//===- SparseVectorization.cpp - Vectorization of sparsified loops --------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // A pass that converts loops generated by the sparse compiler into a form that // can exploit SIMD instructions of the target architecture. Note that this pass // ensures the sparse compiler can generate efficient SIMD (including ArmSVE // support) with proper separation of concerns as far as sparsification and // vectorization is concerned. However, this pass is not the final abstraction // level we want, and not the general vectorizer we want either. It forms a good // stepping stone for incremental future improvements though. // //===----------------------------------------------------------------------===// #include "CodegenUtils.h" #include "mlir/Dialect/Affine/IR/AffineOps.h" #include "mlir/Dialect/Arith/IR/Arith.h" #include "mlir/Dialect/Complex/IR/Complex.h" #include "mlir/Dialect/Math/IR/Math.h" #include "mlir/Dialect/MemRef/IR/MemRef.h" #include "mlir/Dialect/SCF/IR/SCF.h" #include "mlir/Dialect/SparseTensor/Transforms/Passes.h" #include "mlir/Dialect/Vector/IR/VectorOps.h" #include "mlir/IR/Matchers.h" using namespace mlir; using namespace mlir::sparse_tensor; namespace { /// Target SIMD properties: /// vectorLength: # packed data elements (viz. vector<16xf32> has length 16) /// enableVLAVectorization: enables scalable vectors (viz. ARMSve) /// enableSIMDIndex32: uses 32-bit indices in gather/scatter for efficiency struct VL { unsigned vectorLength; bool enableVLAVectorization; bool enableSIMDIndex32; }; /// Helper to test for given index value. static bool isIntValue(Value val, int64_t idx) { if (auto ival = getConstantIntValue(val)) return *ival == idx; return false; } /// Constructs vector type for element type. static VectorType vectorType(VL vl, Type etp) { unsigned numScalableDims = vl.enableVLAVectorization; return VectorType::get(vl.vectorLength, etp, numScalableDims); } /// Constructs vector type from pointer. static VectorType vectorType(VL vl, Value ptr) { return vectorType(vl, ptr.getType().cast().getElementType()); } /// Constructs vector iteration mask. static Value genVectorMask(PatternRewriter &rewriter, Location loc, VL vl, Value iv, Value lo, Value hi, Value step) { VectorType mtp = vectorType(vl, rewriter.getI1Type()); // Special case if the vector length evenly divides the trip count (for // example, "for i = 0, 128, 16"). A constant all-true mask is generated // so that all subsequent masked memory operations are immediately folded // into unconditional memory operations. IntegerAttr loInt, hiInt, stepInt; if (matchPattern(lo, m_Constant(&loInt)) && matchPattern(hi, m_Constant(&hiInt)) && matchPattern(step, m_Constant(&stepInt))) { if (((hiInt.getInt() - loInt.getInt()) % stepInt.getInt()) == 0) { Value trueVal = constantI1(rewriter, loc, true); return rewriter.create(loc, mtp, trueVal); } } // Otherwise, generate a vector mask that avoids overrunning the upperbound // during vector execution. Here we rely on subsequent loop optimizations to // avoid executing the mask in all iterations, for example, by splitting the // loop into an unconditional vector loop and a scalar cleanup loop. auto min = AffineMap::get( /*dimCount=*/2, /*symbolCount=*/1, {rewriter.getAffineSymbolExpr(0), rewriter.getAffineDimExpr(0) - rewriter.getAffineDimExpr(1)}, rewriter.getContext()); Value end = rewriter.createOrFold(loc, min, ValueRange{hi, iv, step}); return rewriter.create(loc, mtp, end); } /// Generates a vectorized invariant. Here we rely on subsequent loop /// optimizations to hoist the invariant broadcast out of the vector loop. static Value genVectorInvariantValue(PatternRewriter &rewriter, VL vl, Value val) { VectorType vtp = vectorType(vl, val.getType()); return rewriter.create(val.getLoc(), vtp, val); } /// Generates a vectorized load lhs = a[ind[lo:hi]] or lhs = a[lo:hi], /// where 'lo' denotes the current index and 'hi = lo + vl - 1'. static Value genVectorLoad(PatternRewriter &rewriter, Location loc, VL vl, Value ptr, ArrayRef idxs, Value vmask) { VectorType vtp = vectorType(vl, ptr); Value pass = constantZero(rewriter, loc, vtp); if (idxs.back().getType().isa()) { SmallVector scalarArgs(idxs.begin(), idxs.end()); Value indexVec = idxs.back(); scalarArgs.back() = constantIndex(rewriter, loc, 0); return rewriter.create(loc, vtp, ptr, scalarArgs, indexVec, vmask, pass); } return rewriter.create(loc, vtp, ptr, idxs, vmask, pass); } /// Generates a vectorized store a[ind[lo:hi]] = rhs or a[lo:hi] = rhs /// where 'lo' denotes the current index and 'hi = lo + vl - 1'. static void genVectorStore(PatternRewriter &rewriter, Location loc, Value ptr, ArrayRef idxs, Value vmask, Value rhs) { if (idxs.back().getType().isa()) { SmallVector scalarArgs(idxs.begin(), idxs.end()); Value indexVec = idxs.back(); scalarArgs.back() = constantIndex(rewriter, loc, 0); rewriter.create(loc, ptr, scalarArgs, indexVec, vmask, rhs); return; } rewriter.create(loc, ptr, idxs, vmask, rhs); } /// Maps operation to combining kind for reduction. static vector::CombiningKind getCombiningKind(Operation *def) { if (isa(def) || isa(def) || isa(def) || isa(def)) return vector::CombiningKind::ADD; if (isa(def) || isa(def)) return vector::CombiningKind::MUL; if (isa(def)) return vector::CombiningKind::AND; if (isa(def)) return vector::CombiningKind::OR; if (isa(def)) return vector::CombiningKind::XOR; llvm_unreachable("unknown reduction kind"); } /// Generates an initial value for a vector reduction, following the scheme /// given in Chapter 5 of "The Software Vectorization Handbook", where the /// initial scalar value is correctly embedded in the vector reduction value, /// and a straightforward horizontal reduction will complete the operation. /// The value 'r' denotes the initial value of the accumulator. Value 'rd' /// denotes the accumulation operation, which is solely used here to determine /// the kind of combining reduction (viz. addf -> sum-accumulation). static Value genVectorReducInit(PatternRewriter &rewriter, Location loc, VectorType vtp, Value r, Value rd) { vector::CombiningKind kind = getCombiningKind(rd.getDefiningOp()); switch (kind) { case vector::CombiningKind::ADD: case vector::CombiningKind::XOR: // Initialize reduction vector to: | 0 | .. | 0 | r | return rewriter.create( loc, r, constantZero(rewriter, loc, vtp), constantIndex(rewriter, loc, 0)); case vector::CombiningKind::MUL: // Initialize reduction vector to: | 1 | .. | 1 | r | return rewriter.create( loc, r, constantOne(rewriter, loc, vtp), constantIndex(rewriter, loc, 0)); case vector::CombiningKind::AND: case vector::CombiningKind::OR: // Initialize reduction vector to: | r | .. | r | r | return rewriter.create(loc, vtp, r); default: break; } llvm_unreachable("unknown reduction kind"); } /// Generates final value for a vector reduction. static Value genVectorReducEnd(PatternRewriter &rewriter, Location loc, Value vexp, Value rd) { vector::CombiningKind kind = getCombiningKind(rd.getDefiningOp()); return rewriter.create(loc, kind, vexp); } /// This method is called twice to analyze and rewrite the given subscripts. /// The first call (!codegen) does the analysis. Then, on success, the second /// call (codegen) yields the proper vector form in the output parameter /// vector 'idxs'. This mechanism ensures that analysis and rewriting code /// stay in sync. /// /// See https://llvm.org/docs/GetElementPtr.html for some background on /// the complications described below. /// /// We need to generate a pointer/index load from the sparse storage scheme. /// Narrower data types need to be zero extended before casting the value /// into the index type used for looping and indexing. /// /// For the scalar case, subscripts simply zero extend narrower indices /// into 64-bit values before casting to an index type without a performance /// penalty. Indices that already are 64-bit, in theory, cannot express the /// full range since the LLVM backend defines addressing in terms of an /// unsigned pointer/signed index pair. static bool vectorizeSubscripts(PatternRewriter &rewriter, scf::ForOp forOp, VL vl, ValueRange subs, bool codegen, Value vmask, SmallVectorImpl &idxs) { for (auto sub : subs) { // Invariant indices simply pass through. if (sub.dyn_cast() || sub.getDefiningOp()->getBlock() != &forOp.getRegion().front()) { if (codegen) idxs.push_back(sub); continue; // success so far } // Look under the hood of casting. auto cast = sub; while (1) { if (auto icast = cast.getDefiningOp()) cast = icast->getOperand(0); else if (auto ecast = cast.getDefiningOp()) cast = ecast->getOperand(0); else break; } // Since the index vector is used in a subsequent gather/scatter // operations, which effectively defines an unsigned pointer + signed // index, we must zero extend the vector to an index width. For 8-bit // and 16-bit values, an 32-bit index width suffices. For 32-bit values, // zero extending the elements into 64-bit loses some performance since // the 32-bit indexed gather/scatter is more efficient than the 64-bit // index variant (if the negative 32-bit index space is unused, the // enableSIMDIndex32 flag can preserve this performance). For 64-bit // values, there is no good way to state that the indices are unsigned, // which creates the potential of incorrect address calculations in the // unlikely case we need such extremely large offsets. if (auto load = cast.getDefiningOp()) { if (codegen) { SmallVector idxs2(load.getIndices()); // no need to analyze Location loc = forOp.getLoc(); Value vload = genVectorLoad(rewriter, loc, vl, load.getMemRef(), idxs2, vmask); Type etp = vload.getType().cast().getElementType(); if (!etp.isa()) { if (etp.getIntOrFloatBitWidth() < 32) vload = rewriter.create( loc, vectorType(vl, rewriter.getI32Type()), vload); else if (etp.getIntOrFloatBitWidth() < 64 && !vl.enableSIMDIndex32) vload = rewriter.create( loc, vectorType(vl, rewriter.getI64Type()), vload); } idxs.push_back(vload); } continue; // success so far } return false; } return true; } #define UNAOP(xxx) \ if (isa(def)) { \ if (codegen) \ vexp = rewriter.create(loc, vx); \ return true; \ } #define BINOP(xxx) \ if (isa(def)) { \ if (codegen) \ vexp = rewriter.create(loc, vx, vy); \ return true; \ } /// This method is called twice to analyze and rewrite the given expression. /// The first call (!codegen) does the analysis. Then, on success, the second /// call (codegen) yields the proper vector form in the output parameter 'vexp'. /// This mechanism ensures that analysis and rewriting code stay in sync. static bool vectorizeExpr(PatternRewriter &rewriter, scf::ForOp forOp, VL vl, Value exp, bool codegen, Value vmask, Value &vexp) { // A block argument in invariant. if (auto arg = exp.dyn_cast()) { if (codegen) vexp = genVectorInvariantValue(rewriter, vl, exp); return true; } // Something defined outside the loop-body is invariant as well. Operation *def = exp.getDefiningOp(); if (def->getBlock() != &forOp.getRegion().front()) { if (codegen) vexp = genVectorInvariantValue(rewriter, vl, exp); return true; } // Inside loop-body unary and binary operations. Note that it would be // nicer if we could somehow test and build the operations in a more // concise manner than just listing them all (although this way we know // for certain that they can vectorize). Location loc = forOp.getLoc(); if (auto load = dyn_cast(def)) { auto subs = load.getIndices(); SmallVector idxs; if (vectorizeSubscripts(rewriter, forOp, vl, subs, codegen, vmask, idxs)) { if (codegen) vexp = genVectorLoad(rewriter, loc, vl, load.getMemRef(), idxs, vmask); return true; } } else if (def->getNumOperands() == 1) { Value vx; if (vectorizeExpr(rewriter, forOp, vl, def->getOperand(0), codegen, vmask, vx)) { UNAOP(math::AbsFOp) UNAOP(math::AbsIOp) UNAOP(math::CeilOp) UNAOP(math::FloorOp) UNAOP(math::SqrtOp) UNAOP(math::ExpM1Op) UNAOP(math::Log1pOp) UNAOP(math::SinOp) UNAOP(math::TanhOp) UNAOP(arith::NegFOp) } } else if (def->getNumOperands() == 2) { Value vx, vy; if (vectorizeExpr(rewriter, forOp, vl, def->getOperand(0), codegen, vmask, vx) && vectorizeExpr(rewriter, forOp, vl, def->getOperand(1), codegen, vmask, vy)) { BINOP(arith::MulFOp) BINOP(arith::MulIOp) BINOP(arith::DivFOp) BINOP(arith::DivSIOp) BINOP(arith::DivUIOp) BINOP(arith::AddFOp) BINOP(arith::AddIOp) BINOP(arith::SubFOp) BINOP(arith::SubIOp) BINOP(arith::AndIOp) BINOP(arith::OrIOp) BINOP(arith::XOrIOp) } } return false; } #undef UNAOP #undef BINOP /// This method is called twice to analyze and rewrite the given for-loop. /// The first call (!codegen) does the analysis. Then, on success, the second /// call (codegen) rewriters the IR into vector form. This mechanism ensures /// that analysis and rewriting code stay in sync. static bool vectorizeStmt(PatternRewriter &rewriter, scf::ForOp forOp, VL vl, bool codegen) { Location loc = forOp.getLoc(); Block &block = forOp.getRegion().front(); scf::YieldOp yield = cast(block.getTerminator()); auto &last = *++block.rbegin(); scf::ForOp forOpNew; // Perform initial set up during codegen (we know that the first analysis // pass was successful). For reductions, we need to construct a completely // new for-loop, since the incoming and outgoing reduction type // changes into SIMD form. For stores, we can simply adjust the stride // and insert in the existing for-loop. In both cases, we set up a vector // mask for all operations which takes care of confining vectors to // the original iteration space (later cleanup loops or other // optimizations can take care of those). Value vmask; if (codegen) { Value step = constantIndex(rewriter, loc, vl.vectorLength); if (vl.enableVLAVectorization) { Value vscale = rewriter.create(loc, rewriter.getIndexType()); step = rewriter.create(loc, vscale, step); } if (!yield.getResults().empty()) { Value init = forOp.getInitArgs()[0]; VectorType vtp = vectorType(vl, init.getType()); Value vinit = genVectorReducInit(rewriter, loc, vtp, init, yield->getOperand(0)); forOpNew = rewriter.create( loc, forOp.getLowerBound(), forOp.getUpperBound(), step, vinit); rewriter.setInsertionPointToStart(forOpNew.getBody()); } else { forOp.setStep(step); rewriter.setInsertionPoint(yield); } vmask = genVectorMask(rewriter, loc, vl, forOp.getInductionVar(), forOp.getLowerBound(), forOp.getUpperBound(), step); } // Sparse for-loops either are terminated by a non-empty yield operation // (reduction loop) or otherwise by a store operation (pararallel loop). if (!yield.getResults().empty()) { if (yield->getNumOperands() != 1) return false; Value redOp = yield->getOperand(0); // Analyze/vectorize reduction. // TODO: use linalg utils to verify the actual reduction? Value vrhs; if (vectorizeExpr(rewriter, forOp, vl, redOp, codegen, vmask, vrhs)) { if (codegen) { Value vpass = genVectorInvariantValue(rewriter, vl, forOp.getRegionIterArg(0)); Value vred = rewriter.create(loc, vmask, vrhs, vpass); rewriter.create(loc, vred); rewriter.setInsertionPointAfter(forOpNew); Value vres = genVectorReducEnd(rewriter, loc, forOpNew.getResult(0), redOp); // Now do some relinking (last one is not completely type safe // but all bad ones are removed right away). This also folds away // nop broadcast operations. forOp.getResult(0).replaceAllUsesWith(vres); forOp.getInductionVar().replaceAllUsesWith(forOpNew.getInductionVar()); forOp.getRegionIterArg(0).replaceAllUsesWith( forOpNew.getRegionIterArg(0)); rewriter.eraseOp(forOp); } return true; } } else if (auto store = dyn_cast(last)) { // Analyze/vectorize store operation. auto subs = store.getIndices(); SmallVector idxs; Value rhs = store.getValue(); Value vrhs; if (vectorizeSubscripts(rewriter, forOp, vl, subs, codegen, vmask, idxs) && vectorizeExpr(rewriter, forOp, vl, rhs, codegen, vmask, vrhs)) { if (codegen) { genVectorStore(rewriter, loc, store.getMemRef(), idxs, vmask, vrhs); rewriter.eraseOp(store); } return true; } } assert(!codegen && "cannot call codegen when analysis failed"); return false; } /// Basic for-loop vectorizer. struct ForOpRewriter : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; ForOpRewriter(MLIRContext *context, unsigned vectorLength, bool enableVLAVectorization, bool enableSIMDIndex32) : OpRewritePattern(context), vl{vectorLength, enableVLAVectorization, enableSIMDIndex32} {} LogicalResult matchAndRewrite(scf::ForOp op, PatternRewriter &rewriter) const override { // Check for single block, unit-stride for-loop that is generated by // sparse compiler, which means no data dependence analysis is required, // and its loop-body is very restricted in form. if (!op.getRegion().hasOneBlock() || !isIntValue(op.getStep(), 1) || !op->hasAttr(SparseTensorLoopEmitter::getLoopEmitterLoopAttrName())) return failure(); // Analyze (!codegen) and rewrite (codegen) loop-body. if (vectorizeStmt(rewriter, op, vl, /*codegen=*/false) && vectorizeStmt(rewriter, op, vl, /*codegen=*/true)) return success(); return failure(); } private: const VL vl; }; } // namespace //===----------------------------------------------------------------------===// // Public method for populating vectorization rules. //===----------------------------------------------------------------------===// /// Populates the given patterns list with vectorization rules. void mlir::populateSparseVectorizationPatterns(RewritePatternSet &patterns, unsigned vectorLength, bool enableVLAVectorization, bool enableSIMDIndex32) { patterns.add(patterns.getContext(), vectorLength, enableVLAVectorization, enableSIMDIndex32); }