECK-LABEL: func.func @fold_expand_of_cast // CHECK: %[[RES:.+]] = tensor.expand_shape %{{.*}} {{\[}}[0, 1], [2]] output_shape [10, 1, 10] // CHECK: return %[[RES]] // ----- func.func @sink_expand_of_cast(%arg0 : tensor) -> tensor { %c1 = arith.constant 1 : index %c10 = arith.constant 10 : index %0 = tensor.cast %arg0 : tensor to tensor %1 = tensor.expand_shape %0 [[0, 1], [2]] output_shape [%c10, %c1, %c10] : tensor into tensor return %1 : tensor } // CHECK-LABEL: func.func @sink_expand_of_cast // CHECK-DAG: %[[C10:.*]] = arith.constant 10 // CHECK-DAG: %[[C1:.*]] = arith.constant 1 // CHECK: %[[EXPAND:.+]] = tensor.expand_shape %{{.*}} {{\[}}[0, 1], [2]] // CHECK-SAME: output_shape [%[[C10]], %[[C1]], 10] // CHECK: %[[RES:.+]] = tensor.cast %[[EXPAND]] // CHECK: return %[[RES]] // ----- func.func @partial_sink_expand_of_cast(%arg0 : tensor<10x10xf32>, %arg1 : index, %arg2 : index) -> tensor { %c10 = arith.constant 10 : index %0 = tensor.cast %arg0 : tensor<10x10xf32> to tensor %1 = tensor.expand_shape %0 [[0, 1], [2]] output_shape [%arg1, %arg2, %c10] : tensor into tensor return %1 : tensor } // CHECK-LABEL: func.func @partial_sink_expand_of_cast // CHECK: %[[CAST:.+]] = tensor.cast // CHECK-SAME: tensor<10x10xf32> to tensor // CHECK: %[[EXPAND:.+]] = tensor.expand_shape %{{.*}} {{\[}}[0, 1], [2]] // CHECK-SAME: output_shape [%{{.*}}, %{{.*}}, 10] // CHECK: %[[RES:.+]] = tensor.cast %[[EXPAND]] // CHECK-SAME: tensor to tensor // CHECK: return %[[RES]]