//===- LowerVectorShapeCast.cpp - Lower 'vector.shape_cast' operation -----===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements target-independent rewrites and utilities to lower the // 'vector.shape_cast' operation. // //===----------------------------------------------------------------------===// #include "mlir/Dialect/Affine/IR/AffineOps.h" #include "mlir/Dialect/Arith/IR/Arith.h" #include "mlir/Dialect/Arith/Utils/Utils.h" #include "mlir/Dialect/Linalg/IR/Linalg.h" #include "mlir/Dialect/MemRef/IR/MemRef.h" #include "mlir/Dialect/SCF/IR/SCF.h" #include "mlir/Dialect/Tensor/IR/Tensor.h" #include "mlir/Dialect/Utils/IndexingUtils.h" #include "mlir/Dialect/Utils/StructuredOpsUtils.h" #include "mlir/Dialect/Vector/IR/VectorOps.h" #include "mlir/Dialect/Vector/Transforms/LoweringPatterns.h" #include "mlir/Dialect/Vector/Transforms/VectorRewritePatterns.h" #include "mlir/Dialect/Vector/Utils/VectorUtils.h" #include "mlir/IR/BuiltinAttributeInterfaces.h" #include "mlir/IR/BuiltinTypes.h" #include "mlir/IR/ImplicitLocOpBuilder.h" #include "mlir/IR/Location.h" #include "mlir/IR/Matchers.h" #include "mlir/IR/PatternMatch.h" #include "mlir/IR/TypeUtilities.h" #include "mlir/Interfaces/VectorInterfaces.h" #define DEBUG_TYPE "vector-shape-cast-lowering" using namespace mlir; using namespace mlir::vector; namespace { /// ShapeOp 2D -> 1D downcast serves the purpose of flattening 2-D to 1-D /// vectors progressively on the way to target llvm.matrix intrinsics. /// This iterates over the most major dimension of the 2-D vector and performs /// rewrites into: /// vector.extract from 2-D + vector.insert_strided_slice offset into 1-D class ShapeCastOp2DDownCastRewritePattern : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(vector::ShapeCastOp op, PatternRewriter &rewriter) const override { auto sourceVectorType = op.getSourceVectorType(); auto resultVectorType = op.getResultVectorType(); if (sourceVectorType.isScalable() || resultVectorType.isScalable()) return failure(); if (sourceVectorType.getRank() != 2 || resultVectorType.getRank() != 1) return failure(); auto loc = op.getLoc(); Value desc = rewriter.create( loc, resultVectorType, rewriter.getZeroAttr(resultVectorType)); unsigned mostMinorVectorSize = sourceVectorType.getShape()[1]; for (int64_t i = 0, e = sourceVectorType.getShape().front(); i != e; ++i) { Value vec = rewriter.create(loc, op.getSource(), i); desc = rewriter.create( loc, vec, desc, /*offsets=*/i * mostMinorVectorSize, /*strides=*/1); } rewriter.replaceOp(op, desc); return success(); } }; /// ShapeOp 1D -> 2D upcast serves the purpose of unflattening 2-D from 1-D /// vectors progressively. /// This iterates over the most major dimension of the 2-D vector and performs /// rewrites into: /// vector.extract_strided_slice from 1-D + vector.insert into 2-D /// Note that 1-D extract_strided_slice are lowered to efficient vector.shuffle. class ShapeCastOp2DUpCastRewritePattern : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(vector::ShapeCastOp op, PatternRewriter &rewriter) const override { auto sourceVectorType = op.getSourceVectorType(); auto resultVectorType = op.getResultVectorType(); if (sourceVectorType.isScalable() || resultVectorType.isScalable()) return failure(); if (sourceVectorType.getRank() != 1 || resultVectorType.getRank() != 2) return failure(); auto loc = op.getLoc(); Value desc = rewriter.create( loc, resultVectorType, rewriter.getZeroAttr(resultVectorType)); unsigned mostMinorVectorSize = resultVectorType.getShape()[1]; for (int64_t i = 0, e = resultVectorType.getShape().front(); i != e; ++i) { Value vec = rewriter.create( loc, op.getSource(), /*offsets=*/i * mostMinorVectorSize, /*sizes=*/mostMinorVectorSize, /*strides=*/1); desc = rewriter.create(loc, vec, desc, i); } rewriter.replaceOp(op, desc); return success(); } }; static void incIdx(llvm::MutableArrayRef idx, VectorType tp, int dimIdx, int initialStep = 1) { int step = initialStep; for (int d = dimIdx; d >= 0; d--) { idx[d] += step; if (idx[d] >= tp.getDimSize(d)) { idx[d] = 0; step = 1; } else { break; } } } // We typically should not lower general shape cast operations into data // movement instructions, since the assumption is that these casts are // optimized away during progressive lowering. For completeness, however, // we fall back to a reference implementation that moves all elements // into the right place if we get here. class ShapeCastOpRewritePattern : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(vector::ShapeCastOp op, PatternRewriter &rewriter) const override { Location loc = op.getLoc(); auto sourceVectorType = op.getSourceVectorType(); auto resultVectorType = op.getResultVectorType(); if (sourceVectorType.isScalable() || resultVectorType.isScalable()) return failure(); // Special case 2D / 1D lowerings with better implementations. // TODO: make is ND / 1D to allow generic ND -> 1D -> MD. int64_t srcRank = sourceVectorType.getRank(); int64_t resRank = resultVectorType.getRank(); if ((srcRank == 2 && resRank == 1) || (srcRank == 1 && resRank == 2)) return failure(); // Generic ShapeCast lowering path goes all the way down to unrolled scalar // extract/insert chains. // TODO: consider evolving the semantics to only allow 1D source or dest and // drop this potentially very expensive lowering. // Compute number of elements involved in the reshape. int64_t numElts = 1; for (int64_t r = 0; r < srcRank; r++) numElts *= sourceVectorType.getDimSize(r); // Replace with data movement operations: // x[0,0,0] = y[0,0] // x[0,0,1] = y[0,1] // x[0,1,0] = y[0,2] // etc., incrementing the two index vectors "row-major" // within the source and result shape. SmallVector srcIdx(srcRank); SmallVector resIdx(resRank); Value result = rewriter.create( loc, resultVectorType, rewriter.getZeroAttr(resultVectorType)); for (int64_t i = 0; i < numElts; i++) { if (i != 0) { incIdx(srcIdx, sourceVectorType, srcRank - 1); incIdx(resIdx, resultVectorType, resRank - 1); } Value extract; if (srcRank == 0) { // 0-D vector special case assert(srcIdx.empty() && "Unexpected indices for 0-D vector"); extract = rewriter.create( loc, op.getSourceVectorType().getElementType(), op.getSource()); } else { extract = rewriter.create(loc, op.getSource(), srcIdx); } if (resRank == 0) { // 0-D vector special case assert(resIdx.empty() && "Unexpected indices for 0-D vector"); result = rewriter.create(loc, extract, result); } else { result = rewriter.create(loc, extract, result, resIdx); } } rewriter.replaceOp(op, result); return success(); } }; /// A shape_cast lowering for scalable vectors with a single trailing scalable /// dimension. This is similar to the general shape_cast lowering but makes use /// of vector.scalable.insert and vector.scalable.extract to move elements a /// subvector at a time. /// /// E.g.: /// ``` /// // Flatten scalable vector /// %0 = vector.shape_cast %arg0 : vector<2x1x[4]xi32> to vector<[8]xi32> /// ``` /// is rewritten to: /// ``` /// // Flatten scalable vector /// %c = arith.constant dense<0> : vector<[8]xi32> /// %0 = vector.extract %arg0[0, 0] : vector<[4]xi32> from vector<2x1x[4]xi32> /// %1 = vector.scalable.insert %0, %c[0] : vector<[4]xi32> into vector<[8]xi32> /// %2 = vector.extract %arg0[1, 0] : vector<[4]xi32> from vector<2x1x[4]xi32> /// %3 = vector.scalable.insert %2, %1[4] : vector<[4]xi32> into vector<[8]xi32> /// ``` /// or: /// ``` /// // Un-flatten scalable vector /// %0 = vector.shape_cast %arg0 : vector<[8]xi32> to vector<2x1x[4]xi32> /// ``` /// is rewritten to: /// ``` /// // Un-flatten scalable vector /// %c = arith.constant dense<0> : vector<2x1x[4]xi32> /// %0 = vector.scalable.extract %arg0[0] : vector<[4]xi32> from vector<[8]xi32> /// %1 = vector.insert %0, %c [0, 0] : vector<[4]xi32> into vector<2x1x[4]xi32> /// %2 = vector.scalable.extract %arg0[4] : vector<[4]xi32> from vector<[8]xi32> /// %3 = vector.insert %2, %1 [1, 0] : vector<[4]xi32> into vector<2x1x[4]xi32> /// ``` class ScalableShapeCastOpRewritePattern : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(vector::ShapeCastOp op, PatternRewriter &rewriter) const override { Location loc = op.getLoc(); auto sourceVectorType = op.getSourceVectorType(); auto resultVectorType = op.getResultVectorType(); auto srcRank = sourceVectorType.getRank(); auto resRank = resultVectorType.getRank(); // This can only lower shape_casts where both the source and result types // have a single trailing scalable dimension. This is because there are no // legal representation of other scalable types in LLVM (and likely won't be // soon). There are also (currently) no operations that can index or extract // from >= 2D scalable vectors or scalable vectors of fixed vectors. if (!isTrailingDimScalable(sourceVectorType) || !isTrailingDimScalable(resultVectorType)) { return failure(); } // The sizes of the trailing dimension of the source and result vectors, the // size of subvector to move, and the number of elements in the vectors. // These are "min" sizes as they are the size when vscale == 1. auto minSourceTrailingSize = sourceVectorType.getShape().back(); auto minResultTrailingSize = resultVectorType.getShape().back(); auto minExtractionSize = std::min(minSourceTrailingSize, minResultTrailingSize); int64_t minNumElts = 1; for (auto size : sourceVectorType.getShape()) minNumElts *= size; // The subvector type to move from the source to the result. Note that this // is a scalable vector. This rewrite will generate code in terms of the // "min" size (vscale == 1 case), that scales to any vscale. auto extractionVectorType = VectorType::get( {minExtractionSize}, sourceVectorType.getElementType(), {true}); Value result = rewriter.create( loc, resultVectorType, rewriter.getZeroAttr(resultVectorType)); SmallVector srcIdx(srcRank); SmallVector resIdx(resRank); // TODO: Try rewriting this with StaticTileOffsetRange (from IndexingUtils) // once D150000 lands. Value currentResultScalableVector; Value currentSourceScalableVector; for (int64_t i = 0; i < minNumElts; i += minExtractionSize) { // 1. Extract a scalable subvector from the source vector. if (!currentSourceScalableVector) { if (srcRank != 1) { currentSourceScalableVector = rewriter.create( loc, op.getSource(), llvm::ArrayRef(srcIdx).drop_back()); } else { currentSourceScalableVector = op.getSource(); } } Value sourceSubVector = currentSourceScalableVector; if (minExtractionSize < minSourceTrailingSize) { sourceSubVector = rewriter.create( loc, extractionVectorType, sourceSubVector, srcIdx.back()); } // 2. Insert the scalable subvector into the result vector. if (!currentResultScalableVector) { if (minExtractionSize == minResultTrailingSize) { currentResultScalableVector = sourceSubVector; } else if (resRank != 1) { currentResultScalableVector = rewriter.create( loc, result, llvm::ArrayRef(resIdx).drop_back()); } else { currentResultScalableVector = result; } } if (minExtractionSize < minResultTrailingSize) { currentResultScalableVector = rewriter.create( loc, sourceSubVector, currentResultScalableVector, resIdx.back()); } // 3. Update the source and result scalable vectors if needed. if (resIdx.back() + minExtractionSize >= minResultTrailingSize && currentResultScalableVector != result) { // Finished row of result. Insert complete scalable vector into result // (n-D) vector. result = rewriter.create( loc, currentResultScalableVector, result, llvm::ArrayRef(resIdx).drop_back()); currentResultScalableVector = {}; } if (srcIdx.back() + minExtractionSize >= minSourceTrailingSize) { // Finished row of source. currentSourceScalableVector = {}; } // 4. Increment the insert/extract indices, stepping by minExtractionSize // for the trailing dimensions. incIdx(srcIdx, sourceVectorType, srcRank - 1, minExtractionSize); incIdx(resIdx, resultVectorType, resRank - 1, minExtractionSize); } rewriter.replaceOp(op, result); return success(); } static bool isTrailingDimScalable(VectorType type) { return type.getRank() >= 1 && type.getScalableDims().back() && !llvm::is_contained(type.getScalableDims().drop_back(), true); } }; } // namespace void mlir::vector::populateVectorShapeCastLoweringPatterns( RewritePatternSet &patterns, PatternBenefit benefit) { patterns.add(patterns.getContext(), benefit); }