//===- Matrix.cpp - MLIR Matrix Class -------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "mlir/Analysis/Presburger/Matrix.h" #include "mlir/Analysis/Presburger/Fraction.h" #include "mlir/Analysis/Presburger/Utils.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include #include #include using namespace mlir; using namespace presburger; template Matrix::Matrix(unsigned rows, unsigned columns, unsigned reservedRows, unsigned reservedColumns) : nRows(rows), nColumns(columns), nReservedColumns(std::max(nColumns, reservedColumns)), data(nRows * nReservedColumns) { data.reserve(std::max(nRows, reservedRows) * nReservedColumns); } /// We cannot use the default implementation of operator== as it compares /// fields like `reservedColumns` etc., which are not part of the data. template bool Matrix::operator==(const Matrix &m) const { if (nRows != m.getNumRows()) return false; if (nColumns != m.getNumColumns()) return false; for (unsigned i = 0; i < nRows; i++) if (getRow(i) != m.getRow(i)) return false; return true; } template Matrix Matrix::identity(unsigned dimension) { Matrix matrix(dimension, dimension); for (unsigned i = 0; i < dimension; ++i) matrix(i, i) = 1; return matrix; } template unsigned Matrix::getNumReservedRows() const { return data.capacity() / nReservedColumns; } template void Matrix::reserveRows(unsigned rows) { data.reserve(rows * nReservedColumns); } template unsigned Matrix::appendExtraRow() { resizeVertically(nRows + 1); return nRows - 1; } template unsigned Matrix::appendExtraRow(ArrayRef elems) { assert(elems.size() == nColumns && "elems must match row length!"); unsigned row = appendExtraRow(); for (unsigned col = 0; col < nColumns; ++col) at(row, col) = elems[col]; return row; } template Matrix Matrix::transpose() const { Matrix transp(nColumns, nRows); for (unsigned row = 0; row < nRows; ++row) for (unsigned col = 0; col < nColumns; ++col) transp(col, row) = at(row, col); return transp; } template void Matrix::resizeHorizontally(unsigned newNColumns) { if (newNColumns < nColumns) removeColumns(newNColumns, nColumns - newNColumns); if (newNColumns > nColumns) insertColumns(nColumns, newNColumns - nColumns); } template void Matrix::resize(unsigned newNRows, unsigned newNColumns) { resizeHorizontally(newNColumns); resizeVertically(newNRows); } template void Matrix::resizeVertically(unsigned newNRows) { nRows = newNRows; data.resize(nRows * nReservedColumns); } template void Matrix::swapRows(unsigned row, unsigned otherRow) { assert((row < getNumRows() && otherRow < getNumRows()) && "Given row out of bounds"); if (row == otherRow) return; for (unsigned col = 0; col < nColumns; col++) std::swap(at(row, col), at(otherRow, col)); } template void Matrix::swapColumns(unsigned column, unsigned otherColumn) { assert((column < getNumColumns() && otherColumn < getNumColumns()) && "Given column out of bounds"); if (column == otherColumn) return; for (unsigned row = 0; row < nRows; row++) std::swap(at(row, column), at(row, otherColumn)); } template MutableArrayRef Matrix::getRow(unsigned row) { return {&data[row * nReservedColumns], nColumns}; } template ArrayRef Matrix::getRow(unsigned row) const { return {&data[row * nReservedColumns], nColumns}; } template void Matrix::setRow(unsigned row, ArrayRef elems) { assert(elems.size() == getNumColumns() && "elems size must match row length!"); for (unsigned i = 0, e = getNumColumns(); i < e; ++i) at(row, i) = elems[i]; } template void Matrix::insertColumn(unsigned pos) { insertColumns(pos, 1); } template void Matrix::insertColumns(unsigned pos, unsigned count) { if (count == 0) return; assert(pos <= nColumns); unsigned oldNReservedColumns = nReservedColumns; if (nColumns + count > nReservedColumns) { nReservedColumns = llvm::NextPowerOf2(nColumns + count); data.resize(nRows * nReservedColumns); } nColumns += count; for (int ri = nRows - 1; ri >= 0; --ri) { for (int ci = nReservedColumns - 1; ci >= 0; --ci) { unsigned r = ri; unsigned c = ci; T &dest = data[r * nReservedColumns + c]; if (c >= nColumns) { // NOLINT // Out of bounds columns are zero-initialized. NOLINT because clang-tidy // complains about this branch being the same as the c >= pos one. // // TODO: this case can be skipped if the number of reserved columns // didn't change. dest = 0; } else if (c >= pos + count) { // Shift the data occuring after the inserted columns. dest = data[r * oldNReservedColumns + c - count]; } else if (c >= pos) { // The inserted columns are also zero-initialized. dest = 0; } else { // The columns before the inserted columns stay at the same (row, col) // but this corresponds to a different location in the linearized array // if the number of reserved columns changed. if (nReservedColumns == oldNReservedColumns) break; dest = data[r * oldNReservedColumns + c]; } } } } template void Matrix::removeColumn(unsigned pos) { removeColumns(pos, 1); } template void Matrix::removeColumns(unsigned pos, unsigned count) { if (count == 0) return; assert(pos + count - 1 < nColumns); for (unsigned r = 0; r < nRows; ++r) { for (unsigned c = pos; c < nColumns - count; ++c) at(r, c) = at(r, c + count); for (unsigned c = nColumns - count; c < nColumns; ++c) at(r, c) = 0; } nColumns -= count; } template void Matrix::insertRow(unsigned pos) { insertRows(pos, 1); } template void Matrix::insertRows(unsigned pos, unsigned count) { if (count == 0) return; assert(pos <= nRows); resizeVertically(nRows + count); for (int r = nRows - 1; r >= int(pos + count); --r) copyRow(r - count, r); for (int r = pos + count - 1; r >= int(pos); --r) for (unsigned c = 0; c < nColumns; ++c) at(r, c) = 0; } template void Matrix::removeRow(unsigned pos) { removeRows(pos, 1); } template void Matrix::removeRows(unsigned pos, unsigned count) { if (count == 0) return; assert(pos + count - 1 <= nRows); for (unsigned r = pos; r + count < nRows; ++r) copyRow(r + count, r); resizeVertically(nRows - count); } template void Matrix::copyRow(unsigned sourceRow, unsigned targetRow) { if (sourceRow == targetRow) return; for (unsigned c = 0; c < nColumns; ++c) at(targetRow, c) = at(sourceRow, c); } template void Matrix::fillRow(unsigned row, const T &value) { for (unsigned col = 0; col < nColumns; ++col) at(row, col) = value; } // moveColumns is implemented by moving the columns adjacent to the source range // to their final position. When moving right (i.e. dstPos > srcPos), the range // of the adjacent columns is [srcPos + num, dstPos + num). When moving left // (i.e. dstPos < srcPos) the range of the adjacent columns is [dstPos, srcPos). // First, zeroed out columns are inserted in the final positions of the adjacent // columns. Then, the adjacent columns are moved to their final positions by // swapping them with the zeroed columns. Finally, the now zeroed adjacent // columns are deleted. template void Matrix::moveColumns(unsigned srcPos, unsigned num, unsigned dstPos) { if (num == 0) return; int offset = dstPos - srcPos; if (offset == 0) return; assert(srcPos + num <= getNumColumns() && "move source range exceeds matrix columns"); assert(dstPos + num <= getNumColumns() && "move destination range exceeds matrix columns"); unsigned insertCount = offset > 0 ? offset : -offset; unsigned finalAdjStart = offset > 0 ? srcPos : srcPos + num; unsigned curAdjStart = offset > 0 ? srcPos + num : dstPos; // TODO: This can be done using std::rotate. // Insert new zero columns in the positions where the adjacent columns are to // be moved. insertColumns(finalAdjStart, insertCount); // Update curAdjStart if insertion of new columns invalidates it. if (finalAdjStart < curAdjStart) curAdjStart += insertCount; // Swap the adjacent columns with inserted zero columns. for (unsigned i = 0; i < insertCount; ++i) swapColumns(finalAdjStart + i, curAdjStart + i); // Delete the now redundant zero columns. removeColumns(curAdjStart, insertCount); } template void Matrix::addToRow(unsigned sourceRow, unsigned targetRow, const T &scale) { addToRow(targetRow, getRow(sourceRow), scale); } template void Matrix::addToRow(unsigned row, ArrayRef rowVec, const T &scale) { if (scale == 0) return; for (unsigned col = 0; col < nColumns; ++col) at(row, col) += scale * rowVec[col]; } template void Matrix::scaleRow(unsigned row, const T &scale) { for (unsigned col = 0; col < nColumns; ++col) at(row, col) *= scale; } template void Matrix::addToColumn(unsigned sourceColumn, unsigned targetColumn, const T &scale) { if (scale == 0) return; for (unsigned row = 0, e = getNumRows(); row < e; ++row) at(row, targetColumn) += scale * at(row, sourceColumn); } template void Matrix::negateColumn(unsigned column) { for (unsigned row = 0, e = getNumRows(); row < e; ++row) at(row, column) = -at(row, column); } template void Matrix::negateRow(unsigned row) { for (unsigned column = 0, e = getNumColumns(); column < e; ++column) at(row, column) = -at(row, column); } template void Matrix::negateMatrix() { for (unsigned row = 0; row < nRows; ++row) negateRow(row); } template SmallVector Matrix::preMultiplyWithRow(ArrayRef rowVec) const { assert(rowVec.size() == getNumRows() && "Invalid row vector dimension!"); SmallVector result(getNumColumns(), T(0)); for (unsigned col = 0, e = getNumColumns(); col < e; ++col) for (unsigned i = 0, e = getNumRows(); i < e; ++i) result[col] += rowVec[i] * at(i, col); return result; } template SmallVector Matrix::postMultiplyWithColumn(ArrayRef colVec) const { assert(getNumColumns() == colVec.size() && "Invalid column vector dimension!"); SmallVector result(getNumRows(), T(0)); for (unsigned row = 0, e = getNumRows(); row < e; row++) for (unsigned i = 0, e = getNumColumns(); i < e; i++) result[row] += at(row, i) * colVec[i]; return result; } /// Set M(row, targetCol) to its remainder on division by M(row, sourceCol) /// by subtracting from column targetCol an appropriate integer multiple of /// sourceCol. This brings M(row, targetCol) to the range [0, M(row, /// sourceCol)). Apply the same column operation to otherMatrix, with the same /// integer multiple. static void modEntryColumnOperation(Matrix &m, unsigned row, unsigned sourceCol, unsigned targetCol, Matrix &otherMatrix) { assert(m(row, sourceCol) != 0 && "Cannot divide by zero!"); assert(m(row, sourceCol) > 0 && "Source must be positive!"); DynamicAPInt ratio = -floorDiv(m(row, targetCol), m(row, sourceCol)); m.addToColumn(sourceCol, targetCol, ratio); otherMatrix.addToColumn(sourceCol, targetCol, ratio); } template Matrix Matrix::getSubMatrix(unsigned fromRow, unsigned toRow, unsigned fromColumn, unsigned toColumn) const { assert(fromRow <= toRow && "end of row range must be after beginning!"); assert(toRow < nRows && "end of row range out of bounds!"); assert(fromColumn <= toColumn && "end of column range must be after beginning!"); assert(toColumn < nColumns && "end of column range out of bounds!"); Matrix subMatrix(toRow - fromRow + 1, toColumn - fromColumn + 1); for (unsigned i = fromRow; i <= toRow; ++i) for (unsigned j = fromColumn; j <= toColumn; ++j) subMatrix(i - fromRow, j - fromColumn) = at(i, j); return subMatrix; } template void Matrix::print(raw_ostream &os) const { PrintTableMetrics ptm = {0, 0, "-"}; for (unsigned row = 0; row < nRows; ++row) for (unsigned column = 0; column < nColumns; ++column) updatePrintMetrics(at(row, column), ptm); unsigned MIN_SPACING = 1; for (unsigned row = 0; row < nRows; ++row) { for (unsigned column = 0; column < nColumns; ++column) { printWithPrintMetrics(os, at(row, column), MIN_SPACING, ptm); } os << "\n"; } } /// We iterate over the `indicator` bitset, checking each bit. If a bit is 1, /// we append it to one matrix, and if it is zero, we append it to the other. template std::pair, Matrix> Matrix::splitByBitset(ArrayRef indicator) { Matrix rowsForOne(0, nColumns), rowsForZero(0, nColumns); for (unsigned i = 0; i < nRows; i++) { if (indicator[i] == 1) rowsForOne.appendExtraRow(getRow(i)); else rowsForZero.appendExtraRow(getRow(i)); } return {rowsForOne, rowsForZero}; } template void Matrix::dump() const { print(llvm::errs()); } template bool Matrix::hasConsistentState() const { if (data.size() != nRows * nReservedColumns) return false; if (nColumns > nReservedColumns) return false; #ifdef EXPENSIVE_CHECKS for (unsigned r = 0; r < nRows; ++r) for (unsigned c = nColumns; c < nReservedColumns; ++c) if (data[r * nReservedColumns + c] != 0) return false; #endif return true; } namespace mlir { namespace presburger { template class Matrix; template class Matrix; } // namespace presburger } // namespace mlir IntMatrix IntMatrix::identity(unsigned dimension) { IntMatrix matrix(dimension, dimension); for (unsigned i = 0; i < dimension; ++i) matrix(i, i) = 1; return matrix; } std::pair IntMatrix::computeHermiteNormalForm() const { // We start with u as an identity matrix and perform operations on h until h // is in hermite normal form. We apply the same sequence of operations on u to // obtain a transform that takes h to hermite normal form. IntMatrix h = *this; IntMatrix u = IntMatrix::identity(h.getNumColumns()); unsigned echelonCol = 0; // Invariant: in all rows above row, all columns from echelonCol onwards // are all zero elements. In an iteration, if the curent row has any non-zero // elements echelonCol onwards, we bring one to echelonCol and use it to // make all elements echelonCol + 1 onwards zero. for (unsigned row = 0; row < h.getNumRows(); ++row) { // Search row for a non-empty entry, starting at echelonCol. unsigned nonZeroCol = echelonCol; for (unsigned e = h.getNumColumns(); nonZeroCol < e; ++nonZeroCol) { if (h(row, nonZeroCol) == 0) continue; break; } // Continue to the next row with the same echelonCol if this row is all // zeros from echelonCol onwards. if (nonZeroCol == h.getNumColumns()) continue; // Bring the non-zero column to echelonCol. This doesn't affect rows // above since they are all zero at these columns. if (nonZeroCol != echelonCol) { h.swapColumns(nonZeroCol, echelonCol); u.swapColumns(nonZeroCol, echelonCol); } // Make h(row, echelonCol) non-negative. if (h(row, echelonCol) < 0) { h.negateColumn(echelonCol); u.negateColumn(echelonCol); } // Make all the entries in row after echelonCol zero. for (unsigned i = echelonCol + 1, e = h.getNumColumns(); i < e; ++i) { // We make h(row, i) non-negative, and then apply the Euclidean GCD // algorithm to (row, i) and (row, echelonCol). At the end, one of them // has value equal to the gcd of the two entries, and the other is zero. if (h(row, i) < 0) { h.negateColumn(i); u.negateColumn(i); } unsigned targetCol = i, sourceCol = echelonCol; // At every step, we set h(row, targetCol) %= h(row, sourceCol), and // swap the indices sourceCol and targetCol. (not the columns themselves) // This modulo is implemented as a subtraction // h(row, targetCol) -= quotient * h(row, sourceCol), // where quotient = floor(h(row, targetCol) / h(row, sourceCol)), // which brings h(row, targetCol) to the range [0, h(row, sourceCol)). // // We are only allowed column operations; we perform the above // for every row, i.e., the above subtraction is done as a column // operation. This does not affect any rows above us since they are // guaranteed to be zero at these columns. while (h(row, targetCol) != 0 && h(row, sourceCol) != 0) { modEntryColumnOperation(h, row, sourceCol, targetCol, u); std::swap(targetCol, sourceCol); } // One of (row, echelonCol) and (row, i) is zero and the other is the gcd. // Make it so that (row, echelonCol) holds the non-zero value. if (h(row, echelonCol) == 0) { h.swapColumns(i, echelonCol); u.swapColumns(i, echelonCol); } } // Make all entries before echelonCol non-negative and strictly smaller // than the pivot entry. for (unsigned i = 0; i < echelonCol; ++i) modEntryColumnOperation(h, row, echelonCol, i, u); ++echelonCol; } return {h, u}; } DynamicAPInt IntMatrix::normalizeRow(unsigned row, unsigned cols) { return normalizeRange(getRow(row).slice(0, cols)); } DynamicAPInt IntMatrix::normalizeRow(unsigned row) { return normalizeRow(row, getNumColumns()); } DynamicAPInt IntMatrix::determinant(IntMatrix *inverse) const { assert(nRows == nColumns && "determinant can only be calculated for square matrices!"); FracMatrix m(*this); FracMatrix fracInverse(nRows, nColumns); DynamicAPInt detM = m.determinant(&fracInverse).getAsInteger(); if (detM == 0) return DynamicAPInt(0); if (!inverse) return detM; *inverse = IntMatrix(nRows, nColumns); for (unsigned i = 0; i < nRows; i++) for (unsigned j = 0; j < nColumns; j++) inverse->at(i, j) = (fracInverse.at(i, j) * detM).getAsInteger(); return detM; } FracMatrix FracMatrix::identity(unsigned dimension) { return Matrix::identity(dimension); } FracMatrix::FracMatrix(IntMatrix m) : FracMatrix(m.getNumRows(), m.getNumColumns()) { for (unsigned i = 0, r = m.getNumRows(); i < r; i++) for (unsigned j = 0, c = m.getNumColumns(); j < c; j++) this->at(i, j) = m.at(i, j); } Fraction FracMatrix::determinant(FracMatrix *inverse) const { assert(nRows == nColumns && "determinant can only be calculated for square matrices!"); FracMatrix m(*this); FracMatrix tempInv(nRows, nColumns); if (inverse) tempInv = FracMatrix::identity(nRows); Fraction a, b; // Make the matrix into upper triangular form using // gaussian elimination with row operations. // If inverse is required, we apply more operations // to turn the matrix into diagonal form. We apply // the same operations to the inverse matrix, // which is initially identity. // Either way, the product of the diagonal elements // is then the determinant. for (unsigned i = 0; i < nRows; i++) { if (m(i, i) == 0) // First ensure that the diagonal // element is nonzero, by swapping // it with a nonzero row. for (unsigned j = i + 1; j < nRows; j++) { if (m(j, i) != 0) { m.swapRows(j, i); if (inverse) tempInv.swapRows(j, i); break; } } b = m.at(i, i); if (b == 0) return 0; // Set all elements above the // diagonal to zero. if (inverse) { for (unsigned j = 0; j < i; j++) { if (m.at(j, i) == 0) continue; a = m.at(j, i); // Set element (j, i) to zero // by subtracting the ith row, // appropriately scaled. m.addToRow(i, j, -a / b); tempInv.addToRow(i, j, -a / b); } } // Set all elements below the // diagonal to zero. for (unsigned j = i + 1; j < nRows; j++) { if (m.at(j, i) == 0) continue; a = m.at(j, i); // Set element (j, i) to zero // by subtracting the ith row, // appropriately scaled. m.addToRow(i, j, -a / b); if (inverse) tempInv.addToRow(i, j, -a / b); } } // Now only diagonal elements of m are nonzero, but they are // not necessarily 1. To get the true inverse, we should // normalize them and apply the same scale to the inverse matrix. // For efficiency we skip scaling m and just scale tempInv appropriately. if (inverse) { for (unsigned i = 0; i < nRows; i++) for (unsigned j = 0; j < nRows; j++) tempInv.at(i, j) = tempInv.at(i, j) / m(i, i); *inverse = std::move(tempInv); } Fraction determinant = 1; for (unsigned i = 0; i < nRows; i++) determinant *= m.at(i, i); return determinant; } FracMatrix FracMatrix::gramSchmidt() const { // Create a copy of the argument to store // the orthogonalised version. FracMatrix orth(*this); // For each vector (row) in the matrix, subtract its unit // projection along each of the previous vectors. // This ensures that it has no component in the direction // of any of the previous vectors. for (unsigned i = 1, e = getNumRows(); i < e; i++) { for (unsigned j = 0; j < i; j++) { Fraction jNormSquared = dotProduct(orth.getRow(j), orth.getRow(j)); assert(jNormSquared != 0 && "some row became zero! Inputs to this " "function must be linearly independent."); Fraction projectionScale = dotProduct(orth.getRow(i), orth.getRow(j)) / jNormSquared; orth.addToRow(j, i, -projectionScale); } } return orth; } // Convert the matrix, interpreted (row-wise) as a basis // to an LLL-reduced basis. // // This is an implementation of the algorithm described in // "Factoring polynomials with rational coefficients" by // A. K. Lenstra, H. W. Lenstra Jr., L. Lovasz. // // Let {b_1, ..., b_n} be the current basis and // {b_1*, ..., b_n*} be the Gram-Schmidt orthogonalised // basis (unnormalized). // Define the Gram-Schmidt coefficients μ_ij as // (b_i • b_j*) / (b_j* • b_j*), where (•) represents the inner product. // // We iterate starting from the second row to the last row. // // For the kth row, we first check μ_kj for all rows j < k. // We subtract b_j (scaled by the integer nearest to μ_kj) // from b_k. // // Now, we update k. // If b_k and b_{k-1} satisfy the Lovasz condition // |b_k|^2 ≥ (δ - μ_k{k-1}^2) |b_{k-1}|^2, // we are done and we increment k. // Otherwise, we swap b_k and b_{k-1} and decrement k. // // We repeat this until k = n and return. void FracMatrix::LLL(Fraction delta) { DynamicAPInt nearest; Fraction mu; // `gsOrth` holds the Gram-Schmidt orthogonalisation // of the matrix at all times. It is recomputed every // time the matrix is modified during the algorithm. // This is naive and can be optimised. FracMatrix gsOrth = gramSchmidt(); // We start from the second row. unsigned k = 1; while (k < getNumRows()) { for (unsigned j = k - 1; j < k; j--) { // Compute the Gram-Schmidt coefficient μ_jk. mu = dotProduct(getRow(k), gsOrth.getRow(j)) / dotProduct(gsOrth.getRow(j), gsOrth.getRow(j)); nearest = round(mu); // Subtract b_j scaled by the integer nearest to μ_jk from b_k. addToRow(k, getRow(j), -Fraction(nearest, 1)); gsOrth = gramSchmidt(); // Update orthogonalization. } mu = dotProduct(getRow(k), gsOrth.getRow(k - 1)) / dotProduct(gsOrth.getRow(k - 1), gsOrth.getRow(k - 1)); // Check the Lovasz condition for b_k and b_{k-1}. if (dotProduct(gsOrth.getRow(k), gsOrth.getRow(k)) > (delta - mu * mu) * dotProduct(gsOrth.getRow(k - 1), gsOrth.getRow(k - 1))) { // If it is satisfied, proceed to the next k. k += 1; } else { // If it is not satisfied, decrement k (without // going beyond the second row). swapRows(k, k - 1); gsOrth = gramSchmidt(); // Update orthogonalization. k = k > 1 ? k - 1 : 1; } } } IntMatrix FracMatrix::normalizeRows() const { unsigned numRows = getNumRows(); unsigned numColumns = getNumColumns(); IntMatrix normalized(numRows, numColumns); DynamicAPInt lcmDenoms = DynamicAPInt(1); for (unsigned i = 0; i < numRows; i++) { // For a row, first compute the LCM of the denominators. for (unsigned j = 0; j < numColumns; j++) lcmDenoms = lcm(lcmDenoms, at(i, j).den); // Then, multiply by it throughout and convert to integers. for (unsigned j = 0; j < numColumns; j++) normalized(i, j) = (at(i, j) * lcmDenoms).getAsInteger(); } return normalized; }