//===- LoopEmitter.h --------------------------------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #ifndef MLIR_DIALECT_SPARSETENSOR_TRANSFORMS_UTILS_LOOPEMITTER_H_ #define MLIR_DIALECT_SPARSETENSOR_TRANSFORMS_UTILS_LOOPEMITTER_H_ #include #include "SparseTensorIterator.h" #include "mlir/Dialect/SparseTensor/IR/Enums.h" #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h" #include "mlir/Dialect/SparseTensor/Transforms/Passes.h" #include "mlir/Dialect/SparseTensor/Utils/Merger.h" #include "mlir/IR/PatternMatch.h" namespace mlir { namespace sparse_tensor { // A compressed pair. using TensorLevel = unsigned; // // SparseTensorLoopEmiter class, manages sparse tensors and helps to // generate loop structure to (co)-iterate sparse tensors. // // An example usage: // To generate the following loops over T1 and T2 // // for i in TENSOR_1_0 { // for j : TENSOR_2_0 { // for k : TENSOR_1_1 {} // for k : TENSOR_2_1 {} // } // } // // One can use // // LoopEmiter loopEmiter({T1, T1}); // loopEmiter.initializeLoopEmit(); // loopEmiter.enterLoopOverTensorAtLvl(T1, 0); // loopEmiter.enterLoopOverTensorAtLvl(T2, 0); // loopEmiter.enterLoopOverTensorAtLvl(T1, 1); // loopEmiter.exitCurrentLoop(); // loopEmiter.enterLoopOverTensorAtLvl(T2, 1); // loopEmiter.exitCurrentLoop(); // exit k // loopEmiter.exitCurrentLoop(); // exit j // loopEmiter.exitCurrentLoop(); // exit i // class LoopEmitter { public: /// Optional callback function to setup dense output tensors when /// initializing the loop emitter (e.g., to fill a dense output with zeros). using OutputUpdater = function_ref; /// Optional callback function to set the bound for the synthetic tensor, /// which essentially is the dense loop bound. using SynTensorBoundSetter = function_ref; // Map from [tid, lvl] to a list of dependent [LoopId, coeffecient] for // subscript expressions on sparse tensors. // // E.g., for affine index (2 * d0 + d1), it depends on loop d0 and d1 (for // affine expression reduction) and uses 2 and 1 for coefficients on d0, d1 // respectively. If the list is empty, it means that there is no affine // expression on the input [tid, lvl]. // // NOTE: LoopEmitter assumes that the loop id is consistent with the loop // order, i.e., loop `d0` will be generated before loop `d1`. using DependentLvlGetter = function_ref>(TensorId, Level)>; LoopEmitter() = default; /// Takes an array of input tensors, which the generated loops will /// iterate over. Each tensor is given a `TensorId` (numerically equal /// to the position of that tensor `Value` in the array). Setting /// `isSparseOut` indicates that the sparse output tensor is empty, /// so the loop emitter will generate loops over it according to the /// level-sizes. void initialize(ValueRange tensors, StringAttr loopTag = nullptr, bool hasOutput = false, bool isSparseOut = false, unsigned numLoops = 0, DependentLvlGetter getter = nullptr, SparseEmitStrategy emitStrategy = SparseEmitStrategy::kFunctional); explicit LoopEmitter( ValueRange tensors, StringAttr loopTag = nullptr, bool hasOutput = false, bool isSparseOut = false, unsigned numLoops = 0, DependentLvlGetter getter = nullptr, SparseEmitStrategy emitStrategy = SparseEmitStrategy::kFunctional); /// Starts a loop emitting session by generating all the buffers needed /// for iterating over the tensors. void initializeLoopEmit(OpBuilder &builder, Location loc, OutputUpdater updater = nullptr, SynTensorBoundSetter synSetter = nullptr); /// Generates code to compute an affine expression whose variables are /// `LoopId`s (i.e., `a.cast().getPosition()` is a valid /// `LoopId`). Value genAffine(OpBuilder &builder, Location loc, AffineExpr a); /// Enters a new loop sequence, the loops within the same sequence starts /// from the break points of previous loop instead of starting over from 0. /// e.g., /// { /// // loop sequence start. /// p0 = while(xxx) /// ... /// break p0 /// /// // Starts loop from p0 /// for (i = p0; i < end; i++) /// ... /// // loop sequence end. /// } void enterNewLoopSeq(OpBuilder &builder, Location loc, ArrayRef tidLvls); /// Exits the current loop sequence, this will reset universal index to 0. void exitCurrentLoopSeq(OpBuilder &builder, Location loc); /// Emits the address for a dense level based on the value evaluated by the /// provided affine expression. void locateLvlAtAffineAddress(OpBuilder &builder, Location loc, TensorLevel tidLvl, AffineExpr lvlExpr); // TODO: Get rid of `lvls` in the argument list? Track the level we // are currently at internally. Then it would be enterNextLvlForTensor. // Still need a way to specify the lvl for non-annotated tensors though, // as those can be accessed out of order. // /// Emits a co-iteration loop over a set of tensors. /// Emits loop over tensor_tid_lvl, it assumes that loops between /// tensor_tid_[0, lvl - 1] have already been generated. /// The function will also perform in-place update on the `reduc` vector to /// return the reduction variable used inside the generated loop. Operation *enterCoIterationOverTensorsAtLvls( OpBuilder &builder, Location loc, ArrayRef tidLvls, unsigned numCases, MutableArrayRef reduc = {}, bool isParallel = false, bool needsUniv = false); Region *enterCurrentCoIterationCase(OpBuilder &builder, Location loc, I64BitSet caseBit, unsigned caseIdx, MutableArrayRef reduc); /// Generates code to exit the current loop (e.g., generates yields, forwards /// loop induction variables, etc). void exitCurrentLoop(RewriterBase &rewriter, Location loc, MutableArrayRef reduc = {}); /// Get the range of values for all induction variables. auto getLoopIVsRange() const { return llvm::map_range(loopStack, [](const LoopInfo &li) { return li.iv; }); } /// Fills the out-parameter with the loop induction variables for all /// loops in the current loop-stack. SmallVector getLoopIVs() const { return llvm::to_vector(getLoopIVsRange()); } /// Gets the current depth of the loop-stack. LoopId getCurrentDepth() const { return llvm::range_size(getLoopIVsRange()); } /// Gets loop induction variable for the given loop Value getLoopIV(LoopId n) const { if (n >= getCurrentDepth()) return Value(); auto it = getLoopIVsRange().begin(); std::advance(it, n); return *it; } /// Gets the total number of manifest tensors (excluding the synthetic /// tensor). unsigned getNumManifestTensors() const { return tensors.size(); } /// Gets the total number of tensors that loopEmitter is operating on. unsigned getNumTensors() const { // Manifest tensors with one synthetic tensor at the end. return getNumManifestTensors() + 1; } /// Gets the TensorId for synthetic tensor. TensorId getSynTensorId() const { return tensors.size(); } /// Gets the TensorId for output tensor. TensorId getOutTensorId() const { assert(hasOutput); return getNumManifestTensors() - 1; } /// Compresses a TensorId and Level into a TensorLevel. TensorLevel makeTensorLevel(TensorId t, Level l) const { return l * getNumTensors() + t; } /// De-compresses a TensorLevel back to a pair of TensorId and Level. std::pair unpackTensorLevel(TensorLevel tidLvl) const { unsigned nt = getNumTensors(); return std::make_pair(tidLvl % nt, tidLvl / nt); } /// Converts a range of TensorLevel to a range of std::pair template auto unpackTensorLevelRange(ContainerTy &&c) const { using EltTy = decltype(*c.begin()); static_assert(std::is_same_v, TensorLevel>, "Must be unpacking a TensorLevel range"); return llvm::map_range(std::forward(c), [this](EltTy tl) { return this->unpackTensorLevel(tl); }); } /// /// Getters. /// SmallVector getValPosits(TensorId tid) const { // Returns the iterator if we are generating sparse (co)iterate-based loops. if (emitStrategy == SparseEmitStrategy::kSparseIterator) return {spIterVals[tid].back()}; // Returns {[batch coords], last-level position}. SmallVector batchCrds = iters[tid].back().back()->getBatchCrds(); Value lastLvlPos = iters[tid].back().back()->getCurPosition().front(); batchCrds.push_back(lastLvlPos); return batchCrds; }; Value getCoord(TensorId tid, Level lvl) const { return getCurIterator(tid, lvl).getCrd(); }; const std::vector &getValBuffer() const { return valBuffer; }; constexpr static llvm::StringLiteral getLoopEmitterLoopAttrName() { return llvm::StringLiteral("Emitted from"); } private: /// /// Structure definitions that hold different kinds of loops information. /// // LoopInfo stores information of a loop generated by LoopEmitter. E.g., // the set of tensors levels that the loop is iterating over. struct LoopInfo final { LoopInfo(ArrayRef tidLvls, Operation *loop, Block *userBlock, Value iv, StringAttr loopTag) : tidLvls(tidLvls), loop(loop), userCodeBlock(userBlock), iv(iv) { // Attached a special tag to loop emitter generated loop. if (loopTag) loop->setAttr(LoopEmitter::getLoopEmitterLoopAttrName(), loopTag); } // The set of , with *only* trivial index expressions, that are // used as the condition for the generated loop. Extra information is // required for levels with non-tivial index expressions, which is // maintained by the sliceDrivenInfo array below. const llvm::SmallVector tidLvls; Operation *loop; // the loop operation Block *const userCodeBlock; // the block holding users' generated code. Value iv; // the induction variable for the loop }; void categorizeIterators(ArrayRef tidLvls, SmallVectorImpl &raIters, SmallVectorImpl &spIters); /// /// LoopEmitter internal helper functions. /// using LoopBodyBuilder = llvm::function_ref)>; /// Whether the list of the sparse condition should be iterated by for loop. bool shouldIteratedByForLoop(ArrayRef spIters); /// Generates instructions to compute the coordinate of tensors[tid][lvl] /// under the current loop context. The final argument is the /// collapsed-output level, whereas this function handles converting /// that to the uncollapsed-input level Value genSparseCrd(OpBuilder &builder, Location loc, TensorId tid, Level dstLvl); bool isSynTensor(TensorId tid) const { return tid == getSynTensorId(); } bool isOutputTensor(TensorId tid) const { return hasOutput && tid == getOutTensorId(); } bool isSparseOutput(TensorId tid) const { return isOutputTensor(tid) && isSparseOut; } bool isValidLevel(TensorId tid, Level lvl) const { return tid < lvls.size() && lvl < lvls[tid].size(); } /// Prepares loop for iterating over `tensor[lvl]`, under the assumption /// that `tensor[0...lvl-1]` loops have already been set up. void prepareLoopOverTensorAtLvl(OpBuilder &builder, Location loc, TensorId tid, Level lvl); /// Emits a for loop to iterate over a tensor level with the provided /// lower bound `lo` and upper bound `hi`. Apart from iterating just /// single tensor level, for loops can be used for slice-driven loop on /// dense level too. /// Returns a pair: the loop generated and the value for the induction /// variable. std::pair emitForLoopOverTensorAtLvl(OpBuilder &builder, Location loc, SparseIterator &iter, MutableArrayRef reduc, bool isParallel); /// Emits a while loop to co-iterate over a list of sparse condition, or /// (complex) single sparse condition that can not be handled by for loop /// (e.g., index reduction loop). /// Returns a pair: the loop generated and the value for the induction /// variable (which is the minimum coordinate of all the tensor that being /// iterated). std::pair emitWhileLoopOverTensorsAtLvls(OpBuilder &builder, Location loc, ArrayRef iters, MutableArrayRef reduc, bool needsUniv); /// Exits a for loop, returns the reduction results, e.g., /// For sequential for loops: /// %ret = for () { /// ... /// %val = addi %args, %c /// yield %val /// } /// For parallel loops, the following generated code by users: /// %ret = parallel () init(%args) { /// ... /// %val = op %args, %c /// } /// will be transformed into /// %ret = parallel () init(%args) { /// ... /// scf.reduce(%c) bb0(%0, %1){ /// %val = op %0, %1 /// scf.reduce.return %val /// } /// } /// NOTE: only one instruction will be moved into reduce block, /// transformation will fail if multiple instructions are used to compute /// the reduction value. Return %ret to user, while %val is provided by /// users (`reduc`). void exitForLoop(RewriterBase &rewriter, Location loc, MutableArrayRef reduc); /// Exits a while loop, returns the reduction results. void exitWhileLoop(OpBuilder &builder, Location loc, MutableArrayRef reduc); // // Slice-driven loop related methods. // void initSubSectIterator(OpBuilder &builder, Location loc); /// Get the reduced number of contraints on tensor[tid][lvl]. unsigned redDepOnLevel(TensorId tid, Level lvl) const { return levelReducedDep[tid][lvl]; }; SparseIterator &getCurIterator(TensorId tid, Level lvl) const { if (dependentLvlMap[tid][lvl].empty()) return *iters[tid][lvl].back(); assert(redDepOnLevel(tid, lvl) >= 1); return *iters[tid][lvl][redDepOnLevel(tid, lvl) - 1]; } std::unique_ptr makeLevelIterator(OpBuilder &builder, Location loc, TensorId tid, Level l); /// A optional string attribute that should be attached to the loop /// generated by loop emitter, it might help following passes to identify /// loops that operates on sparse tensors more easily. StringAttr loopTag; /// Whether the loop emitter needs to treat the last tensor as the output /// tensor. bool hasOutput; bool isSparseOut; SparseEmitStrategy emitStrategy; // // Fields which have `numTensor` many entries. // /// Input and (optional) output tensors. std::vector tensors; std::vector loopHighs; std::vector>> lvls; std::vector>>> iters; std::vector valBuffer; // to_value // Map from [tid, level] to a list of dependent [tidlevel, coefficient]. // See comments for `DependentLvlGetter`. std::vector>>> dependentLvlMap; // The (size, stride) for each conceptual slice used for index reduction // loops. std::vector>>> sliceMeta; // The number of reduced dependencies on a tensor level so far. std::vector> levelReducedDep; // // Fields which have at most `numLoops` many entries. // /// Loop Stack, stores the information of all the nested loops that are /// alive. std::vector loopStack; // Loop Sequence Stack, stores the universal index for the current loop // sequence. and a list of tid level that the loop sequence traverse. std::vector>> loopSeqStack; // // EXPERIMENTAL: // Fields for generating sparse-iterator-based loop. // std::vector> spIterVals; }; // // Utils functions to generate sparse loops. // // Generate a while loop that co-iterates over a set of iterators. std::pair genCoIteration(OpBuilder &builder, Location loc, ArrayRef iters, MutableArrayRef reduc, Value uniIdx, bool userReducFirst = false); } // namespace sparse_tensor } // namespace mlir #endif // MLIR_DIALECT_SPARSETENSOR_TRANSFORMS_UTILS_LOOPEMITTER_H_