// RUN: mlir-opt --transform-interpreter %s -split-input-file -verify-diagnostics | FileCheck %s // Test One-Shot Bufferize. module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["func.func"]} in %arg1 : (!transform.any_op) -> !transform.any_op %1 = transform.bufferization.one_shot_bufferize %0 : (!transform.any_op) -> !transform.any_op transform.yield } } // CHECK-LABEL: func @test_function( // CHECK-SAME: %[[A:.*]]: tensor func.func @test_function(%A : tensor, %v : vector<4xf32>) -> (tensor) { %c0 = arith.constant 0 : index // CHECK: %[[A_memref:.*]] = bufferization.to_memref %[[A]] // CHECK: %[[dim:.*]] = memref.dim %[[A_memref]] // CHECK: %[[alloc:.*]] = memref.alloc(%[[dim]]) // CHECK: memref.copy %[[A_memref]], %[[alloc]] // CHECK: vector.transfer_write %{{.*}}, %[[alloc]] // CHECK: %[[res_tensor:.*]] = bufferization.to_tensor %[[alloc]] %0 = vector.transfer_write %v, %A[%c0] : vector<4xf32>, tensor // CHECK: return %[[res_tensor]] return %0 : tensor } // ----- // Emit linalg.copy instead of memref.copy. module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["func.func"]} in %arg1 : (!transform.any_op) -> !transform.any_op %1 = transform.bufferization.one_shot_bufferize %0 {memcpy_op = "linalg.copy"} : (!transform.any_op) -> !transform.any_op transform.yield } } // CHECK-LABEL: func @test_function( // CHECK-SAME: %[[A:.*]]: tensor // CHECK-NOT: memref.copy func.func @test_function(%A : tensor, %v : vector<4xf32>) -> (tensor) { %c0 = arith.constant 0 : index // CHECK: %[[A_memref:.*]] = bufferization.to_memref %[[A]] // CHECK: %[[dim:.*]] = memref.dim %[[A_memref]] // CHECK: %[[alloc:.*]] = memref.alloc(%[[dim]]) // CHECK: linalg.copy ins(%[[A_memref]] : memref<{{.*}}>) outs(%[[alloc]] // CHECK: vector.transfer_write %{{.*}}, %[[alloc]] // CHECK: %[[res_tensor:.*]] = bufferization.to_tensor %[[alloc]] %0 = vector.transfer_write %v, %A[%c0] : vector<4xf32>, tensor // CHECK: return %[[res_tensor]] return %0 : tensor } // ----- // Test analysis of One-Shot Bufferize only. module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["func.func"]} in %arg1 : (!transform.any_op) -> !transform.any_op %1 = transform.bufferization.one_shot_bufferize %0 {test_analysis_only = true} : (!transform.any_op) -> !transform.any_op transform.yield } } // CHECK-LABEL: func @test_function_analysis( // CHECK-SAME: %[[A:.*]]: tensor func.func @test_function_analysis(%A : tensor, %v : vector<4xf32>) -> (tensor) { %c0 = arith.constant 0 : index // CHECK: vector.transfer_write // CHECK-SAME: {__inplace_operands_attr__ = ["none", "false", "none"]} // CHECK-SAME: tensor %0 = vector.transfer_write %v, %A[%c0] : vector<4xf32>, tensor return %0 : tensor } // ----- // Test One-Shot Bufferize transform failure with an unknown op. This would be // allowed with `allow_unknown_ops`. module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["func.func"]} in %arg1 : (!transform.any_op) -> !transform.any_op // expected-error @+1 {{bufferization failed}} %1 = transform.bufferization.one_shot_bufferize %0 : (!transform.any_op) -> !transform.any_op transform.yield } } func.func @test_unknown_op_failure() -> (tensor) { // expected-error @+1 {{op was not bufferized}} %0 = "test.dummy_op"() : () -> (tensor) return %0 : tensor } // ----- module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.consumed}) { // %arg1 is the module %0 = transform.bufferization.one_shot_bufferize %arg1 : (!transform.any_op) -> !transform.any_op transform.yield } } module { // CHECK-LABEL: func @test_function( // CHECK-SAME: %[[A:.*]]: tensor func.func @test_function(%A : tensor, %v : vector<4xf32>) -> (tensor) { %c0 = arith.constant 0 : index // CHECK: %[[A_memref:.*]] = bufferization.to_memref %[[A]] // CHECK: %[[dim:.*]] = memref.dim %[[A_memref]] // CHECK: %[[alloc:.*]] = memref.alloc(%[[dim]]) // CHECK: memref.copy %[[A_memref]], %[[alloc]] // CHECK: vector.transfer_write %{{.*}}, %[[alloc]] // CHECK: %[[res_tensor:.*]] = bufferization.to_tensor %[[alloc]] %0 = vector.transfer_write %v, %A[%c0] : vector<4xf32>, tensor // CHECK: return %[[res_tensor]] return %0 : tensor } } // ----- // Test we use identity layout at function boundaries. module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.consumed}) { %0 = transform.bufferization.one_shot_bufferize layout{IdentityLayoutMap} %arg1 { bufferize_function_boundaries = true } : (!transform.any_op) -> !transform.any_op transform.yield } } // CHECK: func.func @matmul( // CHECK-SAME: %[[A:.*]]: memref<12x9xf32>, // CHECK-SAME: %[[B:.*]]: memref<9x6xf32>, // CHECK-SAME: %[[C:.*]]: memref<12x6xf32>) -> memref<12x6xf32> { func.func @matmul(%A: tensor<12x9xf32>, %B: tensor<9x6xf32>, %C: tensor<12x6xf32>) -> tensor<12x6xf32> { // CHECK: linalg.matmul ins(%[[A]], %[[B]] : memref<12x9xf32>, memref<9x6xf32>) outs(%[[C]] : memref<12x6xf32>) %D = linalg.matmul ins(%A, %B: tensor<12x9xf32>, tensor<9x6xf32>) outs(%C: tensor<12x6xf32>) -> tensor<12x6xf32> // CHECK: return %[[C]] : memref<12x6xf32> return %D : tensor<12x6xf32> } // ----- module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["tensor.empty"]} in %arg1 : (!transform.any_op) -> !transform.any_op %1 = transform.cast %0 : !transform.any_op to !transform.op<"tensor.empty"> transform.bufferization.empty_tensor_to_alloc_tensor %1 : (!transform.op<"tensor.empty">) -> !transform.op<"bufferization.alloc_tensor"> transform.yield } } // Expect `bufferization.empty_tensor_to_alloc_tensor` to replace the tensor.empty. func.func @empty_to_tensor_alloc() -> tensor<2x2xf32> { // CHECK: bufferization.alloc_tensor %0 = tensor.empty() : tensor<2x2xf32> return %0 : tensor<2x2xf32> } // ----- module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["func.func"]} in %arg1 : (!transform.any_op) -> !transform.any_op transform.bufferization.eliminate_empty_tensors %0 : !transform.any_op transform.yield } } // CHECK-LABEL: func @empty_tensor_elimination( // CHECK: tensor.extract_slice // CHECK: linalg.fill // CHECK: tensor.insert_slice func.func @empty_tensor_elimination( %t: tensor<10xf32>, %f: f32) -> tensor<10xf32> { %0 = tensor.empty() : tensor<5xf32> %1 = linalg.fill ins(%f : f32) outs(%0 : tensor<5xf32>) -> tensor<5xf32> %2 = tensor.insert_slice %1 into %t [1][5][1] : tensor<5xf32> into tensor<10xf32> return %2 : tensor<10xf32> } // ----- module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["func.func"]} in %arg1 : (!transform.any_op) -> !transform.any_op transform.bufferization.buffer_loop_hoisting %0 : !transform.any_op transform.yield } } // CHECK-LABEL: func @buffer_loop_hoisting( // CHECK: memref.alloca // CHECK: scf.for // CHECK: memref.store func.func @buffer_loop_hoisting(%lb: index, %ub: index, %step: index, %f: f32, %pos: index) { scf.for %iv = %lb to %ub step %step { %0 = memref.alloca() : memref<5xf32> memref.store %f, %0[%pos] : memref<5xf32> } return } // ----- module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %alloc_tensor = transform.structured.match ops{["bufferization.alloc_tensor"]} in %arg1 : (!transform.any_op) -> !transform.op<"bufferization.alloc_tensor"> %2, %new = transform.structured.bufferize_to_allocation %alloc_tensor {alloc_op = "memref.alloca"} : !transform.op<"bufferization.alloc_tensor"> transform.yield } } // Expect `bufferization.bufferize_to_allocation` to create an alloc. // CHECK-LABEL: func.func @empty_to_tensor_alloc() func.func @empty_to_tensor_alloc() -> tensor<2x2xf32> { // CHECK-NEXT: %[[alloca:.*]] = memref.alloca() : memref<2x2xf32> // CHECK-NEXT: %[[tensor:.*]] = bufferization.to_tensor %[[alloca]] restrict writable : memref<2x2xf32> // CHECK-NEXT: return %[[tensor]] : tensor<2x2xf32> %0 = bufferization.alloc_tensor() : tensor<2x2xf32> return %0 : tensor<2x2xf32> }