//===- ExecutionEngine.cpp - MLIR Execution engine and utils --------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the execution engine for MLIR modules based on LLVM Orc // JIT engine. // //===----------------------------------------------------------------------===// #include "mlir/ExecutionEngine/ExecutionEngine.h" #include "mlir/Dialect/LLVMIR/LLVMDialect.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/Support/FileUtilities.h" #include "mlir/Target/LLVMIR/Export.h" #include "llvm/ExecutionEngine/JITEventListener.h" #include "llvm/ExecutionEngine/ObjectCache.h" #include "llvm/ExecutionEngine/Orc/CompileUtils.h" #include "llvm/ExecutionEngine/Orc/ExecutionUtils.h" #include "llvm/ExecutionEngine/Orc/IRCompileLayer.h" #include "llvm/ExecutionEngine/Orc/IRTransformLayer.h" #include "llvm/ExecutionEngine/Orc/JITTargetMachineBuilder.h" #include "llvm/ExecutionEngine/Orc/RTDyldObjectLinkingLayer.h" #include "llvm/IR/IRBuilder.h" #include "llvm/MC/TargetRegistry.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Error.h" #include "llvm/Support/ToolOutputFile.h" #include "llvm/TargetParser/Host.h" #include "llvm/TargetParser/SubtargetFeature.h" #define DEBUG_TYPE "execution-engine" using namespace mlir; using llvm::dbgs; using llvm::Error; using llvm::errs; using llvm::Expected; using llvm::LLVMContext; using llvm::MemoryBuffer; using llvm::MemoryBufferRef; using llvm::Module; using llvm::SectionMemoryManager; using llvm::StringError; using llvm::Triple; using llvm::orc::DynamicLibrarySearchGenerator; using llvm::orc::ExecutionSession; using llvm::orc::IRCompileLayer; using llvm::orc::JITTargetMachineBuilder; using llvm::orc::MangleAndInterner; using llvm::orc::RTDyldObjectLinkingLayer; using llvm::orc::SymbolMap; using llvm::orc::ThreadSafeModule; using llvm::orc::TMOwningSimpleCompiler; /// Wrap a string into an llvm::StringError. static Error makeStringError(const Twine &message) { return llvm::make_error(message.str(), llvm::inconvertibleErrorCode()); } void SimpleObjectCache::notifyObjectCompiled(const Module *m, MemoryBufferRef objBuffer) { cachedObjects[m->getModuleIdentifier()] = MemoryBuffer::getMemBufferCopy( objBuffer.getBuffer(), objBuffer.getBufferIdentifier()); } std::unique_ptr SimpleObjectCache::getObject(const Module *m) { auto i = cachedObjects.find(m->getModuleIdentifier()); if (i == cachedObjects.end()) { LLVM_DEBUG(dbgs() << "No object for " << m->getModuleIdentifier() << " in cache. Compiling.\n"); return nullptr; } LLVM_DEBUG(dbgs() << "Object for " << m->getModuleIdentifier() << " loaded from cache.\n"); return MemoryBuffer::getMemBuffer(i->second->getMemBufferRef()); } void SimpleObjectCache::dumpToObjectFile(StringRef outputFilename) { // Set up the output file. std::string errorMessage; auto file = openOutputFile(outputFilename, &errorMessage); if (!file) { llvm::errs() << errorMessage << "\n"; return; } // Dump the object generated for a single module to the output file. assert(cachedObjects.size() == 1 && "Expected only one object entry."); auto &cachedObject = cachedObjects.begin()->second; file->os() << cachedObject->getBuffer(); file->keep(); } bool SimpleObjectCache::isEmpty() { return cachedObjects.empty(); } void ExecutionEngine::dumpToObjectFile(StringRef filename) { if (cache == nullptr) { llvm::errs() << "cannot dump ExecutionEngine object code to file: " "object cache is disabled\n"; return; } // Compilation is lazy and it doesn't populate object cache unless requested. // In case object dump is requested before cache is populated, we need to // force compilation manually. if (cache->isEmpty()) { for (std::string &functionName : functionNames) { auto result = lookupPacked(functionName); if (!result) { llvm::errs() << "Could not compile " << functionName << ":\n " << result.takeError() << "\n"; return; } } } cache->dumpToObjectFile(filename); } void ExecutionEngine::registerSymbols( llvm::function_ref symbolMap) { auto &mainJitDylib = jit->getMainJITDylib(); cantFail(mainJitDylib.define( absoluteSymbols(symbolMap(llvm::orc::MangleAndInterner( mainJitDylib.getExecutionSession(), jit->getDataLayout()))))); } void ExecutionEngine::setupTargetTripleAndDataLayout(Module *llvmModule, llvm::TargetMachine *tm) { llvmModule->setDataLayout(tm->createDataLayout()); llvmModule->setTargetTriple(tm->getTargetTriple().getTriple()); } static std::string makePackedFunctionName(StringRef name) { return "_mlir_" + name.str(); } // For each function in the LLVM module, define an interface function that wraps // all the arguments of the original function and all its results into an i8** // pointer to provide a unified invocation interface. static void packFunctionArguments(Module *module) { auto &ctx = module->getContext(); llvm::IRBuilder<> builder(ctx); DenseSet interfaceFunctions; for (auto &func : module->getFunctionList()) { if (func.isDeclaration()) { continue; } if (interfaceFunctions.count(&func)) { continue; } // Given a function `foo(<...>)`, define the interface function // `mlir_foo(i8**)`. auto *newType = llvm::FunctionType::get(builder.getVoidTy(), builder.getPtrTy(), /*isVarArg=*/false); auto newName = makePackedFunctionName(func.getName()); auto funcCst = module->getOrInsertFunction(newName, newType); llvm::Function *interfaceFunc = cast(funcCst.getCallee()); interfaceFunctions.insert(interfaceFunc); // Extract the arguments from the type-erased argument list and cast them to // the proper types. auto *bb = llvm::BasicBlock::Create(ctx); bb->insertInto(interfaceFunc); builder.SetInsertPoint(bb); llvm::Value *argList = interfaceFunc->arg_begin(); SmallVector args; args.reserve(llvm::size(func.args())); for (auto [index, arg] : llvm::enumerate(func.args())) { llvm::Value *argIndex = llvm::Constant::getIntegerValue( builder.getInt64Ty(), APInt(64, index)); llvm::Value *argPtrPtr = builder.CreateGEP(builder.getPtrTy(), argList, argIndex); llvm::Value *argPtr = builder.CreateLoad(builder.getPtrTy(), argPtrPtr); llvm::Type *argTy = arg.getType(); llvm::Value *load = builder.CreateLoad(argTy, argPtr); args.push_back(load); } // Call the implementation function with the extracted arguments. llvm::Value *result = builder.CreateCall(&func, args); // Assuming the result is one value, potentially of type `void`. if (!result->getType()->isVoidTy()) { llvm::Value *retIndex = llvm::Constant::getIntegerValue( builder.getInt64Ty(), APInt(64, llvm::size(func.args()))); llvm::Value *retPtrPtr = builder.CreateGEP(builder.getPtrTy(), argList, retIndex); llvm::Value *retPtr = builder.CreateLoad(builder.getPtrTy(), retPtrPtr); builder.CreateStore(result, retPtr); } // The interface function returns void. builder.CreateRetVoid(); } } ExecutionEngine::ExecutionEngine(bool enableObjectDump, bool enableGDBNotificationListener, bool enablePerfNotificationListener) : cache(enableObjectDump ? new SimpleObjectCache() : nullptr), functionNames(), gdbListener(enableGDBNotificationListener ? llvm::JITEventListener::createGDBRegistrationListener() : nullptr), perfListener(nullptr) { if (enablePerfNotificationListener) { if (auto *listener = llvm::JITEventListener::createPerfJITEventListener()) perfListener = listener; else if (auto *listener = llvm::JITEventListener::createIntelJITEventListener()) perfListener = listener; } } ExecutionEngine::~ExecutionEngine() { // Execute the global destructors from the module being processed. // TODO: Allow JIT deinitialize for AArch64. Currently there's a bug causing a // crash for AArch64 see related issue #71963. if (jit && !jit->getTargetTriple().isAArch64()) llvm::consumeError(jit->deinitialize(jit->getMainJITDylib())); // Run all dynamic library destroy callbacks to prepare for the shutdown. for (LibraryDestroyFn destroy : destroyFns) destroy(); } Expected> ExecutionEngine::create(Operation *m, const ExecutionEngineOptions &options, std::unique_ptr tm) { auto engine = std::make_unique( options.enableObjectDump, options.enableGDBNotificationListener, options.enablePerfNotificationListener); // Remember all entry-points if object dumping is enabled. if (options.enableObjectDump) { for (auto funcOp : m->getRegion(0).getOps()) { StringRef funcName = funcOp.getSymName(); engine->functionNames.push_back(funcName.str()); } } std::unique_ptr ctx(new llvm::LLVMContext); auto llvmModule = options.llvmModuleBuilder ? options.llvmModuleBuilder(m, *ctx) : translateModuleToLLVMIR(m, *ctx); if (!llvmModule) return makeStringError("could not convert to LLVM IR"); // If no valid TargetMachine was passed, create a default TM ignoring any // input arguments from the user. if (!tm) { auto tmBuilderOrError = llvm::orc::JITTargetMachineBuilder::detectHost(); if (!tmBuilderOrError) return tmBuilderOrError.takeError(); auto tmOrError = tmBuilderOrError->createTargetMachine(); if (!tmOrError) return tmOrError.takeError(); tm = std::move(tmOrError.get()); } // TODO: Currently, the LLVM module created above has no triple associated // with it. Instead, the triple is extracted from the TargetMachine, which is // either based on the host defaults or command line arguments when specified // (set-up by callers of this method). It could also be passed to the // translation or dialect conversion instead of this. setupTargetTripleAndDataLayout(llvmModule.get(), tm.get()); packFunctionArguments(llvmModule.get()); auto dataLayout = llvmModule->getDataLayout(); // Use absolute library path so that gdb can find the symbol table. SmallVector, 4> sharedLibPaths; transform( options.sharedLibPaths, std::back_inserter(sharedLibPaths), [](StringRef libPath) { SmallString<256> absPath(libPath.begin(), libPath.end()); cantFail(llvm::errorCodeToError(llvm::sys::fs::make_absolute(absPath))); return absPath; }); // If shared library implements custom execution layer library init and // destroy functions, we'll use them to register the library. Otherwise, load // the library as JITDyLib below. llvm::StringMap exportSymbols; SmallVector destroyFns; SmallVector jitDyLibPaths; for (auto &libPath : sharedLibPaths) { auto lib = llvm::sys::DynamicLibrary::getPermanentLibrary( libPath.str().str().c_str()); void *initSym = lib.getAddressOfSymbol(kLibraryInitFnName); void *destroySim = lib.getAddressOfSymbol(kLibraryDestroyFnName); // Library does not provide call backs, rely on symbol visiblity. if (!initSym || !destroySim) { jitDyLibPaths.push_back(libPath); continue; } auto initFn = reinterpret_cast(initSym); initFn(exportSymbols); auto destroyFn = reinterpret_cast(destroySim); destroyFns.push_back(destroyFn); } engine->destroyFns = std::move(destroyFns); // Callback to create the object layer with symbol resolution to current // process and dynamically linked libraries. auto objectLinkingLayerCreator = [&](ExecutionSession &session, const Triple &tt) { auto objectLayer = std::make_unique( session, [sectionMemoryMapper = options.sectionMemoryMapper]() { return std::make_unique(sectionMemoryMapper); }); // Register JIT event listeners if they are enabled. if (engine->gdbListener) objectLayer->registerJITEventListener(*engine->gdbListener); if (engine->perfListener) objectLayer->registerJITEventListener(*engine->perfListener); // COFF format binaries (Windows) need special handling to deal with // exported symbol visibility. // cf llvm/lib/ExecutionEngine/Orc/LLJIT.cpp LLJIT::createObjectLinkingLayer llvm::Triple targetTriple(llvm::Twine(llvmModule->getTargetTriple())); if (targetTriple.isOSBinFormatCOFF()) { objectLayer->setOverrideObjectFlagsWithResponsibilityFlags(true); objectLayer->setAutoClaimResponsibilityForObjectSymbols(true); } // Resolve symbols from shared libraries. for (auto &libPath : jitDyLibPaths) { auto mb = llvm::MemoryBuffer::getFile(libPath); if (!mb) { errs() << "Failed to create MemoryBuffer for: " << libPath << "\nError: " << mb.getError().message() << "\n"; continue; } auto &jd = session.createBareJITDylib(std::string(libPath)); auto loaded = DynamicLibrarySearchGenerator::Load( libPath.str().c_str(), dataLayout.getGlobalPrefix()); if (!loaded) { errs() << "Could not load " << libPath << ":\n " << loaded.takeError() << "\n"; continue; } jd.addGenerator(std::move(*loaded)); cantFail(objectLayer->add(jd, std::move(mb.get()))); } return objectLayer; }; // Callback to inspect the cache and recompile on demand. This follows Lang's // LLJITWithObjectCache example. auto compileFunctionCreator = [&](JITTargetMachineBuilder jtmb) -> Expected> { if (options.jitCodeGenOptLevel) jtmb.setCodeGenOptLevel(*options.jitCodeGenOptLevel); return std::make_unique(std::move(tm), engine->cache.get()); }; // Create the LLJIT by calling the LLJITBuilder with 2 callbacks. auto jit = cantFail(llvm::orc::LLJITBuilder() .setCompileFunctionCreator(compileFunctionCreator) .setObjectLinkingLayerCreator(objectLinkingLayerCreator) .setDataLayout(dataLayout) .create()); // Add a ThreadSafemodule to the engine and return. ThreadSafeModule tsm(std::move(llvmModule), std::move(ctx)); if (options.transformer) cantFail(tsm.withModuleDo( [&](llvm::Module &module) { return options.transformer(&module); })); cantFail(jit->addIRModule(std::move(tsm))); engine->jit = std::move(jit); // Resolve symbols that are statically linked in the current process. llvm::orc::JITDylib &mainJD = engine->jit->getMainJITDylib(); mainJD.addGenerator( cantFail(DynamicLibrarySearchGenerator::GetForCurrentProcess( dataLayout.getGlobalPrefix()))); // Build a runtime symbol map from the exported symbols and register them. auto runtimeSymbolMap = [&](llvm::orc::MangleAndInterner interner) { auto symbolMap = llvm::orc::SymbolMap(); for (auto &exportSymbol : exportSymbols) symbolMap[interner(exportSymbol.getKey())] = { llvm::orc::ExecutorAddr::fromPtr(exportSymbol.getValue()), llvm::JITSymbolFlags::Exported}; return symbolMap; }; engine->registerSymbols(runtimeSymbolMap); // Execute the global constructors from the module being processed. // TODO: Allow JIT initialize for AArch64. Currently there's a bug causing a // crash for AArch64 see related issue #71963. if (!engine->jit->getTargetTriple().isAArch64()) cantFail(engine->jit->initialize(engine->jit->getMainJITDylib())); return std::move(engine); } Expected ExecutionEngine::lookupPacked(StringRef name) const { auto result = lookup(makePackedFunctionName(name)); if (!result) return result.takeError(); return reinterpret_cast(result.get()); } Expected ExecutionEngine::lookup(StringRef name) const { auto expectedSymbol = jit->lookup(name); // JIT lookup may return an Error referring to strings stored internally by // the JIT. If the Error outlives the ExecutionEngine, it would want have a // dangling reference, which is currently caught by an assertion inside JIT // thanks to hand-rolled reference counting. Rewrap the error message into a // string before returning. Alternatively, ORC JIT should consider copying // the string into the error message. if (!expectedSymbol) { std::string errorMessage; llvm::raw_string_ostream os(errorMessage); llvm::handleAllErrors(expectedSymbol.takeError(), [&os](llvm::ErrorInfoBase &ei) { ei.log(os); }); return makeStringError(errorMessage); } if (void *fptr = expectedSymbol->toPtr()) return fptr; return makeStringError("looked up function is null"); } Error ExecutionEngine::invokePacked(StringRef name, MutableArrayRef args) { auto expectedFPtr = lookupPacked(name); if (!expectedFPtr) return expectedFPtr.takeError(); auto fptr = *expectedFPtr; (*fptr)(args.data()); return Error::success(); }